...
&

- Apple H Extended 80-Column
Text Card Supplement

For ffe Only

Copyright

© Copyright 1982, 1985, Apple Computer, inc. for
all nontextual material, graphics, figures,
photographs, and all computer program listings
or code in any form, including object and source
code. All rights reserved.

For some products, a multi-use license may be
purchased to allow the software to be used on
more than one computer owned by the
purchaser, including a shared-disk system.
{Contact your authorized Apple dealer for
information on multi-use licenseas.)

Apple and the Apple logo are trademarks of
Apple Computer, Inc.

Printed in Singapore.

Limited Warranty on Media
and Replacement

If you discover physical defects in the manuals
distributed with an Apple product or in the media
on which a software product is distributed, Apple
will replace the media or manuals at no charge to
you, provided you return the item to be replaced
with proof of purchase to Apple or an authorized
Apple dealer during the 90-day period after you
purchased the software. In addition, Apple will
replace damaged software media and manuals
for as long as the software product is included in
Apple’'s Media Exchange Program.

While not an upgrade or update method, this
program offers additional protection for up to
two years or more from the date of your original
purchase. See your authorized Apple dealer for
Program coverage and details. In some countries
the replacement period may be different; check
with your authorized Apple dealer.

ALL IMPLIED WARRANTIES ON THE MEDIA
AND MANUALS, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY (90) DAYS
FROM THE DATE OF THE ORIGINAL RETAIL
PURCHASE OF THIS PRODUCT.

Even though Apple has tested the software and
reviewed the documentation, APPLE MAKES NO
WARRANTY OR REPRESENTATION, EITHER
EXPRESS OR IMPLIED, WITH RESPECT TO
SOFTWARE, ITS QUALITY, PERFORMANCE,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT, THIS
SOFTWARE IS SOLD “AS 15,” AND YOU THE
PURCHASER ARE ASSUMING THE ENTIRE
RISK AS TO ITS QUALITY AND
PERFORMANCE.

IN NO EVENT WILL APPLE BE LIABLE FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES RESULTING
FROM ANY DEFECT IN THE SOFTWARE ORITS
DOCUMENTATION, even if advised of the
possibility of such damages. In particular, Apple
shall have no liability for any programs or data
stored in or used with Apple products, including
the costs of recovering such programs or data.

THE WARRANTY AND REMEDIES SET FORTH
ABOVE ARE EXCLUSIVE AND IN LIEU OF ALL
OTHERS, ORAL OR WRITTEN, EXPRESS OR
IMPLIED. No Apple dealer, agent, or employee is
authorized to make any modification, extension,
or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability for
incidental or consequential damages, so the
above limitation or exclusion may not apply to
you. This warranty gives you specific legal rights,
and you may also have other rights which vary
from state to state.

Warning

This equipment has been certified to comply with
the limits for a Class B computing device,
pursuant to Subpart J of Part 15 of FCC Rules.
Only peripherals (computer input/output devices,
terminals, printers, etc.) certified to comply with
the Class B limits may be attached to this
computer. Operation with non-certified
peripherals is likely to result in interference to
radio and TV reception.

Reorder Apple Product #A2L2007

| BB SRR

1

RS T e TR TR T R
IS Radio and Television Interference

The equipment described in this manual generates and uses radio-
frequency energy. If it is not installed and used properly, that is, in
strict accordance with our instructions, it may cause interference
with radic and television reception.

This equipment has been tested and complies with the limits for a
Class B computing device in accordance with the specifications in
Subpart J, Part 15, of FCC rules. These rules are designed ta
provide reasonable protection against such interference in a
residential installation. However, there is no guarantee that the
interference will not occur in a particular installation, especially if
you use a "rabbit ear” television antenna. (A “rabbit ear” antenna is
the telescoping-rod type usually contained on TV receivers.)

You can determine whether your computer is causing interference
by turning it off. If the interference stops, it was probably caused
by the computer or its peripheral devices. To further isolate the
problem:

* Disconnect the peripheral devices and their input/output cables
one at a time. If the interference stops, it is caused by either
the peripheral device or its 10 cable. These devices usually
require shielded I'O cables. For Apple peripheral devices, you
can obtain the proper shielded cable from your dealer. For non-
Apple peripheral devices, contact the manufacturer or dealer
for assistance.

If your computer does cause interference to radio or television
reception, you can try to correct the interference by using one or
more of the following measures:

* Turn the TV or radio antenna until the interference stops.

* Move the computer to one side or the other of the TV or radio.
* Move the computer farther away from the TV or radio.

* Plug the computer into an outlet that is on a different circuit
than the TV or radio. (That is, make certain the computer and
the radio or television set are on circuits controlled by different
circuit breakers or fuses.)

* (Consider installing a rooftop television antenna with coaxial
cable lead-in between the antenna and TV.

Extended Text Card Supplement

If necessary, you should consult your dealer or an experienced
radio/television technician for additional suggestions. You may find
helpful the following booklet, prepared by the Federal
Communications Commission:

"How to Identify and Resolve Radio-TV Interference Problems™

This booklet is available from the U.S. Government Printing Office,
: Washington, DC 20402, stock number 004-000-00345-4.

Radic and Television Interference n

Extended Text Card Supplement

Table of Contents

Who Needs To Read This Supplement?

vii Users: A Card Is a Card

viii Developers: How To Use the Auxiliary Memory
viii Contents of This Supplement

ix Symbols Used in This Supplement

Introduction

3 Installation
4 80-Column Features
4 About the Auxiliary Memory

How the Auxiliary Memory Works

7 Addressing the Auxiliary Memory
9 How the 80-Column Display Works
11 Double High-Resolution Graphics

How To Use the Auxiliary Memory

16 The Extended Display

16 Display Pages

17 Display Mode Switching

18 Addressing the 80-Column Display Directly

21 Auxiliary Memory Switching

21 Switching the 48K Bank

25 Switching High Memory, Stack. and Zero-Page
29 Auxiliary-Memory Subroutines

29 Moving Data To Auxiliary Memory

30 Transferring Control To Auxiliary Memory

Contenis .

15

Programming Examples 33
35 Identifying Different Configurations
37 Apple lle Identification in Assembly Language
40 Apple lle Identification from BASIC
41 Apple lle Identification from Pascal
43 Storing Graphics Pages from Applesoft
46 Storing Data Strings from Pascal

Index 53

Schematic Diagram 59

11]

Extended Text Card Supplement

Preface

Who Needs To Read This
Supplement?

This supplement comes with the Apple lle Extended 80-Column
Text Card and describes the added features it has, compared to
the 80-Column Text Card. Before reading this supplement, you

should read the Apple lle 80-Column Text Card Manual.

There are two ways you are likely to use the extended version of
the 80-Column Text Card:

¢ As a user with application programs that take advantage of the
extra memory on the card to give you more features or more
storage for your data.

s As a developer creating a program, for yourself or for others,
that will use the extra storage the extended card provides.

Users: A Card Is a Card

From the user's point of view, the Extended 80-Column Text Card
is just like the standard 80-Column Text Card. Oh, it's a little
bigger, and it costs more, but the technical differences between
the two kinds of text cards are mostly hidden by software. Read
Chapter 1 of this supplement for an introduction to the Apple lle
80-Column Extended Text Card.

The extended text card is installed the same way as the standard

80-column card: read the Apple fle 80-Column Text Card Manual
for directions.

Preface wii

| Most application programs run the same with either card—in fact,
many of them don't even take advantage of the extra memory on
the extended card; they simply use it to display 80 columns of
text, Programs that do use the extra memory may do so
automatically, without any action on your part, or they may let you
select optional features or data storage. To find out how to use
those programs with the extra memory, refer to their instruction
manuals.

In short, if you just want to use this card for displaying 80 columns
of text, and you aren't developing a program that uses the auxiliary
memory, all you really need to know can be found in the Apple lle
80-Column Text Card Manual and in the instructions for your
application programs.

DN Developers: How To Use the Auxiliary
Memory

The only difference between the Extended 80-Column Text Card
and the standard 80-Column Text Card is the amount of memory
they contain. The extended card has 64K bytes of auxiliary
memory, while the standard card has only the additional 1K bytes
necessary to display BO columns of text on an Apple lle.

The main purpose of this supplement is to provide you with enough
information to use the auxiliary memory in your programs. Normally,
programs used with the Apple lle can only work with the 64K bytes
of built-in main memory. To work with the auxiliary memory, a
program must set special switches in the Apple lle that substitute
auxiliary memory for main memory. Neither DOS 3.3 nor Pascal
1.1—system programs for the Apple ll—support this memory
substitution, so for now your application programs have to handle it
themselves.

N Contents of This Supplement

This supplemeant contains the information you need to use the
auxikiary memory for storing programs and data. Chapter 1 is a
general introduction: it describes the functions of the Extended
80-Column Text Card.

Chapter 2 is a general description of the design of the Extended

80-Column Text Card; it explains how the card works with the
Apple lle hardware.

ﬂ Extended Text Card Supplement

Chapter 3 contains directions for using the auxiliary memory with
your programs. Most of the information in Chapter 3 is adapted
from the Appile lle Reference Manual. The reference manual is your
main source of information about the internal operation of the

Apple lle.

Chapter 4 contains short programs that use the auxiliary memory.
These examples are functional, but not general: you will probably
want to modify them for use in the programs you write,

PN Symbols Used in This Supplement

Special text in this manual is set off in different ways, as shown in
these examples.

‘. Warning

Important warnings appear in boxes like this,

Reminder: Information that is only incidental to the text appears in gray
boxes like this. You may want to skip over such boxes and return to
them later.

Captions, definitions, and other short
items appear in marginal glosses like
this.

Preface '

- Extended Text Card Supplement

Introduction

3 Installation

4 BO-Column Features
4 About the Auxiliary Memory

Introduction

=

Introduction

The design of the Apple lle Extended 80-Column Text Card is the
same as that of the standard Apple lle 80-Column Text Card. The
only difference is that the extended text card contains 64K bytes
of auxiliary memory {programmable memory or RAM) while the
standard card contains only 1K byte of RAM. The 80-column
display requires only 1K byte of auxiliary memory, so it will work
with either card. The firmware that supports the special features
associated with the B0-column display is part of the Apple lle itself,
and works the same regardless of which card is present,

Installation

Installing the Extended 80-Column Text Card is easy: do it just the
way you install the standard 80-Column Text Card. Either card fits
into the auxiliary slot {labeled AUX. CONNECTOR) on the main logic
board inside the Apple lle. If you haven't installed the card yet,
follow the directions given in the Apple lle 80-Column Text Card
Manual.

Warning

Mever install or remove anything inside the Apple lle with the power on.
There is a small red lamp—an LED—toward the back of the main circuit
board to remind you of this; if the red lamp i3 on, turn off the power
before you do anything inside the Apple lie,

Introduction H

I 80-Column Features

The built-in firmware that supports the 80-column display has other
features in addition to the wider display. The Apple Ne 80-Column
Text Card Manual tells you how to activate the built-in firmware and
the 80-column display. That manual also describes many of the
Apple lle's features,

You can find more information about the Apple lle in the Apple lle
Reference Manual. Chapter 2 includes a description of the different
display modes and how to select them. Chapter 3 includes tables
of the functions of the escape sequences and control keys in the

Apple lle.

N About the Auxiliary Memory

The Extended 80-Column Text Card has 64K bytes of additional
RAM, usually referred to as auxiiary memory. A 1K-byte area of
this memory serves the same purpose as the memory on the
80-Column Text Card: expanding the text display to 80 columns.
The other 63K bytes can be used for auxiliary program and data
storage. If you use only 40 columns for text display, all 64K bytes
are available for programs and data.

The processor in the Apple lle can only address 64K bytes of
memory. The computer has special circuits that programs can
switch to access auxiliary memory in place of main memory. At any
one fime, locations in the same 64K address space are in either
main memory or auxiliary memory. In other words, even though an
Apple lle with an Extended B0O-Column Text Card has a total of
128K bytes of programmable memory, it is not appropriate to call it
an 128K-byte system. Rather, there are 64K bytes of auxiliary
memory that can be swapped for main memory under program
control.

‘ Warning

Careless switching to the auxiliary memory is almost certain to crash
your programs. If you want to use auxiliary memory in your own
programs, be sure to study the rest of this supplement and the relevant
information in the Apple lle Reference Manual,

“ Extended Text Card Supplement

How the Auxiliary Memory
Works

T Addressing the Auxiliary Memory
9 How the 80-Column Display Works
11 Double High-Resolution Graphics

How the Auxiliary Memory Works

Chapter 2

How the Auxiliary Memory
Works

This chapter briefly outlines how the auxiliary memory operates. It
will help yvou understand what happens when you use the auxiliary
memaory in your programs.

Addressing the Auxiliary Memory

The 6502 microprocessor can address 64K bytes of memaory. In
the Apple lle the microprocessor's entire 64K memory space is
taken up by main RAM (random-access memory), ROM (read-only
memory), and I/O (input/output); there's no memory space available
for the added memory on the extended text card. Instead, the
address bus is connected to the auxiliary memory in parallel with
the main memory. To use the auxiliary memory for program and
data storage, the Apple lle switches its data bus so that it reads
and writes to the memory on the card instead of the main memory.
To use the auxiliary memory to expand the display, the Apple lle
fetches data both from main memory and from auxiliary memaory, as
described in the section "How the BO-Column Display Works.”

The bus switching for program and data storage is controlled by
the Memory Management Unit (MMU), a custom integrated circuit
designed for the Apple lle (see Chapter 7 of the Apple lle
Reference Manual). The MMU contains the soft switches set by
your programs along with the logic circuitry to monitor the address
bus and to switch to auxiliary memory for the selected address
ranges.

How the Auxiliary Memory Works

Figure 2-1. Memary Map with Auxilary Main Auxiliary
Memory Memory Memory

$FFFF

Barik- Bank-
SEQOD Switched Switched

Memaory Memory
$0000
$CEFF

10
$C000
SBFFF
i
|

$5000

Hi-Res

Graphics
$4000 Page 2

. =

Hi-Res Hi-Res

Graphics Graphics
$2000 Page 1 Page 1X
xCo0

Text
$800 Page 2

Text Test
$400 Page 1 Page 1X
£200
$1FF Stack & Stack &
%0 Zero Page Zero Page

“ Extended Text Card Supplement

Memory pages are 256 bytes long, Bul
display pages are aither 1024 bytes.
e g.. text Page 1, or 8192 bytes, e.g.,
high-resolution graphics Page 1. See
Chapters 2 and 4 of the Apple e
Reference Manual

As you can see by studying the memory map in Figure 2-1, the
auxiliary memaory is divided into two large sections and one small
one. The largest section is substituted for main memory addresses
512 to 49151 ($200 through $8FFF). This part of memory is
sometimas referred to as the 48K memory space, and it is used for
storing programs and data.

The other large section of auxiliary memory replaces main memory
addresses 52K to &4k ($0000 through $FFFF). This memory space
is called the bank-switched memory, If you plan to use this part of
the auxiliary memaory, read the section "Bank-switched Memory™ in
the Appile fle Reference Manual. The switching for the ROM and
the $p000 bank is independent of the auxiliary-RAM switching, so
the bank switches have the same effect on the auxiliary RAM that
they do on the main RAM.

When you switch to the auxiliary memory in the bank-switched
memory space, you also get the first two pages of auxiliary
memory, from 0 to 511 (30000 through $01FF). This part of
memory contains page zero, which is used for important data and
base addresses, and page one, which is the 6502 stack.

Warning

Remember that addresses in page zero and the 6502 stack switch to
auxiliary memory any time you switch the bank-switched memory to
auxiliary mamory.

How the 80-Column Display Works

Half of the data for the BO-column display is stored in main memory
in the normal text Page 1, and the other half is stored in auxiliary
memory on the extended text card. The display circuitry fetches
bytes of data from these two memory areas simultaneously and
displays them as two adjacent characters.

The main memory and the auxiliary memory are connected to the
address bus in parallel, so both are activated during the display
cycle. The 40-column display uses every other clock cycle and
fetches data only from main memory. The 80-column display uses
the remaining clock cycles to process the additional display data
from auxiliary memory.

How the Auxiliary Memory Works H

| Figure 2-2. Fetching Data for the
80-Column Display

Auxiliary

80-Column Text Card

The byte of display data from main memory goes to a buffer on the
main logic board, and the display data from auxiliary memory goes
to a buffer on the extended text card. When the 80-column display
is on, the data bytes from these buffers are switched onto the
video data bus on alternate clock cycles: first the byte from the
auxiliary memory, then the byte from the main memary. The main
memory provides the characters displayed in the odd columns of
the display,. and the auxiliary memory provides the characters in the
| aven columns.

The 80-column display contains twice as many characters as the
40-column display does, so it has to put twice as many dots across
the screen. This means that the dots are clocked out at 14MHz
instead of 7MHz, making them narrower and therefore dimmer on a
normal video monitor. On a television set, the dot patterns making
up the characters are too close together to reproduce clearly. To
produce a satisfactory 80-column display requires a monitor with a
bandwidth of at least 14MHz.

Extended Text Card Supplement

RGE stands for red. green, and bue. Except for some expensive H‘EE-WPE color monitors, any video monitor
and identifies a type of color monitor with a bandwidth as high as 14MHz will be a monochrome monitor.

that uses independent inpuls for the Monochrome means one color: a monochrome video monitor can have
three primary colors. a screen color of white, green, orange, or any other single color,

Note that this simultaneous-then-sequential fetching applies only to
the video-display generation; reading and writing for data storage in
auxiliary memory is done by switching the data bus to read only

: from the card, as described in the previous section. For more
information about the way the Apple lie handles its display memory,
refer to Chapter 2 and Chapter ¥ of the Apple lfe Reference

. Manual.

N Double High-Resolution Graphics

When you select mixed-mode graphics with BO-column text, you
would expect that the doubling of the data rate that produces the
80-column display would change the high-resoclution graphics from
280 to 560 dots horizontally and cause the low-resolution graphics
to malfunction. To prevent this, the logic that controls the display
includes an extra circuit to force the graphics displays to be the
same regardless of whether you have set the soft switches for
80-column text or for 40-column text. This feature is included so

that you can use 80-column text in the mixed graphics and text
modes.

For those who would like to have a graphics display with twice the
horizontal resolution, there is a way to disable the circuit that forces
normal graphics timing with 80-column text. There are two things
you must do to obtain the double high-resolution display:

* Install a jumper to connect the two Molex-type pins on the
Extended 80-Column Text Card.

* Turn on the Annunciator 3 soft switch along with the switches
that select the 80-column display and high-resolution graphics,

This procedure works only on the Apple lle with the Rev B (and
later} main logic board, identified by a B as the last letter of the part

. number on the back part of the board. Connecting the pins on the
Extended 80-Column Text Card completes a connection between
pin 50 (AN3) and pin 55 (FRCTXT") on the auxiliary slot.

How the Auxiliary Memory Works

| A Warning

If you have a Rev A Apple lle, using an extended text card with a
jumper makes the computer inoperable. You cannot use the double
high-resolution modification with a Rev A Apple lle.

If you have an extended text card with a jumper installed in a Rev B
(or later) Apple lle, turning on Annunciator 3 and selecting high-

resolution graphics and 80-column text at the same time generates .
a display using high-resolution Page 1 addresses in main memory -_
and auxiliary memory at the same time, |

The memory mapping for this graphics display is doubled by
columns the same way as 80-column text, but it uses high-
resolution graphics Page 1 instead of text Page 1. Where the
80-column text mode displays pairs of data bytes as pairs of
characters, double high-resolution mode displays pairs of data
bytes as 14 adjacent dots, seven from each byte. As in BO-column
text mode, there are twice as many dots across the display screen,
so the dots are only half as wide.

Existing Apple Il graphics programs do not support this kind of

display. Until new programs become available, you'll have to write
your own plotting routines if you want to use 560-dot graphics.

n Extended Text Card Supplement

How To Use the Auxiliary
Memory

16 The Extended Display

16 Display Pages

17 Display Mode Switching

18 Addressing the BO-Column Display Directly
21 Auxiliary Memory Switching

21 Switching the 48K Bank

25 Switching High Memory, Stack, and Zero-Page

29 Auxiliary-Memory Subroutines
29 Moving Data To Auxiliary Memory
30 Transferring Control To Auxiliary Memory

How To Use the Auxiliary Memory

How To Use the Auxiliary
Memory

This chapter describes soft switches and built-in subroutines that
control the operation of the auxiliary memory. To take advantage of
the additional memory, you must set up your programs to operate
in one part of memory while they switch the other part between
main and auxiliary RAM. Your program can perform the memory
switching by means of the soft switches described in the section
“Display Mode Switching™ or by using the AUXMOVE and XFER
subroutines described later in this chapter. Except for these
subroutines, most existing Apple Il system software (DOS 3.3,
Pascal 1.1} doesn't support the auxiliary memory.

Although some high-level languages, such as BASIC, can set the
soft switches directly, your programs must use assembly-language
subroutines to control the auxiliary memory. Small assembly-
language subroutines can be accessed from a BASIC program
using a caLL statement, or they can be linked to a Pascal program
as procedures or functions: see the examples in Chapter 4.

Warning

Do not attempt to use the auxiiary memory directly from a program in
an interpreter language such as BASIC or Pascal. The interpreters that
run such programs use several areas in main memaory, including the

stack and the zero page. If you switch to auxilary memory in these
pages, the interpreter crashes, When you reset the system lo start
over, your program and data are lost.

How To Use the Auxiliary Memory

NN The Extended Display

The primary purpose of an 80-column text card is the generation of
an 80-column display, so there is a complete set of switches just
to control the display. Other switches are used for program and
data storage in the auxiliary memory; they are described later,

Display Pages

The Apple lle generates its video displays from data stored in
specific areas in memory called display pages. The 40-column-text
and low-resolution-graphics modes use text Page 1 and text

Page 2, located at 1024-2047 (hexadecimal $400-$7FF) and
2048-3071(S800-SBFF) in main memory.

The 80-column text display uses a combination of text Page 1 in
main memory and the same page in the auxiliary memaory, here
called Page 1X. Text Page 1X occupies the same address space
as text Page 1. but in auxiliary memory rather than main memory.
To store data in Page 1X, you must use a soft switch {see the
section “Display Mode Switching”). The built-in 80-column display
routines described in Chapter 3 of the Apple lle Reference Manuaf
take care of this switching automatically; that is a good reason to
use those routines for all your normal 80-column text output.

Table 3-1. Video Display Page
Locations. *Note: These modes use Lowest Highest

locations in both main and auxikary Display Mode Page Address Address Notes
memory. The PAGEZ swilch is used to

select one o the other for storing data:

see the section "'Disptay Mode

Switching 40-Column Text, 1 F400 1024 $TEF 2047
) Low-Resalution

Graphics 2 5800 2043 SBFF 3071
B0-Column Text 1 £L00 1024 ETFF 2047 *
Maormal 280-0o 1 £2000 B192 ZIFFF 146383
High-Resolution
Graphics 2 54000 16384 $5FFF 24575
Optional 580-Dok i $2000 8192 SIFFF 14383 *
High-Resolution
Graphics

Extended Text Card Supplement J

e —————————— e —

Display Mode Switching

You select the display mode that is appropriate for your application
by reading or writing to soft switches. Most soft switches have
three memory locations: one for turning the switch on, one for
turning it off, and one for reading the state of the switch,

Table 3-2 shows the locations of the soft switches that control the
display modes. The table gives the switch locations in three forms:
hexadecimal, decimal, and negative decimal. You can use the
hexadecimal values in your machine-language programs. Use the
decimal values in PEEK or POKE commands in Applesoft BASIC, the
negative values are for Integer BASIC,

Fucr’ hmfb::;;ul r:e h;m gl;fn Same of the soft switches in Table 3-2 are marked read or write.

DIl unctions, see Those soft switches share their locations with the keyboard data

Ihe Agpie lle Reference idanua and strobe functions. To perform the function shown in the table,
use only the operation listed there. Soft switches that are not
marked may be accessed by either a read or a write. When writing
to a soft switch, it doesn't matter what value you write; the switch
function occurs when you address the location, and the value is
ignored.

‘. Warning

Be sure to use only the indicated operations to manipulate the
switches. It you read from a switch marked write, you won't get the
correct data. It you write to a switch marked read, you won't set the
switch you wanted, and you may change some other switch so as 1o
cause your program o malfunction.

When you read a soft switch, you get a byte with the state of the
switch in bit 7, the high-order bit, The other bits in the byte are
unpredictable. If you are programming in machine language, this bit
is the sign bit. If you read a soft-switch from a BASIC program, you
get a value between 0 and 255. Bit 7 has a value of 128, soif the
switch is on, the value will be equal to or greater than 128; if the
switch is off, the value will be less than 128.

How To Use the Auxiliary Memory

| Table 3-2. Display Soft Switches_ (1)
This mode is only effective whan TEXT Location
swilch is oft, {2) This switch has a Name Function Hex Decimal Notes
different function when B0STORE is on:
refer to the next section. (3 This switch
changes the function of the PAGEZ

switch for addressing the display TEXT On: Display Text $CO51 49233 -14303
M;E""'f"“r? on the extended text card: OM: Display Graphics $C050 49232 -16304
r fo the next section. Read TEXT Swilch $COTA 49178 -14358 Read
MIXED On: Text With Graphics $C053 49235 -16301 1
Off: Full Graphics $C052 49234 -148302 1
Read M1XED Switch $CO18 49179 -14357 Read
PAGEZ On: Display Page 2 $CO55 49237 -146299 2
Off: Display Page 1 BCO54 49236 -14300 2
Read PAGEZ Switch $CO1C 49180 -146356 Read
HIRES On: Graphics = High-
Resolution $CO57 49239 -16297 1
Off. Graphics = Low-
Resolution $C056 492318 -16298 1
Read HIRES Switch $C01D &91B1 -14355 Read
BOCOL On: Display B0 Columns $C00D 49145 -146371 Write:
Off: Display 40 Columns $CO0C 49164 -16372 Write
Read B0COL Swilch $CO1F 49183 -14353 PRead
805TORE On Store in Auxiliary Page $CO01T 49153 -16383 Write,3
Off: Store in Main Page $CO00 49152 -16384 Write 3
Read B0STORE Switch $COTB 49176 -16360 Read
Addressing the 80-Column Display Directly
Figure 3-1 is the map of the B0-column display. Half of the data is
stored in text Page 1 in main memory, and the other half is stored
in the same locations in auxiliary memory (here called Page 1X).
The display circuitry fetches byles from these two memory areas
simultaneously and displays them sequentially: first the byte from
the auxiliary memory, then the byte from the main memory. The
main memory stores the characters in the odd columns of the
display, and the auxiliary memory stores the characters in the even
columns, For a full description of the way the Apple lle handles its
display memory, refer to Chapter 2 and Chapter 7 of the Apple e
| Reference Manual.
¥

Extended Text Card Supplement i

To store data directly into the display page on the Extended
80-Column Text Card, first turn on the 805ToORE soft switch by
writing to location 49153 (negative decimal -146383 or hexadecimal
$C001). With 805TORE on, the page-select switlch PAGEZ switches
between the portion of the 80-column display stored in Page 1 of
main memory and the portion stored in Page 1X in auxiliary
memory. To select Page 1X, turn the PAGE2 soft switch on by
reading or writing at location 49237 (-16299, $C055).

You'll have to write a short program to try out the 80STORE and
PAGEZ soft switches. When you try to change these swilches by using

’ the Monitor program, it changes them back in the process of displaying
the commands you type.

If you want to use the optional double-high-resclution display
described in Chapter 2, you can store data directly into high-
resolution graphics Page 1X in auxiliary memory in a similar fashion.
Turn on both 80SToRE and HIRES, then use PAGEZ to switch from
Page 1 in main memory to Page 1X in auxiliary memory,

| The memory mapping for double high-resolution graphics is similar
to the normal high-resolution mapping described in Chapter 2 of the
Apple lle Reference Manual, with the addition of the column
doubling produced by the 80-column display. Like the 80-column
text mode, the double high-resolution graphics mode displays two
bytes in the time normally required for one, but it uses high-

— resolution graphics Page 1 and Page 1X instead of text Page 1 and
Page 1X.
For a description of the way the high- Double high-resolution graphics mode displays each pair of data
order bit acts as color-select bit in bytes as 14 adjacent dots, seven from each byte. The high-order
Eﬁ;‘f {ﬂmwﬂﬁm' =2 pit (color-select bit) of each byte is ignored. The auxiliary-memory
Manual byte is displayed first, so data from auxiliary memory appears in

columns 0-8, 14-20, etc., up to columns 547-552. Data from main
memaory appears in columns 7-13, 21-27, and so on up to
553-559.

As in BO-column text, there are twice as many dots across the

display screen, so the dots are only half as wide. On a TV set or
' low-bandwidth moniter, single dots will be dimmer than normal.

How To Use the Auxiliary Memory n

Figure 3-1. Map of B0-Column Texi

545 54A S4B 54C
™M T4 V¥5 TE

54D S4E $aF
TTOTE T8

549 F4A 548 S54C 54D
34 T4 TH TH TT

F4E F4AF
g To

Display

MaAIN $00 $01 %02 3503 304 $05 306
MEMORY 0 1 2 3 4 5 &
ALXILIARY 200 %01 %02 S03 304 805 S06 507
MEMORY 1] 1 3 4 4 5 & T
$400 1024

480 1152

S500 1280

5580 1408

5600 1536

$680 1664

F700 1782

5780 19240

5428 1064

S448 1182

5528 1320

5548 1448

5628 1678

SEAR 1704

5728 1832

ETAB 18260

$450 1104

F4D0 1232

5550 1360

S5D0 1488

5650 1616

2600 1744

750 1872

5700 i i)

Extended Text Card Supplement

When RAMWET and RAMRD are on,
auxiliary memory s used, when they are
off, main memory is used.

Auxiliary Memory Switching
This section describes the switches used to access the auxiliary
memory for storing programs and data.

Warning

The display soft switches 80STORE, PAGE2, and HIRES, discussed
here and in the previous section, are used primarily for addressing
display data. These switches override the general-purpose switches
described in this section. so you must set them correctly even if your
program doesn't use them.

#

Switching the 48K Bank

Switching the 48K-byte section of memory is performed by two
soft switches: RAMRD selects main or auxiliary memory for reading,
and RAMWRT selects main or auxiliary memory for writing. As shown
in Table 3-3, each switch has a pair of memory locations dedicated
to it, one to select main memory, and the other to select auxiliary
memory. Setting the read and write functions independently makes
it possible for a program whose instructions are being fetched from
one 48K-byte memory space to store data into the other 48K

memory space.

Warning

Before using these switches, you must fully understand the effects of
switching to auxiliary memory. For example, an application program
running in the 48K bank of auxiliary memary that tries to use the built-in
I'O routines by calling the standard /O links will crash even though the
main ROM, which contains the built-in IO roulines, has been selected,
This happens because the standard links call DOS routines, and DOS is
in the 48K bank of main memory, which is locked out while the
application program is running in auxiliary memory.

Writing to the soft-switch at location $C003 turns RAMRD on and
enables auxiliary memory for reading; writing to location $c002
turns RAMRD off and enables main memory for reading. Writing to
the soft-switch at location $C005 turns RAMWRT on and enables the
auxiliary memory for writing; writing to location $C004 turns RAMWRT
oft and enables main memory for writing. By setting these switches
independently, you can use any of the four combinations of reading
and writing in main or auxiliary memory.

How To Use the Auxiliary Memory n _

| Auxiliary memory corresponding to text Page 1 and high-resolution
graphics Page 1 can be used as part of the 48K bank by using
RAMRD and RAMWRT. These areas in auxiliary memory can also be
controlled separately by using the display-page switches 805TORE,
PaGE2, and HIRES described in “Addressing the 80-Column
Display Directly.”

As shown in Table 3-3, the 80sTORE switch functions as an ~
enabling switch: with it on, the PAGEZ switch selects main memory

or auxiliary memory. With the HIRES switch off, the pAGEZ2 switch

selects main or auxiliary memory in the text display Page 1, $0400

to $07FF; with HIRES on, the PAGEZ switch selects main or

auxiliary memory in text Page 1 and high-resoclution graphics

Page 1, $2000 to $3FFF.

If you are using both the 48K-bank control switches and the
display-page control switches, the display-page control switches
take priority: if B0STORE is off, RAMRD and RAMWRT work for the
entire memory space from $0200 to $8FFF, but if BOSTORE IS On,
RAMRD and RAMWRT have no effect on the display page.
Specifically, if B0SToRE is on and HIRES is off, PAGEZ contrals text
Page 1 regardless of the settings of RAMRD and RAMWRT, Likewise,
if BOSTORE and HIRES are both on, PAGEZ controls both text
Page 1 and high-resolution graphics Page 1, again regardless of
RAMRD and RAMWRT.

You can find out the settings of these soft switches by reading
from two other locations, The byte you read at location $c013 has
its high bit (the sign bit) set to 1 if RAMRD is on (auxiliary memory is
enabled for reading), or ¢ if RAMRD is off (the 48K block of main
memary is enabled for reading). The byte at location $¢014 has its
high bit set to 1 if RAMWRT is on {auxiliary memory is enabled for
writing), or 0 if RAMWRT is off (the 48K block of main memory is
enabled for writing).

22 Extended Text Card Supplement

Figure 3-2. Effect of Switching RAMRD

and RAMMRT with BOSTORE Off

Main Auxiliary

Mamory Memory
SFFFF -
Bark-
Switched
SDFFF Memory
0000
$BFFF
6000
$4000
22000
$cCan
$E00
5400
200
50 Lero Page
Active IFiE tiver III
RAMRD: X RAMWRT: X BOSTORE: off
PAGEZ: off HIRES: off ALTZP: off

How To Use the Auxiliary Memory H

| Figure 3-3, Etfect of Swilching RAMRD Main Auxiliary
and RAMWRT with BOSTORE and HIRES Memory Memory
On -
BFFFF
Bank-
Switchad
SDFFF Memory |
$0000 |
$BFFF
4000
4000
2000
3C00
3200
5400
200
$1FF Stack &
30 Zero Page
Active Inactive _ Switching -
RAMRD: X RAMWRT: X BOSTORE: on

PAGEZ: off HIRES: on ALTZP: off ;

Extended Text Card Supplement

When the ALTZP soft switch is on,

auxiliary memory is used; when it is off,

maln Memory & used.

Switching High Memory, Stack, and Zero Page |

The single soft switch ALTZP (alternate zero page) switches the
bank-switched memory and the associated stack and zero page
area between main and auxiliary memory. As shown in Table 3-3,
writing to location $C00% turns ALTZP on and selects auxiliary-
memory stack and zero page; writing to the soft switch at location
$C008 turns ALTZP off and selects main-memory stack and zero
page for reading and writing, The section “Auxiliary-Memory
Subroutines” describes firmware that you can call to help you
switch between main and auxiary memory.

To find out the setting of this soft switch, read location $c016. The
data byte you get has its high bit {the sign bit) set to 1 if aLTZP is
on (the bank-switched area, stack, and zero page in the auxiliary
memory are selected), or 0 if ALTZP is off (the same areas in main
memory are selected).

To have enough memory locations for all of the soft switches and
remain compatible with the Apple Il and Apple Il Plus, the soft switches
listed in Table 3-3 share their memory locations with the keyboard
functions listed in Chapter 2 of the Apple lle Reference Manual.
Whichever operation—read or write—is shown in Table 3-3 for
controlling the auxiliary memaory is the one that is not used for reading
the keyboard and clearing the strobe.

How To Use the Auxiliary Memory

| Table 3-3. Auxihary-Memory Select
Switches. ;1:- When BOSTORE is on, the Location
PAGEZ swilch works as shown, when Name Eunction Hex Decimal Notes

BOSTORE is off, PAGE2 doesn't affect
the auxiliary memony. [2) When
BOSTORE is on, the HIRES switch
enables you 1o use the PAGE2 switch to

selact betwaen high-resolution Page 1 RAMRD On: Hﬂdlu:::.-ml{ $C003 49155 -14381 ulul'ri_uta
areas in main and auxikary memory. Off: Read Main 48K $C002 49154 -16382 Write
Read RAMRD Swiich $CO13 49171 -16345 Read
RAMWET On: Wrile Aux, 48K $C005 49157 =16379 Write]
Off: Write Main 48K $CO004 49156 =16380 Write
Read RAMWRT Switch $CO014 49172 -16354 Read J
ALTZP On: Aux. Stack, Zero
Page, and Bank-
Switched Memaory $CO009 491471 16373 Write
Off; Masn Stack, Zero
Page, and Bank-
Switched Memory $CO08 49140 -=-1&6374 Wirite
Read ALTZP Swilch $CO016 49174 -16352 Read
BOSTORE On Access Page 1% $5C001 49153 -16383 Write
OH; Use RAMRD, RAMMRT $CO00 49152 -163B& Write
Read BOSTORE Swilch $CO18 49176 ~-16360 Read

PAGEZ On: Access Aux. Memory SCO55 &9237 -16299
Off: Access Main Memory BCO54 492346 -16300

Read PAGEZ Switch $C01C 49180 -146354 Read
HIRES On: Access High-
Resclution Page 1X SCOS7? 49239 -18297 2
Off: Use RAMRD, RAMWRT $CO56 49238 -16298 2
Read HIRES Switch 5COTD &971B1 =16355 Head

Extended Text Card Supplement

Figure 3-4. Eftect of Switching ALTZP

—

$RFFF
6000

Hi-Fas

Graphics
$4000 Page 2

Hi-Res

Graphics
$2000 Page 1
£CO0

—

Text
£800 Page 2

Text
s400 Page 1
$200
$1FF
50
Active Inactive i
RAMRD: off RAMWRT: off
PAGEZ: off HIRES: off

How To Use the Auxiliary Memory

Switching l

Auxiliary
Memory

BOSTORE: off

ALTZP: X

B

Figure 3-5. Effact of Switching PAGEZ
with 805TORE and HIRES On

Memaory
RFFFF
Bank-
Swilched
SOFFF Memory
ED000
3BFFF
S4000
56000
£2000
£C00
$800
400
5200
T1FF Stack &
50 Zero Page
Active Inactve . Switching .
RAMED: off RAMWRT: off BOSTORE: an
PAGEZ:, X HIRES: on ALTZP: off

Extended Text Card Supplement

Tabla 3-4. Auxilary-Memaory Routines

The earry bit is bit 0 in the processor
status ward; use the SEC Instructon to
get it, and CLC 1o clear it

IS Auxiliary-Memory Subroutines

If you want to write assembly-language programs or procedures
that use auxiliary memory, the built-in auxiliary-memory subroutines
will be helpful. These subroutines make it possible to use the
auxiliary memory without having to manipulate the soft switches
already described.

The subroutines described in this section make it easier to use auxiliary
memory, but they do not protect you from errors. You still have to plan
your use of auxiliary memory to avoid inexplicable crashes.

You use these built-in subroutines the same way you use the IO
subroutines described in Chapter 3 of the Apple lle Reference
Manual: by making subroutine calls to their starting locations. Those
locations are shown in Table 3-4.

Subroutine

Name Location Description

AUXMOVE TCIT11 Maoves data blocks betwesn main and
aAluxiary memaory

EFER FC314 Transfers program confrol between

main and ausiliary memory

Moving Data To Auxiliary Memory

In your assembly-language programs, you can use the built-in
subroutine named AUXMOVE to copy blocks of data from main
memaory to auxiliary memory or from auxiliary memory to main
memory. Before calling this routine, you must put the data
addresses into byte pairs in page zero and set the carry bit to
select the direction of the move—main to auxiliary or auxiliary to
Main.

Warning

Don't try to use AUXMOVE to copy data in page zero, page one (the
6502 stack)}, or in the bank-switched memory ($D000-$FFFF).
AUXMOVE uses page zero while it is copying, so it can't handle moves
in the memory space swilched by ALTZP.

How To Use the Auxiliary Memory

Remember that Pascal uses page zero too, 50 you can't use
AUXMOVE from a Pascal procedure without saving the contents of page
zero first, and restoring them afterward.

The pairs of bytes you use for passing addresses to this subroutine
are called a1, A2, and A4; they are used for passing parameters to
several of the Apple lle's built-in routines, The addresses of these
byte pairs are shown in Table 3-5.

Table 3-5. Parameters far AUXMOVE
Roufirse

MNamea Location Parameter Passed
Carry 1 = Move from main to auxiliary memory

0 = Maove lrom auxiliary to main memory
AL 83¢ Source starting address, low-order byte
A1H 330 Saurce starting address, high-order byte
AL $3E Source ending address, low-order byle
AEH 33F Source ending address, high-order byte
ALL 542 Destination starting address, low-order byte
AGH $45% Destination starting address, high-order byte

Put the addresses of the first and last bytes of the block of
memory you want to copy into 41 and A2. Put the starting address
of the block of memory you want to copy the data to into A4.

The AuxMOVE routine uses the carry bit to select the direction to
copy the data. To copy data from main memory to auxiliary
memaory, set the carry bit (SEC), to copy data from auxiliary memaory
to main memory, clear the carry bit {cLc).

When you make the subroutine call to AuxmovE, the subroutine
copies the block of data as specified by the a registers and the
carry bit. When it is finished, the accumulator and the x and ¥
registers are just as they were when you called it

Transferring Control To Auxiliary Memory

You can use the built-in routine named xFERr to transfer control to
and from program segments in auxiliary memaory. You must set up
three parameters before using xFER: the address of the routine
you are transferring to, the direction of the transfer (main to
auxiliary or auxiliary to main), and which page zero and stack you
want to use,

Extended Text Card Supplement

Table 3-6. Parameters for XFE& Routine

The overflow bit is bit & in the

processor slatus word, use the CLY
instruction to clear it. To set it, force an
overflow by adding two numbers that

total more tham 127,

A

Mame or
Location Parameter Passed
Carry 1 = Transfer from main to auxiEary memory
0 = Transler from auxiiary to main memory
Overflow 1 = Use page zero and stack in auxliary memory
8 = Use page zero and stack i main memory
$IED Program starfing address, low-order byte
£3EE Program starling address, high-order byte

Put the transfer address into the two bytes at locations $3€D and
$3EE, with the low-order byte first, as usual. The direction of the
transfer is controlled by the carry bit: set the carry bit to transfer to
a program in auxiliary memory; clear the carry bit to transfer to a
program in main memory. Use the overflow bit to select which page
zero and stack you want to use: clear the overflow bit to use the
main memory; set the overflow bit to use the auxiliary memaory.

Warning

It is the programmer's responsibility to save the current stack pointer
somewhere in the current memaory space before using XFER and to

restore it after regaining control, Failure to do so will cause program

arrors.

After you have set up the parameters, pass control to the XFER
routing by a jump instruction, rather than a subroutine call. XFER
saves the accumulator and the transfer address on the current
stack, then sets up the soft switches for the parameters you have
selected and jumps to the new program.

How To Use the Auxiliary Memory

Extended Text Card Supplement

i &5

Programming Examples

35 Identifying Different Configurations

37 Apple lle ldentification in Assembly Language
40 Apple lle Identification from BASIC
41 Apple lle Identification from Pascal

43 Storing Graphics Pages from Applesoft
46 Storing Data Strings from Pascal

Programming Examples a3

Table 4-1. Identification Return
Codes

Programming Examples

This chapter contains examples showing how to use the auxiliary
memory from a program. These examples are not infended to be
universal routines that everyone can use as is, rather, they are
representative examples showing how specific operations have
been implemented. You will probably want to study the examples to
see how it is done, then copy or modify them to suit your
application.

Identifying Different Configurations

By identifying the configuration of the machine they are running on.
application programs for the Apple lle can take advantage of the
new features and still remain compatible with older Apple II's. This
section gives a procedure for doing this from assembly language
and shows how to use the identification routine in programs written
in Applesoft BASIC and Pascal.

The identification routine returns a value to the calling program that
depends on the type of machine it is running on. Table 4-1 shows
the return codes.

500 [0] = not an Apple lle

20 (32] = Apple ke but no Apple e 80-Column Text Card

540 [6&] = Appke lle wath BO-Column Text Card wathout auxdiary memory
580 (128 = Apple lle with Extended BO-Column Text Card

Programming Examples

Note: An BO-column card installed in expansion slot 3 will work in an
Apple lle the same as in an Apple Il or Apple Il Plus, but it does not
activate the built-in 80-column firmware. The identification program does
not detect such a card, but returns a code of 32 no Apple lle
80-Column Text Card.

Here is an outline of the procedure the identification routine uses to
identify an Apple lle and its variations:

1. Save four identification bytes from the ROM/RAM area ($0000
to $FFFF).

2. Disable interrupts.

3. Switch bank-switched memory to read ROM by reading $C089
twice.

4. Identify Apple lle by finding the value 06 at $FBB3.

5. If Apple lle, and high bit is on at location $c017, then the
computer has a text card.

6. If Apple lle with 80-Column Text Card, then check for auxiliary
memaory:

a. If $c013's high bit is on, then reading auxiliary memory so
must have auxiliary memaory.

b. If $c0146°s high bit is on, then reading auxiliary zero page
s0 must have auxiliary memory.

c. If sparse memory mapping (no upper four address bits so
that $800 has the same RAM location as $c00). then no
auxiliary memory.

1. Exchange a section of zero page with the section of
code that switches memory banks. This way the zero
page data is saved and the program doesn't get
switched out.

2. Jump to the relocated code on page zero.

Switch in auxiliary memory {$200 - $8FFF) for reading
and writing by writing to $c005 and $C003,

Note: Auxiliary memory locations $400-$800 and
$2000-%4000 may not be available depending upon
the setting of soft switches for 80-column display and
high-resolution graphics—they have priority over
auxiliary memory selection.

Extended Text Card Supplement

4. Store a value at $800, and see if same value at $C00.
If not, then auxiliary memory.

5. Change value at $C00, and see if $800 changes to
same value. If so, then no auxiliary memory.

6. Set soft switches for reading and writing to main
memory by writing to $C002 and $C004.

7. Jump back into program on main RAM.
8. Put zero page back.
7. Store identification byte for later reference by calling routine.
8. If Pascal routine then turn card back on by reading $C08B
twice.

9. The BASIC or assembly-language routines restore the
RAM/ROM area as it originally was by checking four bytes
saved at the start of the routine.

10. Enable interrupts.
11. Return to caller.

For some applications it may not be necessary to identify the exact
configuration of the computer. For example, if your program cannot
use the auxiliary memory, then you would not need to know
whether it is available or not. In that case you may want to eliminate
parts of the routine. For other applications the identification routine
will use memory space required by your program, so you will need
to move the routine to some other location.

Warning

If you change the identification routine, make sure that it still determines
the configuration in the same way as the original. Later revisions of the
Apple lle may not support other identification procedures.

Apple lle Identification in Assembly Language

The assembly-language subroutine given here is assembled to
machine language in locations $200 through $3cF. To call the
subroutine, your program does a jump to subroutine (JSR) to $204.
When the subroutine returns, the identification code is stored in
memory location $3CF.

Programming Examples

Apple lle ldentification Program

1HH FHEEAM aRG L2704

SHFE (411 $3CF

SAVE EQU 0001 ;START OF CODE RELOCATED DN PAGE ZERD
[311 204 ;S5THRT OF FOUR BYTE LAMGUAGE CARD ID
PHE sOTSABLE INTERRUPTS
SEI
LDA SEDDD THAVE L BYTES FROM
5TA SAVE s ROMRAM ARES FOR LATER
LBA sobod TRESTORING OF RAMROM
5TA SAVE+1 ;TO ORIGINAL CONDITION
LDA $0L00
sTa SANVE+2Z
LDA SCEOD
ZTA SANVE+ T
LOA SCOET TEMSEURE HEADING ROM BY TURNTNG OFF
LORA SCOE1 *BAMKABLE MEM,
LOA SFEBI ;GET APPLE I1E SIGNATURE BYTE
CHFP 254
BHE ouT1 sIF HOT »& THEN BOT APPLEIIE
LDA $CO1T sWAS B0 COLUMNS FOLUND DURING STARTUP
B { QuTz r[F W BIT ON THEW MO 80 cOLUMMN CARD
LO& $L013 ;S5EE IF AUX MEMORY BETMG READ
BEMI QUT& ALIX MEM BEING USED 50 AUX HEM AWALTL.
LDA SCO16A (S5EE IF AUX TP BETNG USED
EMI QUTS ;ALY ZF BEIMG USED 50 ALK MEM AVAIL
LOY *DONE-START ROt SURE YET $0 KEEP CHECKING

My LOXE START=-1,¥ ;EWAP FECTION OF 28 WITH
LD& SAFE=1,% +CODE WEEDIENG SAFE LOCATION DURING
2TX ZSAFE-T1.Y *READ AUN MEM
5TH START-9.,¥
aEY
BNE HY
JHP LAFE ;JUME TO SAFE GRHOUMND

N FHP :BACK FROM SAFE SAOUND, SAVE STATUS
Lo +DDME-START :MOYE ZERD PAGE BACK

Hy LD& START=-1,Y
sTA SAFE=-1 .Y
DEY
BHE My #
PLA JGET ALK STATUS
BCS ouTs *CARRY SET S0 WD AUX MEM

OuTS Lbr =380 TMADE 1T $0 THERE I5 AUX MEM SET
ETA FPARKM ;P.I.H.I.H-IEI!
JMp out

ouTsd LOA =540 ;-E'ﬂ COLUMNS BUT WO AUX 50 SET
ST PARAM T PARAM=%40)
JME guT

DuTé# LA 520 APPLE TIE BUT NOD CARD 3D SET
STR PARAM SPFARAM=320
JME [uT

ouTt LOA =0 sNOT AN ARPPLE ITE 50 SET PARAE=
5TA PARAM

Extended Text Card Supplement

aurT LD TEDOO FIF ALL 4 BYTES THE SAME
tHe SAVE :THE LANGUAGE CARD MEWER
BNE QUTON AT DM 50 D0 NOTHING
LDA $0000
CHP SAVE+1
BNE quTaN
LOA $0400
CHEB EAVE+ 2
BNE gutan
LOA $0800
CMR SAVE+T
HEG §00UT
OuTON Lok LCORE :NO MATCH, 50 TURM FIRST
LDA $ED00 TBANK OF LL ON AND CHECK
M SAVE
BEQ QUTAND
LA $C0B0
Jup 5O0UT
OUTOND LA $0000
CME SAVE+1 sIF ALL LDCATIONS CHECK
BEG QUTONT JTHEM DO ROTHING MORE
LE& §COBD TOTHERWISE TURN ON BANE z
JMp GOOUT
OUTON1 LDA $D400 JCHECK SECOND BYTE IN BANK 1
CHMP SAVE+S
BED ouTONZ
LOA $COBO CSELECT BANK 2
JHP GOOUT
ﬂuTﬂH.E LIk SDEOD JCHECK THIRD BYTE (W BANWK 1
CMPE S5AVE+R
BEQ GOOUT
LDA $CO0B0 JEELECT MANK 2
GOOUT PLP SHESET INTERRUPTS
RTS
et RAUTEIMNE RUM IN SAFE ARES NOT AFFECTED BY MOWES """
START LE& S5EE PTRY STORIMG IM AUK HEM
STA $CO0S sURITE TO AuX WHILE ON MAIN ZP
ZTh §FCO03 JEET TD READ AUX RAM
sTA 1800 ;CHECK FOR SPARSE MEM MAPFING
LDA $CO0 :SEE [F SPARSE MEMORY -SAME VALUE
tHP FSEE - 1K AWAY
BNE AUXMEM
ASL $C00 :MAY BE SPARSE MEM 50 CHANGE VALUE
LO& 300 ;% SEE WHAT HAPPEMS
CHp Jcaa
BNE AUEMER
SEC :SPARSE MAPPING S0 D AUN MEM
BES BALK
AUXMEM £Le STHERE 15 AUX MEW
BALCEK 5Th L0004 JS5WITCh BALCKE TO WRITE MALIN RAN
5TA $L002 SSWITCH BACK WAIN RAN READ
JME (]] sCONTIMUE PROGRAM ON PG 3 MAIN RAM
DOME ROP +EMD OF RELOCATER FROGAAM MARKER

Programming Examples

Apple lle Identification from BASIC

One way to identify the configuration of an Apple lle from BASIC is
to load (using 8L0AD) the machine-code version of the assembly-
language routine described in the previous section, then execute a
cALL statement to location 724 ($204). When the subroutine
returns to the BASIC program, executing a PEEK at location 975
($3CF) gets the result.

Here is another approach to writing a BASIC program to identify the
type of Apple Il it is running on. In this program the assembled
code for the assembiy-language identification routine from the last
section is included in the DATA statements.

Apple lle Identification from
Applesoh BASIC

1D OATAE, 120,173, 0, 224, 141, 208, 2,175, 0, 208, 141, 209, 2, 173, 0,
212, 14t, 214, 2, 173, 0, 214, 141, 291, 2, 175, 129,192, 173, 1289,
192, 173, 179, 251, 241, &, 208, 73, 173

ZODATA 23, 192, 48, A0, 173, 1%, 192, 4B, 39, 175, 22, 192, &8, 3&, 160, &2,
190, 162, 3, 185, 0, 4,154, 0, 153,162, 5, 134, 208, 262, 74,1, 0,
B, 1606, &2, 185, 142, ¥, 153

IODATA O, O, 13&, 208, 247, 104, 176, B, 186%, 128, 141, 207, 3, 76, 73, %,
148, &6, 141, 207, 3, 76, 73, 3, 169, 37,1861, 207, 5, &, 73, 3, 149,
0, 141, 207, ¥, 473,40, 224

L0 DATA 205, 208, &, 208, 24 173, O, 208, 205, 209, 2, 208, 14,173, 0, 2%2,
20%, 210, 2, 208, B, 173, 0, 214, 205, 210, 2, 240, 56, 175, 136, 192,
173, A, &4, 2905, 208, 2, 240, &

S0 pATA 173, 128, 192, 74, 141, 3, 173, 0, 208, 205, 209, 2, 240, 6, 173, 128,
192, P8, 161, 5, 17%, 0, 212, 205, 210, &, 240, &, 173, 126, 192, Ta,
161, 3,473, 0, 216, 205, 211, £

o0 DATA 240, %, 173, 128, 192, 40, 96, 149, 238, 141, 5, 192, tal, 5, t9E2,
147, 0, 8,173, 4, 12, 201, 258, 208, 14, 14, 0, t2, 173, 0, 8, 205, 0,
12, 208, %, 54, 176, t, 24

FODATA 141, &, 192, 17, 2, 192, 74, &%, 3, 234

B0 ALOOK = 975:START = 724

FOFOR I = 0 TO 24%

100 READ BYTE

110 POKE START + T,BYTE

120 NEXT

130 CALL START

140 RESULTS = FEEK ¢(ALOOKD

150 FRINT RESULTS: AEM RESULTS OF O MEAN NOT A TTE; 32 MEANS ATTE BUT NO &0
COLUMNS ; 66 NEANS ATTE WITH B0 COLUMNS BUT WO AUK MEM; 178 MEANS ATIE
WITH AUX MEM

160 END

Extended Text Card Supplement

Apple lle Identification from Pascal

Here is the assembly-language identification program previously
described in the form of a Pascal procedure.

Apple lle |dentification from
Pascal

MACRO POP
PLA
5Th EH |
PLA
ETh 141
CEMDM
(MAL RO PULL.BIAS
FLA
FLA
PLA
FLA
_ENDM
.FUNC 10,0
RETURN . EQU a
SAFE . EQU 00Qz
POP RETUEN
PULL . BTAS
PHP
SET
LA DCOAY
LbA DC oA
LbA DEBES
CMP ab
BNE DuT1
LDA acovT
BHI auT?
LOA acots
BMI auTé
LDA afoié
BM1 ouTé
LoY #ZA
My LOX START-1,¥
LOA SAFE-1,Y
51X SAFE=1,¥
STA START-1,¥
DEY

Programming Examples

ISAVE PASCAL RETURN AGDRESS

SADJUST FOR FUNCTION

:TEMP STORAGE OF RETWAN TO PASCAL ADDRESS
;START OF CODE RELOCATED Ok PARE ZERD

JLOCK OUT INTERRUPTS

SEMSURE READIMNG ROM BY TURNING OFF
JBAMKABLE MEM
SGET APPLE 1le SIGNITURE BYTE

fIF MOT «4 THEN NOT APPLE ITe

sWAS B0 LOLUMNS FOUND DURING STARTUR
;IF HRIGH BIT ON THEK MO B0-COLUMK CARD
:SEE [F Auxk MEMORY BEING READ

;AL MEM BEIMG USED 50 AUX MEW AWALL
EEE IF AUX ZP BEING USED

AUE P BEING USED S50 AUX HEW AVALL
sNOT SURE YET 50 EEE® CHE{EING

;SWAP SECTION OF ZP WITH

JCODE WEEDIWG SAFE LOCATION DURING
JREAD AUX MEM

a1

My

ouT4

QuTs

Ut

ouT

ouT

PHGAM

BNE
JAHE
PHP
LEY
Lo
iThA
DEY
BNE
FLa
BLS
LIA
5THA
JME
LbA
3TA
JMP
LDA
ETA
JHP
LOA
ETA
LbA
LDA
PLP
LbA
FHA
LIA
FHA
LDA
FHA
LA
FHA
RTS

LBYTE

My
SAFE

!
START-1,¥
SAFE=1,%

L

fut3
“BD
FAREM
uT
=40
PARAM
aurt
20
PARKM
our
0
PARAM
DCoOAR
I EY

FARKM

RETURN+1

RETURM

FJUMP TO SAFE GROUND
JBACK FROM SAFE GROUND. S5ANE STATUS
tHMOVE ZERD PAGE BACK

FGET BACK STATUS

FCARRY SET 50 WD AuX MEM

tMADE IT 50 THERE I5 ALK WEM=-SET
IFARAM=-SB0

FBD COLUMNS BUT WO AUX 5O SET
;PARAM=-340

JAFPLE TTe BUT WO CARD 50 SET
PARAM=520

SHOT AN APPLE IIe 50 SET PARAM=(]
tBET PASCAL BACK

TREACTIVATE INTERRUPTS
PPUT O EN WIGH BYTE OF RESULTS

FPUT FOUND WALUE IW LOW BYTE & PUSH

FRESTORE PASCAL RETURN ADD

i BROWTINE RUW IN SAFE RMEAR NOT AFFECTED BY MOYES

BTART

ALUEMEM
BACK

LA
STA
5Th
STA
Lio&
LHP
BME
KSL
LA
CHP
BNE
LEC
BCS
tLe
iTA
5TA
JHP
NOP
-END

“BEE
bcoos
BCo03
0800
dcad
“[EE
AUKMEMN
acag
4800
acaoa
KUXMEN

BACK
GCoas

0conz
ON

sTAY STORING . IN AUX MEM
SWRITE TO AUX WHILE ON MAIN ZP
JHET TO READ AUX RAM

$CHECK FOR 3PARSE MEM MAPPING
7SEE IF SPARSE MEMORY-SAME VALUE
$16 AWAY

rMAY BE SPARSE MEM 50 CHAMNGE VALUE
8 SEE WHAT HAPPEMNS

;SPARSE MAFPPING 50 NO AUR REM

i THERE 15 AN MEM

;AWITCH BACK TO WRITE MAIN RAM
sSWITEH BACK MALN RAM READ
;COMTINUE PROGRAM OF PG 3 MATN RAN
sEMD OF RELDCATED FPRDGRAM MARKER

Extended Text Card Supplement

Hi-Res Page Mover for Auxiliary
Memory Demo. Using auxmMove
Subroutine. July 1982

parM = Hi byte of pur. aoor. (Page #
fimes 32).

Call putras to copy hi-res graphics
page 1o aux. MeM. location speciled by
PARM.

Call seTeas to boad hi-res graphics page
from aux. WEM. location specified by
PARM,

Storing Graphics Pages from Applesoft

It is generally not practical to use the auxiliary memory from BASIC.
A BASIC program can only move its variables in memory by getting
very tricky with PEEK and POKE commands, an approach that is
both inefficient and dangerous.

There is one form of data that uses lots of memory and is simple
enough to handle from Applesoft: high-resolution graphics pages.
The auxiliary memory is an ideal place to store as many as five
complex graphics pages for rapid loading into the display buffer.

Like all of these examples, the following Applesoft example
includes two short assembly-language subroutines. The first listing
is the assembly-language form of the subroutines. The second
listing is the Applesoft program with the machine-language
subroutine included as a series of DATA statements. This method of
adding a machine-language subroutine to a BASIC program is not
very efficient, but it is convenient for short subroutines,

The program has two phases: in the first, the program generates
five different high-resolution views and stores them in auxiliary
memaory; in the second, the program loads the stored graphics
pages back into main memory one after ancther.

DEECT

ORG $3C
SRCBEG 0% 2
SHLEND 03 Z

Bs F
DESTHBEG 0% .

DEND
L]
PETIBES EdU $2000
PG1END Edu $3FFA
AUAMOVE EQU 5C311%
L]

ORG £300
P&RM b3 1

* MOVE HI=RES PAGE TO ALY MEM:
-

Programming Examples

PUTRAG EQu
LOA
5Ta
LA
ETH

LD&A
5Th
LA
ETh

LI 3

LbO&
aTA
LbO&
5TA

*

EEC
JIR
BYS

-
o
* COPY PAGE TO MATN MEMORY
*
L

USE AUXMOVE TO DD IT:

-
PGIBEG
SRCBEG
~PGIBEG
SRCBEG+H

*APGTEND
SHRCEND

“/PG1END
SRCEND+1

PARM -~ DESTINATION ADDRESS

wi}
DESTRED
FPARH
DESTREGH

AUEMOWE

ETRAG EQl i
LD& ='PGT1BEG
574 DESTHEG
LOk #[PGT1BEG
5TH DESTHEG+1

*

Lb&
TA
LO
STA

LOA
STA
CLE
LO&
ADC
ETA

¥

CLE
J5R
RTS

WSE ALVXHMOYE TO 00 [T

FARM - SQOURCE AOOBRESSES

=1
FRCBED
FARH
SRCBEG+1

“%FA
SRCEND

PARM

«§51F
SRCEND+1

AUXEROYE

sPAGE STARTING
sADDRESS

iPAEE ENDING
;ADDRESS

iOESTIMNATION
iPAGE BEGINNIMNG
iADDRESS

DESTINATION
JPAGE BEGINNING
JADDEESS

;PARM FOR
FSOURCE BEGINNING
cMDDRESS

;COMPUTE SOURCE
fENDIMG ADDRESS

Extended Text Card Supplement

Globa. Hi-res graphics demanstration
for the Apple lle Extended 80-Column
Text Card.

ek

100
147
108
1%
1"r
P18
IaL)
YT
¥4
1%
150
140
170
198
199
200
210
220
210

Z9B

299

¥00

o

320

iip

a0

PIE

L

14060
14010
1020
1030
1040
1998
1969
2041
2029
20319
2040
20%4
2141
2124
2784
29910
2399
ERi L]
51040
5200
3990
39q
Li4ad
&020
L0410
LO59
L0060
L0810
L1470

Programming Examples

REM Thic programdraus five views of a rotating globe and sLpres
REM fivecopies of the Hi=Res page in suxilidry memory. [T Then
REM Aoves [he views 1epm gusi liary mamory Dack inip the Hi=-Rex
REM graphics page® in main memcry, oné afteér apother, The rapid
REM suctcessionof views cregates the impressionof a solid

REM rofating globe.

REM

REM

REM

REM

REM

REM

TEST : HONE

PRINT CHRS (17): REM CTRL-Q for S0-column display

REM

REM Pager dubroutines in Aachine LBNGuAgE:

DaTH 149, 0,133, 40,149, 32, 133 41,149, 268,135, 62 169,633,153

BATA £3,149,0,13% 46,173 0, 3,138 67, 56,5217, 195,.94.0

DATA 16%,48,1%%, 46,769, 32, 133,67, 149, 0,732, 40,173, 0,323,133

bafh 41,148, 2L8,133,42, 24, 4173,0,3,105%, 81, 13%, 465, 24,32,17,195
.l

REM

REM Read the Pager subroutines and store at 3301

PREM = TAE:PUTFAGE = TAP:ARINGRAGE = BOD

FOR [= & TO &4

: READ BYTE

‘i POKE PUTPAGE + 1 ,BYTE

MEXT |

BEM

REM S8t up constants for drawing meridians (ellipses):
Bl = 3 _ 14159265 :PF = PT 2

Ep = P2 %: REM angle between merldians

EP = 5P 5: REM starcing angle incrament between views
0T =] 15; REMW segment size [angle) far drawing meridlans
B = 1: REM Semi-major asis af el lipses.

HEM

REM Loop sEarring &t 2000 draws five vipws and $tores thenm:
FOR VIEW = % T §

: REM HGR £a erase previous wiew:

i HGR : HEOLOR= %

! REA Draw picture frame:

HELOT &0, 0 T3 &0, 159 TQ 219 159 TO 219,00 70 60,0

: WTAE 23: HT&AR 9

¢ PRINT "...canStrulling wiew ¥ JYVIEW

: REW

tDP = EP # YIEW: REM different starting angle #ach vigw,
: HEM Loop starting at 3000 draws meridians [ellipses):
: FOB IANGLE = PP TO PI STEPF 5P

A = (05 ([ANGLE) : REM Semi=minor puis of ellipse.
r:FIRST = 1; REM for plotting

t: REM

t: HEM Loop starting at 400 draws a meridlan (ellipsel:
tt FOR THETA = & TD PI STEP DT

rrr LET X = A » SIMH (THETAZ

st LET ¥ =@ » [O5 (THETAD

rb: HEM Heat twao Lined sceaie P and PY for plotiing,

tt: LET PX = & & 55 + 140

i LET PYF = v « 55 + 80

zr: JF FIRSET THEM MPLOT PN, PY:FIRST = 0

44

£110 ::: 1F WOT FIAST THEW HPLOT TO PX,PY
Ll :: MEXT THETA

4300 : SEKT IANGLE

500 : ¥TAR 23: HTAR 9

i1l : PRINT ~ ...4taring view “aWI1EM
LEFF = HEM
G500 : REM Put view im auxllliary memary:

4510 : POEE PREN, YIEW + 17

4520 1 CALL PUTPAGE

400 WEXT VIEW

L4589 REM

L&a90 REHM Fivg vieus stored-- Agw show then:

£700 HOME : wTaBE 23

&T24 HTAB 3: PRINT "Loading wiews from ausidiary memary .~
L4998 REH

LFFF HEM Loop starting at 5000 Brings views from guxiliary memory:
50404 FOR VIEW =1 T0 5

50624 : POKE PAEM, VIEW = %2

504 = CALL BRINGPAGE

SHED MNEXT WIEW

S9¥F EHEM
COER HEW Repeat seme five views fOreEver,
G999 EEM ar until the fuse Blows:

&00D0 &QTQ 500D

Storing Data Strings from Pascal

These Pascal routines use locations $c00 to $8FFF in the auxilary
memory for storage and retrieval of strings.

The code that moves the strings to and from auxiliary memory is
stored at E000 in the Extended 80-Column Text Card., A separate
initialization routine puts this code at 000, just once, to maintain
system performance.

The retrieval routine is very fast, roughly equivalent to a MovelLett
froma Packed Array of Char. The storage routing is less
efficient; if speed is important in your program, you may want to try
to optimize it

Like the other exampies, these routines were written for a particular
application and are not general-purpose subroutines. They are included
here to show you the kind of thing you can do with the auxiliary

memory.

Extended Text Card Supplement

Auxiliary Memory String Routines
by R. Lissner

The following rauting s performed aniy ance. The routines that mowe
sitrings inand out of che Extended BO-Column Teat Card pre moved to Eaxe
in the sausiliary memory,

LTITLE "ASSEMBLY ROUTTMNES [le INITIALIZATION

PAGE
ROMACRDLIST
CROPATCHLIGT
ROMAT HLE LERU BCodl ; SOFT SWITCHES. 5SEE
ROALXGE .EQu Qcons ; TIe REFERENCE WANUAL
MEMATNG4E LEQl DCobe
WRALZLE -E@U REO0S
RUMATNTE LEQU DCODE
RUALUXTE SEQU ocogy
HIRESQOFF LEQU QCa56
RETURNG -Edy az28
RETURN .EQU azh

REGISTER MAF

- ma my

IREGOG LEQU L
IREGOZ LEQU &
IREGDL .E@U &
DUTH 5TA RWAURT & P WRITE KUK MEMORY
LbY “BD. ; LEMGTH OF BATLH
OUT4MED LDA EODZSTUF-1,Y i
STA BEODY, Y
DET
BNE OUT4MED
Loy “0FF ; LENGTH OF PATCH
DUTLMET LDA E1025TUF-1,¥ CODE MEEDIMG SAFE LOCATION
STA DEIDT, ¥
DEY
BNE DUT4MET
ETA RUMALNYE ; WRITE MAIN MEMORY
£TA HIRESOFF ; MAKE HIRES P AWAILABLE

; EWD OF THIS ROUTINE

. Purpose: Paoves 8 stripg fromauwkiliary memery L3 Pascal .

If the progran finds the Extended 80=-Colwnn Téxt Card, the
followimg code 18 moved to EODE.

BF Wa W2 Wi mE

The program gets here from a JSR in MOVE_FR_AUX, and goes back =0
ihat the auxiliary memory can be turned back of f. Ierc pagd on the
gxtended test card contains IREGDD and ZREGOZ2; they are the

=y

: argumgnts for the Aove. Stack usage: The return address in &BK main
: memory is stored in the auailisary stack. This is the only use of the
H Auril fary memory Stack.

Programming Examples

4
[
a
#

EGD25TUF

et

EGOELOOP

EGOZERLT

NEEXTAYAL
EV1025TUF

E102C00

LLD

5TH BOAUXLE : READ AUX 48K

Loy i}

LDA CIREGQD) , Y ; READTING AUk LBK
WSING AUX ZEAD PAGE

STH {ZREGDZ) , Y + WEITING MALN L8

BER EQOZEXIT 3 MOT LIKELY, BUT POSSIBLE
THY

LA (ZREGOOY , ¥

5TA (IREGD2) , Y

BEY

BME EGd2La0r

5Th ROMETNEGSE T READ MAIN 48K

RTS P GOING BACK TO LBK RAM

Purpose: Mgves a string from Pascal o ausiliary menory.

1f the program finds the Extended BO-Calumn Tent Card, the
fallowing code i4 noved ca E102.

The program gets here fram a JSR In HOVE.TO.AUE, and goes back 5o
that the auciliary memory can be turned back off. Zero page an the
eetended test card containg ZREGDD and ZREGOZ exsctly &8 They are
faund om The maip ZBFE pageE,

Stack usage: The return address in 48K main mempry is storéd in the
aukiliary stack. This is the only use of the auwiliary memorfy
srack.

Mote also that the aumilisry zero page t3 wsed for the to and from
addresses.

IREGHD: Address of string that wanis to be stared

IREGD2: Address of integer that wants 09 kAow where 18 was stored,
ar receive e"0000° if na room

ZREGOL: Used to index A Fecéiving addreds

LEQU DE1D2
LMORD ocon
cLn
: A'FF* MEANS RESET BACK TO BEGIMMING. DONE FOR EACH MEW FILE
Loy o0
LA CZREGODOD, Y
cME SOFF
BNE E102C0
Lok 0 : RESET TO $COO
STA NEXTAVAL+ 1
LoA w
STA NEXTAVAL
BEQ E10ZFAIL + UNCONDTTIOMAL
CONTINUE WITH NORMAL ROUTINES
LEA MEXTAVAT®1
CME 1Y ; CHECK FOR FULL
BNE g102¢1

Extended Text Card Supplement

: SPACE IS5 FULL, 50 RETURN ZERQ

EVD2C1T

Ll

E102L00P

E102EXIT
E102FATL

Lk =0
TAY
5Th CEREGD2Y, Y
INY
5TH {IREGD2Y, ¥
BHE E10E2FAaTL

; THERE IS5 STILL ROOM, SO COMTINUE
LDY -1
5Th {ImEGQ2) Y
5ETA EZHEGQL+ 1Y
DEY
LDA WEXTAVAL
5TA (ZREGO2), Y
5Th IREGDS

i NOW THCREMEKT THE WEXT AVATLABLE ADDRESS
CLE
ADC =1
EME w45
IME MEXTAVAI+1
LLE
LOY «h
ADC {ZREGOON, Y
5TA MEXTAVAT
BCC w45
INC MEXTAVAL+1
STk WEAUXLE
LbA {ZREGOODY ¥
USIMG ALUX ZERAQ PAGE
5TH {IREGO&) Y
BES E10ZEX]QT
TaY
LA (IREGOQ)Y , ¥
STA (ZREGOL), Y
OEY
ENE E102L00P
STA WRMAINGE
BTS
.END

e Ay oy &y L]

B mE E

RETURN A ZERD, FULL

UNCONMDPITIONAL

STORE IN RETURN ADDR
SETUF THE MOVE

LOW BYTE OF RETURN
MORE OF THE MOVE

AR 1 FOR STRING LEMGTH
BOLLEDN INTD NEET FAGE
ADD LENGTH OF STRING
PUT IT BACK

INTO MNEXT PAGE

WEITING INTD AUX SHE

READING AUX &K

WEITING MATN 48K

NOW WRITE MALN MEW
GOIMG BACK TO 48K RAM

Fhe follawing code 14 Linked inte the main Pascal progran. This code

s5tores the arquments in the ausiliary tero page and then junps to Exxs 0n
the Extended BO-Columm Teat Card.

-TITLE "ASSEMBLY ROUTINES FOR 11@°

“PAGE

NOWMACROLIST

NOPATCHLIST
BOMAINGE -EQU acaog
EOAUESE -EQu ocool
WEHATNGE EQU QLoo.
WRALKSE <EQU QCo0s
EWALXTS JEQU acooy
BuMATNT& «EQU QCOnB

RETURM ADDRESS ZERD PAGE LOCATIONS

RETURND .EQU az28
RETURN .EQu az2a

Programming Examples

: REGISTER MAP

ZREEQD EQU d

ZREGDZ EQuy &

:

+

L]

H
LTITLE HMONE STRIMGS FROM TIe AUXTLIARY MEMOAY"
L PROC MOVEFRAL, 2

i

H

; PEOCEDURE MOVE_FR_AUX (FROWMA; VAR TOA)} (+ Mowe stefng)

H

v

. Purpose: Mowe & string from ausl Liary menory to Pascal. Most of the

i AETuAL move i5 done At aueiliary memory Llocathbon EOQ2.

H

. S5tack usage: fnput, output addresses.

H

4

r

; STORE RETWAN ADDR TN AUX ZERD PAGE

Ll RETURMNO i RETUSN TO PASCAL
; AODRESSES ARE TWO BYTES. PULL BOTH BYTES OFF THE MAIN STACK, THEN SWITCH
DT AUK ZERG PAGE AND STORE BOTH BYTES.

FLA
ThK
FLA
5TA RWALUX TS P SWITCH TO AUX ZF
T LRELDZ ; IM AUE ZERC PAGE
5TA IREGDZ 1 $ STILL IM AUX MEM
5TA RWMATNTS P SWITCH TO MAIN 790
; STORE FROM ADDRESS TN AUX ZERD PAGE
PLA
TAK
FLA
5TH FHALETA ; SWITCH TD AUK 2P
5TXK IREGOQ ; IW ALK ZERD PAGE
5TH IREGOO+T P STILL DN ALY MEM
s NOW GET OVER TO AUX PAGE AMD DO IT ALL
JER QEQO2
+ NOM PROCESS COMING BACK FROM EDDZ IN AUX MEMORY
ETA EWMEINT & : MALN IP AKD TOP
FUSH BETURND
BTS ; BACE TO PASCAL
LTITLE CMOYE STRINGS TO Tle AUXiLIABY MEMORY™
PROC MoveTobu, 2

OROCEDURE MOVE_TO_AUY (WAR FEOMA: VAR TOAY (= Moue string #}
Purpase: Move 8 Pascal string to suailiary memory. Most of the
: actual move is done at auxiliary memnory location E102,

. Stack usage: Imput, output addresses.

: STORE RETURAN ADDR IN AUX ZERD PAGE
PR RETURND ; MAIHW IZP STACK

Extended Text Card Supplement

NOW STORE TO ADDRESS IN ALY ZERD PAGE

FLA
THE
PLA
ETA BWALETS
iTK ZREGDZ
ATA ZREGDZ+1
iTA RWMATNT&
: STORE FROM ADDRESS I[N AUX ZERQ FAGE
FLA
Thk
PLA
5TA RWAURT &
STH ZREGDD
ETA ZREGOG +1
+ NOW GET OVER TO AUX PAGE AND DD IT ALL
J5R RET D&
P RETWAN FRORM EVD4 IN ALX MEMORY
3TA RWMATHTS
PUSH RETURND
RTS
-EHD

iy gy Ry & R LL]

-y

L1}

L58 OF ADOR TO RETURN

M58 OF ADOR TO RETUAN
EWITCH TD AUK IF

IN BuxX ZERD PAGE
STILL TW AUy MEM
SMITCH TD MAIW IF

L5B OF INPUT STRINGE
SWMITCH TOD AUN ZF
T AK FEAD PAGE

STILL IM AUX MEM

JUMP OVER REXTAVAT AT ET1Q2

MAIR T MATW ZF AND TOF

Programming Examples

51

Index

A

accumulator 30, 31

address bus 7

address 30
data 29
destination starting 30
program starting 31
source starting 30
source ending, 30
transfer 31

alternate zero page 25

ALTZP soft switch 25
figure 27
table 26
warning 29

Annunciator 3 11
display page used 12

Apple Il 35, 36
compatibility 25
system software 15

Apple Il Plus 35, 36
compatibility 25

Apple lle wviii, 7, 35
control keys 4
display memory 18
display modes 4
display pages 16
double high-resolution

graphics 11-12
escape sequences 4
identification from assembly
language 37

identification from BASIC 40
identification from Pascal 41
installing card in 3
processor 4
Rev A 12
Rev B 11

Apple lle Identification
Program 38-39

Apple lle Identification Program
{Pascal) 41-42

index

Applesoft BASIC 17, 35
program example using
AUXMOVE 44
using to store graphics
pages 43
application programs
L7
running with the card wii
assembly language 35, 37
subroutines 15, 37, 43
programs to use auxiliary
memory 29
routine for Pascal 41
AUX. CONNECTOR 3
See also auxiliary slot
auxiliary memory viii, 4, 7, 9,
10, 11, 12, 15, 16, 18, 19, 21,
22, 25, 29, 31, 36, 7
accessing 4
address bus 9
addressing 7
amount 3
careless switching 4
how it works 7-12
select switches, table 28
subroutines 29-31
switching to from bank-
switched memory 9
transferring control to 30-31
using viil
using from a program,
examples, 3551
warning 9, 15
Auxiliary Memory String
Routines 47-51
auxiliary RAM 15
auxiliary slot 11
AUX. CONNECTOR 3
AUXMOVE subroutine 15, 28, 30
example using (Applesoft) 44
parameters 30
warning 29

vili, 21,

B

bandwidth, video monitor
bank switches 9

bank-switched memory 9, 25,

36
warning 9
with auxiliary memory 9
BASIC 15, 37, 40, 43
Applesoft 17
Integer 17
reading soft switches
from 17
warning using 15
bito 29
bit 7 17
bit
carry 29, 31
color-select 19
high-order 19, 22, 25
overflow 231
sign 17, 22, 25
built-in 80-column display
routines 16
built-in ¥O routines 21
built-in subroutines 29, 30
bus
address 7
data 7
byte
high-order 30, 31
low-order 30, 31

C

CALL statement 15, 40
carry bit 29, 30, 31
circuitry, display 18
CLC instruction 29, 30
clock cycle 9

with BO-column display

on 10

CLV instruction 31
color monitor, RGB 10, 11
color-select bit 19
commands

PEEK 17, 43

POKE 17, 43
computer configuration,

identifying 35-37
configuration 35
configuration of the

computer 3537
control keys 4
control switches 22

Extended Text Card Supplement

D

data addresses 29

data bus ¥, 11

data, moving 29

DATA statements 40, 43

data strings 46

decimal 17

destination starting
address 30

display buffer 43

display circuitry 18

display cycle 9

display data 10, 21

display modes 4

display pages 16
control switches 22
length 9
locations, table 16
See also graphics pages

display soft switches, table 18

display, 80-column 12
figure 20

DOS 3.3 wiii, 15, 21

dot patterns 10

double high-resolution graphics
(560 dot) 11-12, 19
obtaining 11
board necessary for 12
with Rev A Apple lle 12

E

B0-column card, any 36
80-column display 10, 11, 16,
19, 36
addressing directly 18
bandwidth needed 10
firmware 3, 4, 36
figure 20
map 10
storing data 9
switch for 11
with clock cycles 9
versus 40-column display (dot
patterns) 10
BOcoL soft switch 18
80-Column Text Card 4, 16, 35,
36
80-column text 11, 12, 19
mode 12
BOSTORE soft switch 18, 19, 22
figure 23, 24, 28
table 26
warning 21

escape seguences 4
expansion slot 3 36
Extended 80-Column Text
Card 11, 35, 46
buffer 10
connecting pins 11
difterences from 80-Column
Text Card viii
storing data diractly 19

F

firmware, 80-column display 3,

4, 36
560-dot graphics 11, 12, 16
See also 280-dot graphics
40-column text 11
mode 16

48K bank, switching 21-22
48K memory space 9 21
14MHz 10, 11 .
functions
keyboard
Pascal 15

G

Globe 45-46
graphics mode, double high-
resolution 12, 19
graphics Page 1X (high-
resolution) 19
graphics pages 43
storing from Applesoft 43
See also display pages
graphics
280-dot 1B
560-dot 12, 16
double-high-resolution 18
double-high-resolution
memory mappping 19
high-resolution, Page 1 19,
22
high-resclution, Page 1X 19
high-resalution program
example 45-46

17. 25

H

hexadecimal 16, 17

high-level languages 15

high-order bit 17, 19, 22, 25

high-order byte 30, 31

high-resolution graphics 11,
36, 43

Page 1 12, 19, 22
Page 1X 19
Index

pages 43
program example 45-46
switch for 11

HIRES soft switch 18, 19 22
figure 24,6 28
table 26
warning 21

haorizontal resolution 11

/

identification return codes,
table 35
identification routine 35, 40
outline 36-37
warning 37
identification, Apple lle
(assembly language} 37
identification, Apple lle from
BASIC 40
installation 3
instruction
cLc 29, 30
cLy M
JSR a7
jump 31
SEC 29, 30
Integer BASIC 17
interpreter, warning using 15
interrupts 36, 37
o 7
links, standard 21
routines, built-in - 21
subroutines 29

J

JSR instruction 37
jump instruction 31
jump to subroutine [JSR) 37

K
keyboard functions

L

low bandwidth monitor 19
low-order byte 30, 31
low-resolution graphics 11, 16

M

machine language 17
programs 17

main logic board
buffer 10
Rev A 12
Rev B 11

17, 25

1=

main memaory viii, 7, 9, 10, 12,
15, 16, 18, 19, 21, 25 3
address bus 9
switching 4

meamaory
amount card contains wiil
auxiliary 15

select switches, table 26
bank-switched 25
reading 21, 25
writing 21, 22, 25

memory locations 17

Memory Management Unit 7

memory map 9, 12, 19
diagram 8

memory pages, length 9

memaory switching 15

mixed graphics modes 11

MIXED soft switch 18

MMLU 7

modes, mixed graphics 11

Molex-type pins 11

Monitor program 19

monitor, low bandwidth 19

monachrome monitor 11

moving data 29

N
negative decimal 17
0
operation
read 17, 25
warning with 17
write 17, 25

warning with 17
overflow bit 31

P

Fage 1
display 19
graphics 22

high-resolution graphics 12.

19
text 18, 18, 22
page one 9
warning 29
Page 1X
display 16, 18, 19
high-resolution graphics 19
text 16
pages, high-resolution
graphics 43
Page 2, text 16

Extended Text Card Supplement

PaGEZ soft switch 18, 19, 22
figure 28
table 26
warning 21
page zero 9, 29, 30, 31
warning 29
parameters 30
Pascal 30, 35 37, &1
1.1 wiii, 15
functions 15
procedures 15, 30
routines, programming
examples 47-51
storing data strings from 46
warning using 15
PEEK 17, 40, 43
POKE 43, 17
power-on light 3
procedures, Pascal 15, 30
procedures, assembly-
language 29
processor 4
processor status word 29, 31
program starting address 31
program
Apple lle identification 38-39
Apple lle identification
(Pascaly 41-42
Applesoft example using
AUXMOVE 44
assembly-language 29
machine-language 17
Monitor 19
programmable memaory,
amount 4
programming examples 35-51

R

RAM 4,7
amount 3
auxiliary memory 15
RAMRD soft switch 21, 22
figure 23, 24
table 26
RAMWRT soft switch 21, 22
figure 23, 24
table 26
read operation 17, 25
warning 17
reading memory 21, 25
registers, X and ¥ 30
Rev A Apple lle 12
Rev A main logic board,
warning 12
Rev B main logic board 11
RGB color monitor 10, 11

ROM 7, 21

routine, identification 35, 40
outline 36-37

routines, bullt-in 30

S

SEC instruction 29, 30
TMHz 10
sign bit 17, 22, 25
6502 microprocessor 7
6502 stack 9
warning 29
slot 3 36
soft switches 7, 11, 15, 16, 17,
29, 31, 37
accommodating 25
ALTZP 25
figure 27
table 26
warning 29
Annunciator 3 11
gocoL 18
BOSTORE 18, 19, 22
warning 21
figure 23, 24, 28
table 26
HIRES 18, 19, 22
warning 21
figure 24, 28
table 26
MIXED 18
PAGEZ 18, 18, 22
figure 28
table 26
warning 21
RAMRD 21, 22
figure 23, 24
table 26
RAMWRT 21, 22
figure 23, 24
table 26
setting 1531
TEXT 18
warning 17, 21
software, Apple Il system 15
source ending address 30
source starting address 30
sparse memaory mapping 36
stack 25, 31
warning when switching 15
stack pointer, warning 31
standard IO links 21
string routines, Pascal
examples 47-51
subroutine call 31

Index

subroutines
assembly-language
43
auxiliary-memory 15, 29-31
AUXMOVE 15, 29, 30
parameters 30
warning 29
built-in 29
o 29
iFER 15, 29
parameters 31
warning 31
switch locations 17, 21
decimal 17
hexadecimal 17
negative decimal ¥
switches, control
48K bank 22
display-page 22
system software for the
Apple Il 15

T

television set 10, 19

text display, BO-column 12, 19
figure 20

text Page 1 9, 16, 18, 22

text Page 1X 16

text Page 2 1B

TEXT soft switch 18

transfer address 31

280-dot graphics 11, 16
See also 560-dot graphics

v

video display page locations,
table 16

video displays 16

video monitor 10

video display generation 11

w

write operation
warning 17
writing memory 21, 25

X

X and Y registers 30

XFER subrouting 15, 29, 30
parameters 31
warning 31

Z

zero page 25, 29, 36, 37
warning when switching 13

15, 37,

17, 25

Extended Text Card Supplement

Schematic Diagram

I+

-

1
luar
Babd

et o

Eha [l [l Flis [la @t
yk

—[n]]]]] =] -

1]

s

L il
Y
Lk

A4

E
2
o
2
o
2
™
E
@
3

@opple computer

20525 Mariani Avenue
Cupertino, California 95014

(408) 996-1010
TLX 171-576

030-1202-A

	a2e80col001.gif
	a2e80col002.gif
	a2e80col003.gif
	a2e80col004.gif
	a2e80col005.gif
	a2e80col006.gif
	a2e80col007.gif
	a2e80col008.gif
	a2e80col009.gif
	a2e80col010.gif
	a2e80col011.gif
	a2e80col012.gif
	a2e80col013.gif
	a2e80col014.gif
	a2e80col015.gif
	a2e80col016.gif
	a2e80col017.gif
	a2e80col018.gif
	a2e80col019.gif
	a2e80col020.gif
	a2e80col021.gif
	a2e80col022.gif
	a2e80col023.gif
	a2e80col024.gif
	a2e80col025.gif
	a2e80col026.gif
	a2e80col027.gif
	a2e80col028.gif
	a2e80col029.gif
	a2e80col030.gif
	a2e80col031.gif
	a2e80col032.gif
	a2e80col033.gif
	a2e80col034.gif
	a2e80col035.gif
	a2e80col036.gif
	a2e80col037.gif
	a2e80col038.gif
	a2e80col039.gif
	a2e80col040.gif
	a2e80col041.gif
	a2e80col042.gif
	a2e80col043.gif
	a2e80col044.gif
	a2e80col045.gif
	a2e80col046.gif
	a2e80col047.gif
	a2e80col048.gif
	a2e80col049.gif
	a2e80col050.gif
	a2e80col051.gif
	a2e80col052.gif
	a2e80col053.gif
	a2e80col054.gif
	a2e80col055.gif
	a2e80col056.gif
	a2e80col057.gif
	a2e80col058.gif
	a2e80col059.gif
	a2e80col060.gif
	a2e80col061.gif
	a2e80col062.gif
	a2e80col063.gif
	a2e80col064.gif
	a2e80col065.gif
	a2e80col066.gif
	a2e80col067.gif
	a2e80col068.gif
	a2e80col069.gif
	a2e80col070.gif
	a2e80col071.gif
	a2e80col072.gif

