acorn electron microcomputer

acorn - electron

. .l
’

Contents

1 What is a computer? 1
2 Getting started 2
Checklist of items 2
Additional items 2
Connecting the Electron to your television set 2
Connecting the Electron to the mains 4
Tuning the TV to the Electron 4
Push-button tuning 5]
Single tuning knob 5
Connecting the Electron to a monitor 5
Monochrome monitor 5
Colour (RGB) monitor 5)
Now try something 5
3 Using a cassette recorder 7
Introduction 7
Connecting a cassette recorder 7
Motor control 8
4 The Introductory Cassette 9
Adjusting the volume control and loading the first program 9
Loading each program from the cassette 14
5 How to use the keyboard 16
Introduction 16
Choosing the keyboard characters 18
SHIFT and CAPS LK 18
SHIFT 18
FUNC 19
The arrow keys and the COPY key 19
What the arrow and COPY functions do 19

Summary

20

6 Introducing commands and programs 21

What is hexadecimal? 23
7 Editing programs 24
Introduction 24
Listing the program 25
Editing programs 26
Editing with the arrow keys and the COPY key 26
Deleting lines from your program 28
Inserting new lines into your program 29
Renumbering the program 30
Getting the computer to number each program line 31
Putting notes into your programs 32
Retrieving a program and starting a new one 32
Listing long programs 33
8 Trying out some programs 34
Introduction 34
PERSIAN 34
POLYGON 35
DRAW 36
9 Recording programs on cassette 38
Saving (recording) a program on cassette 38
Checking a recording 39
Loading a program from cassette 39
Cataloguing the tape 41
What the numbers mean 41
Escape 41
13 The FUNC key and BASIC keywords 42
11 Variables and expressions 44
What is a variable? 44
Real variables 44
Operators and expressions 45
Rules for variable names 46

Integer variables 47

A% to £% 47
Real versus integer variables 48
DIV and MOD 48
The TIME integer variable 49
String variables 49
Commands operating on strings 51
LEN 51
Linking strings 52
LEFT$, RIGHTS, MID$ 52
VAL, EVAL, STR$ 53
INSTR 53
STRINGS$ 54
Comparison table of variables 54
12 Operator precedence 5%
13 Arrays 56
14 READ ... DATA ... RESTORE o8
15 PRINT formatting and INPUT 59
PRINT formatting 59
INPUT 64
16 Conditional and loop instructions 68
The FOR ... NEXT loop 68
The REPEAT . .. UNTIL loop 72
IF ... THEN...ELSE 73
17 Procedures 77
Using parameters in procedures 81
18 GOTO and GOSUB 84
GOTO 84
GOSUB ... RETURN 84
ON...GOTO,ON... GOSUB 86

19 Functions

87

20 Graphics 89
Introduction 89
Modes — what are they and why? 89
Writing text 99
The COLOUR command and text windows 99
Addresses on the text screen 91
Text windows 92
Defining your own characters 93
Graphics 95
Introduction 95
The graphics coordinate system 96
The GCOL command 97
The PLOT command 99
Advanced graphics 99
Triangle plotting 99
Sideways filling on background colour 99
Filling right 109
The VDU command 109
Graphics windows 141
The graphics origin 141
Plotting characters 192
The palette 12
21 VDU codes 104
Introduction 104
Detailed description 104
22 Making sounds 116
Introduction 116
The SOUND command 116
The @ parameter 117
The A parameter 117
The P parameter 117
The D parameter 118
Using the SOUND command in a program 118
ENVELOPE 120
The ENVELOPE command 121
Constructing an ENVELOPE 123

Additional SOUND features 125
Example SOUND and ENVELOPE programs 125
23 Address pointers, indirection operators 127
The Electron’s memory 127
Indirection operators 129
24 User-programmable keys 131
For the more advanced 131
25 BASIC keywords 133
BASIC keywords 134
26 Cassette file handling 195
27 Error handling 198
28 Merging BASIC programs 200
29 Assembly Language 202
Introduction 202
Registers in the 6502 203
Accumulator 203
Index registers X and Y 204
Program counter 294
Stack pointer 234
Flags register 205
Addressing modes 206
Entering assembly mnemonics 210
Assembly 211
Execution by USR 214
Execution by CALL 216
Quadruple precision addition 229
Multiplication 221
Division 225
Error trapping in assembler 227
Operating system calls from assembler 228
Use of operating system calls 230

OSWRCH entry: &FFEE vector: &20K

230

OSASCI entry: &FFE3

OSNEWL entry: &FFE7

OSRDCH entry: &FFE{ vector: &210
OSCLI entry: &FFF7 vector: &2¢8
OSFIND entry: &FFCE vector: &21C
OSBPUT entry: &FFD4 vector: &218
OSBGET entry: &FFD7 vector: &216
OSFILE entry: &FFDD vector: &212
OSBYTE entry: &FFF4 vector: &20A
OSWORD entry: &FFF1 vector: &20C
Events

Assembly Language mnemonics

Appendix A
VDU codes

Appendix B
Error messages

Appendix C
Operating system calls

Appendix D
*FX calls

Appendix E
Fast and efficient programs

Appendix F
ASCII displayed character set and control codes

Appendix G
Text and graphics planning sheets

232
232
233
233
234
234
234
234
235
238
242
243

265

269

278

280

284

285

287

1 What is a computer?

A computer is a general purpose electronic machine that can be
instructed to do a great variety of things — play games, perform complex
calculations, store and retrieve information, display graphs and so on.

You can ask a computer to do things directly — by typing commands onits
keyhoard —but for complex tasks, a whole series of instructions is usually
written and stored in the computer’s memory. The computer can be
instructed to call up these instructions one by one and carry them out,

very fast. (Your Electron can carry out, or ‘execute’, over 250,000
separate instructions every second.)

A series of instructions like this is called a program. Programs can be
recorded onto cassette by using a suitable cassette recorder in much the
same way as you might record a piece of music. The main difference is
that the recording is made from a computer, and is played back into the
computer again. You can buy pre-recorded programs which have been
written by other people, and to start you off, several programs are
provided on the Introductory Cassette which comes with your Electron.

The first part of this book describes how to set up your computer, and
load and run the programs on the Introductory Cassette, For information
on other programs available for the Electron (the general name for
programs is ‘software’), write to:

Acornsoft Limited
4a Market Hill
Cambridge CB2 3NJ

The remainder of this book (chapter 4 onwards), and the book Start
Programming with the Electron, will tell you how to write your own
programs on your Electron computer. You do not need to know this in
order to use your computer, as there are many commercially available
programs — but we hope that you will be interested and will want to find
out more about your Electron.

2 Getting started

Welcome to the Acorn Electron Microcomputer!

Chapters 2 and 3 explain how to connect your Electron to the mains and
to a television or monitor, Please read them carefully before continuing,.

Checklist of items

Apart from this User Guide, you should have the following items in the
box you’ve just opened:

— An Electron Microcomputer

— A mains adapter

— Guarantee registration card

— An aerial lead about two metres long for connecting the computer to
your television set

— The Introductory Cassette

— A book called Start Programming with the Electron

If any of these items are missing, please contact your supplier.

Additional items
You will also need the following:

— A television set, or a good quality monochrome or colour monitor
— A mono (or stereo) cassette recorder, preferably with these facilities:

An external motor control facility
Record/playback socket(s) where the playback volume is controlled
by the volume control

If you are going to buy a cassette recorder specifically to use with your
Electron, your supplier will be able to recommend a suitable machine.
However, most domestic machines can be used with good results, and
chapter 3 gives details on how to connect a cassette machine to the
Electron.

Connecting the Electron to your television set

Please refer to the diagram.

i

Aerial lead

5

=3

To Electron

Getting started

4 Getting started

If you are using a monitor rather than a television, then ignore this
section, and read the section opposite, ‘Connecting the Electron to a
monitor’; otherwise read on.

You need to use the long TV lead provided to connect the Electron to
your television set, and one end of this should be plugged into the aerial
socket on the back of your television set, having first removed any aerial
lead already connected. If your television uses its own aerial mounted on

the set, you will need to find the aerial socket marked AERIAL, or ANT,
or UHF etc.

The other end of the lead should be plugged into the socket marked
‘UHF TV’ on the left hand side of the Electron case. If you look at the
case, you will see four sockets side by side. If you then look at the bottom
of the case underneath the sockets, you will see that the name of each
socket is engraved there. (The ‘UHF TV’ socketis the one on the extreme
left.)

Now switch on the television.

Connecting the Electron to the mains

The mains adapter which comes with the Electron has one lead which
should be plugged into the socket on the right hand side of the Electron
case. This socket is engraved ‘19V AC POWER IN’. The mains adapter
itself can be plugged into a domestic 13A socket.

Having connected the mains adapter to the Electron and to the mains,
the computer is now ON. As soon as the Electron switches on, you will
hear a ‘bleep’, and the yellow light on the left hand side of the keyboard
comes on. If this does not happen, first check that your 13A socket is
working and is switched on (if it has a switch), and, if it still does not work,
contact your local dealer.

Tuning the TV to the Electron

The Electron should now be connected to the mains adapter and
switched on, and the TV lead should be connected to your television and
to the Electron. The next thing to do is to tune your television.

First of all, turn the TV volume control to minimum — the Electron
provides its own sound.

Getting started 5

Most T'Vs have either a number of push-buttons or a single tuning knob
for selecting TV stations.

Push-button tuning

Choose and select a push-button you don't normally use, and turn its
tuning knob as far as you canin one direction, then turnit slowly the other
way until the following message (or something very similar) appears on
your television screen:

Acorn Electron &

BASIC

>

Single tuning knob

Turn the tuning knob as far as you can in one direction, then turn it slowly
in the other direction until something like the message above appears on
your television screen.

Connecting the Electron to a monitor

This section only applies if vou are using a monitor rather than a TV.

Monochrome monitor

Youwill need to acquire a special lead which should be available from the
supplier of the monitor. The end of the lead which plugs into the Electron
should be inserted into the socket marked ‘VIDE O’ on the left hand side
of the Electron case. If you look at the bottom of the case, you will see
that the name of each socket is engraved there.

Colour (RGB) monitor

A special lead should be supplied with the RGB monitor to plug into the
Electron. The end of the lead which plugs into the Electron should be
inserted into the socket marked ‘RGB’ on the left hand side of the

Electron case. If you look at the bottom of the case, you will see that the
name of the socket is engraved there.

Now try something

Take alook at the TV screen. If you have already pressed any keys onthe
Electron’s keyboard you will probably see something unintelligible

6 Getting started

displayed on the screen. T'o remove this, press the key on the keyboard
marked . Then press any keys you like on the keyboard — as many
as you like — you cannot damage the computer whatever you press! The
little flashing line on the screenis called the CURSOR and is to show you
where the next character you type will appear.

If you press the BI3LLL] key at any stage, a new line is started and the
computer will probably display a message on the screen immediately
underneath what you’ve typed, such as

Mistake
or

Syntax error

or something else. Don’t take any notice of this; the Electron’s command
of the English language isn’t quite as good as yours! Later on we will show

you how to tell the Electron to do things for you by using its own language
called BASIC.

If you press a key and hold your finger on it, you will notice that after a

short time the character displayed on the screen repeats itself over and
over until you take your finger off the key again.

If the yellow light to the left of the [fYgJI{ key is still on, then letters of
the alphabet will appear on the screen as capital (‘upper case’) letters.

To type small letters, press the ELil1A0 key and hold it down while you
press them key. The yellow light goes out, and you can now type
‘lower case’ letters on the screen.

To get back to capitals, press ElI[al] and [AYEILY again - the keyboard

is now locked into producing ‘upper case’ letters again.

Spend some time playing with the keyboard if you aren’t very familiar
with the layout, and if anything strange happens, just press the
key. This will clear the screen and you can continue. When you get to
chapter 5 the keyboard operation is explained in detail.

The different typefaces used in this book represent the following:

— Ordinary text appears like this, or like this for emphasis.
~ Text typed into the computer or displayed on the screen appears
Like this or like this.
~ Words like mean that you press the key marked RETURN
rather than actually type the letters RETURN..

- y—

3 Using a cassette
recorder

Introduction

When you have learnt to write programs that enable the Electron to do
things for you, it will soon become obvious that you need to make a copy
of these programs for future use. One very good reason being that when
you switch off the Electron, everything you typed into the computer is
forgotten. The Electron gives you the facility of recording your programs
onto cassettes for future use (just as you might record music).

Not only this, but you can then play back pre-recorded programs for the
Electron which other people have written, and make them work on the
Electron,

This chapter tells you how to set up your cassette recorder for saving or
loading programs. These programs will show you some of the things the
Electron Microcomputer can do.

First of all, you need to connect a suitable cassette recorder to the
Electron.

Connecting a cassette recorder

The sort of lead you need to connect the Electron to a cassette recorder
depends on what type of sockets are fitted to your cassette recorder. One
end of the lead must have a 5-pin or 7-pin DIN plug fitted, and this plugs
into the socket on the left hand side of the Electron case marked
‘CASSETTE’ - you will find the name engraved on the bottom of the
case immediately below the socket.

The wiring diagram overleaf shows the wiring of the CASSETTE socket on
the Electron as you look at it from the mating side.

Your nearest Electron dealer or hi-fi dealer should be able to help

provide the correct lead if you have any problems, especially if you show
him the drawing.

8 Using a cassette recorder

Cassette interface

7-pin DIN
socket
3 viewed from
outside of
case
PIN
1 OUTPUT TO CASSETTE (RECORD) LINKED TQ PIN 4
2 COMMON
3 INPUT FROM CASSETTE (PLAY)
4 OUTPUT TO CASSETTE (RECORD) LINKED TO PIN 1
5 NOT CONNECTED
6 MOTOR CONTROL SWITCH

MOTOR CONTROL SWITCH

To help you out of immediate difficulties however: if your cassette
recorder has a 5-pin DIN socket for record/playback, then you can use a
standard 5-pin DIN to 5-pin DIN lead between the Electron and the
cassette recorder. The only disadvantage of this is that the Electron will
not be able to control the cassette recorder’s motor (assuming that your
cassette recorder has the facility for externally pausing the tape while it’s
playing). This facility isn’t absolutely necessary, but it does mean that
instead of the Electron stopping and starting the tape automatically, you
will have to do it manually.

If you find that you are listening to the Introductory Cassette via the
cassette machine’s internal speaker, you may want to insert a plug into
the earphone or external loudspeaker socket to stop it — computer
programs sound like a screeching noise which is not pleasant! If in doubt,
ask your local hi-fi dealer how to do this on your particular machine.

Motor control

If your cassette recorder has a motor control facility and you are using it,
then you can ignore any messages asking you to stop the tape — this will
be handled by the Electron automatically. All you need to do is to press
the PLAY button on the cassette recorder when you first start loading
the first program (explained in chapter 4) and leave it on.

If your cassette recorder does not have motor control, then you must stop
the tape as indicated by the computer.

You are now ready to use the Introductory Cassette.

4 The Introductory
Cassette

The Introductory Cassette contains lots of interesting demonstration
programs which are recorded on both sides of the cassette. If you start at
the beginning of side A and follow the directions in this chapter, the
computer will take you through each of these programs in turn. When you
get to the last program on side A, you will be asked to turn the cassette
over and continue on side B.

You will notice that the programs on side B start about a third of the way
along the tape. The reason for this is that there are four extra programs at
the beginning of side B and at the very end of side A which relate to the
book Start Programming with the Electron. When you have got more
familiar with your Electron and start using this book, then rewind the

tape to the beginning of side B and follow the directions given in the
book.

This chapter deals with the demonstration programs only, so insert the
cassette into your cassette recorder — side A uppermost.

Adjusting the volume control and loading the first program

On some cassette recorders, the volume control setting must be adjusted
first before the Electron can ‘hear’ the programs being played. If this is
the case for your machine, set the cassette recorder volume control to
about two-thirds maximum, and the tone control (if fitted) to maximum.
See if the yellow light on the left of the keyboard is on, and if it isn’t press
the key and the m key down together — this will make the
yellow light come on. Press to ensure that the computer is
completely reset. Now type the following exactly as it is printed below.

CHAIN "INTRO"

To type each quotation mark, hold your finger on the ElJlI3ll key and
press the key with the number 2 on it (immediately above the 2 is the "
character). Make sure you type an ‘0O’ and not a zero.

Then press LIAL}. If you make a mess of it, don’t worry — just press
and try again.

1% The Introductory Cassette

Press PLAY on the cassette recorder, and the tape should start moving.
The message

Searching

should appear on the screen. This means that the computer is looking for
the program called “INTRO” on the cassette. As soon as it has found it,
you should see this message displayed on the screen:

Loading
INTRO 11,

This means that the program called INTRO has been found, and the
computer is loading it (copying it) into its memory. The program is
recorded in ‘blocks’ on the cassette, and the numbers on the screen next
to INTRO tell you which block is being loaded at the moment.

If the message above doesn’t appear on the screen after about 3@
seconds from pressing PLAY, then turn the volume control up a bit more,
and wait for about ten seconds. If there’s still no message, turn it up more
and keep on until you get a message similar to the one above.

The two numbers to the right of INTRO will be higher than @@ by this time,
so completely rewind the tape and start again. Press 111,14 and retype

CHAIN "INTRO" L{3NL1

Now that you have found the right setting for the volume control, there is
no need to adjust it again.

Once INTRO has been loaded successfully, four numbers appear to the
right of the two numbers already there. When this happens, it means that
the program has finished loading, so unless the Electron has done it for
you already, stop the tape. If you don’t, then you’ll have to rewind the
tape back to the end of the INTRO program before the Electron can load
the next program. If for any reason the program did not load successfully,
a message will appear telling you to rewind the tape and start again.

After a short pause, the INTRO program starts running.

The INTRO program uses some of the colour graphics and sound
capabilities of the Electron, and also includes an index of the programs
you are about to see on side A of the Introductory Cassette.

The Introductory Cassette 11

Here is a quick guide to the other demonstration programs:

KEYBOARD

This program will help you to get to know the Electron’s keyboard. You
will be asked to type different characters from the keyboard. So that you
can judge your performance and see how you improve, the computer
times you!

SKETCH

Feeling creative? Here's a chance to put your artistic talents touse. In the
centre of the screen there is a cross which you can move wherever you
like. As the cross moves, it draws a line in the colour of your choice. You
can also move the cross without drawing a line — rather like lifting your
pen off the paper —and then carry on. The keys you canuse and what they
do are listed at the bottom of the screen.

PIANO

The Electron turns itself into a musical instrument. At the bottom of the
screen there’s a picture of a piano keyboard with the corresponding keys
on the Electron keyboard shown. At the top of the screen, the musical
score appears as you play.

DODGEMS

You are in control of a car driving through a maze of roads which each
contain a row of dots. You must drive along every road and clear the dots
on them to score the maximum number of points. Unfortunately, there’s
a computer car coming the other way whose sole purpose inlife is to crash
into you!

You control the car with five keys which are described at the beginning of
the game, and these allow your car to:

— Go left

— Go right

- Go up

— Go down
— Go faster

If you are going too fast, you have to turn at every junction unless you
slow down in time.

You score one point per dot and one more when they’re all gone. Once
there are no dots left, a new maze appears and you carry on as before —

12 The Introductory Cassette

only this time the computer car travels faster!

BIORHYTHMS

This ingenious program plots your ‘biorhythms’ which is the supposed
balance between your emotional, physical and intellectual states. Some
people believe that these are regular cycles which show when you are at
your best and worst physically, emotionally and intellectually. They also
believe that the rhythms started at birth and can be predicted mathe-
matically.

All youneed to do is enter your date of birth and the date you would like
the biorhythm chart for— perhaps today, or maybe you have an important
event coming soon, and you want to find out how you’ll feel on that day.

The program calculates these cycles from your birth and then displays a
chart which indicates your state of well-being on the chosen day.
Biorhythms or no biorhythms, this program demonstrates the com-
puter’s calculation speed (for example, the number of days from your

birth) and how the computer can be used to display graphical informa-
tion.

CLOCK

This program shows that the computer has more of a memory than you
think. Remember the computer asked you the time in the INTRO
program? If you typed in the correct time then, you can check it now —
either as a digital or analogue read-out. You can even reset it if you want.
As well as demonstrating the Electron’s high resolution graphics, this
program also shows that the computer is an excellent time-keeper.

GOMOKU

Gomoku is a very old board game where two opponents (you and the
Electron) try to produce a row, column or diagonal with five counters. It
is really a sophisticated version of noughts and crosses where you must
plan your moves carefully — there is a very large number of possible
moves.

The game starts with a blank screen and the message

SHALL I START?
Press Y or N

After you've pressed Y or N, the board appears on the screen, and if you
let the computer have first go it will have placed its counter somewhere

The Introductory Cassette 13

on the board.

A small cross shows where your counter will be placed. Once you are

happy with the position for your counter, press L301], and a counter
appears in place of the cross.

The computer has another go and play continues until one of you
manages to get an unbroken line of five counters on the board. The
winning line flashes for a few seconds, and if you want another game,
press the space bar.

MESSAGE

This program tells you to stop the tape (if you haven’t got motor control),
and continue on side B of the cassette where you will find the programs
described below.

PATTERNS

This program generates kaleidoscopic patterns in colour, and no two
patterns are ever quite the same. To start a new pattern, press the keys
marked 1 and 2 in sequence. The pattern itself and its colours are
randomly selected each time the keys are pressed and serve to
demonstrate the Electron’s high resolution colour graphics. If you want
to sit back and watch, press one of the keys for a second or two; the
computer will continue to generate the patterns until the repeat action of
the key you pressed runs out.

MARSLANDER

You are in command of a spacecraft which you must try to land on a flat
section of the Martian terrain as gently as possible. Key X rotates the
craft clockwise, and key Y anticlockwise, The space bar fires the rocket
motor and makes the spacecraft move in whatever direction it is
pointing. To land the spacecraft safely, it must be pointing upwards, at a
speed of less than 5@m/s and you must touch down on a flat section of
Mars. The score depends on your speed when you land, with a possible
5066 points for landing at #fm/s. After a successfullanding, the computer
will tell you what sort of landing you made, your touch-down speed, how
much fuel you have left, and ask you to take off for another landing site
which is more than a specified distance away. On each successful

" landing, you get 3 extra fuel units and your old score is added to your

new one.

14 The Introductory Cassette

BUGZAP

This program gives you some target practice shooting down a space
invader. The keys on the keyboard marked Z and X move the launcher,
and the space bar fires missiles at the space invader. Good luck!

ISLAND

This program draws a colour picture of a desert island with palm trees,
and a moving sea which occasionally becomes turbulent. This program
demonstrates the use of animation in graphics.

PLANETS

This is a very striking example of high resolution colour graphics on the
Electron, where animation is used to produce a marked three-dimen-
sional effect,

Loading each program from the cassette

If you simply follow the instructions on the screen, you will be loading
each program into the Electron’s memory one after the other. If you want
to locate a particular program on the cassette, wind the tape to any point
before the program you want (a tape counter can be of great help here)
and type

CHAIN "XXXX'" (where XXXX represents the program name)

Then press the B3] key. The computer will look through the tape
until the program name is found, then it will start loading the program,
and afterwards, run it.

Alternatively, position the tape just before the beginning of the program
you want, and type

CHAIN ""

Then press the key. The computer will load and run the next
program it finds on the tape. To help you find the beginning of a program,
listen to the tape; each program sounds like a screeching noise, and
between programs you will hear a continuous high-pitched tone, If you
start loading during the high-pitched tone then you know you're in the
right place.

The Introductory Cassette 15

There are two important points to bear in mind. The first is that the word
CHAIN is a command which tells the computer to load the program you
specify and then to execute it (run it). So in fact the CHAIN command tells
the computer to do two things. The second point is that when the
computer is searching for the program you specified, it will still display
on the screen the name of whatever program is currently playing. This
should give you an idea of how close you are to the program you want.
However, remember that whatever program is displayed on the screen,
the computer isn’t loading it unless you see the word

Loading

above the program name. Don’t be fooled into thinking that just because
a program name appears on the screen, it is being loaded (copied) into
the Electron’s memory.

Chapters 9 and 26 give a detailed account of all the facilities made
available to you by the Electron when recording (saving) and playing
back (loading) programs to and from cassette.

5 How to use the
keyboard

Introduction

The Electron keyboard works rather like an ordinary typewriter key-
board. The main difference is that when you press a key, instead of

letters appearing on a sheet of paper, they appear on your television
screen.

The small white flashing line you can see on your TV screen is called the
CURSOR and it shows where the next character to be typed will appear
on the screen.

One thing to bear in mind which the keyboard doesn’t make obvious—the
keys which produce the letters of the alphabet

QWERTYUIOP
ASDFGHJKL
ZXCVBNM

can be made to produce small letters as well as capital letters.

As you can see, virtually all the keys have more than one character/word
printed on them — some even have three! There are four keys on the
keyboard whose purpose is to sort out which one appears on the screen
when you press a particular key. These are

SLIIBE - there are two of these keys
CTRL

CAPS LK Wi m — this is one key, which is normally ‘FUNC’ but is
‘CAPS LK’ when used with the SHIFT key.

These keys are used in various combinations to give you the character or
word you want to appear on the screen, and this is described shortly.

The ELILLS key clears the screen and prepares the computer for
entering a hew program. Any program lines already entered will be

deleted (but can be recovered by using the OLD command — see chapter
25).

How to use the keyboard 17

ﬁ _

[nsd Y[3avs \{ avor [acow }{ ixan }{ wnnau [noa \{no10o}[oous \ ana A/

e AT A s SOz
E@E@@GQ&,; Eﬂﬂ

ﬁ {1019 }{ raw Y{ ineni [tunn m»ﬁuux N[waur \[~wnu \(3sa_\fwoisau \[woor [

E Rt) e

e

== EE =

18 How to use the keyboard

Holding down the 411 key then pressing the E1i3:1.4 key clears the

screen and restores the computer to how it was when you first switched it
on.

The m key is used to interrupt a sequence of events generated by
the Electron, such as a program listing or program execution etc.

The 1J38319 key moves the cursor backwards along a line and deletes

whatever character it finds there.

Choosing the keyboard characters

This section tells you how to select all the different characters on the
keyboard.

SHIFT and CAPS LK

Press the ElilI4f key, and hold it down while pressing the [H\EFILY /
key. If you keep on doing this, you will notice that the yellow light to the

left of the keyboard goes on and off.

When the light is on, the keyboard is in ‘CAPS LOCK’, and this means
that pressing letter keys will give you capital letters, but all other keys
will give you the lower of the two black characters on the top of the key.

When the light is off, the keyboard is no longer in ‘CAPS LOCK’ — the
only difference is that the letter keys will give you small letters when
pressed. '

SHIFT

With the yellow light off, press the key, and hold it down while
you press one of the character keys. All letters appear on the screen as
capitals, and all the keys with two black characters marked on them make
the upper character appear on the screen. The keys with three black
characters marked on them make the top left character appear on the
screen.

With the yellow light on, press the §1;]138l key, and hold it down while
you press one of the character keys. Even though the keyboard is in
‘CAPS LOCK’, all letters appear on the screen as small letters.

How to use the keyboard 19

FUNC

A lot of keys have light brown characters marked on the front, such as
GOTO, RUN, {7 etc. Press the / [fI[[Y key and hold it down: at the same
time, press the key with PRINT marked on the front. The word PRINT
appears on the screen. Try pressing the / m key with some of the
other keys with light brown writing on them.

You probably noticed that the keys marked ‘f@ to ‘€9’ won’t do anything
when you press them. This is because they are ‘user definable’ keys
which means that you can choose what they will do when they are
pressed. How you define them is described in chapter 24.

If you have never come across the computer language called ‘BASIC’,
you may wonder what the point is of being able immediately to display
these words on your TV screen. The answer is simple; the Electron
computer understands and uses the ‘BASIC’ language, and these words
are the most common ‘keywords’ (or commands) in this language, so
rather than having to keep on typing these out in full, you can simply
press the / m key and the relevant character key. This saves a lot of
time when typing lengthy programs into the computer.

The arrow keys and the COPY key

There are five keys in the top right area of the keyboard which have three
black symbols marked on them (four of the keys have arrows on them,
and one of them the word [Miaf). First of all, here is how to select which
symbol you want from any of these keys:

For example, the key marked

/\r_;

-~
Key by itself selects left arrow (which moves the cursor)
;1138 and key selects /\ and produces it on the screen
(M1 8 and key selects ~ and produces it on the screen

What the arrow and COPY functions do
If you press any of the keys marked with arrows, the cursor moves in the

26 How to use the keyboard

direction of the arrow, and leaves a square block where it was before it
moved.

If you now press the key, both the ‘line’ cursor and the ‘block’
cursor move across the screen, and every character above the ‘line’
cursor is copied to where the ‘block’ cursor is. This is a very useful facility
for editing programs: the idea is to copy the line with a mistake initontoa
fresh line, and correct the mistake(s) while you’re doing it. Editing
programs using this facility is described in chapter 7.

Summary

1. CAPS LOCK off (yellow light off)
Small letters and bottom black characters

2. CAPS LOCK on (yellow light on)
Capital letters, otherwise as above

3. CAPS LOCK on (yellow light on) with key
Small letters and top (left) black characters

4, CAPS LOCK onor off /[JI[d with key
BASIC keywords, as indicated on the front of the keys, are produced

5. CAPS LOCK on or off MY with key
Selects top right hand character from keys with three black characters
marked on them.

Note: See Appendix A for a list of VDU control codes which can be
generated by pressing M8 and some of the other keys on the
keyboard.

6 Introducing
commands and
programs

The Electron computer, like any computer, has to be told what to do
before it will do anything for you. The only way you can ‘talk’ to it is by
typing commands to it on the keyboard, and the Electron tells you what
you typed by displaying it on the TV screen.

The Electron understands two languages, one called BASIC and the
other called Assembly Language. As these are written languages only —in
other words they are meant to be typed into the computer rather than
spoken to it — they each have their own special vocabulary and grammar.

Talking to the computer in Assembly Language is no easy task for the
beginner so it is discussed in a separate section towards the end of this
book. From now on, we will be helping you to speak to your computer in
the language called BASIC. This language consists of a number of words
or commands. Some of these are printed on your Electron keyboard in
light brown letters.

Note that the Electron displays a > sign followed by the flashing cursor.
This is called a ‘prompt’, and means that the computer is waiting for your
instructions. Normally the Electron will prompt you when it is waiting for

you to type something in. The > prompt means that the Electron is
expecting a BASIC command.

Press the 111314 key to clear the screen, and type the following line

PRINT "HELLO"

Then press LALWiL']. As soon as you press the BIALLLT key, the
computer obeys the BASIC command PRINT, and because the rest of the

line was in quotation marks it displayed the word HELLO on the screen.

Now type this

PRINT "I'M™
PRINT "LEARNING"
PRINT "BASIC"

22 Introducing commands and programs

#***DON'T FORGET TO PRESS THE il':1.] KEY AT THE END
OF EACH LINE!***

As you can see, the Electron reads each command and executes it
immediately after you press the LI3ULL key. You can also type in all
these commands first AND THEN make the computer execute them

when you tell it to do so. This is done by putting a numberin front of each
instruction.

Now type the following

18 PRINT "HELLO"

2@ PRINT "I'M™“

36 PRINT "LEARNING"
4@ PRINT "BASIC"®

#*#*¥DON'T FORGET TO PRESS THE {3ilili] KEY AT THE END
OF EACH LINE!***

The computer hasn’t carried out your instructions like it did before, so
now type

RUN

Followed by the LiaL i1} key.

This time the computer has printed your message on the screen allin one
go.

Congratulations, you have just run your first program on the Electron
Microcomputer!

So a program is simply a collection of numbered instructions. The line
numbering has two purposes: firstly to tell the computer not to execute
each line after you have pressed the key, and secondly to help
the computer decide in what order it should execute the instructions —
after you have typed RUN of course.

The actual numbers you type in can be any numbers you like as long as
you remember that the computer will execute the program lines in
numerical order.

The chapters which now follow serve as an introduction to the Electron
BASIC language, and how to use the facilities it offers you. The chapter

Introducing commands and programs 23

on editing your programs will help you speed up the process of typing in |
programs and making changes to get them working.

Unlike a typewriter, you dont need to press the key when what
you have typed has filled up the current line on the screen — just carry on
typing. What happens is that the computer starts a new line on the
screen, and the subsequent characters you type are displayed on the new
line. Prove this to yourself by typing a lot of characters.

Remember that pressing the key tells the computer that you
have reached the end of the command or program line you have just
typed. If a command, the computer then executes it, and if a program
line, the computer stores it in its memory.

What is hexadecimal?

Once you get more familiar with the Electron, you may come across

things called ‘hexadecimal’ numbers. Here is a brief explanation of what
they are.

Hexadecimal numbers, sometimes called ‘hex’ numbers for short, have
sixteen separate digits, compared to our decimal numbers which only
have ten (including the number zero). This is how you count in
hexadecimal, with the decimal equivalent underneath.

1 2 3 456 7 8 9 ABCDEFI141112...
g 1 2 3 45 6 7 8 914111213 14151617 18...

To show you how to carry on counting in hexadecimal:

12 13 14...19 1A 1B 1C 1D 1E 1F 20...2F 36¢...
3F 49...... 99...9F A9 Al A2...AF B¢...BF C¢
FF 198 1¢1... etc

To help you and the Electron tell the difference between decimal
numbers and hexadecimal numbers, you should always type an ‘&’ signin
front of a hexadecimal number. If you don’t, then the computer will
assume your number to be a decimal. So we can now say &A@ = 16§
(hexadecimal A® is equal to decimal 16@).

7 Editing programs

Introduction

The Electron provides you with a number of very useful facilities for
laying out, editing and listing your programs. If you haven’t done any pro-
gramming before, here is a brief list of the sort of facilities you will need
when typing in programs and making them work:

— Being able to display part or the whole of your program on the screen
whenever you want to.

— Correcting mistakes, or editing.

— Putting comments or notes into the program to help you remember
what each part of the program is doing.

— Deleting one or more program lines.

To start looking at these facilities and how to use them, type in the
sample program below which we will use to demonstrate the different
facilities.

First, press LEIJL1q to clear the screen and reset the computer, then
type the following, and take care with the punctuation and spaces in the
last line.

1@ PRINT "GIVE ME A NUMBER BETWEEN ONE AND
TEN"

20 INPUT X

30 Y=2%X

4@ PRINT "TWO TIMES ";X;" IS ";Y

After typing in the above program, type

RUN LI

When you run this program, the following happens

line 14 GIVE ME A NUMBER BETWEEN ONE AND TEN appears on the
screen

line 20 A question mark appears on the line below, and the computer
waits for you to type in a number which is stored as a variable

called X. Type in a number and press Li{3iUi)

Editing programs 25

line 3¢ The computer multiplies X by 2 and stores the result as a
variable called Y

line 4¢ The following is printed on the screen: TW0 TIMES (the number
you typed in) IS (the result)

If the program won’t work properly, or you get an error message, press
and type it in again — you most likely made a mistake when you
typed it in the first time.

Listing the program

When you want to change your program in any way, you will need to
display the program (or at least the bit you want) on the screen. To do
this, use the BASIC command LIST. Type

LIST L3prily

Your program appears immediately underneath the LIST command on
the screen.

If you only want to look at one particular line, say line 4%, type

LIST 40 LI

Line 4@ of your program is displayed on the screen.

To look at a number of consecutive lines, say lines 2¢ to 4@, type
LIST 20,40 Liawhi)

Lines 26, 3% and 4@ appear on the screen.

If you want to see from the beginning of the program up to a particular
line, say line 39, type

LisT 30 LY

Lines 1§, 20 and 3¢ appear on the screen.

If you want to see from a particular line to the end of the program, then
type

LIST 20, Rl

26 Editing programs

Lines 29, 3¢ and 40 appear on the screen.

Please refer to chapter 25 for a description of the LISTQ commands.
These commands provide you with even more facilities when listing
programs,

Editing programs
There are three ways of correcting mistakes in programs you have typed.

One of these you have already met in chapter 5: that is, pressing the
key which moves the cursor back along the current line deleting
each character as it goes. There is one major drawback to this method — if
you have finished typing a line and have pressed ,you can’t get
the cursor to go back to that line by just pressing the key. As we

said before, pressing the iJI13)]§ key only moves the cursor back along
the current line, which may not be the one you want to correct.

Another method is to type in the line again, but with the correction. The
computer always replaces the old program line with any new version you
type in. If the line to be corrected is very short, then this method is fine;

but if the line is long or complicated, then use the third method described
below.

Editing with the arrow keys and the COPY key
Type

LIST RIULL)

The program appears on the screen, and we are going to use it to try out
some editing, The following should now be on your screen:

>LIST

13 PRINT "GIVE ME A NUMBER BETWEEN ONE A
ND TEN"

2@ INPUT X

30 Y=2%X

4@ PRINT "TWO TIMES ";X;" IS ";Y

Editing programs 27

Supposing you want to change the word BETWEEN to FROM in line 14.

First of all, press the up-arrow key five times. The original cursor position
under line 4@ becomes a white square, and the cursor moves up to line 19.

Now press the key marked three or four times. The cursor moves
along line 10, the white square moves along as well —and line 1@ is copied
underneath line 4¢. Keep on pressing the key until you have
copied the word BETWEEN, then stop. Note that if you hold the key down,
the repeat action allows you to move the cursor quickly across the screen.
A quick press and release gives you precise control, moving just one
character position. The following should be on your screen:

>LIST

1@ PRINT "GIVE ME A NUMBER BETWEEN_ONE A
ND TEN"

280 INPUT X

30 Y=2*X

40 PRINT "TWO TIMES ";X;" IS ";¥
> 10 PRINT "GIVE ME A NUMBER BETWEENNER

Now press [UI03IF until BETWEEN has been deleted from the new line
19.

NOTE THAT THE CURSOR ON THE OLD LINE 14 HASN'T
MOVED.

If the cursor isn’t in the right place, ie underneath the space separating
BETWEEN and ONE, move it there now by using the arrow keys.

Now type in the word FROM, then press the [Milg{ key to copy the rest of
line 10 to your new version.

Press I{AMLLY. The white square disappears, and the cursor goes to the
start of a new line. The result should be this:

>LIST
1@ PRINT "GIVE ME A NUMBER BETWEEN ONE A
ND TEN"

28 Kditing programs

20 INPUT X
30 Y=2%X
4@ PRINT "TWO TIMES ";X;" IS ;Y

1@ PRINT "GIVE ME A NUMBER FROM ONE AND
TEN"
>

If you LIST the program again, by typing

LIST Ll

you will see that the new line 1% has replaced the old version. Have a go at
editing line 19 again and change AND to TD.

There are no restrictions on how much you move the cursor around when
you're copying. This means that you can copy bits from lots of different
lines onto your new line all in one go: wherever you move the cursor to by
using the arrow keys, you can then copy as much as you like of that line,
then move the cursor somewhere else and continue copying.

Deleting lines from your program
There are two ways of deleting whole lines from your program.

The first method is to type in the line number of the line you want to

delete, then press . What you are doing is entering a new
version of that line into the computer — only with nothing in it. Because
the computer always replaces a previous version of a line with any new
version you type in, this method effectively deletes that line number.

For example, to delete line 1@ of the program, type

10 [ENT]

Now list the program by typing

LIST LIl

And you will see that line 1% has been deleted. Now type the original line
19 again so that it goes back into your program.

Editing programs 29

The second method of deleting program lines is to use the DELETE

command. This command allows you to delete a number of consecutive
lines.

To do this, type DELETE, then type the first line number to be deleted,
then a comma, followed by the last line to be deleted. The following
examples will help you understand, but before typing them into the
computer, remember that they will in fact delete parts of your program,

so afterwards you will need to type the deleted lines again to restore your
program!

First of all, list your program so that you can see it on the screen. You
should have lines 19, 20, 3@ and 40. If not, then replace the missing ones
(copy them from the program listing at the beginning of this chapter).

To delete lines 14, 2@ and 39, type
DELETE 10,30 3Ll

To delete all lines from the beginning of the program to a particular line
number, type @ followed by a comma followed by the last line to be
deleted. For example, to delete lines 19, 2@ and 38, type

DELETE @,30 i3l

To delete all lines from a particular line to the end of the program, the
numbers to enter after the DELETE command should be the first line
number to be deleted, then a comma and then any number which you
know to be equal to or greater than the last line number of the program.
For example, to delete line 2¢) onwards, type

DELETE 20,100 [IRILL)

Inserting new lines into your program
First of all, list your program (if you haven’t deleted it all') and type in any
lines which may be missing.

Having typed in the first attempt of a program, executed it by using the
RUN command, and changed or deleted lines as necessary to make the
program work, you may want to insert new lines. You will then see how
important it was to leave plenty of unused line numbers between the
original lines in your program. To insert new lines, decide when you want

3% Editing programs

the new line to be executed by the computer when it runs the program,
then choose a suitable line number. For example, to insert a line which
makes the computer print another message underneath GIVE ME A
NUMBER FROM ONE TO TEN, yvou will need to insert a new line
somewhere between lines 19 and 2. Let’s choose 15; this still leaves
some room either side for any more new lines, so now type

15 PRINT "NICE DAY ISN'T IT" Ll

Now list the program, and you will see that the new line appears in the
listing. The listing should look like this

10 PRINT "GIVE ME A NUMBER FROM ONE TO TEN"
15 PRINT "“NICE DAY ISN'T IT"

2@ INPUT X

3@ Y=2*%X

4@ PRINT "TWO TIMES ";X;" IS ";Y

Make the computer execute the program by typing
N RETURN

and type a number for it to multiply by two. Remember that the
computer is expecting a numeral and will not recognise letters. This is
because our little program would need some more lines adding to it
before the computer would recognise THREE instead of 3, or TEN
instead of 14.

Renumbering the program

There may be occasions when you want to change the line numbers of a
program but without changing the order in which they are executed by
the computer. The command which does this is RENUMBER. This facility
is especially useful when you want to insert say 25 new program lines
between lines 1@ and 20 in your existing program.

You can specify two numbers after typing the RENUMBER command.
The first number tells the computer what you want the first program line
number to be changed to, and the second number tells the computer how
much to add to each line number to get the next one.

For example

A

Editing programs 31

RENUMBER 100,20 Rt
will renumber the first line as line 13@, and the remaining lines will be
numbered 12§, 14@, 160, and so on.

If you leave out the second number in the RENUMBER command, the
computer will automatically change the second line number to ten more
than the first, and then carry on through the listing. So if you had a
program with line numbers

23 PRINT "The Electron"

24 PRINT "Microcomputer"

26 PRINT "will do"

3@ PRINT "many things for you'

and type
RENUMBER 100 LijLi
listing the program will give

10@ PRINT "The Electron'

110 PRINT “Microcomputer"

128 PRINT "will do"

130 PRINT "many things for you"

If you simply type

RENUMBER L3011

then your program lines will be renumbered 1§, 28, 38, 49, 50 and so on.

Getting the computer to number each program line
Instead of typing line numbers at the beginning of each new program line,
you can get the computer to do this for you by using the command AUTO.

If you type

AUTO Ly

you will see that the computer will print the number 18 on the line below.
You can then type the first program line, press Li34Wili} at the end, and

32 Editing programs

the number 2@ appears on the next line — and so on. When you want to
switch off this automatic line numbering, press

If you don’t want to start the program at line 14, and want a different
number of spare lines between each of your program lines, then you can
type in two numbers — separated by a comma ~ after the AUTO command.
For example, if you type

AUTO 400,15 Gl

the program line numbers will come out as 439, 415, 430, 445 and so on.

Now press [i]T.1q, and retype the example program we were using
previously using the AUTO facility. Start the program numbering at 2¢¢
and continue in steps of 5@.

Putting notes into your programs

When typing programs, especially long ones, it is a good idea to insert
comments here and there to tell you what each part of the program is
doing. This is done by using the REM command. All REM does is tell the
computer to ignore the rest of the line when it executes the program, but

your comments will still appear in the program listing when you give the
command LIST,

For example, we could insert a comment at the beginning of our example
program to tell us what the purpose of the program is, like ‘This program
doubles numbers’. To insert this into the program listing, first type

LIST 3Ly

to get a listing of the program. Then choose a line number less than the
first program line, say 5. Now type

5 REM This program doubles numbers LiLLL]

If you list the program, then run it, you will see that the comment in line 5
appears in the listing, but is ignored when the program is executed.

Retrieving a program and starting a new one
If you press the L1313, key for any reason, the program you have typed
in so far gets ‘lost’. To get it back again, type

RV RETURN

Editing programs 33

If you want to start a new program, make sure that any program already
stored in the computer has been deleted. In other words, type

LIST L300

and if a program appears, then delete it by typing

NEW Ll

You can now enter your new program, and the old one is forgotten.

Listing long programs

When listing very large programs, which won't fit on the screen all in one
go, the beginning of the listing will disappear off the top of the screen.
There are two ways of getting round this: one way is to press and
together as soon as you have typed

LIST L3l

The effect of this is to halt the displayed listing on the screen. Taking
your finger off either [{i]§ or ﬁ allows the listing to continue, and
this enables you to ‘step’ through chunks of the listing.

The other method is to put the Electron into ‘paged mode’. Press [41i]"
N to get into ‘paged mode’, then list the program. The listing stops as
soon as it has filled the whole screen. To display the next ‘screenful’ of

listing, press the ELJldl key.
Press [MLR O to get out of paged mode.

8 Trying out some
programs

Introduction

Having seen something of what the Electron can do, and having got used
to typing on the keyboard, it’s now your turn to tell the Electron to do
things. Because the computer does exactly what it is told, remember to
type in the examples given exactly as they appear in this chapter. You'll
find that you can sometimes get away with adding an extra space here
and there or leaving one out, but rather wait until you are more familiar
with the Electron BASIC language before experimenting! After you have
typed in each program, type

RUN Ll

to execute it. If the program doesn’t appear to work, the computer may
help you by displaying an error message, and telling you in which line the
mistake appears. Press m and list the program as described in the
chapter on editing. Make the necessary alterations, then run the program
again.

Before you start, press the key marked [:}3]7.1.4 on the keyboard. This
will get the computer ready for you, and also start you off with an empty
screen.

PERSIAN

This program produces a pattern by drawing hundreds of lines. Random
colours are selected by lines 4@ and 5@. Line 6@ moves the origin (middle)
of the picture to the centre of the screen. The program stops after a while,
so run it again to repeat the patterns.

13 REM PERSIAN

20 MODE 1

30 D%=4

4@ vDU 19,2,RND(3)+1,0,0,0,

5@ vbU 19,3 ,RND(3)+4,0,0,0

6@ VDOU 29,640;512;

70 J1%=0

80 FOR KZ%=500 70 380@ STEP -40

9@ REPEAT J2%Z=RND(3): UNTIL J2%<> J1%

Trying out some programs 35

100 J1%=J2%

110 G6COL 3,J1%

12@ FOR I%=-K% TO K% STEP D%
130 MOVE K%,1%

140 DRAW -K¥%,-1%

150 MOVE I%,-K%

16@ DRAW -1%,K%

170 NEXT

188 NEXT

POLYGON

This program draws polygons (many sided shapes) in random colours.
Lines 99 to 159 select a random place on the screen which will be the
centre (origin) of the next shape.

Lines 17¢ to 250 calculate the X and Y coordinates of each corner of the
polygon and store the values in two ‘arrays’ for future use.

Lines 220 and 160 fill the shape with black triangles which make it
appear as if the new polygon is in front of the older ones.

Lines 260 to 31% draw all the lines that make up the polygon.

Lines 3@ to 50 set the actual colours of logical colours 1, 2 and 3 to red,
blue and yellow. You can change these to use other colours if you like.
Unlike the PERSIAN program, this one carries on and on until you stop

it yourself. To do this, either press m or LijT.14.

13 REM POLYGON

28 MODE 1

3¢ vou 19,1,1,0,8,0

40 vbpU 19,2,4,0,0,0

56 voy 19,3,3,0,0,0

6@ DIM X(10)

70 DIM Y (1@)

8@ FOR C=1 TO 2500

90 xorigin=RND(1200)
180 yorigin=RND(1000)>
113 VDU 29,xorigin;yorigin;
120 radius=RND(308)+50
138 sides=RND(8)+2

140 MOVE radius,@

150 MOVE 1@,10@

160 GCOL 0,0

178 FOR SIDE=1 TO sides

36 Trying out some programs

188 angle=(SIDE~1)*2*%PI/sides
198 X(SIDE)=radius*C0S{angle)
200 Y(SIDE)=radius*SIN(Cangle)
210 MOVE 0,0

22@ PLOT 85,X(SIDE),Y(SIDE)
23@ NEXT SIDE

240 MOVE 0,0

25@ PLOT 85,radius,0

266 GCOL @,RND(3)

27@ FOR SIDE=1 TO sides

280 FOR Line=SIDE TO sides
299 MOVE X(SIDE),Y(SIDE)
380 DRAW X(Line) , Y(line)
318 NEXT Line

32@ NEXT SIDE

330 NEXT C

DRAW

This program is a simpler version of the SKETCH program on the
Introductory Cassette. The main part of the program is between lines 2¢
and 229, and two procedures are called from here.

Lines 240 to 29¢ print the instructions at the bottom of the screen.
Lines 320 to 36# limit the graphics area you can draw in, and contain the
DRAW instruction.

Lines 139 to 20@ define which keys on the keyboard are ‘drawing’ keys,
and set the values for X and Y for each key. These values are used later
on by line 364,

Note that line 4@ turns the cursor off, so when you’ve finished drawing

masterpieces, press m and type
vou 23,1,1,;6;0;0; LI3LL
Alternatively, just press LY.

1@ REM DRAW

28 MODE1

33 PROCKEY

4@ vbu 23,1,0;0,;0;8;
5@ GCOL 0,1

60

90
100
11@
120
130
140
15@
160
17@
180
190
200
210@
220
230
240
250
260
270
280
290

Trying out some programs 37

vbu 19,1,2,06,0,0

X=640

Y=512

MOVE X,Y:DRAW X,Y

REPEAT

L=INKEY (~-98)

R=INKEY(-67)

U=INKEY (-73)

D=INKEY (-1835)

IF L=-1 THEN X=X-4:PROCDRAW(X,Y)
IF R=-1 THEN X=X+4:PROCDRAW(X,Y)
IF U=-1 THEN Y=Y+4:PROCDRAW(X,Y)
IF D=-1 THEN Y=Y-4:PROCDRAW(X,Y)
UNTIL FALSE

END

DEF PROCKEY

PRINT TAB(@®,25) "Your Drawing keys are:"
PRINT TAB(O,26) "Z or z Left"
PRINT TAB(@,27) "X or x Right'"
PRINT TAB(Q,38) "* or: = Up"
PRINT TAB(8,29)"? or / = Down"
PRINT TAB(@,30) "Press two keys for a d

jagonal"

3060
310
320
330
340
350
360
370

ENDPROC

DEF PROCDRAW(X,Y)

IF X<@ THEN X=0

IF X>1279 THEN X=1279
IF Y<25@ THEN Y= 250
IF Y>1@23 THEN Y=1023
DRAW X,Y

ENDPROC

9 Recording programs
on cassette

As you have seen, the Introductory Cassette has a number of programs
stored on it. You can record programs you have typed into the Electron
onto cassette for future use. This is very useful for transferring other
people’s programs from their cassette onto yours; for example, you might
want to copy one particular program on the Introductory Cassette onto
another cassette. Before you make any cassette copies of any programs,
be sure that you are free to do so. The company or person who wrote the
program may own the copyright to that program, in which case, written
permission must first be applied for.

The main thing to remember when you record programs is where the
program that you've recorded can be found on the cassette, otherwise
you will spend a lot of time searching. We strongly advise you to keep a
piece of paper with each cassette, and to write down the name of each
program and the tape counter position where it begins and ends. Bear in
mind that when you record a program, it will record over the top of
anything already on the tape; this is useful for erasing old programs you
no longer need, but fatal if you record over the top of one you want to
keep!

Most short programs will only move the cassette tape counter on 3@ or 49
positions, but try to spread the programs over the length of the cassette.
For example, record the first program at §@9, the second at 189, the next
at 20 and so on. This will make them easy to find, and will reduce
the chances of overlapping recordings. The quickest way to find out if
there’s a program at a particular point on the cassette is to play it back
and listen to the cassette machine if you can. If there is a high pitched
whistling noise, it means that a program is just about to start or just
finishing. If you hear a screeching noise, you are listening to a program.

One final point —when recording a program at the beginning of a cassette,

wind the tape by hand until the clear plastic tape ‘leader’ is no longer
visible.

Saving (recording) a program on cassette

Once you have typed a program into the Electron, then do the following
to save it:

Recording programs on cassette 39

Insert the cassette into the cassette recorder.

Set the tape counter to #9@# when the tape is fully re-wound.
Type

SAVE "MYPROG" Lj3l'liy,’

The message

RECORD then RETURN

appears on the screen.

Fast forward the cassette to the place where you want to record the
program — this will be 10@, 20@ or 3¢9 etc on the tape counter. Note
that if you have cassette motor control, you cannot wind the tape unless
you have executed a SAVE, LOAD or *CAT command (see below for *CAT),

Start recording on the cassette machine, then press LML on the
Electron.

If you want to give up at any time, press m

While the program is being saved on the cassette, the name of the
program, which is MYPROG appears on the screen along with some
numbers. This means everything is going OK. When the computer is
finished, the > will reappear, and the tape will stop automatically. If you
don’t have cassette motor control then the tape will carry on, and you will
have to press the STOP button on the cassette recorder after the >
reappears.

Checking a recording

To check that the program is really on the cassette use the *CAT
command described later in this chapter. If the recording went wrong for
any reason, then just re-record it.

In the example above, the program was called MYPROG, but you can
make up any name you like — as long as it contains ten letters or less.

Loading a program from cassette

To load a program on cassette into the Electron’s memory, type

4¢ Recording programs on cassette

LOAD "MYPROG" L]

The message

Searching

will appear. Rewind the cassette to just before the beginning of the
program, using the tape counter to help you get there.

Check that the volume and tone controls are set correctly. If you are
unsure about this, turn to chapter 3.

Press the PLAY button on the cassette recorder.

If the computer finds a program other than the one you asked for, it will
display its name on the screen but won’t load it. As soon as the computer
finds the beginning of your program called MYPROG, the message

Loading

will appear, and this tells you the computer is now loading that program.

When the program is loaded, the computer will print the > prompt on the
screen, and will automatically stop the tape if you have motor control. If
you haven'’t, then press the STOP button.

Now the program is in the computer’s memory, type
RUN L3,

and the computer executes the program. If you have read the chapter on
the Introductory Cassette, you probably remember that we were using a
different command to load the tape. This is the CHAIN command, and
what it does is to tell the computer to first LOAD the program and then
RUN it immediately afterwards. So if you type

CHAIN "MYPROG" Li3L:]

this will save you having to type RUN after the program has loaded.

LOADING AND SAVING SHOULD NORMALLY BE DONE IN
MODE 4, 5 OR 6.

Recording programs on cassette 41

Cataloguing the tape

To find out what programs are on the tape, type
*CAT Ll

then play the tape (from the beginning if you want). Better still, keep a
record of what is on the tape because cataloguing the tape takes a long
time. However, cataloguing the tape also lets the computer verify the
information recorded. If there are any errors in the data on the tape, an
error message will appear on the screen, and the cataloguing continues.

What the numbers mean
A typical catalogue might look like this

MYPROG 20 @084
GAME1 @8 @38t
GAME?2 A BGABA
fred 25 2545

The program name (or ‘filename’) is followed by two ‘hexadecimal’
numbers which give the ‘block’ number. As described in chapter 4, each
program is recorded as a series of ‘blocks’. See chapter 6 for an
explanation of hexadecimal numbers.

The last number on the line gives the ‘length’ of the file.

Escape

If you want to stop in the middle of a LOAD, CHAIN or SAVE, press
m‘ You will probably get a

Bad Program
error appear on the screen. To get rid of this, type

1"R RETURN

For more information about using cassettes for storing programs, please
turn to chapter 26.

10 The FUNC key and
BASIC keywords

As mentioned in chapter 5 on the Electron keyboard, the m key to
the left of the keyboard may be used with many of the other keys to print
complete BASIC keywords on the screen. For example, if you press

L the keyword LIST appears. Each key used together with
m will give a keyword as follows:

AUTO
RENUMBER
COLOUR
DRAW
ELSE
FOR
GOTO
DEG
INPUT
RAD
CHAIN
LIST
MODE
NEXT
o J
PLOT
LOCAL
RUN J
STEP
THEN
UNTIL
VDU
RESTORE
PROC
REPEAT
END
LOAD
SAVE
PRINT

NRKXSE<COHNTOUOZEN R~ " To=mUuOow s>

-

S 4

The FUNC key and BASIC keywords 43

OLD and RUN incorporate lJ3LL], thereby issuing a direct command.
If you press R then the current program (if any) will run.

m may also be used with the numeric keys, which may be
programmed to give any string you choose (see chapter 24).

The action of m with all the keys can be altered using operating
system call ¥FX226 and *¥FX227 (see Appendix D).

Another way in which to cut down on typing is to use the abbreviations
given in the BASIC keyword alphabetical reference section in chapter
25,

11 Variables and
expressions

What is a variable?

A variable is piece of memory which is given a name, like Fred or Number
or X or Y or virtually anything you want, and this memory is set aside for
storing information. It is rather like a box where you and the computer
can put useful items of information until they are needed at a later stage.
All the computer has to be told is what the box is called, and what kind of
information it can expect to find inside. Not only that, but the contents of
a box can be changed at any time; so the computer can go to the box to
store information, retrieve it, use it, change it, then put it back inside
again as many times as you instruct the computer to do so.

'There are three types of ‘boxes’ or variables which the computer can use,
and these are used to store three types of information. Briefly, these are:

~ A ‘real’ variable, which can store numbers or fractions, eg 123.654.
— An ‘integer’ variable, which can store only whole numbers, eg 123.

— A ‘string’ variable, which can store ‘strings’ of characters such as
words.

Each type is distinguished by the last character of the variable name. A
name by itself, like BERT, signifies a real variable, BERT% an integer
variable and BERTS$ a string variable.

Real variables

Press LLY and type the following program (the line numbers are
shown, but you will not need to type them if you are using AUTO).

>1@ PRINT 3+2,3-2,3%2,3/2
>20 A=3
>30 B=2
>4@ PRINT A+B_,A-B,A*B _A/B

Variables and expressions 45

If you run this program, you will see that the numbers

5 1 6 1.5
5 1) 1.5

are printed on the screen. The first row shows the results of the
calculations performed by the PRINT instruction. The second row again
shows the results, except that this was arrived at by lines 26 to 4% which
use real variables.

Line 20 tells the computer that there is a variable in the program called
A, and sets its current value to 3.

Line 3@ tells the computer that there is another variable called B, and its
current value is 2. Now that the computer is aware of these two variables,
you can tell it to use them in calculations. Thus in line 4@, the computer
looks for the number stored in each variable, performs the necessary
calculations, and the PRINT instruction prints the results on the screen
just like it did for line 19.

Operators and expressions

Things like 3 + 2, A*B, (FRED - 4)*B are called expressions. In general,
an expression is a sequence of numbers and variables together with
mathematical symbols like +, ¥, /. These symbols, which are called the

‘arithmetic operators’, have their normal mathematical meaning, except
that in BASIC, * is used for ‘multiply’ and / for ‘divide’.

Here is a list of the arithmetic symbols or ‘operators’ used in Electron
BASIC:

+ addition

— subtraction

* multiplication

/ division

/A raise to the power

decimal point

For a description of operator precedence, see chapter 12,

486 Variables and expressions

Rules for variable names

The rules for naming variables are:

— There must be no spaces in the name.

— The name must start with a letter.

— There must be no punctuation marks in the name and no arithmetic
operators. Underline characters may be used.

— The name must not begin with a BASIC keyword (such as LIST or

RUN).

All the following names are acceptable:

X = 6.6
SMALL = -30
small = -60
Xy = 4%3

heighté = 5/11

William1 = 1866

space_rocket_speed

= 25.000

Note that capital and small letters are regarded as different by Electron
BASIC, so that SMALL and small are two different variables. Underlines
take the place of spaces, which are not allowed.

The following are not acceptable:

b6teen = 16

TOTAL 77

see—-saw = 16

LOW LINE = 3.333

How! = 1

(begins with a number)
(begins with TO)
(contains a minus sign)
(contains a space)

(contains punctuation mark)

Variables and expressions 47

A variable does not have to be specified in terms of numbers; it may be
specified in terms of other variables, or a mixture of variables and
numbers. A statement of the form ‘variable = expression’ is called an
assignment statement: it assigns the value of the expression to the
variable. For example:

X =Y
Monday = Tomorrow
AGE = HEIGHT - 100

TALL = TALL + 1

The last assignment of this group is very common. It has the effect of
increasing the value of the variable TALL by 1. Itis read as ‘Add 1 to the
number contained in TALL, and store it in TALL again’.

Integer variables

The variables described so far in this chapter are called real variables.
This means that they can represent both whole numbers (integers) and
decimal fractions. There are variables called integer variables which can
be used on the Electron, and these are used for storing only whole
numbers. They are signified by the % symbol after the variable name. For
example,

SCORE% = 20
Hour¥% = 3600
1% = -T47

A% to Z%

The 26 integer variables A% to Z% are called resident integer variables,
because they are not cleared when the program is RUN, or when NEW or
is used. This means that values can be passed from one program
to another. They also have special uses when you come to look at
Assembly Language programming (see chapter 29).

48 Variables and expressions

Real versus integer variables
The reasons for using integer variables are:

— They occupy slightly less memory ‘than do real variables.

— They are absolutely accurate provided you do not let them get out of
range. Real variables are only accurate to nine figures.

— They are much quicker for the computer to process and carry out
arithmetic functions.

However:

— Decimal fractions can only be stored in real variables.

— Much larger and much smaller numbers can be stored in real
variables. Real numbers can have values of up to approximately
179,900,000,000,000,000,000,000,000,000,000,000,000 or 1.7 X 1§+
(though they are only accurate to the first nine numbers or nine
significant figures).

The range and accuracy of real and integer variables are shown in the
following table:

Integer Real
Example 64 1.732
Typical variables A% A
Maximum size 2,147,483,647 1.7X1¢8
Accuracy absolute 9 sig figs
Stored in 32 bits 4% bits

DIV and MOD

There are two special arithmetic operators which give integer results.
These are called DIV and MOD.

DIV is an integer division function. It gives the whole number part of a
division, for example: 9 DIV 2 is 4, 10.5 DIV 3 is 3.

When decimal numbers are used, such as in the second example above,
the computer truncates the number (meaning that it ignores the decimal
part) before it carries out the division: 8.1 DIV 2.9 is 4.

MOD stands for modulo, and is used to give the remainder after an
integer division. For example: 9 MOD 2 is 1, 17 MOD 7 is 3.

Variables and expressions 49

Once again, decimal numbers are truncated before the division takes
place. For example: 16.1 MOD 3.8 is 1.

The TIME integer variable

There is also a special integer variable, resident in the computer, which is
called TIME. TIME is an elapsed-time clock: it ticks away in hundredths
of a second. Every 1/100 of a second its value increases by 1, and it is
used for timing programs,

18 TA=TIME
20 PRINT TIME -TX%

will print the time taken to execute one line of program, in hundredths of
a second.

TIME may be assigned a starting value, or it can be zeroed, just as any
other variable:

TIME=0

TIME runs continuously for as long as the computer remains switched
on. You will understand better how to use it when you look at some of the
programs later in the book.

String variables

You have seen that a variable is a name which can be assigned a value
either directly or by an assignment statement. The computer will store
this value in its memory as a binary number — a series of zeros and ones.
Characters are also stored in the computer as binary numbers, and each
character has a code. This code is called ASCII, standing for ‘American
Standard Code for Information Interchange’. If you look in Appendix F,
you will see a table of ASCII codes showing all the letters, symbols, and
numbers each with their corresponding ASCII code number.

When you use the PRINT instruction to put a message on the screen, as
for example:

PRINT "ASCII"

5@ Variables and expressions

the quotation marks each side of the message tell the computer that what
is in between them is a string of characters and not a variable. So each of
the characters in the message ‘ASCII’ is stored as a binary number,
corresponding to 65, 83, 67, 73, 73 in decimal, as you can see from the
ASCII chart in Appendix F.

There are special variables, called string variables, which hold charact-
ers as opposed to numbers. String variables are signified by a $ sign after
the variable name. So we can say:

AS="ACORN"
fish$ = "TWO COD"
Birthday$ = "Monday 23rd August"

It is very important for you to understand how this last assignment is
stored. Notice that the string contains a number, 23. Because of the
quotation marks this number is not stored as 23 in binary, but as the
ASCII code for 2 followed by the ASCII code for 3. This knowledge is
very useful when you come to manipulate strings using their code values.

For example:

PRINT "23"
and
PRINT 23

both have the same effect.
But

PRINT "23%x46"
and

PRINT 23%6

show the different ways in which numbers and strings are stored. As you
can see from the ASCII table in Appendix F, every number has its own
ASCII code.

You can use the computer to find out the ASCII code of a character.

Variables and expressions 51

PRINT ASC "Q"

will give the ASCII value of Q which is 81.

The opposite function is given by

PRINT CHRS$ 81

which converts the ASCII code 81 into its corresponding character which
is Q.
Even a space has an ASCII code.

PRINT ASC " "

gives 32.
And nothing at all (an empty string):

PRINT ASC ""

gives —1.

This is not an ASCII value, but is conveniently different from all the
others as to be easily distinguishable.

The instruction

PRINT CHR$ 81

has an equivalent which is easier to type:
VDU 81

is identical, so VDU 81 gives the letter Q.

Commands operating on strings

LEN

String variables may be up to 255 characters long, and there is an
instruction LEN, which gives the length of a string —the number of
characters it contains.

52 Variables and expressions

PRINT LEN "ABCDEF"

will print 6 on the screen.
Similarly,

A$="S 0 S"
PRINT LEN AS$

will print 5 (because a space is a character).

Linking strings

Two or more strings may be linked together by using the ‘+’ operator,
which apart from its arithmetic use, can simply link strings. The following
program is an example of this.

10 AS = "I'M"

28 B$ = "LEARNING"
30 C$ = "BASIC"

48 D$ = AS$ + BS + (S
50 PRINT D$

>RUN

I'"MLEARNINGBASIC

LEFTS, RIGHTS$, MID$
Not surprisingly, if the computer can link strings it can also disassemble
a string to make smaller ones, using LEFT$, RIGHTS, and MIDS.

10 A$ = "INEQUITABLE"
20 B$ = LEFT$(AS,2)
30 C$ = RIGHT$(AS,S)
40 D$ = MIDS(AS,3,4)

5@ PRINT BS$
60 PRINT C$
7@ PRINT D$
>RUN

IN

TABLE

EQUI

Variables and expressions 53

Notice how the three functions LEFTS, RIGHTS, and MID$ are used:

LEFTS (AS,2) copies the first two characters of string A$. In the program,
these two characters are copied into B$.

RIGHTS (AS.5) copies the last five characters of string A$.

MID$ (AS$,3,4) copies four characters from string A$, beginning at the
third character from the left.

VAL, EVAL, STR$
There are three more string operating functions which convert to or from
numbers: VAL, EVAL, and STRS.

1@ X$ = "57/7 * SIN.6"
20 PRINT VAL X$
3@ PRINT EVAL X$

When you run this program, VAL X$ gives the number with which the
string X3 begins, in this case 57. If the string does not begin with a
number then VAL returns the value §.

EVAL X$ evaluates the string as if it were a numeric function, giving in
this case 4.597803. EVAL will also evaluate variables in strings, provided
these variables have been assigned earlier in the program.

Sometimes you need to turn a number into a string, and this is done by
using the instruction STRS.

10 A=45 : B=30
28 A$ = STR$(A)
20 B = STR$(B)
4@ PRINT A + B
50 PRINT A% + B%

INSTR

Another useful string function is INSTR (standing for IN STRING) which
will compare two strings and tell you whether one of these strings is
contained within the other, and at what position.

For example

10 AS
20 BS%

"INEQUITABLE"

]

i

54 Variables and expressions

30 Z = INSTR(AS,BS,2)
40 PRINT 2

This program shows that INSTR returns the position at which B$§ is the -
same as A$. We can start the INSTR comparison at any point along the
string.

This program starts the comparison at the second character of string A$,
and therefore indicates the second ‘I’ at position 6. If INSTR is used and
there is no similarity between the strings, a ¢ is given.

STRING$

The last string function, STRINGS, is used when you want to make a long
string which consists of repeated units. For example, if you wish to use a
string to print a border made up from *-**—*_. etc then it is easier to use
the STRINGS function than to type all the characters.

18 A$ = "*x-"
20 B$ =STRINGS$(20,A$)
30 PRINT B$

>RUN
kokmkokmkmkekmk=kokok=k—k =k =k =k =k =k =k —~k—

The string B$ is made up from 2@ copies of the string A$.

Comparison table of variables

Finally, here is the complete comparison table for integer, real, and string
variables:

Integer Real String
Example 810 1.141 “WORDS”
Typical variables A% A A$
Maximum size 2,147,483,647 1.7 X 198 255 characters
Accuracy absolute 9 sig figs —
Stored in 32 bits 49 bits ASCII values

12 Operator precedence

When a mathematical or logical expression is being evaluated, all the
operators (+,¥,DIV etc) are given a priority of from 1 to 7. Priority 1
operators are those acted upon first, and priority 7 last.

Here is the complete list:

Priority Operator
1 - Unary minus
+ Unary plus
NOT Logical NOT
FN Functions
{) Brackets
ns Indirection operators
2 AN Raise to the power
3 * Multiplication
/ Division
DIV Integer division
MOD Integer remainder
4 -+ Addition
- Subtraction
5 = Equal to
<> Not equal to
Less than
> Greater than
<= Less than or equal to
o= Greater than or equal to
6 AND Logical and bitwise AND
7 OR Logical and bitwise OR
EOR Logical and bitwise Exclusive OR

Operators with the same priority are executed left to right, as they
appear in the expression, For example, 22 M0D 3/7 is evaluated as {22
MOD 3)/7. All priorities may be overridden by using brackets.

13 Arrays

Arrays are groups of variables. An array variable has a name, just as any
other, and it also has one or more subscripts. A subscript is a number,
and an array variable is numbered according to its position in the array.
For example, A(f) is the first variable in the array named A, and A(1) is the
second variable. The computer must be told how many variables you
wish to use in the array, and this is done by using a DIM instruction:

DIM A(9)
allocates space in the computer’s memory for ten variables, each called

A, but each having a different subscript.
These variables are A(#), A(1), A(2) . . . A(8), A(9). Each one of these

variables may be individually assigned, just like any ordinary variable.

String arrays may also be used.

DIM AS$(9)

allocates space for ten string variables — each of up to 255 characters.

The examples shown above are one dimensional arrays — you can think of
them as a line containing a number of variables, subscripted from @ to 9
in sequence. Two dimensional arrays can be thought of as the printing on
the TV screen. Each character printed on the screen is at a particular
position from the left, and a particular position from the top.

DIM A(2,2)

allocates space for nine variables, each called A, and each having two
subscripts:

ACO,D) AC1,8) AC2,D)
ACD,1) AC1,1) AC2,1T)
ACB,2) AC1,2) AC2,2)

Arrays may have as many dimensions as you like, may contain as many
variables as you like, and may be either real, integer, or string.

Arrays b7

One of the invaluable features of an array variable is that its subscript
need not be specified as a number; you can use a variable:

12 DIM A(9)
2@ X = 6
30 A(X) = 27

This program will place 27 in A{6). You can even use an array variable as
the subscript:

1@ DIM A(29)

20 X = 6

30 A(X) = 27

40 ACA(X)) = 564.3

Any arithmetic expression may be used as a subscript, and if the subscript
works out to anumber with a decimal point, then the number is truncated
to its integer value, ie just the part before the decimal point.

Remember, when using arrays, that if you DIM using three subscripts,
each variable must be called with three subscripts.

13 DIM NAMES(2,2,2)
20 NAMES (@) = "FRED"

will not work. You would have to use, say,
20 NAMES$(0,0,0) = “FRED"

Be careful when using arrays — they consume vast amounts of memory,
and if you try to use too many variables the computer will say,

DIM Space

meaning that there isn’t enough room in its memory.

14 READ...DATA...
RESTORE

These instructions provide you with a way of giving data to a program
before it is run. This means that the data can be saved as part of the
program (see chapter 9). The variables are placed after READ, and eachis
loaded in turn from the information placed after DATA.

16 FOR I = 1 TO 4

2@ READ AgeZ%,Dog$

30 PRINT "Name: ";Dog%;" Age: '";Age%
40 NEXT I

S@ DATA 9, BONZO,3,ROVER
60 DATA 7

7@ DATA SPOT,12 ,HENRY
>RUN

Name: BONZO Age: 9

Name: ROVER Age: 3

Name: SPOT Age: 7

Name: HENRY Age: 12

You can see that it doesn’t matter how many DATA instructions are used
provided the types of data match the variable.

RESTORE is used to set the data-pointer to the start of the DATA, in this
case line 5@. It can also be used to set the data-pointer to any line
number:

1@ INPUT "Which dog (1 to 4)", A
2@ RESTORE (A+4)x10

3@ READ Age¥%, Dog$

4@ PRINT "NAME: ";Dog$;" Age: ";Age¥%
58 DATA 9,BONZO

6@ DATA 3, ROVER

7@ DATA 7, SPOT

8@ DATA 12, HENRY

>RUN

Which dog (1 to 4)?22

NAME: ROVER Age: 3

15 PRINT formatting
and INPUT

PRINT formatting

You are already familiar with the PRINT statement, and how it is used to
put characters on the screen. In this chapter you will find out how to use
PRINT to position the output on the screen.

Press LL{LLY and then try the following program.

1@ X = 6
20 PRINT X;X;X
30 PRINT X, X,X
4@ PRINT X'X'X
>RUN

666

OO O

From this you can see that

(i) Items in the PRINT instruction separated by semicolons are printed
one after the other, with no spaces.

(i) Items separated by commas are tabulated into columns. These
columns are ten characters wide and are called fields.

(iii) Items separated by apostrophes are printed on a new line.

Now try the following program:

19 AS = "J"

20 PRINT A4;A$;A43;A3;A3
30 PRINT AS$,A$,AS

4@ PRINT A$'A$'AS

>RUN

6f PRINT formatting and INPUT

JJJ
J J J

J
J
J

This is the same program as before, but using a string variable. Notice
that the character is not printed in the same place as the number. Here is

another program to demonstrate this:

16 X = 6
20 A$ - llJil
30 PRINT X, XX,X'A$,A$,A$
>RUN
6 6 6
J J J
L - v N N J \ y

vV N/ v
Field No 1 Field No 2 Field No 3

Each field of ten characters width is shown above. As you can see,
numbers are printed out to the right of each field, characters to the left.
This is done so that numbers line up in the units column, or the least
significant decimal.

The width of these fields can be altered, as can the number of decimal
places to which real numbers are printed. The Electron normally gives
each field a width of ten characters. The number of fields across the
screen depends upon which mode you are using. There are three
different character sizes that are available, and these give either eight
fields, four fields, or two fields, each of width ten.

8@ character modes 4@ character modes 2¢ character modes
(MODES ¢ and 3) {(MODES 1,4,8) (MODES 2 and 5)

PRINT formatting and INPUT 61

If you now type
PRINT 6,9,7/3,57

you will see that the 9 and the decimal equivalent of 7/3 have run into
each other:

6 92.33333333 57

To prevent this happening the field width and/or the number of decimal
places can be altered using the integer variable @ %.

If you type
A% = R2040A
and then

PRINT 6,9,7/3,57
you can see the effect of reducing the number of decimal places to 4.

6.0000 9.0000 2.3333 57.0000

The assignment of the variable @ % is made up of a number of parts:

& indicates that a hexadecimal number follows. Hexadecimal numbers
are explained in chapter 6.

After the & sign, the first number of @ % indicates the format of the print
field. 2 means that the computer will print a fixed number of decimal
places.

The next two figures indicate the number of decimal places which are
required, in this case #4.

The final two figures give the field width, in this case $A which is 19 in
decimal.

So,

ax = &20105

will give each number printed to one decimal place, with a field width of
five.

62 PRINT formatting and INPUT

Some more points:
(i) The format, the first figure after the & symbol, can take three values:

@ is the normal configuration — the format which the computer uses when .
it is first switched on.

1 gives numbers in exponent form, that is an integer followed by a power

of ten. So #.8#06 would be printed 6E-4. (‘Six times ten to the power of
minus four’.)

2, as just shown, gives numbers to a fixed number of decimal places.

(ii} When the computer is first switched on, @ % = @@90A. This gives
nine significant figures and a field width of ten.

(iii) The computer will not print more than ten significant figures. The
ten significant figure format is obtained by setting @ % to, for example,
&OBPABC. This will give ten significant figures and a field width of 12.
Alternatively, typing @% = 12 will give the same result, because the
number of significant figures is assumed to be ten if it is not specified.

You can make the print instruction convert decimal numbers or variables
into hexadecimal by using the ~~ character.

PRINT 10
will give A (decimal 16 in hex).
PRINT TLENGTH

will print out the contents of the variable LENGTH in hex.

The position on the screen at which PRINT prints is controllable by the
TAB instruction.

PRINT TAB(16); "J4"

will print the character J 16 spaces across the screen.

As is usual with functions, the number in the brackets may be a variable,
or any arithmetic expression,

PRINT formatting and INPUT 63

TAB can also be used with two parameters (numbers in the brackets). If
you imagine the screen to have coordinates, the number of columns
going across the top, and the number of rows down the side, then

PRINT TAB(16,22); "J"

will print the character J 16 spaces across the screen and 22 spaces
down.

These text coordinates vary depending upon which mode you are using.

. » 19,0
MODES
2 and d
Y
$.31
@9 ~ 39.0 0,0 >~ 79,8
MODES MODE
1 and 4 @
¥ ‘L
3,31 @,31
.6 » 39,0 ?.0 = 79,9
MODE MODE
6 3

3,24 #,25

64 PRINT formatting and INPUT

TAB instructions have the effect of moving the cursor around the screen.
PRINT TAB (0,0

will always move the cursor to the top left of the screen in any mode.

If at any time you wish to turn the cursor off, you can do so by typing

VDU 23,1,0:0;0;:0;

It will still exist of course, but it will not be printed on the screen.
VDU 23,1,1,;0;8;0;

will return the cursor to the screen once more.

INPUT

So far, the only form of input that you’ve made to the computer is the
typing of commands and programs. Often you will need to give the
computer information while the program is running.

18 PRINT "GIVE ME A NUMBER AND I'LL DOUBLE
IT"

20 INPUT X

30 PRINT "DOUBLE ";X;'" IS '";X%x2
>RUN

GIVE ME A NUMBER AND I'LL DOUBLE IT
216

DOUBLE 16 IS 32

When you run this program, line 2§ prints a question mark on the screen.
This question mark invites you to type in some data. When you press
the number that you typed is put in X. If you don’t type a
number, or you type letters or symbols instead, X becomes zero.

INPUT may also be used with string and integer variables.

10 PRINT "WHAT IS YOUR NAME"
2@ INPUT AS$

3@ PRINT "NICE TO MEET YOU, ";AS$

PRINT formatting and INPUT 65

>RUN

WHAT IS YOUR NAME
?7DOBBIN

NICE TO MEET YOU, DOBBIN

Lines 14 of the above two programs have been used to print a message
on the screen. This message can be incorporated into the INPUT
instruction.

18 INPUT "WHAT IS YOUR NAME " ,AS

2@ PRINT "ARE YOU SURE ABOUT THAT, ™ AS;"?2"
>RUN

WHAT IS YOUR NAME ?EINSTEIN

ARE YOU SURE ABOUT THAT, EINSTEIN?

Notice the comma in line 14 of this program. It tells the computer to print
a question mark when it wants input from the keyboard. If you leave out
the comma, the question mark will not be printed. A semi-colon may be
used, and has exactly the same effect as the comma.

When the Emﬁ'am is running, the INPUT instruction requires you to

press when you wish to send what you have typed to the
computer, Up until is pressed, you can delete all or part of
what you have typed using U or the {U3N3|F key.

When youAare inputting a string, the computer will ignore any leading
spaces, and anything after a comma, unless you put the whole string
inside quotation marks.

1@ INPUT AS$
20 PRINT AS$
>RUN

?BUS, CAR
BUS

>RUN

72"8US, CAR"
BUS, CAR

66 PRINT formatting and INPUT

Alternatively, you can use INPUT LINE, and inverted commas will not be
needed.

10 INPUT LINE AS$
20 PRINT AS$

>RUN

?FISH, AND CHIPS
FISH, AND CHIPS

Several inputs can be requested at one time.

1@ INPUT A,B,C$
20 PRINT A,B,C$
>RUN
228.3, -16, INCHES
20.3 -16INCHES

This time you must use commas to separate each piece of data which you
type.

Another way of entering data is to use GET$. This reads the key which you
press. -

1@ PRINT "PRESS A KEY"
20 A% = GETS
3@ PRINT "THE KEY YOU PRESSED WAS "; AS

r

The program waits at line 2@ until you press a key. As soon as you do, the
character which that key represents is placed in AS.

A similar instruction to GETS is INKEYS.

1@ PRINT "PRESS A KEY IN THE NEXT SECOND"
20 A$ = INKEY$1Q0

30 IF A$ = " THEN PRINT "YQU WERE TOO SLOW"

ELSE PRINT "THE KEY YOU PRESSED WAS ";A$

Using this program, line 20 waits one second for you to press a key. If no
key is pressed in that time then the program moves on. The INKEYS
instruction has a number after it which is hundredths of a second. The
larger the number, the longer the computer will wait for you to press a
key. If you don’t press a key in time, INKEY$ will give the value —1.

PRINT formatting and INPUT 67

Line 3¢ of this program shows an IF statement. IF statements are
discussed in detail in chapter 16.

There are two more input instructions, GET and INKEY. These are exactly
the same in operation as GET$ and INKEYS$, but their effect is to give the
ASCI code of the key which you press. GET and INKEY give a number,
and must therefore be assigned to number variables.

18 X
20 Y

GET
INKEY 500

If you use either INKEY or INKEY$ with its time delay set to @, the
computer will not wait for you to press a key, but will merely glance at the
keyboard to see if any key has already been pressed. This is useful when
you come to write games, as the rest of the program is not held up waiting
for a key to be pressed.

It is important to know that INKEY, INKEYS$, GET and GETS$ will notice not
just the key you happen to be pressing at the time, but also any key you
have pressed since the last time the computer asked for input. Every
time you press a key itis placed in the keyboard buffer (a buffer is a short-
term memory), and it is this buffer which GET and the others actually look
at.

However, if you want to ignore any keys previously pressed, and just look
at the keyboard directly, there’s a version of INKEY to do this. This is
done by giving INKEY a negative number, each key having a corre-
sponding value which you can use. For example, INKEY(—78) only
operates when the J key is pressed. This use of INKEY is discussed in
more detail in chapter 25, including a table of all the key codes.

16 Conditional and loop
instructions

Programs and parts of programs can be made to execute over and over
again either continuously, or a specified number of times. The in-

structions you put in your program to make this happen are called LOOP
instructions.

The FOR . . . NEXT loop

The most common type of loop is FOR . . . NEXT, which uses a variable to
count the number of repetitions required.

18 FOR N
20 PRINT N
30 NEXT N
>RUN

1 70 6

VNN =

In this program, N is printed at each pass through the loop. N is called the
control variable.

You can start the control variable at any number you choose, and you
may alter the amount by which it changes on each pass, the step size.

1@ FOR N = 7 TO 11 STEP 1.6
20 FOR J = 20 TO 1@ STEP =5
3@ PRINT N,J
40 NEXT J
5 NEXT N
>RUN
7 20
7 15
7 10
8.6 20
8.6 15

‘-n-—/

Conditional and loop instructions 69

8.6 10
18.2 20
1@.2 15
10.2 10

This program shows that you can use decimal step sizes, or negative step
sizes. You may start the control variable at any value; and you may use
FOR. .. NEXT loops within each other. This is called nesting, and you can
nest as many loops as you wish.

Type

LISTO?
followed by [J3Lili]. and then LIST the program again.

18 FOR N = 7 TO 11 STEP 1.6
20 FOR J = 2@ TO 10 STEP -5

30 PRINT N,J
40 NEXT J
50 NEXT N

Each loop is shown indented from the previous one.
LISTO is a list option instruction and can take any number from @ to 7.

LISTO@ is the normal setting — it lists exactly what the computer has
stored in memory.

LISTO1 lists the program with an extra space after each line number.
LISTO2 lists the program with indents on FOR ... NEXT loops.
LISTO4 lists the program with indents on REPEAT . .. UNTIL loops.

These effects may be obtained in any combination by adding the
numbers together, so LISTO3 would give extra spaces after line numbers
and indented FOR ... NEXT loops.

Here are some further points on the use of FOR ... NEXT loops.

(i) You do not need to specify the control variable to which NEXT refers.
The following program will work exactly the same as the one above.

79 Conditional and loop instructions

1@ FOR N = 7 TO 11 STEP 1.6
20 FOR J = 20 TO 1@ STEP -5
30 PRINT N,J

4@ NEXT

5@ NEXT

The computer assumes that NEXT applies to the loop it is in at the
present moment,

If you do put the variable names after NEXT, but get them mixed up, then
this is what happens.

1@ FOR N = 7 TO 11 STEP 1.6
20 FOR J = 20 TO 1@ STEP -5
38 PRINT N,J
40 NEXT N
58 NEXT J
>RUN
7 20
8.6 20
18.2 2@

No FOR at Line 5@

The computer starts to execute the N loop before the J loop, and when it
reaches line 5@ it cannot find the FOR to go with NEXT J. Loops must be
nested one within another; they must not cross.

(ii) The number of FORs, and the number of NEXTs must be the same.

The following program does not give an error, but it is left hanging in mid-
air.

1@ FOR N = 7 TO 11 STEP 1.6
20 FOR J = 20 TO 10 STEP -5
30 PRINT N,J
40 NEXT
>RUN

I4 20

7 15

7 10

Conditional and loop instructions 71

If you do this, you will run into trouble.

(iii) You must never jump out of a FOR . . . NEXT loop using GOT0. As in
(ii) above this will often not result in an error, but the program will be
impossible to follow.

(iv) The stop condition for a loop is that, for a positive step size, the
control variable is greater than the terminating value; for a negative step
size, the control variable is less than the terminating value. However, all
loops will be executed at least once.

1@ FOR NUMBER = 6 TO 0
23 PRINT NUMBER
30 NEXT
>RUN
6

When the loop has been completed, the control variable moves on an
extra step, so the above program will end up with NUMBER equal to 7.
Here is a program to show this:

1@ FOR Size = 106 TO 183 STEP 1.5

20 PRINT "INSIDE LOOP, Size = ";S1ize
3@ NEXT

4@ PRINT "OUTSIDE LOOP, Size = ";Size
>RUN

INSIDE LOOP, Size = 100

INSIDE LOOP, Size = 101.5

INSIDE LOOP, Size = 103

OUTSIDE LOOP, Size = 104.5

(v) FOR ... NEXT loops are used when you wish to go around a loop a
fixed number of times. There may be as many lines as you like between
the FOR and its corresponding NEXT, and control variables need not be
directly assigned with numbers. They can be assigned with any arith-
metic expression, containing variables or other functions.

1@ MODE S

28 FOR angle = @ TO 2*PI STEP .1

30 PLOT 69,649 + 44@xSIN(angle), 512 + 400
C0S(angle)

40 NEXT

72 Conditional and loop instructions

The REPEAT ... UNTIL loop

Another very useful loop is REPEAT . . . UNTIL, which waits until a condition
is fulfilled before coming out of the loop.

180 INPUT'"This program turns decimals into
fractions"'"Give me a decimal: "decimal

20 numeratorX = 1: denominator?% = 1
20 PRINT "Program running"
40 REPEAT

58 fraction = numerator¥%/denominator¥

68 IF fraction>decimal THEN denominator% =

denominator¥%+1

78 IF fraction<decimal THEN numerator¥% = nu
merator%+1

8@ UNTIL fraction = decimal

98 PRINT;decimal;"” 1is equal to ";numerato

r4;"/"denominator%'"Program end" '

This program asks you to input a decimal. It then prints out the fractional
equivalent. (Don’t input too complicated a decimal or the program will
run for hours.) Lines 5@ and 6@ are repeated until the condition at line 8¢
is fulfilled. In this example, the condition is that fraction = decimal.

Line 80 is called a conditional statement, and the result of a conditional
statement may either be TRUE or FALSE. In the example shown above, the
statement becomes TRUE when fraction is equal to decimal, so the program
loop is repeated only whilst the conditional statement is FALSE. Of course,
the computer doesn’t understand TRUE and FALSE, so it assigns numeric
values to these conditions:

@ for FALSE, —1 for TRUE.

There are a number of logical operators which can be used in conditional
statements:

A=B True when A is equal to B

A<B True when A is less than B

A>B True when A is greater than B

A<=B True when A is less than or equal to B
A>=B 'True when A is greater than or equal to B
A< > B True when A is not equal to B

NOT A True when A is false

—_

Conditional and loop instructions 73

TRUE True always

FALSE False always

A AND B True if both A and B are true

A OR B True if either A or B is true, or if both are true

A EOR B True if either A or B is true, but false if both are true

There is more about logic operations in the next section on the IF statement.

REPEAT . .. UNTIL is easily followed and understood by other people who
read your programs, and should be used in preference to GOTO.

IF... THEN... ELSE

The IF statement enables the computer to make a choice about
something.

10 REPEAT

2@ A% = GETS

30 IF A$ = "Y" THEN PRINT "YES'"; ELSE PRINT
AS;
4@ UNTIL FALSE

This program turns the Y key into a YES-button. Line 3¢ contains a
conditional statement. If the condition is true then the computer obeys
whatever comes after THEN. If the statement is false then the computer
carries out whatever comes after ELSE.

IF statements can carry out more than one instruction, if these instr-
uctions are placed on the same line and are separated by colons:

10 REPEAT

2@ A% = GETS$

30 IF A$ = "Y" THEN FOR I = 1 TO 6 : PRINT
“"YES";: NEXT ELSE PRINT AS$;

40 UNTIL FALSE

and now you will get six YESs when you type Y.

These multi-statement lines are not restricted to the IF statement. Any
line in a program may carry out more than one instruction if each is
separated by a colon. However, it is generally better to use a procedure

74 Conditional and loop instructions

rather than fill an IF statement full of colons. Procedures are explained in
chapter 17.

IF statements may ask for a complex condition, using the logical

operators AND, OR, and EOR.

10 REPEAT

280 A$ = GETS

30 B$ = GETS

48 IF A$ = "Y" AND B% = "Y" THEN PRINT "YES
"; ELSE PRINT AS$;8%

53 UNTIL FALSE

This program will only print YES if you type two Ys in succession.
The ELSE part of the statement is optional, and may be omitted.

Alternatively you can extend the IF statement by chaining it:

10 REPEAT

20 A$ = GETS

30 IF A$ = "Y" THEN PRINT "YES" ELSE IF AS$
= "N" THEN PRINT "NO'" ELSE PRINT "MAYBE"
4@ UNTIL FALSE

This program demonstrates the use of one IF statement after another. . .

Using the IF statement you can now find out some more about how the
computer deals with TRUE and FALSE.

18 X=8>6
20 Y=6>8
30 PRINT X,Y
>RUN
-1 @

Because 8 is greater than 6, 8 > 6 is TRUE, so X is— 1. 6 > 8 is FALSE, so
Y is @.

10 REPEAT
20 INPUT X

Conditiona! and loop instructions 75

3@ IF X THEN PRINT;X; " IS TRUE"™ ELSE PRINT
X2 " IS FALSE"
4@ UNTIL @

This program allows you to enter numbers, and to see whether the
computer treats them as TRUE or FALSE. You will see that only @ is
treated as FALSE, all other values being TRUE.

The above program can be rewritten:

10 REPEAT

2@ INPUT X

2@ IF X THEN PRINT ;X;"™ IS TRUE'"™ ELSE PRINT
;X;" IS FALSE™

43 UNTIL FALSE

which has exactly the same effect.
Another important use of IF is with strings and string variables. For
example, you might find this in the middle of a program

160 REM The answer should be 560
118 INPUT "SO WHAT'S THE ANSWER THEN?"'X

126 IF X = S6@ THEN A$ = "YES" ELSE A$ = "N
Oll
130 IF A$ = "YES" THEN PRINT AS$;" WELL DONE

" ELSE PRINT A$;" TRY AGAIN"

This will test to see what string A$ contains, and will print one of two
messages accordingly.

Less than and greater than can also be used:

1@ A$ = "HELLO"
20 IF A$ < "GOODBYE" THEN...

This will be true, because the |F statement compares the ASCII values of
the first character in each string. If the first two characters are the same,
then the next two characters are compared, and so on. So ‘MELON’ is
less than ‘MELTED’. This is very useful for putting strings into
alphabetical order, but it does not work if the strings are a mixture of
upper and lower case letters.

76 Conditional and loop instructions

The following operators may be used with strings:

= the same as
<> not equal to
less than
> greater than
<= less than, or equal to
>= greater than, or equal to

17 Procedures

Using procedures allows you to split up virtually any program you are going
to write into a main program, followed by a number of ‘mini-programs’
(procedures), which can be called from the main program by a single
statement.

A procedure is simply a collection of numbered BASIC statements which
you write in order to perform a particular task. This collection of
statements looks just like part of an ordinary program, but the
differences are that the first line contains the name of the procedure
(which is decided by you), and the last line contains a BASIC word to
signify the end of the procedure. When the computer encounters the end, it
then returns to the main program and carries on.

The rules for using procedures are very simple. A procedure is called
from the main program by the BASIC word PROC followed immediately
by the procedure’s name. The name can be anything you like, but there
must be no spaces in it. For example:

PROCnewline
PROCwait_a_second
PROCDRAWPICTURE

Note the underline character in the second example which helps ‘space
out’ the name.

A procedure name should reflect the function of the procedure to which
it applies. If you merely name your procedures PROCA, PROCB, PROCC,
for example, then no one will understand what they do without having to
work through each one. So if you have a procedure which converts feet
into metres, then call it PROCfeet__to___metres. It is best to use lower
case names for procedures so that they distinguish themselves from the

PROC.

To define a procedure, you simply type a line number, followed by DEF,
followed by the procedure name. It is a good idea to start defining your
procedures at a fairly high line number, say 106@.

78 Procedures

1@@@ DEF PROCwait_a_second

1108 NOW = TIME

1280 REPEAT UNTIL TIME-NOW>=100
1308 ENDPROC

This procedure will do as its name suggests.
ALL PROCEDURE DEFINITIONS MUST END WITH ENDPROC.

When you want the computer to carry out the instructions in the
procedure, you have to call it by name:

78 PROCwait_a_second

or

12@ IF INKEY$1@ = "“W'" THEN PROCwait_a_secon
d

You may have as many procedures in your program as you like, and
usually the more the better.

THERE MUST ALWAYS BE AN END INSTRUCTION BETWEEN

THE END OF THE MAIN PROGRAM AND THE PROCEDURE
DEFINITION.

For example

1@ REM Sample program
20 FOR X = @ TO0 29
30 PRINT TAB(1@,10);"COUNTING..."X" Seconds

4@ PROCwait_a_second

50 NEXT

6@ PRINT TAB(16,1@8);"Half a minute up!
"n

7@ END

13@@ DEF PROCwait_a_second

1168 NOW = TIME

1200 REPEAT UNTIL TIME-NOW>=100

138@ ENDPROC

There is a program on the Introductory Cassette to illustrate the use of
procedures, and also give you some fun. Load this program which is

Procedures 79

called ‘BUGZAP’ into your Electron first. See chapter 4 for instructions
on how to load a program.

When you LIST a long program obviously you cannot see all of the lines on
the screen at the same time. Using LIST with specified line numbers is
one way around this, but another is to put the computer into paged mode.
This is done by pressing N. (No is required.) If you now
use LIST, the program will be listed until the screen is full. When you want
to look at the next part just press and another screen full will
appear. If you want to change a line number, you must press

To get the computer out of paged mode, type 0.

Look at just one procedure from this program:

S2@DEF PROCinfo

530CLS

SLAPRINT ' """ ""Yelcome to the game of Bugzap
LU |

SS@PRINT"The object of the game is to use Yy
our"

56@PRINT"Laser gun to zap the descending bu

g

S73PRINT"before it lands or bombs you."
S8APRINT'"Your score increases every time y
Oull

S9@PRINT"zap the bug, with more points bein
gll

6@OPRINT"given the Llower the bug is; it Wil
L be"

618PRINT"displayed when you are killed."
620PRINT""The controls are:™’

63BPRINT"Z = left"”
6LBPRINT"X = right"
65BPRINT"SPACE = fire"

66BPRINT'""Pressing the ESCAPE key will tak
e you"

67@PRINT"to the end of the program."
48BPRINTTAB(5,31)"Press SPACE to start the
game'';

69BREPEAT: UNTIL GET$=" "

TEBENDPROC

8¢ Procedures

This procedure is called from line 9¢ of the main program,

9@PROCinfo

Line 520 is the start of the definition.

Line 539 clears the screen.

Lines 549 to 680 print the introduction and instructions about the
BUGZAP game which you see when you run the program.

Line 69¢ is an example of putting two separate BASIC statements after
one line number by separating them with a colon. The purpose of line 69¢
is to wait until the space baris pressed: GET$ = """, When the space baris
pressed, line 700 is executed.

Line 70 signifies the end of the procedure, and the computer goes back

to the main program to the line immediately after the procedure call
(99 PROCinfo), which is line 1¢@.

Here is one of the procedures from the MARSLANDER'’ program— also
on the Introductory Cassette.

86BDEF PROCrocket(direction¥)

87BREM If there is any fuel then fire rocke
t-motor and make sound

880IF fuelX% THEN fuel¥%=fuel%-1 ELSE ENDPROC
89@1F fuel%=29 THEN SOUND 1,-18,60,18 ELSE
SOUND @,-1,5,2

9@@O0N direction% GOTO 910,920,930 ,940
210VY%=VY%~ S:ENDPROC

Q2QVXX=VX%4Z+10:ENDPROC

Q30VY%=VY%Z+15:ENDPROC

Q40VXZ=VX%-1B: ENDPROC

This procedure alters the speed of the spacecraft according to the
direction in which it is pointing, which is given by the variable direction%.

This procedure is called from line 25@.

25@01F INKEY(-99) THEN PROCrocket(Z%)

Z7 is an integer variable which is used by the program to give the
attitude of the spaceship.

Procedures 81

When the computer reaches line 25 it tests to see if the space bar is

pressed. If it is, the computer then places the contents of Z% into
direction%.

The variable Z%, and hence the parameter direction%, can be anything
from 1 to 4, where 1 indicates the capsule pointing up, 2 to the right, 3
down, and 4 to the left. These positions are represented by characters
224 to 227 which are user-definable.

Line 880 checks to see whether there is any fuel left. The variable fuel%
will be FALSE when it is zero and the procedure will end.

Ifit is TRUE one unit of fuel is deducted by decrementing its contents by
1. Line 899 makes either a ‘beep’ (fuel is low}, or a rocket motor sound
(fuel is not low).

SOUND is explained in chapter 22.

Line 909 uses ON . . . GOTO, to act according to the direction of the
spacecraft. The parameter direction% now contains the value given to it
by Z%. If the spacecraft is pointing up, direction% is 1 and execution
continues at line 914,

Line 910 decreases the vertical speed of the capsule. (VY% is the vertical
speed measured positive in a downward direction; VX% is the horizontal
speed measured positive in a left-to-right direction.) If the capsule is
pointing to the left line 9@ passes execution to line 92¢ which increases
the horizontal speed of the capsule.

Lines 93¢ and 94¢ increase the vertical speed and decrease the
horizontal speed respectively. After any one of these lines (910 to 940)
has been executed, the procedure ends.

Using parameters in procedures

Using the above example, Z% and direction% are termed parameters.
The idea behind using parameters is that they are more efficient than
global variables. A global variable is one which is accessible throughout
the whole program, and may be altered or re-assigned at any line number.

Once a global variable such as Z% has been passed to the procedure asa
parameter, the variable which takes its place, direction%, is only known
to that procedure. Outside PROCspaceship you can ask the computer to

252 PRINT directionX

82 Procedures

and it will give an error because the variable direction% does not exist in
that part of the program. Global variables which are passed to the

procedure are called the actual parameters, and the variables within the
procedure are called formal parameters.

A procedure may be defined with only one parameter, or it may be
defined with lots of parameters. But a procedure must always be called
with the correct number of parameters. PROCspaceship, starting at line
759, has three parameters.

So you could not call PROCspaceship(X%,Y).

Parameters may be integer, real, or string. If a string variable is used as a
formal parameter then it must have either a string or a string variable
passed toit. Real and integer parameters may be passed to one another
and interchanged freely, but remember that the fraction part of a real
variable will be lost when assigned to an integer variable.

The idea of a variable being defined only within a certain section of a
program is commonplace in a lot of computer languages, but unusual in
BASIC. Electron BASIC allows you to declare any variable as local to a
procedure or function (functions are discussed in chapter 19). A local
variable may even have the same name as a global variable in the same
program, but will lead a separate existence.

For example:

1@ FOR I =1 T0 3
2@ PROClocal (1)
30 PRINT "OUT OF PROCEDURE I = - |

4@ NEXT I
5@ END

6@ DEF PROCLlocal (J)

70 LOCAL I

88 I = J

98 1 = 110

180 PRINT "IN PROCEDURE I = ";I
110 ENDPROC

>RUN

IN PROCEDURE I = 10
QUT OF PROCEDURE I = 1
IN PROCEDURE 1 = 20
OQUT OF PROCEDURE I = 2

Procedures 83

IN PROCEDURE I = 30
OUT OF PROCEDURE I = 3

Notice line 5@ which says END. Because procedures are usually defined
at the end of a program, you sometimes need to stop the execution after
all the calls have been made. The program will terminate when the
computer reaches the instruction END.

There is still another way to use procedures, and that is recursively. A
recursive procedure is one which calls itself from within its own
definition.

1@ answer = 1

2@ INPUT X

380 PROCfactorial (X)
40 PRINT answer

5@ END
6@ DEF PROCfactorial (N)
70 answer = answer*N

80 IF N > 1 THEN PROCfactorial (N-1)
9@ ENDPROC

This is a recursive procedure to find the factorial of a number. Check
through the logic of it in your head to see that it works. Recursive
procedures are very useful in certain circumstances, but they consume
memory very quickly.

18 GOTO and GOSUB

There are four more instructions in Electron BASIC which can be used
to tell the computer to continue executing the program at specified
points.

These are:

GOTO

GOSUB . . . RETURN
ON ... GOTOD

ON ... GOSUB

GOTO

The simplest of these instructions is GOTO.

1@ PRINT "SCREENFUL"
20 GOTO 1@

Each time the computer executes line 28 it is sent back to line 19 once
again. This program never ends: it is a continuous loop. To stop the
program you may press either m or . If you press

a message is printed giving the line number at which execution
ceased.

GOTO instructions may send control of the program either forwards or
backwards, but you must be careful not to use too many GOTO loops —
they soon become impossible to follow, and very difficult to correct when
a program does not function as you wish it to. It is far better to use
procedures or REPEAT . . . UNTIL statements where possible.

GOSUB ... RETURN

GOSUB stands for ‘Go To Subroutine’, and is really just a variation of
GOTO. It is strongly advised that you use the more readable and more
flexible procedure instead of GOSUB. It is used when a particular routine
is used several times in different parts of the same program, for example
to read a key.

GOTO and GOSUB 85

It is most useful with IF statements.

Here is a game which requires you to put a set of numbers in sequence.
The GOSUB routine is called from various parts of the program, and has

the effect of swapping the numbers around according to which key you
press.

1@ REM SWAP-ROUND

20 MODE 6

36 vbU23,1,0;0;0;0;

4@ answer$="123456789"

S8 number$=answer$

6@ INPUT TAB(8,16)"Difficulty level"”, level
70 FOR I=1 T0 level

80 position=RND(8)+1

9@ GosSuB 210

18@ NEXT

118 CLS:PRINT TAB(15,10);number$

120 PRINT TAB(6,16)"Press a key between 2

and 9"

130 REPEAT

1483 position=VAL GETS$

158 IF position <2 OR position>9 THEN GOTO
140

160 GOSUB 210

1780 PRINT TAB(15,10) number$

180 UNTIL number$=answer$

198 PRINT TAB(6,16);SPC(9);"Well done'";SPC(
11);"END"

2@0 END
218 temporary$=""
228 FOR J=position TO 1 STEP-1

230 temporary$=temporary$+MID$ (number$,J,1)
240 NEXT

253 number$=temporary$+MIDS(number$, positio
n+1)
260 RETURN

As you can see, GOSUB differs from GOTO in that the program flow must
always RETURN to the position following the subroutine call.

Just one point about GOSUB.

86 GOTO and GOSUB

As with FOR . . . NEXT, you should not jump out of a subroutine by using
GOTO. If the computer keeps being told to GOSUB, without ever
encountering a RETURN, it will soon use up its memory.

ON... GOTO, ON... GOSUB

An instruction such as

ON N GOTO 100,200,703 ,260
means that the computer checks on the value of N, and then ‘jumps’ to
the Nth line number in the list.

So, if N =1, the program ‘jumps’ to line 19@; if N= 2 to line 209; if N =3
to line 70; and if N = 4 to line 264.

ON . . . GOSUB works in exactly the same way.

19 Functions

Functions are similar to procedures, but they have only one purpose —to
give a single result. The easiest way to understand a function is to
describe some of the computer’s own, It has lots — the trigonometric
functions such as SIN, TAN and COS. One of the most useful functions is
RND, which supplies random numbers. It is usually used with a
parameter, and gives a random integer between 1 and the value of the
parameter. So, RND(5§) will pick a random number between and
possibly including, 1 and 5@. When you type X = RND(4), you know that
the result of the function RND will be placed in X. The RND function is
described in more detail in chapter 25.

A function can be used with any number of parameters, both string and
numeric. Here is a function to determine the mass of a sphere:

180 OEF FNmass_of_sphere(radius,density)
110 = 4/3*PI*radiusaA 3*xdensity

Here’'s another example of using a function in a program
g

5 CLS

1@ REM Discount calculator

2@ PRINT *''''7"This program calculates the
following discounts:"

30 PRINT ''"20% on £1080 or Lless"

4@ PRINT *'"30% on £101 to '200"

50 PRINT ''"S5@% on anything over £200"

6@ INPUT ''"!'""Enter the sum £ Y

70 PRINT '"*'*"fFinal sum with discount is

£";FN_discount (Y)

88 END

180 DEF FN_discount (SUM)

11@ IF SUM <= 100 THEN =SUM - (20*SUM/1@8)
120 IF SUM > 130 AND SUM <= 20@@ THEN =SUM -
(30*SUmM/1068)

130 IF SUM > 200 THEN =SUM - (50*SumM/100)

The main program starts at line 5 and ends at line 80.

88 Functions

Line 5 clears the screen, and lines 2@ to 5@ print instructions on the
screen.

Line 6@ prints a request for you to enter an amount, waits for you to do so,
and puts the value into variable Y.

Line 7@ prints a message, and calls a function called FN__discount(Y).
The valuein Y is passed to the function’s parameter, (which is the ‘actual’
parameter).

Line 104 starts the definition of the function, and passes the parameter
value to a ‘formal’ parameter called SUM.

Line 114 contains a conditional statement. If the value of SUM is 16@ or
less, then the function returns the result given by SUM — (2¢*SUM/10§).
If the value of SUM is more than 10@, then the execution of line 11¢ stops
before working out the SUM — (2d*SUM/1@#), and line 12¢ has a go—and

SO On.

Notice the underline character in FN___discount. This helps to make the
function’s name more readable.

20 Graphics

Introduction

This chapter deals with the VDU software — anything to do with how
things are put on to the screen (ie the television or monitor). What
‘modes’ are and why they are there is covered first, followed by a section
on writing text and then details on the graphics routines. Lastly the
palette is covered. All the individual VDU commands are listed for
reference in the next chapter.

Modes — what are they and why?

The screen displays things in any one of seven modes, labelled from
MODE # up to MODE 6. To change mode is easy — just type MODE
followed by the mode number you want. For example

MODE 2 3L

changes the display to mode 2. As with all VDU commands, it can be used
as a line in a program, and as it is a good idea to make sure your program
starts off in the right mode, have its first line looking something like this:

13 MODE 1

Changing mode changes four things:

— The number of characters you can get on the screen.

— The number of pixels (dots) the graphics can display (and hence the
resolution of the graphics). ,

— The number of colours available at any one time on the screen.

— The amount of memory left for programs.

9% Graphics

A table giving details of these is listed below.

No of No of No of Memory
Mode characters graphics pixels colours used
@ 8¢ X 32 640 X 256 2 20K
1 49 X 32 320 X 256 4 20K
2 20 X 32 160 X 256 16 20K
3 86 X 25 (text only) 2 16K
4 4¢ X 32 320 X 256 2 190K
5 20 X 32 169 X 256 4 16K
6 40 X 25 (text only) 2 8K

If you don’t understand the ‘memory used’ column then don’t worry —
basically the more detail and colours available in the mode, the more
memory the screen uses and the less there is available for programs. The
word ‘colour’ is used rather loosely to include the flashing colour effects.

Try the different modes out to see the differences. Modes 3 and 6 are for
text only — no graphics can be done in these modes (nothing will actually
go wrong — it just won’t appear).

Why have modes? Different programs have different requirements —
some just need simple text output and mode 6 then leaves free as much
memory as possible for the program. Others, such as games, need lots of
colours and graphics detail. The modes available give a good range
across this spectrum.

Writing text

The COLOUR command and text windows

When a letter is written to the screen it has foreground and background
colours — the colours of the ink and the paper. When the machine is
turned on, it is always white foreground on black background. Colours (or
more strictly logical colours — see the section on the palette) are labelled
from @ upwards. To take a definite mode for simplicity, mode 1 has four
colours labelled from @ to 3. Try the following:

MODE 1 L3I

This puts you in mode 1 with white text on black background.

Graphics 91

COLOUR 1 Bivil]

This sets the foreground colour to number 1 (red). Text after this
command is red on black.

COLOUR 130

This sets the background colour to number 2 (yellow). Text after this is
now red on yellow, and clearing the screen with CLS makes the entire
screen yellow. Why 13¢? Because to change the background instead of
the foreground colour you must add 128 to the colour number. Thus, to
get background colour 2 (above), add 128 to give 130.

Changing mode resets the colours to white on black. As said before, any
VDU commands (including COLOUR, GCOL, MOVE, DRAW etc) can be
either typed straight (as a ‘direct command’) or used as part of a BASIC
program.

Addresses on the text screen

Each letter position has its own address in the usual columns and rows
format. The column numbering is from left to right starting from column
@ and the rows, as for all VDUs, are labelled from the top (row @)
downwards. How many rows and columns there are depends on the mode
— the drawing below shows the labelling for mode 6.

The text screen for mode 6
@ - X 39

@

~

24

92 Graphics

The cursor may be positioned to any part of the screen with the TAB(X,Y)
command, thus the following program prints out a diagonal line of As.

10 MODE 1

28 FOR 1%=@ TO 20

3@ REM The next line positions the text cur
sor to the position col.=I%+5 row=1%

4@ REM and prints the letter A at this pos
ition

S@ PRINT TAB(IX%+5,1%);"A"

6@ NEXT 1%

7@ END

Text windows

Normally, the text may appear anywhere on the screen. However a text
window may be set, which allows the text to appear only inside the
window. To do this, the VDU 28 command is used as follows:

VDU 28.,ab,cd

where a,b is the bottom left and ¢,d the top right position inside the
window (see the drawing below).

9 19
é 1
1
Text
window
- C
U — i’
31

Nothing outside the text window is affected by text commands, such as
screen clearing, scrolling, cursor positioning etc. Note that the TAB{X,Y)

measures from the position of the top left of the current window. Try the
following program

Graphics 93

1@ MODE 1

20 REM Set up a text window only 6 characte
rs square |

3@ vbu 28,5,1@,10,5

4@ REM Change the background colour to colo
ur 1 (red)

50 COLOUR 129

6@ REM Now clear the text screen to red to
see where it is

70 CLS

8@ REM Demonstrate scrolling

90 FOR I%=1 TO 28 : PRINT I% : NEXT IX

10@ REM Lastly, show position of character
(2,2) relative to text window

110 PRINT TAB(2,2);"*"

12@ END

Both text and graphics windows are removed by VDU 26.

Defining your own characters

Each character is an 8 by 8 matrix of dots (pixels). All the normal letters,
numbers and punctuation marks are defined, but it is possible to define
your own. 256 bytes of RAM are set aside for the definitions of
characters whose codes are from 224 to 255. Character definitions are
entered thus:

vbu 23,CODE,L1,L2L3L4,L5L6,L7L8

where CODE is the code of the character to be defined (it is then printed
using either VDU CODE or PRINT CHR$(CODE);) and

L1 is the bit pattern of the top row
L2 is the bit pattern of the second row from top, and so on until . . .
L8 is the bit pattern of the bottom row.

What is a bit pattern? Each dot in any one row is given a number, and the
bit pattern is the sum of the numbers corresponding to those bits in
foreground. These numbers, labelling the bits from left to right, are 128
(for the leftmost pixel), 64, 32, 16, 8, 4, 2, 1 {for the rightmost pixel).
Specific examples are easiest to understand.

94 Grapbhics

The space character obviously has no foreground, thus all the bit

patterns are zero, so to assign the space character to the code of 224, the
command

vbu 23,224,0,0,0,0,0,0,0,0

would be used. To define a large X, the top line has the left and rightmost
pixels set only, thus L1=128+1=129. The next line has the second from
left and the second from right pixels set, thus L2=64+2=66. Similarly,
L3=32+4=36 and L4=16+8=24. The fifth through to eighth rows are

the mirror image of the first four, so to define the character 225 as an
X, type the following line:

VDU 23,225,129,66,36,24,24,36,66,129 [T

To display the character, type VDU 225 L3111,

All the characters from 32 to 255 may be defined, but to define those
outside the codes 224-255 it is necessary to allocate more memory for
the fount. This is called ‘exploding the fount’ and is done via FX call
number 2¢.

Here is another example of defining a character. The alien in the
BUGZAP program on the Introductory Cassette was made up on the
matrix in the drawing below.

an

N H Qo

— QOO0 e OO Oy
a 16 + 8 = 24
b 32 + 16 + 8 + 4 = 6§
c 64 +32+16+8+4+2=126
d 128+64+16+8+2+1=219
e 64+32+16+8+4+2=126
f 32 +4=236
4 64 + 2 =66
h 128 +1 =129

If you use the code 224 for the new character definition, here is the VDU
statement which defines the complete character:

VDU 23,224,24,6@,126,219,126,36,66,129 BALLL

By changing L7 and L8, the ‘upright’ alien shown in the drawing below
can be defined. The code for this character must be a different one from
the one above (eg 225), otherwise you will lose the original alien.

Graphics 95

gﬁ-mw
DD~ 00 WD

a

b

[+

d

e

f

g

h

Have a go at defining this new character, then check the result by
displaying it on the screen with

vou 225 L3l

The program below shows how you can produce an animated alien by
using both these characters.

18 VbU 23,224,24,60,126,219,126,36,66,129
2@ vbU 23,225,24,608,126,219,126,36,36,36
39 MODE 2

4@ vou 23,1,0;0;0;0

58 REPEAT

6@ PRINT TAB(1@,16);CHR$(224)

78 NOWYXZ = TIME : REPEAT UNTIL TIME = NOWZ+25
8@ PRINT TAB(18,16); CHR$(225)
9@ NOWYX = TIME : REPEAT UNTIL TIME = NOWZ+25

120 UNTIL FALSE

Line 4@ gets rid of the flashing cursor, which would otherwise be a
distraction. You can retrieve it by typing

vouU 23,1,1;0;0,0;0 LI3UL1L

Graphics
Introduction

The graphics instructions are pretty extensive in the Electron, and they
all have certain things in common. The easiest commands to understand
are the MOVE and DRAW commands, and these will be used for
illustration in the following section. The ideas presented here are true for
all graphics commands (including CLG).

96 Graphics

REMEMBER: when you press , the computeris in mode 6. This
is not a graphics mode and nothing will happen when you try to plot
things. Always remember to go into a graphics mode to try these things
out. Mode 1 is a good one to start with. Similarly, programs should always

have a MODE command in them, as described at the beginning of this
chapter.

The graphics coordinate system

Firstly, we must describe the coordinate system, that is to say how
positions of points are labelled. This is similar to the text coordinate
system but there are three differences.

Firstly the system has the point (@,8) in the bottom left hand corner, and
row numbers are labelled upwards.

Secondly, the top right hand point on the screen is {(1279,1923), the same
in all modes (see the drawing below). This is so that drawing a line from,

say (108,100) to (490.488) always draws a line in the same place, even
though the pixel size varies with the mode.

Lastly, points off the screen are well defined, that is to say, drawing a line

from, say (—300,—408) to (30@,488) is perfectly legal, and what appears is
what you would expect — that portion of the line that is in the area viewed
by the screen.

The graphics screen

1923

-

=

@ — =X 1279

The graphics cursor is an invisible point on the screen, and is where you
are about to draw from. Move it about the screen with the MOVE
command, and drawing is easiest with the DRAW command. Thus

Graphics 97

move 100,1aee CEILN
DRAW 400,400 [EILL]

moves the cursor to (18§,18@) and draws a white line to (40§,40d). Try
lots of lines in different modes to get the feel of the coordinate system.

The GCOL command

Just as the foreground and background colours of text were defined
using the COLOUR command, so the corresponding colours in graphics
are defined using the GCOL command. Try the following:

wooe 1 AL
ccor @,1 IRIL

DRAW 300,300 LIyLi]

This draws a line in colour 1 (red) from {#,@) — where the graphics cursor
is when the mode is changed — to (38¥,388). However, you will notice that
the GCOL command has two numbers after it. The second is just like the
COLOUR command’s number, that is the foreground colour number, or, if
128 is added to it, the background colour number. CLG is the graphics
equivalent of CLS and clears the graphics area to the current graphics
background colour. Thus

ccoL 9,129 B

CLG gt

sets the graphics background colour to 1 and clears the graphics screen
to this colour (red). Note that the CLG command is much slower than the
CLS command.

The first number in the GCOL command is unusual. It tells the computer
what to do with the graphics point. The following values are defined:

— write the point to the screen (what one would normally expect).

1 — OR the point to be plotted with what is on the screen.

2 — AND the point to be plotted with what is on the screen,

3 — EOR the point to be plotted with what is on the screen.

4 — INVERT what is on the screen, regardless of what colour is to be
plotted.

5 — leave what is on the screen alone.

98 Graphics

Other values do stripey things which may change with different releases
of the software.

What is meant by OR, AND, EOR and INVERT? Each pixel has a colour
— in mode 1 with four colours, this is from @ to 3, or 3@, #1, 1# and 11 in
binary. What appears on the screen is the result of a logical operation
between the pixel you want to plot and what is aiready on the screen. The
OR and the AND are the same as for the BASIC commands. EOR means
‘exclusive OR’, which is the same as OR unless both bits are one, in which
case the result is zero. Again, all this is most easily explained by specific
examples. The following assumes that you are in mode 1.

Assume there is a red screen (from GCOL@,129 :CLG, above). Setting
GCOL 1,2 sets the foreground colour to 2 (14 in binary), and the colour
‘mode’ to OR. Drawing a line then takes the red pixel on the screen (red -
colour 1 =@1 in binary), and ORs it with the yellow pixels you are
plotting. The pixel colour that appears is the #1 ORed with 1¢, which is
11, colour 3, which is white. (Try it).

(iven this white line on a red background, set the colour with GCOL 2,2,
which has foreground colour 2 and colour mode AND, Plotting a line then
takes what is on the screen and ANDs it with the yellow pixel, colour 2 or
10 in binary. Therefore when the line is plotting on the red background,
@1 (red) is ANDed with 1¢ (yellow), then result being @@ (black). If it
crosses the white line — the white pixels (11) are ANDed with the yellow
pixels (19) to give 16 (vellow).

Setting GCOL 3,131 sets the background colour to 3 (white) and the
colour mode to EOR. Doing a CLG then EORs its pixel with 11 —thatis to
say (% goes to 11, §1 to 19, 10 to #1 and 11 to @#@. The screen is thus
inverted in colour, and repeating the command restores it to its original
state. -

If this does not seem too clear, playing around with it for a little should
help. It has two main purposes — setting the EOR mode allows erasure of
a line by plotting it again. In four colour modes, two independent two-
colour pictures may be drawn and selectively displayed using the palette.

Graphics 99

The PLOT command
MOVE and DRAW are two special cases of the more general PLOT
command, which is as follows.

PLOT K%,X%,Y%

where K% is the plot mode (ie what you are actually going to do); X% and
Y% are the coordinates of the point to which you are plotting.

K% takes the following values:
) Draw a line, relative (that is X% and Y% are displacements

from the current graphics cursor position), with no change
on the screen.

1 As @, but draw in foreground colour.

2 As @, but invert what is on the screen (colour mode 4
forced).

3 As 9, but draw in background colour.

4to7 As @ to 3 but plot absolute (plot to the point X%,Y%).

8 to 15 As @ to 7, but plot the last point twice. This is so that when

plotting in inverted modes, the line is continuous.
16 to 31 As @ to 15 but with a dotted line.
32 to 63 Reserved for the graphics extension ROM.
64 to 71 As @ to 7, but plot the specified point only.
72 to 79 Fill sideways on background colour (see below).
8¢ to 87 Plot triangles (see below).
88 to 95 Fill right on non-background colour (see below).
96 to 255 Reserved for graphics extension ROM.

Advanced graphics

Triangle plotting

This plots a solid triangle using as vertices the point specified, the
graphics cursor and the previous graphics cursor. This can be used to fill
many different shapes. '

Sideways filling on background colour

This plots the line sideways from the specified point, left and right, until
either the edge of the window is reached or the line meets a pixel of non-
background colour. The graphics cursor is set to one of the end points,
and the previous graphics cursor (used in triangle plotting) to the other.

16¢ Graphics

"The values of these may be found out via FX call number 13 (decimal). If
the point specified is outside the graphics window, or is not on
background colour, then the Y coordinates of the returned points are
different.

Filling right

Filling right until background colour plots right from the specified point
as far as either the edge of the graphics window or a pixel of background
colour is found. The endpoints (note that it does not go left) are
retrievable via FX 13 in the same way. The endpoint is actually the first
pixel of background colour found, thus if the specified point is back-
ground colour, the endpoint returned is the same as the specified one.

These two routines together enable a fast routine to be constructed to fill
any enclosed shape.

The VDU command

The VDU command writes a series of bytes to the screen in a similar way
to the PRINT command. Thus the following two commands are exactly
the same:

VDU 12,65,66,67

PRINT CHR$(12); CHR$(65); CHR$(66); CHRS$ (67
) ;

(Note the semicolon at the end of the PRINT statement — the VDU
command does not send a carriage return unless you explicitly tell it to),
Most numbers that you need to write to the VDU are single bytes
{characters, for example). However, the graphics coordinates are all
double byte quantities and are sent lower byte first, higher byte second.
The VDU command enables this to be done easily. If a number in the VDU
command is followed by a semicolon, that number is interpreted as a
double byte quantity. If you are unsure of bytes and double bytes, the
quick rule is that if you are doing a graphics operation using the VDU
command, you must always follow a graphics coordinate with a semi-
colon. This only applies to the VDU command.

There are two more graphics commands, both of which are done via the
VDU command.

Graphics 191

Graphics windows

Just as text may have a text window defined, outside of which no text
command has effect, so a graphics window may be similarly defined. This
is done with

VOU 24, LX;BX;RX;T%;

where L%,B% and R%,T% are the coordinates of the lower left and upper
right pixels inside the window. Setting a window thus prevents any
plotting outside it. Also, because CLG is just another plot command,
defining a graphics window and doing a CLG is a quick way of plotting
rectangles.

1923

[
d

Graphics

window

c o
[
¢] 9
@ 1279

The graphics origin

So far it has been said that the point (§,8) is at the bottom left hand
corner of the screen. This point (called the origin) may be specified to live
elsewhere with the origin command.

VbU 29, X%4; YX;

sets the position of the origin on the screen for future graphics
commands. Thus to set the origin in the middle of the screen, use VDU
29.649:512;. It does not move the physical position of what is on the
screen, the graphics windows or the graphics cursor.

182 Graphics

Plotting characters

If VDU 5 is entered, the text and graphics cursors are said to be joined,
that is text appears at the graphics cursor which then moves as the text is
written. This is mainly used for labelling graphs. The graphics cursor
points to the top right pixel of the 8 by 8 character cell to be written, and
is moved 8 pixels along by writing letters. This is seen in the following
program.

19 MODE1

2@ VDUS

3@ REM ALl the text now appearing is ‘'plott
ed’

4@ DRAW 500,500

5@ PRINT "Hello mummy"™;

6@ REM the last print statement moved the g
raphics cursor

70 REM as can be seen by the next plot st
atement.

8@ DRAW 0,0
90 END

VDU4 restores the text cursor.,

The palette

Colours defined through the COLOUR and GCOL commands are more
properly referred to as logical colours. When a mode is changed, these
logical colours appear as certain physical colours, thus in mode 1, colour
1 is red and colour 2 is yellow. The palette allows this to be changed, thus
colour 1 may be made to be blue and colour 2 flashing black on white. To
be exact, we must distinguish between two types of colour:

The logical colour is what is output by the COLOUR commands. The

maximum logical colour is limited by the number of colours available in
the mode.

The physical colour is what appears on the screen. The physical colours
and their numbers are listed below.

Graphics 103

Physical number Display colour

) Black

1 Red

2 Green

3 Yellow

4 Blue

5 Magenta

6 Cyan

7 White

8 Flashing black/white

9 Flashing red/cyan
10 Flashing green/magenta
11 Flashing yellow/blue
12 Flashing blue/yellow
13 Flashing magenta/green
14 Flashing cyan/red
15 Flashing white/black

Each logical colour has a physical colour assigned to it, which may be
changed by reprogramming the palette. This is done as follows:

vou 19,L.%,P%,02,0,0

where L% is the logical colour and P% is the physical colour. So in mode 1,
to change all the pixels with logical colour 3 (usually white) to blue
(logical colour 4), the command VDU 19,3,4,0,§.8 is used. Thus while the
very detailed mode @ is a two colour mode, the colours themselves may
be anything available from the palette, such as green on red. Note also
that the palette reprogramming is very fast as it does not involve a lot of
the screen memory being reprogrammed.

21 VDU codes

Introduction

The statement VDU X is equivalent to PRENT CHR$({X); and the statement
VDU X,Y.Z is equivalent to PRINT CHR$(X);CHR$(Y);CHR$(2);

However the VDU statement finds most common use when generating
ASCII control codes and a detailed description of the effect of each
control code is given in this chapter. The control codes are interpreted by
part of the machine operating system called the VDU driver.

The VDU drivers interpret all 32 ASCII control character codes. Many of
the ASCII control codes are followed by a number of bytes. The number
of bytes which follow depends on the function to be performed. The VDU

code table summarises all the codes and gives the number of bytes which
follow the ASCII control code.

Detailed description

4 This code causes text to be written at the text cursor, ie in the normal
fashion. A MODE change selects VDU 4, normal operation.

& This code causes text to be written where the graphics cursor is. The
position of the text cursor is unaffected. Normally the text cursor is
controlled with statements such as

PRINT TAB(5,1@)

and the graphics cursor is controlled with statements like
MOVE 760,450

Once the statement VDUS has been given only one cursor is active (the
graphics cursor). This enables text characters to be placed at any
position on the screen. There are a number of other effects: text
characters overwrite what is already on the screen so that characters can
be superimposed; text and graphics can only be written in the graphics
window and the colours used for both text and graphics are the graphics
colours. In addition the page no longer scrolls up when at the bottom of

the page. Note however that POS and VPOS still give you the position of
the text cursor.

VDU codes 185

VDU code table
Elg
2 25
El |glEEs
2|3 |E|R5 |3
- I
A | m|O| <= |®A | Meaning
g | ¢ | @ |NUL | @ | Does nothing
1 1 {A |SOH |1 | Reserved
21 2 |B |STX | ¢ | Reserved
3 3 |C |[ETX | @ | Reserved
4 4 | D | EQT | @ | Write text at text cursor
5 5 | E |ENQ | @ | Write text at graphics cursor
6 6 | F | ACK | # | Enable VDU drivers
7 | 711G |BEL | 8 | Make a short beep
8 8 | H [BS § | Backspace cursor one character
9 9 |I |HT | @ | Forwardspace cursor one character
19 A|lJ |LF @ | Move cursor down one line
11 | B K |[VT ¢ | Move cursor up one line
12 | C|L |FF @ | Clear text area
13| D|M|CR @ | Move cursor to start of current line
14| E|N|SO @ | Page mode on
15 F|O ST @ | Page mode off
16 {1¢ | P | DLE | @ | Clear graphics area
17 {11 | Q | DC1 | 1 | Define text colour
18 | 12 | R | DC2 | 2 | Define graphics colour
19 | 13 | S | DC3 | 5 | Define logical colour
20 | 14 | T | DC4 | 8 | Restore default logical colours
21 | 15 | U | NAK | ¢ | Disable VDU drivers or delete current
line
22 | 16 | V | SYN | 1 | Select screen mode
23 | 17 | WI{ETB | 9 | Re-program display character
94 | 18 | X | CAN | 8 | Define graphics window
25119 | Y |EM |5 | PLOT Kxy
26 | 1A | Z | SUB | § | Restore default windows
27 | 1B| [|ESC | 4 | Reserved
28 | 1IC|\ |[FS | 4 | Define text window
29 11D}] | GS 4 | Define graphics origin
36 | IE| A |RS | @ | Home text cursor to top left
31} 1F [— | US 2 | Move text cursor to x,y
127 | 7F DEL | @ | Backspace and delete

1¢6 VDU codes

6 VDU 6 is a complementary code to VOU21. VDU21 stops any further
characters being printed on the screen and VDUB re-enables screen

output. A typical use for this facility would be to prevent a pass-word
appearing on the screen as it is being typed in.

7 This code,which can be entered in a program as VDU7 or directly from
the keyboard as [QLi{}] G, causes the computer to make a short ‘beep’.

8 This code (VDU8 or [M1i8 H) moves the text cursor one space to the
left. If the cursor was at the start of a line then it will be moved to the end
of the previous line. It does not delete characters — unlike VDU 127.

9 This code (VDU 9 or [MLi1Y I) moves the cursor forward one charac-
ter position.

10 The statement (VDU 10 or (MUY J) will move the cursor down one

line. If the cursor is already on the bottom line then the whole display will
normally be moved up one line.

11 This code (VDU11 or M4 K) moves the text cursor up one line. If
the cursor is at the top of the screen then the whole display will move
down a line. '

12 This code clears the screen — or at least the text area of the screen.
The screen is cleared to the text background colour which is normally
black. The BASIC statement CLS has exactly the same effect as VDU12
or L. This code also moves the text cursor to the top of the text
window.,

13 This code is produced by the key. However its effect on
the screen display if issued as aVDU13 or PRINT CHR$(13); is to move the
text cursor to the left hand edge of the current text line (but within the
current text window, of course).

14 This code makes the screen display wait at the bottom of each page.
It is mainly used when listing long programs to prevent the listing going
past so fast that it is impossible to read. The computer will wait until a
key is pressed before continuing. This mode is called ‘paged
mode’. Paged mode is turned on with the N and off with 0.

15 This code causes the computer to leave paged mode. See the
previous entry (14) for more details.

16 This code (VDU 16 or [MIL11¥ P) clears the graphics area of the screen
to the graphics background colour and the BASIC statement CLG has
exactly the same effect. The graphics background colour starts off as

————

VDU codes 107

black but may have been changed with the GCOL statement. VDU
16 does not move the graphics cursor — it just clears the graphics area of
the screen.

17 VDU 17 is used to change the text foreground and background
colours. In BASIC the statement COLOUR is used for an identical
purpose. VDU17 is followed by one number which determines the new
colour. See the BASIC keyword COLOUR for more details.

18 This code allows the definition of the graphics foreground and
background colours. It also specifies how the colouristo be placed on the
screen. The colour can be plotted directly, ANDed, ORed or Exclusive-
ORed with the colour already there, or the colour there can be inverted.
In BASIC this is called GCOL.

The first byte specifies the mode of action as follows:

Plot the colour specified

OR the specified colour with that already there

AND the specified colour with that already there
Exclusive-OR the specified colour with that already there
Invert the colour already there

W ==

The second byte defines the logical colour to be used in future. If the byte
is greater than 127 then it defines the graphics background colour
(modulo the number of colours available). If the byte is less than 128 then
it defines the graphics foreground colour (modulo the number of colours
available).

19 This code is used to select the actual colour thatis to be displayed for
each logical colour. The statements COLOUR (and GCOL) are used to
select the logical colour that is to be used for text (and graphics) in the
immediate future. However the actual colour can be re-defined with VDU
19. For example

MODE 5
COLOUR1

will print all text in colour 1 which is red by default. However the
addition of

vou 19,1,4,0,8,8 or VDU 19,1,4;0;

188 VDU codes

will set logical colour 1 to actual colour 4 (blue). The three zeros after the
actual colour in the VDU 19 statement are for future expansion.

InMODE 5 there are four colours (#,1,2 and 3). An attempt to set colour
4 will in fact set colour # so the statement

VDU 19’4'4’0”0 or VDU 19'4'4;0;
is equivalent to
vbu 19,0,4,0,0,8 or VDU 19,0,4;0;

We say that logical colours are reduced modulo the number of colours
available in any particular mode.

20 This code VDU2§ or LN T sets default text and graphic

foreground logical colours and also programs default logical to actual
colour relationships. The default values are:

Two colour modes

@¢=Dblack
1=white

Four colour modes
@=black
1=red
2=vyellow
3=white

Sixteen colour modes

@=black

1=red

2=green

3=yellow

4=blue

5=magenta

b=cyan

7=white

8=flashing black/white

9=flashing red/cyan
19=flashing green/magenta
11=flashing yellow/blue

>

VDU codes 199

12=flashing blue/yellow
13=flashing magenta/green
14=flashing cyan/red
15=flashing white/black

21 This code behaves in two different ways. If entered at the keyboard
(as U) it can be used to delete the whole of the current line. It is
used instead of pressing the key many times. If the code is
generated from within a program by either VOU21 or PRINT CHRS (21); it
has the effect of stopping all further graphics or text output to the screen.
The VDU is said to be disabled. It can be ‘enabled’ with VDUS.

292 This VDU code is used to change MODE. It is followed by one
number which is the new mode. Thus VDU22,6 is exactly equivalent to

MODEG (except that it does not change HIMEM).

23 This code is used to re-program displayed characters. The ASCIL
code assigns code numbers for each displayed letter and number, The
normal range of displayed characters includes all upper and lower case
letters, numbers and punctuation marks as well as some special symbols.
These characters occupy ASCII codes 32 to 126. If the user wishes to
define his or her own characters or shapes then ASCII codes 224 to 255
are left available for this purpose. In fact you can re-define any character
that is displayed, but extra memory must be set aside if this is done, and
this is explained in Appendix D.

ASCII codes @ to 31 are interpreted as VDU control codes — and this
chapter is explaining the exact function of each. Thus the full ASCIIset
consists of all the VDU control codes, all the normal printable characters
and a user defined set of characters.

For example if the user wishes to define ASCII code 249 to be a small
triangle then the following statement would have to be executed.

character to be
re-defined

AN

vDU 23,240,1,3,7,15,31,63,127,255
— . — -
re-define 8 numbers giving the contents of each row of dots that
character makes up the desired character

118 VDU codes

=1
2+1=3

4+2+1=7

8+4+2+1=15

16+8....=31

=63

=127
=255

¥ N @ @ =N oy ™
S MM

128

As explained above the user may define any ASCII code in the range 224
to 255. To display the resultant shape on the screen the user can type

PRINT CHR$(2483) or
VDU 240

In the unlikely event of the user wishing to define more than the 32
characters mentioned above (ASCII 224 to 255) it will be necessary to
allocate more RAM for the purpose.

24 This code enables the user to define the graphics window — that is,
the area of the screen inside which graphics can be drawn with the DRAW

and PLOT statements. The graphics screen is addressed with the
following coordinates.

1923

EA

¢ X 1279

Ty

~."

VDU codes 111

Thus the coordinates of A would be approximately 10¢6,234.

When defining a graphics window four coordinates must be given; the
left, bottom, right and top edges of the graphics area. Suppose that we
wish to confine all graphics to the area shown below.

00}

Graphics
area

300}

@ i 1
@ 156 1108

The left hand edge of the graphics area has an X value of (about) 158.
The bottom of the area has a Y value of 3¢@. The right hand side has
X=110@ and the top has Y=704. The full statement to set this area is

VDU 24,150;300;1100;700;

Notice that the edges must be given in the order left X, bottom Y, right
X, top Y and that when defining graphics windows the numbers must be
followed by a semi-colon.

For those who wish to know why trailing semi-colons are used the reason
is as follows: X and Y graphic coordinates have to be sent to the VDU
software as two bytes since the values may well be greater than 255. The
semi-colon punctuation in the VDU statement sends the numberasatwo
byte pair with low byte first followed by the high byte.

95 This VDU code is identical to the BASIC PLOT statement. Only those
writing machine code graphics will need to use it. VDU25 is followed by
five bytes. The first gives the value of A referred to in the explanation of
PLOT in the BASIC keywords chapter. The next two bytes give the X
coordinate and the last two bytes give the Y coordinate. Refer to the
entry for VDU24 for an explanation of the semi-colon syntax used. Thus

VoU 25,4,1006;500;

112 VDU codes

would move to absolute position 10¢,5040.

The above is completely equivalent to

VDU 25,4,100,0,244,1
X Y

26 The code VDU 26 (Z) returns both the graphics and text
windows to their initial values where they occupy the whole screen. This
code re-positions the text cursor at the top left of the screen, the graphics
cursor at the bottom left and sets the graphics origin to the bottom left of

the screen. In this state it is possible to write text and to draw graphics
anywhere on the screen.

28 This code (VDU28) is used to set a text window. Initially it is possible
to write text anywhere on the screen but establishing a text window

enables the user to restrict all future text to a specific area of the screen,
The format of the statement is

VoU 28, leftX,bottomY,rightX,topY
where leftX sets the left hand edge of the window

bottomY sets the bottom edge
rightX sets the right hand edge

topY sets the top edge
@ 5 30 39
) '] }
Y2
o
124
X 1] Text window
204
X2 -
31

VDU codes 113

For the example shown the statement would be
vbu 28,5,20,36,12

Note that the units are character positions and the maximum values will
depend on the mode in use. The example above refers to MODE1 and

MODE4. In MODES 2 and 5 the maximum values would be 19 for X and
31 for Y since these modes have only 2§ characters per line.

@ - X 19

31

29 This code is used to move the graphics origin. The statement VDU29
is followed by two numbers giving the X and Y coordinates of the new
origin. The graphics screen is addressed

1923

¢¢ -X 1279

Thus to move the origin to the centre of the screen the statement

VOU 29,6408;512;

114 VDU codes

should be executed. Note that the X and Y values should be followed by
semi-colons. See the entry for VOU24 if you require an explanation of the

trailing semi-colons. Note also that the graphics cursor is not affected by
vDu29.

30 This code (VDU 38 or f4Uil] A) moves the text cursor to the top left

of the text area.

31 The code VDU31 enables the text cursor to be moved to any
character position on the screen. The statement VDU31 is followed by
two numbers which give the X and Y coordinates of the desired position.

Thus to move the text cursor to the centre of the screen in MODE 7 one
would execute the statement

vou 31,20,12

Note that the maximum values of X and Y depend on the mode selected
and that both X and Y are measured from the edges of the current text
window not the edges of the screen.

32-126 These codes generate the full set of letters and numbers in the
ASCII set.

127 This code moves the text cursor back one character and deletes the
character at that position. VOU127 has exactly the same effect as the
113031 key.

128-223 These characters are normally undefined and will produce
random shapes.

224-255 These characters may be defined by the user using the
statement VDU23. It is thus possible to have 32 user defined shapes such
as

& vou 23,224,8,28,28,107,127,187,8,28
4 vOoU 23,225,8,28,62,127,62,28,8,0
$vou 23,226,564,127,127,127,62,28,8,0
& VDU 23,227,8,28,62,127,127,127,28,62

Try typing each of the lines above, remembering to press the 3LLY]
key after each definition. To display any of the new definitions, type in
the appropriate VDU code. For example, to display the heart, type

VDU codes 115

vouz226 LA

Character definitions 224 to 255 are stored in a block of memory
reserved for them in the computer. If however, you need more
characters, or you want to re-define some of the keyboard characters, the
best way to do this is to tell the computer to set aside extra memory to
store them. (If you don’t, you may run into problems). The operating
system call *¥FX2f described in Appendix D enables you to do this.

22 Making sounds

Introduction

Inside the Electron is a sound synthesiser which you can program to
generate virtually any sound you like. The synthesiser is controlled by
two BASIC commands: SOUND and ENVELOPE, and each command
requires you to type in a series of numbers (or parameters) after it. These
parameters determine the type of sound you will hear from the
Electron’s internal loudspeaker; ie the type of sound, pitch, duration,
and so on.

There is a vast range of parameter values which gives you an almost
unlimited range of possibilities when writing programs for the synthe-
siser. However, you don’t need to be a wizard in order to use the sound
system on a relatively simple level, and this chapter will serve to get you
started. Once you've had some practice, read the last section in this
chapter which goes into the SOUND commands in more detail.

The SOUND command

The SOUND command must be followed by four parameters which we
will call @, A, P and D. So the SOUND command takes the form

SOUND Q,A,P,D
» Jb
Selects SOUND channel number
Switches the sound on/off or selects ENVELOPE
Selects the pitch of the sound
Selects the duration of the sound

Press m and type the following:

SOUND 1,-15,0,100 Li3tNi)

This will produce a single tone of fairly long duration. Type this line in
again and increase the P parameter (the third number). You’ll notice that
the pitch increases.

Making sounds 117

The Q parameter

There are four values of Q, and each one selects the SOUND channel
number.

Q=9 Channel 0, selects noise
Q=1 Channel 1, selects tone
Q=2 Channel 2, selects tone
Q=3 Channel 3, selects tone

You may wonder why there are three SOUND channels which all select
tone as opposed to noise. The only reason for this is to make the sound
system as compatible with the BBC Microcomputer as possible. From
now on, we will ignore channels 2 and 3.

The A parameter
This parameter does three things, depending on the value you give it:

When A is a negative number, the amplitude is at maximum, ie ‘on’.
When A is zero, the amplitude is at minimum, ie ‘silence’. When A is
between 1 and 16 inclusive, an ENVELOPE command of the same number
is selected. Forget the ENVELOPE command for the moment, you will
meet it later in this chapter.

Note that for the sake of compatibility with the BBC Microcomputer, use
A=-15 for ‘sound on’, and A=§ for ‘silence’.

The P parameter

The value of this parameter controls the pitch of the generated sound.
The range of values are from @ to 255, and each consecutive value will
give a quarter-semitone pitch change. The lowest note (P=0) is the B one
octave and a semitone below middle C, and the highest accurate note is
the B above middle C (P=1@¢). Although values above P=1@9 are not
accurate to the even-tempered scale, they can still be put to good use for
making sound effects. The table below is a quick reference guide to help
you find the pitches you want.

118 Making sounds

Octave number
Note 1 2 3 4 5 6
B) 48 96 144 192 240
C 4 *52 139 148 196 244 *middle C
C# 8 56 104 152 200 248
D 12 64 108 156 204 252
D# 16 64 112 169 208
E 2¢ 68 116 164 212
F 24 72 129 168 216
F# 28 76 124 172 220
G 32 8¢ 128 176 224
G3# 36 84 132 180 228
A 49 88 136 184 232
A# 44 92 1490 188 236

When the noise channel (channel @) is selected, the P parameter has the
following effect:

P=9 Tone — high pitch

- P=1 Tone - intermediate pitch
P=2 Tone - lpw pitch

P=3 Tone — intermediate pitch
P=4 Noise — short period

P=>5 Noise — intermediate period
P=6 Noise — long period

P=7 Noise - intermediate period

The D parameter

The value of this parameter sets the duration of the tone in steps of
50mS. So if D=10¢, then the duration will be (186 X 5¢)/1004, or five
seconds. The maximum value of D is 254 (12.75 seconds).

If D=-1, then the tone will carry on until it is turned off.

Using the SOUND command in a program

Before using the SOUND command in a program, try following through
the example below, in order to produce a single sound.

First of all, decide which channel to use: channel @ will give noise, so use
one of the three tone producing channels, say channel 1. So the first
number is 1 - this is the value of Q.

Making sounds 119

Now choose the value for the second number — the A parameter. At the

moment we aren’t using any ENVELOPEs, and we want to hear the sound,
so the next number is —15 — this is the value of A.

The third number—the P parameter— determines the pitch. If youlook at
the pitch table, the C below middle C is the value 4. So P=4.

How long shall the sound last? The fourth number — the P parameter —
gives the duration in 5@mS (five hundredths of a second). So for a
duration of five seconds, P=10.

Now type the following SOUND command with the number above:

SOUND 1,-15,4,100 {31

This produces a tone which lasts for five seconds, and is the C below
middle C.

Remembering that the pitch value is in quarter semitone steps, then to
produce the sound corresponding to C (one semitone higher than the
previous one), we must increase the pitch value by four.

SOUND 1,-15,8,100 L{3LLiL]

To play the next note up the scale, increase the P parameter by four
again, and so on.

Instead of using numbers in the SOUND command, you can incorporate
the SOUND command into a program, and use real or integer variables
(see chapter 11). For example, let’s produce a chromatic scale over an
octave (equivalent to playing every note in sequence on a piano keyboard
over an octave).

Instead of having to type in 13 SOUND commands to get the 13 different
notes in the scale, we can use a variable for the P parameter, and change
the variable value 13 times by using a FOR . . . NEXT loop. Try the
program below which demonstrates this.

S REM chromatic scale starting at C below m
iddle C up to middle C

19 FOR X%=4 TO 52 STEP 4

2@ SOUND 1,-15,X%,5

3@ NEXT

12¢ Making sounds

Lines 10 and 3@ set up a loop with variable X%, whose values are passed
to the pitch parameter in line 2¢. Line 2@ contains the SOUND command:
channel 1 is selected, the sound is ‘on’ (A=-15), the pitch is determined
by the value of X%, and each sound plays for 5 X 5¢mS, or .25 seconds.

As you can hear, each new note only starts after the one before has
finished. If you want to put a pause between each note, insert another
SOUND command between lines 2¢ and 3@, but turn it ‘off’ by giving the A
parameter value @. The length of the pause will of course be decided by
the value you give the last parameter. Try this line:

25 SOUND 1,0,X%,10

(Obviously, the pitch value here can be anything you like). Now list the
program.

5 REM chromatic scale starting at C below m
iddle C up to middle C

1@ FOR X%Z=4 TO 52 STEP 4

20 SOUND 1,-15,X%,5

25 SOUND 1,08,X%,10

20 NEXT X%

When you RUN this program, you will hear a pause between each note.
Try changing the values of X% and the duration of the tones and pauses

to get different effects. If you want to make a crude sequencer, put the
complete program into a REPEAT . . . UNTIL FALSE loop.

ENVELOPE

Each SOUND command, as we have seen, allows you to generate a single
tone, whose pitch and duration is defined by you within the SOUND
command. The ENVELBPE command allows you to change the single tone
into something far more complex. Try typing the following:

1@ SOUND 1,2,100,100

If you run this, you will hear a continuous tone which lasts for five
seconds. Now add this line:

2@ ENVELOPE 2,1,4,-4,4,10,20,10,0,0,0,0,0,0

Making sounds 121

When you run this program, you'll hear a sound rather like a police siren.
Ignore all the numbers after the ENVELOPE command, except for the very
first one, which defines the ENVELOPE number, in this case 2. The second
parameter in the SOUND command selects ENVELOPE number 2;
(ENVELOPE 2, . . .); the third parameter selects the starting pitch and the
fourth parameter selects a duration of five seconds.

Note that once an ENVELOPE statement has been executed, it will stay in
the computer until it is either re-defined, or until the computer is
switched off. So even if you delete line 2@ in the program above, when you
run the program ENVELOPE number 2 will still be selected and used.

The ENVELOPE command

The ENVELOPE command is followed by 14 parameters, each separated
by a comma. To make life easier, only the first eight actually do anything
on the Electron, but the rest must be included for the sake of
compatibility with the BBC Microcomputer. These eight parameters are
shown below, and are followed by six zeros to make up the 14 parameters
necessary.

ENVELOPE n,s,Pi1,Pi2,Pi3,Pr1,Pr2,rPr3,0,0,0,
8g,0,0

If you want to run Electron programs containing ENVELOPE statements
on the BBC Microcomputer, then you should get into the habit of always
using the following numbers for the last six parameters:

ENVELOPE X,X,X,X,X,X,%X,%,126,0,0,-126,126,1
26

This will ensure that the resulting sound will be the same on both
computers. For those of you who are not concerned with compatibility,
use any numbers you like. In the rest of this section, ‘zeros’ have been
used to save initially confusing you with too many numbers!

The duration of the ENVELOPE effect varies, depending on the values in
the ENVELOPE command. However, as long as the duration is less than
that of its associated SOUND command, it will repeat itself until the
SOUND command finishes. For example, if you set the duration of a
SOUND command to five seconds and select an ENVELOPE which makes a
‘WOW’ sound lasting for one second, then the result will be
‘WOWOWOWOWOW’. With the ENVELOPE command, you can:

122 Making sounds

— Alter the SOUND pitch parameter by a specified increment
— Specify how many increments you want
— Set the length of time each increment ‘plays’

The length of each increment can only be specified once in the ENVELGPE
command, but the increment value itself, and the number of increments
can both be specified three times!

Have a look at the graph below, which represents pitch plotted against
time for an ENVELOPE command. As you can see, the resulting envelope
contains three stages. In the first stage, the pitch increases by an
increment of 1, then by -2 in the second stage, then 1 in the third stage. In
the first stage there are seven pitch increments, in the second stage five,

and in the third stage 12. (Notice that the duration of every pitch
increment is the same).

134
12+
114
194
D 4 7
8+
PITCH

VALUE

g: '_}Pil

I

I

|

|

{

{

!

44 ‘.
|

34 !
-)
2)
14 |
|

|

|

|

| (steps of 19mS)

] | } L § | : T | § | | LI | §) | L 1 } | L] L
1
|

Stage 3

0 v ¥ L] L4 L J L]
Stage 1

The first eight parameters of the ENVELOPE command are as follows.

First parameter n

This is the ENVELOPE number, and is selected by the second parameter
of the SOUND command. Values are from 1 to 186.

Second parameter s

This gives the duration of every pitch change in the ENVELOPE command,
(ie all three stages), and each value corresponds to 1@mS. Values are
from @ to 255. Values 1 to 127 give durations of 1 X 16mS to 127 X 1¢mS,

Making sounds 123

and when the ENVELOPE is finished, it repeats itself until the duration of
the associated SOUND command has run out. Values 128 to 255 are
equivalent to 1 to 127, except that at the end of the ENVELOPE, the
final pitch is held until the associated SOUND command has run out.

Third parameter Pil
This gives the value of every pitch increment during the first stage. Values
are from -128 to 127.

Fourth parameter Pi2
This gives the value of every pitch increment during the second stage.
Values are from —128 to 127.

Fifth parameter Pi3
This gives the value of every pitch increment during the third stage.
Values are from —-128 to 127.

Sixth parameter Prl
This gives the number of pitch increments in the first stage. Values are
from 1 to 255.

Seventh parameter Pr2
This gives the number of pitch increments in the second stage. Values are
from 1 to 255.

Eighth parameter Pr3
This gives the number of pitch increments in the third stage. Values are
from 1 to 255.

Parameters 9 to 14

These parameters must be put into the ENVELOPE command, but their
values will have no effect on the effect produced by the Electron’s
ENVELOPE command. In order to keep the command compatible with the
BBC Microcomputer, these values should be 126,0,6,-126,126,126.

Constructing an ENVELOPE
Type in the following program:

1@ SOUND 1,2,4,50
2@ ENVELOPE 2,1,1,-2,1,7,5,12,06,0,0,0,0,0

124 Making sounds

If you run this, you will hear a whirring sound. The sound is being
transmitted on channel 1, ENVELOPE 2 is selected, the pitch value is 4,
and the sound lasts for 5@ X 50mS or 2.5 seconds.

The graph below shows the effect of the ENVELOPE on the sound. This
graphis exactly the same as the one at the beginning of this section on the
ENVELOPE command, and was drawn using the parameter values in the
ENVELOPE statement above. The parameters are as follows:

n
S

Pil
Pi2
Pi3
Pri

Pr2
Pr3

PITCH
VALUE

ENVELGPE number 2

Pitch change duration is 1 X 18mS

Stage 1 pitch changes INCREASE in increments of 1, (quarter
semitones)

Stage 2 pitch changes DECREASE in increments of 2, (half
semitones)

Stage 3 pitch changes INCREASE in increments of 1, (quarter
semitones)

Number of pitch changes in stage 1 is 7

Number of pitch changes in stage 2 is 5

Number of pitch changes in stage 3 is 12

134

|
|
1
|
i
i
{
|
t

-
A

1 TIME ~———
1A : (steps of 19mS)

|

|

|

{

5
i
b
|

¢ L L L8 |) |) J LJ L LA] L § L] L} | L} ¥] L T

Stage 1 Stage 2

i
{
|
r
!
|
!
)
|
1
|
i
i
{
1
!
|
|
|
|
|
1

Stage 3 |

The total time taken for this ENVELOPE command is 18mS X total
number of pitch changes, or 24 X §.681 seconds, = $.24 seconds. So the

ENVELOPE is repeated over and over again, until the SOUND command
finishes.

Making sounds 125

Additional SOUND features

The first parameter of the SOUND command can be given extra values
which provide you with some more facilities. To use these values, you
must enter the first parameter as afour digit hexadecimal number (which
must be preceded by a & sign, to tell the computer that a hexadecimal
number follows). The four digits in this number can be represented by
HOFC, and here is a description of each digit.

H HOLD H = @ for compatibility with the BBC Micro-
computer.

O Notused, but should be entered with a value of @ for compatibility.

F FLUSH F = @ sound is queued. This means that the sound
won’t start playing until the previous one has
finished. This is only true if the previous sound is on
the same channel as this one. If the channel
numbers are different, then the latest SOUND
instruction to be executed by the computer will
immediately start playing in place of the previous
one,

F =1 sound is not queued. This means that as soon
as the sound is executed by the computer, any
sound previously playing will immediately stop and
be replaced by this sound.

C CHANNEL C=4¢ noise channel
C = 1, 2 or 3 tone channels

Example SOUND and ENVELOPE programs

The program below turns the Electron into a keyboard instrument by
using the 12345 and QWERTY keys.

19 REM Keyboard - Caps Lock on!

20 *xFX12,4

20 xFX11,4

40 S3= " Q2W3ERSTAY7UI90@P"

5@ REPEAT

60 SOUND &11,-15,INSTR(S$,GET$)*4 1
7@ UNTIL FALSE

126 Making sounds

This next program takes a string of note names, and plays the notes.
The range of notes you can play is from the C below middle C, to the B
above middle C. To produce the full range in sequence enter the
following: cdefgabCDEFGAB (RETURN). This will give you two octaves in
the key of C major.

1@ REM Tune player

20 S$ = " ¢ d ef g a bC D EF G A B"
2@ REPEAT

40 INPUT "=>" T$%

5 FOR N%Z = 1 TO LEN T$

6@ PXZ = INSTR(S$, MIDS(TS, N%,1))

70 SOUND 1,-15,P%x4 4

80 NEXT

9@ UNTIL FALSE

Laser Zap! This program uses an ENVELOPE with a downwards pitch
sweep. To fire the laser, press any key.

10 REM Zap!

2@ ENVELOPE 1,129,-15,-8,-3,108,1@,10,126,0,
0,-126,126,126

30 REPEAT

4@ SOUND &11,1,255,5

50 UNTIL GET = FALSE

This last program uses a repeated ENVELOPE with an upwards pitch
sweep to produce a spaceship take-off sound.

10 REM Liftoff

20 ENVELOPE 1,1,6,6,6,2,2,1,126,0,0,-126,12
6,126

30 FOR S%X = @ TO 220

40 SOUND 1,1,S%,1

5@ NEXT

23 Address pointers,
indirection operators

The Electron’s memory

The computer’s memory consists of 65536 locations (@ to 65535), each
containing 1 byte (8 binary digits). Half of the computer’s memory canbe
written to or read from (called RAM); the other half can only be read from
(called ROM).

Each location in memory has a unique address (like the address of your
house) which is a four digit hexadecimal number. Location @ in memory
is &@#0PB and location 65535 is &FFFF. The & sign means that the
numbers which follow are in hexadecimal. The easiest way to look at the
computer's memory is on a memory map. Overleaf is a simplified
memory map for the Electron, showing on the right the address of each
location.

Looking at the memory map, see how it is divided into the two types,
RAM and ROM. All the programming which went into making the
machine work is stored in the upper haif of the memory, from &880 to
&FFFF. Your BASIC programs are stored, unless the computer is told
otherwise, starting at location &@E $#@. This position where the program
starts is assigned to a resident variable called PAGE. PAGE is an address
pointer; it tells the computer at which address to start executing a
program when you tell it to RUN. The location at which the BASIC
program finishes is also assigned to a variable, called TOP. If you type:

PRINT TOP-PAGE LI

the computer tells you how many bytes of memory your program fills.

Note that future expansions of the Electron, eg a disc filing system, will
move PAGE up. :

The next address pointer is LOMEM. This tells the computer where it can
store the variables which are used by your program, and is usually the
same value as TOP.

128 Address pointers, indirection operators

Memory map
Hex Decimal
&FFFF 655635
ti t ROM
M Operating syz ?m outnat &FF 3¢ 65280
emory mapped input/outpu
YRR T Y LeFcos 61512
Operating system ROM
&Caoa 49152
4 paged ROMs eg BASIC
&8009 32768
RAM used for
high resolution graphics , Movable boundary
__________________ A
HIMEM - BASIC stack)
32 A
x}é%pl}{ — - &4000 16384
LOMEM _ Dynamic variable storage 4 V¥ Movable boundary
TOP —[~~~TTTTTTTTTTTOC %“
- &2000 8192
User’s BASIC program area
PAGE —» &E 3¢ 3584
Reserved for operating
gystem use
&HP0EY @

The last address pointer is HIMEM. HIMEM shows the position of the
bottom of the screen memory, so any program or variables must be kept

below this value.

Address pointers, indirection operators 129

Programs are normally loaded at &$E@@, but they can be put higher up
the memory by altering the value of PAGE. For example, if you make PAGE
= &10¢9, and then you LOAD a program from tape, it will be situated at
address &19¢9. When you do this, TOP and LOMEM are moved to their
new position above the program. Another way in which to re-situate a
program is to use *LOAD.

*LOAD "program name" 1000 Lijul

will LOAD the program from tape into the memory at location &1$¢@.
This instruction does not alter PAGE, and if you want to run the program
you must make PAGE = &10¢9.

Any section of memory can also be saved by using ¥*SAVE.
*SAVE "file name" SSSS FFFF EEEE LIAWLL

8888 is the hex address from which you wish to start saving.
FFFF is the hex address plus 1 at which you wish to finish.

EEEE is the hex address at which execution should commence.

Indirection operators

Individual memory locations can be accessed from BASIC by using three
indirection operators:

Symbol Purpose Number of bytes
affected
? Byte indirection operator 1
I Double-word indirection operator 4
$ String indirection operator 1 to 256

To illustrate this, set a variable to an address in memory, for example:

A = &1000

7A will give the contents of location A, so the contents of location & 1908
can be set by typing

2A = 100 LI30LL]

133 Address pointers, indirection operators

(Of course, because a location is a single byte, it cannot be set to a
fractional number, or any integer above 255 decimal, whichis &FF. If this
is done, the least significant byte is stored in the memory location
specified.)

To check the contents of &1@398, type

PRINT ?7A LJ3LLL]

BASIC integer variables, such as age%, are stored in four consecutive
bytes of memory, and four bytes can be accessed using !.

78965

Strings can be placed direct in memory, each character’s ASCII code
being stored in 1 byte of memory.

TA

$A = "STRING"

The $ indirection operator appends a carriage return to the end of the
string, so the above command would give 6 bytes of ASCII code for the
word ‘STRING’, plus a byte containing &D which is the ASCII code for

RETURN |

Notice that the indirection operator is $A, and not A$ which is a BASIC
string variable. The string in memory can, however, be assigned to a
BASIC variable:

name$ = $A L{ALL

Another way of using ? is with both a variable and a number.
A?6 gives the contents of location A+B8, in this case location &10@6.
To look at the contents of a group of memory locations, write a small

program:

1@ FOR I = @ T0 15
2@ PRINT "CONTENTS OF ";A+I;" ARE ";A?I
3@ NEXT

The indirection operators described above are used and explained more
thoroughly in the chapter on Assembly Language.

24 User-programmable
keys

In the same way that m and the alphabetic characters give BASIC
keywords at a single stroke, you can program the keys marked 1 to @ to
give any string you choose.

For example,

*KEY1 "*CAT"

will cause m 1 to print *CAT on the screen.

Control characters may be placed in the string, by typing the : character.
For example, [HL{] M is 1 M, which performs the same function as the

m key. For a list of control characters, see Appendix A. So,
*xKEY1 "*CAT |M"

will cause m 1 to print *CAT on the screen, and to set the command
in operation, Therefore, a whole program, or a series of commands can be
stored in one key.

A useful routine is to have one key which returns the computer to MODE
6 and lists the program in paged mode:

*KEY® "MODE 6 (M [N LIST |M"

Here is a key definition containing a small BASIC program:

*KEY3 "10 REPEAT ;M 20 PRINY CHR$(RND(95)+3
1) ‘M 3B UNTIL VP0OS=24 |M RUN (M"

For the more advanced

The L:]i{7.\4 key can be programmed also. It takes the value 1¢. The
following program cannot be stopped either by m or E1i17.14:

1@ ON ERROR GOTO 30

20 *KEY1@ "OLD |M RUN |[m"

30 PRINT "YOU CAN'T STOP ME!"
4@ REPEAT UNTIL FALSE

132 User-programmable keys

ON ERROR is described in chapter 27. Actually, this program can be

halted by pressing [agGIq L1 7.14.

is called a ‘hard reset’. It resets everything very nearly
the way it was when the machine was first switched on. When you try it
you'll hear a beep and you'll see that the & reappears after the message
at the top of the screen.

:1:19.1.4 on its own is called a ‘soft reset’. It is roughly equivalent to
pressing m and entering the commands NEW and MODE 6.

The soft reset does not clear the *¥KEY definitions for example.

The five screen editing keys can also be re-defined, just like :11{T.1.4,
after the issue of a ¥*FX command.

Keys can also be loaded with the contents of BASIC variables. The
instruction which does this is OSCLI, which stands for operating system
command line interpreter. It can be used with any operating system call
from BASIC (distinguishable by a preceding asterisk), for example,
*KEY, *SAVE, *L0OAD, and so on. Each BASIC variable assigned to the
KEY definition must be converted into a string, and the asterisk omitted,
as follows:

0SCLI "KEY"™ + STR$X + "LIST [M"

This will put “LIST l M"” into KEY X, where X is a BASIC variable.

There is no limit to the number of BASIC variables which may be used in
an OSCLI assignment, provided that they are all either string variables,
or are turned into strings using STRS.

25 BASIC keywords

This chapter contains a description of every word in the Electron BASIC
language. These words are called ‘keywords’.

The syntax of each keyword is shown, and an explanation of the form

used is given below.

t

[

<num-const>
<num-var.>
<numeric >

<string-const >

<string-var >
<string>

<testable condition>

<statement>

<variable name>

denote possible repetition of the enclosed
symbols, zero or more times

enclose optional items

indicates alternatives from which only one
should be chosen

means a numeric constant such as 4.7 or 112
means a numeric variable such as Y or width

means either a <num-const> or a <num-
var>, or a combination of these in an
expression, like 4*X+1

means a string enclosed in quotation marks like

“JONCRAWFORD”
means a string variable, like A$ or NAME$

means either a <string-const> or a <string-
var>>, or an expression such as A$+“ELK”

means something which is either TRUE or
FALSE. Since both TRUE and FALSE have values,
it is possible to use <numeric> instead of
<testable condition>>

means any BASIC statement, like PRINT or
GOSUB or PROC

means any sequence of letters or numbers
which is an acceptable variable name

134 BASIC keywords

BASIC keywords

ABS

Abbreviation

Description

Examples

Syntax

ACS

Abbreviation

Description

Examples

Syntax

ADVAL

Abbreviation

Absolute value

None FUNCTION

This function gives the modulus; that is, it strips the
minus sign from the number variable or expression
following it.

PRINT ABS(X) will give 2 if X is -2
deviation = ABS{Temp1—Temp2)
root = SQR(ABS(Y))

Brackets are optional where sense is not affected.

<num-var> = ABS (<numeric>)

Arc-cosine

None FUNCTION

This function gives the angle, between § and Pl in
radians, whose cosine is the number variable or
expression following ACS. This expression must be
between —1 and 1 inclusive,

angle = ACS(@.5)
course = ACS (—§.789)
ANGLE = ACS(AD/HY)

Brackets are optional where sense is not affected.

<num-var> = ACS (<numeric>)

SOUND channel buffer status

AD. FUNCTION

Description

Examples

Syntax

AND

Abbreviation

Description

Examples

Comments

Syntax

BASIC keywords 135

Gives number of free spaces in SOUND buffers. ADVAL
(~5) to ADVAL (—8) correspond to SOUND channels @

to 3 respectively.

X=ADVAL(—7):PRINT"Free spaces in ch. 2= "X
IF ADVAL(-5)<>@ THEN SOUND 2, . ..

<num-var> = ADVAL(<numeric>)

Logical AND

A. OPERATOR

This is a logical operator which is most commonly used
inanlF... THEN statement to combine two conditions
and obtain a TRUE or FALSE result.

False AND False gives False
False AND True gives False
True AND False gives False
True AND True gives True

If this result is TRUE the computer will go on to

the statement following the THEN. If the resultis FALSE
the computer will go on to the statement following the
ELSE, but if the ELSE is absent it will go on to the next
line.

{F X <5 AND X > @ THEN PROCmiddle
IFZ=17 AND Y < 7 THEN PRINT "YES"” ELSE PRINT
l'Noll)

AND may also be used in the conditional part of a
REPEAT. .. UNTIL loop.

<num-var>> = <numeric>> AND <numeric>
<num-var>> = <testable condition> AND
< testable condition>

136 BASIC keywords

ASC

Abbreviation

Description

Examples

Syntax

ASN

Abbreviation

Description

Examples

Syntax

ATN

Abbreviation

Description

Examples

ASCII code

None

FUNCTION

This function gives the ASCII character value of the
first character in the string which follows it. If this
string 1s null it gives —1.

PRINT ASC("JOHN") will give 74 (see ASCII table)
IF ASC{AS) = 78 THEN NEXT.

X=ASC("m")*1§

Brackets are optional where sense is not affected.

<num-var> = ASC (<string>)

Arc-sine

None FUNCTION

This function gives the angle, between —PI/2 and P1/2
in radians, whose sine is the number variable or
expression following ASN. This expression must be
between —1 and 1 inclusive.

PRINT ASN(OP/HY)
angle = ASN(.5)
Brackets are optional where sense is not affected.

<num-var> == ASN (<numeric>>)

Arc-tangent

None FUNCTION

This function gives the angle, between —P1/2 and P1/2
in radians, whose tangent is the number variable or
expression following ATN.

PRINT ATN(OP/AD)
angle = ATN{-3)

Syntax

AUTO

Abbreviation

Description

Examples

Comments

Syntax

BGET#

Abbreviation

Description

Examples

Syntax

BASIC keywords 137

Brackets are optional where sense is not affected.

<num-var> = ATN (<numeric>)

Automatic line numbering

AU. or @I A COMMAND

This command gets the computer to print the next line
number and a space each time you press 311

The command has two optional parameters: the firstis
the starting line number, and the second is the interval
between each subsequent line number. The default
value of both these parameters is 10.

AUTO 10@@.5 will give line numbers 10@, 105, 116, 115
etc.
AUTO by itself will give line numbers 16, 20, 39, 40, 58,
etc.

The largest allowable line number is 32767, and the
largest allowable interval is 255.

You must press m to get out of the AUTO mode.
AUTO[<num-const> [, <num-const>]]

Read a byte from file

B.# FUNCTION

Reads a single byte from a previously opened file
whose channel number follows (see chapter on file
handling).

byte = BGET# channel
character = BGET#A

<num-var.> = BGET# <num-var>

138 BASIC keywords

BPUT#

Abbreviation

Description

Examples

Syntax

CALL

Abbreviation

Description

Examples

Syntax

CHAIN

Abbreviation

Description

Store a byte to file

BP.# STATEMENT

Stores a single byte on a previously opened file whose
channel number follows (see chapter on file handling).

BPUT# channel, number
BPUT# file, Z MOD 256

BPUT# <num-var>>, <numeric>

Call assembled machine-code subroutine

CA. STATEMENT

Used from BASIC to call a previously assembled
machine-code subroutine. Similar in operation to a
PROC, being capable of passing parameters. Used in
preference to a PROC where long calculation is in-
volved, and speed is at a premium.

3§ CALL &209¢

70 fraction = &16A5
8@ CALL fraction

15§ CALL fraction, string$, number, integer%, ?hyte

CALL <numeric>{, <num-var> | <string-var>}

Load and run a program

CH. or [IIY K STATEMENT

An instruction which LOADs and RUNs the program
whose title is in the quotes. If the title is omitted the
next program on the tape will be loaded. Can be used
in one program to load another. NB all variables
except the resident integer variables are cleared.

Examples

Syntax

CHRS$

Abbreviation

Description

Examples

Syntax

CLEAR

Abbreviation

Description

Examples

Syntax

CLG

Abbreviation

BASIC keywords 139

CHAIN "PROG1”
CHAIN "

CHAIN <string>

Character code

CHR. FUNCTION

Gives the character whose ASCII code is the number
variable or expression following CHRS.

PRINT CHRS$(32)
A$ = A$ + CHR$ (code%)

Brackets are optional where sense is not affected.

<string-var> = CHR$ (<numeric>)

Clear memory

CL. STATEMENT

This instruction takes away all the variable names in
use, except the resident integer variables A% to Z%,
and @%.

IF ENcrash > 3§ THEN CLEAR

CLEAR

Clear graphics screen

None STATEMENT

14¢ BASIC keywords

Description

Examples

Comments

Syntax

CLOSE#

Abbreviation

Description

Examples

Comments

Syntax

CLS

Abbreviation

Description

Examples

Comments

Syntax

Fills the graphics screen with current graphics back-
ground colour (which can be altered by the GCOL
instruction). The graphics cursor is ‘homed’ to 3.0
bottom left of graphics screen.

IF X THEN CLG
MLi1Y P has same effect.
CLG
Close a file
CLO.# STATEMENT

Tells the computer you have completely finished with
the file whose channel number follows (see chapter on

file handling).

CLOSE# (Channel)
CLOSE# filel

CLOSE#@ closes all files.
CLOSE# <numeric>

Clear text screen

None STATEMENT

Fills text screen with current text background colour
(which can be altered by the COLOUR instruction). The

text cursor is homed to @,8 the top left of the text
screen.

IF X THEN CLS

MY L has same effect.
CLS

COLOUR

Abbreviation

Description

Examples

C.ormc

BASIC keywords 141

STATEMENT

Used to select text screen foreground and background

colour.

Standard colours, with their logical values, in each

mode are as follows:

Foreground colour

Background colour

Logical no Actual colour Logical no Actual colour
Modes $,3,4,6

@ Black (9) 128 Black (#)

1 White (7) 129 White (7)
Modes 1,5

] Black (4} 128 Black (@)

1 Red (1) 129 Red (1)

2 Yellow (3} 136 Yellow (3)

3 White {7} 131 White (7)
Mode 2

"] Black (#) 128 Black (9)

1 Red (1) 129 Red (1)

2 Green (2) 136 Green {2)

3 Yellow {3} 131 Yellow (3)

4 Blue (4) 132 Blue (4)

5 Magenta (5) 133 Magenta {5}

6 Cyan (6) 134 Cyan (6)

7 White (7) 135 White (7)

8 Flashing black/white (8) 136 Flashing black/white (8)

9 Flashing red/cyan (9)

1¢ Flashing green/magenta (1)
11 Flashing yellow/blue (11)

12 Flashing blue/yellow (12)

13 Flashing magenta/green (13}
14 Flashing cyan/red (14)

15 Flashing white/black {15)

137 Flashing red/cyan (9)

138 Flashing green/magenta (1)
139 Flashing yellow/blue {11}
14¢ Flashing blue/yellow {12)
141 Flashing magenta/green {13)
142 Flashing cyan/red (14)

143 Flashing white/black (15)

COLOUR takes one parameter, which is the logical
value of the particular colour required, as given in the

tables.

COLOUR 2
COLOUR 131

142 BASIC keywords

Comments

Syntax

COS

Abbreviation

Description

Examples

Syntax

COUNT

Abbreviation

Description

Examples

Comments

Syntax

Colours used in each mode may be changed using
VDU18;.

See chapter 29
COLOUR <numeric>

Cosine

None FUNCTION

This function gives the cosine of an angle, which must
be in radians.

PRINT C0S(3.142)
X = COS(y)

Brackets are optional where sense is not affected.

<num-var> = C0S (<numeric>)

Count characters

Ccou. FUNCTION

Counts the number of characters printed using PRINT
since last carriage return.

18 PRINT “Happy Birthday “; COUNT
2@ PRINT “Happy” ' "Birthday “; COUNT
>RUN

Happy Birthday 15

Happy
Birthday 9

Different from PQS, which gives the position of the
cursor from the left hand margin.

<num-var> = COUNT

DATA

Abbreviation

Description

Examples

Syntax

DEF

Abbreviation

Description

Examples

Syntax

DEG

Abbreviation

Description

Examples

BASIC keywords 143

Data in program

D. STATEMENT

This enables you to store information in a program and
to recall it using a READ instruction. The information

can be string or numeric. {See chapter on READ and
DATA).

18 READ A,BS,.century
2@ DATA 3,GEORGE,18

DATA <str-const> | <num-const> | <num-var>{,
<str-const> | <num-const> | <num-var>}

Define function or procedure

None STATEMENT

Informs the computer that an FN or PROC is about to
be defined.(See chapters on procedures and functions.)

1§ DEF FNdouble(X) = X*2

1§ DEF PROCdouble
20X = X*2
3d ENDPROC

DEF FN| PROC <name>[(<string-var>|
<num-var>{, <string-var>| <num-var>})]

Degrees

[FUNC |3 FUNCTION

Converts radians into degrees.

angle — DEG(P1/6)
angle = DEG{ACS(#.78))

144 BASIC keywords

Syntax

DELETE

Abbreviation

Description

Examples

Comments

Syntax

DIM

Abbreviation

Description

Examples

Comments

Syntax

Brackets are optional where sense is not affected.

<num-var> = DEG<numeric>

Delete program lines

DEL. COMMAND

This command will delete a section of program from
the first line number stated to the second inclusive.
Cannot be used in a program.

DELETE 180,150

To delete a single line, just type the line number and
press B{3LLT .

DELETE <num-const>,<num-const>>

Dimension of an array

None STATEMENT

Informs the computer of how much memory to reserve
for a named array. (See chapter on arrays.)

DIM Date$(12,31)
DIM X(14§)

DIM is also used to allocate space for machine-code
programs.

DIM <num-var> | <str-var>
(<numeric>{, <numeric>>})
DIM <num-var> <numeric>>

DIV

Abbreviation

Description

Examples

Comments

Syntax

DRAW

Abbreviation

Description

Examples

Syntax

BASIC keywords 145

Integer division

None OPERATOR

This tells the computer to divide one number into
another using integer arithmetic; this means the result
will always be a whole number.

17 DIV 2 gives 8, ie the number of times that 2 can be
subtracted from 17 with a positive or zero remainder.

If numbers or variables are used which are not
integers, then they will be truncated before the div-
ision is carried out.

8.1 DIV 2.9 gives 4.

<num-var>> = <numeric> DIV <numeric>

Draw line on screen

pR. or I D STATEMENT

Will draw a line from the previous coordinates of the
graphics cursor to the new ones given, in all graphics
modes (@, 1, 2, 4 and 5). To move the graphics cursor
use the MOVE instruction.

The screen is always # to 1279 on the X axis and # to
1024 on the Y axis, regardless of which graphics mode
you are in. The line is drawn in the current graphics
foreground colour which can be changed by using the
GCOL instruction.

1§ MODE 4
2§ MOVE {, 512
3§ DRAW 1279, 512

will draw a horizontal line half way up the screen.
See chapter 20

DRAW <numeric>, <numeric>

146 BASIC keywords

ELSE
Abbreviation EL. or m E (See IF)
Description Used to provide an alternative course of action if the
result of an IF statement is false.
Examples IF A= THEN PRINT "YES” ELSE PRINT "NO”
IF B THEN 18§ ELSE 244
Syntax IF <testable condition> THEN <statement>
ELSE <statement>
END
Abbreviation None STATEMENT
Description Can be used to halt execution of a program. Its other
use is to reset TOP after a PAGE move.
Examples PAGE = &1600 : END
6@ IF finished THEN END
Syntax : END
ENDPROC End of procedure
Abbreviation E. STATEMENT
Description This statement must conclude a DEF PROC as it tells
the computer you have finished defining the pro-
cedure.
Examples 19§ DEF PROCname

11§ REM statement
128 REM statement
13§ ENDPROC

Syntax ENDPROC

BASIC keywords 147

ENVELOPE
Abbreviation ENV. STATEMENT
Description This statement is used in conjunction with the SOUND

statement to control the pitch of a sound. The ENV-
ELOPE statement is followed by 14 parameters.

ENVELOPE n,s,Pi1,Pi2,Pi3,Pr1,Pr2,Pr3,126,0,0,-126,

126,126
Parameter Range Effect
n 1to4d Envelope number

bits -6 @ to 127 Length of each step in
1/198 of a second

s bit 7 @orl @ = auto-repeat the
envelope
1 = no auto-repeat

Pil —128 to 127 Change in pitch per step in
section 1

Pi2 —128 to 127 Change in pitch per step in
section 2

Pi3 —128 to 127 Change in pitch per step in
section 3

Pri1 @ to 255 Number of steps in section
1

Pr2 # to 255 Number of steps in section
2

Pr3 @ to 255 Number of steps in section
3

See chapter 22

Syntax ENVELOPE <num-var>,<num-var>, <num-var.>,
< num-var>>, <num-var>>, <num-var>>, <num-var.>,
< pum-var>>, <num-var.>, <num-var>>, <num-var.>,
< num-var>, <num-var.>, < num-var.>

148 BASIC keywords

EOF#

Abbreviation

Description

Examples

Syntax

EOR

Abbreviation

Description

Examples

Syntax

End of file check

None FUNCTION

This function is used to discover whether the end of an
open file has been reached. The function gives a —1 if
the end has been reached and a ¢ if not. EOF# must be
followed by the channel number.

IF EOF# (channel) THEN PROCclose
REPEAT. .. :UNTIL EOF# (X).

<num-var> = EQOF# (<num-var>)

Logical exclusive-OR

None OPERATOR
This is used in an IF...THEN or REPEAT... UNTIL

loop to combine two conditions in the following way:

False EOR False gives False
False EOR True gives True
True EOR False gives True
True EOR True gives False -

In other words, if the results of the two conditions

combined by an EQOR are different then the result is
true.

IFA=6 EOR B < 1§ THEN GOSUB 42§

<num-var> = <numeric>> EOR <numeric>

-

EQUB

Abbreviation

Description

Examples

Syntax

EQUD

Abbreviation

Description

Examples

Syntax

EQUS

Abbreviation

Description

BASIC keywords 149

None STATEMENT

Used to insert a byte of data into an Assembly
Language program. EQUB can only be used inside the
square brackets enclosing a piece of Assembly Lan-
guage.

EQUB 13
EQUB A%

EQUB <numeric>

None STATEMENT

Used to insert a double-word (4 bytes) of data into an
Assembly Language program. EQUD can only be used
inside the square brackets enclosing a piece of Assem-
bly Language.

EQUD 19009049
EQUD F%

EQUD <numeric>

None STATEMENT

Used to insert the ASCII values of a string into an
Assembly Language program. £QUS can only be used
inside the square brackets enclosing a piece of Assem-
bly Language.

15¢ BASIC keywords

Examples

Comments

Syntax

EQUW

Abbreviation

Description

Examples

Syntax

ERL

Abbreviation

Description
Examples

Syntax

EQUS “Too big”
EQUS LS

Used, among other things, for printing error messages
in Assembly Language programs. Unlike the indirect-

ion operator $, EQUS does not add a [J3NLL} (&D) to
the end of the string.

EQUS <string>

None STATEMENT

Used to insert a word of data (2 bytes) into an
Assembly Language program. EQUW can only be used
inside the square brackets enclosing a piece of Assem-
bly Language.

EQUW &FFE@
EQUW Z%

EQUW <numeric>

Error line number

None FUNCTION

A function which gives the line number in which the
last error occurred.

X=ERL
REPORT: PRINT “ at line “;ERL

<num-var> = ERL

ERR

Abbreviation

Description

Examples

Syntax

EVAL

Abbreviation

Description

Examples

Syntax

EXP

Abbreviation

Description

Examples

Syntax

EXT#

BASIC keywords 151

Error

None FUNCTION

A function which gives the numeric code for the last
error which occurred. This is useful for error trapping.

IF ERR — 17 THEN CLOSE# (channel)

<num-var.> = ERR

Evaluate

EV. FUNCTION

Mainly used to enable you to type an expression, such
as a mathematical equation, into the computer while a
program is running. The equation is entered as a string,

eg A$ = “C0OS(X/28)", and EVAL(AS) will work it out.

AS = "COS(X/20)"
Y = EVAL(A$)

<num-var> = EVAL (<string>)
<str-var> = EVAL (<string>)

Exponent

None FUNCTION

This mathematical function calculates the exponential
e (2.7183 . ..) raised to any specified power.

Y = EXP(X)
ie Y = e to the power of X

<num-var> = EXP (<numeric>)

Reserved for future use.

152 BASIC keywords

FALSE

Abbreviation

Description

Examples

Comments

Syntax

FN

Abbreviation

Description

Examples

Syntax

FA. CONSTANT

This is a condition which the computer understands to
be the number @. If the computer decides a certain
condition is false it will represent it as @, and will act
accordingly.

REPEAT... :UNTIL FALSE
IF A= FALSE THEN...

PRINT 1 =2

gives #, because 1 is not equal to 2, and so 1=2 is

FALSE.
<num-var> = FALSE

User-definable function

None Prefix

FN is a prefix that identifies a function, both in a DEF
statement and in a function call.

19 INPUT A

2§ answer — FNsquare(A)

3§ PRINT answer

4¢ END

5@ DEF FNsquare{number) = number*number

DEF FNe = 2.7182818.

DEF FN <name> [(<num-var>| <str-var>{,
< num-var>| <str-var>})]

FOR

Abbreviation

Description

Syntax

GCOL

Abbreviation

Description

BASIC keywords 153

F. STATEMENT

FOR is used to initiate the control variable of the
FOR... NEXT loop and will always take the following

format:
FOR . (number or TO STEP
(numeric variable) numeric variable) (n or nv) (n or nv)
control variable start parameter finish increment
parameter

If the STEP is omitted it is assumed to be 1.

When executing a FOR ... NEXT loop the computer
sets the control variable to the start parameter.

Each time NEXT is encountered the computer increm-
ents the control variable and loops back to the
instruction just after FOR. This is repeated until the
control variable is greater than the finish parameter.
NB the increment can be negative.

FOR <num-var> = <numeric> T0 <numeric>
[STEP <numeric>|

Graphics colour

GC. STATEMENT

Used to select graphics screen foreground and back-
ground colour, and to control effect of mixing colours.
Takes two parameters, the second being the logical
value of the colour required, the first the way in which
two colours mix.

Action of first parameter is as follows:

@ Plot the colour specified
1 OR the colour specified with those already on the
screen

154 BASIC keywords

Examples

Comments

2 AND the colour specified with those already on the
screen

3 EOR the colour specified with those already on the
screen

4 Plot the logical inverse of the colour specified

This mixing is carried out on a bit by bit basis. For 1, 2,
and 3, each binary digit in the plotted colour’s logical
value is ORed, ANDed, or EORed with its respective
digit in the screen colour’s logical value, to produce the
logical colour which is to be plotted on that part of the
screen,

Inversion, 4, only involves the plotted colour, all its
binary digits being inverted. In bit by bit logic, @ is
false and 1 is true,

The truth tables for OR, AND, and EOR are as

follows:

@ OR ¢ gives @
@ OR 1gives 1
10R f@gives1l

10R 1gives1

@ AND 1 gives ¢
@ AND ¢ gives ¢
1 AND @ gives §
1 AND 1 gives 1

EOR ¢ gives @
@ EOR 1 gives 1
1 EOR @ gives 1
1 EOR 1 gives §

GCOL 2, 1

GCOL RND(5)—1, RND(8)-1
6COL, mix%, 129

Colours used in each mode may be changed using

vDU19;

Syntax

See chapter 20
GCOL <numeric>, <numeric>

GET

Abbreviation

Description

Examples

Comments

Syntax

GETS$

Abbreviation

Description

Examples

Syntax

GOSUB

Abbreviation

Description

BASIC keywords 155

Get code from keyboard

None FUNCTION

This instruction causes the computer to read a char-
acter from the keyboard buffer. If there is none, the
computer will wait for a key to be pressed. It then gives
the ASCII code for that key (see ASCII table) before
continuing.

Key = GET

The keyboard buffer may be flushed by ¥FX15.
<num-var> = GET

Get character from keyboard

GE. FUNCTION

This instruction is the same as GET, but gives a string
containing the character before continuing.

Key$ = GETS

<string-var> = GET$

Go to a subroutine

GOS. STATEMENT

This instruction tells the computer to go to a sub-
routine and start executing instructions from the
specified line number until the instruction RETURN,
when the computer must return to the instruction
immediately after the GOSUB call. No more than 26
nested subroutines are allowed.

156 BASIC keywords

Examples

Comments

Syntax

GOTO

Abbreviation

Description

Examples

Comments

Syntax

HIMEM

Abbreviation

Description

GOSUB 1499
ON A GOSUB 14, 20, 3§

It is possible to use an expression, and brackets must
then be used:

GOSUB (1§*A)

but this will not work if the program is RENUMBERed.
GOSUB <numeric>

Go to a line number

6. or LM G STATEMENT

This instruction tells the computer to jump to the
specified line number and start executing instructions
there.

GOTO 199
ON A GOTO 18, 26, 39

It is possible to use an expression:
GOTO (18*A)

but this will not work if the program is RENUMBERed.
GOTO0 <numeric>

H. VARIABLE

Address pointer containing the address of the lowest
location in memory used by the screen display. Its
value may change depending upon which mode you are

Examples

Syntax

IF

Abbreviation

Description

Examples

Comments

Syntax

INKEY

Abbreviation

Description

(i)

BASIC keywords 157

using. No BASIC instructions or variables are stored
above this point. HIMEM can be altered by the user, to
preserve space for machine-code programs between
BASIC and the screen. HIMEM contains the highest
memory location that BASIC may use. This may be
changed after a MODE statement.

PRINT HIMEM
HIMEM = &4800

<num-var.> = HIMEM

Conditional IF

None STATEMENT

A word forming part of the IF. .. THEN. .. ELSE state-
ment. IF must always be followed by a testable
condition, and the result of this test (TRUE or FALSE)
will control the subsequent action by the computer.

IFA<5 THEN...
IF 10 > 14§ THEN PRINT “GENIUS”

IF A THEN 11§
means

IF A<> ¢ THEN GOTO 11¢

If <testable condition> THEN <statement>
IF <testable condition> THEN <line number>
[ELSE <statement> |<line number>>|

None FUNCTION

This instruction will wait a specified length of time for
a key to be pressed before continuing. If a key is
pressed its ASCII code is given but if no key is pressed
a —1 is given. The number in brackets is the time delay

158 BASIC keywords

Examples

Comments

Description

(ii)

Examples

measured in 1/108 sec, and can have any value
between @ and 32767.

key = INKEY(104)

In fact, this instruction and GET, GETS, and INKEY$ will
actually test the keyboard buffer. This means that an
INKEY instruction will respond to any previously
pressed key whose code has gone into this buffer

(memory), even if you are not pressing it at this
moment.

To get over this problem the keyboard buffer can be
flushed using a *FX15,1 instruction just before using

INKEY. Also, the autorepeat can be turned off by using
*EX11,0.

In addition to the above, the INKEY instruction can be
used to test for a single key directly. Using a negative
number in the brackets, one for each key according to
the table shown below, INKEY gives —1 if the key is
pressed, @ if it is not. INKEY used in this way does not
read the buffer — it reads the key itself. See the table
which follows.

IF INKEY(—99) THEN. ..
will be TRUE when the space-bar is pressed.

Brackets are optional where sense is not affected.

Syntax

Key Number
—66
—1¢1
—83
—51
—35
—68
—84
—85
—38
—7¢
—71
—87
—102
—86
—d5
—56
—17
—52
—82
—36
—54
—19¢
—34
—67
—69
—98

NLXS<O3NTOTBOZEONRS"TQEEDOW>

BASIC keywords 159

Number
—49
—5@
—18
—-19
—20
—53
—37
—22
—39
—40
—24
—88
—73

—103
—104
—165

SPACE BAR —99

| ESCAPE | —113

—65

—2

SHIFT -

DELETE —90
COoPY —106
RETURN —74

| | W 0 IO b W N
o
LV

- e ~aw

e U 4

+*4——P
|

<num-var> = INKEY(<numeric>)

164 BASIC keywords

INKEY$

Abbreviation

Description

Examples

Syntax

INPUT

Abbreviation

Description

Examples

Syntax

INPUT#

Abbreviation

Description

INK. FUNCTION
The same as INKEY but gives the key as a character.

Key$ = INKEYS (19§)
Brackets are optional where sense is not affected.

<string-var> = INKEY(<numeric>)

S FUNC i STATEMENT

This instruction halts the program, prints a ? on the

screen, and waits for some information to be entered
followed by L1331, }.

INPUT must be followed by a variable.

INPUT X
INPUT name$, number

Too complex for a simple description.

Input from file

|L.# STATEMENT

INPUT# is like INPUT, but instead of receiving
information from the keyboard the computer takes it
from a previously opened file. Must be followed by
channel number (see chapter on file handling).

Examples

Syntax

INSTR

Abbreviation

Description

Examples

Syntax

INT

Abbreviation

Description

BASIC keywords 161

INPUT# channel, make$, price
INPUT# C,BAZS

INPUT# <num-var>, <num-var>| <string-var>
[, <num-var>|<string-var>}

In string

INS. Includes (FUNCTION

This function will give the position of one string within
another, the leftmost character position being 1. The
search normally starts from the beginning of the string
but an optional third parameter provides the facility to
start the search from any specific character position.
The number given by INSTR is the position of the
second string within the first. A search for a null string
() will always give 1. If the search fails (the two
strings are not the same at any position) then $is given.

position = INSTR(first$, second$, start)
PRINT INSTR("MONOTONOUS",”ON")
will print 2, whereas

PRINT INSTR{"MONOTONOUS",”"ON".3)
will print 6

<num-var> = INSTR(<string>, <string>
|, <numeric>])

Integer part

None FUNCTION

This function returns the next whole number below
the value of the number variable or expression in
brackets. In other words the number is truncated.

162 BASIC keywords

Examples

Syntax

LEFTS

Abbreviation

Description

Examples

Syntax

LEN

Abbreviation

Description

Examples

Syntax

INT(1.7) is 1
INT(-1.7) is —2.
x= INT(Y)

Brackets are optional where sense is not affected.

<num-var.> = INT <numeric>

Left string

LE. Includes { FUNCTION

A function which gives the specified number of leftmost
characters in a string.

PRINT LEFTS("ELECTRON",5)
will give ELECT

AS = LEFT$(B$,C)

<string-var> = LEFT$(<string>, <numeric>)

Length of string

FUNCTION

A function which gives the number of characters
(including spaces) in the specified string.

None

PRINT LEN{"Donald Duck"”)

will be 11

Length = LEN(AS)

Brackets are optional where sense is not affected.

<num-var> = LEN(<string>)

LET

Abbreviation

Description

Examples

Comments

Syntax

LIST

Abbreviation

Description

Examples

Comments

Syntax

BASIC keywords 163

None STATEMENT

This is an optional keyword which is used to assign a
value to a variable.

LET X =10 has same effect as X= 18
LET AS$ = “JOHN" has same effect as A$ ="JOHN"

May not be used with LOMEM, HIMEM, PAGE and
TIME.

LET <var> = <expression>

L or @I L COMMAND

This command instructs the computer to list the
current program on the screen. It has two optional
parameters which control the first and last lines to be
listed.

LIST 108,209 will list from 18§ to 2@@
LIST ,28@ will list up to 209
LIST 1688, will list from 16§

Since LIST is a command it cannot be used in a
program or in a multi-statement line.

If you press N beforehand, LIST will list your
program a screen-full at a time. When you want to see
the next screen-full, press . This paged mode
can be cancelled using [RG{ O.

LIST[<num-const>>|,] <num-const>]

164 BASIC keywords

LISTO

Abbreviation

Description

Examples

Comments

Syntax

LN

Abbreviation

Description

Examples

Syntax

List option

None COMMAND

This command must be followed by a number which
controls the way in which a program is LISTed, as
follows:

@ List just as stored in computer’s memory
1 Insert a space after each line number

2 Indent FOR ... NEXT loops

4 Indent REPEAT ... UNTIL loops

Any combination of the above may be obtained by
adding the required values.

LISTOD5 will insert a space after the line number and
indent REPEAY. .. UNTIL loops.

Since LISTO is a command it cannot be used in a
program or in a multi-statement line.

LISTO <num-const>

Natural logarithm

None FUNCTION

A mathematical function to calculate the natural
logarithm of the given number variable or expression,

X = LN({Y)
Brackets are optional where sense is not affected.

<num-var> = LN<numeric>

LOAD

Abbreviation

Description

Examples

Comments

Syntax

LOCAL

Abbreviation

Description

Examples

Syntax

BASIC keywords 165

Load program from file

0. or [TIL1Y . COMMAND

A command which instructs the computer to LOAD the
named program from the file. If the name is omitted
then the next program is loaded.

When the computer prints ‘Loading’ on the screen, the
old program has been deleted and all variables cleared
except the resident integer variables.

LOAD “BUGZAP!"
LOAD ' loads the next program (from tape only)

During LOADing, the computer prints up the number of
pages of memory being used.

LOAD<string>

Variable declaration

toc. or I Q STATEMENT

Informs the computer that the named variables are
LOCAL to the PROC or FN in which they are declared.

LOCAL variables are totally independent of variables
with the same name outside the PROC or FN.

LOCAL |
LOCAL price%

LOCALL string-var>| <num-var>{,< string-var>|
<num-var.>}

166 BASIC keywords

LOG

Abbreviation

Description

Examples

Syntax

LOMEM

Abbreviation

Description

Examples

Comments

Syntax

MID$

Abbreviation

Description

Common logarithm

None FUNCTION

A mathematical function to calculate the common
logarithm of the given number variable or expression.

Y =1L0G(X)
rate = LOG{cone)

<num-var> = LOG<numeric>

LOM. VARIABLE

Address pointer containing the address above which
all the BASIC program’s variables are stored. It is
usually set to be the same as TOP, but can be altered by
the user at the start of a program.

PRINT LOMEM
§ LOMEM = &FA2

If LOMEM is changed during program execution the
computer will lose all its BASIC variables.

LOMEM = <numeric>
<num-var> = LOMEM

Middle string

FUNCTION

This function gives a subsection of a string; the
position of the first character of the substring and the
number of characters being specified. If the length is

M. Includes {

Examples

Syntax

MOD

Abbreviation

Description

Examples

Comments

Syntax

BASIC keywords 167

omitted, the whole string to the right of the start
position is given.
PRINT MID$(Main$, start, length)

PRINT MID$("MICROCOMPUTER",6,7)
will be COMPUTE

PRINT MID$("MICROCOMPUTER",6)
will be COMPUTER

X$ = MID$(AS,S,L)

<string var> = MID$(<string>,<numeric>
[<numeric>])

Modulo

None OPERATOR

This function gives the remainder when an integer
division is carried out.

5 MOD 2is 1
55 MOD 5 is @
-1 MOD 4 is -2
numerator’s MOD denominator¥%

If this function is used with decimal numbers or
variables, these values are truncated before the divi-
sion takes place.

4.1 MOD 39is 1.

<num-var>> = <numeric> MOD<numeric>

168 BASIC keywords

MODE

Abbreviation

Description

Examples

Comments

Syntax

MOVE

Abbreviation

Description

Examples

Graphics mode

MO. or [fIIH M STATEMENT

Here is a list of the seven modes and their character-
istics;

Mode Graphics Colours Text

) 640X256 2 83X32
1 320X256 4 43X 32
2 169X256 16 20X32
3 Text only 2 83X 25
4 320X 256 2 49X 32
5 16@3X256 4 20X 32
6 Text only 2 40X 25

This instruction tells the computer to change screen
mode. Changing mode clears the screen and must not
be used within a PROC or FN. MODE resets the value of
HIMEM.

MODE #
MODE x
18 MODE mode

Text coordinates change from mode to mode, but
graphics coordinates are scaled to be the same in all
graphics modes: @ to 1279, @ to 1923.

MODE <numeric>

Move graphics cursor

MOV. STATEMENT

This instruction moves the graphics cursor to any
position, on or off the screen.

MOVE 644, 512
18 MOVE X.Y

BASIC keywords 169

Comments The graphics origin may be moved to any position on
or off the screen by using the instruction

VDU29.X;Y;
where X,Y are the coordinates you wish to become @,9.

See chapter 29

Syntax MOVE <numeric>,<numeric>

NEW New program
Abbreviation None COMMAND
Description "This command deletes a program from the computer’s

memory by adjusting certain internal pointers. A
program can be retrieved by typing OLD which resets
the internal pointers, provided no new program lines
have been entered and no new variables have been
created. Since it is a command it cannot be used in a
program or multi-statement line.

Examples NEW

Syntax NEW

NEXT

Abbreviation N. or m N STATEMENT

Description This is used to step the control variable in a FOR . . .
NEXT loop. The control variable after the NEXT is
optional (see FOR).

Examples NEXT X%
NEXT loop
NEXT

Syntax NEXT [<num-var>| { <num-var>}

178 BASIC keywords

NOT

Abbreviation

Description

Examples

Comments

Syntax

OLD

Abbreviation

Description

Examples

Syntax

Logical NOT

None FUNCTION

Normally used in conjunction with a testable condition
to reverse the logic of the result, ie YRUE becomes
FALSE and FALSE becomes TRUE.

IF NOT(A=5) THEN money = 7{.

TRUE and FALSE are represented as —1 and § respect-
ively.

NOTH is —1, NOT-1 is ¢.

Beware of trying to use NOT with other values for
TRUE. NOT1 is -2, which still acts as TRUE.

<num-var> = NOT <numeric>
<testable condition> = NOT (<testable condition>)

Old program

0. or m O (includes JAALLL)

This command is used to recover a program which has
recently been deleted by NEW, or by pressing the

key, or | BREAK §

OLD
oLD

COMMAND

ON

Abbreviation

Description

Comments

BASIC keywords 171

None STATEMENT

This instruction can be used in conjunction with GOTO,
GOSUB and ERROR.

Firstly GOTO and GOSUB.

ON X GOTO 19@, 390, 350, 470

If X=1 then the program will go to 19@. If X=2 thenit
will go to 3@@. If X=3 then it will go to 35@ and so on.

ON X GOSUB 475, 2@5, 310

If X=1 then the program will ‘gosub’ 475.1f X=2 it will
‘gosub’ 205 and so on.

An ELSE can be included at the end to trap out of range
values without causing an error.

ON X GOTO 7@, 198, 31@ ELSE ENDPROC
Secondly ERROR

ON ERROR GOTO 10060
ON ERROR RUN
ON ERROR PROCerror

This instruction is used for error trapping. This
enables the program to deal with errors, rather than
letting the computer halt the program and print up an
eITOr message.

Errors may be accepted once again by typing

ON ERROR OFF

when the computer will halt and print messages as
usual.

172 BASIC keywords

Syntax

OPENIN

Abbreviation

Description

Examples

Syntax

OPENOUT

Abbreviation

Description

Examples

Syntax

ON <num-var> GOTD <numeric>{,<numeric>}
or

ON <num-var> GOSUB <numeric>{,<numeric>}
or

ON ERROR <statement>
or

ON ERROR OFF

Open input file

0P. FUNCTION

This function opens a file from the current filing
system, eg cassette to the computer and returns the
channel number allocated by the computer’s file
system. If the file does not exist then a ¢ (FALSE) is
returned. The file is opened for input only. See chapter
on file handling.

file = OPENIN “SCREENLOAD"
X = OPENIN AS

<num-var> = OPENIN (<string>)

Open output file

OPENO. FUNCTION

This function opens a file from the computer to the
current filing system, eg cassette and returns the
channel number allocated by the computer's file
system. If the file does not exist then one will be
created. If a file of the same name already exists then it
will be deleted and a new one created. The file is
opened for output only.

file = OPENOUT "SCREENDUMP”
X = OPENOUT AS

<num-var> = OPENQUT(<string>)

OPENUP

Abbreviation

Description

Examples

Syntax

OPT

Abbreviation

Description

Examples

BASIC keywords 173

Open file for update

None FUNCTION

This function opens a file from the current filing
system, eg cassette to the computer, in the same way
as OPENIN. The file is opened for input and output.

edit = OPENUP "Accounts”
Z = OPENUP name$

<num-var> = OPENUP(<string>)

Assembly option

None STATEMENT

Used to select whether error messages are reported, or
listings are given during assembly of a machine-code
subroutine. OPT can only be used inside the square
brackets enclosing a piece of Assembly Language.

It may take eight different values of parameter:

OPT @ Report no errors, list no machine-code
OPT 1 Report no errors, list the machine-code
OPT 2 Report any errors, list no machine-code
OPT 3 Report any errors, list the machine-code

OPT 4 to OPT 7 are the same as OPTs @ to 3 except that
the machine-code is generated at the origin O%
instead of the program counter P%.

5§ OPT 2

16@ For | = B TO 3 STEP 3
119 [OPT |

129

139....]

149 NEXT

174 BASIC keywords

Comments

Syntax

OR

Abbreviation

Description

Examples

Syntax

OSCLI

Abbreviation

Description

Examples

The second example above is commonly used in two-
pass assembly, which will always give errors on the
first pass.

OPT <numeric>

Logical OR

None OPERATOR

This is a logical operator which combines two testable
conditions in the following way:

False OR False gives False
False OR True gives True
True OR False gives True
True OR True gives True

IFA=50RA= 10 THEN . .,
IF Altitude OR 8% THEN . . .
IF X < 2 OR NOT(Y=4) THEN . . .

<num-var> = <numeric>> OR <numeric>

Operating system command line interpreter

0s. STATEMENT

Used to pass BASIC variables as parameters to
operating system calls, such as *FX or *KEY. Must be
used with a string, the variables being converted using
STRS. The complete string must be the same as would
be used normally, but without the asterisk.

OSCLI"FX*+STRS action+",”+STRS parameter
OSCLI"KEY"+STRS keynumber+keystring$

PAGE

Abbreviation

Description

Examples

Comments

Syntax

Pl

Abbreviation

Description

Examples

Syntax

BASIC keywords 175

PA. VARIABLE

Address pointer containing the address above which
the BASIC program is stored. It is usually set to &E@9
on cassette only machines, but can be altered by the
user to locate more than one BASIC program in
memory.

PRINT PAGE
PAGE = &160#

The two least significant hex digits of PAGE are always
zero — it points to the base of a page of memory, which
always contains 256 bytes.

PAGE = < numeric>
<num-var.>> = PAGE

None CONSTANT

Pl has the value 3.14159265 and can be used just like a
number.

circumference = 2*Pi*radius
area = Pl*radius A2

<num-var> = Pl

176 BASIC keywords

PLOT Plot graphics
Abbreviation PL. or [II[§ P STATEMENT
Description The PLOT instruction is used to draw single points,

lines, dotted lines and triangles.

PLOT takes the form:
PLOT A X)Y

which will plot at or to the point X,Y in the manner
determined by the value of the first parameter A.

The effect of the value of the first parameter is:
@ Move relative to last point.

1 Draw line relative in the current graphics fore-
ground colour,

2 Draw line relative in the logical inverse colour.

3 Draw line relative in current graphics background
colour.

4 Move to absolute position.

5 Draw line absolute in the current graphics fore-
ground colour.

6 Draw line absolute in logical inverse colour.

7 Draw line absolute in current graphics background
colour.

Higher values of A have other effects which are related
to the effects given by the values @ to 7

8-15 As $#-7 but with the last point in the line omitted
in ‘inverting actions’ — eg using GCOLA4.

16-23 As §-7 but with a dotted line.

24-31 As -7 but with a dotted line and without the
last point on the line.

32-63 Arereserved for the Graphics Extension ROM.
64-71 As @-7 but only a single point is plotted.

Syntax

POINT

Abbreviation

Description

Examples

Comments

Syntax

POS

Abbreviation

Description

Examples

Syntax

BASIC keywords 177

72-79 Line fill.

8¢-87 As @-7 but plot and fill a triangle. When filling
solid triangles with colour the computer fills the
triangle between the coordinates given and the last
two points visited.

88-95 Line fill.
See chapter 2¢

PLOT <numeric>>, <numeric>>, <numeric.>

Point at graphics screen colour position

PO. FUNCTION

This function gives the logical colour at the specified
point on the screen. If this point is off the screenthen a
-1 is given.

colour = POINT(X,Y)

This function is used in the Marslander program to
test whether the capsule has touched down, and
whether it is on a flat surface.

<num-var> = POINT (<numeric>, <numetric>}

Position of text cursor

FUNCTION

This function tells how far across the text screen the
text cursor is . @ is on the left, and the value to the right
is determined by the mode, and by the size of text
window.

None

X = POS

<num-var> = P0OS

178 BASIC keywords

PRINT

Abbreviation

Description

Examples

Comments

Syntax

PRINT#

Abbreviation

Description

Examples

Syntax

Print on screen

P. or AIY / STATEMENT

This instruction is used for all character output to the
screen.

PRINT "Anywhers”
PRINT A,B,length,maon$,BILL%
PRINT HEIGHT*DEPTH;CHR$127; 99;

PRINT CHRS$X; is almost the same in operation and
effect as VDUX, and the two are interchangeable.

PRINT is also used to issue control-codes to the .

computer during program execution.

PRINT CHR$9 will move the text cursor forward one
square, for example.

PRINT {["]|.! ;]<string>! < numeric>}{"][;]

Print on file

P.# STATEMENT

PRINT# is like PRINT but instead of printing infor-
mation to the screen it prints it on to a previously
opened file. Must be followed by channel number (see
chapter on file handling).

PRINT# channel, make$, prices
PRINT# C,B,A,Z2$

PRINT# <num-var>{,<numeric>| <string>}

BASIC keywords 179

PROC Procedure
Abbreviation m X Prefix
Description This prefix is used when defining a named procedure

(see DEF) and to call this named procedure from
anywhere in the program.

Examples PROCrotate
{F . . . THEN PROCfire
DEF PROCfire
PROCvolume(radius, height)

Comments PROC must be followed by a name without any spaces.
Parameters may be passed in brackets.
Syntax DEF PROC<variable-name>>[(<string-var> |

<num-var>{,<string-var> | <num-var>}]

PTR# Reserved for future use.

RAD Radians
Abbreviation [QILI4J FUNCTION
Description This function gives an angle in radians which is

equivalent to the specified angle in degrees. There are
2*P| radians in a circle of 360°.

Examples X = RAD(X)
angle = RAD{angle}
answer = SIN(RAD({angle))

Brackets are optional where sense is not affected.

Syntax <num-var> = RAD <numeric>

183 BASIC keywords

READ Read data into variable(s)

Abbreviation None STATEMENT

Description This instruction tells the computer to copy infor-
mation from a DATA statement into the variables which
follow the READ instruction. The types of variables
must match; numbers must be copied into numeric
variables and strings into string variables. See DATA
and chaper on READ and DATA.

Examples READ name$, Tel, credit

Syntax READ <num-var>| <string-var>{<num-var>|
<string-var>}

REM Remark

Abbreviation =~ None STATEMENT

Description This instruction tells the computer to ignore the rest of
the program line, thus enabling the programmer to
insert comments in the listing without affecting the
program.,

Examples 18 REM Marslander
1935 REM Move Alien

Syntax REM <anything >

RENUMBER Renumber program line

Abbreviation REN. or [{IITY 8 COMMAND

Description This command has two optional parameters which

control the way in which a program is to be re-
numbered. The value of the first parameter is the
starting line number. The second is the increment for

Examples

Comments

Syntax

REPEAT

Abbreviation

Description

Examples

Syntax

BASIC keywords 181

each subsequent line number. If either or both para-
meters are omitted they will default to 14.

If a program looks like this

10 xx
15 xxx
17 xx
I oxx
32 axxx

RENUMBER 100.5 will change it to

108 xx
105 xxx
119 xxx
115 xxx
120 xxx

This command also renumbers all GOT0s, GOSUBs and
any other cross references, except calculated ones like

GOTO {8*W) and GOSUB (19§+2).

RENUMBER [<num-const>[,<num-const>||

REP. or [fIF Y STATEMENT

This instruction initiates a REPEAT . . . UNTIL loop
which tells the computer to REPEAYT a set of instruc-
tions UNTIL a testable condition becomes true.

REPEAT. .. UNTIL loops may be nested up to a depth of
20.

NOW = TIME: REPEAT UNTIL TIME —NOW > = 5@@
REPEAT

182 BASIC keywords

REPORT

Abbreviation

Description
Examples

Syntax

RESTORE

Abbreviation

Description

Examples

Syntax

RETURN

Abbreviation

Description

REPO. STATEMENT

This instruction will print up on the screen what the
last error was, in words.

REPORT: PRINT * at line “;ERL

REPORT

RES. or [T W STATEMENT

This instruction restores the ‘DATA pointer’ to the
beginning of a specified line, The DATA pointer points
to the next piece of information to be read by a READ
instruction. If no line is specified the DATA pointer is
restored to the beginning of the first DATA instruction
in the program.

RESTORE
RESTORE 2584

RESTORE <numeric>

Return from subroutine

R. STATEMENT

This instruction informs the computer that it has
reached the end of a subroutine and that it must now
RETURN to the instruction immediately after the
GOSUB at which the subroutine was called. A sub-

routine must not be exited other than by using
RETURN.

Examples

Comments

Syntax

RIGHTS

Abbreviation

Description

Examples

Syntax

RND

Abbreviation

Description

BASIC keywords 183

RETURN
IF A=f THEN RETURN

Not to be confused with the 13U key.
RETURN

Right string

Rl. Includes (FUNCTION
A function which gives the specified number of right-
most characters in a string.

PRINT RIGHTS("FLAVOUR", 3) will give OUR.

<string-var> = RIGHT$(<string>>,<numeric>>)

Random number generator

None FUNCTION

This function, which may be followed by a number in
brackets, returns a random number.

RND by itself generates a random whole number
between —2147483648 and 2147483647

RND{—X) gives the value -X and resets the random
number generator to a number based on X.

RND(#) repeats the last random number given by
RND(1).

RND(1) generates a random number between @ and
$.999999.

RND(X) generates a random whole number between
(and possibly including) 1 and X.

The brackets are compulsory and must immediately
follow the word RND with no intervening space.

184 BASIC keywords

Examples

Syntax

RUN

Abbreviation

Description

Examples

Comments

Syntax

SAVE

Abbreviation

Description

Examples

Syntax

X = RND(18)

<num-var> = RND[(<numeric>)]

I R (includes [TANLT)

This instruction makes the computer initiate execution
of the numbered program lines in its memory. It also
clears all variables except the resident integer vari-
ables.

STATEMENT

RUN
IF velocity > 188 THEN RUN

A program can be RUN without clearing the variables
by using the command GOTO, followed by the first line
number,

STATEMENT

SA. or m .

This transfers the program from the computer’s
current program area (between the system variables
PAGE and TOP) on to cassette, and in future
expansions, disc as well. When used with tape, SAVE
must be followed by a name of up to 1@ characters,
inside quotation marks,

SAVE “BUGZAP!"

SAVE <string>

SGN

Abbreviation

Description

Examples

Syntax

SIN

Abbreviation

Description

Examples

Syntax

SOUND

Abbreviation

Description

BASIC keywords 185

Sign

None FUNCTION

This function tells you whether the specified number,
variable or expression is positive, zero or negative.

The function gives:

-1 for a negative number
@ for a zero
+1 for a positive number

X = SGN(Y)

Brackets are optional whe;'e sense is not affected.

<num-var> = SGN(<numeric>)

Sine

None FUNCTION

This function gives the sine of an angle, which must be
in radians.

PRINT SIN(3.142)
X = SIN(y)

Brackets are optional where sense is not affected.

<num-var> = SIN(<numeric>)

S0. STATEMENT

Makes the computer generate a sound on the internal
loudspeaker.

186 BASIC keywords

Syntax

SPC

Abbreviation

Description

Examples

Syntax

SQR

Abbreviation

Description

The format is:
SOUND QAPD
Q is the channel number, @ to 3.

A is the envelope number, 1 to 4. If A is @ then that
sound channel is turned off. If A is negative (-1 for
example) then a pure tone is produced.

P is the pitch, @ to 255.
D is the duration, 1 to 255 in twentieths of a second.
See chapter 22

SOUND <numeric>>, <numeric>,<numeric>>,
<numeric>

Space

None (See PRINT, INPUT)

This statement is used in conjunction with PRINT or
INPUT to give the specified number of spaces. This
number may not be greater than 255.

PRINT “Name";SPC(18);"Tel.”;SPC{14);”CREDIT"
INPUT “Amount” SPC(3) A

Brackets are optional where sense is not affected.

PRINT SPC (<numeric>)
INPUT SPC (<numeric>)

Square root

None FUNCTION

This function gives the square root of a positive
number.,

Examples

Syntax

STEP
Abbreviation

Description

Examples

Syntax

STOP

Abbreviation

Description

Example

Syntax

BASIC keywords 187

X = SQR(Y)
ans = SQR{ABS(NUMBER))

Brackets are optional where sense is not affected.

<num-var> = SQR(<numeric>)

S. or Y S (See FOR)

This is part of the FOR .. . TO . . . STEP . . . NEXT
statement. The number following STEP is the amount
by which the control variable is incremented in each
loop, and can be positive or negative, integer or real.

FOR X = @ TO 50 STEP 5
FOR | = 18 TO @ STEP —1
FOR J = 7 TO 11.3 STEP Z*.7

FOR <num-var> = <numeric>> T0 <numeric>
[STEP< numeric>|

None STATEMENT

This instruction has the same effect as END but it
prints the message STOP, and the line number, on the
screen.

IF P >Temp THEN STOP

STOP

188 BASIC keywords

STRS

Abbreviation

Description

Examples

Syntax

STRINGS

Abbreviation

Description

Examples

Syntax

TAB

Abbreviation

Description

String

STR. FUNCTION

This function converts any number or expression in
the brackets into a string. STR$ has an opposite effect
to that of VAL,

AS = STR$(X)
BS = STR$(-1.23)
Brackets are optional where sense is not affected.

<string-var> = STR$ (<numeric>>)

STRI. Includes (FUNCTION

This instruction produces a long string consisting of a
specified number of copies of a shorter string.

Line$ = STRING$(a¢,"—")

<string-var> = STRINGS (<numeric>,<string>)

None (See PRINT, INPUT)

Used with either PRINT or INPUT to set the position of
the text cursor on the screen.

TAB(X) will move the cursor forward to position X on
the current line. X can be between # and 19, ¢ and 39,
or @ and 79 depending upon which mode is in use.

.'_,-.',.I

Examples

Comments

Syntax

TAN

Abbreviation

Description

Examples

Syntax

THEN
Abbreviation

Description

BASIC keywords 189

TAB(X,Y) will move the cursor directly to position X,Y.
The text cursor has its origin @,8 at the top left. If a text
window is in use, then TAB will treat the top left corner
of that as @,0.

PRINT TAB(6,11); “HELLO"
INPUT "How much” TAB(1§), cost

The brackets are compulsory, and there must be no
space between TAB and (.

PRINT TAB(< numeric> [,<numeric>>|)
INPUT TAB(<numeric> [, <numeric>>|)

T. FUNCTION

This function gives the tangent of an angle, which must
be in radians.

PRINT TAN(PI1/2)
ratio — TAN(.6)

Brackets are optional where sense is not affected.
<num-var> = TAN< numeric>

™. or [l T

Provides the course of acticn if the result of an IF
statement is true.

(See IF)

It is an optional keyword, but the program is neater
and easier to follow when it is left in.

19¢ BASIC keywords

Examples

Comments

Syntax

TIME

Abbreviation

Description

Examples

Syntax

TO

Abbreviation

Description

Examples

Syntax

IF A= B THEN PRCCab

THEN is not optional when assigning certain resident
variables such as TIME, and when GOTO is omitted.

IF<testable condition> THEN<statement>>[ELSE
<statement>>]

TI. VARIABLE

An integer variable which is incremented every
hundredth of a second. It serves as an elapsed time
clock, and can be set to any initial value by the user.

TIME = {
T% = TIME
PRINT T%

TIME = <numeric>
<num-var> = TIME

None (See FOR)

Used inthe FOR. .. NEXT loop to set the limiting value
of the control variable.

FOR 1= @§ TO 11

FOR<num-var> = <numeric> TO <numeric> [STEP
<numeric>|

TOP

Abbreviation

Description

Examples

Syntax

TRACE

Abbreviation

Description

Syntax

TRUE

Abbreviation

Description

Examples

BASIC keywords 191

None VARIABLE

Address pointer containing the address of the first free
memory location after the top of the BASIC program.
TOP—PAGE will give the length of your BASIC program
in bytes.

PRINT TOP—PAGE

<num-var> = TOP

TR. STATEMENT

Debugging device which prints BASIC line numbers in
order of execution. Is turned on by TRACE ON, and off
by TRACE OFF. TRACE X will only give line numbers
below X.

TRACE ON! OFF<numeric>

None CONSTANT

This is a condition which the computer understands to
be the number —1. If the computer decides a certain
condition is true, it will represent it as —1, and will act
accordingly.

IF A= TRUE THEN . ..
Test — TRUE

192 BASIC keywords

Comments

Syntax

UNTIL

Abbreviation

Description

Examples

Syntax

USR

Abbreviation

Description

In practice, any number other than @ is taken by the
computer to be TRUE. Care is needed though. NOT(—1)
is #. NOT(1) is —2. This is because the NOT function
simply inverts the binary digits, and does not consider
them true or false at all.

<num-var> = TRUE

v. or EIIII{ U (See REPEAT)

Conditional part of REPEAT . .. UNTILloop. The loop is
executed until the conditional statement after UNTIL
goes true.

REPEAT

XXX

X

UNTILX = 7

REPEAT These are REPEAT

XXX the same XXX

XXX and will XXX

UNTIL ¢ loop forever UNTIL FALSE

UNTIL <testable condition>

None FUNCTION

Used from BASIC to call a previously assembled
machine-code function. Similar in operation to an FN,
but is not able to pass parameters. Used in preference
to an FN where long calculation is involved, and speed
is at a premium.

s

-y,

Examples

Comments

Syntax

VAL

Abbreviation

Description

~ Examples

Syntax

VDU

Abbreviation

Description

Examples

Comments

BASIC keywords 193

X = USR{&1750)

20 address = &3@A9

3@ PRINT USR(address)
See chapter on assembler.

<num-var>> = USR(<numeric>)

None FUNCTION

Gives the numeric part of a string as a number. The
string must start with +, —, or a number, otherwise @ is
given,

number = VAL(-762%12)

will put number equal to —762.

<num-var> = VAL(<string>)

V. or m \Y STATEMENT

VDU has almost the same function as PRINT CHRS. It

can be used to give any character or control code from
the ASCII table in Appendix F.

VDU5 Link text and graphics cursors.

VDU8 Move text cursor back one square.
VDU23 Re-define character.

Sends code directly to the VDU drivers. Is quicker to
type than PRINT CHRS.

PRINT TAB(X,Y) is equivalent to
VDU31.X.Y

194 BASIC keywords

Syntax

VPOS

Abbreviation

Description

Examples

Syntax

WIDTH

Abbreviation

Description

Examples

Syntax

VDU <numeric> {, | ; <numeric>>} []

VP. FUNCTION
Gives the distance of the text cursor from the top of the
screen or text window.

Y = VPOS

PRINT VPOS

<num-var> = VP0OS

W. STATEMENT

Sets the width used by the computer to print on the
screen. This is normally unlimited, and the computer
runs on to the next line at the right boundary of the
screen or text window.

WIDTH 18 will cause the text to be printed in a column
19 characters wide.

WIDTH <numeric>

e

26 Cassette file
handling

Aside from saving programs, data files can be opened on the cassette: for
example to store addresses or telephone numbers.

Here is a list of file handling commands which you can use:

*CAT Gives a catalogue of all data files and programs on
the cassette. It takes a very long time on a cassette.

OPENIN Opens a file so that it can be read.

OPENOUT Opens a new (empty) file for writing.

OPENUP Opens a file for reading or writing.

INPUT# Reads data from a file into the computer.

PRINT# Writes data from the computer into a file.

BGET# Reads a single character (byte) from a file.

BPUT# Writes a single character (byte) to a file.

EOF# Indicates whether or not the end of a file has been
reached.

CLOSE# Indicates to the computer that you have finished with
a file.

To create a data file, you must first open it using OPENOUT. OPENOUT
must be assigned to a variable, as follows:

A = OPENOUT "'stamps”

In this case, the file called ‘stamps’ has been opened, and is allocated to a
variable called A. A becomes the communication channel to the file, and
all data sent to the file is routed via A. For example, if you want to write
the names of all your stamps into the file, you use PRINT#:

18 A = OPENOUT "stamps"

20 REPEAT

3@ INPUT "Give the name of the stamp",name$
40 PRINT# A, name$

5@ UNTIL name$ = '"NO MORE"

6@ CLOSE# A~

196 Cassette file handling

So after the file has been opened, its name is not mentioned again. The
above program will allow you to make a list of names and, if the cassette
player is switched on, they will be recorded on tape. Notice that the file
must be closed after use, with CLOSE#.

To get the data back into the computer, you must open the file for
reading using OPENIN. (The tape must be wound to the start of the file,
and the PLAY button pressed).

A = OPENIN "stamps"

The variable name, in this case A, is completely arbitrary. You could
equally well call it FRED, file, or anything else you wish. To read data
from the tape into the computer’'s memory, use INPUT#:

1@ A = OPENIN "stamps"

2@ REPEAT

30 INPUT# A, name$

40 UNTIL name$ = "NO MORE"
6@ CLOSE# A

Line 4@ could equally well read:

40 UNTIL EOF# A

EOF# is a logical file operator which is TRUE when the end of the file has
been reached.

PRINT# and INPUT# are used to write or read strings to and from the
cassette file. The instructions BPUT# and BGET# are used to write and
read single characters.

*CAT may be used anytime to give a catalogue of all program and data
files on tape, and *. can be used as an abbreviation.

Cassette operations print messages on the screen, and sometimes
cassette operations will produce errors. The message printed, and the
computer’s reactions to errors can be altered using *0PT:

Cassette file handling 197

*0PT1.X controls all but the error messages which are printed on the
screen.

X =¢ Gives no messages.
X =1 Gives short messages (as normal).
X =2 Gives long messages, including load and execution addresses.

*0PT2.X controls the computer’s action.
X=¢@ Letsthe computerignore all errors, and carry onregardless.
Messages can still be given.

X=1 Thecomputerasksyou to try again by rewinding the tape (as
normal).

X =2 The computer aborts the operation.

*DPT3,X sets the inter-block gap in tenths of a second. This only applies
to PRINT# and BPUT#. The gap on SAVE is fixed to @.6 seconds.

*0OPT on its own sets all the values to normal.

27 Error handling

So far you have seen that when the computer finds an error it halts
execution of the program and prints a message on the screen. Some
errors are generated by incorrect programming and these are the ones
that you have to correct. But what about errors which occur during the
execution of a good program, because either the data is wrong or the user
inputs something that the computer cannot handle?

Look at the following program:

10 REPEAT

20 INPUT "NUMBER", N

306 L = LOGIN)D

40 PRINT "LOG OF ";N;" IS ";L
50 UNTIL FALSE

This is simple enough. It takes a number from the keyboard, and gives
you the log of that number. But, if you type in a negative number, the
program comes to a halt with:

Log range at Line 30

The same thing happens if you type @, or a character such as W, or aword
such as TWELVE,

Itis easy to trap such an error, and to print a message to tell the user what
he or she has done wrong. Every error has an error number, which is
stored in a variable called ERR. You will find a list of these errors in
Appendix B. The number for the log error is 22, so we can alter the
program as follows:

5 ON ERROR GOSUB 100

19 REPEAT

2@ INPUT "NUMBER", N

30 L = LOG(ND

4@ PRINT "LOG OF " ;N;" IS ";L

5 UNTIL FALSE

10@ IF ERR = 22 THEN PRINT "MUST BE A POSIT
IVE NUMBER > @"

11@ RETURN

L)

Error handling 199

Now, if an illegal input is made, the program simply prints a message
telling you what you have done wrong, and carries on running. The
trouble is, it carries on running, and running, and running. The {93
key has no effect. This is because [F{Na] is treated as an error; it even

has its own error code: 17. You'll have to press [:i]d:},4, then OLD
HI3LIL]] to get the program back.

To overcome this, RETURN can be incorporated into line 16@:

1@ IF ERR = 22 THEN PRINT "MUST BE A POSIT
IVE NUMBER > B":RETURN

Now, the m key works, but no message is printed to say what
happened, or at what line. Don’t forget to delete line 116!
To print the message, the instruction REPORT is used.

11@ REPORT

will print the message Escape on the screen.

The line number at which errors occur is stored in a variable called ERL. If
you add a line 12¢:

12@ PRINT ' at Line ";ERL

then the correct message will be printed up on the screen.

The above example is fairly simple, because there is only the one error
which can occur, If you write a program that other people will use, you
will have to think of all the possible errors that may occur, and trap them
accordingly. In the example, the instruction used was

ON ERROR GOSUB
Other useful error trapping instructions are:

ON ERROR GOTO
ON ERROR PRINT
ON ERROR PROC

If you do use GOTO0, you cannot ‘GOTO’ back again into a FOR... NEXT
loop, a REPEAT . . . UNTILloop, or a function. See Appendix B for alist of
errors and their codes.

28 Merging BASIC
programs

Two methods are given here by which you can merge two BASIC
programs which are stored on cassette, and in future expansions, disc as
well.

(i) This method requires you to LOAD one of the programs (preferably the
shorter) and then to re-save it as an ASCII file using ¥*SPOOL. You can
then LOAD the other program; and the spooled program will be entered as
the equivalent of keyboard input by loading it using ¥*EXEC. Assuming
that the two programs are called LARGE and SMALL, the procedure is as
follows:

LOAD "SMALL"

Now set the tape recorder to a blank section of tape.

*SPOOL '"SMALL"
LIST
*SPOOL

The program SMALL is now saved as an ASCII text file.

LOAD "LARGE"
*EXEC "SMALL"

The merger is now complete. Any line numbers in LARGE that coincide
with those in SMALL will be overwritten. If you want to add SMALL to the
end of LARGE then you have to adjust the line numbers before SMALL is
spooled. When you use *SP0OL, anything that is output to the screen is
also sent to the cassette. That is why you must type LIST. ¥*SPOOL without
the file name closes the file that has been spooled.

(ii) This is a slightly simpler method, but the line numbers of SMALL must
be adjusted so as all to be higher than the highest line number in LARGE.
The idea is to LOAD the program with the lower line numbers, and *LOAD
the program with the higher numbers at TOP-2. Lastly, it is necessary to
type END so that the computer can trace the lengthened program.

- —

Merging BASIC programs 201

The procedure is:

LOAD "LARGE"

OSCLI '"LOAD '""SMALL"""™ 4+ STR$"(TOP-2)
END

This method is very easy, but you must be careful to adjust the line
numbers.

29 Assembly Language

Introduction

The computer’s ‘brain’ has its own language, and that language is not
BASIC. Every time you run a BASIC program, each line has to be
translated before this brain {the computer’s central processor unit)
can understand it at all. This translation is accomplished by a device
called an interpreter, which resides in the computer’s memory. The
action of this device need not concern you, but it is itself a program
written in machine-code, and machine-code is the computer’s own
language.

There are 55 different instructions in machine code, which is about half
the number of BASIC instructions available on the Electron. Each of
these instructions acts upon one or more of the registers inside the 6502
microprocessor (65@2 is the type-number of this processor — it has no
significance). A register is just like a byte of memory. The 6502 contains
six registers, five of them being 1 byte long, and the last being 2 bytes
long. These registers are not a part of the computer’s memory map (from
location &@90@ to &FFFFY); they live an entirely separate existence in the
heart of the microprocessor. But the machine-code instructions which
control these registers are stored in the computer’s memory, in the
position on the memory map labelled ‘operating system’. These instruct-
ions don’t look much like intelligible commands, for they are simply
binary numbers — 19101¢¢3100031010 for example. It is very difficult to
program using such low-level instructions; even in hexadecimal they
hardly look any better: A9 §A. This is the reason for using Assembly
Language.

Assembly Language uses a three-letter mnemonic to represent each
machine-code instruction. Each mnemonic is a contraction of the action-
in-words of that instruction.

Take the instruction given above. One of the registers in the micro-
processor is called the accumulator (all the registers will be described in
detail in a moment).

A9 means ‘load the acecumulator’.

- —

Assembly Language 263

The mnemonic for this is LDA, thereby giving you a rough guide to its
function, LoaD Accumulator.

The other part of the instruction, @A, is 1¢ in decimal. So A9 @A means
‘put 19 in the accumulator’, and this is written in Assembly Language as:

LDA #18

(The hash (#) tells the computer that it is the 1% which is to be put into
the accumulator, and not the contents of memory location 1¢. This will
be explained in a moment.)

So, each of the 55 machine-code instructions is assigned a three- letter
assembly mnemonic, which enables you the programmer to understand
the function of each, without having to look it up on a chart.

The Electron has another program in its memory, called an assembler,
and this converts the Assembly Language directly into machine-code.
During this assembly process, the computer can help you by giving error
messages and a listing of the machine-code in hex. (If you were
programming the 65@2 direct in machine-code there would be no error
messages at all — and just try finding a mistake among a few hundred
machine-code instructions!)

The assembler loads the machine-code into memory, and it can then be
run, either as a CALL or USR from BASIC, or by using *RUN.

Registers in the 6502

The 6502 microprocessor has six registers as follows:

Accumulator

The accumulator is the main working register of the processor. Most of
the 55 Assembly Language instructions operate on the accumulator,
which gained its name from the way that results of arithmetic operations
are ‘accurnulated’. It is an 8-bit register, meaning that it can store and
operate upon eight binary digits (one byte). Each bit is designated a
number, from @ for the least significant (rightmost) to 7 for the most
significant (leftmost).

2(4 Assembly Language

Common operations involving the accumulator are:

— Loading it from memory (the locations &@¢@9 to &FFFF).
— Storing its contents in memory.

-~ Addition or subtraction.

~ Logical functions (AND, OR, or EOR).

— Shifting its contents left or right.

Index registers X and Y
The two index registers are each 8-bits long, and are used for the
following:

— To be added to the address used by an instruction. This is called
indexing.

— As general purpose registers for various counting or short term
memory duties,

— In addition to the above, both the accumulator and the two index
registers are used by the Electron to pass parameters to operating
system subroutine calls. This will be explained later.

Program counter

The program counter is the only 16-bit register, and it holds the memory
address of the next instruction to be executed.

Operations involving the program counter are:

— Jump and branch instructions which alter the contents of the PC
and thereby divert the flow of the program. (Much like GOTO in
BASIC.)

Stack pointer

The stack pointer is an 8-bit register, with a ninth bit on the most
significant end which is always set to 1. It is an address pointer which
gives the location in memory of a special kind of data-structure used by
computers called the stack. It can point to addresses between &@1¢@ and
&P1FF. The stack is explained later, but in essence it is a section of
memory which has not only a position, but also an order. Thus, data
which is pushed on to the stack in one order, can only be pulled off it in
the reverse order. This sort of memory is called last in first out {LIFO). It
1s used for storing data in which the order is important, eg execution
addresses of nested subroutines.

Assembly Language 205

Flags register

The flags register is different from all the others in that it operates as
seven single-bit registers: N, V, B, D, 1, Z, C. Each bit signals a condition
in the processor, and certain instructions act upon these conditions
(whether that condition is present, true; or is not present, false).

Each bit acts as follows:

Bit N is set to 1 when the last operation produced a negative result. A
negative result is signified by the most significant bit of a register being 1
(the sign bit). In the case of the accumulator, a result inside it of, for
example, 1¢¢1010@ would set bit N of the flags register to 1. If the last
operation did not produce a negative result then bit N is reset to @.

Bit V is set to 1 when the last operation overflowed into the sign bit. As
stated above, the sign bit is bit 7 in the case of the accumulator, so bit Vis
set to 1 when there is a carry from bit 6 to bit 7. This is important to know
when using twos complement arithmetic, for it means that an error has
occurred which must be corrected.

Bit B is set to 1 when the BRK command is used (break). (This command
has much the same effect on a machine-code program that [EI93gq has
on a BASIC program.)

Bit D, when set to 1, causes the processor to operate in BCD mode
(binary coded decimal). When reset to §, the processor works as normal
in binary. BCD is beyond the scope of this book, and need not concern
you.

Bit I is the interrupt mask. When it is set to 1 no interrupts are accepted.
Interrupts are also beyond the scope of this book.

Bit Z is set to 1 when the last operation produced a zero result.

Bit C is the carry register. It is set to 1 by a carry from the most significant
bit of one of the registers, usually the accumulator.

These flags are used by the branch instructions, which direct the flow of
the program according to the conditions. For example, BEQ means
‘branch if equal to zero’. The program will branch if the Z bit is set to 1. If
not it will not branch.

206 Assembly Language

Addressing modes

Take a single instruction — you have seen LDA before. Its function is
always to ‘load the accumulator’, but it may load it in different ways and
from different places according to which addressing mode is used.

LDA #1@
means ‘load the accumulator with 14’. You know that already. However,

LDA 10

means ‘load the accumulator with the contents of memory location 14’.

This is an example of two different addressing modes. The first is
immediate addressing. The instruction uses the data immediately,
without looking for it in memory. The second is zero-page addressing.
The instruction uses the contents of the address specified. It is called
zero-page because the computer’s memory is divided up into 256 pages
each of 256 bytes. Any address which has its two most significant hex
digits as zero is said to be in the zero-page of memory. The zero-page
extends from locations &@08¢ to &AGFF.

LDA may also be used with a full 16-bit address:

LDA &3@A7

will ‘load the accumulator with the contents of memory location &3@A7".
This addressing mode is called absolute. It can access any location in the
computer’s memory. Notice that the assembler treats numbers as
decimal, unless they are preceded by &.

Immediate, zero-page and absolute are not the only addressing modes,
although they are the most simple to understand.

LDA &1D77.X

is an indexed addressing mode.

The address used by the instruction is &1D77 plus the contents of index
register X. So the accumulator is not loaded from &1D77 but from
&1D77+X. Note that the contents of index register X are added to the
address, and not to its contents.

Assembly Language 2@7

The index register used can equally well be Y:
LDA &25d4d.Y

(Note: When using machine-code there are several subdivisions of the
above indexed addressing mode, but using the assembler takes care of all
those for you. However, the assembled machine-code (in hex) will not
always be the same for the same indexed instruction.)

Another still more complicated addressing mode is indirect addressing:
LDA (81B.X)

The address given after the assembler mnemonic, in this case &1B, must
be a location in the zero-page of memory (or an error will result). This
location is then added to the contents of the X register, to give another
location in the zero-page. The contents of this new location, and the
contents of the location above it, together supply the full 16-bit address
of the location from which the accumulator is loaded. So, if &1B+X
contains &AA, and &1B+X+1 contains &BB, then the accumulator will
be loaded with the contents of memory location &AABB.

The above operation is called pre-indexed indirect addressing; the
indexing is the addition of the X register, and the direction is the use of
the two consecutive locations at the intermediate address as an address
pointer to the actual location used. It is called pre-indexed indirect
because the indexing is done before the indirection. All pre-indexed
indirections must use index register X.

Post-indexed indirect addressing is written in Assembly Language as
follows:

LDA (827).Y

In this addressing mode, the indirection occurs first. The address given
after the assembler mnemonic, in this case &27, must again be alocation
in the zero-page of memory. The contents of this location and the
contents of the location above it together give a 16-bit address. To this
16-bit address is added the contents of index register Y, and this final
address is the location from which the accumulator is loaded. All post-
indexed indirections must use index register Y.

2¢8 Assembly Language

The above examples show the complete range of addressing modes
which can be used with the instruction LDA. However, there are three
more important addressing modes which are used with certain other
instructions.

All of the branch instructions use a relative addressing mode. BEQ was
mentioned in the description of the flags register; it means ‘branch if
equal to zero’. A branch is an instruction which has an offset:

ZZZ data
BEQ Label
AAA data
BBB data
.Label CCC data
DDD data

In this fragment of program, the triple-letters can be any assembler
mstructions. When a program is running, the program counter is
incremented one step at a time to point at the next location which is to be
executed. In this example, when BEQ Label is being executed the
program counter will point to the line containing the instruction marked
AAA. If the result of checking the Z flag is that the previous operation did
not produce a negative result then execution will continue at the line
containing AAA. If the previous operation did give a zero result then the
program counter is incremented until it points at the line marked Label.
This program illustrates the use of labels in assembler. They can take
any name that you choose (subject to the same limitations as a BASIC

variable name), and are signified by the fact that they must always start
with a full stop.

Branch instructions may branch to labels either forwards or backwards,
but not too far. The actual distances are 128 bytes backwards or 127
bytes forwards; but remember that these are measured from the next
instruction following the branch, and that each instruction may be either
1, 2, or 3 bytes long. The assembler will soon tell you if you have an
address or label out of range.

The next addressing mode is accumulator addressing, which is used by
only four instructions in the 6502 set. These are ASL, LSR, ROL, and ROR,
and their action is explained in the reference section. In essence, they
shift the bits of a memory location or the accumulator to the left or right.

Assembly Language 2@9

ASL &764

means shift the contents of memory location &76 one bit to the left. In
order to apply this instruction to the accumulator, the accumulator’s own
addressing mode is used:

ASL A

means shift the contents of the accumulator one bit to the left. Look up
the four instructions in the reference section for more information.

The final addressing mode which you need to know about is the simplest.
Certain instructions, such as BRK (break) do not need any data or
memory reference at all. These are called implied instructions and they
carry out a simple task, usually on one of the registers; for example CLC
meaning ‘clear the carry flag’.

Addressing mode Examples

Immediate LDA #68 LDA # number
Zero-page LDA &98B LDA address
Absolute LDA &BE17 LDA address
Indexed LDA &AJ6C.Y LDA table, X
Pre-indexed indirect LDA (H.X) LDA {pointer,X)
Post-indexed indirect LDA (&89).Y LDA {zero),Y
Relative BEQ Repeat BNE Loop
Implied CiC BRK
Accumulator LSR A ROL A

The examples on the right show the assembler mnemonics used not with
specific addresses, but with BASIC variables. You will find out that this
is a good way of writing assembler subroutines which are to be called
from within BASIC programs by CALL or USR.

One final point about addressing modes. The JMP (jump) instruction is
the only one which allows straight indirect addressing (non-indexed).
JMP is very similar to BASIC’s GOTO. It can take a full 16-bit address
and place this value in the program counter — hence the program jumps
to a new execution address. It is usually used with a label, just like
branch, but without the restriction on distance. In absolute mode it
would look like this:

219 Assembly Language

JMP Label

If you wish to use it in indirect mode then simply enclose the address in
brackets:

JMP (&21A7)

It will then use the contents of the two consecutive locations at &21A7 as
an address pointer to the location to which it will jump.

JMP &21A7

821A7 §32
476

#3276 - continue execution.

Entering assembly mnemonics

This section tells you how to write Assembly Language subroutines, and
how to call them from BASIC. You may find it worthwhile, now that you
know about the 65@2 processor’s make-up, to read all of the assembly
mnemonic definitions. You will then be able to understand much more
clearly the capability of the processor, and what the short programs in
this section are doing,

Sections of Assembly Language are entered as part of a BASIC program,
separated from the BASIC part by the square brackets [and |. The
general structure of a program containing an assembler routine is:

1§ REM BASIC program
199 [

11@ \ Start of assembler mnemonics

299]
218 REM BASIC program continues

Assembly Language 211

Notice that remarks in the Assembly Language section are signalled by a
backslash \ . The assembler then knows to ignore them.

Before the routine can be assembled, the computer must be told where it
is to be put in computer memory. So the first line of the BASIC part must
allocate some memory for this purpose, and there are two ways in which
you can do this.

On entering the assembler routine, you assign to the resident integer
variable P% the value you choose to be the address of the first instruction
of the assembled machine code. P% is the ‘pseudo program counter’,
used by the assembler, to calculate addresses for branch and jump
instructions and as the pointer for the assembled codes. (When 0% is not
being used).

The two methods for doing this are:

(i) By direct assignment: P% = &2@@@ for example. The problem with
direct assignment is that you have to ensure that the memory location
chosen is available for use.

The second method gets round this problem.

(ii) By using the BASIC DIM instruction. This takes the form DIM P%
180. Note the use of spaces, and no commas or brackets, to distinguish it
from an array dimension. DIM P% 1@@ allocates 11 bytes of memory for
the machine-code, which will be stored along with all the BASIC
variables above LOMEM. The number used with the DIM instruction
must be large enough so that sufficient space is reserved to hold all the
code, but not so large as to overlap other items in the memory.

An even better way in which to use DIM is: DIM Q% 18§ followed by P%
=0Q%. DIM is a convenient way of reserving space for machine code
routines. No check is made to prevent the assembled code from
overrunning the space reserved for it.

Assembly

To get the computer to assemble the routine into machine-code, you
simply RUN the program. To complete the assembly, the program has to
be RUN twice. The reason for this will become clear in a moment. The
assembler pseudo-operator OPT controls the listing and error output
generated on assembly. This operator must be placed in the assembler
routine, usually at the start, and is followed by a number from ¢ to 3
which causes the following outputs:

212 Assembly Language

OPT@ No errors printed, no listing given,
OPT1 No errors, but a listing is given.
0PT2 Errors are printed, but no listing.
OPT3 Both errors and a listing are given.

The listing given is of the machine-code, in hexadecimal. The errors are
printed as messages on the screen,

Here's an Assembly Language routine:

10 DIM 0% 19§
28 P% = Q%
30 [OPT3

44 LDA 87d

b CMP #4

6@ BEQ Zero

78 STA &72

8¢ .Zero RTS
9]

When you RUN this program, the computer will print a listing, and then
the message:

No such variable at line 6§

Routines which have forward reference to labels (Zero is referred to on
line 6@ when the assembler has not yet come across it) will always
generate an error. The answer to this is to inhibit errors the first time
through by using OPTH, and then to RUN a second time to generate the
complete code. This is called two-pass assembly.

The way to do this is to enclose the routine in a FOR. . .NEXT loop as
follows:

14 DIM Q% 189

26 FOR | = ¢ TO 3 STEP 3
39 P% = Q%

44 [OPT |

5@ LDA &7¢

60 CMP #4

79 BEQ Zero

Assembly Language 213

8@ STA &72
9¢ .Zero RTS
190]

11§ NEXT

On the first time through the loop, I = # and so there will be no listing and
no error reported. This run allows the computer to identify the forward
referenced label. The second time through the loop, I=3 and hence alist
of compiled code is produced, along with any programming errors. Note
that the assignment statement P% = Q% is enclosed within the loop so
that it is reset before each pass.

On running this program, you will see alisting of the assembled machine-
code alongside the Assembly Language mnemonics:

>RUN

WET7S OPT |
gETS A5 70 LDA &7¢
gE77 C9 g¢ CMP #§
§E79 Fg 92 BEQ Zero
gE7B 85 72 STA &72
gE7D 6@ .Zero RTS

This means that the mnemonics have been successfully assembled, and
the corresponding machine-code has been loaded into addresses &BE75
to &PE7D. &A5 is stored in location &@E 75, &7@#in location &3E76, &C9
in location &@E 77, and so on to 6@ which is stored in location &@E7D.
This is nine bytes of machine-code in all.

This routine has not yet been executed. To do that a CALL from BASIC is
required:

CALL 0% Eii'Li

Nothing is printed on the screen when you do this, and that’s because the
program is trivial; it merely loads a byte from memory location &7 into
the accumulator, and if it isn’t zero it is stored in memory location &72.
There are some points to note about the structure of the Assembly
Language routine:

214 Assembly Language

— When a label is assigned to a line, as at line 96, it must be preceded by

a full stop. When the label is called by an instruction, as at line 74,
there must be no full stop.

— Most Assembly Language routines end with RTS (return from sub-
routine) which transfers control back to the BASIC interpreter.

-~ The above routine uses two locations in the zero page of memory.
Only locations &7@ to &8F in the zero page may be used by your own
programs; all the remainder is taken up by the operating system’s
variables, and BASIC’s workspace.

Execution by USR

USR is similar to a BASIC FN (function); it gives a single value.

The format is:
R% = USR(Z)

where Z may be a label pointing to the first assembler mnemonic, or the
address of the first instruction in machine-code. A label is easier to use
since it requires no knowledge of where the machine-code is placed in
memory. When R% = USR(Z) is executed, the least significant byte of
each of the BASIC integer variables A%, X%, and Y% is placed into the
accumulator, X register, and Y register respectively. The least significant
bit of C% is placed in the carry flag (bit C of the flags register). A%, X%,
Y%, and €% can therefore be used to initialise the 6502 registers before
entry into the assembler routine. Control then passes to the subroutine
pointed to by Z. On returning to BASIC (after RTS), the four bytes
comprising R% will each contain the contents of one of the 6582 registers,
as follows:

R% = PYXA

So R% contains the flags, Y register, X register, and accumulator in that
order.

Any or each of these registers may be extracted from R% by setting up a
mask using AND. To get the accumulator, the least significant byte is
required:

Acc = R% AND &FF

Similarly for X, Y:

Assembly Language 215

X = (R% AND &FFg#) DIV a1gd
Y = (R% AND &FFgddd) DIV &1000¢

To get the flags:

1¢ DIM BLOCK 3
2¢ 1BLOCK = USR(Z)

Then (Acc = BLOCK?@, X = BLOCK?1, Y = BLOCK?2), the flags =
BLOCK?3

Here is a program which uses USR. The Assembly Language routine adds
the numbers held in X% and A%, and gives the result in the accumulator:

16 DIM Q% 19§

20 FORI = g 10 3 STEP 3

30 Ph = 0%

44 [OPT |

5@ .Start STA &80

6@ TXA

79 CLC

8¢ CLD

9¢ ADC &8f

190 RTS

114]

128 NEXT

138 INPUT “First number “A%

148 INPUT "Second number “X%
15§ Registers% — USR(Start)

16§ Sum% = Registers% AND &FF
178 PRINT "Sum of two numbers is "“;Sum%

When RUN, you will see the following:

>RUN

gFgA 0PT |

#FBA 85 8¢ Start STA 48§
gFiC 8A TXA

§FgD 18 CLC

§FJE D8 | CLD

UFJF 65 8§ ADC &8¢

gF11 60 RTS

First number 11

216 Assembly Language

Second number 12
Sum of two numbers is 23

The numbers 11 and 12 are entered by the user, and are stored in the
integer variables A% and X%. The USR call tells the computer to start
executing the assembly routine from the label Start. Before this
happens, the least significant byte of A% is placed in the accumulator,
and the least significant byte of X% into the X register. The machine-
code corresponding to the assembler mnemonics is now executed in
sequence:

STA &80 stores the contents of the accumulator in memory location &84.
TXA transfers the contents of the X register to the accumulator.

CLC clears the carry flag prior to addition. If this is not done then a
spurious carry may be added to give an incorrect result.

CLD clears the D flag so that the 6502 is working in binary mode.

ADC &80 adds the contents of the accumulator to the contents of memory
location &8, plus the contents of the carry flag; and places the result in
the acccumulator.

RTS returns control to BASIC.

Back in the BASIC section, Registers% now contains the four 65@2
registers’ contents. The result is in the accumulator, so the least
significant byte of Registers% is placed into Sum%, which is then printed
to give the answer. Note that this routine performs only a single-byte
addition, so any result given in Sum% will be MOD 256.

Execution by CALL
CALL is similar to a BASIC PROC {procedure).

Here is another addition routine:

19 DIM Q% 169

2§ FOR =@ TO 3 STEP 3
30 P% = 0%

ag [OPT |

5@ .Start CLC

68 CLD

76 LDA &84

8¢ ADC &81

Assembly Language 217

9@ STA &82

184 RTS

114]

128 NEXT

138 INPUT “First number “numberi%
148 INPUT “"Second number “number2%
159 7888 = numbert%

160 7881 — number2%

17@ CALL Start

188 Sum% = 7882

19@ PRINT “Sum of two numbers is ";Sum%

This program illustrates the use of the indirection operator ?. Indirection
operators are very useful when calling assembly routines.

Here is a list to refresh your memory:

%488 = J% Will put the least significant byte of J% in
location &8.

18808 — 812345678 Will put &78 in location &8@, &56 in location
&81, &34 in location &82, and &12 in location
&83.

$V% = "FAULT” Will put the string “FAULT” plus a carriage
return (| M) in locations starting at V%. V%
must not be in zero page.

S$% = 1480 Will read the contents of location &89 (1 byte)
into $%.
R% = \&87 Will read 4 bytes from locations &87 to &8A

into R%; &8B being the most significant, &87
the least significant.
R$ = $&5200¢ Will read a string starting at &2¢@9 into RS.

The addition program shown above has exactly the same effect as the
previous example. In this instance though, the two numbers are stored
into memory in the BASIC part of the program, and are added and the
result stored in the Assembly Language part.

CALL may also be used with parameters, similar to PROC. This takes the
form:

CALL Start,integer%,decimal,string%,?byte

The parameters are separated by commas. Start is a label, but could
equally well be a specific address, &2@0@ for example. The above CALL

218 Assembly Language

shows that any kind of variable may be passed as a parameter: integer,
real, string, and single-byte. When a CALL is made, the parameters are
assigned to a parameter block, which starts at memory location &669.
The format of this parameter block is:

Address Contents

&600 Number of parameters

&601 1st parameter address (low)
&6(32 1st parameter address (high)
&603 1st parameter type

&604 2nd parameter address (low)
&605 2nd parameter address (high)
&606 2nd parameter type

There may be any number of parameters, and this number is given in the
first byte of the parameter block. Following this, each parameter’s
address and type is given.

The type is designated by a number:

A single byte (eg ?location)

A 4-byte variable (eg Z% or !address)

A 5-byte variable (eg number)

A defined string (eg “YES PLEASE”) which must end

with &D (GIAILLD

129 A string variable (eg name$)

QO =

12

The way that the parameter block is laid out, it would seem that the best
way to access the individual parameters is to use indirect addressing.
Unfortunately, the 65¢2 only allows the zero-page to be used for indirect
address pointers, so here is a routine which transfers the addresses from
the parameter block into free locations in the zero-page:

LDA &6d§ \ Check the number of parameters.
BEQ End \ If zero then finish.
STA &79 \ If not then store this number.
LDX #4§ ~ \Clear the X register
LDY #§ \ and the Y register.

.Loop LDA &6@1)Y \ Take high address of parameter.
STA 871,X \ and store it in zero-page.

INX \ Increment X register.

Assembly Language 219

INY \ and Y register.
LDA &6§1,Y \ Take low address of parameter.
STA &71.X \ and stora it in zero-page.
INX \ Increment X register
INY \ and Y register
INY \ twice.
DEC &74 \ Decrement number of parameters.
BNE Loop \ If still not zero then repeat.
.End RTS \ Return to BASIC.

This routine stores the address of each parameter in zero-page memory
starting at location &71. 15 parameter addresses may be stored in this
way before the total user zero-page memory is filled. This routine is very
useful if the number of parameters passed to a particular Assembly
Language subroutine is not always the same, for it will only relocate the
addresses of those parameters which exist.

Here this routine is incorporated into another addition program:

16 DIM Q% 199
2§ FOR 1=§ TO 3 STEP 3
30 P% = Q%
44 [OPT |

5@ .Start CLC
6§ CLD

7@ LDA 8649
89 BEQ End

9@ STA &7¢
199 LDX #48
119 LDY #4§
12¢ .Loop1 LDA &6@1,Y
130 STA 871 .X
148 INX

150 INY

16§ LDA &601.Y
179 STA 871X
180 INX

19§ INY

249 INY

210 DEC &78
229 BNE Loopi

229 Assembly Language

230 .End LDX #6

248 STX &284d8

25 LDY a6@y

26f BEQ Finish

27d .Loop2 LDA (871,X)

288 ADC &208d9

29§ STA &20dd

399 INX

318 INX

329 DEY

338 BNE Loop2

340 .Finish RTS

350]

360 NEXT

37@ INPUT"First number “one%
388 INPUT"Second number “two%
399 INPUT Third number “three%
4@@ CALL Start,one%

419 Sum%=762098

42§ PRINT Sum%

43f CALL Start,one%,two%

448 Sum%=1&2004

458 PRINT Sum%

46@ CALL Start,one%.two%.three%
479 Sum%=78204d

488 PRINT Sum%

The parameter block transfer routine ends at line 24@, where the
addition routine begins. Notice that the whole routine is CALLed with
varying numbers of parameters, just to prove that it works. The result of
adding the parameters is given in location &2@0@. However, as with the
previous programs, the result is MOD 2586.

Quadruple precision addition

Integer variables are stored in four consecutive bytes of memory. Groups
of four bytes can be accessed using !, and can be added together. This is
achieved a byte at a time, starting with the least significant, and storing

each successive result;

1§ DIM Q% 19@

Assembly Language 221

20 FORI= @ T0 3 STEP 3

3¢ P% = Q%

ag [OPT |

5¢ .Start CLC \Clear carry for ADC instruction
60 CLD

70 LDX #4¢ \ Clear X register

8¢ LDY #4 \ Set Y register to 4 as a counter
9@ .Loop LDA 878.X \ Put hyte from one% in accumulator
19@ ADC &74.X \ Add byte from two%

119 STA &78,X \ Store result

128 INX \ increment X register

139 DEY \ Decrement Y register

149 BNE Loop \ If not zero then repeat

150 RTS

16@]

178 NEXT

180 INPUT "First number “one%

198 INPUT "Second number "two%

200 '&87d = one%

219 874 = two%

22@ CALL Start

238 sum% = 1478

240 PRINT "Sum of two numbers is “';Sum%

This program will work with positive or negative integers.

Multiplication

The 6502 does not have a multiply instruction. Multiplication is
achieved by adding and shifting, just like ordinary decimal long-
multiplication. As a simple example, take the multiplication of two 4-bit
numbers. Such a multiplication can give an 8-bit result:

(i) Test the rightmost bit of the multiplier. If it is zero then add ¢@@4 to
the most significant end of the result. If it is 1 then add the number to be
multiplied to the most significant end of the result.

(i) Shift the result one bit position to the right. Repeat (i) for the next bit
of the multiplier.

Applying the above to 11#1*1$@1, the rightmost bit of the multiplier
(1901) is 1. Therefore 11¢1 is added to the most significant end of the

222 Assembly Language

result:

191

Shift the result right one bit position:
grgi

The next bit of the multiplier is zero, so $9@¢ is added to the result, and it
is again shifted right:

gg11g1
The next bit is again zero:

gugigi

The final bit is 1, so 11@1 is added to the result, and the final shift is
performed:

g111g101

Notice that for 4-bit multiplication, four shifts are required. 8-bit
multiplication will require eight shifts, 16-bit multiplication 16 shifts,
and so on,

To put the above routine into practice on the 6582, the shift and rotate
instructions are used. Here is a program to multiply two 8-bit numbers:

1§ DIM Q% 19§
20 FOR I=¢ T0 3 STEP 3

39 P% = Q%

ag [OPT |

5@ .Start CLD

60 LDA #§

78 STA &72 \ Clear 16-bits

8@ STA 873 \ for the resuit.

9§ LDY #8 \ Set Y to 8 as a counter.
189 .Loop LSR 871 \ Shift multiplier right one bit.
11§ BCC NoAdd \ Test this bit. Branch if zero.

126 CLC \ Clear carry prior to addition.

Assembly Language 223

13¢ LDA &74 \ Load accumulator with number to be
\ multiplied.

14¢ ADC &73 \ Add most significant byte of result.

15@ STA &73 \ Store in most significant byte of result.

168 .NoAdd ROR &73 \ Shift result right, with carry

179 ROR &72 \ from addition.

18§ DEY \ Decrement counter.

19§ BNE Loop \ Repeat if not zero.

24@ RTS

219]

228 NEXT

230 INPUT "First number “one%

244 INPUT “Second number “two%

250 7870 = one%

260 72871 = two%

278 CALL Start

28¢ Products = 7672 + 256%*7&73

290 PRINT “Product of two numbers is “;Product’%

This routine is not the most efficient way of multiplying two bytes
together, but it illustrates the method clearly:

Lines 6@, 78 and 8¢ clear the two bytes in memory which will be used for
the result of the multiplication. These locations are &72 (result low byte)
and &73 (result high byte).

Lines 25¢ and 26@ store the numbers to be multiplied in locations &7§
and &71. It doesn’t matter which of these is chosen to be the multiplier;
the example uses the number in &71.

Line 90 sets the Y register to 8 as a counter. Because this is an 8-bit
multiplication, eight shifts are required.

Line 1¢@ shifts the multiplier right one bit position. The rightmost bit
falls into the carry where it can be tested.

Line 11¢ carries out the test. If the C bit is zero then the program
branches to NoAdd: if it is 1 then the addition of the number in &7 to the
result high byte (&73) takes place.

Lines 12@ to 150 accomplish this addition, by clearing the carry bit,
loading the accumulator from &7, adding the result high byte, and then
storing back in the result high byte.

Line 16, labelled NoAdd, rotates the result high byte right one bit

224 Assembly Language

position. The carry from the addition in line 14@ is entered from the left,
and the rightmost bit falls into the carry.

Line 17§ rotates the result low byte right one bit position. The leftmost
bit from the high byte, now in the carry, enters the low byte from the left.

Line 199 decrements the counter, and repeats the above process until
the counter is zero.

The program will give the result of multiplying two positive integers,
each between @ and 255. You can see how many instructions it takes just
to do this, and can imagine the complexity of a BASIC statement when it
is interpreted into machine-code.

A shorter routine to multiply two bytes uses the accumulator as the
result high byte, and the multiplier as the result low byte. As each bit of
the multiplier is shifted into the carry to be tested, the leftmost bit of the
multiplier location becomes vacant, so allowing the result to be shifted
in.

Start CLD

LDA #§ \ Clear result high byte.
LDY #8 \ Set shift counter.

.Loop ROR &71 \ Shift multiplier right one bit.
BCC NoAdd \ Test this bit. Branch if zero.
CLC \ Clear carry prior to addition,
ADC &70 \ Add numher to be multiplied.
.NoAdd ROR A \ Shift result right, with carry from addition.
DEY \ Decrement counter.

BNE Loop \ Repeat if not zero.
ROR &71 \ Fina! shift of result.
STA &72 \ Store result high byte.
RTS

Before using this routine, the two bytes to be multiplied are placed in
locations &7¢ and &71. The result appears in &71 (low byte) and &72
(high byte).

To multiply two 4-byte numbers together, the additions and shifts must
act on each byte in turn, and the total number of shifts must be 32.

.Start CLD
LDX #8 \ Clear
LDA #§ \ eight

.Clear STA &77,X \ hytes
DEX \ for
BNE Clear \ result.
LDY #32 \ Set shift counter.
Loop LSR &77 \ Shift four hytes
ROR &76 \ of multiplier
ROR &75 \ right
ROR &74 \ one bit.
BCC NoAdd \ Test this bit. Branch if zero.
CLC \ Clear carry prior to addition.
LDA &79 \ Add
ADC &7C \ 4-byte
STA &7C \ multiplier
LDA &71 \ to
ADC &70 \4-byte
STA &7D \ result
LDA &72 \ and
ADC &7E \ store.
STA &7E \"
LDA &73 \"
ADBC &7F \
STA &7F \”
.NoAdd LDX #8 \ Shift
.Shift ROR &77.X \ eight bytes
DEX \ of result
BNE Shift \ right
DEY \ one bhit.
BNE Loop \ Repeat if not zero
RTS

Assembly Language 225

Before using this routine, the two numbers to be muitiplied must be
placed in 1870 and !&74. The result appears in the four bytes from &78
(least significant) to &7B (most significant), and is accessed as 1&78. This
routine will work with both positive and negative integers.

Division
Division is accomplished as the reverse of multiplication. 8-bit
multiplication gave a 16-bit result, so, for division, a 16-bit numerator

and 8-bit denominator will give an 8-bit result. The numerator is stored
in two bytes of memory, It is shifted left one bit position and the

226 Assembly Language

numerator high byte is then loaded into the accumulator. If the shift
produced a carry then a 1 is shifted left into the result, the denominator is
subtracted from the accumulator, and the accumulator contents are then
stored in the numerator high byte. If the shift did not produce a carry
then the denominator is subtracted from the accumulator in any case. If
this subtraction produces a carry then a 1 is shifted left into the result
and the accumulator contents are stored in the numerator high byte. If no
carry, then @ is shifted left into the result.

This whole process is repeated eight times. The division program is as
follows:

1§ DIM Q% 198
2@ FOR 1=@ TO 3 STEP 3

39 P% = 0%

ag [OPT |

5@ .Start CLD

60 LDY #8 \ Set shift counter.

78 .loop ASL &72 \ Shift numerator

80 ROL &73 \ left one bit.

99 LDA &73 \ Load accumulator high byte.
19d BCC Label \ Test carry produced by shift.
119 SBC &71 \ Subtract denominator and
12§ STA 873 \ store in numerator high byte.
139 SEC \ Set carry prior to shifting into result.
148 JMP Shift \ Go to Shift.

158 .Label SEC \ Set carry prior to subtraction.
168 SBC &71 \ Subtract denominator

178 BCC Shift \ and test carry.

188 STA &73 \ Store in numerator high hyte.
19¢ .Shift ROL &7¢ \ Shift either § or 1 into result.
209 DEY \ Decrement counter.

21@ BNE Loop \ Repeat if not zero.

228 RTS

230 |

24g NEXT

25§ INPUT “Numerator “numerator%

268 INPUT "Denominator “denominator%

270 P% = &N

28¢ [OPT 3

298 EQUB denominator% \ Store denominator at location &71

3§¢ EQUW numeratords \ Store numerator at locations 872 and &73

Assembly Language 227

314 RTS

329 |

33@ CALL Start

34§ PRINT "Quotient is “;7&7§
358 PRINT "Remainder is ;7873

In this routine, the denominator is stored at location &71, and the
numerator in two bytes &72 and &73. The result appears in &7@, and any
remainder is left in &73. Remember, this is a 16-bit by 8-bit division, so
the denominator may not be greater than 255 and the numerator not

greater than 65025 (255%) to give a valid result (the result must be 255 or
less).

The short routine from lines 286 to 320 is used to store the data in
memory, and contains some instructions which you have not yet seen or
used. EQUB and EQUW are in the same class of instruction as PT, in that
they are used in the Assembly Language part of the program but are not
assembly instructions. They are used simply to store data at the
location(s) at which they appear when assembled into machine-code.
You will see this clearly when you RUN the above program. After you
have typed in the numerator and denominator you will see a listing of the
machine-code from &®971 to &B974.

There are in fact four EQU instructions:

EQUB stores a byte of data.

EQUW stores a word of data (2 bytes).

EQUD stores a double-word of data (4 bytes).
EQUS stores the ASCII representation of a string.

EQUS is illustrated in the next section on error handling in Assembly
Language.

Notice in the program example above how putting P% equal to &71
enables the denominator to be stored in &71 using EQUB, and the
numerator to be stored in &72 and &73 using EQUW. EQUD may be used
to store the contents of a full BASIC integer variable. (You may use EQUB
instead of ?, and EQUD instead of 1)

Error trapping in assembler

The assembler will tell you of any mistakes which you make in typing in
programs (syntax errors), and some errors associated with BASIC
variables during assembly, but there is no such thing as a run-time error

228 Assembly Language

in machine-code: you just have to fathom it out line by line. However, it is
possible for you to trap errors generated while a machine-code program
is running by using the BRK instruction. As an example, take the division
program described in the previous section. Everyone knows that it is not
possible to divide by zero, but the program does not know this. If you try
to do so it unwittingly gives the answer 255.

It is simple to test the denominator before the division is started, and
then to branch to an error routine. The whole program is not repeated
here, but the following lines may be added:

53 LDA &71
b6 BEQ Error

222 .Error BRK

224 EQUB 18

226 EQUS "Division by zere”
228 BRK

If you now run the program with a zero denominator, it will stop and print
the message:

Division by zero at line 33§

You can also type

PRINT ERR G3CL1]

upon which it will give the correct error number, 18.

Any error message must take the following form:

BRK
EQUB errornumber (ERR)
EQUS "message”

BRK

Operating system calls from assembler

All the operating system calls available from BASIC, and many more, are
available from a machine-code program. These routines are always
accessed using a JSR to some address in the operating system, and
usually involve the passing of one or more parameters via the
accumulator (for 1), X and Y (for 2 or 3), or a parameter block in memory

(for more than 3).

Assembly Language 229

Here is a table showing all the operating system calls available.

Routine
Name Address

Vector

Name

Address

Summary of function

OSFIND
OSBPUT

FFCE
FFD4
OSBGET | FFD7
OSARGS FFDA

OSFILE FFDD

OSRDCH | FFEO

OSASCI FFE3

OSNEWL | FFE7

OSWRCH | FFEE
OSWORD | FFF1

OSBYTE FFF4

OSCLI FFF7

UPTV
EVNTV
FSCV

FINDV
BPUTV

BGETV
ARGSV
FILEV

RDCHV

WRCHV

WORDV

BYTEV

CLIV

222
220
21E

21C
218

216
214
212

21¢

20E

29C

20A

208

User print routine
Event interrupt

File system control
entry

Open or close a file
Save a single byte to
file from A

Load a single byte to
A from file

Load or save data
about a file

Load or save a
complete file

Read character (from
keyboard) to A
Write a character (to
screen) from A plus
LF if (A)=&¢D
Write LF,CR (&0A,
&@D) to screen
Write character (to
screen) from A
Perform miscellaneous
OS operation using
control block to pass
parameters

Perform miscellaneous
OS operation using
registers to pass
parameters

Interpret the
command line given

239 Assembly Language

When you use one of these routines, you must use a JSR to the
corresponding address shown in the second column. For example,
OSWRCH is called from assembler by typing:

JSR &FFEE

The routine stored at #FFEE uses the OSWRCH vector address, shown in
the fourth column, as an indirect pointer to the actual location of the
OSWRCH routine.

The reason for this is twofold:

(i) The actual address of the OSWRCH routine may be altered by the
manufacturer without affecting the operating system subroutine call in
any way. JSR &FFEE will always give an OSWRCH call even though the
address held in locations &2¢E and &2@F may not be the same on every
machine.

{(ii) The user can alter the address held in the zero-page vector location
and trap any call of that particular operating system routine, indirecting
such a call to the user’s own routine anywhere in memory.

Use of operating system calls

OSWRCH entry: &FFEE vector: &20E
This call writes the character whose ASCII code is in the accumulator to
the screen.

Here is an example which will print the character L. on the screen:

1§ P = &7§

2 [OPT 3

30 .Start LDA #76 \ Load accumulator with ASCIl code for L
449 JSR &FFEE \ Jump to.0SWRCH

5@ RTS

60]

78 CALL Start

OSWRCH is also used with ASCII control codes (from @ to 31). If you
change line 30 to:

3¢ .Start LDA #7

Assembly Language 231

then the program will output ASCII character 7, which is a ‘beep’.

Some BASIC instructions have ASCII values in the control code range,
and these can therefore be used with OSWRCH. For example, PLOT has
an ASCII value of 25, TAB an ASCII value of 31.

The following program uses TAB to print the character L half way across
the screen:

16 P% = &7§.
29 [OPT 2

3¢ .Start LDA #31
4§ JSR &FFEE
5@ LDA #19
6§ JSR &FFEE
7§ LDA #VPOS
80 JSR &FFEE
9@ LDA #76
1§49 JSR &FFEE
110 RTS

124]

139 CALL Start

Each parameter is passed in turn to OSWRCH via the accumulator. The
BASIC statement equivalent to the above program is:

PRINT TAB{19);"L";

(Note that this program will not work with OPT 3 because VPOS is
affected.)

The BASIC instruction PLOT takes three parameters, PLOT AXY.
However, X may be § to 1279 and Y may be ¢ to 1¢23, so each must be
represented by two bytes. That means that an OSWRCH call with the
accumulator set to 25 must be followed by five more OSWRCH calls to
pass the parameters. The following program will plot a line on the screen:

19 MODE 4

26 P% = &7§

39 [OPT 3

4§ Start LDA #25
50 JSR BFFEE

232 Assembly Language

6@ LDA #5

78 JSR &FFEE
80 LDA #388
9§ JSR &FFEE
108 LDA #2
11§ JSR &FFEE
124 LDA #44
138 JSR &FFEE
148 LDA #1
150 JSR &FFEE
168 RTS

170]

18@ CALL Start

This program is equivalent to

PLOTS,600.300

Lines 10# and 89 give X (2%256 + 88) and lines 14¢ and 120 give Y
(1%256 + 44).

You'll see from the listing that the above routine, when assembled,
occupies memory from &7¢ to &8E. Remember that user programs must
use zero-page locations only between &7 and &8F, so this is almost the
largest size routine that may be stored in the zero-page.

OSASCI entry: &FFE3

Writes the character whose code is in the accumulator to the screen using
OSWRCH. However, if the accumulator contains &D then OSNEWL is
called instead. The actual code at location &FFES3 is:

{OSASCI CMP #&D
BNE OSWRCH

OSNEWL LDA #8&A
JSR OSWRCH
LDA #&D

.OSWRCH JMP (WRCHV)

OSNEWL entry: &FFE7
This call issues a line feed/carriage return to the screen, as shown above.

Assembly Language 233

After using OSWRCH, OSASCI, or OSNEWL, the contents of the
accumulator, X, and Y registers are unchanged. Flags C,N, V, and Z are
undefined, and D = @.

OSRDCH entry: &FFE@ vector: &210
This call reads a character code from the keyboard into the accumulator.

After using OSRDCH, the contents of the X and Y registers are

unchanged. Flags N, V, and Z are undefined, and D = @. Flag C tells

whether the read has been successful (C = @).If C = 1 then an error has

occurred and the error number is given in the accumulator. If C=1and A

= &1B then an escape condition has been detected and you must

:cknowledge this by performing an OSBYTE call with A = &7E, or
FX126.

OSCLI entry: &FFF7 vector: &208

This call is used by the BASIC OSCLI instruction. From assembler it
consists of a JSR to &FFF7, the command line string being placed in
memory at a location given by the contents of the X register (address low
byte) and Y register (address high byte). The command line string must
be terminated by &D

The following BASIC program illustrates this:

19 DIM address 2§
2§ keynumber = 4
3¢ $address = "KEY”"+STR$ keynumhef-l-"LISTl M
a8 X% = address MOD 256
5 Y% = address DIV 256
68 CALL &FFF7

This will have the same effect as

*KEY4"LIST | M"”

Note: The string indirection operator $ automatically puts a L1303}
code (&D) after the string. EQUS however does not, and it must be
inserted afterwards using EQUB &D or something like EQUS “FRED” +
CHR$13.

234 Assembly Language

OSFIND entry: &FFCE vector: &21C

Opens a file from cassette or disc for reading or writing. The contents of
the accumulator determine the operation performed:

A=¢§ closes a file or files (CLOSE#).

A= 848 opens a file for input (OPENIN).

A= 88§ opens a file for output (OPENOUT).

A= 8CP# opens a file for input or output (QPENUP).

When OPENIN, OPENOUT, or OPENUP is used, X and Y must contain the
address of the filename. After the subroutine call, the accumulator will
contain the channel number allocated to that file by the operating
system. '

If CLOSE# is used then Y must contain the channel number of the file to
be closed. If Y is @ then all files will be closed.

OSBPUT entry: &FFD4 vector: &218

Writes the byte contained in the accumulator to the cassette or disc file
(same as BPUT#). Y must contain the file channel number. After using
0SBPUT, the contents of the accumulator, X, and Y registers are
unchanged.

OSBGET entry: &FFD7 vector: &216

Reads a byte from the cassette or disc file into the accumulator (same as
BGET#). Y must contain the file channel number. After using 0SBGET,

the contents of the X and Y registers are unchanged. Flags N, V, and Z
are undefined, and D = @. Flag C tells whether the read has been
successful (C = @). If C = 1 then an error has occurred and the error
number is given in the accumulator. If C = 1 and A = &FE thenthe end of
file has been reached.

OSFILE entry: &FFDD vector: &212
Allows a whole file to be loaded or saved. The contents of the
accumulator indicate the function to be performed. X and Y point to an

18 byte control block anywhere in memory, the structure of which is as
follows:

OSFILE control block

1) Address of file name, which must be terminated LSB
@31 by &@#D MSB

-

Assembly Language 235

@2 Load address of file L.SB
@3

@4

@5 MSB
@36 Execution address of file LSB
@7

@8

99 MSB
GA Start address of data for write operations, LSB
¢B or length of file for read operations

@C

@D MSB
0E End address of data, that is byte after LSB
oF last byte to be written or file attributes

10

11 MSB

The table below indicates the function performed by OSFILE for each
value of A.

A=

A=1
A=2
A=3
A=4
A=H

A=6
A=&FF

Save a section of memory as a named file. The file’s catalogue
information is also written.

Write the catalogue information for the named file.
Write the load address (only) for the named file.
Write the execution address (only) for the named file.
Write the attributes (only) for the named file.

Read the named file’s catalogue information. Place the file
type in A.

Delete the named file.

Load the named file and read the named file’s catalogue
information.

Note: Values 1 to 6 are not available on a cassette filing system.

OSBYTE entry: &FFF4 vector: &20A

This is a family of operating system calls which includes all the *FX calls
available from BASIC. (These are not repeated here.) The call number is
passed in the accumulator and parameters are passed in X or Y or both.

236 Assembly Language

éll OSBYTE calls are available from BASIC via a USR call, or by using a
FX call.

Here is a list of functions as given by each accumulator value (A):

A = 127 (EOF#) *FX127

Gives the end of file status of a previously opened file. X must contain the
file channel number. Afterwards, X will be zero if the end of file has not
been reached, non-zero if the end of file has been reached.

A = 129 (INKEY) *FX129

Either waits for a character from the keyboard buffer until a time limit
expires (INKEYpositive) or tests if a key is depressed (INKEYnegative).
All the discussion about auto-repeat and buffer flushing applies to this
call.

For INKEYpositive, Y must contain the most significant byte of the delay,
and X the least significant (in hundredths of a second).

Afterwards, if Y = @ then a character has been detected and its code
appears in X. Y = &1B indicates that m was pressed and must be
acknowledged with ¥FX126. Y = &FF indicates that no key was pressed
in the allocated time.

For INKEYnegative, Y must contain the requisite key-code in twos
complement. Afterwards Y will be either TRUE (&FF) or FALSE (zero)
depending on whether the key was pressed.

A = 131 (OSHWM) *FX131

Gives the address of the first free location in memory above that required
for the operating system. Usually equal to &E@#@. The address is given in
X (low byte) and Y (high byte). For example, after *FX28,6.

A =132 *FX132
Gives the lowest memory address used by the screen display in X (low
byte) and Y (high byte). '

A = 133 Low mode address *FX133

Gives the lowest address in memory used by a particular mode. Does not
change mode but merely investigates the consequences of doing so. The

Assembly Language 237

mode to be investigated must be in X, Afterwards, the address is
contained in X (low byte) and Y (high byte).

A = 134 Read position of text cursor *FX134

Gives in X the X coordinate of the text cursor, and in Y the Y coordinate
(same as POS and VPOS).

A = 135 Read character at position of text cursor *FX135

Gives in X the ASCII code of the character at the current text cursor
position, and in Y the current mode number. X is @ if the character is not
recognisable.

Here is a BASIC function which can be used to read the character at any
position X,Y on the screen:

199§ DEF FNreadcharacter(column%,row%)

1100 LOCAL A%, currentX%,currentY%,character%

128d@ currentX% = POS: currentY% = VP0S

13@@ VDU31,column®,row%

14488 A% = 135

15@@ character% = (USR(&FFF4) AND &FF@g) DIV &10@
1790 VDU31, currentX%,currentY%

1868 = CHRS character%

To give the character at position X,Y this function would be called by
passing X and Y as the two parameters:

PRINT FNreadcharacter(X.Y)

A = 137 Motor control *FX137

Similar to ¥*MOTOR. X = @ will turn off the cassette motor, X = 1 will turn
it on.

A = 139 (*OPT) *FX138

Exactly the same as ¥OPT. The parameters are passed in X and Y.

238 Assembly Language

A = 145 Get character from keyboard buffer *FX145

Reads a character code from a buffer into the Y register. X = buffer
number (@ to 9 inclusive). C = @ indicates a successful read, C = 1
indicates that the buffer is empty.

A = 218 Cancel VDU queue *£X218

Many VDU codes expect a sequence of bytes (as shown earlier with PLOT
and TAB). This call signals the VDU software to throw away the bytes it
has received so far. Before use, X and Y must contain zero.

OSWORD entry: &FFF1 vector: &26C

This is a family of operating system calls which uses a parameter block
somewhere in memory to supply data to the routine and to receive results
from it. The exact location of the parameter block must be specified in X
(low byte) and Y (high byte). The accumulator contents determine the
action of the OSWORD call.

A = @ Read a line from keyboard to memory

Accepts characters from the keyboard and places them at a specified
location in memory. During input the E!Eﬁ key (ASCII 127) deletes
the last character entered, and [M|:{R U (ASCII 21) deletes the entire

line. The routine ends if FY3JIL11 is entered (ASCII 13) or the
key is pressed.

The control block contains five bytes:

YX (low byte) Address at which
YX+1 (high byte) line is to be stored
YX+2 Maximum length of line

YX+3 Minimum acceptable ASCII value
YX+4 Maximum acceptable ASCII value

Characters will only be entered if they are in the range specified by
YX+3 and YX+4.

Afterwards, C = @ indicates that the line was terminated by a [J3UL1,} .
C not equal to zero indicates that the line was terminated by an

. Y is set to the length of the line, excluding the carriage return if
C=4a.

Assembly Language 239

A = 1 Read clock

Reads the internal elapsed-time clock into the five bytes pointed to by X
and Y. The clock is incremented every hundredth of a second, and is used
by the BASIC variable TIME.

A = 2 Write clock

Sets the internal elapsed-time clock to the value given in the five bytes
pointed to by X and Y. Location YX is the least significant byte of the
clock, YX+4 is the most significant.

A = 3 Read interval timer

In addition to the clock there is an interval timer which is also
incremented every hundredth of a second. The interval is stored in five
bytes pointed to by X and Y. See OSWORD with A = 1.

A = 4 Write interval timer

X and Y point to five bytes which contain the new value to which the
clock is to be set. The interval timer may cause an event when it reaches

zero. Thus setting the timer to &FFFFFFFFFD would cause an event
after three hundredths of a second.

A = 7 SOUND

Equivalent to the BASIC SOUND statement. The eight bytes pointed to
by X and Y contain the four two-byte parameters (in fact only the least
significant byte of each need be used).

YX Q (channel, @ to 3)

YX+1 zero

YX+2 A (envelope, —15 to 4)

YX+3 zero, or &FF if -1 or some other negative value
YX+4 P (pitch, @ to 255)

YX+5 zero
YX+6 D (duration, 1 to 255)
YX+7 zero

A = 8 ENVELOPE

Equivalent to the BASIC ENVELOPE statement. X and Y point to 14
bytes of data which are the 14 parameters used by ENVELOPE.

240 Assembly Language

A = 9 POINT

Equivalent to BASIC POINT function. The parameter block pointed to
by X and Y must be set up as follows:

YX X (low byte) coordinate
YX+1 X (high byte) coordinate
YX+2 Y (low byte) coordinate
YX+3 Y (high byte) coordinate

Afterwards, YX+4 will contain the logical colour value of that particular

graphics coordinate. If the coordinate is off the screen then YX+4
contains &FF,

A = 10 Read character definition

Characters are displayed on the screen as an 8X8 matrix of dots. The
pattern of dots for each character, including user-defined characters, is
stored as eight bytes. This call enables the eight bytes to be read into a
block of memory starting at the address given in X and Y, plus 1. The
ASCII code of the character must be the first entry on the parameter
block when the routine is called.

Afterwards, the parameter block contains data as shown below:

YX Character code
YX+1 Top row of displayed character
YX+2 Second row of displayed character

YX+8 Bottom row of displayed character

Here is a program to illustrate this OSWORD call, and the method of
calling OSWORDs in general. It takes each of the characters in turn,
reads the matrix definition, and then reverses this definition by shifting
the bits in each byte, and then redefining each character using VDU23.
The result makes your program interesting to read, to say the least!

19 MODE 6

29 DIM Q% 199

38 FOR |=@ TO 3 STEP 3

a Ph — 0%

50 [OPT I

6@ .Character LDA &681 \ Take low address of parameter
78 STA &7¢ \ and store it in zero-page.

-

8@ LDA 8662

9§ STA &71

19¢ LDY #§
119 LDA (879).Y
128 STA &74
130 LDX #&79

14@ LDA # 140

150 JSR &FFF1

160 LDX #d

178 .Reverse LDY #8
180 .Loop ASL &871.X
19¢ ROR &7¢0.X

20¢@ DEY

21@ BNE Loop

220 INX

230 CPX #8

249 BNE Reverse
250 RTS

264]

278 NEXT

280 *FX29.6

Assembly Language 241

\ Take high address of parameter
\ and store it in zero-page.

\ Clear Y register.

\ Get parameter {ASCI| code)

\ and store it in zero-page.

\ Set X to OSWORD parameter block address low
\ hyte.

\ Set OSWORD function.

\ Jump to OSWORD.

\ Clear X register.

\ Set Y to 8 as shift counter.

\ Shift each byte into the byte

\ below, thereby reversing it.

\ Decrement Y.

\ Repeat if not zero.

\ Increment X.

\ Compare with 8.

\ Repeat if not equal.

299 FOR 1%=33 TO 126

306 PRINT CHRS 1%;

318 CALL Character, 1%

32@ VDU23,1%,76877,7876,7675,7874,7673,7472,7671,7670
339 NEXT

This program illustrates a number of the features demonstrated in this
part of the book. It calls the machine-code routine Character with a para-
meter, and lines 6 to 120 transfer the parameter to location &7, which
is a safe place at which to store any OSWORD data.

Line 130 sets X to the low byte of the address of the OSWORD
parameter block (it is not necessary to set Y because Y is already zero).

Lines 14¢ and 150 carry out the OSWORD call.
Lines 160 to 240 reverse each of the bytes of the character definition.

Line 28¢ explodes the character memory allocation to its maximum,
allowing all the characters to be redefined, and line 32@ carries out this
redefinition.

242 Assembly Language

It should be noted that if this program were more than &3@@ bytes long, it
would get overwritten by the soft characters.

A = 11 Read colour assigned to logical value

Gives the actual colour value assigned to the logical colour value
contained in the location pointed to by X and Y. Afterwards, location YX
will contain the logical value, and location YX+1 will contain the actual
value. In fact YX+1 to YX+4 contain the four-byte physical colour—you
must reserve space for five bytes.

Events

Events are conditions which occur within the computer and which can be
trapped by the user so as to provide useful information, For example, it is
possible to detect when the keyboard buffer is full, or when has
been pressed. '

To be able to act upon an event, that event must first be enabled by
*FX14:

*FX14.8 enables output buffer empty event.

*FX14,1 enables input buffer full event.

*FX14,2 enables character entering keyboard buffer event.

*FX14,4 enables start of vertical synchronisation of screen display event.
*FX14,5 enables the interval timer crossing zero event.

*FX14,6 enables [TN1g3 pressed event.

The operating system detects all the above events when they occur, but
ignores them if they have not been enabled with the appropriate *FX14
call. If an event occurs which has been enabled then program execution
indirects via &22¢ and places an event code (shown below) in the
accumulator. The contents of X and Y may also depend upon the event.

The event codes are as follows:

A=4¢ Output buffer empty. (X contains buffer identity.)
1 Input buffer full. (X contains buffer identity, Y contains the
ASCII code of character that could not be stored in buffer.)
Key pressed.
Vertical synchronisation of screen display.
Interval timer crossing zero.

detected.

I Il

>
il
o oW

Assembly Language 243

Any address may be stored in the two bytes &22¢ and &221 to which the
program will transfer execution on detection of an enabled event. You
may write your own code at this address in order to process the event, but
it must be terminated by RTS, and should not take too long (one
millisecond maximum).

Each of the events may be disabled by a corresponding *FX13. For
example, *¥FX13,1 will disable the input buffer full event.

Assembly Language mnemonics

This section describes, in alphabétical order, all the 6502 assembler
mnemonics.

The following abbreviations are used:

A accumulator

X index register X

Y index register Y

F flags register

PC program counter

PCH program counter (high byte)
PCL program counter (low byte)
SP stack pointer

M memory address

- ‘becomes’ (assignment)

- ‘affects’ (flags)

() contents of

hexadecimal

&

(A4)

(M7) /) etc specified bit position in register or memory
(X0)

N

A"

> status flags

aN—gwm

-t

Because this section has been written for use with the Electron's
assembler, the addressing modes quoted are simplified as compared
with those that are specified for use with general machine-code program-
ming of the 65032.

244 Assembly Language

ADC

Action

Description

Addressing modes

Flags affected

Comments

AND

Action

Description

Addressing modes

Flags affected

Comments

ASL

Action

Add with carry

A= (A)t+data+C

Add the contents of memory location or im-
mediate data to the accumulator, plus the carry
bit. Result is placed in the accumulator.

Immediate
Zero-page
Absolute
Indexed
Indirect/indexed

NVZC

To add without the carry, bit C must be cleared
beforehand by using CLC.

Logical AND

A <+ (A) AND data

AND the contents of memory location or im-
mediate data with the accumulator. Result is
placed in the accumulator.

Immediate
Zero-page
Absolute
Indexed
Indirect/indexed

NZ
See BASIC AND for truth table.

Arithmetic shift left

Ce+—AorM=9

Description

Addressing modes

Flags affected

Comments

BCC

Action

Description

Addressing modes
Flags affected

Comments

BCS

Action

Description

Addressing modes
Flags affected

Comments

Assembly Language 245

Shift the contents of the accumulator or memory
location left one bit position. Bit 7 falls into the
carry (bit C), zero is entered from the right. Result
remains in either the accumulator or the memory
location.

Zero-page
Absolute
Indexed (X only)
Accumulator

NZC
ASL A acts on the accumulator.

Branch if carry clear

Go to specified label or address if C = ¢

If bit C is zero, execution continues at the spec-
ified label or address. If bit C is 1 then execution
continues at the next instruction.

Relative
None

Specified label or address must be in range.

Branch if carry set

Go to specified label or address if C =1

If bit C is 1, execution continues at the specified
label or address. If bit C is zero then execution
continues at the next instruction.

Relative
None

Specified label or address must be in range.

246 Assembly Language

BEQ

Action

Description

Addressing modes
Flags affected

Comments

BIT

Action

Description

Addressing modes

Flags affected

BMI

Action

Description

Addressing modes

Branch if equal to zero

Go to specified la_bel or addressif Z = 1

If bit Z is 1, execution continues at the specified
label or address. If bit Z is zero then execution
continues at the next instruction.

Relative
None

Specified label or address must be in range.

Compare memory bits with accumulator

@) _
o F

The accumulator is compared with the contents of
a memory location. If the two are the same then bit
Z is set to 1; if not then bit Z is cleared. Bits 6 and 7
of the data from memory are loaded into bits V and
N respectively. The contents of the accumulator
remain unchanged.

Absolute
Zero-page

NVZ

Branch if minus

Go to specified label or address f N = 1

If bit N is 1, execution continues at the specified
label or address. If bit N is zero then execution
continues at the next instruction.

Relative

Flags affected

Comments

BNE

Action

Description

Addressing modes
Flags affected

Comments

BPL

Action

Description

Addressing modes
Flags affected

Comments

BRK

Action

Assembly Language 247

None

Specified label or address must be in range.

Branch if not equal to zero

Go to specified label or address if Z = ¢

~ Ifbit Z is zero, execution continues at the specified

label or address. If bit Z is 1 then execution
continues at the next instruction.

Relative
None

Specified label or address must be in range.

Branch if plus

Go to specified label or address if N = §

If bit N is zero, execution continues at the speci-
fied label or address. If bit N is 1 then execution
continues at the next instruction.

Relative
None

Specified label or address must be in range.

Break

STACK = (PC)+2
STACK = (F)
PCL = (&FFFE)
PCH = (&FFFF)

248 Assembly Language

Description

Addressing modes
Flags affected

Comments

BVC

Action

Description

Addressing modes
Flags affected

Comments

BVS

Action

Description

Addressing modes
Flags affected

Comments

This is a software interrupt. The contents of the
program counter plus 2 are pushed on the stack,
followed by the contents of the flags register. The
program counter is then loaded with the contents
of locations &FFFE (low byte) and &FFFF (high
byte). Bit B is set to 1.

Implied
B
Used mainly for error trapping and debugging.

Branch if overflow clear

Go to specified label or address if V=0

If bit V is zero, execution continues at the specified
label or address. If bit V is 1 then execution
continues at the next instruction.

Relative
None

Specified label or address must be in range.

Branch if overflow set

Go to specified label or address if V=1

If bit V is 1, execution continues at the specified
label or address. If bit V is zero then execution
continues at the next instruction.

Relative
None

Specified label or address must be in range.

CLC

Action
Description
Addressing modes
Flags affected

Comments

CLD

Action

Description

Addressing modes
Flags affected

Comments

CLI

Action
Description
Addressing modes
Flags affected

Comments

Assembly Language 249

Clear carry

C=9

Bit C is cleared.

Implied

C

Often required before ADC.

Clear decimal flag

D=g

Bit D is cleared, which means that the processor is
in binary mode.

Implied
D

Should be used at the beginning of all routines
which do not use binary coded decimal.

Clear interrupt mask

<@

Bit I is cleared, which enables interrupts.
Implied

I

An interrupt is triggered when an external device,
such as a printer, requires attention.

250 Assembly Language

CLV

Action
Description
Addressing modes
Flags affected

CMP

Action

Description

Addressing modes

Flags affected

CPX

Action

Description

Clear overflow flag

Vg

Bit V is cleared.
Implied

\Y%

Compare with accumulator

(A)—data—-F

Contents of memory location or immediate data
are subtracted from the accumulator. If the result
is zero then bit Z is set; if not zero it is cleared. If
the result is negative then bit N is set; if positive it
is cleared. Bit C is set if the accumulator contents
are greater than or equal to the data. The contents
of the accumulator remain unchanged; only the
flags register is affected.

Immediate
Zero-page
Absolute
Indexed
Indirect/indexed

NZC

Compare with X register

(X)-data - F

Contents of memory location or immediate data
are subtracted from the X register. If the result is
zero then bit Z is set; if not zero it is cleared. If the
result is negative then bit N is set; if positive it is
cleared. Bit C is set if the X register contents are

Addressing modes

Flags affected

CPY

Action

Description

Addressing modes

Flags affected

DEC

Action

Description

Assembly Language 251

greater than or equal to the data. The contents of
the X register remain unchanged; only the flags
register is affected.

Immediate
Zero-page
Absolute
Indexed
Indirect/indexed

NZC

Compare with Y register

(Y)—data = F

Contents of memory location or immediate data
are subtracted from the Y register. If the result is
zero then bit Z is set; if not zero it is cleared. If the
result is negative then bit N is set; if positive it is
cleared. Bit C is set if the Y register contents are
greater than or equal to the data. The contents of
the Y register remain unchanged; only the flags
register is affected.

Immediate
Zero-page
Absolute
Indexed
Indirect/indexed

NZC

Decrement memory

M < (M)-1

The contents of the specified memory location are
decremented by 1.

252 Assembly Language

Addressing modes

Flags affected

DEX

Action

Description

Addressing modes
Flags affected

Comments

DEY

Action

Description

Addressing modes
Flags affected

Comments

EOR

Action

Description

Z ero;page
Absolute
Indexed (X only)

NZ

Decrement X register

X+ (X)-1

The contents of the X register are decremented by
1.

Implied
NZ

Enables X to be used as a counter.

Decrement Y register

Y- (Y)-1

The contents of the Y register are decremented
by 1.

Implied
NZ

Enables Y to be used as a counter.

Logical exclusive-OR

A<+ (A) EOR data

Exclusive-OR the contents of memory location or
immediate data with the accumulator. Result is
placed in the accumulator.

Addressing modes

Flags affected

Comments

INC

Action

Description

Addressing modes

Flags affected

INX

Action

Description

Addressing modes
Flags affected

Comments

INY

Action

Assembly Language 253

Immediate
Zero-page
Absolute
Indexed
Indirect/indexed

NZ
See BASIC EOR for truth table.

Increment memory

M= (M)+1

The contents of the specified memory location are
incremented by 1.

Zero-page
Absolute
Indexed (X only)

NZ

Increment X register

X - (X)+1

The contents of the X register are incremented by
1.

Implied
NZ

Enables X to be used as a counter,

Increment Y register

Y- (Y)+1

254 Assembly Language

Description

Addressing modes
Flags affected

Comments

JMP

Action

Description

Addressing modes

Flags affected

Comments

JSR

Action

Description

Addressing modes
Flags affected

Comments

- The contents of the Y register are incremented by

1.
Implied
NZ

Enables Y to be used as a counter.

Unconditional jump

PC < address

Execution continues at the specified label or
address.

Absolute
Indirect

None

There is no restriction on length of jump; label or
address may be anywhere in memory. This is the
only instruction which may use straight indirect
addressing.

Jump to subroutine

STACK = (PC)+2
PC - address

The contents of the program counter plus 2 are
pushed on the stack (this is the address of the
instruction following JSR). Execution continues
at the specified label or address.

Absolute
None

The subroutine to which control is transferred
must be terminated by an RTS instruction. JSR is

LDA

Action

Description

Addressing modes

Flags affected

LDX

Action

Description

Addressing modes

Flags affected

LDY

Action

Description

Assembly Language 255

used whenever you wish to make an operating
system call from assembler.

Load accumulator

A < data

Load the accumulator with contents of memory
location or immediate data.

Immediate
Zero-page
Absolute
Indexed
Indirect/indexed

NZ

Load X register

X = data

Load the X register with contents of memory
location or immediate data.

Immediate
Zero-page
Absolute
Indexed (Y only)

NZ

Load Y register
Y <« data

Load the Y register with the contents of memory
location or immediate data.

256 Assembly Language

Addressing modes

Flags affected

LSR

Action

Description

Addressing modes

Flags affected

Comments

NOP

Action
Description

Comments

ORA

Action

Immediate
Zero-page
Absolute
Indexed (X only)

NZ

Logical shift right

@=>=AorM-_C

Shift the contents of the accumulator or memory
location right one bit position. Bit @ falls into the
carry (bit C), zero is entered from the left. Result
remains in either the accumulator or memory
location.

Zero-page
Absolute
Indexed (X only)

Accumulator

NZC
LSR A acts on the accumulator.

No operation

None
Does nothing for two clock cycles.

Used for timing a program, or to fill in gaps caused
by deleted instructions.

Logical OR

A< (A) OR data

Description

Addressing modes

Flags affected

Comments

PHA

Action

Description

Addressing modes
Flags affected

PHP

Action

Description

Addressing modes
Flags affected

Assembly Language 257

OR the contents of memory location or immediate
data with the accumulator. Result is placed in the
accumulator.

Immediate
Zero-page
Absolute
Indexed
Indirect/indexed

NZ
See BASIC OR for truth table.

Push accumulator on to stack
STACK = (A)
SP = (SP)-1

The contents of the accumulator are pushed on to
the stack. The stack pointer is decremented. The
accumulator contents remain unchanged.

Implied

None

Push flags register on to stack
STACK = (F)
SP - (SP)-1

The contents of the flags register are pushed onto
the stack. The stack pointer is decremented. The
flags register contents remain unchanged.

Implied

None

258 Assembly Language

PLA

Action
Description

Addressing modes
Flags affected

PLP

Action
Description

Addressing modes
Flags affected

ROL

Action

Description

Addressing modes

Flags affected

Comments

Pull data from stack into accumulator
A= (STACK)
SP - (SP)+1

Pull the top byte of the stack into the accumulator.
Increment the stack pointer.

Implied
NZ

Pull data from stack into flags register
F - (STACK)
SP = (SP)+1

Pull the top byte of the stack into the flags register.
Increment the stack pointer.

Implied
NVBDIZC

Rotate left

A or M:,
__.._pc
Rotate the contents of the accumulator or memory

location left one bit position, The carry (bit C) is
entered from the right, bit 7 falls into the carry.

Zero-page
Absolute

Indexed (X only)
Accumulator

NZC

ROL A acts on the accumulator. This is a 9-bit
rotation.

ROR

Action

Description

Addressing modes

Flags affected

Comments

RTI

Action

Description

Addressing modes
Flags affected

Comments

Assembly Language 259

Rotate right

—=A or M—

Ce—H

Rotate the contents of the accumulator or memory
location right one bit position. The carry (bit C) is
entered from the left, bit @ falls into the carry.

Zero-page
Absolute

Indexed (X only)
Accumulator

NZC

ROR A acts on the accumulator. This is a 9-bit
rotation.

Return from interrupt

F = (STACK)
SP - (SP)+1
PCL < (STACK)
SP = (SP)+1
PCH = (STACK)
SP - (SP)+1

Restore the contents of the flags register and the
program counter, which were previously stored on
the stack. Increment stack pointer.

Implied
NVBDIZC

Used to return to the execution of a program, after
an interrupt has been dealt with.

260 Assembly Language

RTS

Action

Description

Addressing modes
Flags affected

Comments

SBC

Action

Description

Addressing modes

Flags affected

Comments

Return from subroutine

PCL <~ (STACK)
SP < (SP)+1
PCH < (STACK)
SP = (SP)+1
PC - (PC)+1

Restore the contents of the program counter,
which were previously stored on the stack, and
increment the program counter by 1. Increment
the stack pointer.

Implied
None

Continues execution from position after sub-
routine call. Used by the Electron’s assembler to
return to BASIC.

Subtract with carry

A = (A)-data-C
(C is NOT C, which is the borrow.)

Subtract the contents of memory location or
immediate data from the accumulator, with bor-
row. Result is placed in the accumulator.

Immediate
Zero-page
Absolute
Indexed
Indirect/indexed

NVZC

To subtract without the borrow, bit C must be set
beforehand by using SEC.

SEC

Action
Description
Addressing modes
Flags affected

Comments

SED

Action

Description

Addressing modes

Flags affected

SEI

Action
Description
Addressing modes

Flags affected

STA

Action

Description

Assembly Language 261

Set carry

C=1

Bit C is set.

Implied

C

Often required before SBC.

Set decimal flag

D=1

Bit D is set, which means that the processor is in
decimal mode (BCD).

Implied
D

Set interrupt mask

[=1

Bit I is set, which disables interrupts.
Implied

I

Store accumulator in memory

M= (A)

Store contents of the accumulator at the specified
memory location. The accumulator contents re-
main unchanged.

262 Assembly Language

Addressing modes

Flags affected

STX

Action

Description

Addressing modes

Flags affected

STY

Action

Description

Addressing modes

Flags affected

Immediate
Zero-page
Absolute
Indexed
Indirect/indexed

None

Store X register in memory

M= (X)

Store contents of X register at the specified

memory location. The X register contents remain
unchanged.

Zero-page
Absolute
Indexed (zero-page Y only)
None
Store Y register in memory
M = (Y}

Store contents of Y register at the specified
memory location. The Y register contents remain
unchanged.

Zero-page
Absolute
Indexed (zero-page X only)

None

TAX

Action

Description

Addressing modes
Flags affected

TAY

Action

Description

Addressing modes

Flags affected

TSX

Action

Description

Addressing modes
Flags affected

TXA

Action

Assembly Language 263

Transfer accumulator to X

X (A)

Copy the contents of accumulator into X register.
The accumulator contents remain unchanged.

Implied
NZ

Transfer accumulator to Y

Y <+ (A)

Copy the contents of accumulator into Y register.
The accumulator contents remain unchanged.

Implied
NZ

Transfer stack pointer to X

X = (SP)

Copy the contents of the stack pointer into X
register. The stack pointer contents remain un-
changed.

Implied
NZ

Transfer X register to accumulator

A= (X)

264 Assembly Language

Description

Addressing modes

Flags affected

TXS

Action

Description

Addressing modes
Flags affected

TYA

Action

Description

Addressing modes

Flags affected

Copy the contents of the X register into the
accumulator. The X register contents remain
unchanged.

Implied
NZ

Transfer X register to stack pointer

S - (X)

Copy the contents of the X register into the stack
pointer. The X register contents remain un-
changed.

Implied
NZ

Transfer Y register to accumulator

A= (Y)

Copy the contents of the Y register into the
accumulator. The Y register contents remain
unchanged.

Implied
NZ

[N

Appendix A

VDU codes

VDU A is equivalent to PRINT CHRS A;
VDU A.B.C is equivalent to PRINT CHR$ A; CHRS B; CHRS C;

This chapter is a description of the whole character set from @ to 255
which can be used with either VDU or PRINT CHRS. The ASCII table is
in Appendix F, and you will see that codes from @ to 31 give control
characters for the screen display; codes 32 to 127 generate visual
characters; and the remainder are initially undefined.

Here is each code in detail:

Code
@

L I R

ac

el

o
-
P
=~

nin
—S| ==
DIV |x>
—l{r|r
o QW >

Keyboard

CTAL I

| CTAL

CTRL !

CTRL

I

Description

Does nothing,
Reserved.
Reserved.
Reserved.

Allows the text cursor and the
graphics cursor to operate
independently of one another.
(Reverses the action of VOU 5.)
Causes the text cursor to be joined
to the graphics cursor. The text
cursor ceases to exist, and characters
are printed at the graphics cursor
which is positioned using MOVE.
Allows output to be printed on the
screen. (Reverses the action of

vbu 21)

Causes a short ‘beep’ from the
internal loudspeaker.,

Moves the text cursor back one
space on the screen. Does not delete
the previous character.

Moves the text cursor forward one
space on the screen.

266 Appendix A

CTRL I

19

11

12
13

14

15
16
17
18

19

CTRL)

CTRL

CTRL

CTRL

CTRL
CTR
CTR

CTRL

K

L
M

®» = Lo v O

Moves the text cursor down one line
on the screen. If the cursor is already
at the bottom then the screen will
scroll up one line.

Moves the text cursor up one line on
the screen. If the cursor is already at
the top then the screen will scroll
down one line.

Clears the text screen. Same as CLS.
VDU13 issued as a command (not in
a program), or M, have
exactly the same effect as .
In a program, VDOU13 will move

the text cursor to the start of the
current line.

Puts the display into paged mode.
Programs will only be listed to fill
the screen, and then the computer
will wait until the key is
pressed before listing another screen
full. Used when reading long
programs.

Cancels paged mode. (Reverses the
action of N.)

Clears the graphics screen. Same as
CLG.

Changes text colour. Same as
COLOUR.

Changes graphics colour, and colour
mix. Same as GCOL.

Assigns any logical colour value to
any actual colour. For example, mode
6 normally has two colours only,
black and white, assigned the logical
colour values ¢ and 1. To change ¢
(black) to blue, use VDU19 with the
logical colour @, and the actual colour
4 (blue).

MODE 6
VDU19. 0.4, 4. 0. 8

——

20 CTRL
21 My U
22 CTRL gaY

23 CTRL Y

24 | CTRL b
25 | CTRL
26 CTRL ¥/

27 CTRL |
28 CTRL 8
29 CTRL i

U CTRL
31 CTRL I

Appendix A- 267

Returns all logical colours to normal.
(Reverses VDU19).

U deletes the whole of the
current line being typed.

VDU21, in a program, disables all
output to the screen. This is reversed
by VDUG. .

Changes mode. YDU22,2 is
equivalent to MODE 2, except that
HIMEM is not altered.

Reprograms a displayed character.
32 user-definable characters are set
aside for use with YDU23. All the
rest of the characters can be
redefined if the memory is exploded
with *FX2§.1.

Defines a graphics window.

-Same as PLOT. VDU25,85,X.Y is the

same as PLOT 85,X.Y.

Reverses the effects of VOU24,
VDU28, and VDU29. Graphics and text
windows both occupy the whole
screen; text origin and text cursor
are at top left; graphics origin and
graphics cursor are at bottom left.
Reserved.

Defines a text window,

Moves the graphics origin. VOU29,X,Y
will move @,8 to position X,Y.
Homes text cursor to top left of text
window.,

VDU31,X.Y is the same as PRINT
TAB(X.Y).

32-126 M} SPACE to~~The complete set of ASCII

127

characters.

Moves the text cursor back one
space on the screen and deletes the
character to the current background
colour,

268 Appendix A

128-223 Normally undefined. Can be defined
if memory is allocated using *FX2§,1
and VDU23.

224-255 User-definable characters. Can be

defined using VDU23.

-—

Appendix B
Error messages

When the computer is unable to continue executing a program or a
command it will tell you by printing a message on the screen. As shownin
the section on error trapping, these error messages can be suppressed

provided you have written an alternative routine for the computer to
follow using ON ERROR . . .

As well as an error message, the computer sets two variables each time
an error occurs:

ERR gives the error number.
ERL gives the line number at which the error was noticed.

The error messages are listed here in alphabetical order, alongside their
error numbers:

Accuracy lost - 23

If you try to calculate trigonometric functions with very large angles you
will lose a lot of accuracy in reducing the angle to within the range of plus
or minus PI radians. When this happens the computer will print the
above message, for example:

PRINT COS(11111111)

Arguments 31

This indicates that there are too many or too few arguments for a given
function or procedure.

Array 14

This indicates that the computer expects an array, but cannot find it.

Bad call 30
Incorrect PROC or FN call.

Bad command 254
Wrongly typed OS command, for example:

27¢ Appendix B

*FX24.A
Bad DIM 19

Arrays and memory must be dimensioned with a positive number of
elements. For example, these will produce errors:

DIM array(—18)
DIM P% -2
Bad hex 28

Hex numbers may only consist of @ to 9 and A to F.

Bad key 251

Error in *KEY command, including running out of space for key string,
and attempting to re-define a key while it is in use.

Bad MODE 25

You cannot change mode inside a PROC or FN. Nor can you change to a
mode which would make HIMEM less than LOMEM.

Bad Program

There are a number of occasions when the computer checks a program to
see where it starts and ends in memory. The above error means that the
computer could not follow the program successfully and that it is
therefore aborted. This error is untrappable, which means that you
cannot find out at which line it occurred, nor can you retrieve any part of
the program! It is caused by part of the program becoming over-written
either by a mode change or by another program’s BASIC variables.

Block? 218

This is an error generated by the cassette filing system. It means that the
computer found a non-consecutive block number. Re-wind the tape a
little way and try again.

Byte 2

Caused in assembly by trying to load aregister in immediate mode with a
value greater than 255, for example:

Appendix B 271

LDY #266

Can’t match FOR 33

The control variable associated with NEXT is different from that
associated with FOR.

Channel 222

This error is generated by the cassette filing system when you try tousea
file channel number which has not been opened.

Data? 216

This is an error generated by the cassette filing system which means that
the computer has missed some data from a block. Re-wind the tape a
little and try again.

DIM space 11

There is not enough memory for the array to be dimensioned.

Division by zero 18

You cannot divide by zero.

$range 8

Strings may not be placed in the zero-page of memory using the
indirection operator $. This is illegal:

$&78 = “ervor”

Eof 223

This error is given by the cassette filing system if the end of file is
reached.

Escape 17
The m key has been pressed.
Exp range 24

You cannot exponentiate a number greater than 88. The following is
illegal:

272 Appendix B

A = EXP 9§

Failed at . . . (line number)

Caused by renumbering a program with a GOTO or GOSUB to a non-
existent line number.

15 X = 12
34 GOTO 294
48 END

will give the error message:

Failed at line 2§

File? 219

This error is generated by the cassette filing system and means that the
computer was given an unexpected file name.

FOR variable 34
The control variable in a FOR . . . NEXT loop must be numeric, for
example:

FOR IS = @ YO 2¢
is illegal.

Header? 217

This error is generated by the cassette filing system and it means that the
computer cannot read the file’s header (which contains the name, block
number etc). Re-wind the tape a little way and try again.

Index 3

This error occurs during assembly if you use an incorrect index mode, for
example:

LDA (&70.Y)

Appendix B 273

LINE space

The computer has run out of memory for you to type any extralinesintoa
program.

Log range 22

You cannot find the log of a negative or zero number.

Missing , 5

This means that the computer expected to find a comma in the line, but
didn’t do so, for example:

C$ = LEFTS(ZS)

Missing ” 9
This means the computer expected to find a quote, for example:

CHAIN "MARSLANDER

Missing) 27

This means the computer expected to find a closing bracket, for
example:

PRINT TAB(6,16

Missing # 45

This means the computer expected to find a hash, for example:

71% = BGET file

Mistake 4

This means that the computer could not understand the instruction, for
example:

19 PRIT

274 Appendix B

—ve root 21

You cannot find the square root of a negative number. This may also
occur with ASN and ACS.

No GOSUB 38
The computer encounters RETURN without having passed a GOSUB.

No FN 7

The computer encounters the end of a function definition without having
passed the DEF FN, for example:

=X

No FOR 32
The computer encounters NEXT without having passed the FOR.

No PROC 13

The computer encounters ENDPROC without having passed the DEF
PROC.

No REPEAT 43
The computer encounters UNTIL without having passed the REPEAT.

No room]

When a program is running, the computer uses the area of memory
between LOMEM and HIMEM to store the BASIC variables. If there is
insufficient room to store any more of these variables then the above
error is given. This most commonly occurs with programs which use
arrays in conjunction with a large screen mode (@, 1, 2, or 3).

No such FN/PROC 29
The computer encounters an FN or a PROC for which it can find no
definition.

No such line 41

Electron BASIC does not allaow you to GOTO or GOSUB a line number
which does not exist.

Appendix B 275

No such variable 26

All variables must be declared, either globally by assigning them a value
or locally by using LOCAL. If the computer encounters an un-declared
variable it gives the above error. This error is also given in assembler
when the computer encounters a forward reference to a label.

No TO 36
T0 is omitted from the FOR . . . NEXT loop:

FOR |=#

Not LOCAL 12

Local variables may be declared only within an FN or a PROC.

ON range 40

The control variable for ON GOTO or ON GOSUB is either less than 1 oris
greater than the number of entries in the list of line numbers. For
example, the following will not work if destination = 3:

ON destination GOTO 6§,21§

because there are only two destinations. This error may be accounted for
by using ELSE:

ON destination GOSUB 79,99 ELSE . ..

ON syntax 39

The word ON must be followed either by ERROR, or by anumeric variable
and GOTO or GOSUB. The following will give an error:

ON direction PRINT

Out of DATA 42

The computer encounters a READ instruction for which it cannot find an
entry in the DATA list. RESTORE can be used to move the data-pointer
back to the start of a DATA list.

276 Appendix B

Out of range 1

Branch instructions in assembler can access not farther than 127 bytes
forwards or 128 bytes backwards. To branch outside these limits you
must use JMP or JSR.

Silly é

Given by the automatic line numbering system AUTOQ or the line
renumbering system RENUMBER if you attempt to use a step size of less
than 1 or more than 255.

String too long 19

The maximum length of a string is 255 characters.

Subsecript 15

An array subscript is out of range, either less than @ or greater than the
value declared in DIM.

Syntax 220
Bad syntax in the cassette filing system.

Syntax error 16

A statement is incorrectly terminated, for example:
LIST. 50

Too big 20

The computer calculates a number which is too big or too small to be
represented.

Too many FORs 35

FOR... NEXT loops may be nested to a depth of 1@, and the control vari-
ables must all be different.

Too many GOSUBs 37
GOSUB . . . RETURN loops may be nested to a depth of 26.

Appendix B 277

Too many REPEATSs 44
REPEAT . . . UNTIL loops may be nested to a depth of 20.

Type mismatch 6

You cannot assign-a string to a numeric variable or a number to a string
variable.

AppendixC
Operating system calls

The computer’s operating system is a program, stored in read-only
memory, which runs continually, sorting out what goes where and when.
Some parts of the operating system can be accessed from BASIC, and
these instructions all begin with an asterisk. When executing BASIC, the
computer will pass these instructions straight to the operating system.

Here is a list of available commands:

*CAT

*SAVE

*RUN

*LOAD

*0PT

Catalogues all file names on cassette, and displays them
on the screen. Can be shortened to *,

Saves a section of memory onto tape. *SAVE "File” 1998
10FF 1@2A will save a page of memory, called File, from
address 81000 to #10FF, and an execution address (for
use by *RUN) of 102A. If the execution address is
omitted, it is assumed to be equal to the start address.

Loads and runs a program stored by *SAVE. *RUN “File”
will load and run the example given in*SAVE above.

Loads a file and stores it in memory at a specified
address. *LOAD “"Game” 2000 will load from tape a file
called Game, and store this at location &2@@0.

Determines the computer’s reaction to errors during
cassette operations.

*QPT1,X Controls the error messages given.

X=40 Gives no messages.

X=1 Gives short messages (as normal).

X =2 Gives long messages, including load and
execution addresses.

*0PT2.X Controls the computer’s action.

X=¢ Lets the computer ignore all errors, and
carry on regardless. Messages can still be
given.

X=1 The computer asks you to try again by re-

winding the tape (as normal).
X=2 The computer aborts the operation.

*SPOOL

*EXEC

*MOTOR

*KEY
*FX

*HELP

Appendix C 279

*0PT3.X Sets the inter-block gap — the time delay
between each page of memory stored on
the tape. X determines the gap in tenths
of a second. This only applies to PRINT#
and BPUT#. The gap on SAVE is fixed at

@.6 seconds.

*OPT On its own sets all the values to normal.

Used for saving a program listing or results (as long as
they are ASCII characters) to cassette or disc as a text
file. Thus ¥*SPOOL FRED opens a file called FRED on
either tape or disc. Whatever characters appear on the
screen after that (eg a program listing called up by LIST,
or one you enter on the keyboard) will be saved to
FRED as a text file. To close the file, type *SPOOL

HIULL'E at the end.

Loads a file from tape, as input rather than as a

program. Used for loading a file which has been
*SP0OO0Led.

Used to turn the cassette motor relay on or off.
*MOTOR@ for off, *MOTOR1 for on.

Programs a user-defined function key.

A family of operating system commands which are
described in Appendix D.

Gives version numbers of current software.

Appendix D
*FX calls

*EX calls provide a variety of controls for operating system functions
such as auto-repeat, flash-rate, buffer-flushing, memory allocation etc,
etc. The following is a description of all ¥FX calls available from BASIC.

Call Desecription

*EXH Prints a message on the screen telling which operating
system you have. Operating systems are updated from
time to time by the manufacturer.

*FX4 Controls the operation of the four ‘arrow’ keys and

| COPY |

*FX4,1 disables their editing function, and causes them
to generate ASCII codes, just like any other key:

135

‘left-arrow’ key 136
‘right-arrow’ key 137
‘down-arrow’ key 138
‘up-arrow’ key 139

*FX4,2 allows the five keys to be user-programmable.
Their key values become:

*KEY11

‘left-arrow’ key *KEY12
‘right-arrow’ key *KEY13
‘down-arrow’ key *KEY14
‘up-arrow’ key *KEY15

*FX4,0 resets the keys to their normal function of
editing. It reverses *FX4,1 and *FX4,2.

*FX9 Used to set the flash-rate of flashing colours. *FX9
*FX14 controls the duration of the first colour, *FX18 the
duration of the second.

*FX11

*FX12

*FX13
*FX14

*FX15

Appendix D 281

*FX9,25
*FX10,25

Will set each colour to stay on for equal time of 25
fiftieths (%) of a second. These are in fact the normal
values when the machine is switched on.

You could change them to:

*FX 9,48
*FX14.29

which will make the first colour stay on for twice as long
as the second; for 4/5 and 2/5 of a second respectively.
If one duration is set to @, the other colour will stay on all
the time.

Sets the delay, when a key is pressed, before the auto-
repeat comes into action.

*FX11,58 will set the delay to 5@ hundredths (}£) of a

second.
*FX11,8 turns off the auto-repeat altogether.
Sets the period of auto-repeat.

*EX12,1§ sets the auto-repeat to 19 hundredths (1/19)
of a second between characters, giving 19 characters
per second.

*£X12.0 resets both ¥FX11 and *FX12 to their normal
values. As an example, type in the following:

*FX12,1 RETURN
*FX11,1 RETURN

and now try typing in anything at all!

Disable/enable events.
See chapter on Assembly Language.

Flushes (empties) certain buffers (short term mem-
ories).

282 Appendix D

*FX18
*FX19.

*FX20

*FX15,8 flushes all buffers.
*FX15,1 flushes the currently selected input buffer.

Resets all the user-programmable keys to empty.

Makes the computer wait for the start of the next screen
display frame.

Determines the amount of memory which can be set
aside for character definitions.

*FX2#.8 implodes the character definitions, This means
that the extra memory set aside for extra character
definitions by *FX2#,1 to*FX2#,6 is returned to the user
for storing BASIC programs.

*FX28.1 to *FX20,6 explodes the memory to store
groups of 32 extra character definitions. All characters
with ASCII codes 32 to 255 may be user defined. As
described in chapter 21, ASCII codes 128 to 255 may be
defined without using a *FX2§ command, but only 32
consecutive characters can be defined. *FX28.1 to
*FX2@,6 take chunks of memory from the BASIC
program storage area to hold specific definitions, and
this is shown in the table below.

ASCII code *FX Memory allocation

128-159 *FX20.§ &C@@ to &CFF

166-191 *FX20,1 OSHWM to OSHWM + &FF

192-223 *FX24.2 OSHWM + &10¢ to OSHWM + &1FF

224-255 *FX20,3 OSHWM + &206 to OSHWM + &2FF
32— 63 *FX24.4 OSHWM + &306 to OSHWM + &3FF
64~ 95 *FX24,5 OSHWM + &40¢ to OSHWM + &4FF
96-127 *FX29,6 OSHWM + &50¢ to OSHWM + &5FF

OSHWM stands for Operating System High Water
Mark, and means the point where the memory (from
&P03@) occupied by the operating system ends, and the
memory occupied by BASIC programs begins. Turn to
chapter 23 for the computer'’s memory map. The
OSHWM normally sits at &E@@, but this will change
when a software expansion has been fitted, eg a disc
filing system.

If you explode the memory allocation in this way you
must remember to reset PAGE higher up the memory. A
program stored at &E@#@ may be lost.

*FX21

*FX124

*FX125

*FX126

*FX138

*FX225
*FX226
*FX227

Appendix D 283

Flushes (empties) certain buffers (short term mem-
ories).

*FX21,0 flushes the keyboard buffer.
*FX21,4 flushes sound channel @.
*FX21,5 flushes sound channel 1.
*FX21,6 flushes sound channel 2.
*FX21,7 flushes sound channel 3.

Used to reset the flag at memory location &@¢FF which
tells when an ESCAPE has ocecurred.

Sets the above-mentioned flag. Has similar effect to
pressing the m key.

Used when reading characters from an input stream
using OSRDCH.*¥FX126 acknowledges the detection of
an ESCAPE.

Used to insert a character into the keyboard buffer.
*FX138.8.X will insert CHRS X.
Disables all the user-definable keys.

Disables m A to m P.
Disables m Q onwards.

With a parameter value other than the two given above,
*FX225-227 will cause I keys to give ASCII codes.
For example, ¥FX226,224 will cause m A to give
224, B to give 225, etc. At this setting (*FX226,
224), [T A onwards will give the standard range of
user-defined characters direct from the keyboard. Any
number from 2 to 255 may be used as the parameter for
*FX226, and determines the base code, which will be
given by [A.

Appendix E
Fast and efficient
programs

Programming

The book which accompanies this one, called Start Programming with the
Electron, is intended as a guide to writing programs in Electron BASIC.
Once you start writing your own programs, however small they may be,
please make good use of the Start Programming with the Electron book. It
will help you to develop a good style and help you to avoid getting into
bad habits. You will find the programs referred to in the book on the
Introductory Cassette.

Speeding up programs

There may be times where the program must run as quickly as possible,
and here are a few tips for increasing execution speed.

— Use integer variables rather than real variables wherever possible.

- Use integer division (DIV) rather than normal division (/).

— Use integer arrays rather than real arrays.

— Start your variable names with different letters of the alphabet.

— Omit the control variable after the instruction NEXT.

—~ REPEAT . . . UNTIL loops are faster than IF . . . THEN GOTO loops.

— Use procedures instead of GOSUBs.

— Use as few line numbers as possible by using a colon to separate each
statement.

— Leave out as many spaces as possible, without confusing the com-
puter.

— Omit REM statements.

Some of these tips will have the effect of making your programs less
readable. This is not a good thing, but in cases where speed is all
important, you may find that you will have to reach a compromise between
readability and execution speed.

Appendix F
ASCII displayed
character set and
control codes

o N P PRI SO BRI T IR
Nothing Down Default Move text
=1
¢ colours to 99
Next to Up Disable Move
= e
cursor |
Start Clear Select
= e eeEE
Stop Start of Reprogram
3 printer line characters E ﬂlﬂ E mlﬁ m

R
Ema
EeE

Join Seroll Plot
5 | cursors maode

Enable Clear Default
vDU graphics text/

Separate Paged Nothing
4 cursors mode

graphics
Areas
Reep Define Define
e EEH
colour area
Back Define Define
graphivs text |H @| E E
8 colour area
Forward Define Define

g logical graphics
colours origin

Each displayed character consists of 8 rows of 8 dots

286 Appendix F

R I R R M R A o

i) |
Bm
rE
BE

E E All characters
undefined initially

B
=
5.5
=

Appendix G
Text and graphics
planning sheets

User defined planning sheet

ﬂﬂﬂﬂﬂﬂﬂﬂ

288 Appendix G

Text planning sheet

=23
o~

79

69

5¢

49

3¢

20

19

1¢

15

20

25

30

Appendix G 289

Graphics planning sheet 1 (grid related to character positions)

12849

1129

960

800

649

489

32¢

169

1424
896
768
649
512
384
256
128

299 Appendix G

Graphics planning sheet 2 (decimal)

1924
10¢¢

990
800
799
604
5¢¢

400
30¢
2p0
100

209 300 499 50¢ 6689 704 809 909 1008 1146 1296 1289

149

EL MATERIAL EXHIBIDO
ES SOLO PARA USO

EDUCATIVO, NO COMERCIAL

GETED TECNAY

PARA ENTENDER LA EVOLUCION DE LOS ORDENADORES A TRAVES DEL TIEMPO

