M

o

400/80

ATAR]

BASIC

REFERENCE
MANUAL

ERROR CODES

ERROR
CODE ERROR CODE MESSAGE

2 Memory Insufficient

Value Error

Too Many Variables

String Length Error

Out of Data Error

Number greater than 32767

Input Statement Error

Array or String DIM Error

10 Argument Stack Overflow

11 Floating Point Overflow/
Underflow Error

12 Line Not Found

13 No Matching FOR Statement

14 Line Too Long Error

15 GOSUB or FOR Line Deleted

16 RETURN Error

17 Garbage Error

18 Invalid String Character

© 0O GW

Note: The following are INPUT/OUTPUT er-
rors that result during the use of disk drives,
printers, or other accessory devices. Further in-
formation is provided with the auxiliary hard-
ware.

19 LOAD program Too Long
20 Device Number Larger
21 LOAD File Error

128 BREAK Abort

129 IOCB

130 Nonexistent Device

131 IOCB Write Only

132 Invalid Command

133 Device or File not Open

134 BAD IOCB Number

135 IOCB Read Only Error

136 EOF

137 Truncated Record

138 Device Timeout

139 Device NAK

140 Serial Bus

141 Cursor Out of Range

ERROR
CODE ERROR CODE MESSAGE

142
143
144
145
146
147
160
161
162
163
164
165
166
167
168
169
170
171

Serial Bus Data Frame Overrun
Serial bus data frame checksum error
Device done error

Read after write compare error
Function not implemented
Insufficient RAM

Drive number error

Too many OPEN files

Disk full

Unrecoverable system data I/O error
File number mismatch

File name error

POINT data length error

File locked

Command invalid

Directory full

File not found

POINT invalid

For explanation of Error Messages see Appendix B.

BASIC
REFERENCE
MANUAL

N\

ATARF

o A Warner Communications Company

Every effort has been made to ensure that this manual accurately documents the operation of the ATARI 400 and the ATARI 800 com-
puter. However, due to the ongoing improvement and update of the computer software, Atari, Inc. cannot guarantee the accuracy of
printed material after the date of publication, nor can Atari accept responsibility for errors or omissions. Revised manuals and update
sheets will be published as needed and may be purchased by writing to:

Atari Software Support Group

P.O. Box 427
Sunnyvale, CA 94086

Printed in USA ©1980 ATARI, INC.

CONTENTS

PREFACE vii
GENERAL INFORMATION
Terminology 1
Special Notations Used In This Manual 3
Abbreviations Used In This Manual 4
Operating Modes 5
Special Function Keys 5
Arithmetic Operators 6
Operator Precedence 7
Built-In Functions 7
Graphics 8
Sound and Games 8
Wraparound and Keyboard Rollover 8
Error Messages 8
COMMANDS
BYE 9
CONT 9
END 9
LET 10
LIST 10
NEW 10
REM 10
RUN 11
STOP 11
EDIT FEATURES
Screen Editing 13
Control (CTRL) Key 13
Shift Key 13
Double Key Functions 14
Cursor Control Keys 14
Keys Used With CTRL Key 14
Keys Used With Shift Key 14
Special Function Keys 14
Break Key 14
Escape Key 14
PROGRAM STATEMENTS
FOR/NEXT/STEP 15
GOSUB/RETURN 16
GOTO 17
IF/THEN 18

Contents iii

Contents

ON/GOSUB 20
ON/GOTO 20
POP 20
RESTORE 21
TRAP 22
5 INPUT/OUTPUT COMMANDS
Input/Output Devices 23
CLOAD 24
CSAVE 24
DOS 25
ENTER 25
INPUT 25
LOAD 26
LPRINT 26
NOTE 26
OPEN/CLOSE 26
POINT 28
PRINT 28
PUT/GET 28
READ/DATA 28
SAVE 29
STATUS 29
XIO 30
Chaining Programs 30
6 FUNCTION LIBRARY
Arithmetic Functions 33
ABS 33
CLOG 33
EXP 33
INT 33
LOG 34
RND 34
SGN 34
SQR 34
Trigonometric Functions 34
ATN 34
COS 34
SIN 35
DEG/RAD 35
Special Purpose Functions 35
ADR 35
FRE 35
PEEK 35
POKE 35
USR 36
7 STRINGS
ASC 37
CHR$ 37

LEN 38
STR$ 38
VAL 38
String Manipulations 39
8 ARRAYS AND MATRICES
DIM 41
CLR 43
9 GRAPHICS MODES AND COMMANDS

GRAPHICS 45
Graphics Modes 45

Mode 0 46

Modes 1 and 2 46

Modes 3, 5, and 7 47

Modes 4 and 6 48

Mode 8 47
COLOR 48
DRAWTO 48
LOCATE 48
PLOT 49
POSITION 49
PUT/GET 49
SETCOLOR 50
XIO (Special Fill Application) 54
Assigning Colors to Text Modes 54
Graphics Control Characters 56

10 SOUND AND GAME CONTROLLERS

SOUND 57
PADDLE 59
PTRIG 59
STICK 59
STRIG 60

11 ADVANCED PROGRAMMING TECHNIQUES

Memory Conservation 61
Programming In Machine Language 63
APPENDIX A BASIC RESERVED WORDS aA-1
APPENDIX B ERROR MESSAGES B-1

APPENDIX C ATASCII CHARACTER SET

WITH DECIMAL/

HEXADECIMAL LOCATIONS c-1

APPENDIX D ATARI 400/800

MEMORY MAP

D-1

Contents V

APPENDIX E DERIVED FUNCTIONS E-1

APPENDIX F PRINTED VERSIONS OF
CONTROL CHARACTERS F-1

APPENDIX G GLOSSARY G-1
APPENDIX H USER PROGRAMS H-1
APPENDIX I MEMORY LOCATIONS I-1

INDEX 117

vi Contents

PREFACE

This manual assumes the user has read the Atari BASIC — A Self-Teaching
Guide or some other book on BASIC. This manual is not intended to “teach”
BASIC. It is a reference guide to the commands, statements, functions, and
special applications of Atari® BASIC.

The programs and partial programming examples used in this manual are
photostats of listings printed on the Atari 820™ Printer. Some of the special sym-
bols in the Atari character set do not appear the same on the printer; e.g., the
clear screen symbol “« appears as a “ }”. The examples in the text were
chosen to illustrate a particular function — not necessarily “good” programming
techniques.

Each of the sections contains groups of commands, functions, or statements
dealing with a particular aspect of Atari BASIC. For instance, Section 9 contains
all the statements pertaining to Atari’s unique graphics capabilities. The appen-
dices include dquick references to terms, error messages, BASIC keywords,
memory locations, and the ATASCII character set.

As there is no one specified application for the Atari Personal Computer System,

this manual is directed at general applications and the general user. Appendix H
contains programs that illustrate a few of the Atari system’s capabilities.

Preface vii

1

GENERAL
INFORMATION

TERMINOLOGY

This section explains BASIC terminology, special notations, and abbreviations
used in this manual, and the special keys on the ATARI 400™ and ATARI 800™
Personal Computer Systems keyboard. It also points to other sections where
BASIC commands deal with specific applications.

BASIC: Beginner’s All-purpose Symbolic Instruction Code.

BASIC Keyword: Any reserved word “legal” in the BASIC language. May be
used in a statement, as a command, or for any other purpose. (See Appendix A
for a list of all “reserved words” or keywords in ATARI BASIC.)

BASIC Statement: Usually begins with a keyword, like LET, PRINT, or
RUN.

Constant: A constant is a value expressed as a number rather than represented
by a variable name. For example, in the statement X = 100, X is a variable and
100 is a constant. (See Variable.)

Command String: Multiple commands (or program statements) placed on the
same numbered line separated by colons.

Expression: An expression is any legal combination of variables, constants,
operators, and functions used together to compute a value. Expressions can be
either arithmetic, logical, or string.

Function: A function is a computation built into the computer so that it can be
called for by the user’s program. A function is NOT a statement; it is part of an
expression. It is really a subroutine used to compute a value which is then
“returned” to the main program when the subroutine returns. COS (Cosine),
RND (random), FRE (unused memory space), and INT (integer) are examples of
functions. In many cases the value is simply assigned to a variable (stored in a
variable) for later use. In other cases it may be printed out on the screen im-
mediately. See Section 6 for more on functions. Examples of functions as they
might appear in programs are:

18 PRIMT RMO G (print out the random
number returned)

18 X=188+0050 45 (add the value re-
returned to 100 and
store the total in
variable X)

General Information 1

2 General Information

Logical Line: A logical line consists of one to three physical lines, and is ter-
minated either by a EIII) or automatically when the maximum logical line
limit is reached. Each numbered line in a BASIC program consists of one logical
line when displayed on the screen. When entering a line which is longer than
one physical line, the cursor will automatically go to the beginning of the next
physical line when the end of the current physical line is reached. If (IR is
not entered, then both physical lines will be part of the same logical line.

Operator: Operators are used in expressions. Operators include addition (+),
subtraction (-), multiplication (*), division (/), exponentiation (A), greater than
(>), less than (<), equal to (=), greater than or equal to (> =), less than or equal to
(< =), and not equal to (<>). The logical keywords AND, NOT and OR are also
operators. The + and - operators can also be used as unary operators; e.g., — 3.
Do not put several unary operators in a row; e.g.,——3, as the computer will in-
terpret it incorrectly.

Physical Line: One line of characters as displayed on a television screen.

String: A string is a group of characters enclosed in quotation marks.
“ABRACADABRA” is a string. So are “ATARI MAKES GREAT COMPUTERS”
and “123456789”. A string is much like a constant, as it too, may be stored in a
variable. A string variable is different, in that its name must end in the
character $. For example, the string “ATARI 800” may be assigned to a variable
called A$ using (optional) LET like this:

18 LET A$="4TARI 283" (note quotation marks)

OR
(LET is optional; the

quotes are required.)

18 AF="ATARI SBa"

Quotation marks may not be used within a string. However, the closing quota-
tion can be omitted if it is the last character on a logical line. (See Section 7 -
STRINGS).

Variable: A variable is the name for a numerical or other quantity which may
(or may not) change. Variable names may be up to 120 characters long.
However, a variable name must start with an alphabetic letter, and may contain
only capital letters and numerical digits. It is advisable not to use a keyword as a
variable name or as the first part of a variable name as it may not be interpreted
correctly. Examples of storing a value in a variable:

LETC12300B=1 234
LETUARIABLEL 12=267 . 5343
LETA=1
LETFSTH=¢.
LETTHISHD

I n

Note: LET is optional and may be omitted)

Variable Name Limit: ATARI BASIC limits the user to 128 variable names.To
bypass this problem, use individual elements of an array instead of having
separate variable names. BASIC keeps all references to a variable which has
been deleted from a program, and the name still remains in the variable name
table.

SPECIAL
NOTATIONS
USED IN THIS
MANUAL

If the screen displays an ERROR-4 (Too Many Variables) message, use the follow-
ing procedure to make room for new variable names:

LIST filesrec
NEW
ENTER filesrec

The LIST filespec writes the untokenized version of the program onto a disk or
cassette. NEW clears the program and the table areas. The program is then re-
entered, re-tokenized, and a new variable table is built. (The tokenized version
is Atari BASIC’s internal format. The untokenized versions in ATASCII
which is the version displayed on the screen).

Arrays and Array Variables: An array is a list of places where data can be
filed for future use. Each of these places is called an element, and the whole array
or any element is an array variable. For example, define “Array A” as having 6
elements. These elements are referred to by the use of subscripted variables
such as A(2), A(3), A(4), etc. A number can be stored in each element. This
may be accomplished element by element (using the LET statement), or as a part
of a FOR/NEXT loop (see Chapter 8).

Note: Never leave blanks between the element number in parentheses and the
name of the array.

Correct Incorrect

A(23) A 23)
ARRAY(3) ARRAY 3)
X123(38) X123 (38)

Line Format: The format of a line in a BASIC program includes a line number
(abbreviated to lineno) at the beginning of the line, followed by a statement
keyword, followed by the body of the statement and ending with a line ter-
minator command (EMIkey). In an actual program, the four elements might
look like this:

STATEMENT
B e
Line Number Keyword Body Terminator
100 PRINT A/X * (Z+4.567)

Several statements can be typed on the same line provided they are separated by
colons (:). See IF/THEN in Section 5, and Section 11.

Capital Letters: In this book, denote keywords to be typed by the user in up-
per case form exactly as they are printed in this text. Reverse-video characters
will not work except in the case of the RUN command. Here are a few ex-
amples:

PRINT INPUT LIST END GOTO GOSUB FOR NEXT IF

Lower Case Letters: In this manual, lower case letters are used to denote the
various classes of items which may be used in a program, such as variables
(var), expressions (exp), and the like. The abbreviations used for these classes of
items are shown in Table 1.1.

General Information 3

ABBREVIATIONS
USED IN THIS
MANUAL

4 General Information

Items in Brackets: Brackets, [], contain optional items which may be used,
but are not required. If the item enclosed in brackets is followed by three dots
[exp,...], it means that any number of expressions may be entered, but none are
redquired.

Items stacked vertically in braces: Items stacked vertically in braces indicate
that any one of the stacked items may be used, but that only one at a time is per-
missible. In the example below, type either the GOTO or the GOSUB.

GOTO

1OO{GOSUB

IZOOO

Command abbreviations in headings: If a command or statement has an ab-
breviation associated with it, the abbreviation is placed following the full name
of the command in the heading; e.g., LET (L.).

The following table explains the abbreviations used throughout this manual:

TABLE 1.1 ABBREVIATIONS

avar Arithmetic Variable: A location where a numeric value is
stored. Variable names may be from 1 to 120 alphanumeric
characters, but must start with an alphabetic character, and all
alpha characters must be unreversed and upper case.

svar String Variable: A location where a string of characters may be
stored. The same name rules as avar apply, except that the last
character in the variable name must be a $. String variables may
be subscripted. See Section 7, STRINGS.

mvar Matrix Variable: Also called a Subscripted Variable. An ele-
ment of an array or matrix. The variable name for the array or
matrix as a whole may be any legal variable name such as A, X,
Y, ZIP, or K. The subscripted variable (name for the particular
element) starts with the matrix variable, and then uses a number,
variable, or expression in parentheses immediately following the
array or matrix variable. For example, A(ROW), A(1), A(X + 1).

var Variable: Any variable. May be mvar, avar, or svar.

aop Arithmetic operator.

lop Logical operator.

aexp Arithmetic Expression: Generally composed of a variable,

function, constant, or two arithmetic expressions separated by an
arithmetic operator.

lexp Logical Expression: Generally composed of two arithmetic or
string expressions separated by a logical operator. Such an ex-
pression evaluates to either a 1 (logical true) or a 0 (logical false).

For example, the expression 1<2 evaluates to the value 1 (true)
while the expression “LEMON” = “ORANGE” evaluates to a zero
(false) as the two strings are not equal.

OPERATING
MODES

SPECIAL
FUNCTION
KEYS

sexp

exp

lineno

adata

filespec

String Expression: Can consist of a string variable, string literal
(constant), or a function that returns a string value.

Any expression, whether sexp or aexp.

Line Number: A constant that identifies a particular program
line in a deferred mode BASIC program. Must be any integer
from 0 through 32767. Line numbering determines the order of
program execution.

ATASCII Data: Any ATASCII character excluding commas and
carriage returns. (See Appendix C.)

File Specification: A string expression that refers to a device
such as the keyboard or to a disk file. It contains information on
the type of I/O device, its number, a colon, an optional file name,
and an optional filename extender. (See OPEN, Section 5.)

Example filespec: “D1:NATALIE.ED”

Direct Mode: Uses no line numbers and executes instruction immediately after
key is pressed.

Deferred Mode: Uses line numbers and delays execution of instruction(s) until
the RUN command is entered.

Execute Mode: Sometimes called Run mode. After RUN command is entered,
each program line is processed and executed.

Memo Pad Mode: A non-programmable mode that allows the user to experi-
ment with the keyboard or to leave messages on the screen. Nothing written
while in Memo Pad mode affects the RAM-resident program.

N

CAPS/LOWR

Reverse (Inverse) Video key, or “ATARI LOGO KEY”. Press-
ing this key causes the text to be reversed on the screen (dark
text on light background). Press key a second time to return to
normal text.

Lower Case key: Pressing this key shifts the screen characters
from upper case (capitals) to lower case. To restore the characters
to upper case, press the key and the key
simultaneously.

Escape key: Pressing this key causes a command to be entered
into a program for later execution.

Example: To clear the screen, you would enter:
10 PRINT * [CLEAR |
and press .

Escape is also used in conjunction with other keys to print special
graphic control characters. See Appendix F and back cover for
the specific keys and their screen-character representations.

General Information 5

ARITHMETIC
OPERATORS

LOGICAL
OPERATORS

6 General Information

SYSTEM RESET

SET-CLR-TAB

DELETE BACK S

DELETE BACK S

Break key: Pressing this key during program execution causes
execution to stop. Execution may be resumed by typing CONT
followed by pressing .

System Reset key: Similar to in that pressing this key
stops program execution. Also returns the screen display to
Graphics mode 0, clears the screen, and returns margins and
other variables to their default values.

Tab key: Press and the EREAIXB keys simultaneously to
set a tab. To clear a tab, press the and keys
simultaneously. Used alone, the S3fIEE7YPadvances the cursor to
the next tab position. In Deferred mode, set and clear tabs by
preceding the above with a line number, the command PRINT, a
duotation mark, and press the E@ key.

Examples:

100 PRINT »
200 PRINT “ (E=B ”

Default tab settings are placed at columns 7, 15, 23, 31, and 39.

Insert key: Press the and keys simultaneously to
insert a line. To insert a single character, press the and
keys simultaneously.

Delete key: Press the and keys simultaneously
to delete a line. To delete a single character, press and
simultaneously.

Back Space key: Pressing this key replaces the character to the
left of the cursor with a space and moves cursor back one space.

Clear key: Pressing this key while holding down the (EHaE or
key blanks the screen and puts the cursor in the upper left
corner.

Return key: Terminator to indicate and end of a line of BASIC.
Pressing this key causes a numbered line to be interpreted and
added to a BASIC program RAM. An unnumbered line (in Direct
mode) is interpreted and executed immediately. Any variables
are placed in a variable table.

The Atari Personal Computer System uses five arithmetic operators:

e

*

addition (also unary plus; e.g., +5)
subtraction (also unary minus; e.g., —5)
multiplication

division

A exponentiation

The logical operators consists of two types: unary and binary. The unary
operator is NOT. The binary operators are:

AND Logical AND

OR Logical OR
Examples:
10 OTE =17 Gk =3 THEM ERIMT “GCOOD" Both expressions must
18 IF g=12 GHD T=8 THEM FRIMT "GOO be true before GOOD i
printed.
18 =001 % AND (N1 If both expressions
true, A= +1; otherwise
A=0.
18 &8 = {C+1 3 OR <H-12 If either expression
true, A= +1; otherwise
A=0.
18 & = HOTCC+1 2 If expression is false,

A=+1; otherwise A=0.

The rest of the binary operators are relational.

< The first expression is less than the second expression.
> The first expression is greater than the second.
= The expressions are equal to each other.
= The first expression is less than or equal to the second.
> = The first expression is greater than or equal to the second.
< > The two expressions are not equal to each other.

These operators are most frequently used in IF/THEN statements and logical

arithmetic.
OPERATOR Operations within the innermost set of parentheses are performed first and pro-
PRECEDENCE ceed out to the next level. When sets of parentheses are enclosed in another set,

they are said to be “nested”. Operations on the same nesting level are performed
in the following order:

Highest <,>,=,<=,>=,<-> Relational operators used in string expres-
precedence sions. Have same precedence and are per-
formed from left to right.
- Unary minus

Exponentiation.

i Multiplication and division have the same
precedence level and are performed from left
to right.

g = Addition and subtraction have the same
precedence level and are performed from left
to right.

<,>,=,<=,>=,< > Relational operations in numeric expressions
have the same precedence level from left to

right.
NOT Unary operator
AND Logical AND
Lowest OR Logical OR

precedence

General Information 7

BUILT-IN
FUNCTIONS

GRAPHICS

SOUND AND
GAMES
CONTROLLERS

WRAPAROUND
AND KEYBOARD
ROLLOVER

ERROR
MESSAGES

8 General Information

The section titled FUNCTION LIBRARY explains the arithmetic and special
functions incorporated into Atari BASIC.

Atari graphics include 9 graphics modes. The commands have been designed
to allow maximum flexibility in color choice and pattern variety. Section 9 ex-
plains each command and gives examples of the many ways to use each.

The Atari Personal Computer is capable of emitting a large variety of sounds.
including simulated explosions, electronic music, and “raspberries.” Section 10
defines the commands for using the SOUND function and for controlling pad-
dle, joystick, and keyboard controllers.

The ATARI Personal Computer System has screen wraparound thus allowing
greater flexibility. It also allows the user to type one key ahead. If the user
presses and holds any key, it will begin repeating after % second.

If a data entry error is made, the screen display shows the line reprinted preced-
ed by the message ERROR- and the offending character is highlighted. After
correcting the character in the original line, delete the line containing the
ERROR- before pressing EIG). Appendix B contains a list of all the error
messages and their definitions.

2

COMMANDS

BYE (B.)

CONT (CON.)

END

Whenever the cursor (O) is displayed on the screen, the computer is ready to ac-
cept input. Type the command (in either Direct or Deferred mode), and press

&L . This section describes the commands used to clear computer memory
and other useful control commands.:

The commands explained in this section are the following:

BYE NEW
CONT REM

END RUN

LET STOP
LIST

Format: BYE
Example: BYE

The current function of the BYE command is to exit BASIC and put the com-
puter in Memo Pad mode. This allows the user to experiment with the keyboard
or to leave messages on the screen without disturbing any BASIC program in
memory. To return to BASIC, press :

Format: CONT
Example: CONT

Typing this command followed by a causes program execution to
resume. If a [EEXS, STOP, or END is encountered, the program will stop until
CCNT is entered. Execution resumes at the next sequential line number
following the statement at which the program stopped.

Note: If the statement at which the program is halted has other commands on
the same numbered line which were not executed at the time of the IS,
STOP, or END, they will not be executed. On CONT, execution resumes at the
next numbered line. A loop may be incorrectly executed if.the program is
halted before the loop completes execution.

This command has no effect in a Deferred mode program.

Format: END
Example: 1000 END

This command terminates program execution and is used in Deferred mode. In
Atari BASIC, an END is not required at the end of a program. When the end of
the program is reached, Atari BASIC automatically closes all files and turns off
sounds (if any). END may also be used in Direct mode to close files and turn off
sounds.

Commands 9

LET (LE.)

LIST (L.)

NEW

REM (R. or

K seace)

10 Commands

Format: [LET] var = exp
Example: LET X = 3.142 * 16
LET X = 2

This statement is optional in defining variables. It can just as easily be left out of
the statement. It may be used, however, to set a variable name equal to a value.

Format: LIST [lineno [, lineno]]
LIST [filespec [,lineno [,lineno]]]

Examples:
LIST
LIST 18
LIST, 18, 168
LIST "P.".20, 188
LIST "p"

LIST "D:DEMO.LST"

This command causes the computer to display the source version of all lines cur-
rently in memory if the command is entered without line numberf(s), or to
display a specified line or lines. For example, LIST 10,100 displays lines
10 through 100 on the screen. If the user has not typed the lines into the com-
puter in numerical order, a LIST will automatically place them in order.

Typing L.“P will print the RAM-resident program on the printer.

LIST can be used in Deferred mode as part of an error trapping routine (See
TRAP in Section 4).

The LIST command is also used in recording programs on cassette tape. The sec-
ond format is used and a filespec is entered. (See Section 5 for more details on
peripheral devices.) If the entire program is to be listed on tape, no line numbers
need be specified.

Example: LIST “C1”
1000 LIST “C1”

Format: NEW
Example: NEW

This command erases the program stored in RAM. Therefore, before typing
NEW, either SAVE or CSAVE any programs to be recovered and used later.
NEW clears BASIC’s internal symbol table so that no arrays (See Section 8) or
strings (See Section 7) are defined. Used in Direct mode.

Format: REM text
Example: 10 REM ROUTINE TO CALCULATE X

This command and the text following it are for the user’s information only. It is
ignored by the computer. However, it is included in a LIST along with the other
numbered lines. Any statement on the same numbered line which occurs after a
REM statement will be ignored.

RUN

STOP

(RU.)

(STO.)

Format: RUN [filespec]
Examples: RUN
RUN “D:MENU”

This command causes the computer to begin executing a program. If no filespec
is specified, the current RAM-resident program begins execution. If a filespec is
included, the computer retrieves the specified, tokenized program from the
specified file and executes it.

All variables are set to zero and all open files and peripherals are closed. All ar-
rays, strings, and matrices are eliminated and all sounds are turned off. Unless
the TRAP command is used, an error message is displayed if any error is
detected during execution and the program halts.

RUN can be used in Deferred mode.

Examples: 1@ FRINT "OUER AMND OUER AGAIN."
20 RUN

Type RUN and press (&I . To end, press EXEYS.

To begin program execution at a point other than the first line number, type
GOTO followed by the specific line number, then press(GEILDD.

Format: STOP
Example: 100 STOP

When the STOP command is executed in a program, BASIC displays the
message STOPPED AT LINE , terminates program execution, and
returns to Direct mode. The STOP command does not close files or turn off
sounds, so the program can be resumed by typing CONT [RETURN B

Commands 11

NOTES

12 Notes

3

EDIT
FEATURES

SCREEN
EDITING

In addition to the special function keys described in Section 1, there are cursor
control keys that allow immediate editing capabilities. These keys are used in
conjunction with the or keys.

The following key functions are described in this section:

G 1
G 2
 cTRL BB
ESC

The keyboard and display are logically combined for a mode of operation
known as screen editing. Each time a change is completed on the screen, the
key must be pressed. Otherwise, the change is not made to the program
in RAM.

DT DO OT M) SO TR ST T
Example: 18 FEM FEESS RETURM 4FTER LINE EDI
S OSTLIT L DmTLT
28 FRIMT (PRIN
TR ODDTHT UTLTS T § TWE 4 il TUE oemerig on
28 PRIMT "THIS IS LIME i OM THE SCREEH.

To delete line 20 from the program, type the line number and press the
key. Merely deleting the line from the screen display does not delete it from the
program.

The screen and keyboard as I/O devices are described in Section 5.

Control key. Striking this key in conjunction with
the arrow keys produces the cursor control functions
that allow the user to move the cursor anywhere on
the screen without changing any characters already
on the screen. Other key combinations control the
setting and clearing of tabs, halting and restarting
program lists, and the graphics control symbols.
Striking a key while holding the key will pro-
duce the upper-left symbol on those keys having
three functions.

Shift key: This key is used in conjunction with the

numeric keys to display the symbols shown on the
upper half of those keys. It is also used in conjunction

Edit Features 13

with other keys to insert and delete lines, return to a
normal, upper case letter display, and to display the
function symbols above the subtraction, equals, addi-
tion, and multiplication operators as well as the
brackets, [], and question mark,?.

DOUBLE-KEY Cursor Control Keys

FUNCTIONS Moves cursor up one physical line without changing

the program or display.
Moves cursor one space to the right without disturb-
ing the program or display.

Moves cursor down one physical line without chang-
ing the program or display.

Moves cursor one space to the left without disturbing
the program or display.

Like the other keys on the Atari keyboard, holding the cursor control keys for
more than % second causes the keys to repeat.

Keys Used With

Inserts one character space.

Deletes one character or space.

1 Stops temporarily and restarts screen display
without “breaking out” of the program.

2 Rings buzzer.

3 Indicates end-of-file.

Keys Used With

Inserts one physical line.

Deletes one physical line.

Returns screen display to upper-case alphabetic
characters.

Special Function Keys

Stops program execution or program list, prints a
READY on the screen, and displays cursor.

ESC Allows commands normally used in Direct mode to
be placed in Deferred mode; e.g., In Direct mode,
ETZX clears the screen display. To clear the
screen in Deferred mode, type the following after the
program line number. Press then press

and together.

PRINT * »

14 Edit Features

4

PROGRAM
STATEMENTS

FOR (F.), TO,
STEP/NEXT (N.)

This section explains the commands associated with loops, conditional and un-
conditional branches, error traps, and subroutines and their retrieval. It also ex-
plains the means of accessing data and the optional command used for defining
variables.

The following commands are described in this section:

FOR, TO, STEP/NEXT IF/THEN POP
GOSUB/RETURN ON, GOSUB RESTORE
GOTO ON, GOTO TRAP

Format: FOR avar = aexp1 TO aexp2 [STEP aexp3]
NEXT avar
Examples: FOR X = 1 TO 10
NEXT X
FORY = 10 TO 20 STEP 2
NEXT Y
FOR INDEX = Z TO 100 * Z
NEXT INDEX

This command sets up a loop and determines how many times the loop is exe-
cuted. The loop variable (avar) is initialized to the value of aexp1. Each time the
NEXT avar statement is encountered, the loop variable is incremented by the
aexp3 in the STEP statement. The aexp3 can be positive or negative integers,
decimals, or fractional numbers. If there is no STEP aexp3 command, the loop
increments by one. When the loop completes the limit as defined by aexp2, it
stops and the program proceeds to the statement immediately following the
NEXT statement; it may be on the same line or on the next sequential line.

Loops can be nested, one within another. In this case, the innermost loop is com-
pleted before returning to the outer loop. The following example illustrates a
nested loop program.

18 FOR ¥=1 T0 3

20 PRINT "QUTER LOOR™
30 2=0

49 7=7+2
S8 FOR =1 T0 5 STEF 2
50 PRINT * I]
78 MEXT ¥

S0 MEXT

9B END

Figure 4-1. Nested Loop Program

Program Statements 15

GOSUB (GOS.)
RETURN (RET.)

16 Program Statements

In Figure 4-1, the outer loop will complete three passes (X = 1 to 3). However,
before this first loop reaches its NEXT X statement, the program gives control to
the inner loop. Note that the NEXT statement for the inner loop must precede
the NEXT statement for the outer loop. In the example, the inner loop’s number
of passes is determined by the STEP statement (STEP Z). In this case, Z has
been defined as 0, then redefined as Z + 2. Using this data, the computer must
complete three passes through the inner loop before returning to the outer loop.
The aexp3 in the step statement could also have been defined as the numerical
value 2.

The program run is illustrated in Figure 4-2.

OUTER LOoP
IMHER LOOF
IHHER LOGF
IHHER LOOF

OUTER LOGF
IMMER LOOF
IHMER LOOF
IMHER LOOF

QUTER LOGF
IHHER LOOF
IMHER LOOF
IHHER LOOF

Figure 4-2. Nested Loop Execution

The return address for the loops are placed in a special group of memory ad-
dresses referred to as a stack. The information is “pushed” on the stack and
when used, the information is “popped” off the stack (see POP.)

Format: GOSUB lineno
lineno
RETURN
Example: 100 GOSUB 2000
2000 PRINT “SUBROUTINE”
2010 RETURN

A subroutine* is a program or routine used to compute a certain value, etc. It is
generally used when an operation must be replaced several times within a pro-
gram sequence using the same or different values. This command allows the
user to “call” the subroutine?, if necessary. The last line of the subroutine must
contain a RETURN statement. The RETURN statement goes back to the physical
line following the GOSUB statement.

Like the preceding FOR/NEXT command, the GOSUB/RETURN command
uses a stack for its return address. If the subroutine is not allowed to complete
normally; e.g., a GOTO lineno before a RETURN, the GOSUB address must be
“popped” off the stack (see POP) or it could cause future errors.

* Generally, a subroutine can do anything that can be done in a program. It is used to save memory
and program-entering time, and to make programs easier to read and debug.

GOTO (G.)

To prevent accidental triggering of a subroutine (which normally follows the
main program), place an END statement preceding the subroutine. The follow-
ing program demonstrates the use of subroutines.

(Clear screen)

RO

:l:t T :4‘:'{' 7

L P &

EARMPLE USE OF GOSUB-RETURM

A

O e

s
SR

ARSI
TR oW

g
b

IR T T 3 N <Y I QS
L)

2 |

s

2oL B o T o I 0

bod bed ped e LT (Y

ud [0 e 0

o

Figure 4-3. GOSUB/RETURN Program Listing

In the above program, the subroutine, beginning at line 1000, is called three
times to compute and print out different values of X and Y. Figure 4-4 illustrates
the results of executing this program.

468 08
458 38
26 158

Figure 4-4. GOSUB/RETURN Program Run

Format: ‘GO TO} aexp
GOTO

Examples: 100 GOTO 50
500 GOTO (X+Y)

The GGTO command is an unconditional branch statement just like the GOSUB
command. They both immediately transfer program control to a target line
number or arbitrary expression. However, using anything other than a con-
stant will make renumbering the program difficult. If the target line number is
non-existent, an error results. Any GOTO statement that branches to a
preceding line may result in an “endless” loop. Statements following a GOTO
statement will not be executed. Note that a conditional branching statement (see
IF/THEN)can be used to break out of a GOTO loop. The following program il-
lustrates two uses of the GGTO command.

Program Statements 17

18 FRINT

28 FRIMT :PRIMT "OME"®

28 FRINT "Two

48 PRINT “"THREE"

o8 PREIMT “FOUR"

&8 FPRINT “FIUE"

65 GOTO 184

7B FRINT "$5585858855585558"
=B PRIMT "
93 PRINT "TeyTieTeETTIETTYey
93 END

188 PRIMT "SIs¢

118 FPRINT “SEUEH®

128 PRIMT "EIGHT®

138 FRIHT "HIME®

148 PRINT “TEW"

158 GOTG 78

Figure 4-5. GOTO Program Listing

Upon execution, the numbers in the above listing will be listed first followed by
the three rows of symbols. The symbols listed on lines 70, 80, and 90 are ignored
temporarily while the program executes the GOTO 100 command. It proceeds
with the printing of the numbers “SIX” through “TEN”, then executes the se-
cond GOTO statement which transfers program control back to line 70. (This is
just an example. This program could be rewritten so that no GOTO statements
were used.) The program, when executed, looks like the following:

OHE
THO
THREE
FOUR
FIUE
SIX
SEVEH
EIGHT
HIMHE
TEH

.?.I l
Figure 4-6. GOTO Program Run
IF/THEN Format: IF aexp THEN { lineno
. | statement [:statement...]

Examples: IF X = 100 THEN 150
IF A$ = “ATARI” THEN 200
IF AA = 145 and BB = 1 THEN PRINT AA, BB
IF X = 100 THEN X = 0

18 Program Statements

The IF/THEN statement is a conditional branch statement. This type of branch
occurs only if certain conditions are met. These conditions may be either
arithmetical or logical. If the aexp following the IF statement is true (non-zero),
the program executes the THEN part of the statement. If, however, the aexp is
false (a logical 0), the rest of the statement is ignored and program control passes
to the next numbered line.

In the format, IF aexp THEN lineno, lineno must be a constant, not an expression
and specifies the line number to go to if the expression is true. If several
statements occur after the THEN, separated by colons, then they will be ex-
ecuted if and only if the expression is true. Several IF statements may be nested
on the same line. For example:

163 IF ¥=5 THEN IF ‘=3 THEM F=%:GOTOZG

The statements R=9: GOTO 100 will be executed only if X=5 and Y=3. The
statement Y =3 will be executed if X =5.

The following program demonstrates the IF/THEN statement.

wn
G
c=) A
L

FHICS 8:% :7 » IF DEMO"
T "EMTER &"; - INPUT &

A=1 THEM 48:FEM MULTIFLE STATEMEMT
WILL MEVER BE EXECUTED!!

S8 T T "R IS WOT 1. EXECUTION COMTIMUE
S HERE WHEM THE EXPRESSIOM IS FALSE.®

3 IF A=l THEM 7 :7 "A=1":7 “YES, IT IS

REALLY 1.":REM MULTIFLE STATEMEMTS HERE

WILL BE EXECUTED OMLY IF &=11!

S8 7 T “EMECUTION COMTIMUES HERE IF &>
1 OF AFTER 'YES. IT IS RESLLY 1' IS DISP
LaveD. "

B8 GOTO 19

D Rn
-

50
m

R B
(o]
=
- [T] vt

O

Qo)

Figure 4-7. IF/THEN Program

EMTER & (entered 2)
A IS MOT 1. EMECUTION COMTIMUES HERE M

EM THE EXPRESSION IS FALSE.

EXECUTION COMTIMUES HERE IF &<»1 OR GFTE

R 'YES, IT IS REALLY 1' IS DISFLAYED.

EMTER & (entered 1)

A=1 ;

YES, IT IS REALLY 1.

ESECUTION COMTIMUES HERE IF @<)i OF AFTE
R O'YES, IT IS REALLY 1' IS DISPLAYED.
EMTER &

Figure 4-8. IF/THEN Program Execution.

Program Statements 19

ON/GOSUB/
RETURN
ON/GOTO

POP

20 Program Statements

Format: ON aexp [GOTOllineno [lineno...]
GOSUB
Examples: 100 ON X GOTO 200, 300, 400
100 ON A GOSUB 1000, 2000
100 ON SQR(X) GOTO 30, 10, 100

Note: GOSUB and GOTO may not be abbreviated.

These two statements are also conditional branch statements like the IF/THEN
statement. However, these two are more powerful. The aexp must evaluate to a
positive number which is then rounded to the nearest positive integer (whole
number) value up to 255. If the resulting number is 1, then program control
passes to the first lineno in the list following the GOSUB or GOTO. If the
resulting number is 2, program control passes to the second lineno in the list,
and so on. If the resulting number is 0 or is greater than the number of linenos
in the list, the conditions are not met and program control passes to the next
statement which may or may not be located on the same line. With ON/GOSUB,
the selected subroutine is executed and then control passes to the next state-
ment.

The following routine demonstrates the ON/GOTO statement:

18 ¥=ktl

28 OH ¥ GOTO 198, 285.386. 408, 588

38 IF #»5 THEW FRIMT "COMPLETE.":END

48 GOTO 18

58 END

188 PRIMT "HOW WORKIMG AT LIME 188" -GOTO
18

288 FRIMT "MW WORKIMG &7 LIME 288" :GOTO
18

280 FRIMT "HOM WORKIMG AT LIME 38@":GOTO
1@

486 PRIMT "MW WORKING AT LIME 488" :G0TO
18

588 FRIMT “HOW WORKIMG AT LIME 388" -G0TO
1@

=0

Figure 4-9 ON/GOTO Program Listing

When the program is executed, it looks like the following:

MOM WORKIMG AT LIME 188
MOl WOREING AT LIME 288
MOW WORKIMG AT LIME 398
MO WORKIMG AT LIME 468
MOM WORKIMG &7 LINE 588
COMPLETE.

Figure 4-10 ON/GOTO Program Execution

Format: POP
Example: 1000 POP

RESTORE (RES.)

In the description of the FOR/NEXT statement, the stack was defined as a group
of memory addresses reserved for return addresses. The top entry in the stack
controls the number of loops to be executed and the RETURN target line for a
GOSUB. If a subroutine is not terminated by a RETURN statement, the top
memory location of the stack is still loaded with some numbers. If another
GOSUB is executed, that top location needs to be cleared. To prepare the stack
for a new GOSUB, use a POP to clear the data from the top location in the stack.

The POP command must be used according to the following rules:

1. It must be in the execution path of the program.
2. It must follow the execution of any GOSUB statement that is not brought
back to the main program by a RETURN statement.

The following example demonstrates the use of the POP command with a
GOSUB when the RETURN is not executed:

18 GOSUE 188a
15 BEM LINE 20 WILL HOT BE EXECUTED
28 FRIMT "MORMAL RETURH FRINTS THIS MESS

AGE. *

38 FRIMT "ABMORMAL RETURM FRINTS THIS ME

SSAGE. "

48 FOF

5% END

lege PRIMT "MOM EXECUTIMG SUBROUTIHE.®

1818 GOTa 39

1820 RETURH

Figure 4-11. GOSUB Statement With POP

Format: RESTORE [aexp]
Example: 100 RESTORE

The Atari Personal Computer System contains an internal “pointer” that
keeps track of the DATA statement item to be read next. Used without the op-
tional aexp, the RESTORE statement resets that pointer to the first DATA item
in the program. Used with the optional aexp, the RESTORE statement sets the
pointer to the first DATA item on the line specifed by the value of the aexp. This
statement permits repetitive use of the same data.

18 FOR M=t TO 2

28 READ &

308 RESTORE

48 READ B

S8 M=p+B

68 PRIMT "TOTal EQUALS "iM
78 MEXT N

88 END

%8 DATa 38,15

Figure 4-12. Restore Program Listing

On the first pass through the loop, A will be 30 and B will be 30 so the total line
50 will print SUM TOTAL EQUALS 60, but on the second pass, A will equal 15

Program Statements 21

TRAP (T.)

22 Program Statements

and B, because of the RESTORE statement, will still equal 30. Therefore, the
PRINT statement in line 50 will display SUM TOTAL EQUALS 45.

Format: TRAP aexp
Example: 100 TRAP 120

The TRAP statement is used to direct the program to a specified line number if
an error is detected. Without a TRAP statement, the program stops executing
when an error is encountered and displays an error message on the screen.

The TRAP statement works on any error that may occur after it has been ex-
ecuted, but once an error has been detected and trapped, it is necessary to reset
the trap with another TRAP command. This TRAP command may be placed at
the beginning of the section of code that handles input from the keyboard so
that the TRAP is reset after each error. PEEK(195) will give you an error
message (see Appendix B). 256*PEEK(187) + PEEK(186) will give you the number
of the line where the error occurred. The TRAP may be cleared by executing a
TRAP statement with an aexp whose value is from 32767 to 65535 (e.g., 40000).

5

INPUT/OUTPUT
COMMANDS AND DEVICES

INPUT/OUTPUT
DEVICES

This section describes the input/output devices and how data is moved between
them. The commands explained in this section are those that allow access to the
input/output devices. The input commands are those associated with getting
data into the RAM and the devices geared for accepting input. The output com-
mands are those associated with retrieving data from RAM and the devices
geared for generating output.

The commands described in this section are:

CLOAD INPUT OPEN/CLOSE READ/DATA
CSAVE LOAD POINT SAVE

DOS LPRINT PRINT STATUS
ENTER NOTE PUT/GET XIO

The hardware configuration of each of the following devices is illustrated in the
individual manuals furnished with each. The Central Input/Output (CIO) sub-
system provides the user with a single interface to access all of the system
peripheral devices in a (largely) independent manner. This means there is a
single entry point and a device-independent calling sequence. Each device has a
symbolic device name used to identify it; e.g., K: for the keyboard. Each device
must be opened before access and each must be assigned to an Input/Output Con-
trol Block (IOCB). From then on, the device is referred to by its IOCB number.

ATARI BASIC contains 8 blocks in RAM which identifies to the Operating
System the information it needs to perform an 1/O operation. This information
includes the command, buffer length, buffer address, and two auxiliary control
variables. ATARI BASIC sets up the IOCB’s, but the user must specify which
IOCB to use. BASIC reserves IOCB #0 for I/O to the Screen Editor, therefore the
user may not request IOCB #0. The GRAPHICS statement (see Section 9) opens
IOCB #6 for input and output to the screen. (This is the graphics window Sz).
IOCB #7 is used by BASIC for the LPRINT, CLOAD, and CSAVE commands. The
IOCB number may also be referred to as the device (or file) number. IOCB’s 1
through 5 are used in opening the other devices for input/output operations. If
IOCB #7 is in use, it will prevent LPRINT or some of the other BASIC I/O
statements from being performed. '

Keyboard: (K:) Input only device. The keyboard allows the user to read the
converted (ATASCII) keyboard data as each key is pressed.

Line Printer: (P:) Output only device. The line printer prints ATASCII
characters, a line at a time. It recognizes no control characters.

Program Recorder: (C:) Input and Output device. The recorder is a read/write
device which can be used as either, but never as both simultaneously. The
cassette has two tracks for sound and program recording purposes. The audio
track cannot be recorded from the ATARI system, but may be played back
through the television speaker.

I/O Commands and Devices 23

CLOAD (CLOA.)

CSAVE (CS.)

24 1/O Commands and Devices

Disk Drives: (D1:, D2:, D3:, D4:) Input and Output devices. If 16K 6f RAM is
installed, the ATARI can use from one to four disk drives. If only one disk drive
is attached, there is no need to add a number after the symbolic device code D.

Screen Editor: (E:) Input and Output device. This device uses the keyboard
and display (see TV Monitor) to simulate a screen editing terminal. Writing to
this device causes data to appear on the display starting at the current curscr
position. Reading from this device activates the screen editing process and
allows the user to enter and edit data. Whenever the falL# key is pressed, the
entire logical line within which ihe cursor resides is selected as the current
record to be transferred by CIO to the user program. (See Section 9).

TV Monitor: (S:) Input and Output device. This device allows the user to read
characters from and write characters to the display, using the cursor as the
screen addressing mechanism. Both text and graphics operations are supported.
See Section 9 for a complete description of the graphics modes.

Interface, RS-232: (R:) The RS-232 device enables the ATARI system to inter-
face with RS-232-compatible devices such as printers, terminals, ard plotters. It
contains a paralle! port tc which the 80-column printer (ATARI 825™) can be at-
tached.

Format: CLOAD
Examples: CLOAD
100 CLOAD

This command can be used in either Direct or Deferred mode to load a program
from cassette tape into RAM for execution. On entering CLOAD, one bell rings
to indicate that the PLAY button needs to be pressed followed by GEILI -
However, do not press PLAY until after the tape has been positioned. Specific in-
structions for CLOADing a program are contained in the ATARI 410 Program
Recorder Manual. Steps for loading oversized programs are included in the
paragraphs under CEAINING PROGRAMS at the end of this section.

Format: CSAVE

Examples: CSAVE
100 CSAVE
100 CS.

This command is usually used in Direct mode to save a RAM-resident program
onto cassette tape. CSAVE saves the tokenized version of the program. On enter-
ing C3AVE two bells ring to indicate that the PLAY and RECORD buttons must
be pressed followed by GEQEW . Do not, however, press these buttons until the
tape has been positioned. It is faster to save a program using this command
rather than a SAVE “C” (see SAVE) because short inter-record gaps are used.

Notes: Tapes saved using the two commands, SAVE and CSAVE, are not com-
patible

It may be necessary to enter an LPRINT (see LPRINT) before using
CSAVE. Otherwise, CSAVE may not work properly.

For specific instructions on how to conrect and operate the hardware,
cue the tape, etc., see the ATARI 410 Program Recorder Manual.

DOS (DO.)

ENTER (E.)

INPUT (I1.)

Format: DOS
Example: DOS

The DOS command is used to go from BASIC to the Disk Operating System
(DOS). If the Disk Operating System has not been booted into memory, the com-
puter will go into Memo Pad mode and the user must press to return
to Direct mode. If the Disk Operating System has been booted, the DOS Menu is
displayed. To clear the DOS Menu from the screen, press GRS . Control
then passes to BASIC. Control can also be returned to BASIC by selecting B (Run
Cartridge) on the DOS Menu.

The DOS command is usually used in Direct mode; however, it may be used in a
program. For more details on this, see the Atari DOS Manual.

Format: ENTER filespec
Examples: ENTER “C
ENTER “D:DEMOPR.INS”

This statement causes a cassette tape to play back a program originally recorded
using LIST (see Section 2, LIST). The program is entered in unprocessed (un-
tokenized) form, and is interpreted as the data is received. When the loading is
complete, it may be run in the normal way. The ENTER command may also be
used with the disk drive. Note that both LOAD and CLOAD (see Section 2) clear
the old program from memory before loading the new one. ENTER merges the
old and new programs. This ENTER statement is usually used in Direct mode.

Lo (1] {) []]
Format: INPUT | #aexp | ; svar > | svar | ...
Examples: 100 INPUT X

100 INPUT N$

100 PRINT “ENTER THE VALUE OF X”

110 INPUT X

This statement requests keyboard data from the user. In execution, the com-
puter displays a ? prompt when the program encounters an INPUT statement. It
is usually preceded by a PRINT statement that prompts the user as to the type of
information being requested.

String variables are allowed only if they are not subscripted. Matrix variables
are not allowed.

The #aexp is optional and is used to specify the file or device number from
which the data is to be input (see Input/Output Devices). If no #aexp is specified,
then input is from the screen editor (E:).

If several strings are to be input from the screen editor, type one string, press
, type the next string, , etc. Arithmetic numbers can be typed on
the same line separated by commas.

18 PRIMT "EMTER S MUMEERS TO EE SUMMED™
28 FOR M=! TO S

38 IHPUT ¥

48 C=C+x

o8 HEXT H

B0 FRINT "THE SUM OF YOUR HUMEERS IS "iC
78 EMD

Figure 5-1 Input Program Listing

I/O Commands and Devices 25

LOAD (LO.)

LPRINT (LP.)

NOTE (NO.)

OPEN (O.)
CLOSE (CL.)

26 I/0 Commands and Devices

Format: LOAD filespec
Example: LOAD “D1;JANINE.BRY”

This command is similar to CLOAD except the full file name system can be used.
LOAD uses long inter-record gaps on the tape (see CLOAD) and uses the token-
ized version of the program. When using only one disk drive, it is not necessary
to specify a number after the “D” because the default is disk drive #1.

Format: LPRINT [exp] ‘ > | exp..
Example: LPRINT “PROGRAM TO CALCULATE X”
100 LPRINT X; Y5 3Z

This statement causes the computer to print data on the line printer rather than
on the screen. It can be used in either Direct or Deferred modes. It requires no
device specifier and no OPEN or CLOSE statement. (BASIC uses IOCB #7.)

The above program listing illustrates a program that will add 5 numbers
entered by the user. To print a program listing on the line printer, see LIST.

Format: NOTE #aexp, avar, avar
Example: 100 NOTE #1, X, Y

This command is used to store the current disk sector number in the first avar
and the current byte number within the sector in the second avar. This is the
current read or write position in the specified file where the next byte to be
read or written is located. This NOTE command is used when writing data to a
disk file (see POINT). The information in the NOTE command is written into a
second file which is then used as an index into the first file.

Formats: OPEN #aexp,aexpl,aexp2, filespec
CLOSE #aexp

Examples: 100 OPEN #2,8,0,D1:ATARI800.BAS”
100 A$ = “D1:ATARI800.BAS”
110 OPEN #2,8,0,A$
150 CLOSE #2

Before a device can be accessed, it must be opened. This “opening” process links
a specific IOCB to the appropriate device handler, initializes any CIO-related con-
trol variables, and passes any device-specific options to the device handler. The
parameters for the OPEN command are defined as follows:

Mandatory character that must be entered by the
user.
aexp Reference IOCB or file number to same parameters

for future use (as in CLOSE command). Number
may be 1 through 7.

aexpl Code number to determine input or output opera-

tion.
Code 4 = input operation
8 = output operation
12 = input and output operation

6 = disk directory input operation
(In this case, the filespec is the search specifica-
tion.)

9 = end-of-file append (output) operation. Append is
also used for a special screen editor input mode.
This mode allows a program to input the next
line from E: without waiting for the user to press
Cheruan 3

aexp2 Device-dependent auxiliary code. An 83 in this

parameter indicates sideways printing on a printer
(see appropriate manuals for control codes).

filespec Specific file designation. Must be enclosed in quota-
tion marks. The format for the filespec parameter
is shown in Figure 5-2.

“D1: ATARIS800.BAS”
Device—-‘ A ; A
Code T ‘r

Device
Number
(optional)

Required
Colon

File name
(up to 8
characters-
must begin
with alphabetic
character)

Period required
as separator if
extender is used.

Note: Filenames are

?:]:filtl)(rin?l‘)- not used with
Includes the program

0-3 characters recorder.

Figure 5-2 Filename Breakdown

The CLOSE command simply closes files that have been previously opened with
an OPEN command. Note in the example that the aexp following the mandatory
character must be the same as the aexp reference number in the OPEN state-
ment.

I/O Commands and Devices 27

POINT (P.)

PRINT (PR or ?)

PUT(PU.)/
GET(GE.)

READ (REA.)
DATA (D.)

28

I/O Commands and Devices

Format: POINT #aexp, avar, avar
Example: 100 POINT #2, A,B

This command is used when reading a file into RAM. The first avar specifies the
sector number and the second avar specifies the byte within that sector where
the next byte will be read or written. Essentially, it moves a software-controlled
pointer to the specified location in the file. This gives the user “random access
to the data stored on a disk file. The POINT and NOTE commands are discussed
in more detail in the DOS Manual.

Format: PRINT [#aexp]‘ ;} [exp] [,exp...]

Examples: PRINT X, Y, Z, A$
100 PRINT “THE VALUE OF X IS ;X
100 PRINT “COMMAS”, “CAUSE”, “COLUMN?”, “SPACING”
100 PRINT #3, A$

A PRINT command can be used in either Direct or Deferred mode. In Direct
mode, this command prints whatever information is contained between the
duotation marks exactly as it appears. In the first example, PRINT X,Y,Z,A$, the
screen will display the current values of X,Y,Z, and A$ as they appear in the
RAM-resident program. In the last example, PRINT #3,A$, the #3 is the file
specifier (may be any number between 1 and 7) that controls to which device
the value of A$ will be printed. (See Input/Output Devices.)

A comma causes tabbing to the next tab location. Several commas in a row cause
several tab jumps. A semicolon causes the next aexp or sexp to be placed im-
mediately after the preceding expression with no spacing. Therefore, in the
second example a space is placed before the ending quotation mark so the value
of X will not be placed immediately after the word “IS”. If no comma or
semicolon is used at the end of a PRINT statement, then a is output and
the next PRINT will start on the following line.

Format: PUT #aexp, aexp
GET #aexp,
Examples: 100 PUT #6, ASC(“A”)
200 GET #1,X

The PUT and GET are opposites. The PUT command outputs a single byte from
0-255 to the file specified by #aexp. (# is a mandatory character in both these
commands). The GET command reads one byte from 0-255 (using #aexp to
designate the file, etc. on diskette or elsewhere) and then stores the byte in the
variable avar.

Formats: READ var [, var...]
DATA adata [, adata...]
Examples: 100 READ A,B,C,D,E
110 DATA 12,13,14,15,16
100 READ A$,B$,C$,D$,E$
110 DATA EMBEE, EVELYN, CARLA, CORINNE, BARBARA

These two commands are always used together and the DATA statement is
always used in Deferred mode!. The DATA statement can be located anywhere

A Direct mode READ will only read data if a DATA statement was executed in the program.

SAVE (S.)

STATUS (ST.)

XIO (X.)

in the program, but must contain as many pieces of data as there are defined in
the READ statement. Otherwise, an “out of data” error is displayed on the
screen.

String variables used in READ statements must be dimensioned and cannot be
subscripted. (See STRINGS Section). Neither may array variables may be used in
a READ statement.

The DATA statement holds a number of string data for access by the READ
statement. It cannot include arithmetical operations, functions, etc. Further-
more, the data type in the DATA statement must match the variable type de-
fined in the corresponding READ statement.

The following program totals a list of numbers in a DATA statement:

18 FOR M=1 TO S

28 FEAD D

38 M=t+D

48 HEXT H

58 FRIMT “SUM TOTAL ERUALS it
68 EMD

78 DATA 30. 15,106, 17,57

Figure 5-3 Read/Data Program Listing
The program, when executed, will print the statement:

SUM TOTAL EQUALS 255.

Format: SAVE filespec
Example: SAVE “D1:YVONNE.PAT”

The SAVE command is similar to the CSAVE command except that the full file
name system can be used. The device code number is optional when using only
one disk drive. The default is to disk drive #1. SAVE, like LOAD, uses long inter-
record gaps on the cassette (see CSAVE) and the tokenized form of the program.

Format: STATUS #aexp,avar
Example: 350 STATUS #1,Z

The STATUS command calls the STATUS routine for the specified device (aexp).
The status of the STATUS command (see ERROR MESSAGES, Appendix B) is
stored in the specified variable (avar). This may be useful for future devices such
as the RS-232 interface.

Format: XIO cmdno, #aexp, aexp1, aexp2, filespec
Example: XIO 18,#6,0,0,S:”

The XIO command is a general input/output statement used for special opera-
tions. One example is its use to fill an area on the screen between plotted points

I/O Commands and Devices 29

and lines with a color (see Section 9). The parameters for this command are de-
fined as follows:

cmdno Number that stands for the particular command to
be performed.
cmdno OPERATION EXAMPLE
3 OPEN Same as BASIC OPEN
5 GET RECORD These 4 commands are similar to
7 GET CHARACTERS BASIC INPUT GET, PRINT, and PUT
9 PUT RECORD
11 PUT CHARACTERS respectively.
12 CLOSE Same as BASIC CLOSE
13 STATUS REQUEST Same as BASIC STATUS
17 DRAW LINE Same as BASIC DRAWTO
18 FILL See Section 9
32 RENAME XIO 32,#1,0,0,“D:TEMP.CAROL”
33 DELETE XIO 33,#1,0,0,“D:TEMP.BAS”’
35 LOCK FILE XIO 35,#1,0,0,“D:TEMP.BAS”
36 UNLOCK FILE XIO 36,#1,0,0,“D:TEMP.BAS”
37 POINT Same as BASIC POINT
38 NOTE Same as BASIC NOTE
254 FORMAT XIO 254,#1,0,0,“D2:”
aexp Device number (same as in OPEN). Most of the time
it is ignored, but must be preceded by #.
aexp1 Two auxiliary control bytes. Their usage
aexp2 depends on the particular device and command. In
most cases, they are unused and are set to 0.
filespec String expression that specifies the device. Must be

enclosed in quotation marks. Although some com-
mands, like Fill (Section 9), do not look at the
filespec, it must still be included in the statement.

CHAINING
PROGRAMS

If a program requires more memory than is available, use the following steps to
string programs of less than the maximum memory available into one program.

1. Type in the first part of the program in the normal way.

2. The last line of the first part of the. program should contain only the line
number and the command RUN “C:”

3. Cue the tape to the blank section. Write down the program counter number

for later RUN purposes. Press PLAY and RECORD buttons on the deck so that

both remain down.

Type SAVE®“C:” and press R .

When the beeping sound occurs, press again.

When the screen displays “READY”, do not move tape. Type NEW CEIE .

Repeat the above instructions for the second part of the program.

As the second part of the program is essentially a totally new program, it is

possible to re-use the line numbers used in the first part of the program.

If there is a third part of the program, make sure the last line of the second

part is a RUN“C:” command.

s SlERl IR =

£Q

30 I/O Commands and Devices

MODIFYING A
BASIC PROGRAM
ON DISK

To execute a “chained” program, use the following steps:

e CORIDRES

Cue the tape to the beginning of part 1 of the program.
Press PLAY button on the recorder.

Type RUN“C:” CIRIED .
When the “beep” sounds, press again.

The computer automatically loads the first part of the program, runs it, and
sounds a “beep” to indicate when to hit the space bar or to trigger the
tape motor for the second LOAD/RUN. The loading takes a few seconds.

Note: A one-part program can be recorded and reloaded in the same way or
CSAVE and CLOAD can be used.

Note: Remember to boot DOS before typing in your program.

The procedure for modifying an existing BASIC program stored on a diskette is
demonstrated in the following steps:

ACUERCORTER

28

11.

Turn off ATARI console and insert BASIC cartridge.
Connect disk drive and turn it on - without inserting diskette.
Wait for Busy Light to go out and for the drive to stop. Open disk drive door.
Insert diskette (with DOS) and close door.
Turn on console. DOS should boot in and the screen show READY.
To load program from disk, type

LOAD ‘“‘D:filename.ext
Modify program (or type in new program).
To save program on disk, type

SAVE ‘“D:filename.ext
Always wait for the Busy light to go out before removing diskette.

. To get a Directory listing, do not remove diskette and type

DOS
Upon EEMI, the DOS Menu will be displayed. Select command letter A,
type it, and press twice to list the directory on the screen; or type A
followed by pressing (RN then P: E&ILND to list directory on the printer.

To return to BASIC, type B or press .

I/O Commands and Devices 31

NOTES

32 Notes

6

FUNCTION
LIBRARY

ARITHMETIC
FUNCTIONS

ABS

CLOG

EXP

INT

This section describes the arithmetic, trigonometric, and special purpose func-
tions incorporated into the ATARI BASIC. A function performs a computation
and returns the result (usually a number) for either a print-out or additional
computational use. Included in the trigonometric functions are two statements,
radians (RAD) and degrees (DEG), that are frequently used with trigonometric
functions. Each function described in this section may be used in either Direct
or Deferred mode. Multiple functions are perfectly legal.

The following functions and statements are described in this section:

ABS ATN ADR
CLOG COS FRE
EXP SIN PEEK
INT DEG/RAD POKE
LOG USR
RND

SGN

SQR

Format: ABS(aexp)
Example: 100 AB = ABS (-190)

Returns the absolute value of a number without regard to whether it is positive
or negative. The returned value is always positive.

Format: CLOG (aexp)
Example: 100 C = CLOG(83)

Returns the logarithm to the base 10 of the variable or expression in paren-
theses. CLOG(0) should give an error and CLOG(1) should be 0.

Format: EXP (aexp)
Example: 100 PRINT EXP(3)

Returns the value of e (approximately 2.71828283), raised to the power specified
by the expression in parentheses. In the example given above, the number
returned is 20.0855365. In some cases, EXP is accurate only to six significant
digits.

Format: INT (aexp)
Examples: 100 I = INT(3.445) (3 would be stored in I)
100 X = INT(-14.66778) (-15 would be stored in X)

Function Library 33

LOG

RND

SGN

SQR

Returns the greatest integer less than or equal to the value of the expression.
This is true whether the expression evaluates to a positive or negative number.
Thus, in our first example above, I is used to store the number 3. In the second
example, X is used to store the number - 15 (the first whole number that is less
than or equal to —14.66778). This INT function should not be confused with the
function used on calculators that simply truncates (cuts off) all decimal places.

Format: LOG(aexp)
Example: 100 L=LOG(67.89/2.57)

Returns the natural logarithm of the number or expression in parentheses.
LOG(0) should give an error and LOG(1) should be 0.

Format: RND(aexp)
Example: 10 A=RND (0)

Returns a hardware-generated random number between 0 and 1, but never
returns 1. The variable or expression in parentheses following RND is a dummy
and has no effect on the numbers returned. However, the dummy variable must
be used. Generally, the RND function is used in combination with other BASIC
statements or functions to return a number for games, decision making, and the
like. Here’s a simple routine that returns a random number between 0 and 999.

19 ¥=EMD: 82 (0 is dummy variable)
28 FA=IHTC 10887)
2B FRIMT RA

Format: SGN(aexp)
Example: 100 X = SGN(-199) (-1 would be returned)

Returns a -1 if aexp evaluates to a negative number; a 0 if aexp evaluates to 0, or a
1 if aexp evaluates to a positive number.

Format: SQR(aexp)
Example: 100 PRINT SQR(100) (10 would be printed)

Returns the square root of the aexp which must be positive.

TRIGONOMETRIC
FUNCTIONS
ATN Format: ATN(aexp)

COS

34 Function Library

Example: 100 X = ATN(65)
Returns the arctangent of the variable or expression in parentheses.

Format: COs(aexp)
Example: 100 C = COS(X+Y +Z)

Note: Presumes X, Y, Z previously defined!

Returns the trigonometric cosine of the expression in parentheses.

SIN

DEG/RAD

SPECIAL
PURPOSE
FUNCTIONS

ADR

FRE

PEEK

POKE

Format: SIN(aexp)
Example: 100 X = SIN(Y)

Note: Presumes Y previously defined.

Returns the trigonometric sine of the expression in parentheses.

Format: DEG
RAD

Example: 100 DEG
100 RAD

These two statements allow the programmer to specify degrees or radians for
trigonometric function computations. The computer defaults to radians unless
DEG is specified. Once the DEG statement has been executed, RAD must be used
to return to radians.

See Appendix E for the additional trigonometric functions that can be derived.

Format: ADR(svar)
Example: ADR(AS$)

Returns the decimal memory address of the string specified by the expression in
parentheses. Knowing the address enables the programmer to pass the informa-
tion to USR routines, etc. (See USR and Appendix D)

Format: FRE(aexp)
Examples: PRINT FRE (0)
100 IF FRE (0) <1000 THEN PRINT “MEMORY CRITICAL”

This function returns the number of bytes of user RAM left. Its primary use is in
Direct mode with a dummy variable (0) to inform the programmer how much
memory space remains for completion of a program. Of course FRE can also be
used within a BASIC program in Deferred mode.

Format: PEEK (aexp)
Examples: 1000 IF PEEK (4000) = 255 THEN PRINT “255”
100 PRINT “LEFT MARGIN IS”; PEEK (82)

Returns the contents of a specified memory address location (aexp). The address
specified must be an integer or an arithmetic expression that evaluates to an in-
teger between 0 and 65535 and represents the memory address in decimal nota-
tion (not hexadecimal). The number returned will also be a decimal integer with
a range from 0 to 255. This function allows the user to examine either RAM or
ROM locations. In the first example above, the PEEK is used to determine
whether location 4000 (decimal) contains the number 255. In the second exam-
ple, the PEEK function is used to examine the left margin.

Format: POKE aexp1, aexp2

Examples: POKE 82, 10
100 POKE 82, 20

Function Library 35

USR

36 Function Library

Although this is not a function, it is included in this section because it is closely
associated with the PEEK function. This POKE command inserts data into the
memory location or modifies data already stored there. In the above format,
aexp1 is the decimal address of the location to be poked and aexp? is the data to
be poked. Note that this number is a decimal number between 0 and 255. POKE
cannot be used to alter ROM locations. In gaining familiarity with this command
it is advisable to look at the memory location with a PEEK and write down the
contents of the location. Then, if the POKE doesn’t work as anticipated, the
original contents can be poked into the location.

The above Direct mode example changes the left screen margin from its default
position of 2 to a new position of 10. In other words, the new margin will be 8
spaces to the right. To restore the margin to its normal default position, press

SYSTEM RESET 8

Format: USR (aexp1 [, aexp2ll, aexp3...])
Example: 100 RESULT = USR (ADD1,A*2)

This function returns the results of a machine-language subroutine. The first ex-
pression, aexp1, must be an integer or arithmetic expression that evaluates to an
integer that represents the decimal memory address of the machine language
routine to be performed. The input arguments aexp2, aexp3, etc., are optional.
These should be arithmetic expressions within a decimal range of 0 through
65535. A non-integer value may be used; however, it will be rounded to the
nearest integer.

These values will be converted from BASIC’s Binary Coded Decimal (BCD)
floating point number format to a two-byte binary number, then pushed onto
the hardware stack, composed of a group of RAM memory locations under
direct control of the 6502 microprocessor chip. Figure 6-1 illustrates the struc-
ture of the hardware stack.

(Number of arguments on the stack-may be 0)
(High byte of argument X)
(Low byte of argument X)
(High byte of argument Y)
(Low byte of argument Y)
(High byte of argument Z)
(Low byte of argument Z)

NN e e 2

R, (Low byte of return address)
R, (High byte of return address)

Figure 6-1. Hardware Stack Definition

Note: X is the argument following the address of the routine, Y is the
second, Z is the third, etc. There are N pairs of bytes.

See Section 11 for a description of the USR function in machine language pro-
gramming. Appendix D defines the bytes in RAM available for machine
language programming.

7k

STRINGS

ASC

CHR$

This section describes strings and the functions associated with string handling.
Each string must be dimensioned (see DIM statement, Section 8) and each string
variable must end with a §. A string itself is a group of characters “strung”
together. The individual characters may be letters, numbers, or symbols
(including the Atari special keyboard symbols.) A substring is a part of a longer
string and any substring is accessible in Atari BASIC if the string has been pro-
perly dimensioned (see end of section). The characters in a string are indexed
from 1 to the current string length, which is less than or equal to the dimen-
sioned length of the string.

The string functions described in this section are:

ASC STR$
CHR$ VAL
LEN

Format: ASC(sexp)
Examples: 100A = ASC(A$)

This function returns the ATASCII code number for the first character of the
string expression (sexp). This function can be used in either Direct or Deferred
mode. Figure 7-1 is a short program illustrating the ASC function.

18 DIN A% 3
28 fs="E"

38 G=ASCCAS
48 FRINT @

Figure 7-1. ASC Function Program

When executed, this program prints a 69 which is the ATASCII code for the let-
ter “E”. Note that when the string itself is used, it must be enclosed in quotation
marks.

Format: CHR$ (aexp)
Examples: 100 PRINT CHRS$ (65)
100 A$ = CHRS$ (65)

This character string function returns the character, in string format,
represented by the ATASCII code number(s) in parentheses. Only one character
is returned. In the above examples, the letter A is returned. Using the ASC and
CHRS$ functions, the following program prints the upper case and lower case let-
ters of the alphabet.

Strings 37

LEN

STR$

VAL

38 Strings

18 FOR I=B 7O 25 - .
28 PRIMT CHRE$CGQSCO"A" s+ InCHREE ASDO "
I

38 MEXT I

Figure 7-2. ASC and CHR$ Program Example

Note: There can be only one STR$ and only one CHR$ in a logical comparison.

Format: LEN (sexp)
Example: 100 PRINT LEN(A$)

This function returns the length in bytes of the designated string. This informa-
tion may then be printed or used later in a program. The length of a string
variable is simply the index for the character which is currently at the end of
the string. Strings have a length of 0 until characters have been stored in them.
It is possible to store into the middle of the string by using subscripting.
However, the beginning of the string will contain garbage unless something
was stored (using STO) there previously.

The following routine illustrates one use of the LEN function:

Lo [0 e
5 T

Figure 7-3. LEN Function Example

The result of running the above program would be 5.

Format: STR$ (aexp)
Example: A$=STR$(65)

This string from number function returns the string form of the number in
parentheses. The above example would return the actual number 65, but it
would be recognized by the computer as a string.

Note: There can only be one STR$ and only one CHR$ in a logical comparison.
For example, A =STR$(1) > STR$(2) is not valid and will not work correctly.

Format: V AL(sexp)
Example: 100 A=VAL(AS$)

This function returns a number of the same value as the number stored as a
string. This is the opposite of a STR$ function. Using this function, the computer
can perform arithmetic operations on strings as shown in the following exam-
ple program:

18 OIN E$5:

29 Bf="108a8"

28 B=S0RCUALCES

43 FRIMT "THE SQUARE ROOT OF “:B$;" IS M
;B

Figure 7-4. VAL Function Program

STRING
MANIPULATIONS

Upon execution, the screen displays THE SQUARE ROOT OF B$ IS 100.

It is not possible to use the VAL function with a string that does not start with a
number, or that cannot be interpreted by the computer as a number. It can,
however, intrepret floating point numbers; e.g.,VAL(“1E9”)would return the
number 1,000,000,000.

Strings can be manipulated in a variety of ways. They can be split, concatenated,
rearranged, and sorted. The following paragraphs describe the different
manipulations.

String Concatenation

Concatenation means putting two or more strings together to form one large
string. Each string to be included in a larger string is called a substring. Each
substring must be dimensioned (see DIM). In Atari BASIC, a substring can con-
tain up to 99 characters (including spaces). After concatenation, the substrings
can be stored in another string variable, printed, or used in later sections of the
program. Figure 7-5 is a sample program demonstrating string concatenation.
In this program, A$, B$, and C$ are concatenated and placed in AS.

18 DIM A3 1805, B3 1065, 0 169
28 FF="STRIMGS & SUBSTRIMGS ARE DISCUSSE

D 1

28 B$="1IN 'ATARI BASIC-—& SELF-TEACHIMG
GUICE'

48 C¥="--—CHFTER 3. *

S8 A LEN A +1 =%
68 ad(LEN g+ =CF
78 FRINT &%

Figure 7-5. String Concatenation Example
String Splitting

The format of a subscript string variable is as follows:

svarname(aexpi[,aexp2])

The svarname is used to indicate the unsubscripted string variable name (with
$). aexp1 indicates the starting location of the substring and aexp2 (if used) in-
dicates the ending location of the substring. If no aexp2 is specified, then the end
of the substring is the current end of the string. The starting location cannot be
greater than the current length of the string. The two example programs in
Figure 7-6 illustrate a split string with no end location indicated and a split
string with an ending location indicated.

18 DIM 5353 18 OIH S& 280

28 S$E="RECO#" 28 S$="fTARI 208 BASICH
38 FRIMT 5323 38 FEIMT S$07.3

48 EHD 48 EHD

Result is BCD. Result is 800.

(without ending location) (with ending location)

Figure 7-6. Split String Examples

Strings 39

40 Strings

String Comparisons and Sorts

In string comparisons, the logical operators are used exactly the way they are
with numbers. The second program in Appendix H is a simple example of bub-
ble sort.

In using logical operators, remember that each letter, number, and symbol is
assigned an ATASCII code number. A few general rules apply to these codes:

il ATASCII codes for numbers are sized in order of the numbers’ real
values and are always lower than the codes for letters (see Appendix C).

2. Upper case letters have lower numerical values than the lower case let-

ters. To obtain the ATASCII code for a lower case letter if you know the
upper case value, add 32 to the upper case code.

Note: Atari BASIC’s memory management system moves strings around in
memory to make room for new statements. This causes the string address to
vary if a program is modified or Direct mode is used.

8

ARRAYS AND
MATRICES

DIM (DI.)

An array is a one-dimensional list of numbers assigned to subscripted variables;
e.g., A(0), A(1), A(2). Subscripts range from 0 to the dimensioned value. Figure
8-1 illustrates a 7-element array.

A(0)
A1)
AR)
A(3)
A4)
A(5)
A(6)

Figure 8-1. Example of an Array

A matrix, in this context, is a two-dimensional table containing rows and col-
umns. Rows run horizontally and columns run vertically. Matrix elements are
stored by BASIC in row-major order. This means that all the elements of the
first row are stored first, followed by all the elements of the second row, etc.
Figure 8-2 illustrates a 7 x4 matrix.

Columns
M0,00 | M(©,1) M(0,2) M(0,3)
M(1,00 | M(1,1) M(1,2) M(,3)
@ [M0 | MEe1 M@2,2) MQ,3)
E MG | MGD M(3,2) M(,3)
M M@0 | M@ M(4,2) M(4,3)
M(5,00 | MG,1) M(5,2) M(5,3)
M@6,00 | M(6,1) M(6,2) M(6,3)

Figure 8-2. Example of a Matrix

This section describes the two commands associated with arrays, matrices, and
strings, and how to load both arrays and matrices. The commands in this sec-
tion are:

DIM

CLR

Format: DIM svar(aexp) ,svar(aexp)
mvar(aexp| ,aexp)) ;mvar(aexp[,aexp ...]

Examples: DIM A(100)
DIM M(6,3)
DIM B$(20) used with STRINGS

Arrays and Matrices 41

42 Arrays and Matrices

A DIM statement is used to reserve a certain number of locations in memory for
a string, array, or matrix. A character in a string takes one byte in memory and
a number in an array takes six bytes. The first example reserves 101 locations
for an array designated A. The second example reserves 7 rows by 4 columns
for a two-dimensional array (matrix) designated M. The third example reserves
20 bytes designated B$. All strings, arrays, and matrices must be dimen-
sioned. It is a good habit to put all DIM statements at the beginning of the pro-
gram. Notice in Figure 8-1 that although the array is dimensioned as DIM A(6),
there are actually 7 elements in the array because of the 0 element. Although
Figure 8-2 is dimensioned as DIM M(6,3), 28 locations are reserved.

Note: The ATARI Personal Computer does not automatically initialize array or
matrix variables to 0 at the start of program execution. To initialize array or
matrix elements to 0, use the following program steps:

256 DIN & 198
308 FOR E=B T
318 (3=
328 MEXT E

Arrays and matrices are “filled” with data by using FOR/NEXT statements,
READ/DATA statements and INPUT commands. Figure 8-3 illustrates the
“building” of part of an array using the FOR/NEXT loop and Figure 8-4 builds an
array using the READ/DATA statements.

Figure 8-3. Use of FOR/NEXT to Build An Array

18 DIN A3

28 FOR E=1 TO 3
30 READ ¥

49 AlE =X

5§ FRINT ACE
58 HEXT E

Figure 8-4. Use of READ/DATA to Build An Array

CLR

Figure 8-5 shows an example of building a 6 x 3 matrix.

19 DINM Mo, 30

FOR ROW=8 TG &

FOR COL=1 70 3

PR COL 3=IHT{ RHDC 8 0 1088 &
MERT COL:HERT ROM

of FOR ROM=8 T0 &

FOR COL=1 TO 3

FEIMT MORON.COL

HEST COL:FRIMT -HEXT ROW

L0 O = O O e) [
DR % B ow R o T 8 I

Figure 8-5. Building A Matrix

Note that the words ROW and COLUMN are not BASIC commands, statements,
functions, or keywords. They are simply variable names used here to designate
which loop function is first. The program could just as easily have been written
with X and Y as the variable names.

Format: CLR
Example: 200 CLR

This command clears the memory of all previously dimensioned strings, arrays,
and matrices so the memory and variable names can be used for other purposes.
It also clears the values stored in undimensioned variables. If a matrix, string, or
array is needed after a CLR command, it must be redimensioned with a DIM

command.

Arrays and Matrices 43

NOTES

44 Notes

9

GRAPHICS MODES
AND COMMANDS

GRAPHICS (GR.)

This section describes the Atari BASIC commands and the different graphics
modes of the ATARI Personal Computer. Using these commands, it is possible to
create graphics for game, graphics, and patterns.

The commands to be described in this section are:

GRAPHICS LOCATE PUT/GET
COLOR PLOT SETCOLOR
DRAWTO POSITION XI0

The PUT/GET and XIO commands explained in this section are special applica-
tions of the same commands described in Section 5.

Format:
Example:

GRAPHICS aexp
GRAPHICS 2

This command is used to select one of the nine graphics modes. Table 9-1 sum-
marizes the nine modes and the characteristics of each. The GRAPHICS com-
mand automatically opens the screen, S:(the graphics window),as device #6. So
when printing text in the text window, it is not necessary to specify the device
code. The aexp must be positive, rounded to the nearest integer. Graphics mode
0 is a full-screen display while modes 1 through 8 are split screen displays. To
override the split-screen, add the characters +16 to the mode number (aexp) in
the GRAPHICS command. Adding 32 prevents the graphics command from
clearing the screen.

To return to graphics mode 0 in Direct mode, press or type GR.0
and press

TABLE 9.1—TABLE OF MODES AND SCREEN FORMATS
SCREEN FORMAT

Vert. Vert. Number
Gr. Mode Horiz. (CoD) (Col) of RAM
Mode Type (Rows) Split Full Colors Required
Screen Screen (Bytes)
0 TEXT 40 - 24 2 993
1 TEXT 20 20 24 5 513
2 TEXT 20 10 12 5 261
3 GRAPHICS 40 20 24 4 273
4 GRAPHICS 80 40 48 2 537
5 GRAPHICS 80 40 48 4 1017
6 GRAPHICS 160 80 96 2 2025
7 GRAPHICS 160 80 96 4 3945
8 GRAPHICS 32(.? 160 192 1/2 7900

The following paragraphs describe the nine graphics modes.

Graphic Modes and Commands 45

GRAPHICS
MODE O

GRAPHICS
MODES
1 AND 2

This mode is the 1-color, 2-luminance (brightness) default mode for the ATARI
Personal Computer. It contains a 24 by 40 character screen matrix. The default
margin settings at 2 and 39 allow 38 characters per line. Margins may be chang-
ed by poking LMARGN and RMARGN (82 and 83). See Appendix I. Some systems
have different margin default settings. The color of the characters is determined
by the background color. Only the luminance of the characters can be different.
This full-screen display has a blue display area bordered in black (unless the
border is specified to be another color). To display characters at a specified loca-
tion, use one of the following two methods.

Method 1.
lineno POSITION aexp1, aexp2 Puts cursor at location
lineno PRINT sexp specified by aexpl and aexp2.
Method 2
lineno GR. 0 Specifies graphics mode.
lineno POKE 752,1 Suppresses cursor.
lineno COLOR ASC(sexp) Specifies character to be
printed.
lineno PLOT aexp1,aexp2 Specifies where to print
character.
lineno GOTO lineno Start loop to prevent READY

from being printed. (GOTO
same lineno.)

Press to terminate
loop.

GRAPHICS 0 is also used as a clear screen command either in Direct mode or
Deferred mode. It terminates any previously selected graphics mode and
returns the screen to the default mode (GRAPHICS 0).

As defined in Table 9-1, these two 5-color modes are Text modes. However, they
are both split-screen (see Figure 9-1) modes. Characters printed in Graphics
mode 1 are twice the width of those printed in Graphics 0, but are the same
height. Characters printed in Graphics mode 2 are twice the width and height
of those in Graphics mode 0. In the split-screen mode, a PRINT command is used
to display characters in either the text window or the graphics window. To
print characters in the graphics window, specify device #6 after the PRINT com-
mand.

Example: 100 GR. 1
110 PRINT#6; “ATARI”

The default colors depend on the type of character input. Table 9-2 defines the
default color and color register used for each type.

Table 9-2. Default Colors for Specific Input Types

Character Type Color Register Default Color
Upper case alphabetical 0 Orange
Lower case alphabetical 1 Light Green
Inverse upper case alphabetical 2 Dark Blue
Inverse lower case alphabetical 3 Red
Numbers 0 Orange
Inverse numbers 2 Dark Blue

Note: See SETCOLOR to change character colors.

46 Graphic Modes and Commands

GRAPHICS
MODES
3,5, AND 7

GRAPHICS
MODES
4 AND 6

GRAPHICS
MODE 8

Unless otherwise specified, all characters are displayed in upper case non-
inverse form. To print lower case letters and graphics characters, use a POKE
756,226. To return to upper case, use POKE 756,224.

In graphics modes 1 and 2, there is no inverse video, but it is possible to get all
the rest of the characters in four different colors (see end of section).
(X=0)

(Y=0)
\ X-coordinate

ea

S:
Graphics Window
(graphics or text)

Y -coordinate

E:
Text Window
(4 lines)

border (size
depends on
individual
TV’s overscan)

Figure 9-1. Split-Screen Display For Graphics Modes 1 and 2

The X and Y coordinates start at O (upper left of screen). The maximum values
are the numbers of rows and columns minus 1 (see Table 9-1).

This split-screen configuration can be changed to a full screen display by adding
the characters +16 to the mode number.

Example: GRAPHICS 1+16

These three 4-color graphics modes are also split-screen displays in their default
state, but may be changed to full screen by adding +16 to the mode number.
Modes 3, 5, and 7 are alike except that modes 5 and 7 use more points (pixels) in
plotting, drawing, and positioning the cursor; the points are smaller, thereby
giving a much higher resolution.

These two 2-color graphics modes are split-screen displays and can display in
only two colors while the other modes can display 4 and 5 colors. The advantage
of a two-color mode is that it requires less RAM space (see Table 9-1). Therefore,
it is used when only two colors are needed and RAM is getting crowded. These
two modes also have a higher resolution which means smaller points than
Graphics mode 3.

This graphics mode gives the highest resolution of all the other modes. As it

takes a lot of RAM to obtain this kind of resolution, it can only accomodate a
maximum of one color and two different luminances.

Graphic Modes and Commands 47

COLOR (C) Format: COLOR aexp
Examples: 110 COLOR ASC(“A”)
110 COLOR 3

The value of the expression in the COLOR statement determines the data to be
stored in the display memory for all subsequent PLOT and DRAWTO com-
mands until the next COLOR statement is executed. The value must be positive
and is usually an integer from 0 through 255. Non-integers are rounded to the
nearest integer. The graphics display hardware interprets this data in different
ways in the different graphics modes. In text modes 0 through 2, the number
can be from 0 through 255 (8 bits) and determines the character to be displayed
and its color. (The two most significant bits determine the color. This is why on-
ly 64 different characters are available in these modes instead of the full
256-character set.)

Tables 9-6 and 9-7 at the end of this section illustrate the internal character set
and the character/color assignment. Table 9-2 is a simplified table which allows
easy generation of some of the colors. For example, COLOR ASC(‘‘A”’): PLOT
5,5 will display an orange A character in graphics modes 1 or 2 at location 5,5.

Graphics modes 3 through 8 are not text modes, so the data stored in the display
RAM simply determines the color of each pixel. Two-color or two-luminance
modes require either 0 or 1 (1-bit) and four-color modes require 0, 1, 2, or 3. (The
expression in the COLOR statement may have a value greater than 3, but only
one or two bits will be used.) The actual color which is displayed depends on the
value in the color register which corresponds to the data of 0, 1, 2, or 3 in the
particular graphics mode being used. This may be determined by looking in
Table 9-5, which gives the default colors and the corresponding register
numbers. Colors may be changed by using SETCOLOR.

Note that when BASIC is first powered up, the color data is 0, and when a
GRAPHICS command (without +32) is executed, all of the pixels are set to 0.
Therefore, nothing seems to happen to PLOT and DRAWTO in GRAPHICS 3
through 7 when no COLOR statement has been executed. Correct by doing a
COLOR 1 first.

DRAWTO (DR.) Format: DRAWTO aexp1, aexp2
Example: 100 DRAWTO 10, 8

This statement causes a line to be drawn from the last point displayed by a PLOT
(see PLOT) to the location specified by aexp1 and aexp2. The first expression
represents the X coordinate and the second represents the Y-coordinate (see
Figure 9-1). The color of the line is the same color as the point displayed by the
PLOT.

LOCATE (LOC.) Format: LOCATE aexp1, aexp2, var
Example: 150 LOCATE 12, 15, X

This command positions the invisible graphics cursor at the specified location in
the graphics window, retrieves the data at that pixel, and stores it in the
specified arithmetic variable. This gives a number from 0 to 255 for Graphics
modes 0 through 2; 0 or 1 for the 2-color graphics modes; and 0, 1, 2, or 3 for the
4-color modes. The two arithmetic expressions specify the X and Y coordinates
of the point. LOCATE is equivalent to:

POSITION aexp1, aexp2:GET #6,avar

48 Graphic Modes and Commands

PLOT (PL.)

POSITION (POS.)

PUT/GET
(PU./GE.)

Doing a PRINT after a LOCATE or GET from the screen may cause the data in
the pixel which was examined to be modified. This problem is avoided by
repositioning the cursor and putting the data that was read, back into the pixel
before doing the PRINT. The following program illustrates the use of the
LOCATE command.

18 GRAFHICE Z+18
28 COLOR 1

38 SETCOLOR 218,32
48 PLOT 18,15
58 DRAMTG 13
e LOCATE 12,
8 FRINT =

Figure 9-2. Example Program Using LOCATE

On execution, the program prints the data (1) determined by the COLOR state-
ment which was stored in pixel 12, 15.

Format: PLOT aexp1, aexp2
Example: 100 PLOT 5,5

The PLOT command is used in graphics modes 3 through 8 to display a point in
the graphics window. The aexp1 specifies the X-coordinate and the aexp2 the
Y-coordinate. The color of the plotted point is determined by the hue and
luminance in the color register from the last COLOR statement executed. To
change this color register, and the color of the plotted point, use SET-
COLOR. Points that can be plotted on the screen are dependent on the graphics
mode being used. The range of points begins at 1 and extends to one less than
the total number of rows (X-coordinate) or columns (Y-coordinate) shown in
Table 9-1.

Format: POSITION aexp1, aexp2
Example: 100 POSITION 8, 12

The POSITION statement is used to place the invisible graphics window cursor
at a specified location on the screen (usually precedes a PRINT statement). This
statement can be used in all modes. Note that the cursor does not actually move
until an I/O command which involves the screen is issued.

Formats: PUT #aexp, aexp
GET #aexp, avar
Examples: 100 PUT #6, ASC(“A”)
200 GET #1, X

In graphics work, PUT is used to output data to the screen display. This state-
ment works hand-in-hand with the POSITION statement. After a PUT (or GET),
the cursor is moved to the next location on the screen. Doing a PUT to device #6
causes the one-byte input (second aexp) to be displayed at the cursor position.
The byte is either an ATASCII code byte for a particular character (modes 0-2) or
the color data (modes 3-8).

GET is used to input the code byte of the character displayed at the cursor posi-
tion, into the specified arithmetic variable. The values used in PUT and GET cor-
respond to the values in the COLOR statement. (PRINT and INPUT may also be
used.)

Graphic Modes and Commands 49

SETCOLOR (SE.)

Note: Doing a PRINT after a LOCATE or GET from the screen may cause the
data in the pixel which was examined to be modified. To avoid this problem,
reposition the cursor and put the data that was read, back into the pixel before
doing the PRINT.

Format: SETCOLOR aexp1, aexp2, aexp3
Example: 100 SETCOLOR 0, 1, 4

This statement is used to choose the particular hue and luminance to be stored
in the specified color register. The parameters of the SETCOLOR statement are
defined below:

aexpl = Color register (0-4 depending on graphics mode)
aexp2 = Color hue number (0-15. See Table 9-3)
aexp3 = Color luminance (must be an even number between 0 and 14; the

higher the number, the brighter the display. 14 is almost pure
white.)

TABLE 9.3—THE ATARI HUE (SETCOLOR COMMAND)
NUMBERS AND COLORS

COLORS SETCOLOR (aexp2) NUMBERS
GRAY 0
LIGHT ORANGE (GOLD) 1
ORANGE 2
RED-ORANGE 3
PINK 4
PURPLE-BLUE 6
BLUE 7
BLUE 8
LIGHT BLUE 9
TURQUOISE 10
GREEN-BLUE 11
GREEN 12
YELLOW-GREEN 13
ORANGE-GREEN 14
LIGHT ORANGE 15

Note: Colors will vary with type and adjustment of TV or monitor used.

The ATARI display hardware contains five color registers, numbered
from 0 through 4. The Operating System (OS) has five RAM locations (COLORO
through COLOR4, see Appendix I - Memory Locations) where it keeps track of
the current colors. The SETCOLOR statement is used to change the values in
these RAM locations. (The OS transfers these values to the hardware registers
every television frame.) The SETCOLOR statement requires a value from 0 to 4
to specify a color register. The COLOR statement uses different numbers
because it specifies data which only indirectly corresponds to a color register.
This can be confusing, so careful experimentation and study of the various
tables in this section is advised.

No SETCOLOR commands are needed if the default set of five colors is used.
Although 128 different color-luminance combinations are possible, not more
than five can be displayed at any one time. The purpose of the color registers
and SETCOLOR statement is to specify these five colors.

50 Graphic Modes and Commands

TABLE 9.4—TABLE OF SETCOLOR ‘“‘DEFAULT’’ COLORS*

Setcolor Defaults To Luminance Actual Color
(Color Register) Color
0 2 8 ORANGE
1 12 10 GREEN
2 9 4 DARK BLUE
3 4 6 PINK OR RED
4 0 0 BLACK

*“DEFAULT” occurs if not SETCOLOR statement is used.

Note: Colors may vary depending upon the television monitor type, condition,
and adjustment.

A program illustrating Graphics mode 3 and the commands explained so far i,
this section is shown below:

18 GRAPHICS
2B SETCOLOR
28 FLOT 17, 1:0R&GMTO 17,
48 FLOT 191 :DR&WTD 19
58 PLOT 20, 1:0RaWTD 26
68 FLOT 22, 1:0RAMTS 22
78 POKE 752.1

UTERS®

9 GOTD 3

)

,,

N
[N
[a0u]
L)
[annl}
i
(o}
A

FERSCHAL COMF

)

)

The SETCOLOR and COLOR statements set the color of the points to be plotted
(see Table 9.5). The SETCOLOR command loads color register 0 with hue 2
(orange) and a luminance of 8 (“normal”). The next 4 lines plot the points to be
displayed. Line 90 suppresses the cursor and line 100 prints the string expres-
sion ATARI PERSONAL COMPUTERS in the text window (6 spaces in).

Note that the background color was never set because the default is the desired
color (black).

If the program is executed, it will print the Atari logo in the graphics window
and the string expression in the text window as in Figure 9-3.

Graphic Modes and Commands 51

Y-AXIS POINTS (ROWS)

X-AXIS POINTS (COLUMNS)

012 3 45678 910111213141516 171819202122 232425 26 2728293031 3233 34353637 3839

© & NS hRN= O

[
N = C

-
W

'ATARI PERSONAL COMPUTERS

Figure 9-3. Atari Logo Program Execution

‘\.\\\\Aﬂanumuom WINDOW)
DEVICE CODE ¢¢‘S.”’
Screen
(Graphics or Text)

(TEXT WINDOW)

\ Editor

DEVICE CODE ‘‘E.”’
(Text Only)

52 Graphic Modes and Commands

Jap.aog - 4 (sedoueurmINT T ADVId
— = € J0[0D T)
(}meysp punoagyoeq) jurod soryders 0 T 8 IAON
(punou8yoeq se 10[0d aures) aoueurwn| jutod soryde.rs T 1 an1d Mava
— = 0 NITAD LHOI'T
JapJog ‘(3neyap punotdyoeq) jurod sorydern 0 i4 A0VTId
= = ¢ (SSpol
= 5 2 J0[02-0M)
== = T 9 pue
jurod sorydeas T 0 ¥ SIAON IONVIO
JapJog ‘(Jneysp punoidyoeq) jurod sorydersn 0 4 (sapo A0V
= - € J0[09-IN0J)
yurod sorydeuas ¢ 2 L pue 10719 Ava
jurod sorydean s T ‘s ‘e STAON NATYD LHOI'T
yurod sorydeas T 0 IONVIO
JapJog ‘punougyoeg 4 (SPPON 1x3]1) ADVTIA
I3)0BIRYD panord ey 4 a3y
Iajoeaeyn 9q 0} I9joBJIRYD C pue 40719 XMIva
Ia)eIey) | SIUIULIAIPP A[[enjoe T T SIAON NATYD LHOI'T
JI9)oeIRy)D BIEP JYO'T0D 0 IDNVIO
JapJog panord aq ¥ ADVId
— 0} Ja)orIeyd € SMOANIM
punoagyoeg sauruLIa}ap (4 LX3L TIV INTd M4vd
(PUNOJISYOe(] SB JIO[0D SUIES) IDUBUIWN] JI)ORIRY)) Arenyoe T pue 0 3JAON 0719 LHOI'T
— eJep YO'10D 0
SILNINWINOD ANV NOLLJAIIDSAA (dxae) *ON 133182y uonIpuo) s1o[op
J0[0) J0[0) JI0 PO Jyneyaq
(rdxae)
AO0TODLAS

AT4dV.L Y0100 “N0'10DLAS ‘AdON—E°6 TTIV.L

Graphic Modes and Commands 53

XIO (X.)
SPECIAL FILL
APPLICATION

Format:
Example:

XIO 18, #aexp, aexpl, aexp2, filespec
100 XIO 18, #6, 0, 0, “S:”

This special application of the XIO statement fills an area on the screen between
plotted points and lines with a non-zero color value. Dummy variables (0) are
used for aexp1 and aexp2.

The following steps illustrate the fill process:

1. PLOT bottom right corner (point 1).

2. DRAWTO upper right corner (point 2). This outlines the right edge of the
area to be filled.

3. DRAWTO upper left corner (point 3).

4. POSITION cursor at lower left corner (point 4).

5. POKE address 765 with the fill color data (1, 2, or 3).

6. This method is used to fill each horizontal line from top to bottom of the spe-

cified area. The fill starts at the left and proceeds across the line to the right
until it reaches a pixel which contains non-zero data (will wraparound if
necessary). This means that fill cannot be used to change an area which has
been filled in with a non-zero value, as the fill will stop. The fill command
will go into an infinite loop if a fill with zero (0) data is attempted on a line
which has no non-zero pixels. [EZEZY8 or can be used to stop the
fill if this happens.

The following program creates a shape and fills it with a data (color) of 3. Note
that the XIO command draws in the lines of the left and bottom of the figure.

18 GRAFHICS S+l

28 COLGR 2
38 FLOT 78,45

44 l_ll'n:i;”‘
o8 DRGWTO 33,
61 POGSITION
8 FOKE VB5.Z
S8 =10 igZ.#5.8.8.05:0

T e
S LU S

Figure 9-4. Example ‘“FILL’’ Program

Assigning Colors To Characters In Text Modes 1 and 2

This procedure describes the method of assigning colors to the Atari character
set. First, look up the character number in Table 9-6. Then, see Table 9-7 to get
the conversion of that number required to assign a color register to it.

Assign SETCOLOR 0 to lower case “r” in mode 2
whose color is determined by reglster 0.

Example:

1. In Table 9-6, find the column and number for “r” (114-column 4).
2. Using Table 9-7, locate column 4. Conversion is the character number minus
32 (114 - 32 = 82).

54 Graphic Modes and Commands

‘pajurad aq 0} (L2)$AHD ‘@deosa ue yym papasaid aq SN SI5JOBIEYD 3SAY} () IPOW U]

T

4, | o m 56 m 6| — e]| o 2 Rl e ey
b, ¢ ow m 6 m g2l v 29| N 9| < oe| - 1
gy, er| w o eor s €6 @ ol |l mw s | = 6| — e
| #er| 1 sor a 26 ; |l v o| 1 w| > el| ¢ e
g cer| X zot m@ 16 B a2 1 es| x ev| ¢ | +
z gzl [901 g 06 g v |z sal 0 e oz | = o1
£ 12| 1 sor ; 69 g e2| & 22| 1 w| e s| (6
x oer| 4 wor g g8 g |l x 9| H ov| 8¢ wm|) @
m err| 8 ¢or g L8 a 2| m ss| o ee L €z =
A gir| 3 2ot ; 98 H o] A % | a e | 9 ww| @ o9
i [y B e n 9| n e | 3 26| ¢ 12| % ¢
y» 9tr| P oor a g -U 89| L ec| a 9| ¥ oz| $ ¥
B0 et o ee E €8 a 9| s 15| o s]| ¢ 61| # ¢
1yl a4 gs u z8 E 9| ¥ os| a w| =z er| . ¢
b er| e 6 g 18 g 9| ¥ ev | v e | v ozt | I
d et D 96 g 08 D %9| a4 e | ® < | o 91 |eoeds o
MHD # |¥HD »# |wHD # |wWHD # |wmD # |wHD # |wHD # |¥MHD
$ uwnjo) ¢ uwnjo) £ uwnjo) I uwnjo)

LIS AALIVAVHD TVNAILNI—9°6 2[qeL

Graphic Modes and Commands 55

Table 9.7—CHARACTER/COLOR ASSIGNMENT

Conversion 1

Conversion 2

Conversion 3

Conversion 4

MODE 0 2SETCOLOR 2 #+32 #+32 #-32 NONE
POKE 756,224 POKE 756,226
MODE 1 SETCOLOR 0 -$32 #+32 #-32 #-32
OR SETCOLOR 1 NONE #+64 #-64 NONE
MODE 2 SETCOLOR 2 #+160 #+160 #+96 #+96
SETCOLOR 3 #+128 #+192 #+64 #+128

2. Luminance controlled by SETCOLOR 1, 0, LUM.

3. POKE the Character Base Address (CHBAS) with 226 to specify lower case let-
ters or special graphics characters; e.g.,

POKE 756,226

or
CHBAS = 756
POKE CHBAS, 226

To return to upper case letters, numbers, and punctuation marks, POKE CHBAS
with 224.

4. A PRINTSstatement using the converted number (82) assigns the lower case
“r” to SETCOLOR 0 in mode 2 (see Table 9-5).

Graphic Control Characters
These characters are produced when the key is pressed with the

alphabetic keys shown on back cover. These characters can be used to draw
design, pictures, etc., in mode 0 and in modes 1 and 2 if CHBAS is changed.

56 Graphic Modes and Commands

10

SOUNDS AND GAME
CONTROLLERS

SOUND (SO.)

This section describes the statement used to generate musical notes and sounds
through the audio system of the television monitor. Up to four different sounds
can be “played” simultaneously creating harmony. This SOUND statement can
also be used to simulate explosions, whistles, and other interesting sound ef-
fects. The other commands described in this section deal with the functions
used to manipulate the keyboard, joystick, and paddle controllers. These func-
tions allow these controllers to be plugged in and used in BASIC programs for
games, etc.

The command and functions covered in this section are:

SOUND PADDLE STICK
PTRIG STRIG

Format: SOUND aexpl, aexp2, aexp3, aexp4
Example: 100 SOUND 2, 204, 10, 12

The SOUND statement causes the specified note to begin playing as soon as the
statement is executed. The note will continue playing until the program en-

counters another SOUND statement with the same aexp1 or an END statement.
This command can be used in either Direct or Deferred modes.

The SOUND parameters are described as follows:

aexpl

Voice. Can be 0-3, but each voice requires a separate SOUND state-
ment.

aexp2 Pitch. Can be any number between 0-255. The larger the number,
the lower the pitch. Table 10-1 defines the pitch numbers for the
various musical notes ranging from two octaves above middle C to

one octave below middle C.

aexp3

Distortion. Can be even numbers between 0-14. Used in creating
sound effects. A 10 is used to created a “pure” tone whereas a 12
gives an interesting buzzer sound. A buzzing sound (like engines at
a race track) can be produced using two separate SOUND commands
with the distortion value (aexp3) alternating between 0 and 1. A
value of 1 is used to force output to the speaker using the specified
volume (see aexp4). The rest of the numbers are used for other
special effects, noise generation, and experimental use.

aexp4 = Volume control. Can be between 1 and 15. Using a 1 creates a sound
barely audible whereas a 15 is loud. A value of 8 is considered nor-
mal. If more than 1 sound statement is being used, the total volume
should not exceed 32. This will create an unpleasant “clipped” tone.

Sounds and Game Controllers 57

Using the note values in Table 10-1, the following example demonstrates how to
write a program that will “play” the C scale.

TABLE 10.1. TABLE OF PITCH VALUES FOR THE MUSICAL

NOTES
HIGH C 29
NOTES B 31
A# or Bb 33
A 35
G# or Ab 37
G 40
F# or Gb 42
F 45
E 47
D# or E 50
D 53
C# or Db 57
C 60
B 64
A# or B 68
A 72
G# or Ab 76
G 81
F# or Gb 85
F 91
E 96
D# or Eb 102
D 108
C# or Db 114
MIDDLE C C 121
B 128
A# or Bb 136
A 144
G# or Ab 153
G 162
F# Gb 173
F 182
LOW NOTES D 193
D# or Ib 204
b D 217
C# or Db 230
C 243
18 FESD &
28 IF f=258 THEM EMD
38 S0UMD B.g. 18,18
45 FOR M=1 7O 488:HEST W
58 PRIMT &
g8 GOTC 18
78 EHO
28 EHTH 29,31.35.48,45,.47.52. 88, 84,72, 51
291,96, 185,121

T =

"’9 OATA 122, 144,182, 132, 153, 217, 242, 256
Figure 10-1. Musical Scale Program

Note that the DATA statement in line 80 ends with a 256, which is outside of the
designated range. The 256 is used as an end-of-data marker.

58 Sounds and Game Controllers

GAME
CONTROLLER
FUNCTIONS

PADDLE

PTRIG

STICK

Figure 10-2 is an illustration of the three controllers used with the Atari Per-
sonal Computers. The controllers can be attached directly to the Atari Per-
sonal Computer or to external mechanical devices so that outside events can be
fed directly to the computer for processing and control purposes.

Figure 10-2. Game Controllers

Format: PADDLE(aexp)
Example: PRINT PADDLE(3)

This function returns the status of a particular numbered controller. The paddle
controllers are numbered 0-7 from left to right. This function can be used with
other functions or commands to “cause” further actions like sound, graphics
controls, etc. For example, the statement IF PADDLE(3) = 14 THEN PRINT
‘“PADDLE ACTIVE.” Note that the PADDLE function returns a number bet-
ween 1 and 228, with the number increasing in size as the knob on the con-
troller is rotated counterclockwise (turned to the left).

Format: PTRIG(aexp)
Example: 100 IF PTRIG(4)=0 THEN PRINT “MISSILES FIRED!”

The PTRIG function returns a status of 0 if the trigger button of the designated
controller is pressed. Otherwise, it returns a value of 1. The aexp must be a
number between 0 and 7 as it designates the controller.

Format: STICK(aexp)
Example: 100 PRINT STICK(3)

This function works exactly the same way as the PADDLE command, but can be
used with the joystick controller. The joystick controllers are numbered from
0-3 from left to right.

Controller 1 = STICK(0)
Controller 2 = STICK(1)
Controller 3 = STICK(2)
Controller 4 = STICK(3)

Figure 10-3 shows the numbers that will be returned when the joystick con-
troller is moved in any direction.

Sounds and Game Controllers 59

14

10 6

11 7

13

Figure 10-3. Joystick Controller Movement

STRIG Format: STRIG(aexp)
Example: 100 IF STRIG(3)=0 THEN PRINT “FIRE TORPEDO”’

The STRIG function works the same way as the PTRIG function. It can be used
with both the joystick and keyboard controllers.

60 Sounds and Game Controllers

11

ADVANCED PROGRAMMING
TECHNIQUES

MEMORY
CONSERVATION

This section includes hints on increasing programming efficiency, conserving
memory, and combining machine language programs with Atari BASIC pro-
grams. This section does not include an instruction set for the 6502 micro-
processor chip nor does it give instructions on programming in machine
language. An additional purchase of the Atari Assembler Editor cartridge* and
a careful study of Atari’s Assembler Editor Manual are strongly recommended.

These hints give ways of conserving memory. Some of these methods make pro-
grams less readable and harder to modify, but there are cases where this is
necessary due to memory limitations.

1. In many small computers, eliminating blank spaces between words and
characters as they are typed into the keyboard will save memory. This is not
true of the ATARI Personal Computer System, which removes extra spaces.
Statements are always displayed the same regardless of how many spaces
were used on program entry. Spaces should be used (just as in typing on a
conventional typewriter) between successive keywords and between
keywords and variable names. Here is an example:

10 IF A = 5 THEN PRINT A

Note the space between IF and A and between THEN and PRINT. In most
cases, a statement will be interpreted correctly by the computer even if all
spaces are left out, but this is not always true. Use conventional spacing.

2. Each new line number represents the beginning of what is called a new
“logical line”. Each logical line takes 6 bytes of “overhead”, whether it is
used to full capacity or not. Adding an additional BASIC statement by using a
colon (:) to separate each pair of statements on the same line takes only 3
bytes.

* Available late 1980.

Advanced Programming Techniques 61

If you need to save memory, avoid programs like this:

He+]
'.‘.' :'T' + 1
TR
FRINT 2
GOTO 58

SEEES

and consolidate lines like this:

18 H=¥+1:Y=y+1: 2= FRINT 2:GOTO 18

This consolidation saves 12 bytes.

3. Variables and constants should be “managed” for savings, too. Each time a
constant (4,5,16,3.14159, etc.) is used, it takes 7 bytes. Defining a new
variable requires 8 bytes plus the length of the variable name (in characters).
But each time it is used after being defined, it takes only 1 byte, regardless of
its length. Thus, if a constant (such as 3.14159) is used more than once or
twice in a program, it should be defined as a variable, and the variable name
used throughout the program. For example:

18 PI=3.1415%
28 FRIMT "mREA OF A CIRCLE IS THE RADIUS
SQUARED TIMES “;FI

4. Literal strings redquire 2 bytes overhead and 1 byte for each character
(including all spaces) in the string.

5. String variables take 9 bytes each plus the length of the variable name
(including spaces) plus the space eaten up by the DIM statement plus the size
of the string itself (1 byte per character, including spaces) when it is defined.
Obviously, the use of string variables is very costly in terms of RAM.

6. Definition of a new matrix requires 15 bytes plus the length of the matrix
variable name plus the space needed for the DIM statement plus 6 times the
size of the matrix (product of the number of rows and the number of col-
umns). Thus, a 25 row by 4 column matrix would require 15 + approxi-
mately 3 (for variable name) + approximately 10 (for the DIM statement) + 6
times 100 (the matrix size), or about 630 bytes.

62 Advanced Programming Techniques

PROGRAMMING
IN MACHINE
LANGUAGE

7. Each character after REM takes one byte of memory. Remarks are helpful to
people trying to understand a program, but sometimes it is necessary to
remove remark statements to save memory.

8. Subroutines can save memory because one subroutine and several short calls
take less memory than duplicating the code several times. On the other
hand, a subroutine that is only called once takes extra bytes for the GOSUB
and RETURN statements.

9. Parentheses take one byte each. Extra parentheses are a good idea in some
cases if they make an expression more understandable to the programmer.
However, removing unnecessary parentheses and relying on operator
precedence will same a few bytes.

Machine language is written entirely in binary code. The ATARI Personal Com-
puter contains a 6502 microprocessor and it is possible to call 6502 machine code
subroutines from BASIC using the USR function. Short routines may then be
entered into a program by hand assembly (if necessary).

Before it returns to BASIC, the assembly language routine must do a pull ac-
cumulator (PLA) instruction to remove the number (N) of input arguments off
the stack. If this number is not 0, then all of the input arguments must be pop-
ped off the stack also using PLA. (See Figure 6-1).

The subroutine should end by placing the low byte of its result in location 212
(decimal), and then return to BASIC using an RTS (Return from Subroutine) in-
struction. The BASIC interpreter will convert the 2-byte binary number stored
in locations 212 and 213 into an integer between 0 and 65535 in floating-point
format to obtain the value returned by the USR function.

The ADR function may be used to pass data that is stored in arrays or strings to a
subroutine in machine language. Use the ADR function to get the address of the
array or string, and then use this address as one of the USR input arguments.

The following program, Hexcode Loader, provides the means of entering hexa-
decimal codes, converting each hexadecimal number to decimal, and storing the
decimal number into an array. The array is then executed as an assembly
language subroutine. (An array is used to allocate space in memory for the
routine.)

Advanced Programming Techniques 63

1. To use this program, first enter it. After entering it, save this program on
disk or cassette for future use.

18 GRAFHICS 8:PRINT "HEXCODE LOADER FROG
RAM" : PRINT

28 REM STORES DECIMAL EQUIVALEMTS IN ARR
gT 2;‘ OUTPUTS IM PRINTED 'DATA STATEMENT
21 REM LIME NUMEBER 1588,

38 REM USER THEM PLACES CURSOR OH PRINTE
D OUTPUT LIME, HITS "RETURN", @ND ENTERS

31 REM REST OF BASIC PROGRAM INCLUDIMG U
SR STATEMENT .

40 DIM ACS8 3 HEX$(5)

38 REM INPUT,COHUERSION, STORGGE OF DAaTA.

68 M=B:FRIMT "EWTER 1 HE% CODE. IF LAST
ONE IS IM, ENTER 'DOME'.™;

78 INFUT HEX#

88 IF HEX$="DOME" THEM M=292:G0TO 138
3 FOR I=1 TO LENCHEX$:

188 IF HEA$CI, I){="9" THEM N=Hi1&+UALCHE
R$CI,133:G0TO 129

118 N=NX16+4SCOHEX$! I, I 3 3-ASCC A" ++18
128 MEXT 1

138 PRIMT M:C=C+1

148 A(Cx=H

138 IF M<>339 THEW GOTO 68

156 REM PRIMT OUT DATA LIME AT 1508

200 GRAFHICS B:PRINT "1588 DaTa";

218 C=8

228 C=C+1

238 IF ACC)=559 THEM FRIMT "933":STOF
248 PRIMT A(Cx",";

258 A(C =8

268 GOTO 228

308 FRIMT "PUT CORRECT MUMBER OF HEX BENT
ES IN LIME 18068.":5TOP :REM TRAF LIME

1688 CLR :BYTES=0
1818 TRAF 388:DIM E$1 3, EC INTCEBYTES &+
3

1838 FOR I=1 TO EYTES

1848 READ A:IF AX255 THEW GOTO 1868

1858 POKE ADR(E$+I,A

1868 NEXT I

1870 REM BASIC PART OF USER'S FROGRAM FO
LLOWS

Figure 11-1. Hexcode Loader Input Program

64 Advanced Programming Techniques

2. Now add the BASIC language part of your program starting at line 1080 in-
cluding the USR function that calls the machine language subroutine. (See
example below.)

3. Count the total number of hex codes to be entered and enter this number on
line 1000 when requested. If another number is already entered, simply
replace it.

4. Run the program and enter the hexadecimal codes of the machine level
subroutine pressing after each entry. After the last entry, type
DONE and press ([GEIG) -

5. Now the DATA line (1500) displays on the screen. It will not be entered into
the program until the cursor is moved to the DATA line and is
pressed.

6. Add a program line 5 GOTO 1000 to bypass the hexcode loader (or delete the
hexcode loader through line 260). Now save the completed program by
using CSAVE or SAVE. It is important to do this before executing the part of
the program containing the USR call. A mistake in a machine language
routine may cause the system to crash. If the system does hang up, press
EBEIES - If the system doesn’t respond, turn power off and on again,
reload the program, and correct it.

Note: This method only works with relocatable machine language routines.

The following two sample programs can each be entered into the Hexcode
Loader program. The first program prints NOTHING IS MOVING while the
machine program changes the colors. The second sample program displays a
BASIC graphics design, then changes colors.

1888 GRAFHICS 1+16

1698 FOR I=1 TO &

1188 FRINT #€; "nothins is movinst!®
1118 FRIMNT #6; "NOTHIMG IS MOUIHG!®
1128 PRINT #5; "nothins is movins!®
1138 FRIMNT #€: "MOTHIMG IS MOUIMGH®
1148 NEXT I

1150 G=USR{ADRCE$ 12

1168 FOR I=1 TO 25:MEXT I:GOTOQ 1154

After entering this program, check that line 1000 reads:

1000 CLR:BYTES = 21

Type RUN CEITID-

Advanced Programming Techniques 65

Now enter the hexadecimal codes as shown column by column.

68
A2
0
AC
C4
2
BD
C5
2
9D
C4

2
E8
EO

3
90
F5
8C
c7

2
60

BYTES = 21

When completed, type DONE and press &I - Now place the cursor after the

last entry (999) on the DATA line and press (IE{N)-

*Now run the program by typing GOTO 1000 and pressing , or if line 5
has been added, type RUN I} - Press [EXZX@ to stop program and delete line

5.

The second program, which follows, should be entered in place of the

NOTHING IS MOVING program. Be sure to check the BYTES =
line 1000.

lgea
1826
1188
1116
1128
1138
1148
1158
1168
1178
1188
1158
1208
1216
1226

Follow steps 2 through 6.

GRAFHICS 7+16
SETCOLOR 8.9.4
SETCOLOR 1,38
SETCOLOR 2.3, 4
CR=1

FOR #=8 T0 153
COLOR IMTCCR>
PLOT 88.8

DRAMTD ¥, 35
CR=CR+8.125

IF CR=4 THEM CR=1
NEXT X
#=USRCADR(ES »+1 0
FOR I=1 TO 15:MEXT I
GOTO 1269

Type RUN

count in

Enter the hexadecimal codes for this program column by column.

66 Advanced Programming Techniques

68
A2
0
AC
C4
2
BD
C5
2
9D
C4

2
E8
EO

2
90
F5
8C
Cé6

2
60

BYTES = 21

When completed, type DONE and press Q&L Now place the cursor after the
last entry (999) on the DATA line and press GEIT).

Now run the program by typing GOTO 1000 and pressing (IS, or add line 5

GOTO 1000 and type RUN CIEITI). Press to stop program and delete line
5. B :

£
¥
¥
H

Figure 11-2 illustrates an assembler subroutine used to rotate colors which
might prove useful. It is included here for the information of the user.

Assembler Subroutine to Rotate Colors..

Address Object Line Label Mnemonic Data
Code No.
0100 " Routine to rotate COLOR data
0110 From one register to another.
0120 4 colors are rotated.
0130 | ‘
0140 Operating system address
02C4 0150 ‘ . COLOR 0 = $02C4
02C5 0160 COLOR 1 = $02C5
02C6 0170 . COLOR 2 = $02C6
02C7 0175 COLOR 3 = $02C7
0180 i
0190 L *= $6000 Machine program starting address*
6000 68 0200 PLA Pop stack (See Chapter 4)
6001 A200 0210 LDX #0 Zero the X register
6003 ACC402 0220 'LDY COLORO Save COLOR 0
6006 BDC502 0230 LOOP LDA COLOR1,X :
6009 9DC402 0240 -STA COLORO0,X :
600C E8 0250 INX ~ Increment the X register (add one)
600D E002 0260 - CPX #3 Compare contents of X register
‘ with 2 ‘
600F 90F5 0270 BCC LOOP Loop if X register contents are
less than 2
6011 8CC602 0280 STY COLOR3 Save COLOR 0 in COLOR 3
6014 60 0290 RTS Return from machine level sub-
routine
Assembler This Portion is Source Information Programmer Enters
Prints This Using Atari Assembler Cartridge

Indicates data (source)
* Routine is relocatable
$ Indicates a hexadecimal number

Figure 11-2. Assembler Subroutine To Rotate Colors

Advanced Programmirig Techniques 67

NOTES

APPENDIX A

ALPHABETICAL DIRECTORY
OF BASIC RESERVED WORDS

Note: The period is mandatory after all abbreviated keywords.

RESERVED BRIEF SUMMARY
WORD: ABBREVIATION: OF BASIC STATEMENT
ABS Function returns absolute value (unsigned) of the

variable or expression.

ADR Function returns memory address of a string.

AND Logical operator: Expression is true only if both subex-
pressions joined by AND are true.

ASC String function returns the numeric value of a single
string character.

ATN Function returns the arctangent of a number or expres-
sion in radians or degrees.

BYE B. Exit from BASIC and return to the resident operating
system or console processor.
CLOAD CLOA. Loads data from Program Recorder into RAM.

CHRS$ String function returns a single string byte equivalent
to a numeric value between 0 and 255 in ATASCII code.

CLOG Function returns the base 10 logarithm of an expres-
sion.

CLOSE CL. I/O statement used to close a file at the conclusion of /O
operations.

CLR The opposite of DIM: Undimensions all strings;
matrices.
COLOR C. Chooses color register to be used in color graphics
' work.

COM Same as DIM.

CONT CON. Continue. Causes a program to restart execution on the
next line following use of the key or encounter-
ing a STOP.

cos Function returns the cosine of the variable or expres-

sion (degrees or radians).

CSAVE Outputs data from RAM to the Program Recorder for
tape storage.

Appendir A-1

i i

RESERVED
WORD:

DATA

DEG
DIM
DOS
DRAWTO
END
ENTER
EXP
FOR
FRE
GET
GOSUB

GOTO
GRAPHICS

i¥
INPUT
INT
LEN

A-2 Appendix

ABBREVIATION:

D.
DE.
DI.

DO.

DR.

GE.'

GOS.

GR.

L

BRIEF SUMMARY
OF BASIC STATEMENT

Part of READ/DATA combination. Used to identify the
succeeding items (which must be separated by commas)
as individual data items.

Statement DEG tells computer to perform
trigonometric functions in degrees instead of radians.
(Default in radians.)

Reserves the specified amount of memory for matrix,
array, or string. All string variables, arrays, matrices
must be dimensioned with a DIM statement.

Reserved word for disk operators. Causes the menu to
be displayed. (See DOS Manual.)

Draws a straight line between a plotted point and
specified point.

Stops program execution; closes files; turns off sounds.
Program. may be restarted using CONT. (Note: END
may be used more than once in a program.)

/O comménd used to store data or programs in un-
tokenized (source) form.

Function returns e (2.7182818) raised to the specified
power.

Used with NEXT to establish FOR/NEXT loops. In-
troduces the range that the loop variable will operate in
during the execution of loop.

Function returns the amount of remaining user
memory (in bytes).

Used mostly with disk operations to input a single byte
of data.

Branch to a subroutine beginning at the specified line
number.

Unconditional branch to a specified line number.

Specifies which of the eight graphics modes is to be
used. GR.0 may be used to clear screen.

Used to cause conditional branching or to execute
another statement on the same line (only if the first ex-
pression is true).

Causes computer to ask for input from keyboard. Ex-
ecution continues only when key is pressed after
inputting data.

Function returns the next lowest whole integer below
the specified value. Rounding is always downward,
even when number is negative.

String function returns the length of the specified str-
ing in bytes or characters (1 byte contains 1 character).

RESERVED
WORD:

LET

LIST

LOAD

LOCATE

LOG
LPRINT
NEW

NEXT

NOT

NOTE
ON

OPEN
OR

PADDLE

PEEK

PLOT

POINT

POKE

POP

POSITION

PRINT

ABBREVIATION:

LE.

L.

LO.

LOC.

LP.

NO.

PL.

POK.

POS.

PR.or ?

BRIEF SUMMARY
OF BASIC STATEMENT

Assigns a value to a specific variable name. LET is op-
tional in Atari BASIC, and may be simply omitted.

Display or otherwise output the program list.
Input from disk, etc. into the computer.

Graphics: Stores, in a specified variable, the value that
controls a specified graphics point.

Function returns the natural logarithm of a number.
Command to line printer to print the specified message.
Erases all contents of user RAM.

Causes a FOR/NEXT 100{) to terminate or continue
depending on the particular variables or expressions.
All loops are executed at least once.

A “1” is returned only if the expression is NOT true. If
it is true, a “0” is returned.

See DOS/FMS Manual...used only in disk operations.
Used with GOTO or GOSUB for branching purposes.
Multiple branches to different line numbers are possible
depending on the value of the ON variable or expres-
sion.

Opens the specified file for input of output operations.
Logical operator used between two exPressions. If
either one is true, a “1” is evaluated. A “0” results only
if both are false.

Function returns position of the paddle game controller.

Function returns decimal form of contents of specified
memory location (RAM or ROM).

Causes a single point to be plotted at the X,Y location
specified.

Used with disk operations only.

Insert the specified byte into the specified memory loca-
tion. May be used only with RAM. Don’t try to POKE
ROM or you’ll get an error.

Removes the loop variable from the GOSUB stack. Used
when departure from the loop is made in other than
normal manner.

Sets the cursor to the specified screen position.

I/O command causes output from the computer to the
specified output device.

Appendir A-3

RESERVED
WORD:

PTRIG

PUT

RAD

READ

REM

RESTORE

RETURN

RND

RUN

SAVE

SETCOLOR

SGN

SIN

SOUND

SQR
STATUS

STEP

STICK

STRIG

STOP

A-4 Appendix

ABBREVIATION:

PU.

REA.

R. or . B3

RES.

RET.

RU.

SE.

SO.

ST.

STO.

BRIEF SUMMARY
OF BASIC STATEMENT

Function returns status of the trigger button on game
controllers.

Causes output of a single byte of data from the computer
to the specified device.

Specifies that information is in radians rather than
degrees when using the trigonometric functions.
Default is to RAD. (See DEG.)

Read the next items in the DATA list and assign to
specified variables.

Remarks. This statement does nothing, but comments
may be printed within the program list for future

reference by the programmer. Statements on a line that
starts with REM are not executed.

Allows DATA to be read more than once.

RETURN from subroutine to the statement immediate-
ly following the one in which GOSUB appeared.

Function returns a random number between 0 and 1,
but never 1.

Execute the program. Sets normal variables to 0, un-
dims arrays and string.

I/O statement causes data or cFrogram to be recorded on
disk under filespec provided with SAVE.

Store hue and luminance color data in a particular color
register.

Function returns +1 if value is positive, 0 if zero, -1 if
negative.

Function returns trigonometric sine of given value
(DEG or RAD).

Controls register, sound pitch, distortion, and volume of
a tone or note.

Function returns the square root of the specified value.
Calls status routine for specified device.

Used with FOR/NEXT. Determines duality to be
skipped between each pair of loop variable values.

Function returns position of stick game controller.

Function returns 1 if stick trigger button not pressed, 0
if pressed.

Causes execution to stop, but does not close files or turn
off sounds.

RESERVED
WORD:

STR$

THEN

TO

TRAP

USR

VAL

XIO

ABBREVIATION:

BRIEF SUMMARY
OF BASIC STATEMENT

Function returns a character string equal to numeric
value given. For example: STR$(65) returns 65 as a
string.

Used with IF: If expression is true, the THEN
statements are executed. If the expression is false, con-
trol passes to next line.

Used with FOR as in “FOR X = 1 TO 10”. Separates the
loop range expressions.

Takes control of program in case of an INPUT error
and directs execution to a specified line number.

Function returns results of a machine-language
subroutine.

Function returns the equivalent numeric value of a
string.

General I/O statement used with disk operations (see
DOS/FMS Manual) and in graphics work (Fill).

Appendix A-5

NOTES

APPENDIX B

ERROR
MESSAGES

ERROR
CODE NO.

2

10

11

12

13

14

15

ERROR CODE MESSAGE

Memory insufficient to store the statement or the new variable name or to DIM a
new string variable.

Value Error: A value expected to be a positive integer is negative, a value ex-
pected to be within a specific range is not.

Too Many Variables: A maximum of 128 different variable names is allowed.
(See Variable Name Limit.)

String Length Error: Attempted to store beyond the DIMensioned string length.

Out of Data Error: READ statement requires more data items than supplied by
DATA statement(s).

Number greater than 32767: Value is not a positive integer or is greater than
32767.

Input Statement Error: Attempted to INPUT a non-numeric value into a
numeric variable.

Array or String DIM Error: DIM size is greater than 32767 or an array/martix
reference is out of the range of the dimensioned size, or the array/matrix or string
has been already DIMensioned, or a reference has been made to an undimensioned
array or string.

Argument Stack Overflow: There are too many GOSUBs or too large an expres-
sion.

Floating Point Overflow/Underflow Error: Attempted to divide by zero or
refer to a number larger than 1x10% or smaller than 1x10 - .

Line Not Found: A GOSUB, GOTO, or THEN referenced a non-existent line
number.

No Matching FOR Statement: A NEXT was encountered without a previous
FOR, or nested FOR/NEXT statements do not match properly. (Error is reported at
the NEXT statement, not at FOR).

Line Too Long Error: The statement is too complex or too long for BASIC to
handle.

GOSUB or FOR Line Deleted: A NEXT or RETURN statement was encountered
and the corresponding FOR or GOSUB has been deleted since the last RUN.

Appendix B-1

ERROR
CODE NO.

16

17

18

Note:

19

20

21
128
129
130
131
132
133
134
135

136

137
138
139
140
141

142

ERROR CODE MESSAGE

RETURN Error: A RETURN was encountered without a matching GOSUB.
Garbage Error: Execution of “’garbage” (bad RAM bits) was attempted. This error
code may indicate a hardware problem, but may also be the result of faulty use of
POKE. Try typing NEW or powering down, then re-enter the program without
any POKE commands.

Invalid String Character: String does not start with a valid character, or string
in VAL statement is not a numeric string.

The following are INPUT/OUTPUT errors that result during the use of disk
drives, printers, or other accessory devices. Further information is pro-
vided with the auxiliary hardware.

LOAD program Too Long: Insufficient memory remains to complete LOAD.
Device Number Larger than 7 or Edual to 0.

LOAD File Error: Attempted to LOAD a non-LOAD file.

BREAK Abort: User hit key during I/O operation.

IOCB! already open.

Nonexistent Device specified.

IOCB Write Only. READ command to a write-only device (Printer).

Invalid Command: The command is invalid for this device.

Device or File not Open: No OPEN specified for the device.

Bad I0CB Number: Illegal device number.

IOCB Read Only Error: WRITE command to a read-only device.

EOF: End of File read has been reached. (NOTE: This message may occur when
using cassette files.)

Truncated Record: Attempt to read a record longer than 256 characters.
Device Timeout. Device doesn’t respond.

Device NAK: Garbage at serial port or bad disk drive.

Serial bus input framing error.

Cursor out of range for particular mode.

Serial bus data frame overrun.

1JOCB refers to Input/Output Control Block. The device number is the same as the IOCB number.

B-2 Appendic

ERROR
CODE NO.

143

144

145

146
147
160
161
162
163
164
165
166
167
168
169
170

171

ERROR CODE MESSAGE

Serial bus data frame checksum error.

Device done error (invalid “done” byte): Attempt to write on a write-protected
diskette.

Read after write compare error (disk handler) or bad screen mode handler.

Function not implemented in handler.

Insufficient RAM for operating selected graphics mode.
Drive number error.

Too many OPEN files (no sector buffer available).
Disk full (no free sectors).

Unrecoverable system data I/0 error.

File number mismatch: Links on disk are messed up.
File name error.

POINT data length error.

File locked.

Command invalid (special operation code).

Directory full (64 files).

File not found.

POINT invalid.

Appendix B-3

APPENDIX C

ATASCII
CHARACTER SET

10

11

12

&
5 &
N
N
N |
:
+ @
s @
:
7
N 4
N =
A
B
c

15

16

17

18

19

20

21

22

23

24

25

10

11

12

15

14

15

16

17

18

19

S0 000808 BT

28

29

30

31

32

33

34

35

36

37

38

1C

1D

1E

1F

20

21

22

23

24

25

26

%

&

Appendix C-1

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

C-2 Appendic

W
5‘9& &

&;13' s® &é‘y
27 :
28 (
29)
2A *
2B +
2C ,
2D -
2E :
2F /
30 0
31 1
32 2
33 3
34 4
35 5
36 6

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

38

39

3A

3B

3C

3D

3E

3F

40

41

42

43

45

46

73

74

75

76

77

78

79

80

81

82

83

84

85

86

ol
F

‘gy& &
47 G
48 H
49 I
4A J
4B K
4C L
4D M
4E N
4F @)
50 P
51 Q
52 R
53 S
54 T
55 U
56 A4

88

89

90

9

92

93

94

95

96

97

98

99

100

101

102

58

59

5A

5B

5C

5D

5E

5F

60

61

62

63

64

65

66

105

106

107

108

109

110

111

112

113

114

115

116

117

118

68

69

6A

6B

6C

6D

6E

6F

70

71

72

73

74

75

76

121

122

123

124

125

126

127

128

129

130

131

132

133

134

78

79

7A

7B

7C

7D

7E

7F

80

81

82

83

84

85

86

Appendix C-3

v csp?
V% S
F& & &

135 87
136 88
137 89
138 8A
139 8B
140 8C
141 8D
142 8E
143 8F
144 90
145 91
146 92
147 93
148 94
149 95
150 96

C-4 Appendix

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

98

99

9A

9B

9C

9D

9E

9F

A0

Al

A2

A3

A4

A5

Ab

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

A8

Ad

AA

AB

AC

AD

AE

AF

BO

B1

B2

B3

B4

B5

B6

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

B8

B9

BA

BB

BC

BD

BE

BF

Co

C1

c2

C3

C4

C5

C6

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

C8

C9

CA

CB

CC

CD

CE

CF

DO

D1

D2

D3

D4

D5

D6

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

D8

D9

DA

DB

DC

DD

DE

DF

EO

E1l

E2

E3

E4

E5

E6

Appendix C-5

@; A
o‘*’o@o &°
231 E7
232 E8
233 E9
234 EA
235 EB
256 EG
237 ED
238 EE
239 EF

See Appendix H for a user program that performs decimal/hexadecimal conversion.

Notes:

1.

241

242

243

244

245

246

247

248

F1

F2

F3

F4

F5

F6

F7

F8

250

251

252

253

254

255

FA

FB

FC

FD

FE

FF

(Buzzer)

(Delete
character)

(Insert
character)

ATASCII stands for “ATARI ASCII”’. Letters and numbers have the same values as those in ASCII, but

some of the special characters are different.

Except as shown, characters from 128-255 are reverse colors of 1 to 127.

Add 32 to upper case code to get lower case code for same letter.

To get ATASCII code, tell computer (direct mode) to PRINT ASC (“
character, or number of code. Must use the quotes!

On pages C-1 and C-3, the normal display keycaps are shown as white sym-
bols on a black background; on pages C-4 and C-6 inverse keycap symbols
are shown as black on a white background.

C-6 Appendix

) Fill blank with letter,

APPENDIX D

ATARI 400/800
MEMORY MAP

ADDRESS CONTENTS
Decimal Hexadecimal
65535 FFFF
57344 E000 OPERATING SYSTEM ROM
57343 DFFF
55296 D800 FLOATING POINT ROM
55295 D7FF
53248 D000 HARDW ARE REGISTERS
53247 CFFF
49152 C000 NOTUSER
4151 BEFF CARTRIDGE SLOT A
40960 A000 (may be RAM if no A or B cartridge)
40933 e CARTRIDGE SLOT B
32768 8000 (may be RAM if no B cartridge) [RAMTOP (115B)]
32
e A (7FFF if 32K system)
DISPLAY DATA (size varies)
DISPLAY LIST (size varies)
31755 7CIF (7C1F if 32K system, (GRAPHICS 0) OS MEMTOP
FREE RAM
(SIZ6 Var]es) 4__l BASIC MEMTOITJ
BASIC program, buffers, tables, run-time stack.
(2A80 if DOS, may vary) _.[——
E
10880 2A80 - 95 MEMLE)
BASIC LOMEM
10879 2A7F DISK OPERATING SYSTEM (2A7F-700)
S55E S DISK 1/0 BUFFERS (current DOS)
9855 267F
4864 1300 DISK OPERATING SYSTEM RAM (current DOS)

Appendix D-1

ADDRESS CONTENTS

Decimal Hexadecimal
4863 12FF

FILE MANA
5 o0 E MANAGEMENT SYSTEM RAM (current DOS)
1791 6FF

FREE RAM
1536 600
1535 5FF

I

e i FLOATING POINT (used by BASIC)
1405 57D
plre 280 BASIC CARTRIDGE
1151 47F OPERATING SYSTEM RAM (47F-200)
‘oot p— CASSETTE BUFFER
1020 3FC
s o RESERVED
999 3E7
Py ot PRINTER BUFFER
959 3BF ,
832 340 1DESe
831 33F
dis - MISCELLANEOUS OS VARIABLES
511 1FF
2, 100 HARDWARE STACK
255 FF PAGE ZERO

FLOATING POINT (used by BASIC)
212 D4
211 D3
" o BASIC or CARTRIDGE PROGRAM
o oy FREE BASI
208 DO SIC RAM
e CE FREE BASIC AND ASSEMBLER RAM
203 CB
202 cA

MBLER RAM

i = FREE ASSEMBLE e
128 80 ASSEMBLER ZERO PAGE | ZERO PAGE
327 gF OPERATING SYSTEM RAM

As the addresses for the top of RAM, OS, and BASIC and the ends of OS and BASIC vary according to the
amount of memory, these addresses are indicated by pointers. The pointer addresses for each are defined

in Appendix I.

D-2 Appendix

APPENDIX E

DERIVED
FUNCTIONS

Derived Functions

Secant

Cosecant

Inverse Sine
Inverse Cosine
Inverse Secant
Inverse Cosecant
Inverse Cotangent
Hyperbolic Sine
Hyperbolic Cosine
Hyperbolic Tangent
Hyperbolic Secant
Hyperbolic Cosecant

Derived Functions in Terms of Atari Functions

SEC(X)=1/COS(X)

CSC(X) =1/SIN(X)

ARCSIN(X) = ATN(X/SQR(-X*X + 1))

ARCCOS(X)= - ATN(X/SQR(- X*X +1) + CONSTANT
ARSEC(X) = ATN(SQR(X*X-1)) + (SGN(X-1)*CONSTANT
ARCCSC(X)=ATN(1/SQR(X*X-1)) + (SGN(X-1)*CONSTANT
ARCCOT(X)= ATN(X) + CONSTANT

SINH(X) = (EXP(X)-EXP(-X))/2

COSH(X) =(EXP(X) + EXP(-X))/2

TANH(X) =-EXP(-X)/(EXP(X) + EXP(-X))*2 + 1

SECH(X) = 2/(EXP(X) + EXP(-X))

CSCH(X) = 2/(EXP(X)-EXP(-X))

Hyperbolic Cotangent COTH(X) = EXP(-X)/(EXP(X)-EXP(-X))*2 + 1
ARCSINH(X) =LOG(X + SQR(X*X + 1))
ARCCOSH(X) + LOG(X + SQR(X *X-1))
ARCTANH(X)=LOG((1 + X)/(1-X))/2
ARCSECH(X)=LOG((SQR(-X*X +1) +1)/X)
ARCCSCH(X) = LOG((SGN(X)*SQR(X*X + 1) + 1)/X)
ARCCOTH(X) =LOG((X + D)/(X-1))/2

Inverse Hyperbolic Sine
Inverse Hyperbolic Cosine
Inverse Hyperbolic Tangent
Inverse Hyperbolic Secant
Inverse Hyperbolic Cosecant
Inverse Hyperbolic Cotangent

Notes:

1. Ifin RAD (default) mode, constant = 1.57079633
If in DEG mode, constant = 90.

2. In this chart, the variable X in parentheses represents the value or expression to be evaluated by the
derived function. Obviously, any variable name is permissible, as long as it represents the number or
expression to be evaluated.

Appendir E-1

NOTES

APPENDIX F

PRINTED VERSIONS
OF CONTROL CHARACTERS

The cursor and screen control characters can be placed in a string in a program or used as a Direct mode
statement by pressing the {E3 key before entering the character from the keyboard. This causes the
special symbols which are shown below to be displayed. (Refer to Section 1 - Key.)

SEE THIS

PRESS PRESS

EEEEEE

o)

m m

13

o 2]
o
i
D
»
Ll
jut

g

PRESS AND
HOLD PRESS

c
~
m
wn
»

m m
173]
o o

ESC

ESC

ESC

OR

o

3
v 4 a8

m
I
o

m
3
o

ESC

EDOODECEAA + + + +

Appendixr F-1

NOTES

APPENDIX G

GLOSSARY

Alphanumeric:

Array:

ATASCII:

BASIC:

Binary:

Bit:

Branch:

Bug:

Byte:

Central Processing
Unit (CPU):

Code:

Command:

The alphabetic letters A-Z, the numbers 0-9, and some symbols. (No
punctuation marks or graphics symbols).

A list of numerical values stored in a series of memory locations
preceded by a DIM statement. May be referred to by use of an array
variable, and its individual elements are referred to by subscripted
variable names.

Stands for Atari American Standard Code for Information Inter-
change.

High level programming language. Acronym for Beginner’s All-
purpose Symbolic Intruction Code. BASIC is always written using all
capital letters. Developed by Mssrs. Kemeny and Kurtz at Dartmouth
College in 1963.

A number system using the base two. Thus the only possible digits
are 0 and 1, which may be used in a computer to represent true and
false, on and off, etc.

Short for Binary Digit. A bit can be thought of as representing true or
false, whether a circuit is on or off, or any other type of two-
possibility concept. A bit is the smallest unit of data with which a
computer can work.

Atari BASIC executes a program in order of line numbers. This ex-
ecution sequence can be altered by the programmer, and the pro-
gram can be told to skip over a certain number of lines or return to a
line earlier in the program. This contrived change in execution se-
quence is called “branching”.

A mistake or error usually in the program or “software”.

Usually eight bits (enough to represent the decimal number 255 or
11111111 in binary notation). A byte of data can be used to represent
an ATASCII character or a number in the range of 0 to 255.

In microcomputers such as the Atari systems, these are also called
microprocessors or MPU. At one time, the CPU was that portion of
any computer that controlled the memory and peripherals. Now the
CPU or MPU is usually found on a single integrated circuit or “chip”
(in Atari’s case a 6502 microprocessor chip).

Instructions written in a language understood by a computer.

An instruction to the computer that is executed immediately. A good
example is the BASIC command RUN. (See Statement.)

Appendix G-1

Computer:

Concatenation:

Control Characters:

CRT:

Cursor:

Data:

Debug:

Default:

Digital:

Diskette:

DOS:

Editing:

Execute:

Expiession:

Format:

Hard Copy:

G-2 Appendir

Any device that can receive and then follow instructions to
manipulate information. Both the instructions and the information
may be varied from moment to moment. The distinction between a
computer and a programmable calculator lies in the computer’s abili-
ty to manipulate text as well as numbers. Most calculators can only
handle numbers.

The process of joining two or more strings together to form one
longer string.

Characters produced by holding down the key labeled while
simultaneously pressing another key.

Abbreviation for “cathrode ray tube” (the tube used in a TV set). In
practice, this is often used to describe the television receiver used to
display computer output. Also called a “monitor”.

A square displayed on the TV monitor that shows where the next
typed character will be displayed.

Information of any kind.

The process of locating and correcting mistakes and errors in a pro-
gram.

A mode or condition “assumed’ by the computer until it is told to do
something else. For example, it will ““default” to screen and keyboard
unless told to use other I/O devices.

Information that can be represented by a collection of bits. Virtually
all modern computers, especially microcomputers, use the digital ap-
proach.

A small disk. A record/playback medium like tape, but made in the
shape of a flat disk that is placed inside a stiff envelope for protection.
The advantage of the disk over cassette or other tape for memory
storage is that access to any part of tke disk is virtually immediate.
The Atari 800 Personal Computer System can control up to 4 diskette
drive peripherals simultaneously. In this manual, disk and &iskette
are used interchangeably.

Abbreviation for “disk operating system”. The software or pro-
grams which facilitate use of a disk-drive system. DOS is pronounced
either “dee oh ess” or “doss”.

Making corrections or changes in a program or data.

To do what a command or program specifies. To RUN a program or
portion thereof.

A combination of variables, numbers, and operators (like +, -, etc.)
that can be evaluated to a single quantity. The quaritity may be a
string or a number.

To specify the form in which something is to appear.

Printed output as opposed to temporary TV monitor display.

Hardware:

Increment:

Initialize:

Input:

Interactive:

Interface:

10CB

/3%

Keyword:

Language:

Memory:

Menw:

Microcomputer:

Monitor:
Null String:

0S:

Outputy

Para#el:

Peripheral:

The physical apparatus and electronics that make up a computer.

Increase in value (usually) by adding one. Used a lot for counting (as
in counting the number of repetitions through a loop).

Set to an initial or starting value. In Atari BASIC, all non-array
variables are initialized to zero when the command RUN is given. Ar-
ray and string elements are not initialized.

Information transfer to the computer. Output is information transfer
away from the computer. In this manual, input and output are
always in relation to the computer.

A system that responds quickly to the user, usually within a second
or two. All personal computer systems are interactive.

The electronics used to allow two devices to communicate.
Input/Output Control Block. A block of data in RAM that tells the
Operating System the information it needs to know for an I/O opera-

tion.

Short for input/output, I/O devices include the keyboard, TV
monitor, program recorder, printer, and disk drives.

Stands for “kilo” meaning “times 1000”. Thus 1 KByte is (approx-
imately) 1000 bytes. (Actually 1024 bytes.) Also, the device type code
for the Keyboard.

A word that has meaning as an instruction or command in a com-
puter language, and thus must not be used as a variable name or at
the beginning of a variable name.

A set of conventions specifying how to tell a computer what to do.

The part of a computer (usually RAM or ROM) that stores data or in-
formation.

A list of options from which the user may choose.
A computer based on a microprocessor chip; in Atari’s case, the 6502.
The television receiver used to display computer output.

A string consisting of no characters whatever.

Abbreviation for Operating System. This is actually a collection of
programs to aid the user in controlling the computer. Pronounced
“oh ess”.

See I/0.

Two or more things happening simultaneously. A parallel interface,
for example, controls a number of distinct electrical signals at the

same time. Opposite of serial.

An 1/0 device. See I/0.

Appendix G-3

Pixel:

Precedence:

Program:

Prompt:

RAM:

Random Number
Generator:

Reserved Word:

ROM:

Save:

Screen:

Serial:

Software:

Special Character:

Statement:

String:

Subroutine:

Variable:

Window:

G-4 Appendix

Picture Element. One point on the screen display. Size depends on
graphics mode being used.

Rules that determine the priority in which operations are conducted,
especially with regard to the arithmetical/logical operators.

A sequence of instructions that describes a process. A program must
be in the language that the particular computer can understand.

A symbol that appears on the monitor screen that indicates the com-
puter is ready to accept keyboard input. In Atari BASIC, this takes the
form of the word “READY”. A “?” is also used to prompt a user to
enter (input) information or take other appropriate action.

Random Access Memory. The main memory in most computers.
RAM is used to store both programs and data.

May be hardware (as is Atari’s) or a program that provides a num-
ber whose value is difficult to predict. Used primarily for decision-
making in game programs, etc.

See Keyword.

Read Only Memory. In this type of solid-state electronic memory, in-
formation is stored by the manufacturer and it cannot be changed by
the user. Programs such as the BASIC interpreter and other car-
tridges used with the Atari systems use ROM.

To copy a program or data into some location other than RAM (for ex-
ample, diskette or tape).

The TV screen. In Atari BASIC, a particular I/O device codes “S:”

The opposite of parallel. Things happening only one at a time in se-
dquence. Example: A serial interface.

As opposed to Hardware. Refers to programs and data.

A character that can be displayed by a computer but is neither a let-
ter nor a numeral. The Atari graphics symbols are special characters.
So are punctuation marks, etc.

An instruction to the computer. See also Command. While all com-
mands may be considered statements, all statements are certainly not
commands. A statement contains a line number (deferred mode), a
keyword, the value to be operated on, and the GEIEY command.

A sequence of letters, numerals, and other characters. May be stored
in a string variable. The string variable’s name must end with a $.

A part of a program that can be executed by a special statement
(GOSUB) in BASIC: This effectively gives a single statement the power
of a whole program. The subroutine is a very powerful construct.

A variable may be thought of as a box in which a value may be
stored. Such values are typically numbers and strings.

A portion of the TV display devoted to a specific purpose such as for
graphics or text.

APPENDIX H

USER
PROGRAMS

CHECKBOOK
BALANCER

This appendix contains programs and routines that demonstrate the diverse
capabilities of the Atari Personal Computer System. Included in this appendix is
a Decimal/Hexadecimal program for those users who write programs that re-
quire this type of conversion.

This is one of the “traditional” programs that every beginning computerist
writes. It allows entry of outstanding checks and uncredited deposits as well as
cleared checks and credited deposits.

18 DIM &$382, MSGH 480, MSC1${ 30 1, MSG2$(3
g},HSG3${EB),ﬂ SG4#(38 2, HEGSH 38 1 MSGES(3
28 OUTSTaHD=B

28 GRAFHICS B:% % CHECEBOOE BALAN
‘:ER . "

48 7 "1nu mad make co r*ecti
TE by enterine a nesat iy

58 MSG1#="0LO CHECK -- STILL OUTSTAMDIMNG
6B MSGZ$="0LD DEPOSIT —— HOT CREDITED
?ﬂ MSG3$="0LD CHECK —— JUST CLEARED

NS at are b
ol lar valus.

89 MSG4$="0L0 DEPDSIT —- JUST CREDITED
”B MSG5$="MEM CHECE <OR SERUICE CHARGEX
168 MSGos="MEW DEPOSIT C(OR INTEREST:

158 TRAF 158:7 “"Enter besinnins LdlihLE

from Yol checkbook ™ - IMPUT YOURBAL

168 TRAF 168:7 "Enter besirnins u:}:nLH

from Your bithtithuht"i IHPUT EaHKERL

165 TR&F 45055

178 GOTO 198

158 CLOSE #1:7 "PRIWTER IS5 HOT OPERATION

-
185 7 "FLEH“E CHECK COMMECTORS .M
158 FEPH

288 7 "Would wou like 3 eeramarnent record
on the erinter"; :INFUT A%
216 IF LENCA% =B THEN 280

Appendir H-1

H-2 Appendir

228 IF AFCL, La="H" THEH 280

238 IF A1, 1xxMYY THEM 288

248 TRAP 1358

258 LPRIMT :REM TEST PRIMTER

268 FERM=1

288 LPRINT "YOUR BESIMHING BALAMHCE IS #¢
;YOUREAL

290 LPRIMT "BAME STATEMEMT BECIMHING B
AMCE IS #";BAMHEBAL:LPRINT

498 TRAF 483:7 7 "Choose one of the fol
fowing:*

418 T "1y tMEGLE

[
=
o

=r

415 7 "2} ";M3G2
420 7 "(3) ";MSG3
425 7 "4 ";MEG43
439 7 "(5) ";MSG38
435 7 "(6) ";11SGES

448 7 (7 OOME®

496 7

o068 INPUT H:IF M4! OR M7 THEM 488

585 TRAFP 48690

18 OH M GOSLE 190@. 2003, 3050, 4900, 5200,
£880, 7eEG

528 MSGHE="HEM CHECKEDDN BALAMCE IS

" AMOUNT=Y0UREAL - GOSUE Shed

538 MSGF="MEM EAHK STRTEMEMT BASLAMCE IS
" AMOUNT=ERMERL - GOSUE SBES

548 MSGF="CUTSTaNDING CHECES-DEPOSITE=
" AMOUNT=0UTSTAMD : GOSUE 5880
545 IF PERM THEM LPRINT

550 GOTO 488

1888 REM QLD CHECK —— STILL QUTSTAMDIMG
1810 MSCH=MSCi$:GOSUE 2ig6

1828 QUTSTAND=0UTSTAaMD+aMOUNT

1838 RETURH

EBBB REM OLD DEFOSIT -—- STILL MOT CREGIT
D

20108 NMSGH=MSG2$:GOSLUE 3188

26828 OUTSTAMO=0UTSTaMD-AMoUNT

2638 RETURM

3883 REM OLD CHECK -- ST CLESRED

3010 MSCH=MSC3$:GOSUE 2186

3820 BAMNEBAL=BAHKEAL-SMOLNT

3838 RETURH

4098 REM OLD DEFOSIT —- JUST CREDITED
4018 MSGHF=MSC44:GOSUE 5186

4620 BAHMBOL=BAMKEAL AT

4838 FETURH

S858 REM MEW CHECK (0OR SERUICE CHARGE: -
- JUST CLEARED

SB16 MSGHE=MSCoE:GOsUE ESies

9828 YOURBAL=YOURBAL-ANGUNT

S838 T "IS MEM CHECE STILL OQUTSTAMHDIMG':
: INFUT &#

5848 IF LEMCAa%:=8 THEM 5838

5858 IF A1, 1x>"H" THEW S8&8

S855 EBAMKEAL=BAHKEAL-aMOUNT

S@57 IF FERM THEM LPRIMT "CHECK HAS CLES

RED."

5855 RETURH

S868 IF A$ll, 1 »"f" THEM S838

5878 QUTSTAMO=CUTSTAMDHAMOUNT

5875 IF FERM THEM LPRINT "CHECK IS STILL
QUTSTANDIMG. "

5886 RETURH

083 REM MEM DEFOSIT (OR IMTEREST» — JU

ST CREDITED

6818 MSGH=!5Ge$:GOSUB 5168

€820 YOURBAL=YDURBAL+&MOUNT

6838 7 “"HAS YOUR MEW DEFOSIT BEEM CREDIT

ED"; - IMPUT &%

&840 IF LEMCG%:=0 THEM &B3%

68508 IF A$C1, 1"y THEMW &8c3

6852 BANKBAL=EaHKEAL +aMOUNT

6852 IF FPERM THEM LPRIMT "DEFDSIT HAS BE

EM CREDITED.®

6835 RETURH

6060 IF A$C1,15<>"N" THEM 28323

6870 OQUTSTAMD=CUTSTAND-RMOUNT

6075 IF FERM THEM LPRIMT "DEPOZIT HAS MO

T BEEM CREDITED."

&858 RETURH

7880 FEM DOHE

7018 7 "BAMK'S BALAMCE MIMUS (OUTSTANDIM

G CHECKS-DEFCSITS) SHOULD MWOW ERUAL

YOURCHECKEDDE, BaLAMCE . "

7828 DIF=YOURBAL-CBAMKEAL-TUTSTAHD

7828 IF DIF<-B THEW Tasc

TB3S 7 “IS $";BAMEBSL: ™ THE ENDIMG BALAM

CE OH YOUR BaME STATEMEMT": :INPUT A%

7835 IF LEMS A% =8 THEM 7835

TO37 IF A1, 1="Y" THEH 7 *COMGRATULATI

ONS: YOUR CHECEBOOH BALAMCES " -END

7835 GOTO Yoeg

7840 IF DIF-@ THEW ¥ "vOUR CHECKEDDE 70T
AL IS $";DIF;" OUER YOUR BAME'S TOTRL. ©
:GOTO 7oed

7858 7 "vOUR CHECKBOOEK TOTAL IS $".-DIF;
* UMDER YOUR BAME'S TOTRL.®

zggg T "WOULD YOU LIKE TO MAKE COREECTIC
7978 T "REMEMBER, YOU CAM ENTER A HEGRTI
HE DOLLAR UALUE TO MAKE @& CORRECTION.

Appendir H-3

H-4 Appendix

Tgg8 v "EMTER Y OR H";:INWFUT A%

7858 IF LEM(A$=8 THEW EMD

7188 IF A$C1, 1="Y" THEM RETLRN

7118 END

7295 REM MSG FRIMTIMG ROUTIME

8BEE T MSGE: M " ahUNT

e818 IF PERM=1 THEM LPRIMT M3GF;" $":8M0
UNT

8828 FETURN

8188 FEM MSG PRIMT & IWPUT ROUTIHE

8118 TRAP S118:7 "ENTER AMOUNT FOR ";MSG
$; - INPUT AROUNT

2128 TRAF 4BBoa

8138 IF PERM=1 THEMW LPRIMT MSGF:" $%iANG
UNT

8148 RETURH

BUBBLE SORT

This program uses the string comparison operator “<="’ that orders strings ac-
cording to the ATASCII values of the various characters. Since Atari BASIC does
not have arrays of strings, all the strings used in this program are actually
substrings of one large string. A bubble sort, though relatively slow if there are
a lot of items to be stored, is easy to write, fairly short, and simpler to under-
stand than more complex sorts.

18 DIM B3c1

28 GREPHICS 8.7 .7 ¢ STRIMG S0
RET":7

38 TRAF 38:7 7 "Enter saxinum strire le

nst'", IMFUT SLEM:SLEMi=SLEH-1

35 IF SLEMS! OR INTOSLEM»>SLEM THEM 7
FLEASE EMTER A POSITIVE INTEGER > 8.":G0
T0 38

48 TRAF 48:7 7 "Enter maxiouwn susber of

entiries

41 7 "{Entriss which are shorter than th
2 maximan will be Fadded with blanks. 3

42 IMPUT EMTRIES

43 IF EMTRIESE OR INT(EMTRIES M GEMTRIES
THEM 7 "PLERSE EWTER & POSITIVE IWTEGER

? 1.":GOTO 48

47 TRaP 488045

ra ﬂln A% SLEMSENTRIES
68 T T "Enter stel
78 ¥ "Enter ety strins when done dust
hit ETURM . "
"5 T 7 "PLESSE STaMHD BY WHILE TH
GS QFE BEIMG CLEARED . . . %
80 FOR I=1 TO SLEMS EH*pfc: AECILI =" Ml
EXT 1
85 ¥ 7
o8 1=t

168 FOR J=1 TO EMTRIES

118 7 “g*; 0" "5 IHPUT TEMPS
128 lF LE i&Ttﬁ‘ =0 THEM ENTE
0 129

138 AF I, I4SLEN] =TENFF

148 I=I+5LEH

158 MEXT J

199 7 7 7 “PLEASE STaMD BY MHILE THE =
TRIMGS ARE BEIMG fﬁFntq M

288 GOsSUB 1880:REM CALL ...UFT ROUTIHE

’iB"x -'.\ .-'.'

285 1=1

218 FOR k=1 T0 ENTRIES

228 T “EUGEGT YSARCTL T+ELENL

225 I=1+5LEH

238 MEST K

248 TRAF 388:7 :7 "WOULD YOU LIKE & PRIN

-l- In
11} L :H
. i

i

]

il

ul

m
)
—.4
A
(o
i

Y,

Appendir H-5

H-6 -Appendic

TED COPY™;:INFUT B%

298 IF B3O, 1="%" THEW 488

388 END

488 I=1:LPRINT :FOR k=1 TO EMTRIES

428 LPRIMT "#" Kt "asl I, I+5LENE o

438 I=I+5SLEM:NEXT K: :EHD

1868 REM STRIHG EUBELE SORT ROLTIME
1618 REM IMPUT: A%, SLEM.EHTRIES

1815 FEM TEMPE MUST HRUE & DIMENSIOH OF
SLEH.

1028 SLEM1=SLEN-1 :MAs=SLEMS(ENTRIES-1 =1

1848 FOR I=1 TO Mex STEF SLEM

1850 DOHE=1

1668 FOR E=1 TGO Max-I-SLEMI STERP SLEH
1878 KSLEM1=K+SLENT :KSLEN=K+SLEN ESLENSL
EM1=KSLEM+SLENT

1888 IF A%k, KSLEM! ¥ =A% KSLEH. KSLEHSLEH
13 THEM GOTO 11ig

1858 DOME=B

1188 TEMP$=R$C K ESLEHT 2 a3 K, KSLEMT =R#
KSLEM, KSLEMSLEM] »- A3 KSLEN, KSLENSLENL =T
EMF$

1118 MEXT E

1128 IF DOME THEM RETLRM

1138 MEXT I

1148 RETURH

TEXTY MODES This program prints $he Atari characters in their default colors for text modes
0, 1, and 2. In entering this program, remember that the clear screen symbol

CHARACT%R “,41:; is printed as « } ”.
PRINT

DIM A$1 X
T U}U:REM CLEAR SCREEM
B 7 "GRAPHICS 8, 1, AMD 2 {TEXT MODES

28 7 "DEMOMST FHTIH% %

gﬁ T "DISPLAYS CHARMCTER SETS FOR E4CH M
DE i1

60 WAIT=1803:FEM SUBROIUTIME LIME HUHEEF
78 CHBAS=7SE:FEM CHARACTES BASE HDDFE
88 UPPER=224:REM DEFAIULT FOR CHESS

9 LOWER=226:REM LOWER CaSE LETTERS % GR
APHICS

95 GOSUE MAlT

198 FOR L=8 7O 2

12 FEM USE E: FOR GR&FHICS &

114 IF L=9 THEM OPEH #1.2.8,"E-":GOTO 14

11b REM USE 5: FOR GRAPHICS 1 &HD 2
117 QPEM #zﬁg ,5:

118 GRaFHICS L

128 FRIMT "GRAFPHICS "iL

139 FOR J=8 TD 7:REM 5 LINES
148 FOR I=8 TO 31:FEM 32 OH
158 K=32%)+1

155 REM DOW'T DISPLAY "CLESR SCREEM"
"RETIIRH"

168 IF K=ASCC "33 OR K=155 THEH 188

165 IF L=8 THEM PUT #1,8500" *3:REM E3CA

1
S

Ao 04

RE-LIHE

FE
178 PUT #1,K:REM DISPLAY CHARS
188 HEXT I

198 PRIMT #1;" ":REM EMD OF LINH

208 IF L<x2 OR X3 THEM 248

218 FEM SCREEHM FULL

220 GOSUE WRIT

238 PRIMT #1;"2*:REM CLEGR SCREEH

248 MEXT J

256 GOsSUE MaIT

“6‘ F?LHT "LOWER CASE aMD u;H*H;-;"
278 IF L{>3 THEM POKE CHESS, LOWER:-GOSUE

HhIT

273 LLU'E #1

288 MEXT L

388 GROPKICS 8:EHD

1860 REM WaIT FOR "RETURH"

1818 PRINT "HIT RETURH TO COMTIHIE®:

1828 INFUT Ri

1838 RETURH

'.-n-'

Appendir H-7

LIGHT SHOW

H-8 Appendix

This program demonstrates another aspect of Atari graphics. It uses graphics
mode 7 for high resolution and the PLOT and DRAWTO statements to draw the
lines. In line 20, the title will be more effective if it is entered in inverse video
(use the Atari logo key).

18 FOR 5T=1 TO S:GRAPHICS 7

15 POKE 732.

s B fitari's Seecial Liskt Show
":CETCOLOR 2.8.8

39 SETCOLOR 11L$uT;u CoOLOR 2

48 FOR DR=8 TC 58 STEP 57

59 FLOT 9.8: GRHUTH 168, 0R

68 MEXT OR:FOR M=l TO 28a:

78 FOR M=1 TO 2089:HEXT M:GOTO 18

HEAT M:MEXT 5T

UNITED STATES This program involves switching colors to set up the stripes. It uses graphics

FLAG mode 7 plus 16 so that the display appears as a full-screen. Note the cor-
respondence of the COLOR statements with the SETCOLOR statements. For fun
and experimentation purposes, add a SOUND statement and use a READ/DATA
combination to add “The Star Spangled Banner” after line 470. (Refer to Section
10.)

18 REM DRAl THE UMITED STAHTES FLAG

28 REM HIGH FESOLUTION 4-COLOR GRAFPHICS,
NO TEAT WIMDOMW

38 GRAPHICS 7+16
48 REM SETCOLOR

g i
50 SETCOLOR &.4,4:
68 REM SETCOLOR 1

78 SETCOLOR 1.8, 14:WHITE=2

CORRESFOMOS 7O COLOR 1

F
co

£0 REM SETCOLOR 2 CORRESPOMDS TO COLOR 3
99 BLUE=3:REM DEFALLTS TO BLLE

188 REM DORAdd 13 RED % WHITE STRIPES

118 C=RED

128 FOR I=8 70 12

138 COLOR C

1489 REM EACH STRIFE H&S SEUERSL HORIZONT
AL LIMES

158 FOR J=B8 TO &

168 FLOT 8. 1%7+J

178 DRAWTO 159, 147+J

188 MEXAT J

199 FEM SMWITCH COLSRS .

208 C=C+1:IF CHHITE THEN C=REC

218 HEAT 1

388 FEM DRAM BLUE RECTaMGLE

218 COLOR BLLE

320 FOrR I=8 70 45

338 PLOT 8.1

248 ORENTD 7301

398 HEXT I

368 FEM ORsl 9 ROWS OF WHITE STars
378 COLOR WHITE

388 K=8:REM START WITH RO OF & STARS
398 FOR I-U 10 &

395 Y=4+1%5

488 FOR J=U Tl 4:REM 5 !
418 #=k+S+ 514 :G0SUE 180
428 NEXT J

430 IF E<:B THEM K=9:5G07T0 478

448 REM ADD &TH STaR EVERY OTHER LIME
458 #=5+35%14:C0SUE 1888

468 K=7

478 MEXT I

oBE REM IF KEY HIT THEM STOF

TERS IH A FOW
i

L‘_Illl

Appendir H-9

518 IF PEEK: TE4 :=255 THEM Si9

515 REM OPEM TEAT MWIMDOH WITHOUT CLERRIHM
G SCREEH

520 GRAFHICS 7+32

525 FEM CHAMIGE COLORS BaCk

538 SETCOLOR 9.4,4:SETCOLOR 1.8, 14
558 STOF

1860 REM ORAi4 1 STAR CEMTERED AT A.Y
1818 PLOT #-1.Y:DRAWTO H+1.Y

1828 PLOT H,¥-1:FLOT .5+

1838 RETLRH

H-10 Appendix

SEAGULL OVER
OCEAN

This program combines graphics and sounds. The sounds are not “pure”
sounds, but simulate the roar of the ocean and the gull’s “tweet”. The graphics
symbols used to simulate the gull could not be printed on the line printer. Enter

the following characters in line 20.

20 BIRD$ = ©“ YV =="

To get these symbols, use (3B G, (BLWF, R, R.

10 OIM BIRDS 43
20 EIRD$=" "

20 FLAG=1 :ROH=18: COL=1,
4B GRAPHICS 1:FOKE 736,

226 :POKE 732, 1
58 SETCOLOR 9.8.89:5ETCOLOR 1.3.14
€8 PRIMT #&;*" the ooeant
70 RE=IMTCRMD Q%1
88 POSITION 17,17
29 FOR T=8 TD IB
118 FOR f=1 TU B MEXT &
128 IF RHDCB 8.8 THEM FOR D=18 7O 5 5T
F-1:50UM0 1,8, 108, INTCRHDO 8018 HEXT O
SOUMD 1.9.8,8
138 GOsUE 288
148 HES*
158 FOR T=18 TC @ STER -1
16@ -.*DIJHD U)T."-:.'q'
179 FOR a=1 7O S8:HEST &
175 IF RHMDIG»8.8 THEN FOR 0=18 70 S =TE
P -1:50UMD 1.0, 18,5 HEXT C:S0UMD 1.6.8.6
188 FOR H=t 5 18:HERT H
185 GOSUE 28
138 HEAT T
135 GOTo 78
288 GOSlUE e
31@ Fb-lalU" a.,JL;r'LCJh
220 F"'”ﬂ' #l"::.;" O FLAG FLAGH]
238 FLAG=FLAGHZ: IF FLAG=S THEM FLAG=!
248 F HP%
388 IF FHDIE::@ 5 THEM RETLDH

318 FU‘.L IO £ .‘.".uh
228 P"FH‘H g,
238 A=IHTORMDO 8 23 -1
248 E:-Iht‘ RHC B T -1
358 ROW=ROM+A

368 IF ROW=8 THEM Rl=1

370 IF ROW=20 THEH P“U— 3

388 COL=COL+E

398 IF COL=06 THEM o=
468 IF COL-18 THEH O0l=
418 RETURH

Appendir H-11

VIDE This program reduires a Joystick Controller for each player. Each joystick has
pl s qd h };3 th tpkyd ff tJ yt
RA one color associated with it. By maneuvering the joystick, different patterns are
G FFITTI created on the screen. Note the use of the STICK and STRIG commands.

1 GRAPHICS B

2 7 "UIDED GFHFF'TI"

S REM 4% GRREYS HOLD CODRDIMATES

& REM FOR UF TO 4 PLAYERS® FD'I’TUAS.
7 REM COLR ARRAY HOLDS COLORS.

10 DIM A0 R(Z 0 W30 COLRI 32

128 7 "USE JOYSTICKS TO ORAM PICTURESY
123 7 "PRESS BUTTONS 7O CHAWGE COLD ”-"
138 7 "IMITIAL COLORS: "

131 7 "JOVSTICK 1 IS REQ"

132 ¥ "JOYSTICK 2 IS VHIT :

133 % “JOVSTICK 3 IS BLUE

134 ¥ “JOYSTICK 4 IS SLQCK { BRCHGROUND 1"

-t

R s eh
I SO Y R

-

135 7 "BLACK LOCATION IS IRDICATED BY &
BRIEFFLASH OF RED .M

136 7 "IN GRAPHICS S, JOYSTICKS 1 &HD
APE WHITE @MD 4 IS BLUE. ™

135 FRIMT “Huw hﬁd: PLAYVERS {1-42";
132 IMPUT AF:IF LEMCAF =8 THEH AF="1"
148 JUYHHv—”HL‘Hf"I

145 IF JOWHMeE<e OF JOVvhaks=4 THEM 132
147 HHH“WHHH33{nﬁﬁ‘

(48]

S EEHE4R

158 PRIMT 7 (188:35, OR 5 (32881320
152 INPUT a$:IF LENCAF =0 THEH AF="3¢
153 H=”HL'H$l

154 IF f=3 THEM =MAk=48: ”ﬁa” 2456070 153

155 IF A=5 THEM HMpk=05:YMEd=42:5070 133
156 IF A=7 THEM #Mbk=16@:vas=38-0G07T0 15

gg? IF &=5 THEH #Mas=328:vMAx=132:G07T0 1
I b

153 GOTO 147:FEM 4 HOT UALID

159 GRAFHICS A+lG

168 FOR I=8 TO Juvnq“-“:z;—Vnﬁ?"+I ki
=YHEH-2+] HEST I:REM START HESR CEMTER D
F bCREEﬂ

161 IF A<>3 THEM 185

162 FiOR I—a TO 2:COLRC I »=1:NEAT 1
163 SETCOLOR 1.9.14:REM LT, BLLE
165 GOTO 138

166 FOR I=8 Tu 2:COLR I =141 HERT
167 SETCOLOR &8.4,6:REM FED

168 SETCOLOR .,@J14 REM MHIT

189 COLRIZ=8

295 FOR J=B 70 3

13

-

[]

H-12 Appendix

SR JOYSTICE

f_T_‘}

300 FOR 1=0 TO JOYNEK:FEM CHE:

385 REM CHECK TRIGGER
29 IF STRIGCIY THEM 221
31 IF &8 THEH 229

l

312 COLRCI=COLRCD w1 IF COLRC I =2 THEM
COLRY Iv=0:FEM 2-COL0F MOGE
~.'1J L-:UT“ JE

321 IF J»8 THEM COLOR COLR{I):
IF COLRET3=8 THEM COLOR

32z OF 1GETD 325
323 COLOR B:RPEM BLINE CURREMT SHUGRE O
aHl OFF

325 PLOT #{Ix¥(Ix

338 JOYIM=STICKII »:FEM RERD JWETICK

248 IF JOYIM=19 THEM S33:REM HO MOUEMENT

242 COLOR COLRG I:REM MBRE SURE COLOE IS
O

344 PLOT H(IWYCD

350 IF JOYIN:=5 THEH 238

360 ¥(1I=R01 41 <REN MOUE RIGHT

OUT OF RAHGE THEN WRAFWROLND

365 REM IF

3B IF H01x=3MAs THEM BOD =8
339 hUTH 43@

358 IF 0 'I

488 =
418 IF W0l xE
4.;“;" IF JU‘;::‘

13 THEM 474

444 1'7‘ LI al IR YD 0s=HER THe Wi
8:REM u
458 1_1-
478 1
14 T
4QU YOI =T s
-1:REM MOLUE UF
oH8 PLOT H(1:
o389 MEET I
S35 HEXT J
S4B GOTO 235

Appendir H-13

KEYBOARD
CONTROLLER

H-14 Appendir

This program alters registers on a chip called a PIA. To set these back to the
default values in order to do further I/O, hit or POKE PACTL,60. If
this program is to be loaded from disk, use LOAD, not RUN and wait for the
busy light on the disk drive to go out. Do not execute the program before this
light goes out, otherwise the disk will continue to spin.

1 GRAFHICS 8

S PRIMT :FRINMT KEYBOARD CONTROLLER
DEMO

10 DIM ROWC 33 I3 135 BUTTOMNE
38 GOsUE raaE

48 FOR CHT=1 TO 4
68 POSITION 2,CHTEZ+S:PRIMT "COMTROLLER

“)LHT " ".t

78 HEXT EHT

80 FOR CHT=1 TO 4:G03UB 7808:POSITIOH 19
JCNTHCNT+S FFIH* EM*THﬂIJ-- #1 CHT

128 GOTD 35

EB00 REM &% SET UP Fu LhﬁTﬁ
E318 PUP;H—Si D1g: FORTE=Z40
:PBCTL=54a13

£028 FauE PACTL.45:FOKE FORTR, 235 FOEE
GCTL,S2:FOKE PORTa. 221

cH25 PG}E PECTL.45:POKE PORTE,235:POEE P
ECTL,S2:FOKE PORTE. 22

6030 ROWC B=233 RN 1 =221 ROW. 2=157 R0
W(3=1153

e840 I3=" 12345675308

6055 FETLR:

TOE8 REM &k RETURN BUTTOME WITH CHARALCTE
FE FOR EUTTOH WHICH HAS E:;é PREZSEDR OM C
OHT FHLLEF‘ L'HT 1—4

[y

A
l"'

Fegl REM i BE EETURNED I
F MO Co T‘ LLE! E

o2 FEM iR & S : RETURIRED IF
THE COMTROLLER IS COMHECTED BUT MO KEY H
AS BEEM FRESSED.

rO8E PORT=FORETA:IF THEM FORT=FORTE
7e85 F=1

THEs3 Fnu CHT+CHT-2
7818 FH J=8 T4 3
TU28 PORE POR i
7828
7B56
GOTO 79343

7868 IF PRODLELPED 18 THEN P=J+i+0+32:00
TO 7859

7078 IF STRIGICHT-1=0 THeH P=J+i+144:G0
T0 7@93

7888 %Eﬁ* 5

;BﬁB BUTTO f-ai F.P3

T3S FETUFH

TYPE-A-TUNE

This program assigns musical note values to the keys on the top row of the
keyboard. Press only one key at a time.

KEY

H D Wk OO g oo

I". 'l

18 DIM CHORDOZ7 2. TMED 12
28 GReFHICS 8:7 7 ¢
FROGRAM"

25 ¥ 7 “PRESS
t‘aJTEJ "

27 7 "Fl: ::fi‘:iE HE
E HMEXT.®

28 T "OTHERMISE THERE
38 FOR H=1 TO 37:FEAC
A

48 Fo

P EET D I—id.

;:1

1
b

....:|

RERD &

[._l

O 1:

[y

A

S8 OPEH #1.4.8."E:"

55 OLOCHR=-1

8 G=FEER: 7ed 50 IF G235

X IF A=0LDTHR THeM 188

65 :_L}n CHRE=H

i) ; qEL =

8. HUF[i‘ 5‘:.:.
o8 ;iE e

o I |y S
KEY BEFR

"‘1¢a":" BE & DELAY.
& CHORDE = =g HERT

MUSICAL VALUE

B

Bb (or A®
A

Ab (or G#)
G

F# (or Gb)
I
IE;

Bb (or D#)
D

Db (or C#)
C

TYFE-A-TUME

+# TO PRODUCE

SCRUIY |

100 T=INT{PEEKCST775 341 IF {123

23 THEH =8

116 POSE 784, 235 SOyl
GOTO &8

208 DRTa 243,233, 2
21530144, 1538 13

: Fx-?Esu_-bu.h'.&‘

:IB ORTE 5
1,29

‘-‘kj DHTH :

4,55

To play “Mary Had A Little Lamb”’ press the following keys:

53,1,3,55 5 3,3,3 58,8

53,1,3,5,5 5,5,3,3,5,3,1

Appendix H-15

COMPUTER This program generates random musical notes to ““write” some very interesting
BLUES melodies for the programmed bass.

1 GRAPHICS 8:% % " COMPUTER BLLE

i '.*

FTR=1
THHOT=1
CHORD=1
PRINT "BASS
INPUT TEMFD
GRAFHICS 2+

CC' = 0 G T (.l2

1 -

2B OIn Lﬂut_.
25 OIM LIMED L

26 OIM JAK 3,7
36 FOR ¥=1 T0 3
48 FOR =1 T 4
56 READ A:BASECH, Y =h

B8 HEXT ¥
78 MEAT =
28 FOR w=1 TO 3:RESD A:L
98 HEAT

95 FOR H=1 TO 16:REAT &:LIHE(S =0 HENT ¥

9 FOR #=1 70 3
a7 1 7

* FOR =1 T0
-
98 READ & JAMCH, Y =i HEXT ¥oMEHT ¥

i9a GOSUE 588
118 T=T+1

115 GOSUE 288

128 GOTO 188

288 FEM PROCESS HIGH STUFF
285 1F FHOE g .25 THEM RETLRN
218 IF RHON 8 8.5 THEM 258

228 HT=H;+1

239 IF HT37 THEH HT=T

244 EGT!—I ._.;r_T

528 E Jr' =501 '*‘4‘ 1
IF e »TED

544 5U¥Hi ivah
58 RETURH

TEB SOUMD 8.8.8.8
71a SOUMD 1.8.4.4
7e8 BOUR=E it

H-16 Appendir

=) =d =) =)

IF THHS

'1'-1

,4: i

- - (2
veﬁ"’ﬂ%%‘é"m‘

AR |

-4

Te=F Tr""

IF ﬁT”“? THEH PTR=1

CHORO=LINE(FTR 3

Q)

oy]

T e

[
[= e
v D

Dl o]

VLN B Gl

W

oy
fa
T
s
el
iy
[
N
£
e
O]
Py
[y
e
D)
el
()
[FX]
oo
L}

u:-u- DS OVl
Ty -

==
152
N
2=

e

e
iH B, Tl
PH Bk T, S
PH S B

FRIMT #5-FRIN

O RO R R R o oV o Sy o Ry S oy

l_’_'E;‘l T 50 S G50

(o M OO) G W)

Gl e=a (50 0T O

23 i S
RIMT #5:°

m’T ‘f

IMT BE: Blues®
A
i

Appendix H-17

DECIMAL/ This program can be typed in and used to convert hexadecimal numbers to

HEXADECIMAL decimal numbers and vice versa.
CONVERSION i B e e

il Ar HUEE
PROGRAM 20 GRAFHICS 8:7 <7 " HEX NUMBER COMU

ERSIONS" : 7
28 7 7 "Enter 'D' for OEC to HEY conuer
sion. "7 YEnter 'H' for HEY to DEC comwe
48 IF LEF
S8 IF A
S8 TRAF
THREDGA

Proke foods poshe
e Led [a0 v
5 0 OS50 0

b

070 159
178 &3 1. 13=CHRE: TEMP-1B+830K
188 IF M9 THEM I=I-1:G0

198 7 "HEW: "a$(1.9%:7

200 GOTO 118

0 TREF 359

1@ 7 7 “EMTER & HEY MUVEER FROM @ THRO
UsH FFFFFFFF. *

320 T HEM:":INPUT A3

338 H=g

249 FOR I=i TO LEM
+ ¥ I

358 IF AL, Ix=m 1 HEHE LSRN ADE

368 HeNE1s

378 MEXT I

39 T OUDEC: MiM:T
359 GOTO 3%0

P XS
482 END

H-18 Appendix

APPENDIX I

MEMORY
LOCATIONS

Note: Many of these locations are of primary interest to expert programmers and are included here as a
convenience. The labels given are used by Atari programmers to make programs more readable.

LABEL
APPMHI
RTCLOK

SOUNDR

LMARGIN,
RMARGIN

ROWCRS
COLCRS
OLDROW

OLDCOL

NEWROW
NEWCOL
RAMTOP
LOMEM
MEMTOP

STOPLN

ERRSAV
PTABW

FRO

DECIMAL
LOCATION

14,15
18,19,20
65
7

82,83

84
85,86
90
91,92

93

96
97,98
106
128,129
144,145

186,187

195
201

212,213

HEXADECIMAL

LOCATION
DE
12,13,14

41

52,53

54
55,56
5A
5B

5C

60
61,62
6A
80,81
90,91

BA,BB

C3
(OF°)

D4,D5

COMMENTS AND DESCRIPTION
Highest location used by BASIC (LSB, MSB)
TV frame counter (1/60 sec.) (LSB, NSB, MSB)
Noisy /O Flag (0=quiet)

Attract Mode Flag (128 = Attract mode)

Left, Right Margin (Defaults 2, 39)

Current cursor row (graphics window).
Current cursor column (graphics window).
Previous cursor row (graphics window).
Previous cursor column (graphics window).

Data under cursor (graphics window unless mode
0).

Cursor row to which DRAWTO will go.
Cursor column to which DRAWTO goes.
Actual top of memory (number of pages).
BASIC low memory pointer.

BASIC top of memory pointer.

Line number at which STOP or TRAP occurred
(2-byte binary number).

Error number.
Print tab width (defaults to 10)

Low and high bytes of value to be returned to
BASIC from USR function.

Appendix 1-1

DECIMAL
LABEL LOCATION
RADFLG 251
LPENH 564
LPENV 565
TXTROW 656
TXTEOL 657,658
COLORO 708
COLOR1 709
COLOR2 710
COLOR3 71
COLOR4 712
MEMTOP 741,742
MEMLO 743,744
CRSINH 752
CHACT 755
CHBAS 756
ATACHR 763
CH 764
FILDAT 765
DSPFLG 766
SSFLAG 767
HATABS 794
IOCB 832

1664-1791

CONSOL 53279

* Future product.

1-2 Appendir

HEXADECIMAL
LOCATION

FB
234
235
290

291,292
2C4
2C5
2C6
2c7
2C8

2E5,2E6

2E7,2E8
2F0

2F3

2F4

2FB

2FC

2FD
2FE

2FF

31A
340
680-6FE

DO1F

COMMENTS AND DESCRIPTIONS
RAD/DEG flag (0=radians, 6=degrees).
Light Pen* Horizontal value.

Light Pen* Vertical value.
Cursor row (text window)
Cursor column (text window)
Color Register 0

Color Register 1

Color Register 2

Color Register 3

Color Register 4

OS top of available user memory pointer (LSB,
MSB)

OS low memory pointer
Cursor inhibit (0=cursor on, 1=cursor off)

Character mode register (4 = vertical reflect; 2 =
normal; 1=blank)

Character base register (defaults to 224) (224 = up-
per case, 226 = lower case characters)

Last ATASCII character.

Last keyboard key pressed; internal code; (255
clears character).

Fill data for graphics Fill (XIO).
Display Flag (1 = display control character).

Start/Stop flag for paging (0 =normal listing) Set by
L.

Handler address table (3 bytes/handler)

/O control blocks (16 bytes/IOCB)

Spare RAM

Console switches (bit 2 = Option; bit 1 = Select; bit

0 = Start. POKE 53279, 0 before reading. 0 =
switch pressed.)

LABEL

PORTA
PORTB

PBCTL

SKCTL

DECIMAL
LOCATION

54016
54017

54018

54019

53775

HEXADECIMAL
LOCATION

D300
D301

D302

D303

D20F

COMMENTS AND DESCRIPTIONS

PIA Port A Controller Jack I/O ports.
PIA Port B Initialized to hex 3C.

Port A Control Register (on Program Recorder 52
- ON, 60 = OFF).

Port B control register.

Serial Port control register. Bit 2=0 (last key still
pressed).

Appendix 1-3

NOTES

INDEX

Abbreviations, 4-5
Commands in headings, 4

ABS, 33

adata, 5

ADR, 35,63

aexp, 4

aop, 4

Array, 3-4, 41

ASC, 37

ATASCII, 5, 40, C-1 through C-6

ATN, 34

Audio track of cassette, 23

avar, 4

BASIC, 1
Blanks (see Spaces)
Booting DOS, 25
Braces, 4
Brackets, 4
Branching,
Conditional Statements, 19
Unconditional Statements, 17
Brightness (see Luminance)
Bubble Sort Program, H-5
Buzzer, 14
Deferred Mode, F-1
Direct Mode, 14
BYE, 9

C-Scale Program, 58
Central Input/Output Subsystem, 23
Character
Assigning Color to, 54
ATASCII, C-1 through C-6
Display at specified locations, 46, 47
Set, internal, 55
Sizes in Text modes, 46
Chaining Programs, 30
Checkbook Balancer Program, H-1 through H-4
CHRS$, 58
CIO (see Central Input/Output Subsystem) 6
CLEAR key, 6
Clear Screen,
Deferred mode, 5, 14, 46
Direct mode, 6, 46
CLOAD, 24
CLOG, 33
CLOSE, 27
CLR, 43
Codes,
Device, 23-24
Colons, 3, 61
COLOR, 48

Color
Assigning, 54
Changing, 50
Default, 46, 51
Registers, 50

COM (see DIM)

Computer Blues Program, H-16

cmdno, 30

Comma, 26, 27

Command Strings, 1

Commands
BYE, 9
CONT, 9
END, 9
LET, 10
LIST, 10
NEW, 10
REM, 10
RUN, 11
STOP, 11

Conservation,
Memory, 61

Constant, 2

CONT, 9

Controllers,
Game, 59

COS, 34

CSAVE, 24

Cursor, 9
Graphics, 49
Inhibit, 46

Decimal/Hexadecimal Conversion Program, H-18
Default
colors, 46
disk drive, 24, 29
margins in Mode 0, 46
tab settings, 6
Deferred mode, 5
DEG, 35
Devices, 23-24
Delete line, 13
DIM, 41
Direct mode, 5
Disk Drive
Default number, 24, 29
Requirements (see ATARI DOS Manual)
Disk file
Modification of BASIC program, 31
Display, split-screen override, 45, 47
Distortion, 57
DOS, 25
DRAWTO, 48

Index 117

Editing, screen, 13
Editor, Screen, 24
END, 9
before subroutine, 7
End of file, 14
Error messages, B-1 through B-3
Escape key, 5
with Conirol Graphics Symbols, F-1
EXP, 33
exp, 5
Exponentiation symbol, 6
Expression, 1
Arithmetic (see aexp)
Logical (see lexp)
String (see sexp)

filename, breakdown, 27
filespec, 5
Usage, 26, 27
Fill (XIO), 54
FOR/NEXT, 15
building arrays and matrices, 42
with STEP, 15
without STEP, 15
FRE, 35
Function, 1
Arithmetic
ABS, 33
CLOG, 33
EXP, 33
INT, 33
LOG, 34
RND, 34
SGN, 34
SQR, 34
Built-in, 7
Derived, E-1
Library, 33
Special Purpose, 35
ADR, 35
FRE, 35
PEEK, 35
POKE, 35
USR, 36
Trigonometric, 34
ATN, 34
COS, 34
DEG, 35
RAD, 35
SIN, 35

Game controllers
Keyboard, 59
Joystick, 59
Paddle, 59

Video Graffitti program, H-12 through H-13

Game controller commands
PADDLE, 59
PTRIG, 59
STICK, 59
STRIG, 60
GET. 28, 49
COSUB/RETURN, 16, 21

118 Index

G

GOTO, 17
with conditional branching, 17
GRAPHICS, 45
Graphics
Modes, 46-47
Statements, 48
COLOR, 48
DRAWTO, 49
GET, 45
GRAPHICS, 48
LOCATE, 48
PLOT, 49
POSITION, 49
PUT, 49
SETCOLOR, 50
XIO (Fill), 54
Graphics Control Characters, 56

Harmony, 57

Hexadecimal
/Decimal Conversion Program, H-18
Hexcode Loader program, 64

INPUT, 25
Input/Output Commands, 23
CLOAD, 24
CLOSE, 27
CSAVE, 24
DATA, 28
DOS, 25
ENTER, 25
GET, 28
INPUT, 25
LOAD, 26
LPRINT, 26
NOTE, 26
OPEN, 26
POINT, 28
PRINT, 3, 5, 14, 26
PUT, 28
READ, 28
SAVE, 29
STATUS, 29
XIO, 29
Input/Output Devices
Disk Drives (D:), 24
Keyboard (K:), 23
Line Printer (L:), 23
Program Recorder (C:), 23
RS-232 Interface (R:), 24
Screen Editor (E:), 24
TV Monitor (S:), 24
INT, 33
Internal pointer for DATA, 21
Input/Output Control Block, 23
Inverse Key, 5
Invisible graphics cursor, 48-49
IOCB (see Input/Output Control Block)

Joystick Controller, 59

Keyboard (K:), 23
Keyboard Controllers, 59

Keyboard Controller Program, H-14
Keys
Special Function
ATARI, 5
BACK SPACE, 6
BREAK, 6
CAPS/LOWR, 5
CLEAR, 6
DELETE, 6
ESCAPE, 5
INSERT, 6
RETURN, 6
SYSTEM RESET, 6
TAB, 6
Editing
CTRL (Control) Key, 13
SHIFT key, 13
Cursor Control, 14
Down arrow, 14
Left arrow, 14
Right arrow, 14
Up arrow, 14
Keywords
BASIC, A-1 through A-5

LEN, 38
LET, 2, 3, 10
Letters
Capital (upper case), 3
Lower case, 3, 47
lexp, 4
Light Show Program, H-8
Line
Format, 3
Logical, 2
Numbers, 3
Physical, 2
lineno, 5
LIST, 10
LOAD, 26
Load program from cassette tape, 24
LOCATE, 48
LOG, 34
Loops
Endless, 17
Nested, 15
lop, 4
LPRINT, 26
before CSAVE, 24
Luminance, 50

Mandatory # symbol, 26, 27
Margins

Changing, 36, 46

Default in mode 0, 46
Matrix, 41-42

Variable, 4
Memory Map, D-1 through D-2
Modes, graphics, 46, 47
Modes, operating

Deferred, 5

Direct, 5

Execute, 5

Memo Pad, 5, 25

Modes, text, 46
Override split-screen, 47
Multiple commands (see
Command Strings)
mvar, 4

NEW, 10
Notations
floating point, 39
in manual, 3

ON/GOSUB, 20

ON/GOTO, 20

OPEN, 26-28

Operators, 2
Arithmetic, 4, 6
Binary, 6, 7
Logical, 4, 6
Relational, 7
Unary, 6

Output devices, 23

Oversized programs (see Chaining Programs)

Paddle Controller, 59
Parentheses,
Usage, 7, 63
PEEK, 35
Peripheral devices (see Input/Output Devices)
Pitch
Definition, 57
Values, 58
Pixel, 48
Size in modes, 47
PLA, 63
PLOT, 49
POINT, 28
POKE, 35
POP, 20-21
POSITION, 49
Precedence, operator, 7
PRINT, 3, 5, 14, 26
Printer listing, 10
Program continuation, 11
Programs,
Machine language, 67
User, Appendix H
with Hexcode Loader, 65, 66
PUT, 49

Question mark as prompt, 25
Quotation marks, 2

RAD, 35
RAM (Random Access Memory), 23
Random Access to disk file, 28
READ, 28
Direct mode, 28
REM, 10
RESTORE, 21
RETURN Key, 6
Return, Abnormal (see POP)
Rollover,
Keyboard, 8
RND, 34

Indexr 119

RS-232(R:), 24
RTS, 63
RUN, 11

SAVE, 29

Save programs on cassette tape, 24
Screen Display (see TV Monitor)

Screen Editor (E:), 24

Seagull Over Ocean Program, H-11

Semicolon, 28
SETCOLOR, 50-53
sexp, 5
SGN, 34
SIN, 35
SOUND, 57
terminating, 9, 57
Spaces, 61
SQR, 34
Stack, 16
GOSUB, 16
Hardware, 36
loop addresses, 16, 21
POP, 20
Statement,
Program, 15
FOR, 15
GOSUB, 16, 21
GOTO, 17
IF, 18
ON/GOSUB, 20
ON/GOTO, 20
POP, 20
RESTORE, 21
RETURN, 16
STEP, 15
THEN, 18
TO, 15
TRAP, 22
STEP, 15
STOP, 11
String
Comparison, 40
Concatenation, 39
Dimensioning, 37
Functions
ASC, 37
CHRS$, 37
LEN, 38
STR$, 38
VAL, 38
Manipulation, 39
Sort, 40
Splitting, 39
Variable, 4
STR$, 38
Subroutine
Definition, 16
GOSUB, 16
Usage, 16
svar, 4

Terminology, 1
Text modes, 46

120 Index

N

Text Modes Characters Program, H-7
Tokenized version, 3, 24

Tone, clipped, 57

TRAP, 22

Type-A-Tune Program, H-15

Untokenized version, 3

var, 4
Variable, 2

avoiding name limit, 2
Video Graffitti Program, H-12
Volume control, 57
Voice, 57

Window
Graphics, 47
Text, 47

Wraparound, 8

X-coordinate, 47
XIO, 29
XIO (Fill). 54

Y-coordinate, 47

Zero
as Dummy Variable, 30, 34

TABLE OF MODES

AND SCREEN FORMATS

. Vert. (Rows) | Vert. (Rows RAM
Gr. Mode Horiz. g) Tt (“) #0f Redquired
Mode Type (Columns) Spit a4 Colors d
Screen Screen (Bytes)
0 TEXT 40 - 24 2 993
1 TEXT 20 20 24 5 513
2 TEXT 20 10 12 5 261
3 GRAPHICS 40 20 24 4 273
4 GRAPHICS 80 40 48 2 537
5 GRAPHICS 80 40 48 4 1017
6 GRAPHICS 160 80 96 2 2025
7 GRAPHICS 160 80 96 4 3945
8 GRAPHICS 320 160 192 1/2 7900
MODE, SET COLOR, COLOR TABLE
SETCOLOR
(aexp1)
Default Mode or Color Color
Colors Condition Register No. (aexp) DESCRIPTION AND COMMENTS
0 COLOR data =
LIGHT BLUE MODE 0 and 1 actually Character luminance (same color as background)
DARK BLUE ALL TEXT 2 determines Background
WINDOWS 3 character to -
BLACK 4 be plotted Border
ORANGE 0 COLOR data Character
LIGHT GREEN MODES 1 1 actually determines | Character
DARK BLUE and 2 character to be Character
RED 2 3 plotted Character
BLACK (Text Modes) 4 Background, Border
ORANGE 0 1 Graphics point
LIGHT GREEN MODES 3, 5, 1 2 Graphics point
DARK BLUE and 7 2 3 Graphics point
(Four-color 3 - -
BLACK Modes) 4 0 Graphics point (background default), Border
ORANGE MODES 4 0 1 Graphics point
and 6 1 - -
(Two-color 2 - =
Modes) 3 - —
BLACK 4 0 Graphics point (background default), Border
LIGHT GREEN 0 = =
DARK BLUE 1 1 Graphics point luminance (same color as background)
MODE 8 2 0 Graphics point (background default)
(1 Color 3 - —
BLACK 2 Luminances) 4 - Border

7
4

DELETE

Tb; x

m.
K L & 8 A CAPS
aaae.lnuuaauaa
i EEE'...GO..E

o R
N -
R
A S
~ 3 ,/ »
- W ; ¥
i F
N ’
\ gt ~

C015307 REV. 1

