
ATARI®
Personal Computer System

OPERATING SYSTEM
User's Manual

NOTICE

TO ALL PERSONS RECEIVING THIS DOCUMENT

November 1980

Reproduction is forbidden without the specific written
permission of ATARI, INC. , Sunnyvale* CA 94086. No right, to
reproduce this document, nor the subject matter thereof, is
granted unless by written agreement with, or written
permission from the Corporation.

C016555

V

\

J

» J

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

COPYRIGHT 19 80 ATARI, INC.

Every effort has been made to ensure that this manual is an accurate
document. However, due to the ongoing improvement and update of the
computer software and hardware, ATARI, INC. cannot guarantee the
accuracy of printed material after the date of publication, nor can
ATARI, INC. accept responsibility for errors or omissions.

2

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

ATARI Personal Computer System
OPERATING SYSTEM USER'S MANUAL

TABLE OF CONTENTS

Intr oduc ton

Purpose of manual
General description of ATARI Personal Computer System
Notations used in this manual

Operating System functional organization

I/O subsystem
Interrupt processing
Ini tiali zation

Power up

Floating point arithmetic package

3. Configurations

Program environments

Blackboard mode
Cartridge
Disk boot
Cassette boot

RAM expansion
Peripheral devices

Game controllers
Cassette
Serial bus devices

System memory utilization

RAM region

3

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT APPROVALOPERATING SYSTEM, C016555
APPROVAL

Page 0
Page 1

OS database
User workspace
Boot regi on
Screen display list and data
Free memory region

Cartridges A and B
Mapped I/O
Resident OS and floating point package ROM
Central database description
Memory dynamics

System initialization process
Changing screen modes

I/O subsystem

Overview
Central I/O Utility (CIO) 5^

CIO design philosophy
CIO calling mechanism
CIO functions
Device/fi lename specification
I/O example

Device specific information

Keyboard handler <K:

)

Display hand ler (S:

)

Screen Editor <E:

)

Cassette handler (C:

)

Printer handler (P:

)

Disk File Manager (D:

)

RS-232-C

Non-CIO I/O

Resident device handler vectors
Resident Disk handler
Educational System format cassettes
Serial bus I/O (SIO)

Device characteristics

Keyboard *\H

Display
Cassette
Printer

4

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

Diskette
RS-232-C

6. Interrupt processing C
\

L
<

Overview
Chip reset
Non-maskable interrupts (NMI)

Stage 1 VBLANK process
Stage 2 VBLANK process

Maskable interrupts (IRQ)
Interrupt initial izati on
System timers
Usage notes

POKEY interrupt mask
Setting interrupt and timer vectors
Stack content at interrupt vector points
Miscellaneous considerations

Fl owchar ts

7. System initialization

Overview
Power-up initial ization (coldstart)
RESET initialization (warmstart)

8. Floating point arithmetic package Il3

Description
Functions/calling sequences
Resource utilization
Imp lementat ion detai Is

9. Adding new device handlers/peripherals

Device Table
CIO/Hand ler interface

5

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

Calling mechanism
Hand lev initial izati on
Functions supported
Error handling
Resource al location

Handler/SIO interface

Calling mechanism
Functions supported
Error hand ling

Serial I/O bus characteristics and protocol

Hardware/elec tr ical characteristics
Bus commands
Bus timing

Hand ler environment

Bootable handler
Cartridge resident handler

Fl owe harts

10. Program environment and initialization |Hl

Cartridge

Cartridge without disk booted support package
Cartridge with disk booted support package

Disk booted software

Disk boot file format
Disk boot process
Sample disk bootable program listing
Program and procedure to create disk boot files

Cassette boot file format
Cassette boot process
Sample cassette bootable program listing
Program and procedure to create cassette boot files

Cassette booted software I 4* I

11. Advanced techniques and application notes 1^)5

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

Sound generation

Capab i I i t i es
Conflicts with OS

Screen graphics

Hardware capabilities
OS capabilities
Cursor control
Color control
Alternate character sets

Players /missiles

Hardware capabilities
Conflicts with OS

Reading game controllers

Keyboard controller sensing
Front panel connectors as I/O ports

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAI
OPERATING SYSTEM, C016555

Append ices

A — CIO COMMAND BYTE values
B — CIO STATUS BYTE values
C — SIO STATUS BYTE values l (,

D — ATASCII codes
E — Display codes (ATASCII)
F — Keyboard codes (ATASCII)
G — Printer codes (ATASCII)
H — Screen mode character istics \1Z
I — Serial bus I.D. & command summary 9
J — ROM vectors
K — OS Database Variable Functional Descriptions
L — Equate file

8

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

1. Introduction

Purpose of manual

This manual provides a description of the Resident Operating System
for the ATARI Personal Computer System, for use by persons concerned
with the internal behavior of the systems. This manual discusses:

o The functions provided by the system and how to use them
o The organization of the various subsystems
o The characteristics of the ATARI peripheral devices which may

be attached
o Standard techniques for going beyond the basic OS

capabilities
o The general nature of the hardware involved

This manual assumes that the reader is already familiar with
programming concepts and jargon, assembly language programming in
general and with the Synertek 6502 in particular, and has some degree
of familiarity with digital hardware. The primary intent is to provide
an experienced programmer with sufficient information so that he or
she can effectively utilize the resources provided by the OS without
having to resort to OS listings or trial and error techniques. A
secondary goal is to provide supporting information for those
individuals who do have to work with the OS listings.

This manual does not attempt to describe the hardware being used to
provide the OS capabilites in any comprehensive fashion. Therefore,
the person wanting to go beyond the capabilities described here are
advised to examine the ATARI Personal Computer System HARDWARE MANUAL.
This applies mostly to persons involved in the design of game
cartridges, where display requirements, system timing and/or memory
requirements preclude usage of the OS for one or more functions.

General description of the ATARI Personal Computer System

The ATARI 40C?Mand ATARI SOCPfcer sona 1 Computer Systems are virtually
identica) from the standpoint of the operating system. In fact, the OS
is identical in both models. The primary differences between the ATARI
400 and ATARI 800 Personal Computer Systems are:

o Physical packaging
o The ATARI 400 console has one cartridge slot, the ATARI 800

console has two slots
o The ATARI 400 Personal Computer System can be expanded from 8k

to 16K RAM maximum, the ATARI 800 Personal Computer System can
be expanded to 48K RAM maximum

The hardware contains circuitry to: produce both character and point
graphics for B&W or color television, produce four independent audio
channels (frequency controlled) which use the television sound system,
provide one bi-level audio output in the base unit, interface to up to

9

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT APPROVAL
OPERATING SYSTEM, C016555

4 joysticks, 8 paddle controllers/4 driving controllers, light pen,
interface to a serial I/O bus for expansion, and has a built in
keyboard. A simplified block diagram of the hardware is shown on th
next page.

See the ATARI Personal Computer System HARDWARE MANUAL (part number
C016555 > for supporting documentation.

10

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM* C016555

ATARI Personal Computer System Block Diagram

+ +

! 6502 !

{processor!
+ + +

processor
e xterna

1

bus

+-
i

i

i

i

i

i

+ +

i OS
+ ROM
! DBOO-FFFF

i

+ +
i

+ +
{Cartridge

!

—+slots A&B

I

18000-BFFF!

RAM
•+

10000-x x

+
x x

-+

PIA

• * • • •

IRQ

+ +•

!D300-D31F+
+ +

joysticks
+-

i i_

POKEY

• « .

IRQ

DMA

!. .

NMI

. ID200-D21F+
+ + 1- audio

+
+ + + trigs
! CTIA

-+ +
ID000-D01F+-

! video
+ h +

. ! ANTIC +-
-+ :

. 1D400-D41F!
+ +

•+ pots

:-+

1 i tpen
+

! +

i

i

«

i

{control- i

+ 1 er ports!
! !

+ +

•+*

composi te
aud i o/vi deo

+

TV

i

i

from
CTIA

! keyboard
'data keys

-+ + BREAK
+ +
on/off
+ +

-+cassette
! interface

-+
+

—+ serial
! I/O
+ bus

4- h

! console
+ speaker
!

! START,
+ SELECT,
! OPTION

11

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT APPROVAL
OPERATING SYSTEM, C016555

Notations used in this manual

Several special notations are used throughout this manual in order to
concisely present certain types of information such as hexadecimal
numbers, memory addresses and data syntax. These notations are
explained in the paragraphs that follow.

MEMORY ADDRESSES

All references to computer memory (and mapped I/O) locations will be
in hexadecimal notation; sometimes the addresses will be contained in
square brackets, such as 'CD20F3', and sometimes not, such as 'D20F'.

HEXADECIMAL NUMBERS

All two digit numbers preceded by a dollar sign ('$') are to be read
as hexadecimal numbers. Where not so prefixed, or specified otherwise
by supporting text, a number that is not a memory address is expressed
in decimal.

KILOBYTES OF MEMORY

Memory sizes are frequently expressed in units of kilobytes, such as
32K, where a kilobyte is 1024 bytes of memory.

PASCAL AS AN ALGORITHM SPECIFICATION LANGUAGE

In the few places where an algorithm is specified in detail/ the
Pascal language (procedure block only) is used as the specification
language. Pascal syntax is similar to that of any number of other
block structured languages, and the user should have no difficulty
following the code presented.

MEMORY LAYOUTS

Whenever pictures of bytes or tables are presented, figures similar to
the one shown below are used:

12

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM* C016555

7 6 5 4 3 2 1 0
4-— -*-—+—I h—+—I 1-—

h

+_+_+ —+-+-+-H—+

+-+-+-+-+-+-+-+-+

«

+—h~-+ ~4----f—+—»-—+—+

— this is a single byte.

+ this is a word (2 bytes)

this is a block of memory
of unspecified length.

Where bit-7 is the most significant bit (msb) of the byte, and bit-0
is the least significant bit <lsb).

In table figures, memory addresses always increase toward the bottom
of the figure.

BACKUS-NAUR FORM < BNF

)

A modified version of BNF is used to express some syntactic forms,
where the following me ta- 1 ing u i s t i c symbols are used:

is the substitution (assignment) operator.

< > bracket a me tasyntac t i c variable.

! separates alternative substitutions.

C 3 bracket an optional construct.

anything else is a syntactic literal constant, which stands for
itself.

For example:

Cdevice specification!:^ :: = <device name>C<d evi c e number>D:
•Cdevice name> :: = CID1E!K1P1R!S
<device number> ::= 1121314

The above statements specify that something called a "device
specification" consists of a mandatory "device name* 1 followed by an
optional "device number 11 followed by the character ': The "device
name"; in turn, must be one and only one of the characters shown as
alternatives; while the "device number" (if it is present) must be a

digit 1 through 4.

OS EQUATE FILE NAMES

Operating system ROM and RAM vector names, RAM database variable names
and hardware register names are all referred to herein by the names

13

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT APPROVAL
OPERATING SYSTEM, C016555

assigned in the OS program equate list; in most cases, when one of
these names is used, the memory address is provided also, such as
'BOOTAD C0242]'.

14

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

2. Operating System functional organization

This section describes the various subsystems of the resident
OS in general terms.

I/O subsystem

The I/O subsystem provides a high-level interface between the programs
and the hardware. Most functions are device independent/ such as the
reading and writing of character data; yet provisions have been made
for device dependent functions as well. All peripheral devices capable
of dealing with character data have individual symbolic names (such as
K/D/P/ etc.) and may be accessed using a Central I/O (CIO) routine.

Controllers such as joysticks/ paddle controllers and the light pern
which do not deal with character data; are accessed via a RAM data
base which is periodically updated to show the states of these
devices.

Interrupt processing

All hardware interrupts are handled in a common and consistent manner
by the Interrupt subsystem. By default/ all interrupts are fielded by
the OS/ but at the discretion of the user/ individual interrupts (or
groups of interrupts) may be fielded by the application program.

Initial i zat ion

There are two levels of initialization provided by the system: power
up and CRESETD. Power up initialization is performed each time the
system power is turned on/ and CRESET3 initialization is performed
each time the CRESET3 key is pressed.

Power up

Whenever system power is turned on/ the OS examines and notes the
configuration of the unit; the following items are among those things
performed at power up:

o Determine the highest RAM address.
o Clear all of RAM to zeroes.
o Establish all RAM interrupt vectors.
o Format the Device Table.
o Initialize the cartr idge (s)

.

o Setup the screen for 24 x 40 text mode.
o Boot the cassette if directed.
o Check cartridge slot(s) for disk boot instructions,
o Boot the disk if directed to do so and a disk is attached,
o Transfer control to the cartridge/ disk booted program/

cassette booted program/ or blackboard program.

15

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT APPROVAL
OPERATING SYSTEM, C016555

CRESET3

Whenever the CRESETD key is pressed, the OS performs some, but not
all/ of the functions performed at power up; the following items are
among those things performed as a result of pressing the CRESETD key

o Clear the OS portion of RAM.
o Re-establish all RAM interrupt vectors.
o Format the Device Table.
o Initialize the cartr idge (s)

.

o Setup the screen for 24 x 40 text mode.
o Transfer control to the cartridge, disk booted program,

cassette booted program, or blackboard program.

Floating point arithmetic package

Contained within the OS ROM is a floating point (FP) package which i

not used by the other parts of the OS itself, but is available to
non-resident programs such as BASIC, Calculator, Pascal, etc. The
floating point numbers are stored as 10 BCD digits of mantissa plus
1 byte exponent. The following routines are among those found in the
package:

o ASCII to FP and FP to ASCII conversion.
o Integer to FP and FP to integer conversion.
o FP add, subtract, multiply and divide.
o FP log, exp and polynomial evaluation.
o FP number clear, load, store and move.

16

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

3. Configurations

The ATARI 400 and ATARI 800 Personal Computer Systems support a wide
variety of configurations/ each with a unique operating environment:
cartridge(s) may or may not be inserted, memory may be optionally
added to the ATARI 800 computer console in 8K or 16K increments, and
many different peripheral devices may be attached to the serial I/O
bus. The OS accounts for all of these variables without requiring a

change in the resident OS itself As explained in Section 2, the
machine configuration is checked when power is first turned on and
then is not checked again. A general discussion of some of the valid
configurations fol lows.

Program environments

The OS allows one of four program types to be in control at any point
in time: the OS blackboard (ATARI Memo Pad) program, a cartridge
resident program, a disk booted program or a cassette booted program.
Which one of these is in control is based upon information in the
cartr idge (s) , whether or not a disk is attached and operator keyboard
inputs; the exact algorithms are discussed in detail in section 7.

Blackboard mode

When in blackboard mode, the screen is established as a 24 x 40
text screen. Anything entered from the keyboard goes to the
screen without being examined; although all of the screen
editing functions are supported. Blackboard mode is the lowest
priority environment; one only goes there if there is no other
reasonable environment for the OS to enter or if the operator
requests a higher priority environment to enter the blackboard
mode (for example, BYE in BASIC). If it was entered from a higher
priority environment, the blackboard mode may be exited by pressing
the CRESETH key.

Cartridge

When a cartridge is inserted, it normally provides the main control
after initialization is complete; for example: BASIC,
Super BreakoutJB>, BASKETBALL, COMPUTER CHESS, etc. all interface
directly with the user in some way. Although it is possible for a

cartridge to provide a supporting function for some other program
environment, this has not yet been done. In some cartridges,
particularly keyboard oriented ones, it possible to change
environments by entering special commands such as "BYE" to go to
blackboard mode or "DOS" to enter the Disk Utility. In many other
cartridges, particulary games, it is not possible to change
environments. Note that because of a hardware interlock it is
impossible to remove or insert a cartridge with the power on; this
means (among other things; that every cartridge change will completely
reinitialize the entire system.

17

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT
OPERATING SYSTEM, C016555

Disk boot

When the system powers up with a disk attached with disk bootable
software, the disk may or may not be booted, depending upon conditions
explained in section 7. The rest of this paragraph assumes that a disk
boot did occur.

The disk booted software may take control as the Disk Utility does
under certain conditions, or may provide a supporting function as the
File Management System does; this environment is so flexible that it
is difficult to generalize on its capabilities and restrictions. The
only machine requirement (other than the disk drive) is that
sufficient RAM be installed to support the program being booted.

Cassette boot

Everything that was said about the disk boot environment is also true
about the cassette boot environment, although the cassette is limited
as an I/O device due to its slowness, sequential access and single
file at a time nature. Those limitations probably limit cassette
booted software to "cartridge type" programs, 100 percent RAM resident
and not involving random access nor much I/O involving permanent
storage. Note that the cassette boot facility has no relation to the
use of cassettes to store high level language programs (e.g. programs
written in BASIC) nor to the use of cassettes to store data.

RAM expansion

Although RAM may be expanded non-c on t i g uous 1 y by the user in the ATARI
800 Personal Computer System, the OS will only recognize RAM that is
contiguous starting from location 0. Directions for installing the RAM
modules are provided with the purchased modules. RAM may be added
until it totals 48K; after 32K, additional RAM overlays first the
right cartridge addresses (32K to 40K) and then the left cartridge
addresses <40K to 48K). Note that in cases of conflict, the inserted
cartridge has higher priority and disables the conflicting RAM in 8K
increments. See section 4 for a detailed discussion of system memory.

As a result of power up the OS will generate two pointers that define
the lowest available RAM location and the highest available RAM
location. The OS and d i s k /cassette booted software will determine the
location of the lowest available RAM, while the number of RAM modules
and the current screen mode will determine the highest available RAM.

Peripheral devices

Peripheral devices of several types may be added to the system using
standard cables to either the serial bus or the connectors at the
front of the computer console. The most common types deal with either

18

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL-
OPERATING SYSTEM/ C016555

transmission of bytes of data (usually serial bus) or transmission of
sense information (usually game controllers).

Game controllers

The standard game controllers (pots/ joysticks/ driving controllers/
light pen, etc.) are sensed periodically (50 or 60 times per second)
by the OS and the values read are stored in RAM. These controllers may
be plugged in* pulled out/ and rearranged at will by the user without
affecting system operation; the system will always try to read all of
these controllers. Other controllers/ such as the keyboard controller/
are not read by the OS and special instructions as described in
section 11 are required to read them.

Cassette

The cassette is a special peripheral in that it uses the serial bus to
send and receive data/ but does not conform to the protocol of the
other peripherals that use the serial bus. The cassette must also be
the last device on the serial bus because it does not have a serial
bus extender connector as the other peripherals do. The lack of a bus
extender assures that there is never more than one cassette drive
connected to any system. The system cannot sense the absence or
presence of the cassette drive/ so it may be connected and
disconnected at will.

Serial bus devices

By serial bus devices we mean those that conform to the serial I/O bus
protocol as defined in section 9; this does not include the cassette
drive. Each serial bus device has two identical connectors: one a
serial bus input/ the other a serial bus extender. Either connector
may be used for either purpose, and peripherals may be M daisy chained"
simply be cabling them together in a sequential fashion. There are
usually no restrictions on the cabling order/ as each device has a
unique identifier; where there are restrictions/ they will be
mentioned in section 5.

19

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM. C016555

4. System memory utilization

Memory in the system is decoded in the full 64K range of the 6502
microcomputer and there are no provisions for additional mapping to
extend memory. Memory is divided into four basic regions (with some
overlap possible): RAM/ cartridge area, I/O region and the resident OS
ROM. The regions and their address boundaries are listed below (all
addresses are in hexadecimal):

000Q-1FFF = RAM (minimum required for operation)
2000-7FFF = RAM ex pansion area
8000-9FFF = Cartridge B, Cartridge B (half of 16K size) or RAM
AOOO-BFFF = Cartridge A or RAM
COOO-CFFF = unused
D000-D7FF = Hardware I/O decodes
D800-DFFF Floating point package (OS)
EOOO=FFFF = Resident Operating System ROM

This section will break these regions into even smaller functional
divisions and provide detailed explanations of their usage.

RAM region

The RAM region is shared between the OS and the program in control
and can be further subdivided into the following sub— regions for
discussion purposes:

Page 0 = 6502 page zero address mode region.
Page 1 = 6502 stack region.
Pages 2-4 = OS database & user workspace.
Pages 5-6 = User program workspace.
Pages 7-XX Bootable software area/free RAM*.
Pages XX-top of RAM = screen display list and data*.

* Note that XX is a function of the screen graphics mode and the
amount of RAM installed.

The paragraphs that follow indicate the OS usage and recommended user
program usage of these RAM sub-regions.

Page 0

Because of the architecture of the 6502 microcomputer instruction set
and addressing modes/ page O has special significance; references to
addresses in that page (0000 to OOFF) are faster, require fewer
instruction bytes and provide the only mechanism for hardware indirect
addressing. Therefore page 0 is a resource that has to be utilized
sparingly so that all possible users may have portion of it. The OS
permanently takes the lower half of page 0 (0000 to 007F) and this
portion may never be used by any outer environment unless the OS is
completely disabled and all interrupts to the OS are eliminated.

20

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

The upper half of page O (0080 to OOFF) is available to outer
envirnments with the following restriction: the floating point
package; if used/ requires 00D4 through OOFF.

Page 1

Heavily u$*xf

Page 1 is the 6502 hardware stack region; JSR instructions* PHA
instructions and interrupts all cause data bytes to be written to page
1 and conversely RTS, PLA/ and RTI instructions all cause data bytes
to be read from page 1. The 256 byte stack is adequate for normal
subroutine calls plus interrupt process nesting/ so no restrictions
have been made on page 1 usage. It is obvious that a stack of this
size is totally inadequate for deeply recursive processes or for
nested processes with large local environments to be saved. So, for
sophisticated applications/ software maintained stacks must be
imp 1 emen ted

.

The 6502 stack pointer is initialized at power up or CRESET3 to point
to location 01FF/ the stack then pushes downward toward 0100.
stack will wrap around from 0100 to 01FF if a stack overflow
condition occurs/ due to the nature of the 6502's 8-bit stack
register.

The

pointer

OS database

Locations 0200 through 047F are allocated by the OS for working
variables/ tables and data buffers. Portions of this region may be
used only after it is determined that nonconflict with the OS is
guaranteed. For example/ the printer and cassette buffers could be
used if I/O operations to these devices are impossible within the
controlling environment. The amount of work involved in determining
nonconflict seems to be completely out of line with the benefits to
gained (except for a few trivial cases) and it is recommended that
pages 2 through not be used except by the OS.

be

User workspace

Locations 0480 through 06FF are dedicated
except when the floating point package is

057E through 05FF.
^

7

for outer environment use
used/ in which case it uses

region

Page 7 is the start of the "boot region". When software is booted from
either the disk or the cassette/ it may start at the lowest free
memory address (which is 0700) and proceed upward (although it may
also start at any address above 0700 and below the screen display
list). The top of this region defines the start of the "free memory"
region When the boot process is complete/ a pointer in the data base
contains the address of the next available location above the software

21

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

just booted. When no software has been booted/ this pointer contains
the value 0700.

Screen display list and data

When the OS is handling the screen display, the display list^which
defines the screen characteristics; and the current data whic'h is
contained on the screen are placed at the high address end of RAM. .The
bottom of this region defines the end of the "free memory* 1 region and
its location is a function of the screen mode currently in effect. A
pointer in the data base contains the address of the last available
location below the screen region.

Free memory region

The free memory region is all that RAM between the end of the boot
region and the start of the screen region. The outer level application
is responsible for managing the free memory region. See sec tion 4 for
more details. * "

^

r?
Cartridges A and B ^ I5 J^h Hl

There are two 8K regions reserved for plug-in cartridges. Cartridge B,

which is the right hand cartridge slot found only in the ATARI 800
Personal Computer System, has been allocated memory addresses 8000
through 9FFR while cartridge A, which is the left-hand cartridge slot
in the ATARI 800 computer console, and is the only slot in the ATARI
400 computer console, has been allocated memory addresses AOOO through
BFFF and optionally 8000 through BFFF, for 16K cartridges. If a RAM
module is plugged into the last slot such as to overlay any of these
addresses, the RAM takes precedence as long as a cartridge is not
inserted. However, if a cartridge is inserted, it will disable the
entire conflicting RAM module in the last slot in 8K increments

Mapped I/O

The 6502 performs input/output operations by addressing the external
support chips as memory; some chip registers are read/write while
others are read only or write only (the ATARI Personal Computer System
HARDWARE MANUAL gives descriptions of all of the external registers).
While the entire address space from DOOO to D7FF has been allocated
for I/O decoding, only the following sub-regions are used:

D000-D01F = CTIA
D200-D21F = POKEY
D300-D31F = PIA
D400-D41F = ANTIC

22

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

Resident OS and floating point package ROM

The region from D800 through FFFF always contains the OS and the
floating point package. To allow for the possibility that another/ but
functionally compatible/ OS may be generated in the future/ care
should be taken to avoid using any entry points that are not
guaranteed not to move. The OS contains many vectored entry points at
the end of the ROM and in RAM which will not move. The floating point
package is not vectored/ but all documented entry points will be fixed
(this means do not use undocumented routines found by scanning the
listing!). A list of the fixed ROM vectors and entry points may be
found in Appendix J.

Central data base description

Discussion of organization of this section.

There are a large number of variables in the OS data base/ most of
which have some relevance to the user/ either for control or debug
purposes. This section provides detailed information for those
variables which can be altered by the user in meaningful ways and to
provide at least a narrative description of the remaining variables.
One major problem/ when dealing with this many variables/ is how to
present the information so that it is accessible to the user in the
different contexts in which the user may work. This manual attempts to
solve that problem by providing a multiple access scheme/ in which
several lookup tables are provided/ all of which reference a common
set of narratives that is itself ordered by function.

In order to provide a means of referencing the variable descriptions/
the variable descriptions are each provided with a label consisting of
a single letter followed by a number (e.g. A4/ B13/ etc.). A different
letter is assigned for each major functional area being described/ and
the numbers are assigned sequentially within each functional area.
This label just described will be reserved to as a VID (variable
identifier) throughout the remainder of this document. Those var
iables which are not concidered to be of interest to any user are
flagged with an asterisk ('*') after their names.

The database lookup tables provided are:

1. Functional grouping — index to the function narrative and
descriptions of variables/ giving VID and variable name.

For more information, see Appendix K.

23

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555 4

FUNCTIONAL INDEX TO DATABASE VARIABLE DESCRIPTIONS

A. Memory configuration
Al MEMLO
A2 MEMTOP
A3 APPMHI
A4 RAMTOP*
A5 RAMSIZ

B. Text/graphics screen

Cursor control
Bl CRSINH
B2 ROWCRS, COLCRS
B3 OLDROW, OLDCOL
B4 TXTROW, TXTCOL

Screen margins
B5 LMARGN
B6 RMARGN

Color control
B7 PCOLRO - PC0LR3
B8 COLORO - C0L0R4

Text scrolling
B9 SCRFLG*

Attract mode
BIO ATRACT
Bll COLRSH*
B12 DRKMSK*

Tab b ing
B13 TABMAP

Logical text lines
B14 LOGMAP*
B15 LOGCOL*

Split screen
B16 BOTSCR*

FILL/DRAW function
B17 FILDAT
B18 FILFLG*
B19 NEWROW*, NEWCOL*
B20 H0LD4*
B21 ROWINC*, COLINC*
B22 DELTAR*, DELTAC*
B23 COUNTR*

24

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

B24 ROWAC#, COLAC*
B25 ENDPT*

Displaying control characters

Escape (display following control char)
B26 ESCFLG#

Display control characters mode
B27 DSPFLG

Bit mapped graphics
B28 DMASK*
B29 SHFAMT*

Internal working variables
B30 HOLD1*
B31 H0LD2*
B32 H0LD3*
B33 TMPCHR*
B34 DSTAT*
B35 DINDEX*
B36 SAVMSC
B37 OLDCHR*
B38 OLDADR*
B39 ADRESS*
B40 MLTTMP /OPNTMP / TOADR*
B41 SAVADR /FRMADR*
B42 BUFCNT*
B43 BUFSTR*
B A-A SWPFLG*
B45 INSDAT*
B46 TMPROW*, TMPCOL*
B47 TMPLBT*
B48 SUBTHP*
B49 T INDEX *
B50 BITMSK*
B51 LINBUF*
B52 TXTMSC
B53 TXTOLD*

Internal character code conversion
B54 ATACHR
B55 CHAR*

C. Disk handler
CI BUFADR*
C2 DSKTIM*

25

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

D. Cassette (part in SIO part in handler)

baud rate determination
Dl CBAUDL*, CBAUDH*
D2 TIMFLG*
D3 TIMER 1#, TIMER2*
D4 ADDCOR*
D5 TEMPI*
D6 TEMP3*
D7 SAVIO*

Cassette mode
D8 CASFLG*

Cassette buffer
D9 CASBUF*
DIO BLIM*
Dll BPTR*

Internal ujorkina variables
D12 FEOF*
D13 FTYPE*
D14 WMODE*
D15 FREQ*

E. Keyboard

Key reading and debouncing
El CHI*
E2 KEYDEL*
E3 CH

Special functions

Start/stop
E4 SSFLAG

C BREAK

3

E5 BRKKEY

SHIFT/CONTROL lock
E6 SHFLOK
E7 HOLDCH*

Auto-repeat
EB SRTIMR*

Inverse video
E9 INVFLG

Console switches (SELECT, START & OPT ION)

26

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

F. Printer

Printer buffer

Fl PRNBUF*
F2 PBUFSZ*
F3 PBPNT*

Internal working variables
F4 PTEMP*
F5 PTIMOT*

G. Central I/O routine <CIO)

User call parameters

Gl IOCB
G2 ICHID
G3 ICDNO
G4 ICCOM
G5 ICSTA
G6 ICBAL, ICBAH
G7 ICPTL, ICPTH
G8 ICBLL, ICBLH
G9 ICAX1, ICAX2
GIO ICSPR

Device status
Gil DVSTAT

Device Table
G12 HATABS

CIO/handler interface parameters

G13 ZIOCB (IOCBAS)
G14 ICHIDZ
G15 ICDNOZ
G16 ICCOMZ
G17 ICSTAZ
G18 ICBALZ, ICBALH
G19 ICPTLZ, ICPTHZ
G20 ICBLLZ. ICBLHZ
G21 ICAX1Z, ICAX2Z
G22 ICSPRZ < ICIDNO, CIOCHR

>

Internal working variables
G23 ICCOMT#
G24 ICIDNO*
G25 CIOCHR*

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT APPROVAL
OPERATING SYSTEM, C016555

H. Serial I/O routine (SIO)

User call parameters

HI DCB control block
H2 DDEVIC
H3 DUN IT
H4 DCOMND
H5 DSTATS
H6 DBUFLO, DBUFHI
H7 DTIMLO
H8 DBYTLO, DBYTHI
H9 DAUX1, DAUX2

Bus sound control
HIO SOUNDR

Serial bus control

Retry logic
Hll CRETRY*
H12 DRETRY*

Ch ec k sum
H13 CHKSUM*
H14 CHKSNT*
HI 5 NOCKSM*

Data buffering

General buffer control

H16 BUFRLO*, BUFRHI*
H17 BFENLO*/ BFENHI*

Command frame output buffer
H18 CDEVIO
H19 CCOMND*
H20 CAUX1*, CAUX2*

Receive/transmit data buffering
H21 BUFRFL*
H22 RECVDN*
H23 TEMP*
H24 XMTDON*

SIO timeout
H25 TIMFLG*
H26 CDTMV1*
H27 CDTMA1*

Internal working variables
H28 STACKP*
H29 TSTAT*

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

H30 ERRFLG*
H31 STATUS*
H32 SSKCTL*

ATARI controllers

Joysticks
Jl STICKO - STICK3
J2 STRIGO - STRIG3

Paddles
J3 PADDLO - PADDL7
U4 PTRIGO - PTRIG7

Light pen
U5 LPENH
J6 LPENV
U7 STICKO

Driving controllers
US STICKO - STICK3
J9 STRIGO - STRIG3

K. Disk file manager
Kl FMSZPG*

K2 ZBUFP*
K3 ZDRVA*
K4 ZSBA*
K5 ERRNO*

L. Disk utilities (DOS)
LI DSKUTL*

M. Floating point package
Ml FRO
M2 FRE*
M3 FR1
M4 FR2*
M5 FRX*
M6 EEXP*
M7 NSIGN*
MS ESIGN#
M9 FCHRFLG*
MIO DIGRT*
Mil CIX
M12 INBUFF
M13 ZTEMP1-*
M14 ZTEMP4*
Ml 5 ZTEMP3*
Ml 6 FLPTR

29

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

M17Mi/ FPTR2*
MIS LBPR1*
Ml Q 1 nppoxLur nc 1'

M20 LBUFF
M21 PLYARG*
M22 FPSCR/FSCR*
M23 FPSCR1/FSCR1*
M24 DEGFLG/RADFLG*

N. Power up & CS RESET]
RAM sizing

Nl RAMLO*. TRAMSZ*
N2 TSTDAT*

Disk /cassette
N3 DOSINI
N4 CKEY*
N5 CASSBT*
N6 CASINI
N7 BOOT?*
N8 DFLAGS*
N9 DBSECT*
N10 BOOTAD*

Environmental control
Nil COLDST*
N12 DOSVEC

CS RESET]
N13 WARMST

P. Interrupts
PI CRITIC
P2 POKMSK

System timers

Real-time clock
P3 RTCLOK

System timer 1

P4 CDTMV1
P5 CDTMA1

System timer 2
P6 CDTMV2
P7 CDTMA2

System timers 3-5
P8 CDTMV3/ CDTMV4, CDTMV5
P9 CDTMF3, CDTMF4/ CDTMF5

30

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

RAM interrupt vectors

NMI interrupt vectors
PIO VDSLST
Pll WBLKI
P12 WBLKD

IRQ interrupt vectors
P13 VIMIRQ
P14 VPRCED
PI 5 VINTER
P16 VBREAK
P17 VKEYBD
P18 VSERIN
P19 VSEROR
P20 VSEROC
P21 VTIMR1, VTIMR2, VTIMR4

Hardware register updates
P22 SDMCTL*
P23 SDLSTL*, SDLSTH*
P24 GPRIOR*
P25 CHACT*
P26 CHBAS
P27 PCOLRx, COLOR

x

Internal working variable
P28 INTEMP*

R. User areas
Rl (unlabeled)
R2 USAREA

S. Unused (spare) bytes
51 HOLDS
52 CSTAT
53 DUNUSE
54 TEMP2
55 TMPX1
56 DSKFMS
S7-S15 (unlabeled)

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

Memory dynamics

The free memory region is the area between the end of the boot region
and the start of the screen region* and as such/ its limits are
variable. The bottom of the free region is defined by the content of
the variable MEMLO C02E73* and the top of the region is defined by the
content of the variable MEMTOP C02E53. The conditions which cause the
setup or alteration of these variables are now discussed.

System initialization process

When the system is powered-up* the extent of the lowest block of
contiguous RAM is determined and the limits are saved. The Screen
Editor is then opened* thus setting a new (and lower) value in MEMTOP.
Then* as discussed in section 7* disk or cassette booted software
might be brought into memory* which would probably set a new (and
higher) value in MEMLO. When the application program finally gets
control* MEMLO and MEMTOP will define the maximum amount of free
memory available at that time* however* that amount may later decrease
further* as described in the next paragraph.

Changing screen modes

The user may, at any time* command the Display handler to change
screen modes. In most cases this will involve a change in the memory
required for the display list and display data* and hence* will change
the value of MEMTOP. Appendix H indicates the amount of memory
required for each of the screen modes.

In order to allow the user to protect the portion of free memory space
that he is using from being overwritten as a result of a screen mode
change* the variable APPMHI COOOE3 is interpreted by the Display
handler as containing the address below which MEMTOP may not extend.
If* as a result of a screen mode change* the Display handler
determines that the screen memory would extend below APPMHI* then the
screen is setup for mode 0* MEMTOP is updated and an error status is
returned to the user* otherwise the desired mode change is effected
and MEMTOP is updated.

32

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

5 I/O subsystem

Introduction

This section discusses the I/O subsystem of the operating system. The
I/O subsystem is a collection of routines which allows the user to
access peripheral and local devices at a number of different levels*
all higher than that of accessing the device hardware registers
directly. The routine of interest to most users is CIO (Central I/O
utility), which provides the highest level, device independent access
to devices. The next level down would be communication with the device
handlers, followed by use of the SIO (Serial I/O bus utility) routine,
which is the bottom level general I/O routine in the OS Any lower
level access to a device would involve the direct reading and writing
of the hardware registers associated with the device.

The basic unit of input/output is the data byte, which can contain
either "binary" (non-text) information or encoded text information.
The text encoding scheme supported by the OS is called ATASCII, the
name of which is derived from the words 'ATARI ASCII'. Most ATASCII
codes are the same as ASCII, with the primary deviations being the
control codes. Appendix D shows the ATASCII character set, and
Appendices E, F and G show device specific implementations for the
display, keyboard and printer.

*

The structure of the I/O subsystem is shown on the following page.

33

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

I/O SUBSYSTEM FLOW DIAGRAM

user
! program !

IOCBs
+

ZIOCB

CIO
utility

Devi c e

Tab 1 e

Pr inter
Hand 1 er

Cassette
Hand 1 er

!

I DCB 1

i

•+

1

i

i

+ +
,'Disk File!—
! Manager l<

+ +

•a

•

+
• Handler

! Keyboard!
! Handler {

Disk
Hand 1 er

DCB
+

+

SIO
Utility

+

Where: shows a control path.
shows the data structure required for a path.

Note the following:

1. The Keyboard/Display /Screen Editor handlers don't use SIO
2. The Disk handler is not callable directly from CIO.
3. The DCB is shown twice in the diagram.

Central I/O Utility (CIO)

The Central I/O Utility (CIO) provides the user with a single
interface with which to access all of the system peripheral devices
in a device independent manner. The minimum unit of data transfer i

the data byte* with multiple byte transfers also supported. All I/O

34

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

operations are performed on a "return to user when complete" basis;
there is no way to initiate concurrent "overlapped" I/O processes.

I/O is organized by "files"* where a file is a sequential collection
of data bytes. A file may or may not contain textual data and it may
or may not be organized by "records"/ where a record is a contiguous
group of bytes terminated by an EOL (End of Line) character. Some
files are synonymous with a device (as with the printer and the Screen
Editor)/ while other devices may contain a multiplicity of files/ each
with a unique name (as with the floppy disk).

CIO will allow the user to access up to eight independent device/files
at one time; there being that many I/O Control Blocks (IOCBs) in the
system. Each of the IOCBs may be assigned to control any desired
device/file/ as there are no preferred assignments/ except that IOCB
#0 is assigned to the Screen Editor at power up and CS/RESET3.

In order to access a peripheral/ the user must first setup an IOCB for
the OPEN command/ which supplies the system name for the device to be
accessed (e.g. 'K: ' for the keyboad/ 'P: ' for the printer, 'D: STARS

'

for a disk file named 'STARS'/ etc.). The user then calls CIO/ telling
it which IOCB to use to find the OPEN information. CIO attempts to
find the specified device/file and returns a status byte indicating
the success of the search. If the specified device/file can be found
by CIO/ then CIO stores control information in the IOCB and that IOCB
is now used for as long as that file is OPEN.

Once a file is OPEN/ it can then be accessed using data read or data
write types of commands; in general/ reading may proceed until there
is no more data to read (End of File) and writing may proceed until
there is no more medium to store data on (End of Medium)/ although
neither reading nor writing need proceed to that point. The reading
and writing of data generally occurs into and out of user supplied
data buffers (although a special case allowing single byte transfers
using the 6502 A register is provided).

When there are no more accesses to be performed on an OPEN
device/file* the CLOSE operation is performed by the user. This
accomplishes two functions: 1) it terminates and makes permanent an
output file (essential for disk and cassette) and 2) it releases that
IOCB to be used for another I/O operation.

CIO Design Philosophy

The CIO utility was designed specifically to meet the following design
criteria.

The transfer of data is device independent.

By te-at-a-t ime/ multiple byte and record aligned accesses are
supported.

Multiple device/files can be accessed concurrently.

35

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT APPROVAL
OPERATING SYSTEM, C016555

Error handling is largely device independent.

New device handlers may be added without altering the system ROM.

DEVICE INDEPENDENCE

CIO provides device independence by having a single entry point for
all devices (and for all operations) and by having a device
independent calling sequence. Once a device/file is OPENed, data
transfers occur with no regard to the actual device involved. Uniform
rules for handling byte and record oriented data transfers allow the
actual device storage block sizes to be transparent to the user.

DATA ACCESS METHODS

Two file access methods are supported by CIO: byte aligned and record
a 1 i gned.

Byte aligned accesses allow the user to treat the device/file as a
sequential byte stream; any number of bytes may be read or written and
the following operation will continue where the prior one left off.
Records are of no consequence in this mode, and reads or writes may
encompass multiple records if desired.

Record aligned accesses allow the user to deal wit-h the data stream at
a higher level, that of the data record or "line of text". Each and
every write operation creates a single record (by definition), and
each read operation assures that the following read operation will
start at the beginning of a record. Record aligned accesses may not
deal with portions of more than one record at a time. Record aligned
accesses are useful only with text data or with binary data guaranteed
not to contain the EOL character ($9B) as data.

Note that any file may be accessed using the byte aligned access
method, regardless of how the file was created. But not all files may
be successfully read using record aligned accesses; the file must
contain EOL characters at the end of each record and at no other
place.

MULTIPLE DEVICE/FILE CONCURRENCY

Up to eight device/files may be accessed concurrently using CIO, each
operating independently of the others.

UNIFIED ERROR HANDLING

All error detection and recovery occurs within the CIO subsystem and
the status information that reaches the user is in the form of a
status byte for each device/file. As much as possible, error codes are
device independent (see Appendix B).

DEVICE EXPANSION

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM* C016555

Devices are known by one character names such as 'K' or 'P'* and a

number of device handlers are part of the resident system ROM.

However/ additional device handlers may be added to the system using
the RAM resident Device Table; this is normally done at power up time

with the disk boot process/ but may be done at any point in time.

CIO calling mechanism

The primary element in performaing I/O using CIO is an Input/Output
Control Block (IOCB). There are eight IOCBs in the system, arranged
linearly in RAM as shown below.

! IOCB O I

\ IOCB 1 !

low address C03403

i IOCB 6 !

I IOCB 7 J

+ high address

One IOCB is required for each OPEN device/file and any IOCB may be
used to control any device/file; although IOCB O is normally assigned
to the Screen Editor (E:). A typical I/O operation is performed by
having the user: 1) insert appropriate parameters into an IOC3 of his
chosing* 2) put the IOCB number times 16 into the 6502 X register and
3) JSR to the CIO entry point CIOV CE4563. CIO will return to the user
when the operation is complete or if an error was encountered; the
status of the operation will be in the IOCB used as well as in the
6502 Y register; in addition/the 6502 conditions codes will reflect
the value in the Y register. . In some cases a data byte will be in the
6502 A register. The X register will remain unchanged for all
operations and conditions. An example is shown below:

I0CB2X $20 ; INDEX FOR IOCB #2.

LDX
JSR

BMI

#I0CB2X
CIOV
#0; (opt i ona 1

)

ERROR

Each IOCB is sixteen bytes long, in which some bytes are user
alterable and some are for use by CIO and/or the device handl
of the IOCB bytes will now be described/ and the system equate
name and memory address for each will be given.

Eac h

file

HANDLER I.D. — ICHID C0340D

37

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT APPROVAL
OPERATING SYSTEM, C016555

The handler I.D. is an index into the system Device Table (see section
9 > and is not user alterable. This byte is set by CIO as the result
of an OPEN command and is left unchanged until the device/file is
CLOSEd, at which time CIO a/ill set the byte to $FF.

DEVICE NUMBER — ICDNO C 0341

3

The device number is provided by CIO as the result of an OPEN command
and is not user alterable. This byte is used to distinguish between
multiple devices of the same type, such as 'Dl. ' and 'D2: '.

COMMAND BYTE — ICCMD C03423

The command byte is set by the user and tells CIO which of its
repertoire of commands is to be performed. The commands and their
command byte values will be detailed in section 5.2.3. This byte is
not altered by CIO.

STATUS — ICSTA C03433

The status byte is used by CIO to convey operation status to the user;
it is updated as a result of each and every CIO call. The most
significant (sign) bit is a one for error conditions and zero for
non-error conditions, and the remaining bits represent an error
number. See Appendix B for a list of status codes.

BUFFER ADDRESS — ICBAL C03443 & ICBAH C03453

This two byte pointer is set by the user and is not altered by CIO.
The pointer contains the address of the beginning (low address) of a
buff er which is used to: 1) contain data for read and write operations
and 2) contain the device/filename specification for the OPEN command.
The pointer may be altered at any time by the user.

PUT ADDRESS — ICPTL C03463 & ICPTH C03473

This two byte pointer to the handler's PUT CHARACTER entry point (- 1)
is set by CIO at OPEN time; this was provided as an accommodation to
the people writing the BASIC cartridge and has no legitimate use in
the system. This variable is set to point to CIO's "IOCB not OPEN"
routine on CLOSE, power up and CS/RESET3.

BUFFER LENGTH/BYTE COUNT — ICBLL C0348 3 & ICBLH C03493

This two byte count is set by the user to indicate the size of the
data buffer pointed to by ICEAL and ICBAH for read and write
operations; it is not required for OPEN. After each read or write
operation, CIO will set this parameter to the number of bytes actually
transferred into or out of the data buffer. For record aligned
accessed, the record length may well be less than the buffer length.
Also an end of file condition or an error may cause the byte count to
be less than the buffer length.

AUXILLIARY INFORMATION — ICAX1 C034A3 & ICAX2 C034B3

38

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

These two bytes are set by the user and contain information which is
used by the OPEN command process and/or is device dependent.

For OPEN/ two bits of ICAX1 are always used to specify the OPEN
direction as shown below# where R is set to 1 for input (read) enable
and W is set to 1 for output (write) enable.

7 3 2 0
—I-—i—+~+

i i i i i W i PC i i i

H I i I I i I » H

ICAX1 is not altered by CIO and should not be altered by the user once
the device/file is OPEN.

The remaining bits of ICAX1 and all of ICAX2 contain only device
dependent data and are explained in section 5:Device specific information.

REMAINING BYTES (ICAX3-ICAX6

)

The four remaining bytes are reserved for use by the handler
processing the I/O command for CIO. There is no fixed use for these
bytes and they are not user alterable except as specified by the
particular device descriptions in sectibn 5.3. These bytes will be
referred to as ICAX3/ ICAX4, ICAX5 and ICAX6/ although there are no
equates for those names in the OS equate file.

CIO functions

There are eight basic functions that are supported by all of the
system handlers/ subject to restrictions based upon the
direction of data transfer (e.g. one cannot read data from the
printer). The basic functions are: OPEN, CLOSE/ GET CHARACTERS/
PUT CHARACTERS/ GET RECORD/ PUT RECORD/ GET STATUS and SPECIAL.
Other# device specific/ commands are also supported by CIO and
are described in section 5:Device specific information.

OPEN — Assign device/filename to IOCB and ready for access.

Before a device/file may be accessed/ it must be OPENed; this process
links a specific IOCB to the appropriate device handler/ initializes
the device/file/ initializes an CIO control variables, and passes
device specific options to the device handler.

The following IOCB parameters are set by the user prior to calling CIO
for an OPEN operation:

COMMAND BYTE = *03

BUFFER ADDRESS = pointer to a device/filename specification (see
section 5: Device/filename specification.)

3?

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

AUX1 = OPEN direction bits, plus device dependent information.

AUX2 = device dependent information.

After an OPEN operation, CIO will have altered the following IOCB
parameters

:

HANDLER I.D. = index to the system Device Table; this is used
only by CIO and must not be altered by the user.

DEVICE NUMBER = device number taken from the device/ filename
specification and must not be altered by the user.

STATUS » result of OPEN operation; see Appendix B for a list of
the possible status codes. In general/ a negative status will
indicate a failure to OPEN properly.

PUT ADDRESS = pointer to the PUT CHARACTERS routine for the
device handler just OPENed. *** It is recommended that this
pointer not be used

CLOSE — Terminate access to device/file and release IOCB.

After the user is through accessing a given device/file/ the CLOSE
command is issued. This process completes any pending data writes,
goes to the device handler for any device specific actions and then
releases the IOCB.

The following IOCB parameter is set by the user prior to calling CIO

COMMAND BYTE = *0C

The following IOCB parameters are altered by CIO as a result of the
CLOSE operation:

HANDLER I.D. = *FF

STATUS = Result of CLOSE operation.

PUT ADDRESS - pointer to "IOCB not OPEN" routine.

GET CHARACTERS — Read n characters (byte aligned access).

The specified number of characters are read from the device/file to
the user supplied buffer. EOL characters have no termination feature
when using this function; there may be no EOL, or many EOLs, in the
buffer after operation completion. There is a special case provided
that passes a single byte of data in the 6502 A register when the
buffer length is set td zero.

The following IOCB parameters are set by the user prior to calling
CIO:

40

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

COMMAND BYTE m %07

BUFFER ADDRESS pointer to data buffer.

BUFFER LENGTH = number of bytes to read; if this is zero, the
data will be returned in the 6502 A register only.

The following IOCB parameters are altered by CIO as a result of the
GET CHARACTERS operation:

STATUS * result of GET CHARACTERS operation.

BYTE COUNT/BUFFER LENGTH « number of bytes read to the buffer.
The BYTE COUNT will always equal the BUFFER LENGTH except uihen an
error or an end-of-file condition occurs.

PUT CHARACTERS Write n characters (byte aligned access).

The specified number of characters are written from the user supplied
buffer to the device/file. EOL characters have no buffer terminating
properties, although they have their standard meaning to the
device/file receiving them; no EOLs are generated by CIO. There is a

special case that allows a single character to be passed to CIO in the
6502 A register if the buffer length is zero.

The following IOCB parameters are set by the user prior to initiating
the PUT CHARACTERS operation:

COMMAND BYTE = *0B

BUFFER ADDRESS = pointer to data buffer.

BUFFER LENGTH = number of bytes of data in buffer.

The following IOCB parameter is altered by CIO as a result of the PUT
CHARACTERS operation:

STATUS result of PUT CHARACTERS operation.

GET RECORD — Read up to n characters (record aligned access).

Characters are read from the device/file to the user supplied buffer
until either the buffer is full or an EOL character is read and put
into the buffer. If the buffer fills before an EOL is read, CIO
continues reading characters from the device/file until an EOL is

read, then puts an EOL at the end of the buffer, and sets the status
to indicate that a truncated record was read.

The following IOCB parameters are set by the user prior to calling
CIO:

COMMAND BYTE - *05

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT APPROVAL
OPERATING SYSTEM, C016555

BUFFER ADDRESS = pointer to data buffer.

BUFFER LENGTH = maximum number of bytes to read (including the
EOL character).

The following IOCB parameters are altered by CIO as a result of the
GET RECORD operation:

STATUS = result of GET RECORD operation.

BYTE COUNT/BUFFER LENGTH = number of bytes read to data buffer;
this may be less than the maximum buffer length.

PUT RECORD — Write up to n characters (record aligned access).

Characters are written from the user supplied buffer to the
device/file until either the buffer is empty or an EOL character is
written. If the buffer is emptied without writing an EOL character to
the device/file, then CIO will send an EOL after the last user
supplied character.

The following IOCB parameters are set by the user prior to calling
CIO:

d

COMMAND BYTE - *09

BUFFER ADDRESS = pointer to data buffer.

BUFFER LENGTH = maximum number of bytes in buffer.

The following IOCB parameter is altered by CIO as a result of the PUT
RECORD operation:

STATUS = result of PUT RECORD operation.

GET STATUS — Return device dependent status bytes
i

The device controller is sent a STATUS command, and the controller
returns four bytes of status information which are stored in DVSTAT
C02EA3. See the subsections of 5.3 for the status information returned
by each device.

The following IOCB parameters are set by the user prior to callina
CIO:

COMMAND BYTE = *OD

BUFFER ADDRESS pointer to a device/filename specification if
the IOCB is not already OPEN; see the
discussion of the implied OPEN option below.

42

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

After a GET STATUS operation, CIO will have altered the following
parameters:

STATUS = result of GET STATUS operation; see Appendix B for a

list of the possible status codes.

DVSTAT = the four byte response from the device controller.

SPECIAL — Special function

Any COMMAND BYTE value greater than *0D is treated by CIO as a special
case. Since CIO does not know what the function is, CIO transfers
control to the device handler for complete processing of the
operation.

The following IOCB parameters are set by the user prior to calling/
CIO:

COMMAND BYTE > *OD

BUFFER ADDRESS pointer to a device/filename specification if

the IOCB is not already OPEN; see the
discussion of the implied OPEN option below.

Other IOCB bytes may be setup, depending upon the specific
SPECIAL command being performed.

After a SPECIAL operation, CIO will have altered the following
parameters:

STATUS = result of SPECIAL operation; see Appendix B for a list
of the possible status codes.

Other bytes may be altered, depending upon the specific SPECIAL
command.

The device specific sections in 5.3 will detail the individual SPECIAL
commands supported by the system.

Implied OPEN option

The GET STATUS and SPECIAL commands are treated specially by CIO; they

may use an already OPEN IOCB to initiate the process or they may use

an unOPENed IOCB. If the IOCB is unOPENed, then the BUFFER ADDRESS
must contain a pointer to a device/filename specification, just as for

the OPEN command; CIO will then OPEN that IOCB, perform the specified
command and then CLOSE the IOCB again.

43

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

Device/filename specification

As part of the OPEN command/ the IOCB buffer address parameter points
to a device/filename specification/ which is a string of ATASCII
characters in the following format:

<spec if ication> :
: = <device>C<number>3: C<f i 1 ename>3<eo 1>

<device> = C i DIE! KIP IRIS
<number> ::= 1I2I3I4I5I6I7I8
<filename> has device dependent characteristics.
<eol> :

: = *9B

The following devices are supported at this writing:

C = Cassette drive
Dl through D8 Floppy diskette drives *
E = Screen Editor
K = Keyboard
P = 40 column printer
P2 = 80 column printer *
Rl through R4 = RS-232-C interfaces *
S = Screen display

Devices flagged by asterisks ('*') are supported by non-resident
hand ler s.

If <number> is not specified/ it is assumed to be 1.

The following examples show valid device/filename specifications:
i

C: Cassette
D2: BDAT File "BDAT" on disk drive #2
D: HOLD File "HOLD" on disk drive #1
K: Keyboard

I/O example

The example provided in this section illustrates a simple example of
an I/O operation using the CIO routine.

This code segment illustrates the simple example of reading
text lines (records) from a disk file named "TESTER" on disk
drive #1. All symbols used are equated within the program
although many of the symbols are in the OS equate file.

The program performs the following steps:

1. OPENs the file 'Dl: TESTER' using IOCB #3.
2. Reads records until an error or EOF is reached.
3. CLOSEs the file.

I/O EQUATES

44

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

EOL= *9B •

f END OF LINE CHARACTER.
I0CB3= *3Q • IOCB #3 OFFSET (FROM IOCB #0).

ICHID= *0340 •

t (HANDLER I.D. — SET BY CIO).
ICDNO= ICHID+1 • (DEVICE # — SET BY CIO).
ICCOM= ICDNO+1 • COMMAND BYTE.
ICSTA= ICCOM+1 *

t STATUS BYTE — SET BY CIO.
ICBAL= ICSTA+1 m

1 BUFFER ADDRESS (LOW).
ICBAH= ICBAL+1 •

1 BUFFER ADDRESS (HIGH).
ICPTL= ICBAH+1
ICPTH=X \—r I III TCPTL+1
ICBLL= ICPTH+1 • BUFFER LENGTH (LOW).
ICBLH= ICBLL+1 • BUFFER LENGTH (HIGH).
ICAX1= ICBLH+1 • AUX 1.

ICAX2= ICAX1+1 •
•# AUX 2

OPEN= • PEN COMMAND.
QFTRFf

=

*j? c_ i r\ l_ ~ W i

CLOSE= *OC CLOSE COMMAND.
*

OREAD= *04 • PEN DIRECTION = READ.
OWRIT- *oe •

* OPEN DIRECTION = WRITE.

EOF= *88 i END OF FILE STATUS VALUE.

C I OV= *E456 • CIO ENTRY VECTOR ADDRESS.

I

INITIALIZE THE IOCB FOR FILE "OPEN".

LDX #10CB3

LDA #0PEN
STA ICCOM, X

LDA #NAME
STA I CBAL/ X

LDA #NAME/256
STA ICBAH,

X

LDA #OREAD
STA ICAX1.

X

LDA #0
STA ICAX2, X

i SETUP TO ACCESS IOCB #3

; SETUP OPEN COMMAND.

; SETUP BUFFER POINTER TO
; ... POINT TO FILENAME.

SETUP FOR OPEN READ

CLEAR AUX 2.

"OPEN" THE FILE

45

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

JSR
BPL

CIOV
TPIO

PERFORM "OPEN" OPERATION.
YES — STATUS WAS POSITIVE.

JMP ERROR NO — "OPEN" PROBLEM.

SETUP TO READ A RECORD.

TPIO LDA
STA

#CETREC
ICCOM, X

; SETUP "GET RECORD" COMMAND

LDA
STA
LDA
STA

#BUFF
ICBAL,

X

#BUFF/256
ICBAH, X

; SETUP DATA BUFFER POINTER.

READ RECORDS.

LOOP LDA
STA
LDA
STA

JSR
BMI

#BUFFSZ
ICBLL,

X

#BUFFSZ/256
ICBLH,

X

CIOV
TP20

SETUP MAX RECORD SIZE .

.

. . . PRIOR TO EVERY READ.

READ A RECORD.
NO — MAY BE END OF FILE

A RECORD IS NOW IN THE DATA BUFFER "BUFF". IT IS TERMINATED BY
AN EOL CHARACTER, AND THE RECORD LENGTH IS IN "ICBLL" & " ICBLH"
THIS EXAMPLE WILL DO NOTHING WITH THE RECORD JUST READ.

JMP LOOP i READ NEXT RECORD.

NEGATIVE STATUS ON READ — CHECK FOR END OF FILE.

TP20 CPY #EOF
BNE ERROR

LDA #CLOSE
STA ICCOM, X

JSR CIOV

HLT

i END OF FILE STATUS?
; NO — ERROR.

j YES — CLOSE FILE.

; CLOSE THE FILE.

; *#* END OF PROGRAM

DATA REGION OF EXAMPLE PROGRAM

46

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

NAME . BYTE "Dl : TESTER " , EOL

BUFFSZ= 80 ; 80 CHARACTER RECORD MAX
(INCLUDES EOL).

BUFF= * ; READ BUFFER.
*= *+BUFFSZ

. END

Device specific information

This section provides device specific information regarding device
handlers that interface to CIO.

Keyboard handler (K:)

The Keyboard device is a read only device with a handler that supports
the following CIO functions:

OPEN
CLOSE
GET CHARACTERS
GET RECORD
GET STATUS (null function)

The Keyboard handler may produce the following error statuses:

*80 — CBREAK3 key abort.
$88 — End-of-file (produced by pressing CTRL-3).

The Keyboard handler is one of the resident handlers* and therefore
has a set of device vectors starting at location E420/ as described
further in section 5.

The keyboard can produce any of the 256 codes in the ATASCII character
set as shown in Appendix F. Note that a few of the keyboard keys do
not generate data at the Keyboard handler level; these keys are
described below:

The ATARI key toggles a flag which enables/disables the
inversion of bit-7 of each data character read. The Screen
Editor editing keys are exempted from such inversion,
however.

The CAPS key provides three functions:
SHIFT-CAPS — Alpha caps lock.
CTRL-CAPS — Alpha CTRL lock.
CAPS — Alpha unlock.

The system powersup and ES/RESET3s to the Alpha caps lock
option.

C/!\3 -

CAPS -

47

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEH» C01&555

Some key combinations are ignored by the handler, such as CCTRL3-4
through CCTRL3-9, CCTRL3-0/ CCTRL3-1, [CTRL]-/ and all key
combinations in which the CSHIFT3 and ECTRL3 keys are depressed
simultaneously.

The CCTRL3-3 key generates an EOL character and returns EOF status.

The CBREAK3 key generates an EOL character and returns BREAK status.

CIO function descriptions

The device specific characteristics of the standard CIO functions
(described earlier in this section) are detailed below:

OPEN

The device name is 'K'# and the handler ignores any device number and
filename specification! if included.

There are no device dependent option bits in AUX1 or AUX2.

CLOSE

No special handler actions.

GET CHARACTERS and GET RECORD

The handler returns the ATASCII key codes to CIO as they are entered,
with no facility for editing.

GET STATUS

The handler does nothing but set the status to *01.

Theory of operation.

Everytime a keyboard key is pressed/ an IRQ interrupt is generated as
discussed in section 6 and is vectored to the Keyboard handler's
interrupt service routine as shown later in section 6. The key code
for the key pressed is then read and stored in data base variable CH
C02FC3; this occurs whether or not there is an active read request to
the Keyboard handler/ thus effecting a one byte FIFO for keyboard
entry. See section 4 (E8) for a discussion of the auto-repeat feature.

Whenever there is an active read request for the Keyboard handler, the
handler monitors the CH variable for not containing the value $FF
(empty state). When CH shows non-empty/ the handler takes the key code
from CH and sets CH to $FF again. The key code byte obtained from CH
is not ATASCII code and has the following form:

48

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

7 0
H 1 1 1 1-—I-—I 1 h

!C!S! key code !

Where: C » 1 if the CTRL key is pressed.
S = 1 if the SHIFT key is pressed.
The remaining 6 bits are the hardware key code.

The key code obtained is then converted to ATASCII using the first of
the following rules which applies:

1. Ignore the code if the C & S bits are both set.
2 If the C bit is set/ process the key as a CTRL code.
3. If the S bit is set/ process the key as a SHIFT code.
4. If CTRL lock is in effect/ process alpha characters as CTRL

codes, all others as lower case.
5. IF SHIFT lock is in effect/ process alpha characters as SHIFT

codes/ all others as lower case.
6. Else/ process as lower case character.

Then/ if the resultant code is not a Screen Editor control code/
and if the video invert flag is set/ set bit-7 of the ATASCII
code (causes inverse video when displayed).

The keycode to ATASCII conversion table is shown on the next
page. See also Appendix F.

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT.
OPERATING SYSTEM, C016555

APPROVAL

KEYCODE TO ATASCII CONVERSION TABLE

Key Key 1. c. SHIFT CTRL Key Key I.e. SHIFT CT
Code Cap Code Cap

00 L 6C 4C OC 20 2C 5B 00
01 J 6A 4A OA 21 SPACE 20 20 20
02 • 3B 3A 7B 22 • 2E 5D 60
03 23 N 6E 4E OE
04 24
05 K 6B 4B OB 25 M 6D 4D OD
06 + 2B 5C IE 26 / 2F 3F —
07 * 2A 5E IF 27) : (

08 0 6F 4F OF 28 R 72 52 12
09 29
OA P 70 50 10 2A E 65 45 05
OB U 75 55 15 2B Y 79 59 19
OC RET 9B 9B 9B 2C TAB 7F 9F 9E
OD I 69 49 09 2D T 74 54 14
OE — 2D 5F 1C 2E W 77 57 17
OF — 3D 7C ID 2F Q 71 51 11
10 V 76 56 16 30 9 39 28 —
1

1

31
12 c 63 43 03 32 0 30 29 —
13 33 7 37 27 —
14 34 BACKS . 7E 9C FE
15 B 62 42 02 35 8 3e 40 —
16 X 78 58 18 < 3C 7D 7D
17 z 7A 5A 1A 37 > 3E 9D FF
18 4 34 24 38 F 66 46 06
19 39 H 68 48 08
1A 3 33 23 9B* 3A D 64 44 04
IB 6 36 26 3B
1C ESC IB IB IB 3C CAPS
ID 5 35 25 3D G 67 47 07
IE 2 32 22 FD 3E S 73 53 13
IF 1 31 21 3F A 61 41 01

* CCTRL1-3 returns EOF status.

The inverse of this table (ATASCII to keystroke) is given in Appendix
F.

50

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

Display handler (S:)

The Display device is a read/write device with a handler that supports
the following CIO functions:

OPEN
CLOSE
GET CHARACTERS
GET RECORD
PUT CHARACTERS
PUT RECORD
GET STATUS (null function)

DRAW
FILL

The Display handler may produce the following error statuses:

*S4 — Invalid special command.
*8D — Cursor out of range.
$91 — Screen mode > 11.

$93 — Not enough memory for screen mode selected.

The Display handler is one of the resident handlers; and therefore has
a set of device vectors starting at location E410.

Screen modes

The display screen may be operated in any of 20 configurations (modes
I through 8* with or without split screen/ plus modes 0 and 9 through
II without split screen). Mode 0 is the text displaying mode and modes
1 through 11 are all different graphics modes (although modes 2 and 3
do display a subset of the ATASC 1 1 character set). Modes 9 through 11
require a CTIA chip to be installed in place of the standard CTIA
chip.

TEXT MODE (mode 0)

In text mode the screen is physically comprised of 24 lines of 40
characters per line; however* the display area is limited by program
alterable left and right margins which default to 2 and 39 (of a
possible 0 and 39).

A program controllable cursor shows the destination of the next
character to be output. The cursor is visible as the inverted video
representation of the current character at the destination position.

The text screen data is organized internally as variable length
logical lines; when the screen is cleared* the internal representation
is 24 empty lines. As text is sent to the screen* each EOL marks the
end of a logical line; or if more than 3 physical lines of text are
sent* a logical line will be formed every 3 physical lines. The number

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

of physical lines used to comprise a logical line (1 to 3) is always
the minimum required to hold the data for that logical line.

The text screen "scrolls" upward whenever a text line at the bottom
row of the screen extends past the right margin or a text line at the
bottom row is terminated by an EOL. Scrolling has the effect of
removing the entire logical line that starts at the top of the screen
and then moving all subsequent lines upward to fill in the void. The
cursor will also move upward if the logical line deleted exceeeds one
physical line.

All data going to or coming from the text screen is represented in 8
bit ATASCII code as shown in Appendix E.

Text Modes 1 and 2

In text modes 1 and 2 the screen is physically comprised of either 24
lines of 20 characters (model) or 12 lines of 20 char acters (mode 2).
The left and right margins are of no con- sequence in these modes and
there is no visible cursor. There are no logical lines associated
with the data and in all regards these modes are treated as graphics
modes by the handler.

Data going to or coming from the screen is in the form shown below:

7 0

C D

Where: C is the color/data set select field

C
Value

Color
(default)

Color
Register
(see
append i x

Charac ter
Set
CHBAS=*EO

Charac ter
S
CHBAS=*E2

1

2
3
4
5
6
7

green
gold
gold
green
red
blue
blue
red

P(PFI

)

(PFO)
(PFO)
(PF1)

(PF3)
(PF2)
(PF2)
(PF3)

/ /

/ /

D is a 5 bit truncated ATASKII code which selects the specific
character within the set selected by the C field. See Appendix
E for the graphics representations of the characters.

Database variable CHBAS C02F4D allows for the selection of either
of two data sets. The default value of $E0 provides the capital
letters/ numbers and pubnctuation characters; the alternate value

52

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

of $E2 provides lower case letters and the special character graph-
ics set.

GRAPHICS MODES (modes 3 through 11)

The screen has varying physical characteristics for each of the
graphics modes as shown in Appendix H. Depending upon the mode, a 1 to
16 color selection is available for each pixel and the screen size
varies from 20 by 12 (lowest resolution) to 320 by 192 (highest
resolution) pixels.

There is no visible cursor for the graphics mode output.

Data going to or coming from the graphics screen is represented as 1

to 8 bit codes as shown in Appendix H and in the GET/PUT diagrams
f ol lowing.

SPLIT SCREEN CONFIGURATIONS

In split screen configurations, the bottom of the screen is reserved
for four lines of mode 0 text. The text region is controlled by the
Screen Editor, and the graphics region is controlled by the Display
handler. Two cursors are maintained in this configuration so that the
screen segments may be managed independently.

In order to operate in split screen mode, the Screen Editor must first
be OPENed and then the Display handler must be OPENed using a separate
IOCB (with the split screen option bit set in AUX1).

CIO function descriptions

The device specific characteristics of the standard CIO functions
(described earlier in this section) are detailed below:

OPEN

The device name is 'S'# and the handler ignores any device number and
filename specification, if included.

The handler supports the following options:

7 O

AUX1 ! iCISIWIR! !

H ¥—r-—»-—+—h—I h K

Where: C = 1 indicates to inhibit screen clear on OPEN.
S = 1 indicates to setup a split screen configuration (for

modes 1 through 8 only).
R & W are the direction bits (read & write).

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

7 0

AUX2 5 ! mode !

Where: mode is the screen mode (0 through 11).

Note: If the screen mode selected is 0/ then the AUX1 options are
i gnor ed

.

Because the Display handler dynamically allocates high address memory
for use in generating the screen display* and because different
amounts of memory are needed for the different screen modes, the
Display handler and the user must share memory utilization
information. Prior to initiating an OPEN command the variable APPMHI
COOOED should contain the highest address of RAM needed by the user;
the Screen handler will OPEN the screen only if no RAM is needed at or
below that address.

Upon return from a screen OPEN, the variable MEMTOP C02E53 will
|

contain the address of the last free byte at the end of RAM memory
prior to the screen required memory.

As a result of every OPEN command, the following screen variables are
altered:

The text cursor is enabled (CRSINH = 0).
The tabs are set to the default settings (2 & 39).
The color registers are set to the default values,

(shown in Appendix H). Tabs are set at positions 7,15,23,31,39,
47, 55, 63, 71, 79, 87, 95, 103, 111, 119.

CLOSE

No special handler actions.

GET CHARACTERS and GET RECORD

Returns data in the following screen mode dependent forms, where each
byte contains the data for one cursor position (pixel); there is no
facility for having the handler return packed graphics data,
lspace 1; need 20

7 0
+-+-+-+-+-+-+-+-+
\ ATASCII ! Mode 0
+—+—h—h~+—h

—

'r
—

+-H— -4 h—I
I

—

-\ I h

! C * D ! Modes 1,2 — C = color, ata set
select.

+-+-+-+~+-+-4.-+-4 D = truncated ATASCII.

54

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

H— -f-—I 1 1 1 1 1 1-

! zero ! D !

H h-H— H— 4-—i
I—+~+

Modes 3/5/7 — D = color

I zero !Di Modes 4/6/8 — D color.

+-+-+-+

—

\--+—i—+~+
{ zero \ D !

+-+-+-+-+-4—+-+_-§.

Modes 9/ 10/ 11 — D = data

As each data byte is returned/ the cursor is moved to the next cursor
position. For mode 0/ the cursor will stay within the specified
margins; for all other modes/ the margins are ignored.

PUT CHARACTERS and PUT RECORD

The handler accepts display data in the following screen mode
dependent forms; there is no facility for the handler to receive
graphics data in packed form.

7 0
+ 4—+-+-+-+-+--1—

+

! ATASCII \

-i 1 1 1 1 1 ! !

Mod e 0

+—h-+

—

h—
! C ! D

H I • I I i I I I-

i i r\ i

i » U i

+-+— •+—H—h—+—I h

—

h

* Modes 1/2 — C = color,
D truncated ATASCII.

Modes 3/5/7 — D = color

h—+-+

—

h—i—i—i—i—

h

! ? ID!
+_+_+_+_+_4._+ _.f_+

Modes 4/6/8 — D = color

—h— H 1 h—I 1 1 h

i i u i

+-+-+-+-+-+-+-+-+
Modes 9/10,11 — D = data

NOTE: For all modes/ if the output data byte equals $9B <EOL) that
byte will be treated as an EOL character; and if the output data
byte equals *7D (CLEAR) that byte will be treated as a screen
clear character.

As each data byte is written/ the cursor is moved to the next cursor
position. For mode 0/ the cursor will stay within the specified
margins; for all other modes, the margins are ignored.

While outputting/ the Display handler monitors the keyboard to detect
the pressing of the CCTRLU-l key combination; when this occurs, the

55

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

handler loops internally until that key combination is pressed again,
thus effecting a stop/start function to freeze the screen display.
Note that there is no ATASC I I code associated with either the CCTRLD-l
key combination or the start/stop function; the stop/start function
may be controlled only from the keyboard (or by altering database
variable CH as discussed in Appendix K)

GET STATUS

No handler action except to set the status to $01.

DRAW

This special command draws a simulated "straight" line from the
current cursor position to the location specified in ROWCRS C0054U and
COLCRS C0055D. The color of the line is taken from the last character
processed by the Display handler or Screen Editor. To force the color;
store the desired value in ATACHR C02FB3. At the completion of the
command/ the cursor will be at the location specified by ROWCRS and
COLCRS.

The value for the command byte for DRAW is *11.

FILL

This special command fills an area of the screen defined by two lines
with a specified color. The command is setup the same as in DRAW/ but
as each point of the line is drawn/ the routine scans to the right
performing the procedure shown below (in Pascal notation):

WHILE PIXEL CROW/ COLD = 0 DO
BEGIN

PIXEL CROW; COLD := FILDAT;
COL : = COL + li

IF COL > Screen right edge THEN COL 0
END/

An example of a FILL operation is shown below

+ 1

4 +

+ P

Where: ' represents the fill operation.
' ' are the line points/ with '+ ' for the endpoints

1 — set cursor and plot point
2 — set cursor and DRAW line.

56

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

3 — set cursor and plot point.
4 — set fill data value, set cursor and FILL.

FILDAT C02FD3 contains the fill data and ROWCRS and COLCRS contain the
cursor coordinates of the line endpoint. The value in ATACHR C02FB3
will be used to draw the line; ATACHR always contains the last data
read or written, so if the steps above are followed exactly, ATACHR
will not have to be modified.

The value for the command byte for FILL is $12.

User alterable database variables

Certain functions of the Display handler require the user to examine
and/or alter variables in the OS database; the paragraphs that follow
describe some of the more commonly used handler variables. There are
additional descriptions to be found in Appendix K Bl-55.

CURSOR POSITION

The cursor position for the graphics screen or mode 0 text screen is
maintained in two variables: ROWCRS [00543, the display row number,
and COLCRS C00553, the display column number. Both numbers range from
0 to the maximum number of rows/columns - 1. The cursor may be set
outside of the defined text margins with no ill effect; this region
may be read from and written to when the cursor is controlled by the
user. The home position (0,0) for both text and graphics is the upper
left corner of the screen.

ROWCRS is a single byte, and COLCRS is two bytes with the least
significant byte being at the lower address.

When these variables are altered by the user, the screen
representation of the cursor will not move until the next I/O
operation involving the display is performed.

INHIBIT/ENABLE VISIBLE CURSOR DISPLAY

The user may inhibit the display of the text cursor on the screen by
setting the variable CRSINH C02F03 to any non-zero value. Subsequent
I/O will not generate a visible cursor.

The user may enable the display of the text cursor by setting CRSINH
to zero. Subsequent I/O will then generate a visible cursor.

TEXT MARGINS

As mentioned earlier, the text screen has user alterable left and
r.ight margins, which are normally set to 2 and 39 by the OS The
variable LMARGN C00523 defines the left margin and RMARGN COO 53

3

defines the right margin. The leftmost margin value is O and the
rightmost margin value is 39. .

57

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

The margin values inclusively define the useable portion of the screen
for all operations in which the user does not explicitly alter the
cursor location variables as described prior to this paragraph.

COLOR CONTROL

As part of normal stage 2VBLANK processing (as discussed in Section 6)
the hardware color registers are updated using data from the OS
database. Shown below are the database variable names, the hardware
register names and the function of each register; see Appendix H for
the mode dependent uses for the registers.

Database Hardware Func t i on

COLORO
COLOR 1

C0L0R2
COLORS
C0L0R4

COLPFO
COLPF1
C0LPF2
C0LPF3
COLBK

PFO -
PF1 -
PF2 -
PF3 -
BAK -

Playf ield
Playf ield
Playf ield
Playf ield
Playf ield

0.

1.

2.

3.

background

PCOLRO
PC0LR1
PC0LR2
PC0LR3

COLPMO
C0LPM1
C0LPM2
C0LPM3

PMO -

PM1 -

PM2 -

PM3 -

- P 1 ay er /mi s s i 1 e 0
- P lay er /mi ss i 1 e 1

- Player/missile 2
- Player/missile 3

Theory of operation

The Display handler automatically sets up all memory resources
required to create and maintain the screen display at OPEN time.
The screen generation hardware requires that two distinct data areas
exist for graphics modes: 1) a display list and 2) a screen data
region; a third data area must exist for text modes which defines the
screen representation for each of the text characters. The ATARI
personal computer HARDWARE MANUAL must be referenced for a com-
plete understanding of the material that is to follow.

The simplified block diagram below shows the relationships between
the memory and hardware registers used to setup a screen display
(without player/missile objects) by the 0. S. ; be aware that the
hardware allows for many other possibilities.

xx xxx DATABASE HARDWARE
xx xxx VARIABLE REGISTER

(Updated every
VBLANK

)

MEMTOP

Display SDL DLISTL
List

SDL DLISTH

58

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

Screen Data SAVMSC

Graph i c s

and /or
text

end of RAM memory

Char.
Def s.

EOOO CHBAS=EO CHBASE

in OS E3FF
ROM

Specials and
numbers

Cap i ta

1

Let t er s

EOOO

EiOO

Color
Color i

Color 2
Color 3
Color 4

Color COLPFO
regs. C0LPF2

C0LPF3
COLBK

Special
Grap h i c s

Lower
case
Letters

E200

E300

In the preceding diagram the following relationships are present:

Database variables SDL/STL/SDL/STH containthe address of the
current display list* as part of the Stage 1 VBlank process this
address isstored in the hardware display list address r
DLISTL and DLISTH.

;The display list itself defines the characteristics of the
screen to be displayed and points to the memory containing the
data to be displayed.

Database variable CHE AS contains the msb ofthe base address of
the character representations for the character data (text modes
only). The default value for this variable is $EOi which declares that
the character representations start at memory address EOOO (the charac
set provided by the 0. S. in ROM). Each character is defined as an
8X8 bit matrix., requiring 8 bytes per character; since a character
code contains up to 7 significant bits (set of 128 characters), 1024
bytes are required to define the largest set. The O. S. ROM con-
tains the default set in the region from EOOO to E3FF.

All Character codes are converted by the handler from ATASC 1

1

to an internal code and vice versa, as shown below:

ATASC 1

1

CODE
INTERNAL
CODE

00- IF
20-3F

40-5F
00- IF

59

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

40-5F
60-7F
8Q-9F
AO-BF
CO-DF
EO-FF

20-3F
60-7F
CO-DF
S0-9F
AO-BF
EO-FF

The character set in ROM is layed out in internal code order.
The reason for the internal code being different from the external
code (ATASCII) is based upon three considerations: 1) ATASCII
codes for all but the special graphics characters were to be sim-
ilar to ASCII, specifically the a 1 p hab e t i c , numer i c , and punctuation
character codes are identical to ASCII, 2) in text modes 1 and 2 it wa
was desired that one haracter subset included capital letters,
numbers and punctiuation and the other character subset include
lower case letters and special graphics characters and 3) the codes
for the capital and lower case letters were to be identical
in text modes 1 and 2.

Database variables COLORO through C0L0R4 contain the current color
register assignments; these are also stored in the hardware color
registers aspart of the stage 1 VBLANK process, thus providing
synchronized color changes. Appendix H provides more information
regarding the color registers.

Database variable SAVMSC points to the lowest memory address of
the screen data region, which corresponds to the data displayed
at the upper left corner of the display.

When the display handler receives an OPEN command, it first de-
termines the screen mode from the OPEN IOCB. It then allocates mem-
ory from the end of RAM (as specified by database variable RAMTOP)
downward; first for the screen data and then for the display list.
If thereis sufficient memor yava i lab 1 e, the screen data region is
cleared, the display list is created/ and the display list address
is stored to the database.

Screen Ed i tor (E:)

The Screen Editor is a read/write handler that uses the Keyboard
handler and the Display handler to provide "line at a time' 1

input with interactive editing functions, as well as formatted
output.

The Screen Editor supports the following CIO functions:

OPEN
CLOSE
GET CHARACTERS
GET RECORD
PUT CHARACTERS

60

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

PUT RECORD
GET STATUS (null function)

The Screen Editor may produce the following error statuses:

see Keyboard handler and Display handler.

The Screen Editor is one of the resident handlers, and therefore has a
set of device vectors starting at location E400.

The Screen Editor may be thought of as a program which reads key data
from the Keyboard handler and sends each character to the Display
handler for immediate display; and in addition, accepts data from the
user to send to the Display handler. In addition, the Screen Editor
reads data from the Display handler (not the Keyboard handler) for the
user. In fact, the Keyboard handler, Display handler and the Screen
Editor are all contained in one monolithic hunk of code, and thus, are
even more closely related than indicated.

Most of the behaviors already defined for the Keyboard handler and the
Display handler apply to the Screen Editor, so the discussions in this
section will pertain to deviations from those behaviors or to
additional features that are part of the Screen Editor only. The
Screen editor deals only with text data (screen mode 0) as described
in section 5. A split screen configuration is allowed which is also
explained.

Whereas the Display handler allows the graphics and text screens to be
readable on program demand, the Screen Editor gives the operator at
the keyboard the control of what portion of the screen is to be read
and when it is to be read. The choice of when is governed by the
CRETURN3 key, and the choice of where is governed by the location of
the cursor when the CRETURN3 key is pressed. When the CRETURN3 key is
pressed, the entire logical line within which the cursor resides is
then made available to the calling program. Trailing blanks in a
logical line are never returned as data, however. After all of the
data in the line has been sent to the caller (this may entail multiple
READ CHARACTERS functions if desired), the cursor is positioned to the
beginning of the logical line following the one just read.

CIO function descriptions

The device specific characteristics of the standard CIO functions
(described earlier in section 5) are detailed below:

OPEN

The device name is 'E', and the Screen Editor ignores any device
number and filename specification, if included.

The Screen Editor supports the following option:

61

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

7 0
—

AUX1 ! iWiRi IF!

Where: R & W are the direction bits (read and write).
F = 1 indicates that a "forced read" is desired (see GET

CHARACTER and GET RECORD for more information).

CLOSE

No special handler actions.

GET CHARACTER and GET RECORD

Normally the Screen Editor will return data to the caller only when
prompted to do so by having the operator at the keyboard press the
CRETURND key. However/ the "forced read" OPEN option/ allows a caller
to read text data without operator intervention; when a read operation
is commanded/ the Screen Editor will return data from the start of the
logical line in which the text cursor is located and then move the
cursor to the beginning of the following logical line. A read of the
last logical line on the screen will cause the screen data to scroll.

A special case occurs when characters are output without a terminating
EOL and then additional characters are appended to that logical line
from the keyboard. When the CRETURN3 key is pressed/ only the keyboard
entered characters are sent to the caller/ unless the cursor has been
moved out of and then back into the logical line/ in which case all of
the logical line will be sent.

PUT CHARACTER and PUT RECORD

The handler accepts ATASC 1 1 characters as one character per byte.
Sixteen of the 256 ATASCII characters are control codes; the EOL code
has universal meaning/ but most of the other control codes have
special meaning only to a display or print device. The Screen Editor
processing of the ATASCII control codes is explained below:

CLEAR ($7D) — The current display is cleared of all data and the
cursor is placed at the home position (upper left corner of the
screen)

.

CURSOR UP ($1C) — The cursor is moved up by one physical line. The
cursor will wrap from the top line of the display to the bottom line.

CURSOR DOWN ($1D) — The cursor is moved down by one physical line.
The cursor will wrap from the bottom line of the display to the top
line.

CURSOR LEFT ($1E) — The cursor is moved left by one column. The
cursor will wrap from the left margin of a line to the right margin of
the same line.

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

CURSOR RIGHT (*1F) — The cursor is moved right by one column. The
cursor will wrap from the right margin of a line to the left margin of
the same line.

BACKSPACE ($7E> — The cursor is moved left by one column (but never
past the beginning of a logicical line) and the character at that new
position is changed to a blank ($20).

SET TAB <$9F> — A tab point is established at the logical line
position at which the cursor is residing. The logical line tab
position is not synonymous with the physical line column position
since the logical line may be up to 3 physical lines in length. For
example/ tabs may be set at the 15th/ 30th/ 45th/ 60th and 75th
character positions of a logical line as shown below:

0 2
—

L

xx-
X x~
xx-

9 19 29 39 Screen column #
—R L/R = margins.

T T T_
A logical line,
x = inaccesible

columns.

Note the effect of the left margin in defining the limits of the
logical line.

The handler default tab settings are shown below:

0 2
—L-

9 19 29 39 Screen column #
R L/R = margins.

x xT
x x

X x

T T T T T A logical line,
x - inaccesible

col umns.

CLEAR TAB ($9E> — The current cursor position within the logical line
is cleared from being a tab point. There is no "clear all tab points 1 '

facility provided by the handler.

TAB <$7F> — The cursor is moved to the next tab point in the current
logical line/ or to the beginning of the next line if no tab point is
found. Note that this function will not increase the logical line
length to accommodate a tab point outside the current length (e.g. the
logical line length is 3S characters and there is a tab point at
position 50).

INSERT LINE (*9D> — The physical line in which the cursor resides/
and all physical lines below that line/ are moved down by one physical
line; the last logical line on the display may be truncated as a
result. The blank physical line at the insert point becomes the
beginning of a new logical line. A logical line may be split into two
logical lines by this process/ the last half of the original logical
line begin concatenated with the blank physical line formed at the
insert point.

63

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

DELETE LINE <*9C> — The logical line in which the cursor resides is

deleted and all data' below that line is moved upward to fill the void.
Empty logical lines are created at the bottom of the display.

INSERT CHARACTER ($FF) — The character at the cursor position, and
all remaining characters in the logical line, are moved one position
to the right and the character at the cursor position is set to blank.
The last character of the logical line will be lost when the logical
line is full and a character is inserted. The number of physical lines
comprising a logical line may increase as a result of this function.

DELETE CHARACTER <$FE) — The character on which the cursor resides is
removed, and the remainder of the logical line to the right of the
deleted character is moved to the left by one position. The number of
physical lines comprising a logical line may decrease as a result of
this function.

ESCAPE <*1B> — The next non-EOL character following this code is
displayed as data, even if it would normally be treated as a control
code. The sequence ESC ESC will cause the second ESC character to be
displayed.

BELL <$FD) — An audible tone is generated; the display is not
modified.

END OF LINE <$9B> — In addition to its record termination function,
the EOL causes the cursor to advance to the beginning of the next
logical line. When the cursor reaches the bottom line of the screen,
the receipt of an EOL will cause the screen data to scroll upward by
one logical line.

Output start/stop using the CCTRL3-1 key is processed. as explained in
section 5:Display handler (S:).

GET STATUS

The handler takes no action other than to set the status to $01.

User alterable database variables

See also the Display handler database variable discussion.

CURSOR POSITION (split screen)

When in a split screen configuration, ROWCRS and COLCRS are associated
with the graphics portion of the display and two other variables,
TXTROW C0290D and TXTCOL C02911, are associated with the text window.
TXTROW is a single byte, and TXTCOL is two bytes with the least
significant byte being at the lower address. Note that the most
significant byte of TXTCOL should always be zero.

64

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

The home position (O/O) for the text window is the upper left corner
of the window.

ENABLE/INHIBIT OF CONTROL CODES IN TEXT

Normally all text mode control codes are operated upon as received/
but sometimes it is desireable to have the control codes displayed as
if they were data characters. This is done by setting the variable
DSPFLG C02FED to any non-zero value before outputting the data
containing control codes. Setting DSPFLG to zero restores normal
processing of text control codes.

Cassette handler (C:

)

The Cassette device is a read or write device with a handler
that supports the following CIO functions:

OPEN
CLOSE
GET CHARACTERS
GET RECORD
PUT CHARACTERS
PUT RECORD
GET STATUS (null function)

The Cassette handler may produce the following error statuses:

*80 — CBREAK3 key abort.
*84 — Invalid AUX1 byte on OPEN.
*88 — End-of-file.
*8A-90 — SIO error set (see Appendix C).

The Cassette handler is one of the resident handlers, and therefore
has a set of device vectors starting at location E440.

CIO function descriptions

The device specific characteristics of the standard CIO functions are
detailed below:

OPEN

The device name is 'C'* and the handler ignores any device number and
filename specification, if included.

The handler supports the following option:

7 O

AUX2 IC! !

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

Where: C = 1 indicates that the cassette is to be read/written without
stop/start between records (continuous mode).

When the cassette is OPENed for input/ a single audible tone is
generated/ using the keyboard speaker, as a prompt for the operator to
verify that the cassette player is setup for reading (power on, Serial
Bus cable connected/ tape cued to start of file and PLAY button
depressed). When the cassette is ready/ the operator may press any
keyboard key (except [BREAK]) to initiate tape reading.

When the cassette is OPENed for output/ two closely spaced audible
tones are generated/ using the keyboard speaker/ as a prompt for the
operator to verify that the cassette player is setup for writing (as
above/ plus REC button depressed). When the cassette is ready/ the
operator may press any keyboard key (except CBREAKD) to initiate tape
writing. Note that there is no way for the computer to verify that the
REC button (or even the PLAY button) is depressed/ so it is possible
for the file not to be written/ with no immediate indication of this
fact.

There is a potential problem with the cassette in that when the
cassette is OPENed for writing/ the motor keeps running until the
first record (128 data bytes) is written. If 128 data bytes are
written or the cassette is CLOSEd within about 30 seconds of the OPEN,
and no other serial bus I/O is performed, then there is no problem.
However/ if those conditions are not met/ some noise will be written
to the tape prior to the first record and an error will occur when
that tape file is read later. If lengthy delays are anticipated
between the time the cassette file is OPENed and the time that the
first cassette record (128 data bytes) is written, then a dummy record
should be written as part of the file; typically 128 bytes of some
innocuous data would be written/ such as all zeroes, all $FFs or all
blanks ($20).

The system will sometimes emit whistling noises after cassette I/O has
occurred. The sound can be eliminated by storing $03 to SKCTL CD20F],
thus bring POKEY out of the two-tone (FSK) mode.

CLOSE

The CLOSE of a tape read stops the cassette motor.

The CLOSE of a tape write does the following:

Writes any remaining user data in the buffer to tape.
Writes an End-of-file record.
Stops the cassette motor.

GET CHARACTERS and GET RECORD

The handler returns data in the following format:

66

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT APPROVAL
OPERATING SYSTEM/ C016555

7 0
+-+-+-+~+-+~+-+~+
I data byte !

• 1 1 1 K—• 1 H

PUT CHARACTERS and PUT RECORD

The handler accepts data in the following format:

7 O
+--+-+-+-+-+-+_+_+
S data byte I

The handler attaches no significance to the data bytes written, avalue of $9B (EOL) causes no special action.

GET STATUS

The handler does no more than set the status to $01.

Theory of operation.

The cassette handler writes and reads all data in fixed length records
of the format shown below:

+—i—+—+—i-

—

h—i-—»-—•+

i01010101!
+-+-+-+-+-+--+-+-.+
10 10 10 10 1!
+—h-+-+-+-+-+—h~+
* control byte !

+-+-+-+-+-+-+-+-.+.

Speed measurement bytes.

= data =

! bytes !

+-+-+-+--+-+-+-+-+
! checksum j

+-+-+-+-+-4—+-+-+
(Managed by SIQ, not the
hand 1 er)

.

The control byte contains one of three values:

*FC indicates the record is a full data record (128 bytes).

*FA indicates the record is a partially full data record; fewer
than 128 bytes were supplied by the user. This case may occur only
in the record prior to the End~of-f i 1 e. The number of user
supplied data bytes in the record is contained in the byte prior
to the checksum.

«

*FE indicates the record is an End-of file record; the data
portion is all zeroes for an End-of-file record.

67

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM* C016555

The checksum is generated and checked by the SIO routine and is part

of the tape record* but is not contained in the handler's record

buffer CASBUF C03FD3.

The processing of the speed measurement bytes during cassette reading

is discussed in section 4:Central database description.

File structure

The Cassette handler writes a file to the cassette device with a file

structure that is totally imposed by the handler (soft format). A file

consists of the following three elements:

A 20 second leader of mark tone.
Any number of data record frames.
End-of file frame.

The cassette frames referred to above are formatted as shown below:

frame = pre-record write tone (PRWT)*
+ data record*
+ post-record gap (PRC)

The non-data portions of a frame have characteristics which are
dependent upon the write OPEN mode* i.e. continuous or start/stop.

Stop/start PRWT = 3 seconds of mark tone.
Continuous PRWT = .25 seconds of mark tone.

Stop/start PRG = up to 1 second of unknown tones.
Continuous PRG from O to n seconds of unkonwn tones* where n is

dependent upon user program timing.

The inter-record gap (IRG) between any two records will thus consist
of the PRG of the first record followed by the PRWT of the second
record.

Printer handler <P:

)

The Printer device is a write only device with a handler that supports
the following CIO functions:

OPEN
CLOSE
PUT CHARACTERS
PUT RECORD
GET STATUS

The Printer handler may produce the following error statuses:

8A-90 — SIO error set (see Appendix C).

68

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

The Printer handler is one of the resident handlers, and therefore has
a set of device vectors starting at location E430.

CIO function descriptions

The device specific characteristics of the standard CIO functions are
detailed below:

OPEN

The device name is 'P', and the handler ignores any device number and
filename specification, if included.

CLOSE

The handler writes any data remaining in its buffer to the printer
device, with trailing blanks to fill out the line.

PUT CHARACTERS and PUT RECORD

The handler accepts print data in the following format:

7 0
+—h-+—H—H— —| »-—+
! ATASCII !

+-+—+-+—I— H h—h—

+

The only ATASCII control code of any significance to the handler is
the EOL character. The printer device ignores bit-7 of every data byte
and prints a sub-set of the remaining 128 codes, see Appendix 0 for
the printer character set.

The handler supports the following print option:

7 O
+-+ |- + h h h—+

AUX2 I print mode !

Where: $4E ('N'> selects normal printing (40 chars per line).
$53 ('S') selects sideways printing (29 chars per line).
$57 ('W') selects wide printing (not supported by printer
device.)

.

Any other value (including 00) is treated as a normal (N) print-
select, without producing an error status.

GET STATUS

The handler obtains a four byte status from the printer
controller and puts it in system location DVSTAT C02EA1. The
format of the status bytes is shown below:

6?

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

+—»-—+-+ h—H h—h-+

i command stat. ! DVSTAT + 0
-i i » 1 h— +~+—

h

! AUX^ of prev. I + 1

-f—!—+-+ \ I—+-+

! timeout I + 2
+-+- +-+—i » r-—

+

! (unused) ! + 3

The command status contains the following status bits:

Bit-0 indicates an invalid command frame was received.
Bit-1 indicates an invalid data frame was received.
Bit-7 indicates an intelligent controller (normally = 0).

The next byte contains the AUX2 value from the previous operation.

The timeout byte contains a controller provided maximum timeout value
<in seconds).

Theory of operation.

The ATARI 82ofcrinter is a line at a time printer/ rather than a
character at a time printer, so the user data must be buffered by the
handler and sent to the device in records corresponding to one print
line (40 characters for normal/ 29 characters for sideways).

The printer device does not attach
character/ so the handler does the
sees an EOL.

any significance to the EOL
appropriate blank fill whenever it

Disk File Manager CD':)

The File Management Subsystem (FMS) includes a disk bootable (RAM
resident) DFM which maintains a collection of named
files on diskettes. Up to 4 disk drives (Dl: through D4 :) may be
accessed/ and up to 64 files per diskette may be accessed; the system
disks supplied by ATARI allow a single disk drive (Dl) and up to 3
OPEN files, but these numbers may be altered by the user as described
later in this section. The Disk File Manager supports the following
CIO functions:

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

OPEN FILE
OPEN DIRECTORY
CLOSE
GET CHARACTERS
GET RECORD
PUT CHARACTERS
PUT RECORD
GET STATUS

NOTE
POINT
LOCK
UNLOCK
DELETE
RENAME
FORMAT

The Disk File Manager may produce the following error statuses:

$03 — Last data from file (EOF on next read).
*88 — End-of-file.
*8A-90 — SIO error set (see Appendix C).
*A0 — Drive number specification error.
*A1 — No sector buffer available (too many open files)
*A2 — Disk full.
*A3 — Fatal I/O error in directory or bitmap.
*A4 — Internal file # mismatch (structural problem).
*A5 — File name specification error.
$A6 — Point information in error.
*A7 — File locked to this operation.
*A8 — Special command invalid.
*A9 — Directory full (64 files).
*AA — File not found.
*AB — Point invalid (file not OPENed for update).

CIO function descriptions

The device specific characteristics of the standard CIO functions are
detailed below:

OPEN FILE

The device name is 'D' and up to 4 disk drives may be accessed (Dl
through D4); the disk filename may be from 1 to 8 characters in
length with an optional 1 to 3 character extension.

The OPEN FILE command supports the following options:

7 0
+-+-+-+-+-+-+-+-+

AUX1 i SW.'R! !AI
-I j 1 j 1 j , , ^

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL

OPERATING SYSTEM, C016555

Where: W & R are the direction bits.

WR = 00 is invalid
01 indicates OPEN for read only.
10 indicates OPEN for write only.
11 indicates OPEN for read/write (update).

A = 1 indicates appended output when W = 1.

v

The various valid AUX1 options are now explained.

OPEN input (AUX1 - *04>

The indicated file is OPENed for input. Any wild card characters are

used to search for the first match. If the file is not found, an error

status is returned, and no file will be OPENed.

OPEN output (AUX1 = *08>

The indicated file is OPENed for output starting with the first byte

of the file, if the file is not locked. Any wild card characters are

used to search for the first match. If the file already exists, the

existing file will be DELETED before OPENing the named file as a new
file. If the file does not already exist, it will be created.

A file OPENed for output will not appear in the directory until it has

been CLOSEd. If an output file is not properly CLOSEd, some or all of

the sectors that were acquired for it may be lost until the disk is

reformatted.

A file that is OPENed for output may not be OPENed concurrently
for any other access.

OPEN append (AUX1 = *09)

The indicated file is OPENed for output starting with the byte after
the last byte of the existing file (which must already exist), if the

file is not locked. Any wild card characters are used to search for

the first match.

If a file OPENed for append is not properly CLOSEd, the appended data

will be lost, the existing file will remain unmodified and some or all

of the sectors that were acquired for the appended portion may be lost

until the disk is reformatted.

OPEN update CAUXl m *GC

)

The indicated file (which must already exist) will be OPENed for

update provided it is not locked. Any wild card characters are used to

search for the first match.

The GET, PUT, NOTE and POINT operations are all valid, and may be

intermixed as desired.

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

If a file OPENed for update is not properly CLOSEd, a sector's worth
of information may be lost to the file. A file OPENed for update may
not be extended.

Device/filename spec if i cation

The handler expects to find a device/filename specification of the
following form:

DC<numb er>3 : <f i 1 ename><EOL>

where:

<number> ::= IS 2 13}

4

<filename> ::= C<pr imar y>]| C . C<e x t ens i on> 3 3<t ermi na t or>
<primary> :

: = an upper case alpha character followed by 0 to 7
alphanumeric characters. If the primary name is less
than 8 characters, it will be padded with blanks; if
it is greater than 8 characters, the extra
characters will be ignored.

<extension> :: = Zero to 3 alphanumeric characters. If the
extension name is missing or less than 3 characters,
it will be padded with blanks; if it is greater than
3 characters, the extra characters will be ignored.

<termi^ator> ::= CEOLXbIank>

The following are all valid device/filenames for the disk:

Di : GAME. SRC
D: MANUAL6
D: . WHY
D3: FILE.
D4: BRIDGE. 002

Filename wildcarding

The filename specification may be further generalized to include the
use of the "wildcard" characters and '?'. These wildcard
characters allow portions of the primary and/or extension to be
abbreviated as follows:

The '?' character in the specification allows any file name character
at that position to produce a "match". For example, WH? will match
files named WHO, WHY, WH4, etc., but not a file named WHAT.

The character causes the remainder of the primary or extension
field in which it is used to be effectively padded with '?'
characters. For example, WH* will match WHO, WHEN, WHATEVER, etc.

Some valid uses of wildcard specifications are shown below:

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

«*. SRC Files having an extension of SRC.
BASIC* Files named BASIC with any extension.
*. * Al 1 f i les.

H*. ? Files beginning with H and having a 0 or 1

character extension.

If wildcarding is used with an OPEN FILE command; the first file found
(if any) that meets the specification will be the one (and only one)
opened.

OPEN DIRECTORY

The OPEN DIRECTORY command allows the user to read directory
information for the selected filename(s)/ using normal GET CHARACTERS
or GET RECORD commands. The information read will be formatted as
ATASC 1 1 records, suitable for printing, as shown below. Wildcarding
may be used to obtain information for multiple files or the entire
disk.

The OPEN DIRECTORY command uses the same CIO parameters as a standard
OPEN FILE command:

COMMAND BYTE - $03

BUFFER ADDRESS = pointer to device/filename specification.

AUX1 - $06

After the directory is OPENed, a record will be returned to the caller
for each file that matches the OPEN specification. The record, which
contains only ATASCII characters, is formatted as shown below:

1123456789012345678
+

—

k-—I— H— +-—h—h—+—I-—»-— •*-—h— + —t-—h-+—

h

! s ! b ! primary name • ext ! b ! count ! e

I

+-+-+-+-+-+-+-

Where: s = or ' with indicating file locked,
b = blank.
primary name = left justified name with blank fill,
ext = left justified extension with blank fill,
b = blank.
count = number of sectors comprising the file,
e = EOL (*9B).

After the last filename match record is returned, an additional record
is returned, which indicates the number of unused sectors available on
the disk. The format for this record is shown below:
/space 1; need 5

112345678901234567
+—+—»-—+—+—h—I—+—h—h—i

I h— -+-—+—h—h—i-

74

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

icounti FREE SECTOR S!e!
+ +-+-+-+-+ + +-+-+-+-+ +„+„+

Where: count m the number of unused sectors on the disk
e = EOL <*9B>.

The EOF statuses ($03 and *88) are returned as per a normal data file
when the last directory record is read.

The OPENing of another disk file while the directory read is OPEN will
cause subsequent directory reads to malfunction, so care must be taken
to avoid this situation.

CLOSE

On closing a file read, the handler releases all internal resources
being used to support that file.

On closing a file write, the handler writes any residual data from its
file buffer for that file to the disk, updates the directory and
allocation map for the associated disk, and releases all internal
resources being utilized to support that file.

GET CHARACTERS and GET RECORD

Characters are read from the disk and passed to CIO as a raw data
stream; none of the ATASC 1 1 control characters have any special
significance. A status of *03 is returned when the last byte of
file is returned and a status of $88 is returned if an attempt is
made to read past the last byte.

PUT CHARACTERS and^ PUT RECORD

Characters are obtained from CIO and written to the disk as a raw data
stream; none of the ATASC 1 1 control characters have any special
significance.

GET STATUS

The indicated file is checked and one of the following status byte
values is returned in ICSTA and register Y:

*01 — File found & unlocked.
*A7 — File locked.
*AA — File not found.

Special CIO functions

The DFM supports a number of SPECIAL commands, which are device
specific; these are explained in the paragraphs that follow.

NOTE (COMMAND BYTE = $25)

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

This command returns to the caller the exact disk location of the next

byte to be read or written, in the variables shown below:

ICAX3 = l.s. b. of the disk sector number.
ICAX4 « m. s. b. of the disk sector number.
ICAX5 = relative sector displacement to byte (0-124).

POINT (COMMAND BYTE = *26

)

This command allows the user to specify the exact disk location of the

next byte to be read or written. In order to use this commmand, the

file must have been OPENed with the "update" option.

ICAX3 = l.s.b. of the disk sector number.
ICAX4 * m. s. b. of the disk sector number.
ICAX5 = relative sector displacement to byte (0-124).

LOCK

This command allows the user to prevent write access to any number of

named files. Locked files may not be deleted, renamed nor opened for

output unless they are first unlocked. Locking a file that is already
locked is a valid operation. The handler expects a device/filename
specification; then all occurrences of the filename specified will be

locked, using the wildcard rules.

The following IOCB paramters are setup by the user prior to calling
CIO:

COMMAND BYTE = *23

BUFFER ADDRESS pointer to device/filename specification.

After a LOCK operation, the following IOCB parameter will have been
altered:

STATUS = result of LOCK operation; see Appendix B for a list of

possible status codes.

UNLOCK

This command allows the user to remove the lock status of any number
of named files. Unlocking a file that is not locked is a valid
operation. The handler expects a device/filename specification; then

all occurrences of the filename specified will be unlocked* using the

wildcardrules.

The following IOCB paramters are setup by the user prior to calling
CIO:

COMMAND EYTE = *24

3UFFER ADDRESS = pointer to device/filename specification.

76

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

After an UNLOCK operation/ the following IOCB parameter will have been
al tered

:

STATUS result of UNLOCK operation; see Appendix B for a list of
possible status codes.

DELETE

This command allows the user to delete any number of unlocked named
files from the directory of the selected disk and to deallocate the
disk space used by the files involved. The handler expects a
device/filename specification; then all occurences of the filename
specified will be deleted/ using the wildcard rules.

The following IOCB paramters are setup by the user prior to calling
CIO:

COMMAND BYTE = *2l

BUFFER ADDRESS = pointer to d e vi c e / f i 1 ename specification.

After a DELETE operation/ the following IOCB parameter will have been
altered:

STATUS = result of DELETE operation; see Appendix B for a list of
possible status codes.

RENAME

This command allows the user to change the filenames of any number of
unlocked files on a single disk. The handler expects to find a
device/filename specification as shown below:

<device spec>: <f i 1 ename spec>, <f i 1 ename spec><EOL>

All occurrences of the first filename will be replaced with the second
filename/ using the wildcard rules. No protection is provided against
forming duplicate names/ and once formed/ duplicate names cannot be
separately renamed or deleted; however, an OPEN FILE command will
always select the first file found that matches the filename
specification/ so that file will always be accessible. The RENAME
command does not alter the content of the files involved/ merely the
name in the directory.

Examples of some valid RENAME name specifications are shown below:

Dl : #. SRC/ # TXT
D: TEMP/ FDATA
D2: F*, F*. OLD

The followinq IOCB paramters are setup by the user prior to calling
CIO.

COMMAND BYTE $20

77

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM* C016555

BUFFER ADDRESS = pointer to device/filename specification.

After a RENAME operation/ the following IOCS parameter will have been
altered:

STATUS result of RENAME operation; see Appendix B for a list of
possible status codes.

FORMAT

This command allows the user to physically format a diskette, which is
required before the diskette can be used to store data; the physical
formatting process writes a new copy of every sector on the "soft
sectored" diskette, with the data portion of each sector containing
all zeroes. When the physical formatting process is complete/ the FMS
creates an initial Vol ume Table of Contents (VTOC) and an initial File
Directory; as part of this process the boot sector (#1) is permanently
reserved. The result of the FORMAT process will be the creation of an
"empty" non-system disk.

The following IOCB paramters are setup by the user prior to calling
CIO:

COMMAND BYTE

BUFFER ADDRESS = pointer to device specification.

After a FORMAT operation/ the following IOCB parameter will have been
altered:

STATUS = result of FORMAT operation; see Appendix B for a list of
possible status codes.

To create a system disk/ a
to sectors #2-n. This is ac
'DOS. SYSS which is a name
it is not in the directory

copy of the boot file must next be written
complished by writing the file named
that is recognized by the FMS even though
initially.

Theory of operation

The resident OS initiates the disk boot process, as described in
section 10.2/ by reading disk sector #1 to memory and then
transferring control to the "boot continuation address" (boot address
+ 6). The boot continuation program contained in sector #1 then
continues to load the remainder of the File Management Subsystem to
memory using additional information contained in sector #1. The File
Management Subsystem loaded will contain a Disk File Manager and.,

optionally/ a Disk Utilites (DOS) package.

When the boot process is complete/ the Disk File Manager will allocate
additional RAM for the creation of sector buffers. Sector buffers are
allocated based upon information in the boot record as shown below:

78

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

Byte 9 maximum number of OPEN files; one buffer per (the maximum
value is 8).

Byte 10 = drive select bits; one buffer per (1-4 only).

The Disk File Manager will then insert the name 'D' and the
handler vector table address in the Device Table.

NOTE: There is a discrepancy between the Disk File Manager's numbering
of disk sectors (0-719) and the disk controller's numbering of
disk sectors (1-720); as a result, only sectors 1- 719 are used
by the Disk File Manager.

The Disk File Manager
and writes; the DFM's
direc tory/f i le/b i tmap

uses the Disk handler to perform all disk reads
function is to support and maintain the
structures as described in the following pages:

FMS DISK UTILIZATION

The map below shows the disk sector utilization for a standard 720
sector diskette.

BOOT record

FMS BOOT
file

'DOS. SYS

'

•+

!

•+

i

User
File
Area

i

i

I

VOTC(note 2)

File
Directory

I

User
File
Area

!

+
t

i

i

i

unused I

Sector 1

Sector 2 -+

Sector n

Sector n+1 -

+- Note 1

!

+

Sector 359 (*167)

Sector 360 <*168)

Sector 361 (*169)

Sector 368 (*170)

Sector 719 <*2CF)

Sector 720 (*2D0)

NOTE 1 - If the diskette is not a system diskette, then the User File
Area starts at sector 2 and no space is reserved for the FMS
BOOT file.

Note 2 — VOTC stands for volume table of contents.

79

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

FMS BOOT RECORD FORMAT

The FMS BOOT record (sector #1) is a special case
software as described in section 10.2. The format
record is shown below:

of disk booted
for the FMS BOOT

+ +
boot flag = O

sectors « 1

boot address

= 0700

ini t address

JMP *4B

boot read
c on t inua t i on

address

max files » 3

drive bits = 1

alloc d ire = 0

boot image end

address + 1

boot flag O 0

sector count

'DOS. SYS'
starting

sector number

code for 2nd
phase of boot

Byte 0

1

2

9 Note 1

10 Note 2

11 Note 3

FMS
configuration
data

14 Note 4

15 Note 5

NOTE 1 - Byte 9 specifies the maximum number of concurrently OPEN
files to be supported. This value may range from 1 to 8.

80

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

NOTE 2 - Byte 10 specifies the specific disk drive numbers to besupported using a bit encoding scheme as shown below:

7654321 0
+-+—i—+—t-—i—i—h—(-

!4!3!2!1! where a 1 indicates a selected drive+—I 1 1 1 1 (1 y.

NOTE 3 - Byte 11 specifies the buffer allocation direction, this byteshould equal 0.
y

NOTE 4 - Byte 14 must be non-zero for the second phase of the bootprocess to initiate; this flag indicates that the file
DOS. SYS" has been written to the disk.

NOTE 5 - This byte is assigned as being the sector count for the
DOS. SYS

' file, but is in actuality an unused byte.

BOOT PROCESS MEMORY MAP

The diagram below shows how the boot sector (part of file DOS SYS) andsubsequent sectors are loaded to memory as part of the boot process.

+ + Memory address 0700
{ data from boot !

;

= sector read by =
j

i resident OS J 077C

; data from rest !

! of 'DOS. SYS ' J
•

i read by the \
|

r program in the =
;

{ boot sector. !
j

• :

077D

end of boot

VOLUME TABLE OF CONTENTS (VTOC

)

The format for the FMS volume table of contents (VTOC, sector^360) isshown in the diagram below:

* +
\ directory type I p Byte 0 Note 1

! maximum (lo) \ \ i Note 2
* sector # h- I

! - 02C5 (hi) 1 % I

+ + I

I number of (lo) ! 5 3 Note 3
+ sectors +

81

REPRODUCTION PROHIBITED .WITHOUT PUBLICATIONS DEPT. APPROVAL

OPERATING SYSTEM/ C016555

available (hi)

volume bit map =
5ft 10

) oh
A

C//U

I

+
I

+

Where the volume bit map is organized as shown below:

7 0
+_+_+-+-+-+-+-+-+

! 1 2 3 4 5 6 7! £/\
+_+-+-+-+-+-+-+-+
8 9 i

0

8 \
6

\

Byte 10 of VTOC

+_+-+-+-+-+-+-+-+

ii

99

1

At each map bit position, a 0 indicates the corresponding sector is in

use and a 1 indicates that the sector is available.

NOTE 1 - The directory type byte must equal 0.

NOTE 2 - The maximum sector number is apparently not used because it

is incorrectly set to 709 decimal although the true maximum
sector number is 719, for the DFM.

NOTE 3 - The number of sectors available is initially set to 709 after

a diskette is freshly formatted; this number is adjusted as

files are created and deleted to show the number of sectors

available. The sectors which are initially reserved are 1

and 360-368.

FILE DIRECTORY FORMAT

There are eight sectors (361-368) reserved for a file directory, each

sector containing directory information for up to eight files, thus

providing for a maximum of 64 files for any volume. The format of a

single 16 byte file entry is shown below:

82

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT.
OPERATING SYSTEM/ C016555

APPROVAL

. mm mmm—

flag byte

sector (lo) !

count +

jj£ g(l i -fay (hi) I

+

starting (lo) !

sector +
number (hi) !

(1) I

+
(2) !

(3) :

+

1

+

+
!

file

name

pr imar

y

(4)

(5)

(6)

(7)

1
«

-5-

1

1

Byte 0

1

I

I

+
!

+
1

1

file

name

extension

(8)

(1)

(2)

(3)

X §

Where the

The

*00
*40
*41
*60
*80

lag byte has the following bits assigned:

the file has been d e 1 e t e d -—
the file is in use.——^] (|

the file is locked.
OPEN output.

byte may take on the following values:

entry not yet used (no file).
entry in use (normal CLOSEd file).
entry in use (OPEN output file).
entry in use (locked file).
entry available (prior file deleted).

rr \ *

r

Sector count is the number of sectors comprising the file

83

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM; C016555

FMS FILE SECTOR FORMAT

The format of a sector in a user's data file is shown below:

7 0
+-+-+-+-+-+-+-+-+

data +0
+-+—j-—| | H-+—|—+

file ft !hi + 125
+-+--}--+-+—h-+ +
{forward pointer!
H 1-

—

¥—I—+— + —

h

J S \ byte count ! + 127

+ 126

The file # is a redundant piece of information which is used to verify
file integrity; the file number field contains the value of the
directory position of that file. If there is ever a mismatch between
the file's position in the directory and the file number as contained
in each sector, the Disk File Manager will generate the error *A4.

The forward pointer field contains the ten bit value of the disk
sector number of the next sector of the file. The pointer will equal
zero for the last sector of a file.

The S bit indicates whether or not the sector is a "short sector" (one
containing fewer than 125 data bytes). S is equal to one when the
sector is short.

The byte count field contains the number of data bytes in the sector.

Mori CIO I/O

Some portions of the I/O subsystem may or must be accessed
independently of the Central I/O Utility (CIO); this section discusses
those areas.

Resident device handler vectors

All of the OS ROM resident device handlers may be accessed via sets of
vectors which are part of the OS ROM. The primary reason for using
these vectors would be to increase the speed of I/O operations which
utilize fixed device assignments, such as output to the Display
handler. For each resident handler there is a set of vectors ordered
as shown below:

84

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT
OPERATING SYSTEM/ C016555

APPROVAL

- OPEN
—

+

—

h

—

+

- CLOSE —

h

fiTi i

- OFT BYTF 1-
•

— PUT BYTF
+

—+•

- GET STATUS
4-

+
+8

SPECIAL + 10

JMP
INIT

—

+

-+
+ 12

See section 9 for a detailed description of the data interface for
each of these handler entry points.

Each of the vectors contains the address <lo,hi> of the handler entry
point minus one, so a technique similar to the one shown below is
required to access the desired routines:

VTBASE=*E400 ; BASE OF VECTOR TABLE.

LDX
LDA
JSR

LDX
JSR
STA

#x x

data
GOVEC

#yy
GOVEC
data

; OFFSET TO DESIRED ROUTINE.

; SEND DATA TO ROUTINE.

; OFFSET TO DIFFERENT ROUTINE
; GET DATA FROM ROUTINE.

GOVEC TAY
LDA
PHA
LDA
PHA
TYA
RTS

VTBASE+1,

X

VTBASE,

X

; SAVE REGISTER A.

; ADDRESS M. S. B. TO STACK.

; ADDRESS L. S. B. TO STACK.

; RESTORE REGISTER A.

; JUMP TO ROUTINE.

The JMP INIT slot in each set of vectors jumps to the handler
initialization entry (not minus one).

The base address of the vector set for each of the resident handlers
is shown below:

Screen Editor (E:)

Display handler (S:

)

Keyboard handler <K:

)

E400
E410
E420

85

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

Printer handler (P: > E430.
Cassette handler (C:) E440.

The resident disk handler is not CIO compatible, so its
interface does not use a vector set; the disk handler interface
is discussed in section 5.

Resident Disk handler — US£ S PO£> D^ouj £ ZOOO dun«y fVs ro^i,^

The resident Disk handler (not to be confused with the Disk File or ^eH«i^
Manager) is responsible for all physical accesses to the disk. The
unit of data transfer for this handler is a single disk sector
containing 128 data bytes.

Communication between the user and the Disk handler is effected using
the system's Device Control Block (DCB) / which is also used for
handler/SIO communication as described in section 9. The DCB is twelve
bytes long/ in which some bytes are user alterable and some are for
use by the Disk handler and/or the Serial I/O Utility (SIO). The user
supplies the required DCB parameters and then does a JSR DSKINV
CE4533.

Each of the DCB bytes will now be described/ and the system equate
file name for each will be given.

SERIAL BUS I.D. — DDEVIC C03003

This byte is setup by the Disk handler to contain the Serial Bus I.D.
for the drive to be accessed/ and is not user alterable.

DEVICE NUMBER — DUNIT C0301D

This byte is setup by the user and contains the disk drive number to
be accessed (1 - 4)

COMMAND BYTE — DCOMND C 0302

3

This byte contains the disk device command to be performed and is
setup by the user.

STATUS BYTE — DSTATS C 0303

3

This byte contains the status of the command upon
caller. See Appendix C for a list of the possible

BUFFER ADDRESS — DBUFLO 1 0304 1 b DBUFHI C 0305 1

This two byte pointer contains the address of the source or
destination of the disk sector data. For the disk status command; the
user need not supply an address; the Disk handler will obtain the
status and insert the address of the status buffer in this field.

DISK TIMEOUT VALUE ~~ DTIMLO L 0306 1

return to the
status codes.

36

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

This timeout value (in whole seconds) is supplied by the handler for
use by SIO.

BYTE COUNT — DBYTLO C03083 & DBYTHI [03093

This two byte counter indicates the number of bytes transferred to or
from the disk as a result of the most recent command/ and is setup by
the handler.

SECTOR NUMBER — DAUX1 C030A'D & DAUX2 C030BII

This two byte number specifies the disk
read or write. DAUX1 contains the least
contains the most significant byte.

sector number (0
significant byte/

• 719) to
and DAUX2

Disk handler commands

There are five commands supported by the Disk handler

GET SECTOR
(PUT SECTOR —*** not supported by handler ***

)

PUT SECTOR WITH VERIFY
STATUS REQUEST
FORMAT DISK

GET SECTOR (Command byte = *52)

The handler reads the specified sector to the user's buffer and
returns the operation status. The following DCB parameters are set by
the user prior to calling the Disk handler:

COMMAND BYTE = *52.

DEVICE NUMBER = disk drive number (1-4).

BUFFER ADDRESS = pointer to user's 128 byte buffer

SECTOR NUMBER sector number to read.

Upon return# several of the other DCB parameters will have been
altered/ however, the STATUS BYTE will be the only one of interest to
the user.

PUT SECTOR (Command byte = *50)

*** Not supported by current handler ***

The handler writes the specified sector from the user's buffer
returns the operation status. The following DCB parameters are
the user prior to calling the Disk handler:

COMMAND BYTE - *50.

and
set by

87

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C01&555

DEVICE NUMBER = disk drive number (1-4).

BUFFER ADDRESS = pointer to user's 128 byte buffer.

SECTOR NUMBER = sector number to write.

Upon return/ several of the other DCB parameters will have been
altered/ however/ the STATUS BYTE will be the only one of interest to
the user.

PUT SECTOR WITH VERIFY (Command byte = $57)

The handler writes the specified sector from the user's buffer and
returns the operation status. This command differs from PUT SECTOR in
that the disk controller reads the sector data after writing to verify
the write operation, (byte by byte compare???) Aside from the COMMAND
BYTE value/ the calling sequence is identical to PUT SECTOR.

STATUS REQUEST (Command byte - $53)

The handler obtains a four byte status from the disk controller and
puts it in system location DVSTAT C02EA3. The operation status format
is shown below:

7 0
+-+-+-+-+-+-+~+-+
! command stat. !

+— H—h—i—»—

—

h—H-+

I hardware stat. !

+-+-+-+-+-+.-+-+-+
! timeout i

-I • 1 1 1 1 1- h-+
! (unused) !

+-+-+-+-+-+-+—h-+

DVSTAT + 0

+ 1

+ 2

+ 3

r

The command status contains the following status bits

Bit-0
Bit-1
Bi t-2
Bit-3
Bit-4

indicates
indicates
indicates
indicates
indicates

an invalid command frame was received
an invalid data frame was received,
that a PUT operation was unsuccessful
that the disk is write protected,
active/standby.

The hardware status byte contains the status register of the INS1771-1
Floppy Disk Controller chip used in the disk controller. See the
documentation for that chip for information relating to the meaning of
each bit in the byte.

The timeout byte contains a controller provided maximum timeout value
(in seconds) to be used by the handler.

The following DCB parameters are set by the user prior to calling the
Disk handler:

38

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

COMMAND BYTE $53.

DEVICE NUMBER - disk drive number (1-4).

Upon return, several of the other DCB parameters will have been
altered, however, the STATUS BYTE mill be the only one of interest to
the user.

FORMAT DISK (Command byte = $21)

The handler commands the disk controller to format the entire disk and
then to verify it. All bad sector numbers/ up to a maximum of 63/ are
returned and put in the supplied buffer/ followed by two bytes of all
ones ($FFFF). The following DCB parameters are set by the user prior
to calling the Disk handler:

COMMAND BYTE = $21.

DEVICE NUMBER = disk drive number (1-4).

BUFFER ADDRESS = pointer to user's 128 byte buffer.

Upon return/ the following DCB parameters will be of interest to the
user:

STATUS BYTE = status of operation.

BYTE COUNT = number of bytes of bad sector information in
user's buffer/ not including the $FFFF terminator. If there
are no bad sectors/ the count will equal zero.

Educational System Program Cassettes

Educational System Program Cassette tapes are recorded in 1/4 track
stereo format at 1 7/8 inches per second. The tape can be recorded in
both directions., where tracks i and 2 are side A left and right; and

tracks 3 and 4 are side B right and left (industry standard). Dn each
side/ the left channel (1 or 4/ outside tracks) is used for audio and
the right channel (2 or 3, inside tracks) is used for digital
informat ion.

The audio channel is recorded in the normal manner. The digital
channel is recorded using FSK encoding and the recording is
asynchronous byte., with no record structure/

All data bits on the tape (not including start/stop) are stored in bit
inverted form; that is, all zero bits are stored as one bits and vice
v e r s a

.

ATARI EDUCATIONAL SYSTEM CHARACTER SET

89

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

HEX CHAR NOTES

00 Null Reserved for Atari use— see text.
01 SOH Dorsett screen hold charactei see text.
02 STX Inhibit marked text.
03 ETX Clear Screen
04 EOT Stop Tape
05 ENQ Enable marked text
06 ACK
07 BEL End of tape
08 BS Select left response
09 HT Select middle response
oA LF Select right response
OB VT Select any response
OC FF Reserved for Dorsett
OD CR Carriage return
OE SO Reserved for Dorsett
OF SI Reserved for Dorsett
10 DLE
11 DC1 Border Brown (note: colors may not match

this description.
12 DC2 Border red
13 DC3 Border Orange
14 DC4 Border Yellow
15 NAK Border Green
16 SYN Border Blue
17 ETB
18 CAN
19 EM Text background brown
1A SUB Text Background red
IB ESC Text background orange
1C FS Text background yellow
ID OS Text background green
IE RS Text background blue
IF US
20 Space
21 !

22
23 Pi
24 *
25 %
26 Overline
27 '

28 (

29)

2A Wheel
2B +
2C
2D
2E
2F /
30 Centered period
31 1

32 2

90

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

33WW 3w
34w~ 4
35 5
36 6w
37 7
38 8
39 9
3A •

•

3B •

i

3C <-

3DW JLr SB

3E >
3Fwl •

40
41 A
42 B
43 c
44 Dmam
45 E
46 F
47 w
4R•to un
49 T1

4A ,1w
4B Ltr\

4C I

4D M
4E N
4F n
50 p
51 Q
52 R

i \

53WW sw
54 T

i

55 uw
56 v
57 w
58 X

59 Y•
5A 7

5B
\

JC sk

SF
AO
w X

62 b

A3ww *•*

la

64 d

65 e

66 f

67 g
68 h

"Head"

"Torso"
(actually somewhat lowered)

Double parallel vertical slashes

91

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

69
6A
6B
6C
6D
6E
6F
70

72

74
75
76
77
78
79
9 7A
713

7C
7C
7D
7F

99
9A
9B
9C
9D
9E

l

J

k

1

m
n
o

P

q.

r

s

t

u

V
w
X

y

"Re-entrant" (dotted) slash
"Re-entrant" (dotted) backslash
Right- justified vertical slash
n-tilde (for Spanish)
three parallel horizontal lines

NOTE: All characters above are the same character
but 'flagged' (see text) if the top bit
is set/ except that the flag bit is ignored
on all control characters except the fol-
lowing (flag is not allowed on NULL):

EM Inset Brown
SUB Inset Red
ESC Inset Orang e

FS Inset Yellow
GS Inset Green
RS Inset Blue

Serial bus I/O (SIO)

Input/Output to devices other
ATARI controller port devices

than the keyboard/ the screen and the
must utilize the Serial I/O bus. This

bus contains data/ control and clock lines to be used to allow the
computer to communicate with external devices on this "daisy chained 1 '

bus. Every device on the bus has a unique identifier and will respond
only when directly addressed.

The resident system provides a Serial I/O Utility (SIO)/ which
provides a standardized high-level program interface to the bus. SIO
is utilized by the resident Disk/ Printer and Cassette handlers and i

intended to be used by non-resident handlers (as described in section
9) or by applications/ as well. For a detailed description of the
program/SIO interface and for a detailed bus specification refer to
section 9.

Device characteristics

This section describes the physical characteristics of the devices
that interface to the ATARI 400 and ATARI 800 Personal Computer

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

Systems. Where applicable* data capacity, data transfer rate* storage
format.. SIO interface and cabling mill be detailed.

Keyboard

The keyboard input rate is limited by the OS keyboard reading
procedure to be 60 characters per second. The code for each key is

shown in Table 77$ section 5. A picture of the ATARI 400 Personal
Computer System keyboard is shown on the following page. The keyboard
hardware has no buffering and is rate limited by the debounce
algorithm used.

Display

The television screen display generator has many capabilities that are
not used by the Display handler (as described in section 5 and shown
in Appendix H), there are additional display modes, object generators/
hardware display scrolling and many other features which are described
in the ATARI Personal Computer System HARDWARE MANUAL.

Since all display data is stored in RAM; the display data update rate
is limited primarily by the software routines that generate and format
the data and access the RAM. The generation of the display from the
RAM is accomplished by the ANTIC and CTIA chips using Direct Memory
Access (DMA) to access the RAM data.

The internal storage formats for display data for the various modes
are detailed in the ATARI Personal Computer System HARDWARE MANUAL.

ATARI 410 Program Recorder

Recorder has the following characteristics:

C-60 tape (unformatted).
C-60 tape (formatted/ continuous).
C-60 tape (formatted., stop/start).

second (unformatted).
second, average (formatted; stop/start).

1/4 track stereo format at 1 7/8 inches per
second. The tape can be recorded in both directions, where tracks 1

and 2 are side A left and right; and tracks 3 and 4 are side B right
and left (industry standard). On each side; the left channel (1 or 4)

The ATARI 410 Program

DATA CAPACITY:

x x characters per
xx characters per
xx characters per

DATA TRANSFER RATES:

xx characters per
xx characters per

STORAGE FORMAT:

Tapes are recorded in

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM; C016555

is used for audio and the right channel (2 and 3) is used for digital
information.

The audio channel is recorded the normal way. The digital channel is
recorded using the POKEY two-tone mode producing FSK data at up to 600
baud. The MARK frequency is 5327 Hz and the SPACE frequency is 3995
Hz. The transmission of data is asynchronous byte serial as seen from
the computer; POKEY reads or writes a bit serial FSK sequence for each
byte/ in the following order:

1 start bit (SPACE)
data bit-0 -+
data bit-1 !

+- O = SPACE, 1 MARK,
data bit-6 !

data bit-7 -+
1 stop bit (MARK*)

The only control the computer has over tape motion is motor
start/stop; and this only if the PLAY button is pressed by the user.
In order for recording to take place/ the user must press both the REC
and PLAY buttons on the cassette. The computer has no way to sense the
position of these buttons/ nor even if a 410 is cabled to the
computer/ so the user must be careful when using this device.
SIO INTERFACE

The cassette device utilizes portions of the serial bus
hardware/ but does not follow any of the protocol as defined in
section 9.

ATARI 820 Printer

The ATARI 820 printer has the following characteristics:

DATA CAPACITY:

40 characters per line (normal printing)
29 characters per line (sideways printing)

DATA TRANSFER RATES:

Bus rate: xx characters per second.
Print time (burst): xx characters per second.
Print time (average), xx characters per second.

STORAGE FORMAT:

3 7/8 inch wide paper.
5X7 dot matrix/ impact printing.

Normal format —
40 characters per line.

94

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

6 lines per inch (vertical).
12 characters per inch (horizontal).

Sideways format —
29 characters per line.
6 lines per inch (vertical).
9 characters per inch (horizontal).

SIO INTERFACE

The controller serial bus I.D. is $40.

The controller supports the following SIO commands (see section 5 for

more information regarding the handler and section 9 for a general
discussion of bus commands):

GET STATUS

The computer sends a command frame of the format shown below:

Devi c e I.D. = $40.
Command byte * $53.
Auxilliary I = doesn't matter.
Auxilliary 2 « doesn't matter.
Checksum = checksum of bytes above.

The printer controller responds with a data frame of the format shown
in earlier in this section as part of the GET STATUS discussion.

PRINT LINE

The computer sends a command frame of the format shown below:

Devi c e I.D = $40.
Command byte = $57.
Auxilliary 1 - doesn't matter.
Auxilliary 2 - $4E for normal print or $53 for sideways.
Checksum = checksum of bytes above.

The computer sends a data frame of the format shown below:

Leftmost character of line (column 1).

Next character of line (column 2).

Rightmost character of line (column 40 or 29).

Checksum byte.

Note that the data frame size is variable, either 41 or 30 bytes in

length., depending upon the print mode specified in the command frame.

95

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM; C016555

ATARI 810 Disk Drive

The ATARI BICPfcisk has the following characteristics:

DATA CAPACITY:

720 sectors of 126 bytes each (Disk handler format).
70? sectors of 125 data bytes each (Disk File Manager format).

DATA TRANSFER RATES:

Bus rate: xx characters per second.
Seek time: xx msec, per track + xx msec.
Rotational latency: xx msec maximum (xx rpm).

STORAGE FORMAT:

5 1/4 inch diskette; soft sectored by the controller.
40 tracks per diskette.
ie sectors per track.
128 bytes per sector.
Controlled by National INS1771-1 formatter/controller chip
Sector interlace factor =

SIO INTERFACE

The controller serial bus I.D. s range from $31 (for 'Di ') to $34
(for 'D4').

The controller supports the following SIO commands (see earlier in
this section for information about the disk handler and section 9
a general discussion of bus commands):

GET STATUS

The computer sends a command frame of the format shown below:

Device I D. = $31-34.
Command byte = $53.
Auxilliary 1 = doesn't matter.
Auxilliary 2 = doesn't matter.
Checksum = checksum of bytes above.

The disk controller responds with a data frame of the format shown
earlier in this section as part of the STATUS REQUEST discussion.

PUT SECTOR (WITH VERIFY)

The computer sends a command frame of the format shown below:

Device I.D. $31-34
Cdmmand byte = $57.
Auxilliary 1 = low byte of sector number.

96

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPRuVAL
OPERATING SYSTEM/ C016555

Auxilliary 2 = high byte of sector number (1-720).

Checksum = checksum of bytes above.

The computer sends a data frame of the format shown below:

128 data bytes.
Checksum byte.

The disk controller writes the frame data to the specified sector;

then reads the sector and compares the content with the frame data.

The COMPLETE byte value indicates the status of the operation.

PUT SECTOR (NO VERIFY)

The computer sends a command frame of the format shown below:

Device I. D. = $31-34
Command byte = $50.
Auxilliary 1 = low byte of sector number.
Auxilliary 2 high byte of sector number (1-720).

Checksum = checksum of bytes above.

The computer sends a data frame of the format shown below:

128 data bytes.
Checksum byte.

The disk controller writes the frame data to the specified sector,

then sends a COMPLETE byte value which indicates the status of the

op era t ion.

GET SECTOR

The computer sends a command frame of the format shown below:

Device I. D. = $31-34
Command byte = $52.
Auxilliary 1 = low byte of sector number.
Auxilliary 2 = high byte of sector number (1-720).

Checksum = checksum of bytes above.

The disk controller sends a data frame of the format shown below.

128 data bytes.
Checksum byte.

FORMAT DISK

The computer sends a command frame of the format shown below:

Device I. D. = $31-34
Command byte = $21.
Auxilliary 1 - doesn't matter.

97

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

Auxilliary 2
Checksum

doesn ' t matter,
checksum of bytes above.

The disk controller completely formats the disk (generates 40 tracks
of 18 soft sectors per track with the data portion of each sector
equal to all zeroes) and then reads each sector to verify its
integrity. A data frame of 128 bytes plus checksum is returned in
which the sector numbers of all bad sectors (up to a maximum of 63
sectors) are contained/ followed by two consecutive bytes of $FF. If
there are no bad sectors on the disk the first two bytes of the data
frame will contain $FF.

ATARI 85QrMtnterface Module

See ATARI 850 Interface Module Manual.

98

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

6 - INTERUPT PROCESSING.

Introduction

There are three general interrupt types processed by the 6502
microcomputer: c^Jj>_r? se ^' non-maskable interrupts (NMI) and m
interrupts (IRQ). The IRQ type may be enabled and disabled usi
6502 CLI and SEI instructions/ whereas the NMI type may not be
disabled at the processor level; the NMI interrupts other than
CS/RESET3 key may be disabled at the ANTIC chip/ however.

The system events that can cause interrupts are listed below:

Chip reset - Power up

NMI - Display list interrupt (unused by OS) — 1 n T
Vertical blank (50/60 Hz) 0

CS/RESET3 key

IRQ - Serial bus output ready
Serial bus output complete
Serial bus input ready
Serial bus proceed line (unused by system)
Serial bus interrupt line (unused by system)
POKEY timers 1/ 2 & 4
Keyboard key
CBREAK3 key
6502 BRK instruction (unused by OS)

The chip reset interrupt is vectored via location FFFC to E477 where a
JMP vector to the power up routine is located. All NMI interrupts are
vectored via location FFFA to the NMI interrupt service routine at

>
E7B4 and all IRQ interrupts are vectored via location FFFE to the IRQ
interrupt service routine at E6F3/ at which point the cause of the
interrupt must be determined by a series of tests. For some of the
events there are built-in monitor actions, and for other events the
corresponding interrupts are disabled or ignored. The system provides
RAM vectors so that the user may intercept interrupts when necessary

The remainder of section 6 will describe system actions for the
various interrupt causing events/ define the many RAM vectors and
provide recommended procedures for dealing with interrupts.

Chip reset

Chip reset is generated in response to a power up condition. The
system is completely initialized as described in section 7.

Non-maskable interrupts (NMI)

99

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM; C01655S

When an NMI interrupt occurs/ control is transferred through the ROM
vector directly to the system NMI interrupt service routine; where a
cause for the interrupt is determined by examining hardware register
NMIST CD40F3. If a display list interrupt is pending/ a jump is made
through the global RAM vector VDSLST C02003; the OS does not use
display list interrupts so VDSLST is initialized to point to an RTI
instruction and must be changed by the user before a display interrupt
is allowed to be generated.

If the interrupt is not a display list interrupt/ then a test is made
to see if it is a CS RESETD key interrupt; if so, then a jump is made
to the CS RESET] initialization routine (see section 7 for details of
CS RESETD initialization).

If the interrupt is neither a display list interrupt nor a CS/RESET3
key interrupt then it is assumed to be a vertical blank (VBLANK)
interrupt and the following actions occur:

Registers A/ X & Y are pushed to the stack.

The interrupt request is cleared (NMIRES CD40F3).

A jump is made through the "immediate" vertical blank global RAM
vector VVBLKI C0222D which normally points to the stage 1 VBLANK
processor.

Assuming that VVBLKI has not been changed by the user/ the following
actions occur:

The stage 1 VBLANK processor is executed (see section 6.3.1).

Tests are made to see if a critical code section has been
in terr up ted ; i f so/ all registers are restored and an RTI
instruction returns from the interrupt to the critical section. A
critical section is determined by examining the CRITIC flag
C0042D and the processor I bit; if either are set then the
interrupted section is assumed to be critical.

If the interrupt was not from a critical section/ then the stage
2 VBLANK processor is executed (see section 6.3.2).

A jump is then made through the "deferred" vertical blank global
RAM vector VVBLKD C02243 which normally points to the VBLANK exit
routine.

Assuming that VVBLKD has not been changed by the user, the following
actions occur:

The 6502 A/ X ?y Y registers are restored.

An RTI instruction is executed.
>

Note that there are ROM vectors to the stage 1 VBLANK processor and to
the VBLANK exit routine available to the user who alters the deferred

100

-erf V6 '

4> ~<^o -hjfr** 1&
' / to 77 ^

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

and immediate VBLANK RAM vectors but still wants to enable normal
system processes as well or restore the original vectors without
having to save them. The instruction at E45F is a JMP to the stage 1

VBLANK processor; the address at CE460/ 2D is the value normally found
in VVBLKI. The instruction at E462 is a JMP to the VBLANK exit
routine; the address at CE463/ 23 is the value normally found in
VVBLKD.

Note also that a jump is made through vector VVBLKI on every VBLANK
interrupt; but a jump is made through vector VVBLKD only on interrupts
from non-critical code sections.

Stage 1 VBLANK process

\b/A bUK 25sr

J

As part of the stage 1 VBLANK processing which will be performed at
every VBLANK interrupt are the following:

The 3 byte frame counter RTCLOK [0012-0014] is incremented;
RTCLOK+0 is the MSB and RTCLOK+2 is the LSB. This counter wraps
to zero when it overflows (every 77 hours or so) and continues
counting.

The Attract mode variables are processed
4 B10-12.

as described in section

System timer 1 CDTMVi £0218,23 is decremented if it is non-zero;
if the timer goes from non-zero to zero then an indirect JSR is
performed via CDTMAi C0226,2j.

Stage 2 VBLANK process

As part of the stage 2 VBLANK
those VBLANK interrupts which
the following:

processing which will be performed at
do not interrupt critical sections are

The 6 502 processor I bit is cleared, thus enabling the IRQ
interrupts.

Various hardware registers are updated with data from the OS
database as shown below.

Reason for update

Display list end.

Database item Hardware reg.

SDLSTH C0231

3

DLISTH CD403 3

SDLSTL C 0230

3

DLISTL CD4023
SDMCTL lUc,c!F J DMACTL CD400 1

CHBAS C02F4 3 CHBASE CD4093
CHACT C02F3] CHACTL CD401 j

GPRIOR C 02&P j PRIOR CD01B j

C0i_QR0 L0eiC4j COLPFO CD0163
COLOR 1 C02C5] C0LPF1 CD0173
C0L0R2 C02C61 C0LFF2 [D0183

At trace mode.

101

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

C0L0R3 C02C73 C0LPF3 CD0193
r* fit nn nCDLDR4 L 02C8

J

COLBK CD01 A3
PCOLRO C02C03 COLPMO CD012 3

PC0LR1 C02C13 C0LPM1 CD0133
PC0LR2 C02C23 C0LPM2 CD0143
PC0LR3 C02C33 COLPM3 CD0153

Constant = 8 CONSOL CD01F3 Console speaker off

System timer 2 CDTMV2 C021 A, 23 is decremented if it is non-zero;
if the timer goes from non-zero to zero then an indirect JSR is
performed through CDTMA2 C022S, 23.

System timers 3, 4 & 5 are decremented if non-zero; the
corresponding flags are set to zero for each timer that changes
from non-zero to zero.

Timer Timer value

3
4
5

CDTMV3 C021C23
CDTMV4 C021E,23
CDTMV5 C0220, 23

Timer flag

CDTMF3 C022A, 1

3

CDTMF4 C022C, i 3

CDTMF5 C022E, 1

3

A character is read from the POKEY keyboard register and stored
in CH C02FC3 if auto-repeat is active.

The keyboard debounce counter is decremented if not equal to zero
and if no key is pressed.

Keyboard auto-repeat is processed as described in section 4.5 ES.

Game controller data is read from the hardware to the RAM
database as shown below.

Hardware reg.

PENV CD40D3
PENH CD40C3
PORTA CD3003

Database item

PORTB CD3013

POTO CD2003

LPENV
LPENH
STICKO
STICK1
PTRIGn
PTRIGO
PTRIG1
PTRIG2
PTRIG3
STICKS
STICK3
PTRIGn
PTRIG4
PTRIG5
PTRIG6
PTRIG7
PADDLO

C 023 5

3

C02343
C02783
C 0279

3

C027C3
C027D3
C027E3
C027F3
C027A3
L027B3

C02803
C02B1

3

C02B23
1 0283

3

C 0270

3

Func t i on

Lightpen.

Joysticks £<

pot triggers

Pot controllers

102

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

P0T7 CD2073
TRIGO CD0013
TRIG3 CD0043

PADDL7 C02773
STRIGO C02843
STRIG3 C02B73

Joystick triggers.

Maskable interrupts (IRQ)

When an IRQ interrupt occurs control is transferred through the
immediate IRQ global RAM vector VIMIRQ CQ2163; ordinarily this vector
points to the system IRQ handler whose actions are described below.

A cause for the interrupt is found by examining the IRQST CD20E3
register and the PIA status registers PACTL CD3023 PBCTL CD3033. For
the interrupt found/ the interrupt status bit is cleared. One
interrupt event is cleared and processed for each interrupt service
entry; if multiple IRQs are pending a separate interrupt will be
generated for each until all are serviced.

The rest of this section describes how the system IRQ interrupt
service routine deals with each of the possible IRQ causing events.

The 6502 A register is pushed to the stack.

If the interrupt is due to serial I/O bus output ready/ then
clear the interrupt and jump through global RAM vector VSEROR
C020C3.

If the interrupt is due to serial I/O bus input ready/ then clear
the interrupt and jump through global RAM vector VSERIN C020A3.

If the interrupt is due to serial I/O bus output complete; then
clear the interrupt and jump through global RAM vector VSEROC

If the interrupt is due to POKEY timer #1/ then clear the
interrupt and jump through global RAM vector VTIMR1 C02103.

If the interrupt is due to POKEY timer #2/ then clear the
interrupt and jump through global RAM vector VTIMR2 C02123.

If the interrupt is due to POKEY timer #4/ then clear the
interrupt and fall into the following test due to a bug in the OS
interrupt processor!

If the interrupt is due to a keyboard key being pressed (other
than CBREAK3 i CSTART3 / C0PTI0N3/ CSELECT3) / then clear the
interrupt and jump through global RAM vector VKEYBD [02083.

If the interrupt is due to the CBREAK3 key being pressed/ then
clear the interrupt/ set the BREAK flag BRKKEY C00113 to zero,
and clear the following: start/stop flag SSFLAG C02FF3/ cursor
inhibit flag CRSINH C02F03 and Attract mode flag ATRACT C004D3.
Then return from the interrupt after restoring the 6502 A
register from the stack.

C020E3.

103

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM* C016555

If the interrupt is due to the serial I/O bus proceed line, then
clear the interrupt and jump through global RAM vector VPRCED
C 02021.

If the interrupt is due to the serial I/O bus interrupt line,

then clear the interrupt and jump through global RAM vector
VINTER C0204D.

If the interrupt is due to a 6502 BRK instruction, then jump
through global RAM vector VBREAK [02063.

If none of the above, restore the 6502 A register and return from
the interrupt (RTI).

Interrupt initialization

Whenever the system is powered up or the CS/RESET3 key is pressed, the
interrupt subsystem is completely r e- i n i t i a 1 i z ed . The hardware
registers are all cleared and the interrupt global RAM vectors are set
to the following configurations:

Vector Value Type Func t i on

VDSLST C 0200

3

E7B3 Nlil RTI — ignore interrupt.
VVBLKI [0222 3 E7D1 II System stage 1 VBLANK.
CDTMA1 [0226 3 EBFO II SIO timeout timer.
CDTMA2 [0228

3

0000 II No system function.
VVEL.KD [0224 3 E93E II System return from int.

VIMIRQ [02163 E6F6 IRQ System IRQ processor.
VSEROR C020C3 EA90 II SIO.
VSERIN C020A3 EB1 1

II SIO.
VSEROC C020E3 EAD1 II SIO.
VTIMR1 [02103 E7B2 II PLA, RTI — ignore int.

VTIMR2 [02123 E7B2 II PLA, RTI — ignore int.

VTIMR4 [02143 E7B2 II *** doesn't matter ***
VKEYBD C 0208

3

FFBE II System keyboard int. handler
VPRCED C 0202

3

E7B2 11 PLA, RTI — ignore int.

VINTER [0204

3

E7B2 II PLA, RTI — ignore int.

VBREAK [02063 E7B2 ERK PLA, RTI — ignore int.

After system initialization is complete, the interrupt enable
situation is as follows:

NMI VBLANK enabled, Display list disabled.

IRQ CBREAK3 key and data key interrupts enabled, all others
d isab led.

104

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

System timers

There are five general purpose software timers plus a frame counter
supported by the OS The timers are two bytes in length (lo,hi) and the
frame counter RTCLOK C00123 is three bytes in length (hi/mid. lo). The
timers count downward from any non-zero value to zero and upon
reaching zero then either clear an associated flag or JSR through a

RAM vector. The frame counter counts upward, wrapping to zero when it

overflows. The table below shows the timers and the frame counter

Flag/vector Use

CDTMA1 C 02261 2 byte vector — SIO timeout.
CDTMA2 C 0228] 2 byte vector
CDTMF3 C022A3 1 byte flag
CDTMF4 C022C3 1 byte flag
CDTMF5 C022E j 1 byte flag

3 byte frame counter.

* These timers are maintained as part of every VBLANK interrupt (stage
1 process); the other timers are subject to the critical section
test (stage 2 process) which may defer their updating to a later
VBLANK interrupt.

characteristics:

Timer name

* CDTMV1 C02183
CDTMV2 C 02 IAD
CDTMV3 C021C3
CDTMV4 C021E3
CDTMV5 C02203

* RTCLOK C00123

Usage notes

This subsection describes the "tricks" that must be known in

order for the user to utilize interrupts in conjunction with the
operating system.

POKEY interrupt mask

ANTIC (display list & vertical blank) and PIA (interrupt ?•< proceed
lines) interrupts may be masked directly as described in the Hardware
Manual. However, the POKEY interrupts (CBREAK3 key, data key., serial
input ready, serial output ready, serial output done and timers 1,2 &

4) are all masked by the eight bits of a single byte IRQEN CD20E3
which happens to be a write-only register. Thus/ in order to

selectively update individual interrupt mask bits, while not changing
the other bits, we must maintain a current value of that register in

RAM. The name of the variable used is POKMSK C00103 and it is used as

shown in the examples below:

EXAMPLE OF INTERRUPT ENABLE

SEI i TO AVOID CONFLICT WITH IRQ . . .

LDA POKMSK i ... PROCESSOR WHICH ALTERS VAR.

OR A #$zx i ENABLE BIT(S).
STA POKMSK
STA IRQEN i TO HARDWARE REG TOO.

CLI

105

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

EXAMPLE OF INTERRUPT DISABLE

SEI
LDA
AND
STA
STA
CLI

POKMSK i

#*FF-xx ;

TO AVOID CONFLICT WITH IRQ . . .

. . . PROCESSOR WHICH ALTERS VAR.
DISABLE BIT(S).

POKMSK
IRQEN TO HARDWARE REGISTER TOO.

Note that the OS IRQ service routine uses and alters POKMSK* so
alterations to the variable must be done with interrupts inhibited I

done at the interrupt level there is no problem; as the I bit is

already set; if done at a background level then the SEI and CLI
instructions should be used as shown in the examples.

Setting interrupt and timer vectors

Because vertical blank interrupts are generally kept enabled so that
the frame counter RTCLOK is maintained accurately/ there is a problem
with setting the VBLANK vectors (VVBLKI %>. VVELKD) or the timer values
(CDTMV1 through CDTMV5) directly. A VBLANK interrupt could occur when
only one byte of the two byte value had been updated/ leading to
undesired consequences. For this reason, the SETVBV CE45F] routine is

provided to perform the desired update in safe manner. The calling
sequence is shown below:

A update item indicator
1-5 for timers 1-5.
6 for immediate VBLANK vector VVBLKI.
7 for deferred VELANK vector VVELKD.

X = MSB of value to store.
Y = LSB of value to store.

JSR SETVBV

The A/ X & Y registers may be altered.
The display list interrupt will always be enabled on
return* even if disabled upon entry.

Note that it is possible that a vertical blank interrupt may be fully
processed during a call to this routine.

When working with the system timers, the vectors for timers 1 & 2 and
the flags for timers 3/4 & 5 should be set while the associated timer
is equal to zero; then the timer should be set to its (non-zero)
va 1 ue.

106

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

Stack content at interrupt vector points

The table belou, shows the stack content at every one of the RAM
interrupt vector points:

VDSLST C02003
WBLKI C 0222 3 #
CDTMA1 C022&T
CDTMA2 C0228 3A

WBLKD [02243 1 *

VIMIRQ
VSEROR
VSERIN
VSEROC
VTIMR1
VTIMR2
VTIMR4
VKEYBD
VPRSED
VINTER
VBREAK

[02163 *
C020C3 #
C 020A 3 *

C020E3 *
C02103
C02123
C02143
C02083
C02023
C0204 3

C 0206

3

list return, P
immed

.

return, P, A, X, Y
timer 1 return, P, A, X, Y, return
timer 2 return, P, A, X, Y, return
defer. return, P, A, X, Y

IRQ immediate
Serial out rdy
Serial in rdy.
Serial out cmp
POKEY timer 1

POKEY timer 2
POKEY timer 4
Keyboard data
Serial proceed
Serial interr.
BRK instr.

return/ P
return, P
return, P
return, P
return, P
return, P
return/ P
return/ P
return/ P
return/ P
return/ P

Entries flagged with are initialized by
power up; changing these vectors will alter

properly.

the operating system at
system performance if not

Miscellaneous considerations

The following paragraphs list a set of miscellaneous considerations
for the writer of an interrupt service routine.

RESTRICTIONS ON CLEARING OF 'I' BIT

Display list/ immediate vertical blank and system timer #1 routines
should not clear the 6502 I bit. If the NMI leading to one of these
routines occurred while an IRQ was being processed/ then clearing the
I bit will cause the IRQ to re-interrupt with unknown result.

The OS VBLANK processor carefully checks this condition after the
stage 1 process and before the stage 2 process.

INTERRUPT PROCESS TIME RESTRICTIONS

If the serial I/O bus is being used/ then any user defined interrupt
routine plus the stage 1 VBLANK routine should not exceed 400 usee.
SIO sets the CRITIC flag while serial bus I/O is in progress

INTERRUPT DELAY DUE TO "WAIT FOR SYNC"

Whenever a key is read from the keyboard/ the Keyboard handler sets
WSYNC CD40AD repeatedly while generating the audible click on the
console speaker. A problem occurs when interrupts are generated during

107

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

the wait for sync period; the processing of such interrupts will be
delayed by one horizontal scan line. Since this condition cannot be
prevented; a solution available to the user is to examine the line
count VCOUNT CD40BD and delay interrupt processing by one line when no
WSYNC delay has occurred.

Flowcharts

The following pages contain process flowcharts showing the main events
that occur in the NMI and IRQ interrupt processes.

108

IRQ INTERRUPT PROCESS

VIMIRQ

V

PUSH REG A
TO STACK

"SERIAL
OUT RDY?

,

N

ERIAL
IN RDY?

pN

"SERIAL
OUT COMPL?

Y. CLEAR
S TATUS

CLEAR
STATUS

CLEAR
S TATUS

VSERCR

VS ERIN

VSEROC

POKEY
TIMER 1?

V CLEAR
S TATUS

VTIMR1

POKE'
TIMER 2?

Y CLEAR
STATUS

VTIMR2

POKEY
TIMER 4?

N

EYBOARD
KEY?

Y CLEAR
S TATUS

CLEAR
S TATUS

VTIMR4

VKEYBD

108-A

108-B

NMI INTERRUPT PROCESS

PUSH REG A
TO STACK

108-C

r

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEP I APPROVAL
OPERATING SYSTEM/ C016555

7 System initialization

Introduction

System initialization takes place automatically in two circumstances:

power up (also called coldstart) and the pressing of the CS/RESET3 key

(warmstart). In addition/ there are vectors for these processes at

E474 (CS/RESET3) and E477 (power up) so that they may be user

initiated.

The power up initialization process is a superset of the CS/RESET3
initialization process; power up initializes both the OS and user RAM

regions whereas CS/RESET3 initializes only the OS RAM region. In both

cases the outer level software initialization entry points are called

to allow the application to initialize its own variables.

Pressing the S Reset key produces an NMI interrupt and does not

perform a 6502 chip S RESET. If the processor is locked up/ S RESET

may not be sufficient to unlock it, and the system may have to

have power cycled to clear the problem.

The remainder of section 7 will discuss the details of the power up

and CS/RESET3 processes. Because they have many common functions
(actually sharing common code)/ the power up process will be explained

first and then the US/RESET} process will be explained in terms of its

differences from the power up process.

Power up initialization (coldstart)

The functions listed below are performed/ in the order shown/ as part

of the power up initialization process:

1. The following 6502 processor functions are performed.

IRQ interrupts are disabled using the SEI instruction.

The decimal flag is cleared using the CLD instruction.

The stack pointer is set to FF.

2. The warmstart flag WARMST [00083 is set to 0 (false).

3. A test is made to see if a diagnostic cartridge is in the "A" slot:

Cartridge address BFFC 00?
The memory at BFFC is not RAM?
Bit-7 of the byte at BFFD = 1?

If all of the above tests are true/ then control is passed to the

diagnostic cartridge via the vector at BFFE; no return is expected.

4. The lowest memory address containing non-RAM is determined by

testing the first byte of every 4K "block" to see if the content

can be complemented. If it can be complemented/ then the original

value is restored and testing continues; if it can't be

109

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

complemented/ it is assumed to be the first non-RAM address in the
system. The MSB of the address is stored temporarily in TRAMSZ
[0006 3.

5. Zero is stored to all of the hardware register addresses shown
below (most of which aren't decoded by the hardware):

DOOO through DOFF
D200 through D2FF
D300 through D3FF
D400 through D4FF

6. RAM is cleared from location 0008 to the address determined in step
4 above.

7. The default value for the "non-cartridge" control vector DOSVEC
[000A3 is set to point to the blackboard routine. At the end of
initialization* control is passed through this vector if a
cartridge does not take control.

8. The coldstart flag COLDST [0244] is set to -J (local use).

9. The screen margins are set; left margin = 2/ right margin = 39 for
a 38 character physical line (the maximum line size of 40
characters would be obtained by setting the margins to 0 & 39). The
left margin is inset because many TV sets are manufactured such
that the two leftmost columns of the video picture are not entirely
visible on the screen.

10. The interrupt RAM vectors VDSLST [02003 through WBLKD C02243 are
initialized/ see section 6 for the initialization values.

11. Portions of the OS RAM are set to their required non-zero values
as shown below:

The CBREAK 3 key flag BRKKEY [00113 = -1 (false).

The top of memory pointer MEMTGP C02E53 = the lowest non- RAM
address (from step 4), MEMTOP will be altered later when the
Screen Editor is OPENed in step 15.

The bottom of memory pointer MEMLO C02E73 0700; MEMLO may be
changed- later if there is either a disk or cassette boot
ope rati on

The following resident routines are called for initialization— Screen Editor, Display handler, Keyboard handler, Printer
handler, Cassette handler.. Central I/O Monitor (CIO), Serial
I/O Monitor (SIO) and the Interrupt processor.

The START key is checked; and if pressed., the cassette boot
request flag CKEY [004A3 is set

12. 6502 IRQ interrupts are enabled using the CLI instruction.

1 10

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

13. The Devite Table HATABS C031A3 is initialized to point to the
resident handlers. See section 9 for information relating to the
device handler table.

14. The cartridge slot addresses for cartridges "B" and "A" are
examined to determine if cartridges are inserted, if RAM does not
extend into the cartridge address space

If the content of location 9FFC is zero, then a JSR is executed
through the vector at 9FFE, thus initializing cartridge "B". The
cartridge is expected to return.

If the content of location BFFC is zero, then a JSR is executed
through the vector at BFFE, thus initializing cartridge !, A ,:

. The
cartridge is expected to return.

15. IOCB #0 is setup for an OPEN of the Screen Editor (E) and the OPEN
is performed. The Screen Editor will use the highest portion of
RAM for the screen and will adjust MEMTOP accordingly. If this
operation should fail/ the entire initialization process is

repeated.

16. A delay is effected to assure that a VBLANK interrupt has
occurred. This is done so that the screen will be established
before continuing.

17. If the cassette boot request flag is set (see step li above), then
a cassette boot operation is attempted. See section 10 for details
of the cassette boot operation.

18. If any of the three conditions stated below exists, an attempt is

made to boot from the disk.

There are no cartridges in the slots

Cartridge l4 B" is inserted and bit-0 of 9FFD is 1.

Cartridge "A" is inserted and bit-0 of BFFD is 1.

See section 10 for details of the disk boot operation.

19. The coldstart flag COLDST is reset to indicate that the coldstart
process went to completion.

20. The initialization process is now complete, and the controlling
application is now determined via the remaining steps.

If there is an "A" cartridge inserted and bit-2 of EFFD is 1, then
a JMP is executed through the vector at BFFA.

Else/ if there is a "B " cartridge inserted and bit-2 of 9FFD is li

then a JMP is executed through the vector at 9FP A.

i 1

5

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

Else a jump is executed through the vector DOSVEC which may point
to the blackboard routine (default case)/ cassette booted software
or disk booted software. DOSVEC may be altered by the booted
software as explained in section 10.

CS/RESET 3 initial i ration (warmstart)

The functions listed below are performed/ in the order shown/ as part
of the CS/RESET3 initialization process:

A. Same as power up step 1.

B. The warmstart flag WARMST C 0008 3 is set to -1 (true).

C. Same as power up steps 3 through 5.

D. OS RAM is zeroed from locations 0200-03FF and 0010-007F.

E. Same as power up steps 9 through 16.

F. If a cassette boot was successfully completed during the power up
initialization/ then a JSR is executed through the vector CASINI
C0002D. See section 10.3 for details of the cassette boot process.

G. Same as power up step IS/ except instead of booting the disk
software/ a JSR is executed through the vector DOSINI C000C3 if the
disk boot was successfully completed during the power up
initialization. See section 10 for details of the disk boot
process.

H Same as power up steps 19 and 20.

Note that the initialization procedures and main entries for all
software entities are executed at every CS/RESET3 as well as at power
up (see steps 14/ 17/ 18/ 20/ F and G). If the user supplied
i n i t i a 1 i za t i on/ s tar t up code must behave differently in response to

CS/RESET3 than it does to power up/ then the warmstart flag WARMST
C0008D should be interrr oga t ed ; WARMST = 0 means power up entry/ else
CS/RESET] entry.

112

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

8 Floating point arithmetic package

This section describes the BCD floating point package that is

resident in the OS ROM in both the models 400 and 800.

Introduction

The floating point package maintains numbers internally as 6 byte
quantities; a 5 byte (10 BCD digit) mantissa with a 1 byte exponent.
BCD internal representation was chosen so that decimal division would
not lead to the rounding errors typically found in binary
representation implementations.

The package provides the following operations:

ASCII to F. P. conversion.
F. P. to ASCII conversion.
Integer to F. P. conversion.
F. P. to integer conversion.
F. P. add; subtract; multiply and divide.
F. P. logarithm/ exponentiation and polynomial evaluation.
F. P. zero/ load, store and move.

A floating point operation is performed by calling one of the provided
routines (each at a fixed address in ROM) after having set one or more
floating point pseudo registers in RAM. The result of the desired
operation will also involve floating point pseudo registers. The
primary pseudo registers are described below and their addresses given
within the square brackets:

FRO C00D41 = 6 byte internal form of f. p. number.
FR1 C00E03 * 6 byte internal form of f. p. number.
FLPTR COOFCH = 2 byte pointer (lo/hi) to a f.p. number.
INBUFF C00F3D = 2 byte pointer (lo/hi) to an ASCII text buffer

CIX C00F23 = 1 byte index, used as offset to buffer pointed to
by INBUFF C00F21.

LBUFF C05803 = result buffer for the FASC routine.

Func t ions/cal ling sequences

In the paragraphs that follow are the descriptions for all of the
routines; unless specifically mentioned in the calling sequence, it is

assumed that a pseudo register is not altered by a given routine. The
numbers in square brackets Cxxxxl are the ROM addresses of the
routines.

ASCII to floating point conversion (AFP)

Function: This routine takes an ASCII string as input and produces a

floating point number in internal form.

i 13

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

Calling se que nee:

INBUFF = pointer to buffer containing the ASCII
representation of the number.

CIX = the buffer offset to the first byte of the ASCII
number.

JSR AFP CD800D
BCS first byte of ASCII number is invalid

FRO = floating point number.
CIX = the buffer offset to the first byte after the ASCII

number.

Algorithm: The routine takes bytes from the buffer until it encounters
a byte which cannot be part of the number. The bytes scanned to that
point are then converted to a floating point number. If the first byte
encountered is invalid; the carry bit is set as a flag.

Floating point to ASCII conversion (FASC)

Function: This routine converts a floating point number from internal
form to its ASCII representation.

Calling sequence:

FRO = floating point number.

JSR FASC Z D8E6

3

INBUFF = pointer to the first byte of the ASCII number.
The last byte of the ASCII representation has the most
significant bit (sign bit) set; no EOL follows.

Algorithm: The routine converts the number from its internal floating
point representation to a printable form (ATASCII). The pointer INBUFF
will point to part of LBUFF, where the result is stored.

Integer to floating point conversion (IFP)

Function: This routine converts a two byte unsigned integer (0 to
65535) to floating point internal representation.

Calling sequence:

FRO integer (FRO+0 = LSB, FRO+1 = MSB).

JSR IFP CD9AAD

FRO = floating point representation of integer.

114

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

Floating point to integer conversion <FPI)

Function: This routine converts a positive floating point number from
its internal representation to the nearest two byte integer.

Calling sequence:

FRO = floating point number.

JSR FPI CD9D2 3

BCS f. p. number is negative or >= 65535. 5

FRO = two byte integer (FRO+O * LSB, FRO+1 « MSB).

Algorithm: The routine performs true rounding* not truncation; during
the conversion process.

Floating point addition (FADD)

Function: This routine adds two floating point numbers and checks the
result for out of range.

Call ing sequence:

FRO
FRl

= floating point number.
= floating point number.

JSR
BCS

FADD CDA663
out of range result.

FRO
FRl

« result of FRO + FRl.
is altered.

Fl oat ing point subtraction (FSUB)

Function: This routine subtracts two
the result for out of range

Call ing sequence:

FRO
FRl

= floating point minuend.
= floating point subtrahend

JSR
BCS

FSUB CDA60 3

out of range result.

FRO
FRl

= result of FRO - FRl.
is altered.

Floating point multiplication (FMUL)

Function: This routine multiplies two floating point numbers and
checks the result for out of range.

1 i 5

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

Calling sequence:

FRO = floating point multiplier.
FR1 = floating point multiplicand.

JSR FMUL CDADBD
BCS out of range result.

FRO = result of FRO * FR 1

.

FR1 is altered.

Floating point division (FDIV)

Function: This routine divides two floating point numbers and check
for division by zero and for result out of range.

Calling sequence:

FRO = floating point dividend.
FR 1 = floating point divisor.

JSR FDIV CDB28D
BCS out of range result or divisor is zero.

FRO = result of FRO / FR 1

.

FR 1 is altered.

Floating point logarithms < LOG ?y LOGIC)

Function: These routines take the natural or base 10 logarithms of

floating point number.

Calling sequence:

FRO floating point number.

JSR LOG CDECD3 for natural logarithm
or

JSR L0G10 CDED1 3 for base 10 logarithm
BCS negative number or overflow.

FRO = floating point logarithm.
FR 1 is altered.

Algorithm: Both logarithms are first computed as base 10 logarithms
using a 10 term polynomial approximation; the natural logarithm is

computed by dividing the base 10 result by the constant LOGlO(e).

The logarithm of a number Z is computed as follows:

F * (10 ** Y) = Z where 1 <= F < 10 (normalization).
L = LOGIO(F) by 10 term polynomial approximation.
LOGIO(Z) = Y + L.

LOG(Z) = LOGIO(Z) / LOGlO(e).

116

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

NOTE: This routine does not return an error if the number input is

zero; the LOGIO result in this case is approximately -129. 5*

which is not useful.

Floating point exponentiation (EXP and EXPIO)

Function: This routine exponentiates.

Calling sequence:

FRO = floating point exponent (Z).

JSR EXP CDDC03 for e ** Z

or
JSR EXPIO CDDCCD for 10 ** Z

BCS overflow.

FRO = floating point result.
FR1 is altered.

Algorithm: Both exponentials are computed internally as base 10. with
the base e exponential using the identity:

e ** X = 10**(X * LOGlO(e)).

The base 10 exponential is evaluated in two parts using the identity:

10 ** X 10 ** (I + F > = (10 ** I) * (10 ** F) — where I is the
integer portion of X and F is the fraction.

The term 10 ** F is evaluated using a polynomial approximation; and iO

** I is a straightforward modification to the floating point exponent.

Floating point polynomial evaluation (PLYEVL)

Function: This routine performs an n degree polynomial evaluation.

Calling sequence:

X/Y = pointer (X = LSB) to list of f.p. coefficients (A(i)>
ordered from high order to low order.

A = number of coefficients in list.

FRO floating point independent variable (Z).

JSR PLYEVL CDD401
BCS overflow or other error.

FRO - result of A(n)*Z**n + ACft-1 >*Z**n-l ... + A(1)*Z *

A(0>.
FR1 is altered.

Algorithm: The polynomial P(Z) = SUM < i *0 to n) <A(i>*Z**i> is computed
using the standard method shown below:

1 1

7

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

P(Z) = <...<A(n>*Z + A(n-1 > >*Z + ... + A< 1 > >*Z A<0)

Clear FRO (ZFRO)

Function: This routine sets the contents of pseudo register FRO
to all zeroes.

Calling sequence:

JSR ZFRO CDA443

FRO = zero.

Clear page zero floating point number (ZF1)

Function: This routine sets the contents of a zero page floating point
number to all zeroes.

Calling sequence:

X = zero page address of f.p. number to clear.

Load floating point number to FRO (FLDOR and FLDOP

)

Function: These routines load pseudo register FRO mith the floating
point number specified by the calling sequence.

Calling sequences:

Xi Y = pointer (X = LSB) to f.p. number.

JSR ZF1 CDA46D

zero page f.p. number(X) = zero.

JSR FLDOR CDD89

]

or

FLPTR pointer to f. p. number.

JSR FLDOP CDD8D3

FRO = floating point number (in either case).
FLPTR = pointer to f.p. number (in either cas

Load floating point number to FR1 (FLD1R and FLD1P)

Function: These routines load pseudo register FR i with the
floating point number specified by the calling sequence.

118

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

Calling sequences:

As in prior description* except the result goes to FRl

instead of FRO. FLDIR CDD983 and FLD1P CDD9C 3

Store floating point number from FRO (FSTOR and FSTOP

)

Function: These routines store the contents of pseudo register FRO to

the address specified by the calling sequence:

Calling sequence:

As in prior descriptions/ except the floating point number is

stored from FRO rather than loaded to FRO. FSTOR CDDA7D and FSTOP

CDDABD.

Move floating point number from FRO to FRl (FMOVE)

Function: This routine moves the floating point number in FRO to

pseudo register FRl.

Calling sequence:

JSR FMOVE CDDB63

FRl = FRO (FRO remains unchanged).

Resource utilization

The floating point package uses the following RAM locations in the

course of performing the functions described in this section:

00D4 through OOFF
057E through 05FF

If the floating package is not utilized, all of those locations are

available for the user program.

Implementation detai Is

Floating point numbers are maintained internally as 6 byte quantities,

with 5 bytes < 10 BCD digits) of mantissa and 1 byte of exponent. The

mantissa is always normalized such that the most significant byte is

non-zero (note "byte" and not "BCD digit").

The most significant bit of the exponent byte provides the sign for

the mantissa, O for positive and 1 for negative. The remaining 7 bits

of the exponent byte provide the exponent in excess 64 notation; the

resulting number represents powers of 100 decimal (not powers of 10).

A result of this storage format is that the mantissa holds 10 BCD

digits when the value of the exponent is an even power of 10 and holds

9 BCD digits when the value of the exponent is an odd power of 10.

119

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM- C016555

The implied decimal point is always to the immediate right of the
first byte so that an exponent that is less than 64 indicates a number
less than 1 and an exponent greater than or equal to 64 represents a

number greater than or equal to 1.

Zero is represented by a zero mantissa and a zero exponent. In testing
for a result from any of the standard routines., it is sufficient to

test either the exponent or the first mantissa byte for zero.

The absolute value of floating point numbers must be greater than
10**-98 and less than 10**+98 or be equal to zero. There is perfect
symmetry between positive and negative numbers with the exception that
negative zero is never generated.

Although the precision of all computations is maintained at 9 or 10

decimal digits., the accuracy is somewhat less for those functions
involving polynomial approxi ma tions (logarithm and exponentiation).
Also, the problems inherent in all floating point systems are present
here/ for example: subtracting two very nearly equal numbers, adding
numbers of disparate magnitude, or successions of any operation will
all result in a loss of significant digits. For some types of

applications an analysis of the data range and the order of evaluation
of expressions may be required.

The remainder of this section will give some examples of the internal
representation of some floating point numbers as an aid to

understanding the storage format. All numbers prior to this point have
been expressed in decimal notation, but the examples will use
hexadecimal notation (note that 64 decimal, the excess number of the

exponent, is 40 when expressed in hexadecimal).

Number

:

+0. 02 = 2 * 10**-2 = 2 * 100**-1
Stored

:

3F 02 00 00 00 00 (f . p. exponent = 40 1)

Numb er

:

-0. 02 = -2 * 10**-2 as —2 * 100**-1
Stored : BF 02 00 00 00 00 (f P . exponent = 80 40

Numb er

:

+37. 0 = 3. 7 •* 10-a-* 1 = 37 * 100**0
Stored

:

40 37 00 00 00 00 (f . p. exponent = 40 0)

Number

:

-4. 60312486 * 10**11 = -46. 03. . .
* 100**5

Stored

:

C5 46 03 01 24 86 (f . p. exponent = 80 + 40

Number

:

0. 0
Stored

:

00 00 00 00 00 00 (spec ial case)

/

120

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

9 - Adding new device handlers/peripherals

This section describes the interface requirements for a non resident-
device handler that is to be accessed via the Central I/O utility
(CIO); further, the Serial bus I/O utility (SIO) interface is defined
for those handlers which utilize the Serial I/O bus.

«

The I/O subsystem is organized with three levels of software betyppn
the user and the hardware. At the outer level is CIO, which performs
the following functions:

Logical device name to device handler mapping (on OPEN).

I/O Control Block (IOCB) maintenance.

Logical record handling.

User buffer handling.

Below CIO are the individual device handlers, which perform the
fol lowing functions:

Device initialization on power up and CS/RESET3

.

Device dependent support of OPEN and CLOSE commands.

Byte at a time data input and output.

Device dependent special operations.

Device dependent command support.

Device data buffer management.

At the bottom level (for Serial I/O bus peripheral handlers) is SIO,
which performs the following functions.

Control of all Serial bus I/O, conforming to the bus protocol as
described in section 9.

Bus operation retries on errors.

Return of unified error statuses on error conditions.

At each interface there is a separate control structure used for
communication/ as shown below:

User /C 10 I/O Control Block (IOCB)

CIO/Handler Zero page IOCB (ZIOCB)

Handler/SIO Device Control Block (DCB)

ese relationships are shown graphically on the next page.

121

Th

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

I/O SU3SYSTEM FLOW DIAGRAM

user

IOCBs [#****»*«

ZIOCB
-f-
—— •—————

! Device
! Table
+

i program !

+ +
CIO

utility
+ +

— +

DCB
+

+

+
!

Pr inter
Hand 1 er

+

Cassette

!

Hand 1 er I

+ i_

iDisk File

!

Manager !

+ +
h

+

Han d 1 er

-r- +

! Keyboard!
i Hand I er !

Disk
Ha rid I er

DCB
+

+

! SIO
! Utility
4-

Where: shows a control path.
shows the data structure required for a path.

Note the following:

1. The Keyboard/Disp lay /"Screen Editor handlers don't use
SIO.

2. The Disk handier is not callable directly from CIO
3. The DCB is shown twice in the diagram

«

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

Device Table

The Device Table is a RAM resident table that contains the single
character device name (e. g. k, D, C, etc.) and the handler address for
each of the handlers known to CIO. The table is initialized at power
up (and CS/RESET3) to contain entries for the following resident
handlers: Keyboard <K>, Display <S>, Screen Editor <E>, Cassette (C)
and Printer (P). To install a new handler, some procedure must insert
a Device Table entry after the table is initialized.

The table format is shown below:

+ + -+
HATAES C031A] ! device name ; {

4 + «

i handler vector \ 4— one entry
+ +

{

I table address ! i

+ + _^
! more !

== =

i entries
J

+ +
i zero fill to !

! end of table !

+ +

The table is 38 bytes long and will hold a maximum of 12 entries, with
the last two bytes being zero. CIO scans the table from the end to the
beginning (high to low address); so, in the case of multiple
occurrences of a device name, the entry nearest the end of the table
will take precedence.

The device name for each entry it a single ATASC 1 1 character, and the
handler address points to the handler's vector table, which will be
described in the following section.

C ID/hand ler interface

This section describes the interface between the Central I/O utility
and the individual device handlers that are represented in the Device
Table *as described in the preceding section).

Calling mechanism

Each handler has a vector table as shown below:
space 1 ; need 16

+ ^

+ OPEN vector * (low address)
+ h

+ CLOSE vector +

123

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

+ +
+ GETBYTE vector f
+ +
+ PUTBYTE vector +
+ +
+ GETSTAT vector +
+ SPECIAL vector +
+ +

JMP init code +
+ + < h i g h ad dre ss >

+ . +

The Device Table entry for the handler points to the first byte of the

vector table.

The first six entries in the table are vectors (lo/hi) which contain
the address - 1 of the handler routine which handles the indicated
function. The seventh entry is a 6502 JMP instruction to the handler
initialization routine. CIO uses oni\j the addresses contained in this
table for handler entry; each user/CIO command translates to one or

more calls to one of the handler entries defined in the vector table.

The vector table provides to CIO the handler addresses for certain
fixed functions to be performed; but/ in addition/ operation
parameters must be passed for most functions. Parameter passing is

accomplished using the 6502 A/ X and Y registers and an IOCB in page 0

named ZIOCB C0020D. In general/ register A is used to pass data,
register X contains the index to the originating IOCB and register Y

is used to pass status information to CIO. The zero page IOCB is a

copy of the originating IOCE; but in the course of processing some
commands/ CIO may alter the buffer address and buffer length
parameters in ZIOCB (but not in the originating IOCB). see section
5.2.2 for information relating to the originating IOCB.

Reference Appendix B for the standard status byte values to be

returned to CIO in register Y.

The following sections will describe the CIO/handler interface for
each of the vectors in the handler vector table.

Handler initialization

This entry doesn't appear to have any function for non-resident
handlers due to a bug in the current OS — the Device Table is

cleared in response to both CS/RESET3 and power up/ instead of just

power up/ thus preventing this entry point from ever being
called. The rest of this section discusses the intended/ but
not implemented/ use of this entry point; conformation would be
in order to allow compatibility with possible corrected versions
of the OS in the future.

The entry was to have been called on all occurrences of power up and
CS/RESETD; the handler is to perform initialization of its hardware

124

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

and RAM data so as to assure proper processing of all CIO commands
that follow.

Functions supported

This section describes the functions associated with the first six

vectors from the handler vector table. A brief/ device independent,
description of the CIO/handler interface and recommended actions are
given for each function vector.

OPEN

This entry is called in response to an OPEN command to CIO; the
handler is expected to validate the OPEN parameters and perform any

required device initialization associated with a device OPEN.

At handler entry/ the following parameters may be of interest:

X = index to originating IOCB.
Y = $92 (status = function not implemented by handler).

ICDNOZ C0021D = device number (1-4/ for multiple device
hand 1 er s)

.

ICBALZ/ICBAHZ C0024/0025D « address of device/filename
specification.

ICAX 1 Z / ICAX2Z C002A/0C2BD = device specific information

The handler will attempt to perform the indicated OPEN and will
indicate the status of the operation by the value of the Y register.
The responsibility for checking for multiple OPENs to the same device
or file/ where it is illegal/ lies with the handler.

CLOSE

This entry is called in response to a CLOSE command to CIO; the

handler is expected to release any held resources that relate
specifically to that device/filename/ and for output files to; i) send

any data remaining in handler buffers to the device/ 2) mark the end

of file/ and 3) update any associated directories/ allocation maps,

etc.

At handler entry/ the following parameters may be of interest:

X = index to originating IOCB.
Y *= $92 (status = function not implemented by handler).

ICDNOZ C0021D = device number (1-4/ for multiple device
hand 1 er s)

.

ICAX1Z/ICAX2Z C002A/002B3 = device specific information

The handler will attempt to perform the indicated CLOSE and will
indicate the status of the operation by the value of the Y register.

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

CIO will release the associated IOCB after the handler returns,
regardless of the operation status value.

GETBYTE

This entry is called in response to a GET CHARACTERS or GET RECORD
command to CIO. The handler is expected to return a single byte in the
A register or return an error status in the Y register.

»

At handler entry, the following parameters may be of interest:

X « index to originating IOCB.
Y = $92 (status « function not implemented by handler).

ICDNOZ [00213 = device number (1-4, for multiple device handlers).
ICAX1Z/ ICAX2Z C002A/002BD = device specific information.

The handler will 'obtain a data byte directly from the device or from a
handler maintained buffer and return to CIO with the byte in the A
register and the operation status in the Y register.

Handlers which do not have short timeouts associated with the reading
of data (such as the Keyboard and Cassette handlers), must monitor the
[BREAK D key flag BRKKEY [001111 and return with a status of *B0 wqen a
[BREAK3 condition occurs. See section 4 E5 and section 12 for a
discussion of [BREAK] key monitoring.

CIO checks for reads from device/files that have not been OPENed or
OPENed for output only; the handler will not be called in those cases.

PUTEYTE

This entry is called in response to a PUT CHARACTERS or PUT RECORD
command to CIO. The handler is expected to accept a single byte in the
A register or return an error status in the Y register.

At handier entry/ the following parameters may be of interest:

X = index to originating IOCB.
Y = $92 (status = function not implemented by handler).
A - data byte.

ICDNOZ [00213 device number (1-4, for multiple device
handlers) .

ICAX1Z/ICAX2Z [C02A/002B] = device specific information.

The handler will send the data byte directly to the device or to a
handler maintained buffer and return to CIO with the operation status
in the Y register. If a handler maintained buffer fills, the handier
will send the buffered data to the device before returning to CIO.

CIO checks for writes to device/files that have not been OPENed or
OPENed for input only; the handler will not be called in those cases.

126

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

Now that the normal operation of PUTBYTE has been defined/ a special
case must be added; any handler that will operate within the
environment of the 8K BASIC language interpreter has a different set
of rules. Because BASIC can call the handler PUTBYTE entry directly,
without going through CIO/ the zero-page IOCB (ZIOCB) may or may not
have a relation to the PUTBYTE call; thus the handler must use the
outer level IOCB to obtain any information that would normally be
obtained from ZIOCB. Note also in this case that the OPEN protection
normally provided by CIO is bypassed (i.e. PUTBYTE to a non-OPEN
device/file and PUTEYTE to a read-only OPEN).

OETSTAT

This entry is called in response to a GET STATUS command to CIO. The
handler is expected to return four bytes of status to memory or return
an error status in the Y register.

At handler entry/ the following parameters may be of interest:

X index to originating IOCB. Y = $92 (status ~ function not
implemented by handler).

ICDNOZ [00213 = device number <i-4/ for multiple device handlers).

ICBALZ/ICBAHZ [0024/00253 - address of
device /filename specification.

ICAX12/ICAX2Z
C002A/002E 3 - device specific information.

The handler will get device status information from the device
controller and put the status bytes in DVSTAT C02EA3 through DVSTAT +3
and return to CIO with the operation status in register Y.

The IOCB need not be OPENed nor CLOSEd in order for the user to
request CIO to perform a GET STATUS operation., the handler must check
where there are restrictions. See section 5.2.3 for a discus? ion of

the CIO actions involved with a GET STATUS operation using both OPEN
and CLOSEd IOCBs/ and note the impact of this on the use of the buffer
address parameter.

SPECIAL

This handler entry is used to support all functions not handled by the
other entry points/ such as disk file RENAME, display DPxAW/ etc
Specifically/ if the IOCB command byte value is greater than fcODi then
CIO will use the SPECIAL entry point The handler must interrogate the
command byte to determine if the requested operation is supported

At handler entry/ the following parameters may be of interest:

X = index to originating IOCB
Y = *92 (status = function not implemented by handler).

ICDNOZ C00213 = device number (1-4/ for multiple device
hand 1 er s)

.

1^7

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

ICCOMZ C00223
ICBALZ/ICBALH
ICBLLZ/ICBLHZ
ICAX1Z/ICAX2Z

= command byte.
C 0024/00253 = buffer address.
£0028/0029 3 = buffer length.
C002A/002B3 = device specific information

The handler will perform the indicated operation/ if possible* and

return to CIO with the operation status in register Y.

The IOCB need not be OPENed nor CLOSEd in order for the user to

request CIO to perform a SPECIAL operation; the handler must check

where there are restrictions. See section 5 for a discussion of the

CIO actions involved with a SPECIAL operation using both OPEN and

CLOSEd IOCBs » and note the impact of this on the use of the buffer
address parameter.

Error hand ling

Error handling has been simplified somewhat by having CIO handle outer
level errors and having SIO handle Serial bus errors; leaving the

handler to process the remaining errors. These errors include:

Out of range parameters.
CBREAK] key abort.
Invalid command.
Read after end of file.

The current handlers respond to errors using the following guidelines:

Keep the recovery simple (and therefore predictable & repeatable).

Do not interact directly with the user for recovery instructions.

Lose as little data as possible.

hake all attempts to maintain the integrity of file oriented

device storage — this involves the initial design of the

structural elements as well as error recovery techniques.

Resource allocation

Non-resident handlers needing code and/or data space in RAM should use

the techniques listed below* in order to assure nonconflict with other

parts of the OS., including other nonresident handlers.

ZERO-PAGE RAM

There are no spare bytes of zero page RAM* and even if there were*

there is no allocation scheme to support multiple program assignment
of the spares. Therefore* the non-resident handler must save and

restore the bytes of zero-page RAM it is going to use. The bytes to

use must be chosen carefully* according to the following criteria:

128

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
K

OPERATING SYSTEM, C016555

The bytes may not be accessed by an interrupt routine.

The bytes may not be accessed by any non-interrup t code between

the time the handler modifies the bytes and then restores the

original values.

A simple save/restore technique would utilize the stack in a

manner similar to that shown below:

; (for example)
; SAVE ON STACK.

LDA COLCRS
PHA
LDA COLCRS+1
PHA

LDA HPOINT
STA COLCRS
LDA HPOINT+1
STA COLCRS+1

XXX (COLCRS),

Y

PLA
STA COLCRS+l
PLA
STA COLCRS

i HANDLER '5 POINTER

; DO YOUR POINTER THING,

i RESTORE OLD DATA.

Note that for the example above, it would not be judiciou, to call the

Display handler or the Screen Editor before restorxng the original

value of COLCRS, as COLCRS is a variable used by those routines

NON-ZERO-PAGE RAM

Again, there is no allocation scheme to support the assignment of

fixed regions of non-zero-page RAM to any specific process, so the

handler has three choices:

1. Make a dynamic allocation at initialization time by altering

MEMLO C02E73.

2 Include the variables with the handler for RAM resident

handlers; this still involves altering MEMLO at the time the

handler is booted.

3 If the handler is to be replacing one of the resident handlers

by removing the resident handler's entry in the Device Table,

then the new handler may use any RAM that the formerly resident

handler would have used.

STACK SPACE

In normal situations there are no restrictions on the use of th» «tJic*

by a handler; however, if the handler is planning on pushing "or.^than

a couple of dozen bytes to the stack, it should do a stack overflow

test and always leave stack space for interrupt processing

1 ">C>lc. /

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

Hand ler /SIO interface

This section describes the interface between serial bus device
handlers and the serial bus I/O utility (SIO). SIO completely handles
all bus transactions following the device independent bus protocol.
SIO is responsible for the following functions:

Bus data format and timing from computer end

Error detection/ retries and statuses.

Bus timeout.

Transfer of data between the bus and the caller's buffer.

Calling mechanism

SIO has a single entry point 5I0V EE4d9j for all operations, and 611
parameters passed to SIO are contained in the Device Control Block
(DCE) £0300 j , which contains the following bytes:

DEVICE BUS I. D. — DDEVIC C 030011

The bus I.D. of the device is set by the handler prior to calling SID
(see Appendix I).

DEVICE UNIT # — DUN I T C030i]

This byte indicates which of n units of a given device type to access
and is set by the handler prior to calling SIO/ in general this value
comes from ICDNOZ. SIO will access the bus device whose address is

equal to the value of DDEVIC plus DUN IT minus one (the lowest unit
number is normally equal to one).

DEVICE COMMAND — DCGMND C0302

3

This byte is set by the handler prior to calling SIO and will be sent
to the bus device as part of the command frame (see section 9 for a

discussion of the command frame., and Appendix I for device command
byte values).

DEVICE STATUS — DSTATS CC3C33

This byte is bi-directional/ the handler wi I) use it to indicate to
SIO what to do after the command frame is sent and acknowledged., ©nd
SIO will use it to indicate to the handler the status of the requested
operat i on.

Prior to an SIO call:

130

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

7 0
-i 1 s 1 J 1 i-—

+

iWIRi unused i

Where: W/ R = O/O indicates no data transfer is associated with the
op era t i on.

0/1 indicates a data frame is expected from the device.
1/0 indicates a data frame is to be sent to the device.
1/1 is invalid.

After an SIO call:

7 0
4-— —I— H 1— -i— -i 1 1-

I status code I

_j ^ — .j j-—K—I h--t-

See Appendix C for the possible SIO operation status codes.

HANDLER BUFFER ADDRESS — DBUFLO /DBUFH I C0304/0305D

This two byte pointer is set by the handler and indicates the source
or destination buffer for device data or status information.

DEVICE TIMEOUT — DTIMLO C 03063

This byte is set by the handler and specifies the device timeout time
in units of 64/60ths of a second. For example/ a count of 6 specifies
a timeout of 6.4 seconds.

BUFFER LENGTH/BYTE COUNT — DBYTLO/DBYTH I [0308/03093

This two byte count is set by the handler and indicates the number of
data bytes to be transferred into or out of the buffer/ for the
current operation. This parameter is not required if the STATUS byte W
and R bits are both zero, indicating that no data transfer is to take
place.

There is a bug in SIO that causes incorrect actions when the 1-ast

byte of a buffer is in a memory address ending in $FF > such as
13FF* 42FFi etc.

AUXILIARY INFORMATION — DAUX1/DAUX2 t 030A/ 03GB

3

These two bytes are set by the handler and are included in the bus
command frame by SIO/ they have device specific meanings.

Functions supported

SIO does not examine the COMMAND byte it sends to the device, as
all bus transactions are expected to conform to a universal
protocol u.'hjch includes 3 forms. These forms are stated below

131

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

(as seen from the computer):

Send command frame.

Send command frame and send data frame.

Send command frame and receive data frame.

The command form is selected purely by the values of the W and R

bits in the STATUS byte as described earlier.

Error handling

SIO does the bulk of the error handling for the handler/ in terms of

Serial bus errors/ as indicated below:

Eus timeout — SIO provides a uniform command frame and data frame ACK
byte timeout of l/60th of a second - 0 / + l/60th. The handler
specifies the maximum COMPLETE byte timeout value in DTIMLO as

described earlier.

Bus errors — SIO detects and reports UART overrun and framing errors;

the sensing of these errors in any received byte will cause the entire
associated frame to be considered bad.

Data frame checksum error — SIO validates the checksum on all

received data frames and generates a checksum for all transmitted
frames.

Invalid response from device — In addition to the error conditions
stated above/ SIO checks that the ACK and COMPLETE responses are

proper (ACK = *41 and COMPLETE = *43) . ACK stands for acknowledge.

Bus operation retries — SIO will attempt one complete command retry
if the first attempt is not error free/ where a complete command try

consists of up to 14 attempts to send (and acknowledge) a command
frame/ followed by a single attempt to receivethe COMPLETE code and

possibly a

data frame.

There is a bug in the retry logic for data writes/ such that if the

command frame is ACKed by the controller, but the data frame is not

ACKed, then SIO will retry indefinitely.

Unified error status codes — SIO provides device independent error
codes as shown in Appendix C.

Serial I/O bus characteristics and protocol

This section describes the electrical characteristics of the ATARI 400

and ATARI 800 Personal Computer Systems serial bus/ the use of the bus

to send bytes of data/ the organization of the bytes as "frames"

132

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

(records)* and the overall command sequences which utilize frames and

response bytes to provide computer/peripheral communication.

Hard ware/electrical characteristics

The ATARI 400 and the ATARI 800 Personal Computer Systems communicate

with peripheral devices over a 19,200 baud asynchronous serial port.

The serial port consists of a serial DATA OUT (transmission) line, a

serial DATA IN (receiver) line and other miscellaneous control lines.

Data is transmitted and received as 8 bits of serial data (LSB sent

first) preceded by a logic zero start bit and succeeded by a logic one

stop bit. The serial DATA OUT is transmitted as positive logic (+4v =

one/true/high, Ov = zero/false/low). The serial DATA OUT line always

assumes its new state when the serial CLOCK OUT line goes high; CLOCK

OUT then goes low in the center of the DATA OUT bit time.

An end view of the Serial bus connector at the computer or peripheral

is shown below (the cable connectors would of course be a mirror

imag e) :

2 4 6 8 10 12

o o o o o o

0 o o o o o o

1 3 5 7 9 11 13

where: 1 computer CLOCK IN.

2 = computer CLOCK OUT.

3 = computer DATA IN.

4 = GND.
5 = computer DATA OUT.

6 = GND.
7 = COMMAND-.
8 = MOTOR CONTROL.
9 - PROCEED-.
10 = +5v/READY.
11 = computer AUDIO IN.

12 = + 12v.
13 = INTERRUPT-.

CLOCK IN is not used by the present OS and peripherals. This line can

be used in future synchronous communications schemes.

CLOCK OUT is the serial bus clock. CLOCK OUT goes high at the start o

each DATA OUT bit and returns to low in the middle of each bit.

DATA IN is the serial bus data line to the computer.

Pin 4 GND is the s i gna 1 /sh i e 1 d ground line.

133

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM; C016555

DATA OUT is the serial bus data line from the computer.

Pin 6 GND is the si gna 1 /sh i e 1 d ground line

COMMAND- is normally high and goes lou» when a command frame is being
sent from the computer.

MOTOR CONTROL is the cassette motor control line (high^on, low= off).

PROCEED- is not used by the present OS and peripherals < this line
is pulled high.

+5v/READY indicates that the computer is turned on and ready. This
line may also be used as a +5 volt supply of 50mA current rating
for ATARI peripherals only.

AUDIO IN accepts an audio signal from the cassette.

+ 12V is a -+12 volt supply of unknown current rating for ATARI
peripherals only.

INTERRUPT- is not used by the present OS and peripherals (this line
is puiled high

There are r»o pin r ea s s i g nmen t s made in the Serial bus cable/ so pin 3:

the computer's DATA IN line, is the peripheral's data output line; and
similarly for pin 5

Serial port electrical specifications

Peripheral input'

VI H = 2 Ov mm.
VI L - 0. 4v ma x .

I1H = 20ua. max. @ V1H = 2. Ov
I1L m Sua. max. £ V1L =

. 4v

Peripheral output (open collector bipolar):

VOL = 0 4v max. £ 1.6 ma.
VOK - 4. 5v min with external lOOKohm pull-up

Vcc /READY input.

V1H = 2 Ov min. £ I1H - Ima. max.
V1L = O 4v ma x

Input goes to logic zero when open.

134

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

Bus commands

The bus protocol specifies that all commands must originate from the
computer, and that peripherals will present data on the bus only when
commanded to. Every bus operation will go to completion before
another bus operation is initiated (no overlap). An error detected at
any point in the command sequence will abort the entire sequence.

A bus operation consists of the following elements:

Command frame from the computer.

Acknowledgement <ACK) from the peripheral.

Optional data frame to or from the computer.

Operation complete (COMPLETE) from the peripheral.

COMMAND FRAME

The serial bus protocol provides for three types of commands: i) data
send, 2) data receive and 3) immediate (no data — command only).
There is a common element in ail three types, a command frame
consisting of five bytes of information sent from the computer while
the COMMAND- line is held low. The format of the command frame is
shown below:

4- +

! device I. D. !

+ +

I command {

+ +

! aux i 1 1 lar y #1 \

\ auxilliary #2 I

! checksum {

The device I.D. specifies which of the serial bus devices is being
addressed (see Appendix I for a list of device I.D. s).

The command byte contains a device dependent command (see Appendix I

for a list of device commands).

The auxilliary bytes contain more device dependent information.

The checksum byte contains the arithmetic sum of the first four bytes
(with the carr^ added back after every addition).

COMMAND FRAME ACKNOWLEDGE

The peripheral being addressed would normally respond to a command
frame by sending an ACK byte ($41) to the computer; if there is a

135

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

problem with the command frame, the peripheral should not respond.

DATA FRAME

Following the command frame (and ACK) may be an optional data frame
which is formatted as shown below:

! i

! !

! data !

! bytes !

i •

i i

{ checksum !

This data frame may originate at the computer or at the device
controller/ depending upon the command. Current device controllers
expect fixed length data frames as does the computer/ where the data

frame length is a fixed function of the device type and command.

The checksum value in the data frame is the arithmetic sum of all

the frame data preceding the checksum/ with the carry from each
addition being added back (the same as for the command frame).

of

In the case of the computer sending a

peripheral is expected to send an ACK
and send a NAK ($4E) or do nothing if

See the first flowchart at the end of

data frame to a peripheral/ the
if the data frame is acceptable
the data, frame is unacceptable,
section 9.

OPERATION COMPLETE

A peripheral is also expected to send an operation COMPLETE byte ($43)

at the time the commanded operation is complete. The location of this

byte in the command sequence for each command type is shown in the

timing diagrams which follow If the operation cannot go to

normal/ error-free completion/ the peripheral should respond with an

ERROR byte ($45) instead of COMPLETE.

Bus timing

This section provides timing diagrams for the three types of command

sequences: data send, data receive and immediate.

DATA SEND sequence:

136

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
. OPERATING SYSTEM, C016555

COMMAND- I

I

+
I

DATA OUT ! cmnd !

+frame +

+ // +

! data !

//—+ frame +

+—

h

DATA IN

ACK

+

—

t-

• i

I !

+ + .// + +~
ACK CMPL

i i

to ti t t3 t4 t5

DATA RECEIVE sequence:

+

COMMAND-

DATA OUT
+ +

! cmnd !

—i-frame +

DATA IN

+-+

+ +

ACK
— //—+ —

H

CMPL

//-
data

frame

+

to tl t2 t5

137

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

IMMEDIATE sequence

+

COMMAND-

DATA OUT
+ +

i cmnd I

+f rame +

DATA IN

•—

H

+—

h

ACK CMPL

! »

{ i

to ti t2

tO is the delay between the lowering of COMMAND- and the transmission
of the first byte of the command frame. The computer generates this
delay.

750 useecomputer 1 0 (m i n) *

computer tO (max) « 1600 usee.

ti is the delay between the transmission of the last bit of the
command frame and the raising of the COMMAND- line. This delay is

generated by the computer.

computer tl (min) = 650 usee,
computer tl (max) = 950 usee.

t2 is the delay between the raising of COMMAND- and the transmission
of the ACK byte by the peripheral. The peripheral generates this
delay.

computer t2 (mm) == 0 usee,
computer t 2 (max) = 16 msec.

138

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPkuVAL
OPERATING SYSTEM, C016555

t3 is the delay between the receipt of the last bit of the ACK byte

and the transmission of the first bit of the data frame by the

computer. The computer generates this delay.

computer t3 (min) = 1000 usee,

computer t3 (max) = 1800 usee.

peripheral t3 (mm) - ??
peripheral t3 (max) = ??

t4 is the delay between the transmi

frame and the receipt of the first
computer. The peripheral generates

ssi on of the last bit of the data

bit of the ACK byte by the
this delay.

computer t4 (min) = 850 usee,

computer t4 (max) = 16 msec.

peripheral t4 (min) = ??
peripheral t4 (max; = ??

t5 is the delay between the the receipt of the last bit of the

byte and the first bit of the COMPLETE byte by the computer. fhe

peripheral generates this delay.

computer t5 (min) = 250 usee.

computer t5 (max) = 255 sec. (handler dependent)

peripheral t5 (min) = ??
peripheral t5 (max) = N/A

Handler environment

Non-resident handlers may be installed in at least three different

manners:

1. As booted software from disk or cassette.

2. Resident in a cartridge (A or B)

3. Downloaded from a serial bus device.

This section will discuss the basic mechanisms for handler

installation for these environments. In order to fully utilize the

information in this section, you must have read and understooo the

foil owing sections:

Program environments. . . section 3

RAM region. . . section 4

Memory dynamics. . . section 4

System in i t ia 1 i z at i on ... sec t i on 7

Adding new device handlers/peripherals. .
section 9

Program environment and initialization. . . section 10

139

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT.

OPERATING SYSTEM/ C016555
APPROVAL

9. 5. 1 Bootable handler

The disk or cassette booted software will want to insert the handler's
vector table pointer and name to the Device Table whenever the booted
software's initialization entry point is entered (on power up and

CS/RESETD) . Remember that both power up and CS/RESET 3 clear the Device
Table of all but the resident handler entries.

Cartridge resident handler

The cartridge software will want to insert the handler's vector table
pointer and name to the Device Table whenever the cartridge's
initialization entry point is entered (on power up and CS/RESET3).
Remember that both power up and CS/RESET 3 clear the Device Table of

all but the resident handler entries; therefore the device table, must
be reestablished by the handler initialization code upon every entry.

Fl oucharts

The following pages contain process flowcharts showing the SIO and

peripheral actions for the Serial bus command forms.

140

PERIPHERAL'S COMMAND FRAME PROCESSING

WAIT FOR
HIGH TO LOW
TRANSITION
ON COMMAND-

i :

GET NEXT 5

BYTES ON
THE BUS

WAIT FOR
COMMAND

-

TO GO HIGH

TIMEOUT

DATA FRAME TO PERIPHERAL

SETUP TO
READ DATA
FRAME

I
GET N BYTES
FROM BUS

SEND ACK

I
ATTEMPT TO
PERFORM
INDICATED
OPERATION

SEND
COMPLETE

TIMEOUT

SEND NAK

SEND ERR

140-B

DATA FRAME TO COMPUTER

ATTEMPT TO
PERFORM
INDICATED
OPERATION

SEND ERR

SEND
COMPLETE

SEND DATA
FRAME—

v~

IMMEDIATE

ATTEMPT TO
PERFORM
INDICATED
OPERATION

SEND ERR

SEND
COMPLETE

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

10 Program environment and initialization

This section discusses several of the different software environments
that are possible using the OS Configurations other than those
discussed here are possible* and a thorough understanding of the power
up and CS/RESETD processes (as described in section 7) will be
necessary to evaluate other alternatives.

Car tr i d g e

Most games (and some language processors) are supported via the
cartridge environment. The cartridge resident software is in control
of the system* sometimes using the OS and sometimes not. A cartridge
can specify whether the disk is to be booted at power up time; whether
the cartridge is to provide the controlling software/ or whether the
cartridge is a special diagnostic cartridge. These options are
specified by bits in the cartridge header/ as shown below:
space 1; need 13

B.A^iCt) i start address \ \
+ +

+ + ^
! option byte \

+ +

^ . ! cartridge !

-i— h

! init address ! BFFF (9FFF for cartridge B)
+ +

The byte of "00" is used to allow the OS to determine when a cartridge
is inserted; locations BFFC and 9FFC will not read zero when there is
neither RAM at those locations nor a cartridge inserted. RAM is

differentiated from a cartridge by its ability to be altered.

EEQ3
The option byte has the following option bits: .

Bit-0 = 0/ then do not boot the disk.
I 1/ then boot the disk.

Bit-2 = 0/ then init but do not start the cartridge.
1/ then init and start the cartridge.

Bit-7 = 0/ then cartridge is not a diagnostic cartridge.
1/ then cartridge is a diagnostic cartridge &. control

will be given to the cartridge before any of the OS
is initialized <JMP < BFFE))

.

The cartridge init address specifies the location to which the OS will
JSR during all power up and CS/RESET3 operations. As a minimum/ this
vector should point to an RTS instruction.

141

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

The cartridge start address specifies the location to which the OS

will JMP during ail power up and C S/RESET 3 operations, if bit-1 of the
option byte is = I. The application should examine the variable WARMST
COOOS3 if C S/RESET 3 action is to be different than power up (WARMST
will be zero on power up and non-zero thereafter).

Cartridge without booted support package

A cartridge which does not specify the disk boot option and does not

support the cassette boot possibility may use lower memory (from 0480
to the address in MEMTOP C02E53) in any way it sees fit.

Cartridge with booted support package

A cartridge which does specify the disk boot option or does support
the cassette boot possibility must use some care in its use of lower
memory. The following regions are defined:

04S0-06FF is always available to the cartridge.
MEMLQ/MEMTOP region is always available to the cartridge.

Disk booted software

Software may be booted from the disk at power up time in

response to one of the following conditions:

Neither Cartridge A nor E is inserted.

Cartridge A is inserted and has bit-0 of its option byte

CBFFD3 = 1.

Cartridge B is inserted and has bit-0 of its option byte
T9FFD3 = 1.

If any of these conditions are met/ the OS will attempt to read the

boot record from sector #1 of disk drive i and then transfer control

to the software that was read in. The exact sequence of operations
will be explained later in this section

Disk boot file format

The key region of a disk boot file is the first 6 bytes, which are
formatted as shown below:

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

Z'

<4

+ +
flags

of sectors
+ +

memory address
+- -+

to start load
+ +

in i t

address
+ +

boot
continuation

code

1st byte

6th byte

The 1st byte is stored in DFLAOS [02403, but is otherwise unused. It

should equal zero.

The 2nd byte contains the number of 128 byte disk sectors to be read
as part of the boot process (including the record containing this
information). This number may range from 1 to 255/ with 0 meaning 256

The 3rd and 4th bytes contain the address (lo/hi) at which to start
loading the first byte of the file.

The 5th and 6th bytes contain the address (lo,hi) to which the booter
will transfer control after the boot process is complete and whenever
the CS/RESET3 key is pressed.

The Disk File Management System (FMS) has extra bytes assigned to its

boot record/ but this is a special case of the generalized disk boot

and is discussed in section 5

Disk boot process

The disk boot process is described step by step for a configuration in

which no cartridge is installed. For the general case see section 7.

1. Read the first disk record to the cassette buffer £04001.

2. Extract information from the first 6 bytes:

Save the flags byte to DFLAGS C0240, ID.

Save the # of sectors to boot to DBSECT [0241/ ID.

Save the load address to BOOTAD [0242,23.
Save the initialization address in DOSINI C000C2D.

3. Move the record just read to the load address specified

4. Read the remaining records directly to the load area.

143

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

5. JSR to the load address+6 where a multi-stage boot process may
continue; the carry bit will indicate the success of this
operation (carry set = error/ carry reset = success).

6. JSR indirectly through DOS INI for initialization of the
application; the application will initialize and return.

7. JMP indirectly through DOSVEC to transfer control to the
app 1 i cat ion.

Pressing the CS/RESET3 key after the application is fully booted will
cause steps 6 Se 7 to be repeated.

Regarding step 5 — After the initial boot process is complete/ the
booter will transfer control to the 7th byte of the first record; at
this point the software should continue the boot process/ if it is a

multi-stage boot. The value of MEMLO C02E73/ which should point to the
first free RAM location beyond the software just booted/ should be
established by the booted software as shown below:

LDA #END+1 i SETUP LSB.
STA MEMLO
STA APPMHI
LDA #END+ 1/256 ; SETUP MSB.
STA MEMLO+1
STA APPMHI+1

If the booted software is to take control of the system at the end of

the boot operation/ the vector DOSVEC COOOA3 must be setup by the
application at this time; DOSVEC points to the restart entry for the
booted application. If the booted software is not to take control/
then DOSVEC should remain unchanged.

LDA #RESTRT ; RESTART LSB.
STA DOSVEC
LDA #RESTRT/256
STA DOSVEC+

i

Regarding step 6 — The initialization point is entered on every
HS/RESETl and power up; internal initialization may take place here.
For controlling applications initialization may also be deferred until
step 7.

Sample disk bootable program listing

Shown below is a skeletal program which can be booted from the disk
and which retains control when it is entered.

; THIS IS THE START OF THE PROGRAM FILE.

PST= *0700 i (OR SOME OTHER LOCATION).
« PST ; (. ORG).

144

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

THIS IS THE DISK BOOT CONTROL INFORMATION.

. BYTE 0

.BYTE PND-PST+127/128

. WORD PST

.WORD PINIT

NUMBER OF RECORDS.
MEMORY ADDRESS TO START LOAD.
PROGRAM INIT.

i THIS IS THE START OF THE BOOT CONTINUATION.

LDA
STA
STA
LDA
STA
STA

#PND
MEMLO
APPMHI
#PND/256
MEMLO+1
APPMHI+1

ESTABLISH LOW MEMORY LIMITS.

LDA
STA
LDA
STA

#RESTRT
DOSVEC
#RESTRT/256
DOSVEC+1

ESTABLISH RESTART VECTOR.

CLC SET FLAG FOR SUCCESSFUL BOOT.
RTS

i APPLICATION INITIALIZATION ENTRY POINT.

PINIT RTS ; NOTHING TO DO HERE FOR . . .

; ... CONTROLLING APPLICATION.

; THE MAIN BODY OF THE PROGRAM FOLLOWS.

RESTRT=*

; THE MAIN BODY OF THE PROGRAM ENDS HERE.

PND= * ; 'PND ' = NEXT FREE LOCATION.

Program and procedure to create disk boot files

This section provides a procedure that may be used to make bootable
files on disks. The procedure given is not the only one possible, and
no claims are made as to its elegeance. The dialogue shou/n assumes
that one is logged onto the PDP-11/34 computer from one of the
development systems in the laboratories and is using LNBUG 2.0. An
ATARI 400 or an ATARI 800 Personal Computer System with a disk drive
is required.

User: OSL <cr>

Comp: loads the operating system.

User: DLOAD BOOTDY <cr>

. END

145

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL

OPERATING SYSTEM/ C016555

Comp: loads the boot file maker.

User: <CTRL-P> go to LNBUG control

X <cr>

LNBG: responds with LNBUG prompt.

User: put a formatted disk in the drive.

User: E477G <cr> starts OS and initializes mem

LNBG: responds with LNBUG prompt in response to BRK in 'BOOTDY'.

User: R

User: $ <cr> <cr>

Comp: .

User: DLOAD xxxxx <cr>

Y erify BRK address

returns to PDP-11/34 control.

PDP-11 prompt,

xxxxx = name of application file

Comp: loads the application file.

User : <CTRL~P:
X < c r >

go to LNBUG control

LNBG: responds with LNBUG prompt

User : B001G<cr> resume 'BOOTDY

'

User: wait for completion of the disk file write.

LNBG responds with LNBUG prompt in response to BRK in 'BOOTDY

'

User: R verify BRK address

User; to write another boot file, type BOOIG <cr>.

Shown below is a listing of the program referred to as 'BOOTDY'

procedure above:

; THIS PROGRAM WRITES A SINGLE "FILE" TO THE DISK AND IS

USED IN CONJUNCTION WITH A PROCEDURE TO MAKE DISK

BOOTABLE F I LES THE FOLLOWING TWO SYMBOLS MUST EE EQUATED

USING THE MEMORY LIMITS OF THE PROGRAM TO BE COPIED:

'PST' - PROGRAM START ADDRESS (SEE SAMPLE PROGRAM).

'PND' = PROGRAM END ADDRESS (SEE SAMPLE PROGRAM).

in the

SECS I Z

PST^
PND=
FLEN=

12G
$0700
$1324
PND-PST+SECSIZ

DISK SECTOR SIZE

-1/SECSIZ i # OF SECTORS IN FILE

146

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

*BOOO i THIS PROGRAM'S ORIGIN

BOOTB BRK ; *** LOAD APPLICATION ***

fUP DEVICE CONTROL BLOCK FOR DISK HANDLER CALL

LDA
STA

#FLEN
COUNT

OF SECTORS TO WRITE

LDA
STA

#1
DUN I

T

DISK DRIVE #1

LDA
STA

'W
DCOIiND

; SETUP FOR WRITE WITH CHECK

LDA
STA
LDA
STA

#PST
DBUFLO
#PST/256
DBUFHI

POINT TO START OF APPLIC. PROG

LDA
STA
LDA
STA

#01
DAUX1
#00
DAUX2

; SETUP STARTING SECTOR # = 0001

i NOW WRITE THE FILE ONE SECTOR AT A TIME

B0T010 OSR
BMI

DSK I NV
DERR

WRITE ONE SECTOR
ERROR.

LDA
CLC
ADC
STA
LDA
ADC
STA

DBUFLO

#SECSIZ
DBUFLO
DBUFHI
#0
DBUFHI

INCREMENT MEMORY ADDRESS

INC
BNE
INC

DAUX1
B0T020
DAUX2

INCREMENT SECTOR #

B0T020 DEC
BNE

COUNT
B0T010

; MORE SECTORS TO WRITE?
; YES.

BRK ; STOP WHEN DONE

DERR BRK ; STOP ON ERROR

COUNT #=#+1 ; SECTOR COUNT.

; THIS IS THE CARTRIDGE HEADER

*BFF9 ; "A" CARTRIDGE

147

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

INIT RTS
. WORD BOOTE
. BYTE C, 4
.WORD INIT

. END

Cassette booted software

Software may be booted from the cassette at power up time in much the

same way as from the disk/ as described in the previous section. The
following requirements must be met in order to boot from the cassette:

The operator must be pressing the START key as power is applied
to the system.

A cassette tape with a proper boot format file must be installed
in the cassette drive, and the PLAY button must be pressed.

.

When the operator is given the audio prompt by the cassette
handler he must press the CRETURND key.

If all of these conditions are met, the OS will read the boot file
from the cassette and then transfer control to the software that was

read in. The exact sequence of operations will be explained later in

this section.

Cassette boot file format

The key region of a cassette boot file is the first 6 bytes, which are

formatted as shown below:

! # of records
+

i memory address
+- -+

! to start load

+-
in i t

address
—

H

+

1st byte

6th byte

The 1st byte is not used by the cassette boot process.

The 2nd byte contains the number of 128 byte cassette records to

be read as part of the boot process (including the record

148

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPkOVAL
OPERATING SYSTEM/ C016555

containing this information). This number may range from 1 to

255; u/ith 0 meaning 256.

The 3rd and 4th bytes contain the address (lo,hi> at which to start
loading the first byte of the file.

The 5th and 6th bytes contain the address do, hi) to which the booter
will transfer control after the boot process is complete and whenever
the ES/RESETH key is pressed.

Cassette boot process

The cassette boot process is described step by step for a

configuration in which no cartridge is installed and no disks are

attached. For the general case see Section 7.

1. Read the first cassette record to the cassette buffer.

2. Extract information from the first 6 bytes:

Save the # of records to boot.
Save the load address.
Save the initialization address in CASINI C0002D.

3. Move the record just read to the load address specified.

4. Read the remaining records directly to the load area.

5. JSR to the load address+6 where a multi-stage boot process may

continue; the carry bit will indicate the success of this
operation (carry set = error, carry reset = success).

6. JSR indirectly through CASINI for initialization of the

application; the application will initialize and return.

7. JMP indirectly through DOSVEC to transfer control to the

application.

Pressing the CS/RESETD key after the application is fully booted will

cause steps 6 & 7 to be repeated.

Regarding step 5 — After the initial boot process is complete, the

booter will transfer control to the 7th byte of the first record; at

this point the software should continue the boot process (if it is a

multi-stage boot) and then stop the cassette drive, which due to a

system bug will still be running, using the following instruction
sequence

:

LDA #*3C
STA PACTL CD3023

The application should then set a value in MEMLO C02E7D which points

to the first free RAM location beyond the software just booted, as

149

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

shown below:

LDA #END+i ; SETUP
STA MEMLO
STA APPMHI
LDA #END+ 1/256 i SETUP
STA MEMLO+i
STA APPMHI+1

If the booted software is to take control of the system at the end of

the boot operation, the vector DDSVEC lOOOA3 must be setup by the
application at this time; DOSVEC points to the restart entry for the
booted application. If the booted software is not to take control/
then DDSVEC should remain unchanged.

LDA #RESTRT ; RESTART LSE.
STA DOSVEC
LDA #RESTRT/256
STA DOSVEC+1

Regarding step 6 — The initialization point is entered on every
CS/RESETJ and power up; internal initialization may take place here.

For controlling applications initialization may also be deferred until
step 7.

Sample cassette bootable program listing

Shown below is a skeletal program which can be booted from the

cassette and which retains control when it is entered.

; THIS IS THE START OF THE PROGRAM FILE.

PST- $0700
PST

(OR SOME OTHER LOCATION)

.

(. ORG)

.

; THIS IS THE CASSETTE BOOT CONTROL INFORMATION

BYTE 0
BYTE PND-PST+127/128
WORD PST
WORD PINIT

(DOESN'T MATTER).
NUMBER OF RECORDS.
MEMORY ADDRESS TO START LOAD
PROGRAM INIT.

; THIS IS THE START OF THE BOOT CONTINUATION

LDA
STA

#*3C
PACTL

STOP THE CASSETTE

LDA
STA
STA
LDA

#PND
MEMLO
APPMHI
#PND/256

i ESTABLISH LOW MEMORY LIMITS

1 50

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

CTA
STA APPMHI+i

J HA
OTAb 1 A DUSvtC
LDA #RESTRT/256
STA DOSVEC+1

CLC
RTS

i ESTABLISH RESTART VECTOR.

SET FLAG FOR SUCCESSFUL BOOT

; APPLICATION INITIALIZATION ENTRY POINT.

PINIT RTS i NOTHING "TO DO HERE FOR . . .

. . . CONTROLLING APPLICATION

i THE MAIN BODY OF THE PROGRAM FOLLOWS.

RE3TRT=*

; THE MAIN BODY OF THE PROGRAM ENDS HERE.

PND= * i 'PHD ' « NEXT FREE LOCATION
. END

Program and procedure to create cassette boot files

This section provides a procedure and a program listing that may be
used to make bootable files on cassette tapes. The procedure given is
not the only one possible, and no claims are made as to its elegeance.
The dialogue shown assumes that one is logged onto the PDP-11/34
computer from one of the development systems in the laboratories and
is using LNBUO 2.0. An ATARI 400 or ATARI SCO Personal Computer System
with an ATARI 410 Program Recorder is also required.

User: OSL <cr

Comp: loads the operating system.

User: DLOAD BOOTCY <cr>

Comp: loads the boot file maker.

User: <CTRL-P> go to LNBUG control.
X <cr>

LNBG: responds with LNBUG prompt.

User: E477G <cr> starts OS and initializes mem.

User: wait for tone indicating cassette write request.

User: <CTRL-C> interrupts the initialized prog

i 5 i

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM; C016555

LNBG: responds with LNBUG prompt.

User: % <cr> <cr> returns to PDP-li/34 control.

Comp: . PDP-11 prompt.

User: DLOAD xxxxx <cr> xxxxx = name of application file.

Comp: loads the application file.

User: <CTRL-P> go to LNBUG control.
X <cr>

LNBG: responds with LNBUG prompt.

User: P resume 'BOOTCY'.

User: setup cassette drive to record on tape.

User: press the CRETURND key on the Model 400/800 keyboard.

User: wait for completion of the cassette file write.

LNBG: responds with LNBUG prompt in response to BRK in 'BOOTCY'.

User: R verify BRK address.

User: to write another boot file, type BOOOG <cr>.

Shown below is a listing of the program referred to as 'BOOTCY' in the
procedure above:

; THIS PROGRAM WRITES A SINGLE FILE TO THE CASSETTE AND IS
; USED IN CONJUNCTION WITH A PROCEDURE TO MAKE CASSETTE
; BOOTABLE FILES. THE FOLLOWING TWO SYMBOLS MUST BE EQUATED
; USING THE MEMORY LIMITS OF THE PROGRAM TO BE COPIED:

i 'PST' = PROGRAM START ADDRESS (SEE SAMPLE PROGRAM).
; 'PND ' = PROGRAM END ADDRESS (SEE SAMPLE PROGRAM).

PST= *0700
PND= $1324
FLEN= PND-PST+127/ 128*128 ; ROUND UP TO MULTIPLE OF 128.

*= *B000 ; THIS PROGRAM'S ORIGIN.

BOOTS LDX #$10 ; USE IOCS #1.

; FIRST OPEN THE CASSETTE FILE FOR WRITING.

LDA #OPEN i SETUP FOR DEVICE "OPEN"

.

STA ICCOM,

X

tf

152

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

LDA #OPNOT • DIPECTIOlM IS "OUTPUT"
STA ICAX1, X

LDA #*eo •

/ SELECT SHORT IPG.CT ASTA ICAX2/ X

LDA #CFILE i SFTUP PDIMTFR Tfl HFU TfP
STA ICBAL,

X

LDA #CFILE/256
STA ICBAH, X

JSR CIOV ATTEMPT TO OPEN FILE.
BMI CERR « ERROR.

; NOW WRITE THE ENTIRE FILE A3 ONE OPERATION.

LDA
STA

LDA
STA
LDA
STA

LDA
STA
LDA
STA

JSR
BMI

#PUTCHR
ICCOM, X

#PST
ICBAL, X

#PST/256
ICBAH, X

#FLEN
ICBLL,

X

#FLEN/256
ICBLH, X

CIOV
CERR

; SETUP FOR "PUT CHARACTERS".

; POINT TO START OF APPLIC. PROG

; SETUP # OF BYTES TO WRITE.

WRITE ENTIRE FILE
ERROR.

i NOW CLOSE THE FILE AFTER SUCCESSFUL WRITE

CERR

LDA
STA

JSR
BMI

BRK

BRK

#CLOSE
ICCOM, X

CIOV
CERR

; SETUP FOR "CLOSE il

CFILE . BYTE "C: ". CR

; THIS IS THE CARTRIDGE HEADER

= *BFF9

INIT

; CLOSE THE FILE
; ERROR.

; STOP WHEN DONE

} STOP ON ERROR.

; FILE NAME.

'A" CARTRIDGE

RTS
. WORD
. BYTE
. WORD

BOOTB
0, 4
INIT

153

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM; C016555

END

154

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

11. Advanced techniques and application notes

This section presents information which may be of use to the
user who wishes to use the capabilities of the OS and use some
of the hardware capabilites that aren't directly available
through the OS and# in fact, may be in direct conflict with
parts of the OS.

Sound generation

The OS uses the POKEY sound generation capabilities only in the I/O
subsystem, for cassette FSK tone generation and for the "noisy bus 11

option in SIO.

Capabilities

The hardware provides 4 independently programmable audio channels
which are mixed and sent to the television set as part of the
composite video signal. The POKEY registers shown below are all
concerned with sound control (as described in the ATARI Personal
Computer System HARDWARE MANUAL).

AUDCTL CD20S3
AUDC1 CD2013 & AUDF1
AUDC2 CD2033 & AUDF2
AUDC3 CD2053 & AUDF3
AUDC4 CD207 3 & AUDF4

CD200D
CD202D
CD204D
CD206 3

Audio control.
Channel 1 control
Channel 2 control
Channel 3 control
Channel 4 control

Conflicts with OS

There are two potential conflicts with the OS involving sound
generation:

The OS may generate its own sounds and then turn off all sounds as
part of I/O operations to the cassette and the serial bus
peripherals.

The OS does not turn off sounds on CS/RESET3 or C BREAK 3 ; if the
sounds are to be turned off under those conditions, the
controlling program must provide that capability.

Screen graphics

Hardware capabilities

The hardware capabilities for screen presentations are quite
versatile; the OS uses a very small amount of the capability provided.
The means of extension, however, are non-trivial; and making changes
to a screen format while still utilizing the resident Display handier

155

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

will be difficult. See the ATARI Personal Computer System HARDWARE
MANUAL for information regarding screen presentations.

OS capabilities

The resident Display handler arbitrarily supports 8 of the 11 possible
full screen modes (11 of 14 modes if the QTIA chip is used in place of

the CTIA), and allows for an optional "split screen" text window of
fixed size. The hardware allows for many more options than the Display
handler supports, as will be seen by reading the ATARI Personal
Computer System HARDWARE MANUAL.

Cursor control

The Display handler text and graphics cursors may be directly
controlled by the user as described in section 5 and in Appendix K.

Bl-4.

Color control

The color register assignments that the Display handler makes upon
OPEN commands may be altered by the user as described in Appendix K

and elsewhere. Note that every CS/RESET3 or Display handler OPEN
will reset the values back to the system default.

11

Alternate Character Sets

In screen text modes 1 and 2/ two character sets are available,
the sets being selectable by the value stored in database variable
CHBAS C02F43/ tthe default value of $EO provides capital (upper
case) letters/ numbers and the punctuation characters) c or r esp ond ing

to display codes $20 through $5F in Appendix E); the alternate
value of $E2 provides lower case letters and the special character
graphics set (corresponding to display codes $60 through $7F and

$00 through $1F in appendix E).

In addition, user defined character sets may be obtained for text
modes 0/ 1 and 2 by provided the character matrix definitions in

RAM and setting CHBAS to point to those definitions. CHBAS always
contains the most significant bits of the memory address of the
start of the character definitions, as shown below:

CHBAS
+ -+—+—K— "f—I h

—

h

Test mode 0
—+-+-+--+—h-+-+-

—I---*-

—

j-—»--+

156

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

Where X indicates an ignored address bit (assumed - 0).

Each character is defined by an 8 x 8 bit matrix; the character
' is defined as shown below:

7 0 Byte
0
1

2
3
4
5
6
7

The storage for the character set involves 8 consecutive bytes

for each character with characters ordered consecutively by their

internal code value (see the discussion in appendix K relating

to B55).

Character base Character for
CodeSOO 8 bytes

Character for
Code $0/ increasing addresses

Character for
Code *7E

Character for
Code *7F

Play ers/missi les

The OS makes no use of the player/missile generation capability of the

hardware; but, luckily, it may be used independently of the OS with no

conflict.

Hardware capabilities

The hardware allows a number of independently moveable screen objects

(of limited width) to be positioned and moved about the screen without

affecting the M p lay field" (bit mapped graphics or character) data.

Priority control allows the various objects to have a display

precedence in case of conflict (overlap).

157

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

Conflicts with OS

The only potential problem is that the user must assure that the

player/missile data is address aligned as required by PMBASE CD4073,

and finding a suitable free area that is guaranteed to be free under

all environments could be a problem

Reading game controllers

The game controllers shown below are read by the OS as part of the

stage 2 VBLANK process (see Appendix K Jl-9):

Joysticks/triggers 1-4.

Paddle c on tr o 1 1 er s / tr i g g er s 1-8.

Driving controllers/triggers 1-4.

Lightpen/ trigger

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEP I
.
APPROVAL

OPERATING SYSTEM, C016555

In addition to these controllers, other information may. be sensed

sent using the PIA chip to which the console connectors are

in ter f ac ed

.

or

Keyboard controller sensing

The PASCAL procedure below shows how to read data from an ATARI

keyboard controller' which is connected to the first port, the hardware

register and OS database names used

are from the OS equate file.

FUNCTION READKEY (DR I VEVAL: BYTE) : BYTE;

BEGIN
PORTA : ~ DR I VEVAL < set row select >;

DELAY
KCODE : = 0
IF PADDLx >
IF PADDLx >
IF STRIGx =

READKEY : = KCODE
END;

< wait for OS to read data >;

C preset for no key read >;

10 THEN KCODE
10 THEN KCODE
0 THEN KCODE

{ set

= 1
s

2
c o l umn l

{. column 2
: = 3 < col umn 3
function value

>i

>i
%

BEGIN

(setup PIA port A for 4 bits out); 1 10010/ 10025set up PIA

port A for 8 bits out >

PACTL
PORTA
PACTL

— tor, < direction register select >;

= $FF -r se t direction bits for output >;

= $34 -C data register select >;

{ setup of driving values, each selects a different row >

DVALCOj
DVALl 1

3

DVALC23
DVALC33

- *EE;
= $DD;

AD O •— +r L> t-> I

= $77;

REPEAT -C loop to read the controller keys >

I : - 0;

REPEAT
KEY READKEY (DVALC

I

1) < read a row >;

IF KEY <:> 0 THEN KEY : KEY + (1*3) < encode };

I
. = I + 1 -C next row >

UNTIL (I > 3) OR (KEY O 0);

IF KEY O 0 THEN WRITELN ('KEY VALUE = ' , KEY

)

UNTIL FALSE < forever! >

END.

The table below shows the variable/register values used for reading

keyboard controller from each of the four controller ports

Port 1 Port 2 Port 3 Port 4
+_+_+_+_+_+-+-+-+- +-+-+-+-+-+-+--*--+ -+ ~~r -+ ~+-+—*

1 J

/

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM i C016555

FBi F7

I FE, FD, FE,
! F7

roiii s e 1 1

ect i

I 1 i-
—

-f —+ - +— —+—+ + h—f-- +-+ --f-4-

Port B !

row se- !

lect !

+ - -f-—i » J i i h— 4 -+ - + - + - + - +—h- +-

Column 1! PADDL 1 i PADDL 31PADDL 5

Sense ! i !

4-4-4-4-~ +-4- +-4— t
I I i * « »-—h-4-4-

Coiumn 2 I PADDL 0! PADDL 2 ! PADDL 4

Port A ! OF I FO
direction!
bits I

+-4-4-4-4-4-4-4-^-4-4 h - 4- 4 - 4 - 4 - 4 -

4

Port B
direction
bits

4-4-4—h—h— H— 4—I
i i—4— 4—h-4-4-4-4-4

Port A I FEi FDi

—H-4-4-4-4-4
OF f FO !

-4-4-4-4-4-4
EF.. DF !

BFi 7F I

4-4—4-4-4—4
! REF/ DF.. I

BF/ 7F

4-4-4-4—h-4
I PADDL 7 I

4-4-4-4-4-4
i PADDL 6 !

Sense
4-4-4-4-4 — +.-4-4-4-4-4— 4-4-4—h- 4— 4-

Column 3JSTRIG OISTRIG 1ISTRIG 2
Sense ! I !

4-4—h—1— 4 4-4—4-4- 4 —r—H-4 -4—h— 4 -4-

4-4-4-4-4-4
iSTRIG 3 I

4-4-4-4-4-4

Front panel connectors as I/O ports

7he three pages that follow show how some of the pins in the front
panel (game controller) connectors can be used as general I/O pins.
. 00
ATARI 400/800 Front Panel (Controller; Jack as I/O Ports

Har d war e Information:
PIA (6520 / 6820)

Out: TTL levels, 1 load
In TTL levels- 1 load For more information refer

to 6520 chip manual.

Port A Circuit (typical):

652£)
(A)

Port

220

Port B Circuit (typical):

+5

6520
(B)

Port

4.7K

220 -L .001

Jack
V ••••••• 7

Jack

Male connector, FRONT view

Pin 8= Ground

Pin 7= Vcc (+5v *)

* Note: 50ma maximum
total external drain
on power supply allowed

160

"Trigger" Port Circuit (typical):

CTIA Trig
220

.001

Jack

Software Information :

6520 PIA: (this also pertains to all of the following: **)

Port A control (address $ D302)

7 6 5 4 3 2 10
10101H1U1X]TO Write this into this register

ort A Data/Data direction addressing control

0= Address data direction at $ D300

1= Address data at $ D300

Port A data direction (address $ D300)

76543210
Write this into this register

Data direction control for Port A

XXXXXXXX

1= Out

0= In

Port A data (address $ D300)

7 6 5 4 3 2 1 (*

I 1 |
I

1 1 1 I J Read or Write this register

Jack 2 Jack 1
Pin Numbers

Port B control (address $ D303)

10101111111X1010
I

161

6520 PIA:
Port B control (address $ D302)

7 6 5 4 3 2 1 0
lg|0|l[l|llx|0|0{ Write this into this register

Port B Data/Data direction addressing control

0= Address data direction

1= Address data

Port B data direction (address $ D300)

76543210
|XlX|X|X|XlX|X|X

|
Write this into this register

A ^ ^\ ft ft <fi ft /f\

Data direction control for Port B

1= Out

0= In

Port B data (address $ D301)

76543210
4 3 2 1 4 3 2 1

Jack #4 Jack #3
Pin Numbers

Four "trigger" ports:

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 x|

($ D010, $ D011, $ D012, $ D013)

Read this port

-Trigger value

$ D010 = Port 1 pin 6

$ D013 = Port 4 pin 6

Other miscellaneous Software information:
1) . The 0. S sets up all PIA ports as inputs during initialization
2) . The 0. S. usually reads the above once per TV frame (during

vertical blank) into RAM as follows:

Database name

STICKO

STICK1

STICK2

STICK3

STRIGO

STRIG1

STR I G2

STRIG3

PADDL1

PADDL3

PADDL5

PADDL7

PADDLO

PADDL2

PADDL4

PADDL 6

Address

0278

Data

0729

027A

027B

0284

0285

0286

0287

0272

0274

0276

0271

0273

0275

0277

7 6 5 4 3 2 1 0
|0|0|0|0|X|X1X1X

Pins S

Jack 1, pins 4, 3, 2, 1

Jac k2, Pins 4, 3, 2, 1

Jac k 3. Pins 4, 3. 2, 1

Jac k 4. Pins 4, 3, 2, 1

Jack 1, Pin 6

1

0270 7 6 5 4 3 2 1 0

X X X X X X X

[Jack 2, Pin 6

Jack 3, Pin 6

Jac k 4, Pin 6

Jac k 1, Pin 5

Jac k 2, Pin 5

Jac k 3, Pin 5

Jac k 4, Pin 5

Jac k 1, Pin 9

Jac k 2, Pin 9

Jac k 3, Pin 9

Jac k 4, Pin 9

* Pins 5 and 9 are read through the paddle controller circuitry
a nominal value of 7 indicates that the pin is high (or floating)
and a nominal value of 228 indicates that the pin is pulled low.

\

163

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO 16555

Appendix A — CIO COMMAND BYTE values

The following hex values are known to be legitimate CIO command

Most handlers:

03 — OPEN
05 — GET RECORD
07 — GET CHARACTERS
09 — PUT RECORD
OB — PUT CHARACTERS
OC — CLOSE
OD — GET STATUS

Display handler only:

11 — FILL
12 — DRAW

Disk File Manager only:

RENAME
DELETE
FORMAT
LOCK
UNLOCK
POINT
NOTE

20 —
21 —
22
23 —
24 —
25 —
26 —

164

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

Appendix B — CIO STATUS BYTE values.

Shown below are the known CIO STATUS BYTE values.

01 (001) OPERATION COMPLETE (NO ERRORS)

80 (128) CBREAK3 KEY ABORT
81 (129) IOCB ALREADY IN USE (OPEN)
82 (130) NON-EXISTENT DEVICE
83 (131) OPENED FOR WRITE ONLY-

84 (132; INVALID COMMAND
85 (133) DEVICE OR FILE NOT OPEN
86 (134) INVALID IOCB NUMBER (Y reg only)
87 (135) mm. OPENED FOR READ ONLY
88 (136) END OF FILE
89 (137) TRUNCATED RECORD
8A (138) DEVICE TIMEOUT (DOESN T RESPOND.'

8B^mw m** (139) DEVICE NAK
8C (140) SERIAL EUS INPUT FRAMING ERROR
8D (141) CURSOR OUT OF RANGE
8E (142

)

N mm > Imp* * SERIAL BUS DATA FRAME OVERRUN ERROR
8F (143) SERIAL BUS DATA FRAME CHECKSUM ERROR

\mmT nfl • mm * mmmm mmmm wmw mm*

90 (144

)

DEVICE DONE ERROR
91 (145

)

^ mm ^mf * BAD SCREEN MODE
92• MM* (146

)

__ FUNCTION NOT SUPPORTED BY HANDLER
93 (147

)

_ INSUFFICIENT MEMORY FOR SCREEN MODE

AO (160) DISK DRIVE # ERROR
Al (161) TOO MANY OPEN DISK FILES
A2 (162) DISK FULL
A3 (163) FATAL DISK I/O ERROR
A4 (164) INTERNAL FILE # MISMATCH
A5 (165) FILE NAME ERROR
A6 (166) POINT DATA LENGTH ERROR
A7 (167) FILE LOCKED
A8 (1 68

)

COMMAND INVALID FOR DISK
A9 (169) DIRECTORY FULL (64 FILES)
AA (170) FILE NOT FOUND
AB (171) POINT INVALID

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

Appendix C — SIO STATUS BYTE values.

Shown below are the known SIO STATUS BYTE values.

01 (001) — OPERATION COMPLETE (NO ERRORS)

8A (138) — DEVICE TIMEOUT (DOESN'T RESPOND)
8B (139) — DEVICE NAK
8C (140) — SERIAL BUS INPUT FRAMING ERROR
8E (142) — SERIAL BUS DATA FRAME OVERRUN ERROR
8F (143) — SERIAL BUS DATA FRAME CHECKSUM ERROR
90 (144) — DEVICE DONE ERROR

166

Appendix D — ATASCII codes

167

Appendix E — Display codes (ATASCII)

2X MX. 6* Sx ftx cx

I

4sT

41
4 A

I*

I I

I 2
13

fir

n
is

II

IC

IP

te
if

3

5

6
I

il

I

(

*

/

*
i

2

7
8

9

>
9

A

c
t>

e
F
Gr

H

X

L
H

O
P

\/

Y

c
\

a.

b

c

e

9

la

*

J

I

M
V»

0

P

3.

r

s

t
u
V

X

A
I

<MV Co DCS tf<f -~lF.

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM < CO 16555

Appendix F — Keyboard codes (ATAsCII)

00 t c'O < s p a c e > 40 <£

01 A 21 i 4 1
AA

Oc!
r-,

B 22 ii rj

03 C c:J 44
+f 4o L

04 D 24 44 nU

05 •

—

E 2 a a4 D c
b.

06 F 26 46 f—
r

07 27 • 47 G

OS H 28 (48 i »H
09 I 29) 49 I

OA i 2A # *+A J
OB K 2B -f 4B K
OC L 2C

•L
OD M 2D 4D M
OE N 2E •

/i r*~4E
OF D 2F / 4F
10 P 30 0 50 F

1

1

Q 31 1 51 Q
12 R 2 52 R

13 33 3 53 S
14 T 34 4 54 T

15 U 35 5 55 0
16 V 36 *

6 5 to

1 7
1 1w 3 /

—

T

/
r- —t57 w

18 X 38 8 58 X
1 ox ? Y 39 9 59 Y
1A 2 3A 5A z

IB < 9 S C > 3B 5B c

j r c u p y 3C 5C \

ID Cd own>3D 5D 3

IE Cleft >3E > 5E
IF •Cr i g h t>3F

-
5F

ou i

to 1 B OT3 /t»of iirn""^ C .
.•••.'"3

Oc hD Of c Hoi ">

c 7L/ a v 1 ! 1 5 c 1 v -•

AG

7r 5 ••. i/aU -y

A A T nv rl / i \ /

O / s r V c
A P n C cr A

-."Hoi

AQO 7 l
cr cr •••• n c or f %

6A J

oE k

6l 1

m
n

/ r-or 0
"7 r\
/ 0 P

/ 1 q.

/ 2 r

73 s

74 t
m~r ft75 u

76 V
77 UJ

78 X

79 y

7A 2

7B •

7C i

i

7D < c 1 ea t >
7E < b a c k >
7F C ta b >

•C c 1 Bar '>
: :

= s < or <
•Cretur n> : :

= <return> or s<return> or <return>
•C esc > :

= C esc y or s Cesc > o r C esc >
•Cspace> :: = Cspace> or sCspace> or Cspace>

Where: s as a prefix indicates SHIFT.
as a prefix indicates CTRL.

/l\ as a prefix indicates ATARI key invert active.

169

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

Appendix 6 — Printer codes (ATASCII)

Character set for "normal" mode printing:

20 <spac e> 40 e 60
21 1

• 41 A 61 a
22 If 42 B 62 b

23 # 43 c 63 c

24 * 44 D 64 d

25 7. 45 E 65 e

26 fy. 46 F 66 f

27 47 G 67 g

28 (48 H 68 h

29) 49 I 69
•

i

2A • 4A J 6A j

2B + 4B K 6B k

2C f 4C L 6C 1

2D 4D M 6D m
2E 4E N 6E n

2F / 4F 0 6F o

30 0 50 P 70 p

31 1 51 Q 71 q
32 2 52 R 72 r

33 3 53 S 73 s

34 4 54 T 74 t

35 5 55 U 75 u

36 6 56 V 76 V
37 7 57 w 77 Ui

38 8 58 X 78 X

39 9 59 Y 79 y

3A • 5A Z 7A z

3B i 5B C 7B •C

3C < 5C \ 7C i

i

3D 5D 3 7D >

3E > 5E 7E
3F • 5F 7F <space

>

Note: the following codes print differently than defined
the ATASCII definition.

00 through IF print blank.
60 prints x instead of "diamond".
7B prints < instead of "spade".
7D prints > instead of "clear".
7E prints * instead of "backspace".
7F prints blank instead of "tab".

Character set for "sideways" mode printing:

40 @ 60 @
41 A 61 A
42 B 62 B

170

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

43 C 63 C

44 D 64 D
45 E 65 E
46 F Ob F
47 G 67 G
48 H 68 H
49 I 69 I

4A J 6A J
4B K 6B K
4C L. oC
4D M 6D M
4E N 6E N
4F a 6F 0

30 0 5u p 70 f—

»

r

31 1 51 Q 71 G

32 2 52 R -? n
/ c R

33 3 53 S 73 S

34 4 54 T 74 T

35 5 55 U 75 U

36 6 56 V 76 V

37 7 ^7
t W 77

38 8 58 x X

39 9 59 Y 79 Y

3A • 5A z 7A z

i :_> D
1"

L / i_f
iL

3C 5C \
—v —

.

•.

\

3D 5D J 7D 3

5E < u p

:

7E
3F • 5F < left I-

: 7F < 1 e f t >

Not the foil owing codes print
the ATASCII definition

00 through 2F print blank
5E prints "up arrow" mstea
5F prints "left arrow " mst
60 through 7F repeats 40 th

o t

instead of proper set

171

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

Appendix H — Screen mode characteristics

Mode Horiz. Vert. Vert
posit, w/osp wsp

0 40

Colors Data
va 1 ue

Col or
reg.

backqd. BAK
OO-FF PF 2

PF i*

Memory
r e qd

.

993

1 20 24 !0 bac kqd
00-3F
40-7F
80-EF
CO-FF

BAK
PF 0
PF 1

PF 2
PF 3

513

0 10 bac k g d

00-3F
40—7F
80-BF
CO-FF

BAK
PF 0
PF 1

PF 2
PF 3

61

40 !0 0
1

2
3

BAK
PF 0
PF 1

PF 2

73

80 48 40 0
1

BAK
PF 0

537

80 48 40 0
1

2
3

BAK
PF 0
PF 1

PF 2

1017

160 96 80 0
1

BAK
PF 0

2025

160 96 80 0

2
3

BAK
PF 0
PF 1

PF 2

3945

8 320 19; 160 0
1

PF 2
PF 1*

7900

9 80

10 80

192

192

1

9

Note 2

0
1

2
3
4
5

PM
PM
PM
PM
PF
PF

0
1

3
O
1

7900

7900

172

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

6 PF 2
7 PF 3
8 BAK
9 BAK
A BAK
B BAK
C PF 0
D PF 1

E PF 2
F PF 3

11 80 192 — 16 Note 3 7900

Notes

n
Uses color
Uses color
Uses color

of PF 2, lum of PF 1.

of BAK, lum of data value (*0-F)
of data value (*G~F>, lum of BAK

PF x

PM x

BAK

Playfield color register x.

' Player/Missile color register x.

Background color register (also known as PF 4)

The default values for the color registers are shown below

BAK
PFO
PFi
PF2
PF3

*00
$28
*CA
*94
$46

The form of a color register byte is shown below

7 6 5 4 3 2 1 0
+-+-+-+-+-+-+-+-+

! color ! lum 10!
«j 1 1 1 i 1 1 j H

Where: color (hex values) lum

0 =

1 =
2 —

3 =

4 =
5 =

6 =
7 =

8 =

9 -

A =

B =

C =

gray
light orange
or ang e

red orange

purp le
pur p 1 e~b 1 ue
blue
blue
light blue
t ur quo i se
green-b 1 ue
green

0
1

2
3
4
5
6
7

= minimum luminance

(increasing
1 urn inane e

)

= maximum luminance

173

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

D = yellow-green
E = orange-green
F =-' light orange

174

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

Appendix I — Serial Bus I.D. and command summary

Serial bus device I. D. s

Floppy disks D1-D4 $31-34
Printer PI $40
RS-232-C P2 $4F

R 1 ~R4 $50-53

Serial bus control codes

ACK - $41 C '
A

'

>

NAK - $4E (
' N ')

COMPLETE - $43 ('C '

)

ERR - $45 ('E ')

Serial bus command codes

READ ~ $52 ('R ') Disk
WRITE - $57 (' W '

) Printer/Disk
STATUS - $53 CSM Printer/Disk
PUT (no check) - $50 ('P /

) Disk
FORMAT - $21 ('

!

') Disk
DOWNLOAD - $20 < ' ')

READADDR - $54 (')

READ SPIN - $51 (
' ') Disk

MOTOR ON - $55 (V) Di s k

VERIFY SECTOR - $56 (V) Disk

Appendix J — ROM vectors

The fixed address OS RUM JMP vectors are s ho urn below- at each address
s a JMF instruction to the indicated routine

Name Addr Referenc e Fun c 1 1 on

DISKIV E4S0 * Disk h a n d 3 e r initialisation
DSKINV E453 r,

\j

.

4. et Disk handler e n i r y

.

CIQV E456 5. 2 CIO utility entry
SIQV E459 9. 3 S I G utility entry
SETVBV E45C O. 7. 2 Set system 1 1 m e r s routine
SYSVBV E45F o. 3 Stage 1 VBLANK entry.
XITVBV E462 6. 3 Exit VBLANK entry.
SIOINV E465 SIO utility initializatio n

.

SENDEV E46S Send enable routine.
INTINV E46B I n t ev r u p t handler initialization
CIQINV E46E •* CIO utility initidliza t ion.

BLKBDV E471 wr • 1. 1 Blackboard mode entry
WARMS

V

E474 7. Warms'tar t (L S / RESET 3) ent r

y

COLDSV E477 7. Coldstart (power up) entry.

175

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

RBLOKV
CSOP IV

E47A
E47D

•» Cassette read block entry
Cassette OPEN input entry

* These vectors are for OS internal use only.

The fixed address Floating Point Package ROM routine entry point
addresses are shown below, complete descriptions of the corresponding
routines are provided in section 8.

AFP
FASC
IFP
FPI
FADD
FSUB
FMUL
FDIV
LOG
LOGIC
EXP
EXP 10
PLYEVL
ZFRO
ZF1
FLDOR
FLDOP
FLD1R
FLD1P
FSTOR
FSTOP
FMOVE

DSOO
DSE6
D9AA
D9D2
DA66
UHClO
DADB
DS28
DECD
n r~ <r-> «•uED i

DDCO
DDCC
DD40
DA44
DA46
DD8?
DD8D
DD98
DD9C
DDA7
DDAB
DDB6

ASCII to FP convert.
FP to ASCII convert.
Integer to FP convert.
FP to integer convert.
FP add.
FP subtract.
FP multiply
FP divide.
FP base e logarithm.
FP base 10 logarithm.
FP base e exponentiation.
FP base 10 exponentiation
FP polynomial evaluation.
Clear FRO.
Clear FP number.
Load FP number.
Load FP number.
Load FP number.
Load FP number.
Store FP number.
Store FP number.
Move FP number.

The base addresses of the handler vectors for the resident handlers
are shown belou;:

Screen Editor (E) E400
Display handler (S) E410
Keyboard handier (K) E420
Printer handler CP) E430
Cassette handier <C> E440

See section 5 for the format of the entry for each handler.

176

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM.. C016555

The 6502 Computer interrupt vector values are shown below:

Function Address Value
NMI FFFA E7E4
RESET FFAC E477
IRQ FFFE E6FE

APPENDIX K — OS DATABASE VARIABLE FUNCTIONAL DESCRIPTIONS

This spction contains descriptions of many of the data base variables;

descriptions are included for all of the user accessible variables and

for some of the "internal" variables as well. Those variables which

are not considered to be normally of interest to any user are flagged

with an asterisk ('*') after their names; the other variables may be

of interest to one or more of the following classes of users:

o End user.
o Game developer.
o Application programmer.
o System utility writer.
o Language processor developer.
o Device handler writer.

Each variable is specified by its system equate file name followed by

its address (in hex) and the number of bytes reserved in the data base

(in decimal), in the following form:

<name> [<ad dress>, <size>]

For e xamp 1 e

:

MEMLO C02E7, 2 3

Note that most word (2 byte) variables are ordered with the least

significant byte at the lower address.

A. MEMORY CONFIGURATION

See section 4 for a general discussion of memory dynamics and section

7 for details of system initialization.

Al MEMLO C02E7,23 — User free memory low address

MEMLO contains the address of the first location in the free memory
^

region. The value is established by the OS during power up and L RESET J

initialization and is never altered by the OS thereafter.

A2 MEMTOP C02E5, 23 — User free memory high address

177

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM* C016555

MEMTOP contains the address of the first non-useable memory location
above the free memory region. The value is established by the OS
during power up and CRESET3 initialization; and then is re-established
whenever the display is OPENed.

A3 APPMHI COOOEi 23 — User free memory screen lower limit

APPMHI is a user controlled variable which contains the address within
the free memory region below which the Display handler may not go in

setting up a display screen. This variable is initialized to zero by

the OS at power up.

A4 RAMTOP* C006A, 1 3 — Display handler top of RAM address (msb)

RAMTOP permanently retains the RAM top address that was contained in

TRAMSZ (as described in Nl) for the Display handler's use. The value
is setup as part of handler initialization; it is not clear why this
variable is required, since the same value is in RAMSIZ.

A5 RAMSIZ [02E4, 13 — Top of RAM address (msb only)

RAMSIZ permanently retains the RAM top address that was contained in

TRAMSZ (as described in Nl).

B. TEXT/GRAPHICS SCREEN

See section 5 for a discussion of the text and graphics screens and

their handlers.

Cursor control

For the text screen and split screen text window there is a visible
cursor on the screen which shows the position of the next input or

output operation. The cursor is represented by inverting the video of

the character upon which it resides; but the cursor may be made

invisible/ at the user's option. The graphics screen always has an

invisible cursor.

The cursor position is sensed by examining data base variables and may

be moved by altering those same variables; in addition, when using the

Screen Editor, there are cursor movement control codes which may be

sent as data (as explained in section 5).

Bl CRSINH C02F0, 13 — Cursor display inhibit flag

When CRSINH is zero, all outputs to the text screen will be followed

by a visible cursor (inverted character); and when CRSINH is non-zero.,

no visible cursor will be generated.

CRSINH is set to zero by power up, CRESET3, CBREAK3 or an OPEN command

to the Display handler or Screen Editor.

178

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM* C016555

Note that altering CRSINH does not cause the visible cursor to change
states until the next output to the screen; if an immediate change to
the cursor state is desired; without altering the screen data* follow
the CRSINH change with the output of CURSOR UP; CURSOR DOWN or some
other innocuous sequence.

B2 ROWCRS C0054, 13 & COLCRS C0055; 23 — Current cursor position

ROWCRS and COLCRS define the cursor location (row and column;
respectively) for the next data element to be read from or written to
the main screen segment. When in split screen mode; the variables
TXTROW and TXTCOL define the cursor for the text window at the bottom
of the screen as explained in B4 below.

The row and column numbering start with the value zero* and increase
mono ton i ca 1 1 y to the number of rows or columns minus one; with the
upper left corner of the screen being the origin <0;0).

ROWCRS is a single byte variable with a maximum allowable value of 191
(screen modes 8— 11); COLCRS is a two byte variable with a maximum
allowable value of 319 (screen mode 8).

B3 OLDROW C005A;13 & OLDCOL C005B; 23 — Prior cursor position

OLDROW and OLDCOL are updated from ROWCRS and COLCRS before every
operation. The variables are used only for the DRAW and FILL
operations.

B4 TXTROW C 0290* 13 & TXTCOL [0291,23 -

p os i t i on

- Split screen text cursor

TXTROW and TXTCOL define the cursor location (row and column;
respectively) for the next data element to be read from or written
the split screen text window.

to

The row and column numbering start with the value zero; and increase
mono ton i ca 1 1 y to 3 and 39, respectively; with the upper left corner of
the split screen text window being the origin (0;0).

Sc reen mar g ins

The text screen and split screen text window have user alterable left
and right margins which define the normal domain of the text cursor.

B5 LKARGN C0052;13 — Text column left margin

LMARGN contains the column number (0-39) of the text screen left
margin; the text cursor will remain on or to the right of the left
margin as a result of all operations; unless the cursor column
variable is directly updated by the user (see B2 and B4 above). The
default value for LMARGN is 2 and is established upon power up or
CRESET3.

179

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

B6 RMARGN C0053j 1 3 — Text column right margin

RMARON contains the column number (0-39) of the text screen right

margin; the text cursor will remain on or to the left of the right

margin as a result of all operations; unless the cursor column

variable is directly updated by the user (see B2 and B4 above). The

default value for RMARGN is 39 and is established upon power up or

CRESET3.

Color control

As part of the stage 2 VBLANK process (see section 6), the values of

nine data base variables are stored in corresponding hardware color

control registers. The color registers are divided into two groups:

the player/missile colors and the playfield colors. The playfield

color registers are utilized by the different screen modes as shown in

Appendix Hi the p lay er /mi ss i 1 e color registers have no use within the

standard OS.

B7 PCOLRO - PC0LR3 CC2C0, 43 — P 1 ay er /mi ss i 1 e colors

Each color variable is stored in the corresponding hardware register

as shown below:

PCOLRO
PC0LR1
PC0LR2
PCOLRO

C02C03
C02C1

3

C02C23
C02C33

COLPNO
C0LPM1
C0LPM2
C0LPM3

CD0123
CD0133
CD0143
CD0153

Each color variable has the format shown below

7 6 5 4 3 2 1 0
+-+-+-+-+-+-+-+-+

j color i 1 urn ! x

!

See Appendix H for information regarding the color and luminance

field values.

ES COLORO - C0L0R4 C02C5* 53 — Playfield colors

Each color variable is stored in the corresponding hardware register

as shown below:

COLORO C02C43
COLOR 1 C02C5 3

C0L0R2 C02C63
C0L0R3 L02C73
C0L0R4 C02C83

Each color variable

COLPFO CD0163
C0LPF1 CD0173
C0LPF2 CD0183
C0LPF3 CD0193
COLBK CD01A3

has the format shown below:

180

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

7 6 5 4 3 2 1 0
+—h-+—+—+-+—+—h- +

i color ! lum J x J

-h—i—+—h—

+

See Appendix H for information regarding the color and luminance field

va lues.

Text scrol 1 ing

The text screen or split screen text window "scrolls" upward whenever
one of the two conditions shown below occurs:

A text line at the bottom row of the screen extends past the right
margin.

A text line at the bottom row of the screen is terminated by an

EOL.

Scrolling has the effect of removing the entire logical line that
starts at the top of the screen and then moving all subsequent lines
upward to fill in the void. The cursor will also move upward if the
logical line deleted exceeds one physical line.

B9 SCRFLG* C02BB/1D — Scroll flag

SCRFLG is a working
minus one that were
logical line ranges

variable that counts
deleted from the top
in size from 1 to 3;

the number of physical lines
of the screen; since a

SCRFLG ranges from 0 to 2.

Attract mode

Attract mode is a mechanism which protects the TV screen from hav-
ing patterns "burned into" the phosphors due to a fixed display
being left on the screen for extended periods of time, when the

computer is left unattended for more than 9 minutes, the color
intensities are limited to 507. of maximum and the hues are contin-
ually varied every 83 seconds. Pressing any keyboard data key

will be sufficient to remove the attract mode for 9 more minutes.

As part of the stage 2 VBLANK process, the color registers from the
data base are sent to the corresponding hardware color registers;
before they are sent/ they undergo the following transformation.

hardware register = database variable XOR COLRSH AND DRKMSK

Normally COLRSH *00 and DRKMSK = $FE, thus making the above
calculation a null operation; however/ once attract mode becomes
active/ COLRSH = the content of RTCLOK+1 and DRKMSK = *F6.. which has

the effect of modifying all of the colors and keeping their luminance
always below the 50 percent level.

181

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

Since RTCLOK+1 is incremented every 256/60ths of a second and since
the least significant bit of COLRSH is of no consequence; a color/Ium
change will be effected every 83 seconds (512/60).

BIO ATRACT C004D, ID — Attract mode timer and flag

ATRACT is the timer (and flag) which controls the initiation and
termination of attract mode. Whenever a keyboard key is pressed, the
keyboard IRQ service routine sets ATRACT to zero, thus terminating
attract mode; the CBREAK3 key logic behaves accordingly. As part of

the stage 1 VBLANK process. ATRACT is incremented every 4 seconds, if

the value exceeds 127 (after 9 minutes without keyboard activity), the
value of ATRACT will then be set to $FE and will retain that value
until attract mode is terminated.

Since the attract mode is prevented and terminated by the OS based
only upon keyboard activity* some users may want to reset ATRACT based
upon ATARI controller event detection, user controlled Serial I/O bus

ivity or any other signs of life.

Bll COLRSH* C004F, ID — Color shift mask

COLRSH has the value £00 when attract mode is inactive, thus effecting
no change to the screen colors; when attract mode is active, COLRSH
contains the current value of the timer variable middle digit
(RTCLOK+1).

B12 DRKMSK* C004E, ill — Dark (luminance) mask

DRKMSK has the value $FE when attract mode is inactive which does not
alter the luminance; and has the value $F6 when attract mode is active
which forces the most significant bit of the luminance field to zero,

thus guaranteeing that the luminance will never exceed 50 percent.

Tab b ing

See section 5 for a discussion of the use of tabs in conjunction with

the Screen Editor.

B13 TABMAP C02A3, 153 — Tab stop setting map

The tab settings are retained in a fifteen byte (120 bit) map, where a

bit value of one indicates a tab setting; the diagram below shows the

mapping of the individual bits to tab positions

182

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEP i
.
APPnOVAL

OPERATING SYSTEM, CO 16555

7 6> 5 4 3 2 1 0

1

» 0 i

i 1 ! 2 ; 3 ! 4 I 5 ! 6 1 7 ! TABftAP+O

i

1 8 • 9 1

1 10! 11 ! 13! 14 ! 15!

< >

I

— I
=

»

* I

1

1112*113*1 14 5 1151 116 5 1 17! 118S 119 5
+14

+ +. j- 1- + 1- + + h

Whenevpr the Display handler or Screen Editor is opened, this map is

initialed to contain the value of $01 in every byte., thus providing

the default tab stops at 7. 15, 23,- etc.

size

Logical text lines

Thp text screen is invisibly divided into logical lines of text,

each comprising from one to three physical lines of text. The

srroen is initialized to 24 logical lines of one physical line

each; but data entry and/or data insertion may increase the si

of a logical line to two or three physical lines.

B14 LOGMAP* C02B2,41 — Logical i ir.e starting row map

Thp beginning physical line number for each logical line on the

screen is retained in a four byte (32 bit) map, where a bit

value of one indicates the start of a logical line, the diagram

below shows the mapping of the individual bits to physical line

(row) numbers.

7 6 5 4 3 2 1 0
+ + 1- + 4 +_-+— +

! 0! I! 2! 3! 4! 5! 6! 7! LOGMAP +0
4-— + -+ H + + + r

! 8 5 95lO!li:i2!l35l4:i5! +

I

+ 4 4 4 4 4 4 -1- 4

! 16! 171 13! 19! 20! 21 ! 22 ! 23 !

+2

+ 4 4 4 4 4 4 4 4!!!!!!!!! *3

+ + + -.-+ 4 4 4 4 4

The map bits are all set to one whenever the text screen is

OPENed or cleared. From that point, the mar is updated as

logical lines are entered, edited and deleted from the screen

B15 L0GC0L» C0063, 13 — Cursor / log l ca 1 line column number

LOGCOL contains the logical line column number for the current

cursor position; note that a logical line may comprise up to

183

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

three physical lines. This variable is for the internal use of
the Display handler.

Split screen

The Display handler and Screen Editor together support the
operation of a split screen mode (see section 5) in which the main
portion of the screen is in one of the graphics modes and is

controlled by the Display handler, and there is a four physical line
text window at the bottom of the screen which is controlled by the
Screen Editor.

E16 BOTSCR* C02BF, i 3 — Text screen lines count

BOTSCR contains the number of lines of text for the current screen: ^4
for mode 0 or 4 for a split screen mode. The handler also uses this
variable as an indication of the split screen status; tests are made
for the specific values 4 and 24.

DRAW/FILL function

The E>RAW function line drawing algorithm is shown below translated to
the Pascal language from assembly language.

NEWROW : * ROWCRS; NEWCOL : COLCRS; *

DELTAR := AES < NEWROW-OLDROW)

;

ROWINC := SIGN (NEWROW-OLDROW

)

\ < +1 or -1 >

DELTAC : = AES (NEWCOL-OLDCOL)

s

COLINC := SIGN (NEWCOL-OLDCOL); < +1 or -1 >

ROWAC : * C; COLAC « 0;

ROWCRS : = OLDROWi COLCRS : = OLDCOL;

COUNTR :
= MAX (DELTAC , DELTAR)

;

ENDPT : = COUNTR;
IF COUNTR - DELTAC

THEN ROWAC := ENDPT DIV 2
ELSE COLAC := ENDPT DIV 2;

WHILE COUNTR > 0 DO
BEGIN

ROWAC := ROWAC + DELTAR;
IF ROWAC >= ENDPT

THEN
BEGIN

ROWAC : = ROWAC - ENDPT;
ROWCRS :

= ROWCRS + ROWINC
END;

184

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO 16555

COLAC := COLAC + DELTAC;
IF COLAC >= ENDPT

THEN
BEGIN

COLAC := COLAC - ENDPT;
COLCRS := COLCRS + COLINC

END;
,

PLOT..POINT; < point defined by ROWCRS & COLCRS >

IF FILFLG O 0 THEN F I LL_L I NE;

COUNTR : = COUNTR - 1

END;

The FILL function algorithm (FILLJ-INE above) is described briefly in

section 5.

B17 FILDAT C02FD, 13 — Fill data

FILL contains the fill region data value as part of the calling
sequence for a FILL command as described in section 5.

B18 FILFLG* C 02B7# 1 3 — Fill flag

FILFLG indicates to shared code within the Display handler whether the

current operation is FILL (FILFLG O 0) or DRAW (FILFLG = 0).

B19 NEWROW* C0060.1D & NEWCOL* [0061,23 — Destination point

NEWROW and NEWCOL are initialized to the values in ROWCRS and COLCRS-
which represent the destination endpoint of the DRAW/FILL command.
This is done so that ROWCRS and COLCRS may be altered during the
performance of the command.

B20 H0LD4* [02BC13 — Temporary storage

H0LD4 is used to save and restore the value in ATACHR during the

FILL process; ATACHR is temporarily set to the value in FILDAT
to accomplish the filling portion of the command.

B21 ROWINC* C0079, 13 ?< COLINC* C007A, 13 — Row/column
increment/decrement

ROWINC and COLINC are the row and column increment values; they are

each set to +1 or -1 to control the basic direction of line drawing.

ROWINC and COLINC represent the signs of NEWROW - ROWCRS and NEWCOL -

COLCRS/ respectively.

B22 DELTAR* £0076,13 & DELTAC* [0077,23 — Delta row and delta
col umn

185

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

•

DELTAR and DELTAC contain the absolute values of NEWROW - ROWCRS and
NEWCOL - COLCRS, respectively; together with ROWING and COLINC, they
define the slope of the line to be drawn.

B23 COUNTR* C007E, 23 — Draw iteration count

COUNTR initially contains the larger of DELTAR and DELTAC, which is
the number of iterations required to generate the desired line. COUNTR
is then decremented after every point on the line is plotted, until it
reaches a value of zero.

B24 ROWAC* C0070, 23 & COLAC* [0072, 23 — Accumulators

ROWAC and COLAC are working accumulators which control the row and
column point plotting and increment (or decrement) function.

E25 ENDPT* C0074, 23 — Line length

ENDPT contains the larger of DELTAR and DELTAC, and is used in
conjunction with ROWAC /COLAC and DELTAR /DELTAC to control the plotting
of 1 ine points.

Displaying control characters

Often it is useful to have ATASCII control codes (such as CLEAR,
CURSOR UP, etc.) displayed in their graphic forms instead of having
them perform their control function. This display capability is
provided in two forms when outputting to the Screen Editor: 1) a data
content form in which a special character (ESC) preceeds each control
character to be displayed and 2) a mode control form.

Escape (display following control character)

Whenever an ESC character is detected by the Screen Editor, the
next character following this code is displayed as data,
even if it would normally be treated as a control code; the EOL
code is the sole exception, it is always treated as a control
code. The sequence ESC ESC will cause the second ESC character
to be displayed.

B26 ESCFLG* C02A2, 13 — Escape flag

ESCFLG is used by the Screen Editor to control the escape
sequence function; the flag is set (to $80) by the detection of
an ESC character ($1B> in the data stream and is reset (to O)
following the output of the next character.

Display control characters mode

When it is desired to display ATASCII control codes other than EOL in
their graphics form, but not have an ESC character associated with

186

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

each control code/ a display mode may be established by setting a flag

in the data base. This capability is used by language processors when

displaying high level language statements/ which may contain control

codes as data elements.

B27 DSPFLG C02FE/13 — Display control characters flag

When DSPFLG is non-zero, ATASCII control codes other than EOL are

treated as data and displayed on the screen when output to the Screen

Editor. When DSPFLG is zero, ATASCII control codes are processed

norma 1 1 y .

DSPFLG is set to zero by power up and CRESET3.

Bit mapped graphics

A number of temporary variables are used by the Display handler when

handling data elements (pixels) going to or from the screen; of

interest here are those variables which are used to control the

packing and unpacking of graphics data/ where a memory byte typically
contains more than one data element (for example/ screen mode 8

contains 8 pixels per memory byte).

B28 DMASK* C02A0/13 — Pixel location mask

DMASK is a mask which contains zeroes for all bits which do not

correspond to the specific pixel to be operated upon, and which

contains ones for all bits which do correspond. DMASK may contain the

values shown below in binary notation:

11111111 — screen modes 1 ?y 2; one pixel per byte.

llllOOOO — screen modes 9-11; two pixels per byte.

00001111

11000000 — screen modes 3/ 5 & 7; four pixels per byte.

00110000
00001100
00000011

10000000 — screen modes 4* 6 & 8; eight pixels per byte.

01000000

00000010
00000001

B29 SHFAMT* C006F, 13 — Pixel justification

SHFAMT indicates the amount to shift the right justified pixel data on

output/ or the amount to shift the input data to right justify it on

input. The value is always the same as for DMASK prior to the

justification process.

187

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM.. C016555

Internal working variables

E30 HOLD1* [0051*13 — Temporary storage

B31 H0LD2* C029F, 13 — Temporary storage

B32 HOLDS* C029D, 13 — Temporary storage

E33 TMPCHR* [0050*13 — Temporary storage

B34 DSTAT* CGG4C13 — Display status

E35 DINDEX* C0057, 13 — Display mode

DINDEX contains the current screen mode obtained from the low order
four bits of the most recent OPEN AUX1 byte.

B36 SAVMSC C 0058* 23 — Screen Memory Address

SAVMSC contains the lowest address of the screen data region; the
data atthat address is displayed at the upper left corner of the
screen.

E37 OLDCHR* C005D* 13 — Cursor character save/restore

OLDCHR retains the value of the character under the visible text
cursor; this variable is used to restore the original character value
when the cursor is moved.

B38 QLDADR* C005E, 23 — Cursor memory address

OLDADR retains the memory address of the current visible text cursor
location; this variable is used in conjunction with OLDCHR (B37) to
restore the original character value when the cursor is moved.

B39 ADRESS* [0064/ 23 — Temporary storage

B40 MLTTUP /OPNTMP / TOADR* C0066# 23 — Temporary storage

B41 SAVADR/FRMADR* 1 0068/ 23 — Temporary storage

B42 BUFCNT* C006B# 13 — Screen Editor current logical line size

B43 BUFSTR* C006C23 — Temporary storage

B44 SUiPFLG* C007B* 1 3 — Split screen cursor control

In split screen mode the graphics cursor data and the text window
cursor data are frequently swapped as shown below in order to get the
variables associated with the region being accessed into the
ROWCRS-OLDADR variables.

ROWCRS B2 TXTROW B4
COLCRS B2 TXTCOL B4

188
«

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM.. CO 16555

D INDEX B35 T INDEX B49
- TXTMSC B52SAVMSC B36

OLDROW B3 TXTOLD B53
OLDCOL B3
OLDCHR B37
OLDADR B38

SWPFLG is used to keep track of which data set is currently in the
ROWCRS-OLDADR region; SWPFLG is equal to *FF when split screen text
window cursor data is in the main region/ otherwise SWPFLG is equal to

0.

B45 INSDAT* [007D, 1

3

— Temporary storage

B46 TMPROW* C02B8, 13 ?s. TNPCOL* C02B9, 23 — Temporary storage

B47 TMPLET* C02A1, 1 3

•— Temporary storage

348 SUBTMP* C029E, 13 — Temporary storage

B49 TINDEX* [0293, 13 — Split screen text window screen mode

TINDEX is the split screen text window equivalent of DINDEX and is

always equal to zero when SWPFLG is equal to zero (see B44)

B50 BITMSK* C006E,,13 — Temporary storage

B51 LINBUF* C0247, 403 — Physical line buffer

LINBUF is used to temporarily buffer one physical line of text when
the Screen Editor is moving screen data.

B52 TXTMSC [0294,23 — Splitscreen memory address

TXTMSC is the split screen text window version of SAVMSC (36).

See B44 for more information.

B53 TXTOLD* £0296, 63 — Split screen cursor data

See B44 for more information.

Internal character code conversion

Two variables are used to retain the current character being processed
(for both reading and writing); ATACHR contains the value passed to or

from CIO/ and CHAR contains the internal code corresponding to the
value in ATACHR. Because the hardware does not interpret ATASC I I

characters directly i the transformations shown below are applied to

all text data read and written:

ATASC 1 1 INTERNAL
CODE CODE

189

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

00- IF
20-3F
40-5F
60-7F
80-9F
AO-BF
CO-DF
EO-FF

40-5F
00-1F
20-3F
60-7F
CO-DF
80-9F
AO-BF
EO-FF

See P26 for more information.

B54 ATACHR C02FB/1D — Last ATASCII character or plot point

ATACHR contains the ATASCII value for the most recent character read
or written/ or the value of the graphics point. This variable may also
be considered to be a parameter of the FILL/DRAW commands/ as the
value in ATACHR will determine the line color when a DRAW or FILL is
performed.

B55 CHAR* C02FA/1D — Internal character code

CHAR contains the internal code value for the most recent charcter
read or written.

C. DISK HANDLER

See section 5 for a discussion of the resident Disk handler.

CI BUFADR* [0015,23 — Data buffer pointer

BUFADR acts as temporary page zero pointer to the current disk
b uf f er

.

C2 DSKTIM* C0246/13 — Disk format operation timeout time

DSKTIM contains the timeout value for SIO calling sequence variable
DTIMLO (see section 9); DSKTIM is set to 160 (which represents 3 171
second timeout) at initialization time/ and is updated after each disk
status request operation contain the value returned in the 3rd byte of
the status frame (see section 5). Note that all disk operations other
than format have a fixed (7) second timeout/ established by the Disk
handler.

D. CASSETTE

See section 5 for a general description of the Cassette handler. The
cassette uses the Serial I/O bus hardware/ but does not conform with
the Serial I/O bus protocol as defined in section 9. Hence/ the Serial
I/O utility (SIO) has cassette specific code within it. Some variables
in this sub-section are utilized by SIO and some by the Cassette
hand ler

.

190

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

Cassette mode

D8 CASFLG* C030F, 13 — Cassette I/O flag

CASFLG is used internally by SIO to control the program flow through
shared code. A value of zero indicates that the current operation is a
standard Serial I/O bus operation^ and a non-zero value indicates a
cassette operation.

Cassette buffer

D9 CASBUF* C03FD/ 1313 — Cassette record buffer

CASBUF is the buffer used by the Cassette handier for the packing and
unpacking of cassette record data- and by the initialization cassette-
boot logic. The format for the standard cassette record in the buffer
is shown below:

7 6 5 4 3 2 1 0
+-+- 1-~ +--+-+-+-+-+
10 1 0 1 0 1 0 1 : CASBUF+O
+ -+ - + - + — -f—i

i
>-—

h

10 10 10 10 1! +1
* — H 1

i h — H
i 1 h

! control by te ! i-2

+—h-H J~—H—I
i h —

+

! 128 ! +3
= data «

1 bytes ! +130
+—+-+— +-+-+-

See section 5 for an explanation of the standard cassette record
format.

D10 BLIM* C028A/13 — Cassette record data size

BLIM contains the count of the number of data bytes in the current
cassette record being read. ELIM will have a value ranging from i to
128 i depending upon the record control byte as explained in section 5

Dll BPTR* C003D*13 — Cassette record data index

BPTR contains an index into the data portion of the cassette record
being read or written. The value will range from O to the then cut- rent
value of BLIM. When BPTR equals BLIM then the buffer (CASBUF) is full
if writing or empty if reading.

Internal working varibles

T>12 FEOF* L003F, 13 — Cassette end of file flag

FEOF is used by the cassette handler to flag the detection of an end

191

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT APPROVAL
OPERATING SYSTEM/ C016555

Baud rate determination

The input baud rate is assumed to be a nominal 600 baud/ but will be

adjusted/ if necessary/ by the SiO routine to account foT drive motor
variations/ stretched tape/ etc. The beginning of every cassette
record contains a pattern of alternating ones and zeroes which is used

solely for speed correction; by measuring the time to read a fixed
number of bits/ the true receive baud rate is determined and the

hardware adjusted accordingly. Input baud rates ranging from 318 to

1407 baud can theoretically be handled using this technique

The input baud rate is adjusted by setting the POKEY counter which
controls the bit sampling period.

Dl CBAUDL* L02EE/13 & CBAUDH* C02EF, 13 — Cassette baud rate

Initialized to 05CC hex, which represents a nominal 600 baud

After baud rate calculation/ these variables will contain POKEY
counter values for the corrected baud rate

D2 TIMFLG* [0317/13 — Baud rate determination time out flag

TIMFLG is used by SIO to timeout an unsuccessful baud rate

determination. The flag is initially set to one, and if it attains a

value of zero (after 2 seconds) before the first byte of the cassette

record has been read, the operation will be aborted. See also H24

D3 TIMER1* C030C23 & TIMER2* C0310/ 2D — Baud rate timers

These timers contain reference times for the beginning and end of the

fixed bit pattern receive period. The first byte of each timer

contains the then current vertical line counter value read from ANTIC

and the second byte of each timer contains the then current value 'of

the least significant byte of the OS real time clock (RTCLOK+2).

The difference between the timers is converted to raster pair counts

and is then used to perform a table lookup with interpolation to

determine the new values for CBAUDL and CBAUDH.

D4 ADDCOR* C030E/13 — Interpolation adjustment variable

ADDCOR is a temporary variable used for the interpolation calculation

of the above computation.

D5 TEMPI* C0312* 23 — Temporary storage

D6 TEMP3* L0315/13 — Temporary storage

D7 SAVIO* L0316/13 — Serial in data detect

SAVIO is used to retain the state of SKSTAT CD20F3 bit-4 (serial data

in); it is used to detect (and is updated after) every bit arrival

192

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

of file condition (control byte = *FE>. FEOF equal to zero indicates
that an EOF has not yet been detected/ and a non-zero value indicates
that an EOF has been detected. The flag is reset at every OPEN.

D13 FTYPE* C003E, 13 — Inter-recdrd gap type

FTYPE is a copy of ICAX22 from the OPEN command and indicates the type

of inter-record gap selected; a positive value indicates normal record
gaps, and a negative value indicates continuous mode gaps.

D14 WMODE* C0289, 13 — Cassette read/write mode flag

WMODE is used by the cassette handler to indicate whether the current
operation is a read or write operation; a value of zero indicates
read, and a value of $80 indicates write.

D15 FREQ* [0040,13 — Beep count

FREQ is used to retain and count the number of beeps requested of the

'EEEP routine by the Cassette handler during the OPEN command
process.

E. KEYBOARD

See section 5 for a general description of the Keyboard handler.

Key reading and debouncing

The console key code register is read in response to an IRQ interrupt
which is generated whenever a key stroke is detected by the hardware.
The key code is compared with the prior key code accepted (CHI); if

the codes are not identical/ then the new code is accepted and stored
in the key code FIFO (CH) and in the prior key code variable (CHI). If

the codes are identical/ then the new code is accepted only if a

suitable key debounce delay has transpired since the prior value was
accepted.

If the key code read and accepted is the code for CTRL-l* then the

display start/stop flag (SSFLAG > is complemented and the value is not

stored in the key code FIFO (CH).

In addition to the reading of the key data, SRTIMR is set to $30 for

all interrupts received (see E8) , and ATRACT is set to 0 whenever a

new code is accepted (see BIO).

The Keyboard handler obtains all key data from CH; whenever a code is

extracted from that one-byte FIFO/ the handler stores a value of *FF

to the FIFO to indicate that the code has been read. See section 5 for

further discussion of the Keyboard handler's processing of the key

codes.

El CHI* C02F2/13 — Prior keyboard character code.

193

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

CHI contains the key code value of the key most recently read and
accepted.

E2 KEYDEL* C02F1,13 — Debounce delay timer.

KEYDEL is set to a value of 3 whenever a key code is accepted/ and is

decremented every 60th of a second by the stage 2 VBLANK process
(until it reaches zero).

E3 CH C02FC13 — Keyboard character code FIFO.

CH is a one-byte FIFO which contains either the value of the most
recently read and accepted key code or the value *FF (which indicates
that the FIFO is empty). The FIFO is normally read by the keyboard
handler* but may be read by a user program.

Key data may also be stored into CH by the auto-repeat logic as
explained in the discussion relating to E8.

Special functions

Start/stop

Display handler and Screen Editor output to the text or graphics mode
screen may be stopped and started (without losing any of the output
data) through the use of the CTRL-1 key combination. Each key

depression toggles a flag which is monitored by the above mentioned
handlers. When the flag is non-zero, the handlers wait for it to go to

zero before continuing any output.

E4 SSFLAG C02FF, 1 3 ~ Start/stop flag

The flag is normally zero, indicating that screen output is not to be

stopped. The flag is complemented by every occurrence of the CTRL-1

key combination by the keyboard IRQ service routine.

The flag is set to zero upon power up, CRESET3 or [BREAK] key

processing.

CBREAK3 key

E5 BRKKEY £0011,13 — CBREAK3 key flag

BRKKEY is used to indicate that the CBREAK3 key has been pressed. The

value is normally non-zero and is set to zero whenever the CBREAK3 key

is pressed. The code that detects and processes the CBREAK3 condition
(flag O) should set the flag non-zero again.

BRKKEY is monitored by the following OS routines: Keyboard handler,
Display handler, Screen Editor, Cassette handler, xx? The detection of

194

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

a CBREAK3 condition during an I/O operation* will cause the operation
to be aborted and a status of $80 to be returned to the user.

The flag is set non-zero upon power up# CRESET3 or upon aborting a

pending I/O operation.

SHIFT/CONTROL lock

The keyboard control has three different modes for code generation
which apply to the alphabetic keys 'A' through 'Z': 1) normal* 2) caps
lock and 3) control lock.

In normal mode/ all unmodified alphabetic character keys generate the
lower case letter ATASCII code (*61-7A>.

In caps lock mode* all unmodified alphabetic character keys generate
the upper case letter ATASCII code ($41-5A>.

In control lock mode/ all unmodified alphabetic character keys
generate the control letter ATASCII code (*01-1A).

In all three modes* any alphabetic character key which is modified (by

being pressed in conjunction with the SHIFT or CONTROL key) will
generate the desired modified code.

E6 SHFLOK C02BE/13 — Shift/control lock control flag

SHFLOK normally has one of three values:

*00 = normal mode (no locks in effect).
$40 = caps lock.
*S0 = control lock.

SHFLOK is set to $40 upon power up and CRESET3 and is modified
thereafter by the OS only when the CAPS key is pressed (either by

itself or in conjunction with the SHIFT or CTRL key).

E7 HOLDCH* C007C/13 — Character holding variable

HOLDCH is used to retain the current character value prior to
the SHIFT/CONTROL logic process.

Auto-rep eat

The auto-repeat feature responds to the continuous depression of a

keyboard key by replicating the key code 10 times per second/ after an
initial 1/2 second delay. The timer variable SRTIMR is used to control
both the initial delay and the repeat rate.

Whenever SRTIMR is equal to zero and a key is being held down, the
value of the key code is stored in the key code FIFO (CH). This logic
is part of the stage 2 VBLANK process.

195

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

E8 SRTIMR* l022B: 1 3 — auto-repeat timer

SRTIMR is controlled by two independent processes: 1) the
keyboard IRQ service routine/ which establishes the initial
delay value and 2) the stage 2 VELANK Routine which establishes
the repeat rate/ decrements the timer and implements the auto-
repeat log ic.

Inverse video control

The Keyboard handler allows the direct generation of a more than half
of the 256 ATASCII codes; but codes *80-9A and codes $AO- FC can be

generated only with the "inverse video mode" active. The ATARI key

acts as an on/off toggle for this mode, and all characters (except for
screen editing control characters) will be subject to inversion when
the mode is active.

E9 INVFL.G C02B6/1] — inverse video flag

INVFLG is normally zero, indicating that normal video ATASCII
codes (bit-7 = O) are to be generated from keystrokes; however,
whenever INVFLG is non-zero., inverse video ATASCII codes (bit-7

1) will be generated. The special control codes are exempt
from this bit manipulation.

INVFLG is set to zero by power up and CRESETD.

The Keyboard handler inverts bit-7 of INVFLG whenever the ATARI key is

pressed; the lower order bits are not altered and are assumed to be

zero.

The Keyboard handler "exculsive or"s the ATASCII key data with the
value in INVFLG at all times; the normal values of $00 and $80 thus
lead to control of the inverse video bit (bit-7).

Console switches (SELECT, START & OPTION)

The console switches are sensed directly from the hardware
register CONSOL CDOiFj; see the Colleen hardware manual for
details.

F. PRINTER

See section 5 for a general description of the Printer handler.

Printer buffer

Fl PRNBUF* C03C0, 40j — Printer record buffer

PRNBUF is the buffer used by the Printer handler for packing printer

196

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL-
OPERATING SYSTEM j C016555

data to be sent to the device controller. The buffer is 40 bytes long

and contains nothing but printer data.

F2 PBUFSZ* C001E>13 — Printer record size

PBUFSZ contains the size of the printer record for the current mode

selected; the modes and respective sizes (in decimal bytes) are shown

below:

Normal 40
Double width 20 (not currently supported by the device)
Sideways 29

Status request 4

F3 PBPNT* C001D, 11 — Printer buffer index

PBPNT contains the current index to the printer buffer. PBPNl ranges
in value from zero to the value of PBUFSZ.

Internal working variables

F4 PTEMP* C001F/13 — Printer handler temporary data save

PTEMP is used by the Printer handler to temporarily save the value of

a character to be output to the printer.

F5 PTIMOT* C001C/13 — Printer timeout value

PTIMOT contains the timeout value for SIO calling sequence variable
DTIMLO (see section 9); PTIMOT is set to 30 (which represents a 32

second timeout) at int ia 1 i za t i on time, and is updated after each

printer status request operation to contain the value returned in the

3rd byte of the status frame (see section 5).

0. CENTRAL I/O ROUTINE (CIO)

See section 5 for a description of the Central I/O Utility.

User call parameters

CIO call paramters are passed primarily through an I/O Control
Block (IOCB); although additional device status information may

be returned in DVSTAT, and handler information is obtained from

the Device Table (HATABS).

197

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM/ C016555

I/O Control Block

IOCB is the name applied collectively to the 16 bytes associated with
each of the 8 provided control structures; see section 5.

Gl IOCB C0340, 163 — I/O Control Block

The label IOCB is the location of the first byte of the first IOCB in
the data base. For VIDs G2 through 010/ the addresses given are for
IOCB #0 only., the addresses for all of the IOCBs are shown below:

0340-034F IOCB #0
0350-035F IOCB #1
O \~j £•U UJur IOCB #2
0370-037F IOCB #3
0380-038F IOCB #4

IOCB #5
03A0-03AF IOCB #6
03B0-03BF IOCB #7

G2 I CHID C0340, l] — Hand 1 er I . D.

See section 5 . Initial] zed to $FF at power up and [RESET 3.

G3 ICDNO C0341 , i 3
— Device number

P. e © s e c t i o n 5

.

54 ICC Oh C0342, I 3 — Command byte

See section 5

.

G5 ICSTA {10343, 1 3 — S t at us

See section 5

.

G6 I C B AL i I C BAH [0344 , 2 3 — B u f f er add r e s

s

See section 5.

57 I CPTLj 1CFTH f. 0346, 2 3 — PUT BYTE vector

See section 5. Initialized to point to CIO'.* " IOCB not OPEN' 5

at power up and [RESET j .

GB ICBLL* ICBLH [0343, 2] — Buffer length / byte count

See section 5.

G9 ICAX1, I C A X 2 L034A. 2 3 — Auxvlliary information

See section 5

G 1

0

ICSPR C034C.

4

j — Spare bytes for handle r u s e

198

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEP i .
AhPRuVAL

OP ER AT I NG SYSTEM.. CO 16555

There is no fixed assignment of these four bytes; the handler
associated with an IOCB may or may not use these bytes.

Device status

Gil DVSTAT C02EA,4D — Device status

See section 5 for a discussion of the GET STATUS command

Device Table

G12 HATAES L 031 A/ 38 D — Device Table

w

H

W
Eh

<
D

u

X
M
Q

w
a,

Hi
o
<
a.

zo

or
ui

cr
UI
-J
a
2:
ut
w
to

oo

<
cr in
UI 10
a. o
o cr

cr
UI u
»- ui
D »-
CL O
r cr
o o
roO UI

cd z:

o
o z
«r o
M UI
cr _j
< £3
z

< ui
in

0 cn
<

o
- o
bi
Z Q
D UI—
U

< Q
Z O
o
cr o
a z
U K
1 W
»~ —

-I
in in« — r
-J ui

in— in

in

in
ui
»-
>
a

in— n
o o
cr cr
ui
fsi Q

in
tr <
ui ui
-j -j
—i u

cru
zu —

a
ou cr

-J ui
a. in*

a hu o
z

<
UI

- cr
> ui

« 3
-J O
< Z
D —
I-
o in
< —

u» wX UI

u
o
r
in
a:
u
UI
Xo

z
UI
in
in
<
uio
o
u
in

o
cr

cr
o
1-

ui
>

cr
<
in ui

cr

ui

a
o
u

CL
UI
cr

cr
ui

a
ui
in
in

z
o
X
in

- o
in z
cr
o ui
t- cr
<
uio
o

Q
UI
in
<
ui

UI
cr

ui

ui
in
u
cr

o
in
.J
<

a
ui
in
<
03
I

r
<
cr

x in

1

1

ui
cr
ui
X
a
ui

cr
<

<
o

o

o
UI

in
z
UI

tn

in

z
ui

z a.
o o— -J
in ui
cr >
ui ui
> Q
ui cr
X UI

o a.
I- Z
z o

UI

cr
ui
>
z
o

UIQ
<

UI
cr
ui
3
cn
ui
o
z
<
X

UI

cr tr
D ui
O _J
in
ze ui

z in— in
3 <o
-J uO H-
U O

cr
ui u
X —

in
-jz UI> 0 • CQ

»-* <
)- 111 -J

in < IT)

cn 0 UI
ui -J Ui crU UI < Q u
ut 0 > <z < ui 2: r • n «-t

CL CL
UI . H — K z CL cl in
cr 0 cr a a
UJ • UI UI z O O DX cr _j a »- h- in3 O cr 0 Q UI

UI 0 z 3 n nQ w u < 0 0 •

Ui X cr -i CL cl inQ UI cr k Ut JO Q -j < Z r ui< < U CL 0 0 0 _jz z »- cr cr a in
Q cr < UI 0 U U O — CM

cn ui cr X in z cr0 z O Ui H in CL <T CMz a < in -J< Z H UI cr a CM
in h -i »- Q UI0 0 in ui < < < in • •

-J ui Z U -J Z 3» CL CLu cr 0 a u ^ 0 < CL CL
cr - ui O UI « (J

» 0 in n cr X Z0 u cr z cr ui in h- H
in UI ui 0 a UI <JO- CCCJh < J ut in z
< z - CL < ui in a a < 0X 0. 1- X UI H < v u-UZUI^Z h U Q -1

o

Q
UI

<
X

<
CL 3
in -j
o

ut u
cr z
D
O
U") »-

O
Ut z

X UI
ui a
-J o
CL O
Z CL
o ou

UI

z
o

-J o

o
in

<
UI

UI

CD

UI
in
in
<

z ut
UI >
cr o
ui zu
ut cn

-i
oa

UI UI
X 2>
H -I
<

O >
CL

cn z>
Z Q
Ui

a
O
cr
CL

cr
u

Q
Q Ui
UI o
in z
3 <
< X

cn

a
cr
<
3
cr
o
u.

>
cn

. . . ui
O Z K~ o <tnio ..

—i a
Z Z -I UIM M Q. h

3 <a ui
cr

ui cj
ro
cn

a—
• cn

cn q
z z

Q
Ui
u
z
Ui

u
Ut Ui
cr cr
<
»- a

—j u z
UI UI
Q ") J
< a UI
J O a

<U O J
h» Z
< cry I- o

-i
-I 3 UI
cl in z
D UI <a cr in

na
Til

crQ
O

UIz
1j

cr
cr
ui

ry n ^ ft «o n
^.^^^^.^.^^.^.^.CMCMCMrWCMCMCMrUCMCMn

200

Ui
-J

uj
I-
<
a
Ui

Ui

tn>

UJ UJ
en j
tr

tr
< a
X LU

3
OS

-J Ui
< _J trhQ U
H Z -J
< Q

Z X z
-« <
O X

a ^
O ** K
h- a.
y jd
< tr
tr cr
k UJ

r z »-
< Ui z
o: u h

cr
UJ

tr
o cr

UJ
O -I
^ a

cr
cr uj
UJ _J
-j aQ Z
z <
< X

UJ

o > <
cr in
uj
in a

cr
Ui

tr
a.

UJ
in
in
<

cr
UJ UJ
-J _J
3 a
a z
o <
x: x
CL >
3 <

-J
cr a_
uj in

O Q
GL V
>w Q
cr cr
O <o
Z ai >
O UJ

cr
UJ
Q_
o
oo
00

UJ
-J

z
s

i
UJ
-J

§
o

OOCD<Q«ritiN'rUJUi
UIUJUJUJUJUJUJUJUJU.U.

UJ

S2

-J o o o o O o o •3
cr Q tr cr cr cr cr cr cr tr
o »- o o o o o o o a
cr cj o H- o a: z in z a
x ui ** Z in tr < o a
<-> > > u (0 Q a. o

cr
a
O
UJ

o

3
-J
o
u,

UI
x .

H- UJ
z

z o
10

o *-*

s
-J
-J
<
o
UI
tr

in
UJ
in
in
UJ
cr
a
a
<

(0 UJ

UJ —
-J o
a tr

cr
»-

z
UJ

UI
cr
<
UJ
cn
ui
X

cr
uj .

—i UJ
O -J
Z a
< <
X H

UJ
z

3
O
tr

<

3

cr
o
i-

a
Ui

cr
a
Ll

UJ
—

i

CL
r
<X
Ui

cr
UJ

O
"a

J O UJ
in < h in

UJ d -« D
z in k o a.

0 I U D h 1 D OQUOQ.lDW">Z

UJ
U)
cr

in

2 0
in tr tr

tr < uj0>Oh
H LU a Z

_J > ~
o lu u cr
UJ h- tr

UJ

UI
in
in
<

o o o o o
o - m n «r

<r «r <r <r
ui ui ui ui ui
1* * * *

O(M^«0CD<<JLL
O
UJ

a i n n u

> > > > >CCZDHH
I- uj a Z ui

tr > — ui
Q u uj tr <
uj in ^ ql u

r
UI z

in h o
z in
o >

in <
u o »-#

D Z
tr h. <
1- H
in <
z cr »-«

»-« u Z
a.

CL O
r:
3 UJ in5 x »~«

a
Ul
o z

UI UI
-J -J in
a a j—

< < z
1- — o
o m

cr < CL «*•

O UJ
in >

O cr
UJ »~

> o z
Z UJ

CL
31 3 in
=> O D
5 -J o i

Ll < >
>

UJ
x a in

—

«

o o
o o
o «r

o -0 «» < CD n
CD < a <t UJ Ui

o Q Ui Ll o
5 Ui Ui UJ UJ Ui Ui U.

IM n «r •o N CD 0*

T

o o o o o
o h w n t
«r «r «* «f
Ui Ui Ui UJ UJ

rd n «*
N N N

CD o o —
CD CD

Om
Ui

(M n «t
CD CD CD

201

n

u
o
<
EL

cr

>
cr
u
-J

x
in
in

o
om

cr
o

2 CJ2 a UJ

i
a >

in »—

«

22 »- a < 1-
O < z cr

UJ
< • >—

<

— o
UJ

*-» < -J O H2 3 < -J < CL O2 u < >—

<

UJ
K- UJ -J 3 »—

i

-J »- >• >3 2 < CJ < »— crO 3 -o »—

i

2 »- »-
cr O < 2 »—

«

H Z 3
cr 3 73C cj 2 2 UJ CLa 2 2 — 23 V- cr < »- UJ «—

<

O O X ~
CL 3 2 3 2 CL CL CL CJ

CL in a < CL —

•

cr h- o cr
H- cr -J K h- UJ 3 > > -J oO 3 U JO 3 3 -j a UJ cr cr q ll

UJ o x < O O a o
cj »- M CJ -J cr c 2 2 O 2< 3 H R < < 3 x UJ UJ < HI
U. CL CJ 3 UJ X CL UJ CL
cr 2 CL r cr • CL _J 2 a t-cco2 UJ UJ 2 a H- IT cr crH > cr _ < CL < < < UJ UJ2 -J cn UJ 2 3 -J aM < > x > -I Ui cr < a in 10 »- H

cr < in uj < cr cr UJ UJ~ Q UJ cj c q in inm 2 cr v- cn *—

•

cr 2 H 2 < cr -j in in
.-4 UJ UJ UJ > X UJ UJ 2 Ui < a < <Q U in cn en UJ in in cj a 3

n o t> uu.ru ID CD C3 UJ < am m lO ID U"5 o O «o O o r» rv
*r <T

UJ UJ UJ UJ UJ UJ UJ U u UJ UJ UI UJ UJ UJ
1* ¥* * +>

o
CD

Hi

u n o

« > >1DO
>
C3

>
in

cn ~ m lj > —Quwwtnx

> > z> > >
2 UJ 2 2 O^ q h h n
IH IJ Z M J
in in u m

> > >
in in a:
r a a
cr _i _j
< o a3uc

-J

— <
CL K
O U
in >
u -

in
UJ

<
o
UJ

r
UJ

tn
>
cn

o
2

<
cr
UJ
CL
c

3 -
O h"
>v x
H- UJ
Z> I-
CL ^

cn x cn
UJ

cr
o
u.

z
UJ
CL
o

Q
cr
o
o
UJ
cr

»-

UJ
CJ)

cr
UJ

U
<
cr
<
x
u

Q
cr
o
UJ
cr

cr
UJ UJ
h- CJ

< >
cr ui

a
2

O
u

z
Ui

Ui
CL
in

cn
UJ

O
UJ o
cr z

a

O CL

<
X
U UJ

cn
a
-j
u

3
CL

in 2
3 2
< O
K LU
in ca

a
o
o

cr
o q cj a ui

cn
uj
ao
u
Q
2
<
niRiORDR

r:
O 2
U UJ

CL
- o

cj cr
uj x
cr o
UJ UJ
o o

cj cr
U X UJ
cr u in
K K O
3 3 _J
CL CL (J

cn -i

H U
< UJ
»- CL
in in

-J
J

«

Ll

»-
x
CJ

cr uj Ui
-j -j

T ^ *~*

»- u. u.

3 a: a:
in cnw u « H

2 z o a
-J -J UJ UJ H

r k <
3 3 < til I
< < z «i tr
cr cr uj uj o
Q Q cr Q Ll

cr

o
UJQ -J

< —
Ui Ll
cr
a

O UJ
h- ac

CJ
Ui O cj
-i -J LUm in
u. ^

CJ »-
^ O 2
O _J
O 2 O
-J 3 CL

cr =

O Ui
V- UJ
cj cr
uj u.
Ui -

LU Q
r- CJ
o o

cn
o2
<
n*-*CMO~rtfo«*ir><iu.
o^^ojrurutMrururju.

cr

Z
UJ

-J B
<

O
<
UJ

UJ
Ui
cr
cj
in

cr ~
a o — in

cn uj
Id cj
cj ^

in
UJ
cj

UJ
o
-1

cn

UJ

z
UJ
UJ
cro in « > 3 CO cj~ uj > uj cl * inU UJ O H UJO CJ O 3 — Oz < JO z

UJ J J LJ
a. > j < q q crDl£T<-ZO<
< a — < 2i uj

U U K D h Q uH UJ 3 CL 3 UJ
CC CL K- CL X K

cr Z 3 Z —• 33 a — a ~ x: o
x

cr cr cr cr cr cr v-
o o o o o oh L Ll II Ll II U. 3

Q22222ZZ
UJ Ui Ui UJ LU UJ UJ

UJCLCLCLCLCLCLCLtnooooooo
CO
LJ
CJ

DHItOB initR

>
LU
Q
X
CJ

cn in
UJ UJ

< <3 cj

lj a

o

CM CD CL
O
o o— CM

CJ 2 2 UJ UJ K
UJ J m Z H <
CL 3 -J < UJ E
CD < _J Z _J or

cr — uj uj o

-J ^ Ui
U. cj f- cr^OZUJIl
CJ -J «—

< K- Oo z o o o
- -QU.irQliJDQ.ZM

O O o crX 2 U 2 o _i
3 Ui UJ « o x: u< CL cr 2 2 2 Q in

CL CL CL CL X 2
< O O O

cr
o
»-•

a
LU

LJ
LU
cr
cj
cn

LJ

CO
LU

f
LJ
cj

> a
LU LUo cr

cj
- CO

na
CM

crQ
O
<

n 0- CJ u. ro
in in m m m >o

*r ^
Ui UJ UJ Ui Ui UJ

inmauj^^N<Q nmr^oacjOLUoooooooooooooooooooooooo
^»-«CM(MCMrJCMruCMU.oooooooooooooooooo

C0(DC0ID(D&> a> ^(Mh^(MMh0> OOOOOOOOOO^^^«

^4 CM *t m CJ o o
o O o o O (M
o o o o o o o oo O o o o o o o

o O (M n «t
CM n n n n o ci n n n

UJ
o

tr
2o

cr
LU

UJ
—I
CD
2
Ui
to
03

O
o
in

> tr
-I -

§>
-J

or o.
*~ to

»—

•

o o
cr
< 2
O UJ
C3 UJ
> cr
UJ CJ

CD

cr
UJ

cr

UJ

J—
uj r
CD UJ
CO Q
< o
cj 2

Z
cr

LU
cr

UJ
o
<
cr t>
cr t*
<
cj

-J
o
UJ

CO

Ui

to
>
CO

o CDCDCDCDCDCDCDCDCDCDCDODGDGDaDCD

r
o
cj

O
o cr
2 z Ui LU
< o -j a
2 a o
2 z 2
O < <
CJ cr

Ui
X EN

UI o. z LU
>)- o o #-• cr
-J > CJ
Z -J O uj cr o Q to
o z z jo 2 cr cr UI

Ui o UJ 3 cr D cr o cr h- cr
LU c_ 2 o cr cr uj cr LU Z a

3
h- O Q 2 uj cr cr a UJ Lu

uj — tr < * UI 2 LU 2 2
u cr »- uj uj CJ o > D 3 UJ >

Z 3. Gnu
> z 2

Ui < 2 O CO Ui 2 -J cr
< Ui a u — uj a: CJ DL o
cr »~ 0- ui cr o D cr tr H E O < (J • UJ 2 2
UI cr d QOZWZO o > O < Z h LJ > Q « LU
GL o Lu < «J Lu CJ LU 2 cr < < I UJ O 2
O a > h- Z <«• C3 uj a u. cr o cj Q 2 H

< a z a E U- CJ Q LU cr co cr O h~
< < li! O O L! J _i LU CO UJ CO CO -J z z Z

3 > Ui t- Z U K " Z « Q < O 3 > 3 3 < UJ LU
v. u. Ui cr CO Ui O Ui u. ui cr Q Q O Q a cr Ui z »-<

cr to in nIQ Q 0. K LU UJ cr o CJ
UJ CO < X H QJ M o Q. < X lu _J cr -J -J X CJ »

a LU uj ju j a CJ Q_ cj < O < < CL to H Lu
o u < C3 i o < < C3 2 ~ *-+ t—t (/) —

•

»—

•

CJ D
CO CJ cj UJ (J 2 o > > > u a

O O 2 LU 2 O 2
5 cr > cr cr cr cr tr Q Z CO

-D cr O cr ui Lj LU D UJ U Ui < 3 z
Q CO L0 C3«-i2»-i»-iQi-»»-*UJ H- OL Q CO CJ CO 10 CL O Lu

cr
UJ

o
Ui

> cr I- to Z > > a 2
-J >- UJ 2 CO LU CL LU -J *—

«

£L
CL 2 CO LU > CJ < a -J oO CO >—

<

to CJ to to CJ 2 <
£3 +* tr < a cr cr cr a cr > o
* o GL CJ 2 Q CJ - ~ to - a CL 2 3 2 2

or o k tr tr 2 crcruD^crODtr
LUcrOcjuicrcrLU
Lu22<2t0craC
ocr«-«2crcr>l

o ~ cm n
o t> o o

ccoi-r
O O O LU
cr 2 2 2
C QUE
Ui < 2 CJ
O Q Lu CO

r
<

cra

2
O

s
cj

CL
UI

UIo

CO
C3

CO
UJ UJ

>
cr
o
2
UJZ 2

Om cr
h- O
< LuO
o cr
-J UJ

to

2
<
cr

cr
o
u.

tr
Ui

cr
LU

to

o
LU
cr

<Q
ca to
h- 2 WhZ
Z < C M M O CO
LU cr < z o LU LU
2 UI CL cr HZ -Jo CJ >
»~« -J
to > z
to O UI cr o< z y- <e cr2 UJ LU o cr< C3 tr to CL <
cr 2 < CO 2 2 2

< < LU < toO 1j to cj cr h cr

5 -J

INI

O
o g

rnU
UI

o H- CM CM
LU o < + ZO * CJ * * O< B H O II i n b
CL -1 * # * * a

UI
to
UJ
X

rsi H
Z O CO <

_J 2 Q
tO 2 < H-
< < tr to
U Ct H h

UJ
cr
<
UJ
-J
CJ

nn
CM

ca n o n Q «*

g * «n m «r
o o o o o o

< o o o o o o 8

n ^ *r
^ ft <0 N

o «4 CM n ^» m •o m t> < o CJ o LU Lu O CM n o ni «t o nO CD CO CD CO CD CD CO CD CD CD CD CD CD CD CO CO 0* o O o o o o o o
O O o o o O O o O o O o O O o o O O o O o o o o o o
o o o o o o o o o o o o O o o o o o o o o o o o o o

co t> o cm n *r ID CD o o CM o m GO o o — CM nm in in in m <l o -0 -0 N f^^^f^r^f^CDCOaJCDCDCZJCOCOGOCDO^ChCh

cr
LU

203

til LU

LU
o
<
CL

CT
z
o

cr
u

cr
lu
-J
ca
r
UJ
en
in
<
o
o
m

03

o
< o
-I <
Ll -J

ll

cr
< o
5

C h m
< ~ _J
z

U) ~ ~
UJ uj
cr cr
< <
3 3

>
cr

lL LL LJ
o a z

L0 C3 ID 10

U.
in
cn
iu

r o
cr u
< 3
3 tn

cn

<
cj

a: a: -J
in in clM H X
Q Cj <

^ — CM CM cm
4 4 4 4 4
* * * * *
N n H u n*****
K- U
tn MU 2 I
cr o tn tn cl
< o o o CL
3 ca Q Q <

tn

LJ z
-J
ca tr
< cj UJ
Z UJ »-
Hi tn cn cr

z UJ
o o
cr >o UJ Z cr cr

cr »>-> UJ UJ
O H- »-

> z in CL Z cn cr
Ui tn M UJ
ac UJ cr o
o cr Ul CL UJ Z UJ

CL o cr o CC M
u o o < tn O

(TOO < Z UJ v— cl cn cr

cr a < -J O 3 UJ

LU Ll -J cj cr UJ z h- o cr cr h
_i Ll UJ uj ui tn
o a: UJ Ll UJ -J U Ll Ll.

z tn > z Ll cr -J — Z Ll Ll O
< < UJ —> «-» K
x z a: H- ca u. U. 3 »- ca ca cr

cr cl
< 3
3 cr

cr
cr uj
o f-

z
uj a:
k < _J
cn uj <
> cr ui

Q —» CO ca cr

cj
UJ
cr

O
u --n
Z 4 4 4
o * * *

* I u IOS***
LJ
cr< tn ar > a:
uj ca tn ur o
«i i^i r a: -J
ut- iZOCh
_ ** cl ca cr

CM

*

cro
<
Cl
3

<
z
z
o
cj

4
*
n
*

o
cj
CJ

a: ac
tn tn

O Q

CM CM
4 4
* *
u n
* *

cn _j
z h-
Ll 3
a: ar
in tn

>
cr

cr <
u cr
h- »- h o
Z Z Z CLM M M ^
cr cr cr uj
CL CL cl H

+ 4 + 4
* * * *

I n n
* * * *

o k in CL
Z Z U. ZHQ.DU
h» ca ca
CL CL CL CL

UJ
cr

a: cr <
o ui
o cl ca
-J o
ca tn o

ui
-j i-
O > UJ
cr ca X
»- h-
Z Ll
O O U.
CJ O

cr
O UJ I
v. ca K—
z o
3 Z

UJ Z UJ

<
CL

O
cr
uj

LJ
UJ
cr
U.

UJ

z
o

UJ

UJ

ca
cr
cr

CJ i LJ -J 3
o -» < CJ

cr cn > CJ
UJ z cn ca O cr

1 ca o UJ -J o
Z cr -0 u,

Ll 3 K Ul a cn o —>

U, Z CJ V- a UJ cr « UJ
< > < CJ

UI ca > u. w >
cr > ca UJ ca cr ca

cj 3 z z cn Ul
a tr o o 3 o Ui ca cr
Z Q ** -J 1- O 1-4 Z UJ
3 - 3 _J K > 3 »-

Z >- cn O < ca z u
cr cn tn cr P

z <X UJ < Ui cr Ui ca cr
Ul ca Ul -i cr UJ o o cr CJ <
O Z Q 5 z Ll < O X
Z 3 O U. Q > UJ Z CL •~« CJ

ca cn

>
cr cm n

cn cr a < 4 4
ca uj uj z cn cr cr
CJ J U < D UJ UJ -J cr cr
O D m E t- U. LL CL CL
»—

•

Z > Z < U. »- Ll X O tn in
* < Ul O V— 3 3 3 3 3 CJ CJ
CD x a cj tn co CL ca <

«r
+ + + + + 4 4 4 4 4 4 4 4***** * * * * * * * *

* N R 0 R 0 R R R w R R R

R u * * * * * * * * * * * * * 1 1
*
R

^UCn^Niw^is»isiisiMiNifs»»virsirviOcr
catno<Qoz<-ix-iX-JX^rjcrzxUBMpw20h< « hh J JXXQ.QU
OcjxcjXOcjcncacacLCLcaca<<tn»-<omO<OUUUUUUUUOUUOOU^
N mImmmmmmmmmmm«mmmU

o ~
-J X

cr cr
LJ Ui
Ll Ll
Ll Ll
3 3

cr
cr < <

)- h-UU)U<<
»~ h a q

X > >
k co ca uj Ui

3 O
-J

Z
3

ui cn
o
<
cr
o

UI

cn

>
ca

cr
uj
ll
Ll
3
ca

cn
3

UJ
-J
o <

w tL Ll
O O

cr
LJ O Q
u. z z
Ll LU LU
3
ca y- k

cn cn
< < <
H CL CL
<Q LU UI

cn
LU

UI
cr

cn
LU LU O
z — <
< cr -i
cr u,
Ll UJ

cr -JQ j
Z UJ 3 O
< cj U. <
Z -J

Llz > cr
O LU LU
cj O Ll LU

< h- h~ Ll Zl-Cn00>>LLU.30

-I z
<r 3 cr cr
z tn ui ui

UuZZhh
Z X O O LU LUMUCL0.ZZ

LU
cr cr >
Ul Ul
ca ca < UJ
Z Z h- CJ
3 3 < LU
z z p cr

4444444 + 44**********RRRBRIRURV**********
inro-o^>> jzDD JI JIECLQHWCtrZZhhO
<3:llLlLuuiujlullcj
i-X33u.LLcrcr3UJIDUOODDUQDtt

n
ca

CM

crQ
Q

cr
cr
LU

204

CD Ch < CJ LUo o o o o
o o o o o
o o o o o 8 o o o

o o o

CD <
o o o o
o o o o

CJ O LU Ll
«4 r4 t4
o o o o
o o o o

OOOOO^lMn^lD-ONOKQUUIU.
CM^CDCMCMCMCMCMCMrUCMCMCMCMCMrJCMrgnioooooooooooooooooooooooooooooooooooooo

nnnnnonnnnoooooooooooooooooooo

i

lu
o
<
CL

cr

5

O
tr
LU
INI

I

zo
z

— -J

O —
cr:

en u

o z
52
is* »-w U

LU
W

b -J
< <
-J o
LL

»-

o ->

LU
o

o
CC
LJ

r
LU
h*
LO
>
CO

CC
LU
O
<
z
<
r
LU
-J

Q
LU
CO
CO
LU
cr
CL

CC<
10

LU
r
<
o o
z <
LU -I

3 D
h- »-

H O <UOh
(0 Q U)

co

fit

OR

U
a
-j
LU

LL
> tr »-

< < cr
-J i- < • z
CL CO H z a

CO Q
I O cr

J Q cr lu
O -J LU 3

3 u a 3 a
u O CL

Q >- a.
LU < K I-

< *- <
g
LU — co

o o
cr K H
LU CO

2CT H - CO 1- H
co u. Z ' LU LU
< — o z CO CO
r x cr o w w t0

CO < cr cr
r < z Z LU

o cr -i r M M H
o < o O O Z
< cr -J cr cr 3
J h < < o
LL < U r 2: u

LU

<

§
-J

CC

s
cr

cr
LU
Q
Z

CO
LU
O
o
3
<
cr

CL
n
LU

cn

z
LU
CL
o

Q
LU
CO
D
cn

LU

cn

0

§
z0
cr
LU
3O
CL

crO
g

LU

-«

LL O
LU CLO K X
LU ZUiM D CO
»-• O LU <

s
CO
CO

§
ID
«0

*
* * *HUH
* * *

Z H cO Z CO
O CO 2C
»- ac u
x: x o
x o z

CO
LU

> z
CO ~

IL
a lu
z a

+ +******
1 1 1 n q
* * * * * *

LU

LU
cr cl
»- >
CL
O

CC u0
Ll © Z »-
O U D Mh lu c o tr

LL Ll Ll CO o

CO

<
LU -J

O CO CL
< CO CO

U.UD

I- h-
u u
< <
CC CC CC
»- < H
< a <

4 V
+

* * * * * * *
1 n 0 a INI
* * * * * *

O h ^ I
CL U CO CO
h4 > CO < < r cc
CO LU CO K CC 2d -J

r 3d < CO K cr 0
Ll - uuo < a u

o
cm n

cr
H ahim

u. e cc
LU D
J cc u

< o
CL

CO

o
CL

CL
r

x:

cc cr
lu a
Ll »-

r lcmk
< D Q ~
tr d lu a

^^^.^.^.cj^nj^ru — ru-«ry^ryra cm — -«(m — — cmcmcm — cm

+ + + + + + + + + + + + + +***************** ***********
1 n 11 1 11 m 1 1 1 m 1 1 11 ; 1 1 1 1 1 • 1 1 1 1 1

cc 22cntnxu3Jo:cr3JjtntL(LirflLhKiH ecuULilI^00irc:Ljy)D0ID0D0(niED02l-mEUUl-<<3ouoceuuQriruu<c:uuwhH<i-uii)E<<<0jHhQQiJ<<3JZ>QQQQ230tri-Z>rLLLKlL3JClJJSSlOIEOO«<JJJJlUWOajlL<<DDMlOOZliJU)JCHlJCCOQWOOOOZZJ<EOWirOQOW0:UU)QD

n
a
CM

cro
o

< CQ Un n n
888

O LU Ll O CM CO
n n n «*-

888888 8

< O U
tr «r

888
Q LU Ll
tr «»•

OOO
ocM«tf^«nininin»nvnu^inu^in^^<)^^<>^^<J^^^^££££:00

i^cochO-cMntrin^NCD^o-ra 0555^55 o 5 cm

SwwSSSSSSwSSSSS
cr
cr
LU 205

LUO

IO

cr
Ui

cr
ui
_j
ca
r
LU
to
CO

§

u.

to

Q Z
LU O
a.

3 a
10 LL

LU
tn a

< h"
tc LU

cr =c

£2O
UJ UI
tr tr

uia xz
< Q

x aH Z
U. CO

o
I

O XZ O

I I M I I I
* * * * * *

o o o x »- trZ Z J U < h
2 U. Q Q Z3 J ql J U) DO O 3 O Z OC U U) I m y

to
Z
o

<
»-•

a.

or
lu
to

cr
o
u.

Q
ui
>
cr
Ui
10
UJ
cr

UJ
cr

u.
u.

i

o

to

d

LU
o
<

o
cr
LU

cr
a
u.

<
LU
cr

LU

tr
o
H-
U
LU
>

cr

G
Z
<
LU
Q

cr

cr
o

LU

CO

Z
»-t

o
a.

o
z

a
-J
u.

LU
UJ
(0

lu

i

to
t-
z
LU
z
z
o

< to
to

to <
z

1

<
cr

O
3 O
h- O

UJ
ro

LU oo O< < M
a. CL

z lo

cr -j

tr cr
o o

LU LU
> >

cr cr

LU LU
z z
-J -J

o o
Z) I-
cr o
K LU
to >
z
a
cr
i—

•

o
O Q

cr
<

^ o
< a
LU >
cr lu
£3 *

o
o cr
tr «

>•
> G
Q <
< Ui
lu cr
cr

i—

a. k
Z D

—) -J
< <
cr cr
LU U
10 to

UJ
f-
IU
—J
QL
£o

a. a
f— tr

o
tr cr

- CM <r
-J
< cr~ Ui
cr z
ui
L0 h-

cr cr
Ui Id
z z

cr cr
o LU
»- z
(J
LU
>

cr o— G

ra
cr cr cr
Ui Ui Ui
z z z

»- I- I- h- I-

cr tr
o o

Ui Ui
> >

z z
z z

z z
tf> < <

—I -J
cr q a
Ui
z -J -I~ < <

a.
o
Q-

co to
to to
LU UI
cr cra ao q
< <
cr cr
to to
-5 ->

<
o
<

z z z
3 3 3
o o a
Q G Q

Z K
3 tr cr
O Ui Ui
Q > >

Ui
cr cr cr z cr
Ui UI LU Ui
z z z »- z
•—«•-«-» t—

<

H I- I- H H
<

Z Z Z Ui z
3 3 3 a. 3oaouo
G G G tr G

z
O ID
cr

<Q _J
UJ u.
z
<
z
Ui
tr *~»

o. z
Z 3
Ui o
*~ G

cr
Ui

D >- Q
cr < uj
cr j u
UI CL O LUh (/) h
z — tr z

I-
Q.

cr
tr

LU
cr
<
3
Lc
O
CO

LU

>>>>>>>Q
LULUUIUJUIUIUiUi^^^^ac^^zoooooooz
CLQ.CLQ.Q.Q.QL*-

Ul
»- G
< LUm cr

tr hZZZZZUiUiZ
DDDZ)Z>2IU.DOOOOOZLUO

»- »- J- h-

LJ
cr
<
3 CO»- K- 3 K

Z Z H* Z ' z
o o o o < ou u in u ^ u

wrjrurarurjruruwrurvirjrdwrjrjruruniryrt

R
n

+

a n u

*
H

*
a a

*
a M U u II

4 +

II

*
a

*
+ + + +******
u i a i i i******

WhQciQZtru-oi^o^njn^inMQHOjnccnur)acquiui5ca^oocrcrcrcr>>>>>^a:<<u.zu.zu.<
?
juKUJ>crcrcrzzz-.zzzzz-i-JZZZ^ZQjz

ZQ^«O^LnmLnh-KK
::.GQQQQ>>QQQcrQZQ

n
ca

o< a u q uj
fs» ^ ^.o o o o o oo o o o o o

SS5lSS5Jyii! ON,f,0a) <L>UOOI«t'OCD<OUQUiooooooooo-'-«^-«^^^(Mrijr\irjf\)r\)njnjnjr\i
ooooooooooooooooooooooooooo

cr
UJ

206

tr

tr
LU
-I

r
ui
to
cn

oo
in

u
V— UI
> Ha >

tr a ~
U _J X

o ~ ~ cr
lj -J -J
tr tr
> > u

_J < < Hh J JWU CL 1 w
< w in o
3C •-««-« ui

LU

-I
<

LU

-I

<

§2
tr tr

X> tfl

z z v-
ui ui >
a. a. a

ui yj uj k
> > > u
< < < 2C
lO CO tO lO

* * * * *
i m a

* * * * *

J J X JP h I" ru u) in u
x: -j -J *o o o in
io io to to

»- uiIla
o o <M « QL
J JIO

•* — ft
* «
* * *
tt i
* * *

x >
z z
cl a.
-I -J

— CM

UJ Ui UI

> ><
X X <

UJ < < Z
u _ a
-< a a
> Q Z Z Q
ui z < < tr
0 < x z o
I £ I 3

1 I O OUUh

cr
u.

CO<

Ul
X

UI
a

a

a.
ui UJ
o o
< x
CL UJ

< cr
o

z cr
a cr

UJQ
cr ui
o o
3 >
»- ui
to Q
<

J Ul <
-J X
Ul h- I

cj
Ul o

X E3 <
< -J
tr 1- u.
az

Uf <
tr r
5 £
a. o
to cj

> > >
< cr <
r < r

tr
. . o • • tr
ui a. ui o
h E H EC
o ui o trZHZU

* * * * *
H 0 B U 0

* * * * *

o a~ z - ft
> X x x
uj o 2 3
0000

1
*

a.
r

1

o
-1
u.
cr

uj
z tn
o tr
o

cr k
o o
h- Ul
cj in
ui
10 h»O
x o
o ca
cr

^si
to

<
u. o

Ui H
cd cr

-I toa
3 -J
o

cr cj
ui
Q U.
< a
0
-i ui

o a
o ~
a r
* z
to~ 1
o —
Ul
tr o
ui <
x -1
3 u.

cr
to <

cr to h
ui ui to

=<: a cr Q
(11 I Q J

Q O
< cjSi

ui cr
— 1 ui -

— •* n
* t* * * *
1 1 1
* * * *

o cj < to<UihO
J CO O -ILaOODQOU

cr
UJ

to

3
UJ
cr

O
UJ

s
u.
u.

g 2

Ul
CJ

cr
o

f— -J

ui
cr
<
a.
to

*

3C cr O
to < O

X
Q CJ O

O

* *
1 1 1

*

r u tr
»-< D 0

O
Z tr

tn
» 0 - !j

-J
-J
UJ
cj

x
<
cr

o
tr
ui

I

Ul
H-
O
OL

-J
Ul
cj

<
cr

cr
uioo

(0

Ul
-J
Q
O

• : : 1 1 1 i 1

1

: 1 i 1 i1 a
* * *HUM
* * * *

JJJJJJJJ^^CJOOOOOOO
Sqqqqqqc>~~~~ trcrtrtrcrcrcrcr

0»CLct£lXCLCi.Q.lOtOtOtOCl.Q.CI-tLCL

o

ft

cr
QO

tr
UJ

u. o — ft n
w n n n n
w ru ft ft ru00000

«f r» o
n n n
ft ft ft000

CD < tn 0 O UJ U.
n n n n n n n
cm ft ft ft ft ft ft

o 0000 o o

o ft ** *° 2
«f *f <" «G" J
ft ft ft ft ft D! S0000 o o o

u.
•o
ft
o

ftt>uftftftftftftssgggggSoSg00000000000000000OCJO
CD

207

r

0-

uj
o
<
CL

cr
r
o

cr
u

cr
UJ

z
LlI

o
en

z

cr

O
o

tn
r h-
X

3 UJ
UJ H
Z

tr
o O

O
10 id »-o
tr cr x tr Q
U U UJ > J
3 J Q Z O
o o z o
C U m u ^

>
UJ

I-
cr
< _J

CL
< CD

>
CO •J

za o r
a. UJ 3 tr
< -j < 3 o
z o cr CD < z
o Q cr tr
o D Q <t
»- tr u tia o U Z

Ll O *-i • -

»~
cr < -1 o z
< < J UJ UJ

u, -1 O CD UJ
tn U. tr 3 cr
o <J o tr cr cr cr

e UJ UJ —1 CD —J CD o o o a< z a -J .j _i _j _j
-J i—

«

»—

«

U. UJ IL o o o o
u. -J > u. o O U u o o

CD u UJ
CD 3 UJ < CD Z
< »- UJ CD O CL u cr o o UJ

CD tr h h k j cr < »—

•

UJ X CL h" S cr
O > < x x x o o o > o H Z »- <
o O CL uj uj uj a .j CD o z • U LU a o -t cm n o CLm
o

CD h- 1- H U. O UJ -J tr 10HQ CQ CL CL CL CL o ID

m n
Ift cm

4 4
* 4i *
1 H 0 1 D 1 It U li N U R U u R H n a n u R N R H R tl H R 1 R U R B R R I 1
* * * * ***** *

o CM n
o O O o UJ

>—

«

•-» >—

«

< Q Z
cr cr cr cr O »—

<

t- i— CD r -J
CD CD CD CD - O 3 Q

3 J X U Q Q. hOQ.0.003 JO StTtT OoouLnj^nEm^oj<<jJOOJTinou crCUQIOxQhDWJLlZILLLCULlDDJLn _Jhh2hh[i.jaj<CLuao>Jc.Q.[rjJU.h oxx«-iXXS:030ZZtD<0Z^ZZo00I0 OKHhh»-hIlDIQhWHjMU.hhO)IIWQ CL

trtrtrtrtrcrcrcr-l-J-JOOOOD
0O0-l-J-J_JJUtJOOOOOOCLQ.Q.UOOOO

n
C3

CM

tr ID •o CD o < m o n «r Q UJ Ll o CM n CM CD Ch o o o UJ Ll O CM n m «o cd Cho CD CO CD CD CD 00 CD CD o ci- o o o Ch O Ch < < < < a a a a CO a a en a Q O u O u u o o u o
Q rj CM CM CM CM CM CM CM CM rri rd CM (M rw rd CM rd CM CM fd rd rd ru rd rw CM CM CM rw CM CM CM (M (M rd rd rd CM CM CM CM
< o O o o o o O O O o o o O O o O o O O o o o o o o O o O o O o o O O o O o o O O O

UJ 0* O cm n in ONCOIhO — cm n <r m CD Ch O CM n m o CD O CM n o cd Ch O CM n if)<OMDOO
z o CM CM CM rd CM CM CM CM CM n n n n n n n n n n «r v «r «r IT) m m m m m m m in o o
LI «tf «*• «r «* <t * *r *r «f

208

cr
cr
UJ

UJ
cr

UJo

cr

cr

a
e
Ui
cn
CO

in

en

-J

5

-J
<
G
O
-J
O

UJ

(0

-J

UJ

>

cr cr
o o
e e
Ui UJ
E E
cr cr
UJ LU

s§
UJ UJ
-J -J
cd ca
< <
-J -J

w < <
> >

UJ < <
~ u. u.woo

UJ

>
63

O
-J

UJ

<
cr cr
UJ
u. a

r cn
o ui D
»- cr h-

Z Q. H- < <
< O O Q. »-

12
h"
UJ
if)

tn
<

I D I | I D I*******

§
cr
D
o
a

o
o

C3 >~ <
I -J
Z UJ

1
>
UJ

<
cr

z<
cr

cr cr
UJ UJ

cn cn

UJ UJ
cr cr

cn
UJ

s
u.

cr
UJ UJ
»- _j
o ca
< <
cr
< cr
X <
u >

o
O UJ
cr cr
UJ <
isi UJ
i -J
z u
o

u. -
'

-I
cn k—
-J z

< > Z
cr < —
Q JOw Q. <

cn a.
<
< o
Q .. U.

J © o
-I < <

-J —

1

u. u. u.

cr -J
o i- cn UJ
cn o < cr
cr > < ca <
3 Ui X X QL
o ac tn

tn

* * *
u n n 1 B B

* * *

&
~ > tn

-j < \
U < h J h
in ca x cl cr
< O o cn <

_j »— »—

< o tr a w

I B I I I B******

UJ

3
O

CO

s
at

5

tn

UJ
e
z
o

<

tn
cn
<

<
cr

UJ
UJ
cr

UJ
e
<
0.

cn a E
>-»

UJ
cr

cr 5
UJ > U. |ca ca O cn
E z z
D Z 3 a <
Z cr o u cr

e j UJ
• tn
Q uj cr UJ Ui

aC . cr uj ca 1-
O *~* > UJ .

a cn z z e C3 uj cn uj
-j cn D — 3> Z 3
CO Z> K O > -J O Z -J

C3 < CL cn cr < « UJ <
-J 3 UJ < > X >
o - tr z cn cr O U 3
cr Ui < N. Ui > cr uj cr
K H- £3 r u l UJ uj a uj cr uj uj
Z
O Z

e EQ.lL e X E cr a E
5 > 3 > U_ o o *<

U D Z u h a hOO < K U E h-

-J
<
cr Z UJ
UJ a o JOH

UJ X z uj o cr z < ~ »-

U CL < U Ui u < H- Ui -JM |- E « w ca E H CD <> tr «-< cn I h > 3 E E h q w z
Ui Ui z D O « Ui Z D O Z Q <QCLD ca u Q Q 3 Z <J> < u u.

************BttttHBBNBBRBRB************

cm w ^ ru
+

* * *
B B I R
* * » *

cn
ca
<
ca
-J

rsi CL
** o o
(II h J
E E E
< UJ Ui
cr E E

H JI
< Q C
H Z> D
cn < <
> ca ca
Out-)

X -J
Z Ui— o
cn > ^
or ui x
u a: u

k cn

< ca
X X

cr ho©
X < -J <

CC U D L J
< < JQL U.
x h- x tn to
U < U L Q l/)

u ocno«-»oujo»-»
>«-E<U.U.E3KKXX

QQQOQQQQQOOQQ

^ tr o oj
cr o -J cr
Ui u u. UJ
I o in i
Q <

K < U H

n
ca

CM

s
8

o
UJ

s

tf> N 0* < UJ U. O ^ CM
UJUJUJUJUJUiUJ U.U.U.
cm ru rw ry cm fj cm cm rw cmooooooo ooo

lL U.

S8
ID <OUOU)lL
Ll U. Ll Ll Ll U. U.
CM CM CM CM CM pj CM

o o o o o o o

oo^njn«*-inor^CDCh<caooooooooooooonnnnnnnnnnnnnooooooooooooo
U WlL o
o o o ^
n n n n
o o o o

neri<iNmcho^fiin^io<)NCOchO^Nn*«^NCOcho^Nnvio^NCD^o^N^^^SSSSnnnnnnnnnnocdqcdcdcdcdo r>ir>r>r>*r>omr>r>inm

209

UJ
O
<

O ~

cr

cr
Ui
-Ja
Z
u
tn
cn

o
o
in

ui
o< LU

as cr
cr

O o
u< -ja LJ JK Id

CT < cj
O »- cr
U. cr Ui

o a >J c c cr CL D <
LU < cn> K K <E W W cn cr cr

1 » 1 »—

•

< cr ui uiH o o o a O h- Q
z u u LJ Lu Z _J
•-•EE cr z - OO O X
LJ LJ Id LJ < Qlh C5 O O -j cnD < < < < u. ac DE E E crZOO o cr)- < <O P K LJ
u CD tfl CO o tn tn

o
> > >o cr cr cr cr

ui < < < <
cn cr cr cr crD o o o o

CL CL CL UJ Ui Q_
LJ Z Z Z > z o z
cr u u LJ <

»- cn h- in t-

c* ~ — ~> ~* ~> ~>
4- 4- 4- 4- + 4-*******
H I U 0 I I I*******

O CL-WHO J JCh
CL CL CL •"•< U. <J <
Z Z Z > Z < I-
ui ui ui <•-*»- tnhhhWhtDh

X
Uia

in
cn
ui
cr
a
o

cr
Ui
-J

UI z
-J <
CD I
<K Z
D

cn z
cn
ui x
cr <a z
a
<

tn
l

cn
cr a
ui <
-J »~
0 <
z z< I

1 *

CD
n
4-

*
I
* a

cn >
C3 UI
< a
»- x
< <
X Z

Q
Ui

a
a

z
ui
Ui
C3

Ui

1
cn
z
o

u.
LJ
a
CO
o
o

UI
UJ
cr
u.

0
CJ 1 UI

tn o ^
i-i cr cn >O Ui z cn C3O ii a o Ui

-J z cr h»D Lu D 1- UI a tn
u. z (J K Q UI cr

-J — < > < 1- #««

O UJ a > u.
cr cr > a UI ah UJ ^ U 3 z z cnZ a cr o o 3 O UiO Z QO D

— -J 1- O *-* h-o —1Z cn a < 0o cr cn tn cr X z cr\ X u < UI cr Ui Ui cn« UJ D UJ -i cr UJ O O cr U. UIQIC O »- z u. < u.Z 3 O lL Q > UI z CL >
-« Z U O < C3 -J cn 03 C3

>
Ui

cr cn
cr a < Q cr

cr Ui ui z cn cr cr CJ UI
•—

»

JUOUI u -I o »-
u. cr zZ Z > Z < U. u. X D 1

Ui < UJ O h D Z) o u cr

Ui
I Q U UI Q CL D < u. o CL

X X
»- < o

«r z
• • 4-4-4444- + + 4 4 4 4 4> 4 4

Ui
***** *** * * * * *
H 1 M R u I o n II U 0 II R 8 R

»- ******** * * *o
z

ooz<_iX.jx_ix cm cr
U.

D »~«zo>-<<:k»-_j_jxxcl cno IOUC0PQQ.QL C3 C3 < < cn Zo ocjuoocjuo u u u cr

UI
cr
<
CL
cn

CM
4-

*
R

u,

u
<
CL

tL
a
Qz
Ui

o
cr K

cn Ui
Ll nZ u. u

Ui o
z n ozo o
1—4 z
cn <
cn Uf
< K Ui

»- crr Ui UI Uf
< cn x

%cr cn
< cn cl

cr o i- tn
cra < CD

u. n 1- CM
cn —

Ul
o < *
< R Ui I
CL cr *

Ll cr <
ui ui

C3 in cr
cn D <
CA

• 1 US
•

ren
CM

5
1j

cm «r tn o n cd chM «4 H H W H H
re re re re re re reo o o o o o o

— CM
re o
o o

o ^ cm re 5f r>«ONCDf><C3<JO
rererererererererererererereoooooooooooooo

o
CJ
re
o

CD
UI
re
o re

o

210 u

CM

hi
o

cc
r UJ
o

•

<
cr en
u »- in
r> z <

UJ
cr r: o
LU u
-J
ca » CC
r to UJ
ll in cn
in < UJ

58
cr

r
< cn

OO
in Ul u
o > >

II. Ul

LlI UJ
o o
< <
CL CL

in
-J
-J
UJ
u

hi

<
CL

o

UJ

3
o
cr
C3
3
in

o
CL

o
z

<
o
LL

UJ
UJ
in

hi

cn
UJ

UJ z
u »—

•

< *—

CL 3
cn O

cr
or 03
cr 3o cn
3
cr z
UJ
in o
3 CL

cn e
z

<
3 O

-J
< u.

cn
cn

Z <
u
r Qz Ulo >
»-< cr
cn UJ
cn in
< UJ

cr
r
< cn
cr 1*4

X X
in

UJ UJ

%
CL CL

cr
cr
UJ

cn
UJ A
>— M
>
ca cr
<

U. UJ
O -I •»
O CL* Ulw >- w
crztrh

o < z
u
o

Z cl
Ul
X C5
I— z

Ll
LL

3
ca

cn

> lL
cr u.
cr 3
< C3
U -J

. A
x I

-+ O
u cr

u.

<

0 •
cr
u. +
A O
1 cr— Ul

-
O O
cr cr
Ll Ll

A
I

O
UJ
cr
CL

<
o
-J
LL

LU <
§5

U.
> A
cr I

cr
< ~

in
u. <

o
cr
u.

A CL
Ll

A
IX o

i»4 cn
u < cr

UJ
Ll A O
U. I UJ
3
ca
Z

o
cr
Ll oz cr

cn
r cr
. UJ
a cj>

in uj
-J H- Z

CL
u.

Ll
U.
Ll
Ll

I

O

A
I

CL
Ll

cr cr~ K ^ h
> CL > CL
• -J - —J o ox ll x ll cr crww. . Ll Ll

I I I I l lWWW
o o *<

>>>>cccrcrcc
crcrcrcrL.iLU.LL
cr cr cc cr
< < < <uuuu
• • • •

o —
o o^ ^ w ^ LlI = LU -

cr cc or cr cr cr
u. ll u. Ll

Q
I -f * <

O =
o o o o -i cn
cr cr cr cr
U. LL U- U. O ©
t t I I « n IVVVVH-s s x Hs V

< <
o o o o o o ~
cr cr cr cr _J J cr
Ll Ll Ll Ll Ll Ll Ll

-J UJ
CL CC

* o
* A UJ
*n» i a
*~ f
»-i *-»

w o in
< w k
— < z

. UJ

UJ

o
o
o
-J

Ul

o
o
o
-J

— o . ua cr
> h-
• CLX _Jw LL

O
**

O
LU
CC =

UJ
cc
o

O ~ h.
H I LL

< u
^ ^ Ll
r z o
in < *

o
cr
U.

O
CC
Ul

5>S
cr o
cr o
< -J

I

CLX
UJ

^ n

o n r it

O
cr
Ll

- U
CL X O- <
Iv ..

O 3
cr cl

Ll z

o
cr
Ll

O *
cr UJ
Ll

IV
o
cr
Ll

O ~>

cr o
u. cr
* u.
*
0 z- -J

1 IV V
o o
cr cr
Ll Ll

Q
A
I
«0

Ul
o
a •

in
cr a
v? <
cr cr
< A

> a i
cr
cr u o< ~ n

o cn o
< -j
CS Ll
O

Z UJ~ « Q
O
cr uj
Ll cr —w < o

cr
O O Ll

0 —
O 3
-J O

-J
1 _J
V o

Ul
O
cr uj
Ll X

in

i

v
o
cr
Ll

i.O
UJ

51

cn
> LU
cr z
cr »-•

< H
V 3O> > cr

cr cr
cr cr ^ .

< < O qlu u c
LL Ll

H Lla— o oo cr cr >
cr Ll U _J
Ll — cr Z— z < a
in < 3OKOQ
0 < in ujo
1 I I LUV V V LU

z
o o o <~>

cr cr cr
Ll Ll Ll LUO

O *Q < (MO'0aCDl>DmuND'0O
O UJ< Q«OOQruCDCDOO<<catr
CD CO O Ch<<<C30QOOOOOO
a a a ooaoQOQQQCiQOO

O L? Q ^
u o o o
O O LU UJ
a o o a

o
cr
ui

cn
UJz

•* n n
CD N f O hC O LU LU D
ca co ca ca o* 1* * * cr

oo
UJ
cr

CL
U.

O
LU
CC

CL
u.

o a
cl *

u u o
LU LU LU
cc or cr
Cl Cl
Ll Ll

4
* *

CL
Ll

*
I

o cr Cl CC Cl CC CL Ul
-J
> o o

UJ u CO o o O ~« — O o > LU
cc CL 10 Cl 3 Q Q Q O h- h- o > CL CL O O
Cl U. < LL cl in < n o _J -J -J -j cn in 3l -J X x O O

Ll LL Ll Ll Ll Ll Ll II U. Ll CL - LU UJ -J -J

<z oz in < cr _j

cn o < cn -

OUIH
cr or cr
Ll U. Il

n
CO

CM

<
o
oo

oo
§

LU <
Of o
<o a

uj •^wn^m^or^cooo^wn^'inoNCDChO
5 Nr^Kf^^^rvNr^COCDCDCDCDmCDCDCDCDC>

*0 CO CO o O CD
a ru CO CD O

< < CO o Q D
o O Q a a a

CO Ch o — CM
0» a- ch o O O
4H o -0 «0

CO o o
o < < CO
o o o g oQ Q

O o o —
U U U Q D D ^

CD ^ ca
O O LU LU

^ < oo o LU

8§8

s 211

n

UJ
o

tou

o
tr

jjjjjjj_i
lULdLdLdLdLdLdLd

2<<<<<<<<
Ocrcrcrctircrcrcc

HZZZZZZZZ

n

CM

111

ll

Ld

LL
z -

tr rv N N N N No ru CM ru ru ru ru ru 01
CO ru ru ru ru ru ru ru ru
LU ! t i i i i i tQ o o o o o o o o

cr

OS
Ld
-I

cn
CO

oo
4ft

z
Ld

x
I- Ld -JX QOZOT
tr crZ O I- LdO < CO D CO

Q. JH0.D
Ld x U. Z

it Ld O — O
Ld Ll tr — f-
C D ll li. < Q h
< O O X Z CO
CL Id <j Ll Ld HWDZ2 O tr Z

-j o o k tr •-•

CL CO U Q
Ll>C0C0^:*OCL

o
LU

CO

<
cr

CO
Ld CO
Ld Ld
cr h-

Ld o
Q
II Q
<o z

CO Q.
Ld
Ld O
cr z
Ld
Q
CO
Ld

<

CO
z

cr
»
o

< COo *
m cr
Q Ld
Z CO— D

CO

O -0

-J

a
Ld
Q
Ld
Ld

XT
<
cr

Ld
O
<
Q.

O
cr
Ld
fsl

IO
CL

O

CO
Ld

— ru

CO
»-
z
Ld
JZ
D
O
cr

-J
<
ro

•-••"* cr _J
Ll Ll Ld O
Ld Ld Ll CL
cr cr Ll -
CL CL D

Ll
Ll
3

Ll
O
Q
S

Ll Ll
Ll Ll

Q Q
-J -I

iL ru ru ru ru
4* 4- 4» 4- 4- 4* 4> 4- 4- 4- 4-

* * * * * * * * *
li II li U n II 0 II U H ft a

* * * * * * u

o
J2ZHhnoocir

r* x x — — z: o
cr cr Ld co co
Ll U. Ld Z Ld

§
cr Ld

ru ru i*v

4- 4- k m
* * CL tft

u 11 II

* * o *
z

Ld

- O CL
O Ll
<ft 4-

4> O
Ll cr
Ll <
£3 J

CO
ru

o
Ld a
cr Ld

cr
CL
ll
+
cr cr cru u u
co co co
o. cl a. I

Ll Ll Ll *

CO

o
oo

4- 4- 4
* *ail

* * *

Ll
Ll CL

x c Ld

Ll Q U M n

cLQ.jjzzcrm<IZLLOOhCO
HI— Ld<<LdJCLLL

^ ru Ll cr cr cr ^z
crcrLL<(jucrcrLd
DQQJQ.Q.U)[/5Q
JJJCLlLU.li.lLj

• •

z o —* ru n «r
•

ift >0
o J J j j j J J Ja o a Q Q O a aa a Q a Q a o Qo < < < < < < < <
< CL CL CL CL CL CL CL CLA A A A A A A a

1 1 1 1 1 1 1 1 Ld
z 1 1 1 1 1 1 1 1 a
< o ru n «r Ift -0 N OJ H f- 1- 1- C- cro O o O O O a O H> CL CL CL CL CL CL CL CL C- CO

o - no ru n Ift fs. CD O ~^ —

•

Z 4- 4> 4- 4- 4- + 4- 4 4- + 4- 4-

a O > > > > > > > >>->>>->
21 o Ld Ld Ld Ld Ld Ld Ld Ld Ld Ld Ld Ld Ld
Ld ru a: 2C ^ ^ a: a:Z o o O O o o O o o o o o o

CL CL CL CL CL CL CL CL CL CL CL CL CL

h uj r
> o o o o zuiOHnin^m^OMoaow
^Kf-l-HI-l-l-l-jUZKcrOOOOOOOOOJCS<OLd
CLCLCLCLCLCLCLCLCL<^CrCLLO

crQ
Q Ld Ld

2 °O O

Q LU Ll o ru
Ld Ld u Ll LL LlO O o O O OO O o O o o

CO 0* o ru
ru ru ru CO n n

«0 «o «o -0

niftNChcaao-ooLd
LlLlLlllLlLlOOLlLloooooooooooooooooooo

U)U,OO«0U4UU.
NI^COLdLdLdLdLdLL
tftifttftifttftiftiftiftmooooooooo

oooooooooooooo
ru ru ru ru ru ru ru ru ru ru ru ru ru ruQOOQOOOQOOOOQO

n t ^ ^
<J o >o o «o -o<0<0<0<0<0

212
cr

5

Illo

trro

tr

"On
O mo Oo ~ • •

to cfl (o cn Z
m o

1 c- 1 Z 1 >-«

1 I I Id lV 1 V 1 V CL
-J VhO J

tfl D H DC
C_> lal o >• o U
Q cr tr ca Cfl

* UJ Cfl UJ
< CO U) Q Cfl a

UJ
H»
U
tU
Li.

Z -J • •

UJ H z
o o a
tr~ Cfl

A A O
1 1 <
t 1

-J
Cfl H z

UJ uj uj x: u <
z Z Z 2C 3C
o O O O Cfl

z Z Z 0. Cfl >

a a
a a
r x:

»- »-

< <
tr tr

»- »-

< <
I I

Q Q Q
o o o
x: x: r
H H I-
O O O
< < <
tr tr tr
H H- H
K K H
< < <
XII

Q Q
O

x: x:

h- i-

< <
tr tr

< <
I I

3 3 3 3 3 3

q a
o o
x: x:

< < CL
c tr aHH 1

< < tr
o

I IhhlT
•M M Q.
3 3 O

• •

UJ
o ^ CM n o ry n
x: x: z r ll U- u. u. ac: tr
Q. o. a. Q. CL CL CL CL a o
_J -j -J -1 -J _J _J _J .J
O o o o o o o o o
o u u u u uuu U Cfl

A A A A A AAA A
1 1 1 1 1 1 I 1 1 Z
1 1 1 1 1 1 1 1 1 UJ
O ~+ Til n o <~ c* n
tr tr tr tr tr tr tr tr tr o
_j -J _J -i a o o o a
o o a O _J -J -J -J -1 z
u u u o o o o o o

a. CL CL Cl u u u u

UJ

<
UJ

u.
LL
O

tr

-J

8
Z
a
oA
!

ru
Cfl

tfl

o
o
*r>

O O «r tfi

+ + + +>>>>>>>>>>>
UJUJUJUJUJUJUJUJLUUJUJUJUJUJUJUJ
^^aC^^^^aCaTsCaCaCsCac::*::*ooooooooooo

clclclclclclclclclclgl

^ - o - m
+> > > > >

o o o o o
CL CL CL tL tL

o ? v V ? + 1 1 1 z 1 1 1 1 1 1 £ £ £ £ £ £ £ £

^UUUOOUUOUOUUUUUUUUOOUUUUUUWUUUOUUOLJCJ

n

H -J tr •»H<-^rjrvnn«r*kujinDZJ
OtflOOQOQOQQO«~«trtrOO
~10«<<<<«<<«W10CA~W

onnino-nino-Nn o ^ cm n o^nino^oin > J tc J
<KtflcntfltflCflcocflUJUJUJWUJU.iLiLiLiL

uxxiixiiiwtflCflcfltfloooooouuuuuuoutL>oiux:x;x:z

2

Id Ul O Nn*n«0N0)0'<QULoooooooooooooooo
rj nj ru r«j ru r^i nj rd rj ru rw rw r\i r\i ruOOQOQOQQOOOOOOOO ooooooooooooooooooooooooooooooooooo

213

Ill lil UJ UJ

UJo

cr
o

zo -•

fr-

Q- 2
LU

cr a.
o a
ID
UJ za a

cr cr cr
o o o

ID to UJ

z z z
LU UJ UJ
a. a. a.
o o o
z z z
o o o

• • tn fr- H
UJ w cn -» ~*

cr cr z Z
cr a UJ UJ M
o z -J —J »-«

< Z _J _J
• • ooouu
tn z

a fr- fr- fr- 1 1z GL Z Z 1 1

UJ cr ~« O O V V
UJ a u u J jO fr- fr-

O ai>>uu
ON a. u i i <na x x a. a.

crr
o

cr
UJ

n
-Jo —

«

cm n v— fr- fr— fr- 0 cm
o o o z om cn < z SC

o < _j _j a 0
cr cr cr cr »—

«

0 X Q Q X *-* « »-»

fr- fr- fr- cn 0 cn cn O 0 fr- v-
tn cn tn cn o 1 1 1 1 1 u in 10A A A A < 1 1 t 1 I 1 < A A
!

1 1 I V V V V V 1 a 1 1

1 1 1 -i -J -J X UJ V LU 1 1O —

«

cm n z fr— fr- fr- fr- tn Z a z < a
O o o < U 0 cn cn < LU O < fr- fr- LU UJ

• »~« -J < -<r « •—

<

a M rr -J cr cr z z
cr cr cr cr r X -J -J X a 0 0 0 0

fr- fr- > a U Q Q 0 z in CL CL z z

UJ
-J
cn

UJ
in
in

oom
-0

o-r<ntin<0MD0'
+ + + -f + «f + -f + «f + + 4<f<<<<<<<<<<<<<<<<

fr-fr-fr-f-fr-fr-fr-fr-fr-fr-fr-fr-fr-fr-fr-fr-OUUUOOCJOCJOUUCJUCJU

o cm n <r tn tn

+ + + + + + * + + + + + + +OUUOUUUUUUUUUUUUOO^ND
Tfr-fr-fr-fr-fr-fr-fr-fr-fr-fr-fr-fr-fr-fr-fr-n<<<<azzzzzzzzzzzzzzza~~»~«-»<<<<<<<<<<<<<<<*(LCLCLQ.

-J -J X -j _j UJ LU fr- in0 CM n fr- fr- fr- fr- 0 0 in in 0 Z z LU fr- < O -J
LL u. u. IL -J -J -I -J -J 0 0 O 0 U U in in cr cr < < z X > UJ cr in fr- fr- fr- fr-

a. CL CL CL CL CL CL CL CL CL CL CL •-« »-< < < • »—

«

L> 0 a Q > O z z •—

*

»—

<

< ee ee OO cm n O cm n O CM n cr cr cr cr Z XT X in cn 2: X in U UJ UJ 2: r r 0 0 < O
CL CL CL CL r 2 2: r CL CL CL CL fr- h» fr- fr- - < a 0 0 a X > CL u 3 > CL CL z z z CL CL CL CL CL

UJ

PI
ca

CM

m •0 CD 0 < 0 L> 0 UJ Ll O CM n 0 O CM n m 0 < CD O O UJ Ll Ll O O «-« CM n0 O 0 O O 0 0 O 0 0 0 O «4 _ 0 O 0 O 0 0 0 0 0 0 O O O O O O O O 0 O 00 0 0 O O 0 0 O 0 0 0 O O O O 0 *r *T <r 'T ^> «r ^> <*• it n n n n n0 O 0 0 0 O O O Q 0 0 O 0 O 0 Q 0 O 0 O O O O O a Q 0 Q 0 0

n ID CD 0* O CM n ID CD O O CM n m CD 0 O CM n CD 0- O ^ N D «fn n O n n r> n *r v m in m m m in m m m 4) -0 4) O -0 N N N N N
1^ r< rv 1^ fv N h» NNNNN

214

