

With the release of the MicroBee, you now
have the chance to build a truly state of the art
microcomputer. A computer you won't outgrow.

MicroBee is unique among kit computers. It
offers facilities which make it comparable to
machines costing 2 to 4 times its price.

This computer is the outcome of a brilliant
design effort using revolutionary new
technology.

The result is a machine which has the very
finest instructional capabilities.

MicroBee, the Complete Computer
MicroBee is physically complete. You get a

full case and chassis; you get the power
supply; you get full manuals for assembly,
BASIC programming and software
development. IC sockets are supplied. And the
advanced 16K BASIC is supplied in ROM - not
on cassette.

In performance terms, MicroBee comes
standard with features which are extra on TRS-
80 and Apple. Like upper/lower case and
RS232 interface. And features available on
either machine like continuous memory and
built-in sound.

M icroBee achieves this breakthrough at such
a low price by using the latest technological
developments and by taking advantage of the
huge drops in IC prices in recent years.

MicroBee is a tremendous machine to use
whether you're a complete novice or an
advanced enthusiast.

The 16K BASIC in ROM makes MicroBee the
finest instructional computer on the market.
Advanced error reporting with 33
comprehensive error messages gives you
instant feedback on programming errors. The
BASIC is extremely 'friendly' - making it ideal
for the beginner gaining computer literacy.
Powerful high and low resolution graphics can
be combined with alphanumerics to make
MicroBee the perfect tool for learning to write
educational software.

And with M icroBee you have the support of a
great software base. You can run the whole
range of MicroWorld BASIC software. This
includes a wide range of game, educational
and utility software. And the range is increasing
all the time thanks to the enthusiasm of the
MicroWorld Users' Group.

Continuous memory Is here
MicroBee uses newly developed CMOS static
RAM chips with battery backup - so your
computer can be switched off and moved to a
new location - without losing data or programs!
You simply switch it back on and keep going.
The possibilities are endless.

Fully expandable
MicroBee is constructed with an

interchangeable 'Core' board. By replacing it
with optional alternative boards your machine
will be changeable from a BASIC/ROM/RAM
computer to a 48K/CP/M/Disk system running
the most advanced software.

MicroBee will also expand to a full S100
system and has built-in facilities for connection
to printers, modems and other peripherals.

Page 2 Supplement to 'Your Computer' February 1982 Entire contents copyright "1982 Applied Technology Ply Ltd

ABOUT THIS BOOKLET
This exclusive book, produced as a supplement

to the February edition of 'YOUR COMPUTER'
introduces Australia's newest personal computer
the MicroBee. '

Here is your chance to get in on the ground
floor and save a bundle by buildinq your own
computer. The version of the MicroBee described
here is in kit form ahead of the fully assembled
and tested version due for release to the
Australian and ."":'orld market shortly. Although
designed specifically for educational applications,
the Microfsee rs also an ideal personal computer
as this publication indicates.

What makes a successful computer? Of all the
various personal computers at present on the
market only the TRSSO, APPLE 11 and the ZXB 1
appear to have each sold over 250,000 to date.
Surely this in itself is some real success indicator
as it is really the customer not the glossy
brochures that determines if a.personal computer
is to be a success . The MicroBee has been
designed by a large team of Australia's leading
microcomputer professionals and as this
publication should show you, it incorporates all of
the best features of the above computers with
some world class innovations of its own.

The MicroBee is the first personal computer in
the world to use the latest CMOS static RAM in a
non-volatile configuration. It is also the first
computer in the world to be prereleased to the
readers of any popular magazine through a
comprehensive publication such as this. This
ideas book will appeal to your imagination and
should leave you fired with enthusiasm with the
possibilities of such a computer without the
normal barrage of colourful brochures written in
careful verbage that still says very little about the
things you would really like to know.

This exclusive book, prOduced
as a supplementtothe February

issue of 'Your computer',
introduces Australia's newest
personal computer - Microeeel

Several very informed sources have declared
the M icroBee to be a first class personal
computer destined to make its mark on the world
market. Here is your chance to own one for
yourself and join the fascinating world of
microcomputing.

ORGANISATION OF THIS MANUAL:
This applications manual and ideas book has

been arranged to enable you to see just how the
M1croB_ee works and how it will work for you.

The first section outlines the operating manual
for the computer. Here we discuss the keyboard
and its operation , loading and saving programs
with cassette tapes, the VDU including the
graphics and programmable characters. We deal
with the aspects of getting started,
interconnecting the system and operating the
Micro Bee.

Next w� discuss how the MicroBee operates.
This section should appeal to those technically
minded individuals.

MICROWORLD BASIC is then summarised for
your evaluation together with helpful hints and
suggestions. Lastly we have printed some very
interesting program examples and ideas which
best illustrate the advantages and power of the
MicroBee. Really, it is through a careful
examination of programs generating graphic
illustrations, music, time clocks, games and
general purpose applications that you can best
judge how the MicroBee will meet your needs.
You owe it to yourself to consider this section
carefully!

A note on the preparation of this manual
You may be interested to know that the text for

this manual was prepared entirely on Applied
Tech_nology computers, including the MicroBee,
running WordStar word processing. The text was then
transferred directly to the Itek Phototypesetter that
produced the finished typesetting. So if you've ever
asked 'What can these computers do?' - here's one
answer at least!

Supplement to 'Your Computer' February 1982 Page3

INTRODUCTION
Here at last is a fully Australian designed

personal computer packed with features not
found in computers costing several times the
price! One major breakthrough is the use of non­
volatile CMOS RAM - a WORLD FIRST which
greatly simplifies the operation of the MicroBee.
Another breakthrough 1s the unique construction
featuring a compact mainframe PCB and a ran9e
of interchangeable 'core' or memory boards which
enable the MicroBee to be expanded from a
BASIC/ROM/RAM configuration to a mighty
48K/CP/M/DISK system capable of running world
class software. Other options include a fully
programmable 8 bit 1/0 port, RS232 interface for
printers or modems, full 280 expansion bus to
S 100 or other systems and the ability to operate in
a network with other computers.

The MicroBee is much more than a personal or
educational computer, it is a personal
communications terminal operating as your own
information window to the world!

Designed in Australia by Applied Technology,
the MicroBee is the result of the efforts of a large
team of highly motivated and inspired individuals
who are well in tune with emerging world trends in
personal computers. The MicroBee is a third
generation machine combining the most
successful features of the TRS 80, the APPLE, the
2X81 yet with NON-VOLATILE RAM, 16K
extended Level II Microworld BASIC, full function
self scanned keyboard and built in sound and
networking capability. It is both simple to operate
and, rn kit form, easy to build. What's more, the
has been designed to grow and expand as your
needs change so your computer investment is
protected against changing technology in the
fast-moving world of microprocessors.
. The MicroBee in the BASIC/ROM configuration
rs without doubt one of the most cost/benefit
effective computers on the market today and well
worthy of serious comparison with TRS 80, APPLE
II, ZX81 and other BASIC in ROM machines.
However, by upgrading the core board to 48K and
adding one or more disk drives, you gain entry to
the emerging CP/M 'club' which includes
computers from some of the most formidable
names in the business such as IBM, Hewlett
Packard, DEC, Xerox. So the MicroBee in the
CPM/DISK configuration is in powerful company!

Page 4 Supplement to 'Your Computer' February 1982

SPECIFICATIONS: MicroBee
CPU 280 microprocessor 2Mhz clock rate
RAM 16K CMOS static with battery backup
(expandable to 32 K on-board)
ROM 16K containing MICROWORLD BASIC
(expandable to 28K)
BASIC 16K MICROWORLD LEVEL II extended
BASIC with extensive error reporting, line
renunbering, supporting over 80 key words,
statements and functions.
VDU Self contained, memory mapped generating
128 alphanumeric characters in a 16 line by 64
character format with full upper and lower case.
GRAPHICS Controlled under BASIC
High Resolution: 512 by 256 (PCG)
Low Resolution: 128 by 48
KEYBOARD Full sized, 60 key, QWERTY
standard layout
CASSETTE INTERFACE: Built in to load and
dump programs at 300 and 1200 BAUD.
SERIAL 1/0 RS232 option to connect to printers,
modems and network with other computers.
PARALLEL 1/0 Optional 8 bit 1/0 fully
programmable to connect to joysticks, digital
plotters, A/D converters etc.
TONE Internal loudspeaker driven under BASIC
EXPANSION 50 way Z80 bus fully buffered and
decoded for future expansion, S100 bus and other
peripherals.
VIDEO Standard 1 V p to p composite video with
neg sync
POWER 12V DC at 1 Amp

GEnlNG STARTED:
Setting up the system

Before you can start using your MicroBee you
will need to interconnect the major system
modules. As a check list they are itemised below.

MicroBee computer console
MicroBee power pack and connector cable
TV monitor or modulator with normal TV set
MicroBee Users Manual

OPTIONAL
Tape recorder
Serial Printer
RS232/network option
1/0 port option
MICROWORLD BASIC users manual

SmlNG UP THE SYSTEM:
Refer to the connection diagram on the last

page and familiarize yourself with the various
items as illustrated.

Read through this section thoroughly before
even commencing to interconnect the modules or
start to use the BASIC. After a short time you will
be able to set up your MicroBee without any
reference to this section but for now it is best to
'hasten slowly'. (Most of us would rather risk a
catastrophe than read the directions.)
Connecting the Power Pack to the MicroBee
console:

1 Carefully plug the 5 pin DIN plug into the
DIN socket at the rear of the MicroBee console.
Note the various leads radiating from the plug
and identify them against the connection diagram.
Connect the leads to the MicroBee power pack if
they are not already connected (watch the
polarity).
2 Connect the single shielded video cable to the
monitor or TV modulator.
3 If you intend to use a tape recorder connect
the leads fitted with the 3.5mm plugs to any low
cost portable recorder. The RED is for record and
the BLACK is for playback and they must be
plugged into the appropriate sockets on the tape
recorder.
4 Recheck all the cables and then plug the
power pack into the 240V mains and switch on
both the TV and the power pack.
5 Turn on the TV monitor at the switch and watch
the screen. If all is well and there is no program in
your MicroBee you should see the screen clear, a
sign on message announcing MICROWORLD
BASIC and hear a 'beep' from the speaker. Adjust
the brightness and contrast controls until a clear
picture is obtained and turn the volume control to
its lowest setting. Note, it is a good idea not to run
the VDU screen at maximum brightness as this

RS232 Interface

To cassette recorder
RED to Aux in
BLACK to earphone

Power Pack
Note: MicroBee may be supplied
with alternative types of power
pack, as they are available

Video output
Connect to video monitor. or
to TV via modulator (not included)

can result in damage to the phosphor over
extended periods. If a program is present you
will see the screen clear and print
Ready (this prompts ready for you to
input a line of BASIC.)
All you need to do is type RUN«CR» (this
means type the word 'run' in upper or lower
case then press the 'RETURN' key to insert
the command). The program in the MicroBee
will then start to execute, according to the
actual BASIC lines stored in the MicroBee.
SETTING UP THE TAPE RECORDER:

It is a good idea to connect a tape recorder as this
will become an ideal medium for SAVEing and
LOADing back programs. Do this as follows:
1 Connect the RED and BLACK leads from the
MicroBee as detailed above.
2 Connect the tape recorder to the 240V mains and
switch it ON.
3 To SAVE a program (as explained shortly) you will
have to RECORD a cassette. To do this insert a
blank tape, wind it until the clear leader has run past
the recording head and press the 'PLAY' and
'RECORD' buttons down simultaneously. When you
type SAVE under BASIC and hit «CR» the program
will be saved on the tape. Soon you will discover that
if you type SAVE F «CR» the program will be saved at
1200 BAUD which is obviously 4 times as fast as at
300 BAUD!
4 To LOAD a program previously saved on tape
you will have to rewind the cassette to the start,
press the 'PLAY' button on its own and type
LOAD«CR» on the MicroBee keyboard.

COMNECTION DIAGRAM

Supplement to 'Your Computer' February 1982 Pages

•

OPERATING THE MicroBee
EXPLORING THE KEYBOARD:

Now you are almost ready to start using the
MicroBee. But first let us examine the vital interface
between you and the computer. This is the keyboard.

The MicroBee keyboard should already look
familiar to most people as it has been arranged as a
normal typewriter standard layout (often called
QWERTY) and in fact most keys serve the same
purpose. There are however extra keys which give
the computer additional information. These are
called FUNCTION keys.

The ALPHANUMERIC keys are used to type
'messages' on the VDU screen just the same way as
on a typewriter. You can try this by typing your name
or another message on the screen. To transfer this
message to the BASIC, press the RETURN key. Note
that the RETURN key is ALWAYS used to terminate
an instruction to BASIC and in future we will use the
symbol «CR» to represent 'press the RETURN key'.
Whatever you have typed on the screen will now be
interpreted by the BASIC. Most likely the computer
will not like what you have just typed and will
respond with an appropriate message. Don't worry
just now but type the following:

CLS «CR» (Remember «CR» means press the
RETURN key)

Notice that the VDU screen has cleared and the
cursor is resting in the top left hand corner of the
VDU screen. You have instructed the BASIC to clear
the screen. If you were a beginner this has been
your first program step.

Now let's deal with the FUNCTION keys by
describing what each does in turn.
SHIFT Upper case select, the same as with a
typewriter. Holding down SHIFT selects the capital
letters and the symbols above the number keys.
LOCK Acts the same as SHIFT LOCK on a
typewriter. LOCK is controlled by the computer;
pressing it once locks the keyboard into upper case;
pressing it again reverts to lower case. This LOCK
onlY. operates on the alpha characters and is called
an alpha lock' for this reason. To generate the
symbols at the top of the numeric keys you use the
SHIFT key in the normal way.
TAB Not normally used in BASIC. Some software
needs this key to tabulate across the screen.
BACK SPACE Same as a typewriter. Causes the
cursor on the screen to move back a character
space at a time.
LINE FE ED Causes the cursor on the screen to
move vertically down the screen by one character
line .
RETURN Just like the RETURN on an electric
typewriter, this key moves the cursor from its present
position to the start of the next line. It is a most
important key to BASIC as it is used to enter the line
currently to the left or the cursor into the BASIC
program file. Some computers even label this key
ENTER. Often, when it is necessary to press the
RETURN key we will give you the prompt «CR».
DEL Df l.ete is used to 'rub out' characters already
printed on the screen. When pressed, this key erases
any character to the left of the cursor. Note that
when you are in the EDIT MODE, DEL will delete the
character directly under the cursor. It is easier to
remember that DEL deletes the character that has
just been typed and in the EDIT mode the cursor
itself is used to select the target character.
BREAK This special key is used to interrupt a

running BASIC program.
CTRL We always seem to leave the tough ones till
last! CTRL is the CONTROL key and is used in
conjunction with other keys on the keyboard to
generate special codes to the computer. These code
are really two-key inputs and are often abreviated to
,., A, ,., S (CONTROL A, CONTROL S) and correspond
Page 6 Supplement to 'Your Computer' February 1982

with actual ASCII codes used by the computer.
Below we describe the more significant ones:
,., G (CONTROL G) sounds the bell (or in our case,
the loudspeaker) to get the operator's attention. Try
it...hold down CTRL and press G. Now you will know
what "G means, won't you?
"A Used in the EDIT mode of the BASIC to move
the cursor to the left without erasing characters as
DEL would do.
"S Used in the EDIT mode to move the cursor to the
right without erasing characters as would the space
bar. When used in the LIST mode, this combination
is used to 'freeze' the VDU display. (Press any other
key to resume listing).
"C Performs the same operation as the BREAK key.
"J Performs the same operation as LINE FEED
REPT This is the warm reset or REPROMPT.
Pressing REPT on its own will reset a BASIC
program leaving the variables intact. If you hold
down the ESC (ESCAPE) key for longer than 1
second and operate the REPT key (still holding
down the ESC key) the program will be totally
eliminated from memory and the computer will be
reset to a 'hard' start.
ESC Apart from the two key usage above to achieve
a 'hard' reset, the ESC key can be used to reposition
the display on the VDU screen. This is very helpful if
the VDU image area is not exactly central on the TV
screen.

To move the image to the right press ESC, let it
go and press S.

To move the image to the left press ESC, let go
and then press A

To move the image up one line press ESC, let go
and then press W.

Similarly to move the image down the screen press
ESC, then Z.

Try this for yourself (if you haven't already) and see
what happens when you type ESC, A then ESC, A
and ESC,A once more. Did the image on your TV
screen move across three character spaces? Magic
isn't it?
REPEAT You are right, there is no key! The
MicroBee is equipped with AUTO REPEAT. To
engage this feature just hold down any key for
longer than one second and the key will function as
if you were continually hitting it. When you lift your
finger the repeating stops.

My full function keyboard
comes with all these
great features, Including
auto repeat!!

MICROWORLD LEVEL II BASIC
Your MicroBee contains the powerful

MICROWORLD LEVEL II BASIC in ROM (Read only
memory). When you connect power to the MicroBee
the operation of the computer is immediately
directed to this prcqrarn. The BASIC performs the
various 'housekeeping' chores for the computer
such as setting up the VDU screen, initialising the
memory if required and readying the system to
receive commands from you via the keyboard. Don't
worry too much at this point because we will discuss
how the computer works and explain the
MICROWORLD BASIC is considerably more detail
shortly. The important thing to remember is that from
the moment you switch on your MicroBee is under
program control - ready to undertake your
commands. (Makes you feel a little power crazy?)

Your MicroBee, in addition to being capable of
running programs written in BASIC can run
programs written in Z80 machine code. These are
loaded with a cassette tape and carry a file type 'M ·
while the normal BASIC programs carry the file type
'B'. Confusing? The best way is to try things for
yourself. When you type LOAD «CR» and play back a
program tape you will notice the file name appear on
the screen with either a B or an M appearing beside
it , this is the file type. Once a machine code file has
been loaded allyou need to do is type EXEC «CR»
and the program will automatically run. For more
detail refer to the EXEC command explanation in the
section on MICROWORLD BASIC .. _-----

THE VDU SCREEN
Just as the keyboard is the input to the computer,

the most important output device is the TV screen or,
in computer terminology the VDU or Visual Display
Unit. We will discuss some aspects of this now.

The MicroBee generates the characters on the TV
screen in a format which gives 64 characters
(including spaces) across the screen and 16 lines
down. Under some circumstances this can be
altered but this is definitely not for beginners.

The characters generated are upper and lower
case and the font has been carefully selected for
maximum readability and least tiring display. Various
attributes (if you like, enhancements) have been built
into your MicroBee so that you can emphasise some
point. These are UNDERLINE and INVERT. The
purpose of these is probably very obvious but for
completeness let's examine each.

If during your BASIC program you type
UNDERLINE all output to the VDU will be
underlined. Similarly, if you type INVERT, all
information output to the VDU after this statement
will appear as black on white. Only one attribute may
be selected at a time. To deselect the attributes you
simply type NORMAL and the display reverts to just
that.

Supplement to 'Your Computer' February 1982 Page?

Your MicroBee also contains a programmable
graphics generator which can be used to generate
special characters not readily available in the
character generator ROM. This device is activated by
typing PCG under BASIC.

The MicroBee can also be used toqenerate
graphics by setting 'dots' on the screen in assigned
locations. Two modes are available, these are high·
resolution and low resolution. The high resolution
uses the PCG described above to generate the
required graphics characters but this approach is
limited to 128 different characters. The h11Jh
resolution mode allows you to generate picture
elements or 'pixels' with a resolution or 512 dots
across the screen and 256 dots down. No wonder
we run out of 'steam' because of memory limitations.
To overcome this problem a low resolution graphics
mode is included which divides the screen into 128
by 48 dots and this mode is not subject to memory
constraints.

To cater for the graphics capability, the screen has
been broken down into various sections. In the
HIRES mode you can specify and point between O
and 511 across the screen and between O and 255
up the screen. Best we use an example:
SET(511 ,255) sets a point in the top right hand
corner of the screen.
SET(256, 128) sets the point in the middle of the
screen.

In the LORES mode you use the same designations
except the range of the numbers changes because
you can only use an array of 128 dots across the
screen and 48 dots down.
SET(127 ,47) sets a dot (if you like turns on a point)
at the top right hand corner or the VDU screen.

In the alphanumeric mode you can position the
cursor anywhere on the screen. Since the screen is
broken down into 64 'character boxes' across the
screen and 16 down we have 64 multiplied by 16

different locations or 1024 if you do the arithmetic.
MICROWORLD BASlC enables you to use the CURS
command to position the cursor anywhere you want
it. You can type

CURS 1023:PRINT '*' «CR»
and the cursor will be positioned briefly at the lower

right hand corner of the screen and print the
character* on the bottom of the screen. Similarly
CURS O will do a similar thing in the top left hand
corner.

If you are not sure of the numerical position of a
particular point on the screen you can also address
1t using the character number format and the line
number i.e suppose we want to print HELLO on the 4
th line from the top of the screen and starting at the
10th character on that line then you would type:

CURS 10,4:PRINT 'HELLO' «CR»
and you will see the word HELLO appear on line 4 at
the position of the 10 th character along.

MICROWORLD BASIC also supports commands
to draw lines from one point to another in the
graphics mode. These apply to the LORES and
HIRES modes. If you type (in the HIRES mode):

PLOT(O,O) to (511 ,0) to (511 ,255) to (0,255) to
(0,0)
you will draw a border around the screen area and,
at the same time get a very good idea of where each
point actually lies.

MUSIC AND SO ON
Computers are ideal music generators. The

MicroBee has a built in loudspeaker which can by
driven by the BASIC to generate music over two
octaves. The command rs PLAY A, where A can be
any integer variable from 1 to 24. Although the
computer only generates one note at a time (i.e it is
monophonic) some very impressive results can be
obtained. You are referred to the program ideas later
in this manual for more details.

.Page 8 Supplement to 'Your Computer' February 1982

How the MicroBee works
This description of how the MicroBee works has

been written to reduce the 'computerese confusion'
that the common abbreviations cause most people
who, although they have some groundin9 in digital
electronics, have not yet 'learnt the lingo.

When acronyms occur for the first time, they are
spelt out in full with bold letters forming the acronym,
and from then on, the acronym will generally be
used. Note that all digital signals which are active
at the low voltage level are indicated by adding an
asterisk to the name, for example RD* . (A signal is
called 'active' at a particular time when its state at
that time agrees with it's name).
Power Supply:

The external power supply connection to the
MicroBee must be approximately 12v DC, bridqe
rectified, but not neccessarily filtered, as there rs a
10,000 uF capacitor internal to the unit which
smoothes the pulsating DC.

This smoothed DC then goes on to two 5 volt
regulators which regulate the 12v down to 5 volts,
one regulator being on each of the two boards. The
12v unregulated voltage also goes to the power-fail
detect circuitry on the top (core) board so that the
Complementary Metal Oxide Semiconductor
Random Access Memories can be powered down
before the processor loses power.
Clock circuitry:

The clock circuitry is that surrounding the 12Mhz
oscillator. This oscillator provides all the timing for
both the Visual Display Unit section, and the Central
Processing Unit as well, it has nothing to do with a
'time of day' clock. The 12M Hz oscillator, using
inverters from a 7 4 LS04 package, IC23 , is a
standard crystal based design with a following buffer
to 'square up' the signal further and allow it to be
used with many other devices.

This 12Mhz square wave signal is divided by 6 in
IC32, a 74LS92 of which the first divide by two stage
is not used. This gives a 2Mhz processor clock
which is pulled up by a 330 ohm resistor to give the
correct voltage levels required for the CPU and the
Parallel Input/Output interface controller. 12M Hz is
also sent to the VDU section (see VDU desciption).
Immediate CPU environs:

This circuitry is that which handles and buffers
(increases current drive capability) the data, address
and control signals of the CPU.

The Z80 CPU, IC25, transmits and receives all its
data, whether it is instructions being executed, or
American Standard Code for Information
Interchange characters, or binary numbers, through
its DATA lines, named DO through 07. DO is the
Least Significant Bit, meaning that it's place value is
2 to the zeroth power, or 1 .

These bidirectional data lines from the CPU are
buffered by IC19, a 74LS245 octal bus transceiver.
This chip has two control inputs.

Pin 1 controls the direction of data flow through
the device. This pin is set high when either a READ
cycle is indicated by the CPU's RD* signal, or when
the IORQ* and M1 * signals are concurrently active,
indicating an interrupt acknowledge read from a
device such as the PIO.

Pin 19 either selects (low), or deselects (high) the
chip. When the chip is deselected, the CPU DATA
lines are isolated from the external data bus which
connects to all the devices such as the PIO the
6545 CRT controller chip. These buffers are disabled
for one of two reasons.

The first case is when an external device tries to
gain direct access to the MicroBee's internal BUSes
by the use of the BUSREQ* signal. When the Z80
detects that this signal is low, is finishes the current
bus cycle, and responds with the BUSAK* signal.
This line is used to disable processor control of the

data bus, address bus, and all control signals. It is
inverted once by IC23 to disable the address and
control buffers (!Cs 28, 22, 24). This inverted line is
then reinverted to give a buffered BUSAK* signal to
external devices, and also an input to IC29 on pin 2,
which will disable the data bus buffer chip when
BUSAK* is low.

The second reason to disable the data input
buffers is to perform the power on jump (actually
'jump after reset') which forces the processor the
execute 'nops' until the desired start-up program is
reached. The 'nop' is an 'instruction' for the Z80
which does exactly as the name suggests,
NOTHING. Therefore we make make the Z80 scream
through its addresses, starting at address O until it
reaches the BASIC roms.

In a disk based system, this power on jump would
not jump to the BASIC, but would start executing
when it found a 'bootstrap' Read Only Memory,
which is merely a program with sufficient intelligence
to bring in a bigger program from disk, and execute
it.

Thus the MicroBee avoids the need for having
ROM at location zero, where the Z80 would normally
start executing after a reset, so it is a 'natural' for
operating systems such as CP/M which use memory
starting at zero.

This power on jump function is mainly performed
by one half of IC33, a 74LS74 dual D flip-flop.

This flip-flop is reset on pin 13 whenever the
processor is reset (the reset signal comes from the
top board.) When this flip-flop is reset, the Q output,
pin 9 goes low, and therefore, IC29 disables the data
buffer chip, IC19. With the data buffer chip disabled,
the CPU will read nops (which has an op-code of 00
for the Z80) because of the high-valued pulldown
resistor pack, RN2, and so the CPU will Just continue
through its address space until it reaches the
required ROM to start executing from.

When the address reaches this ROM, the top
board ROM decoder sends down a low logic level
on the ROM SELECT* line and this goes to the SET
input, pin 1 0 of the flip-flop so consequently the data
buffer chip is enabled, and execution starts with the
first byte of the ROM.

This power on jump circuitry also serves the
purpose of protecting the RAM from spurious writes
which the Z80 seems to like doing some time after
the reset signal has been applied to it. This is done
by gating the WR* line through IC30 and IC31 so
that writing is disallowed from as soon as the reset is
applied up until the ROM is found.

The Z80, a typical 'Von Neumann' architecture
CPU indicates where its data is to go to or come
from through its ADDRESS BUS. This BUS is a
collection of 16 address lines which each specify
one bit of a 16 bit binary number. This 16 bit binary
number Qives each memory location (or place to
store 8 bits of data) a unique address, working the
same way as house numbers in a street do, where
each different number .specifies one house.

This address bus is buffered by two 7 4LS244 octal
buffer chips, IC22 and IC24. These chips differ from
74LS245 devices in that they only transmit digital
signals in ONE direction. This is all that is required
because the Z80 address bus is always the
originator of addresses. These chips can be
disabled by taking pins 1 and 19 to the high level,
as is done when an external device requests the
bus, and the Z80 grants it by asserting the BUSAK*
output.

Supplement to 'Your Computer' February 1982 Page9

Input I Output'Devices:
This section describes the decoding of all 1/0

enable signals, and the circuitry attached to the PIO.
IC27 is a 7 4 LS85, a four bit comparator which

decides when the CPU is trying to access an 1/0
port at any address in the range 00-0F. The A=B
input of this IC, pin 3 is driven by an inverted !ORO*
as it uses positive logic for its inputs. The output is
also positive logic, so it is inverted to enable the
active low input of the first half of the 74LS139, IC34.
This IC is a dual 2 to 4 line decoder, which means
that each half of the IC takes 2 address lines and an
enable, producing 4 discrete active low outputs
which correspond to the 2 bit binary word given to it.

The first half, then, divides the 00-0F address
range into 4 parts. Two of these 'block of 4' outputs
are used to drive the chips selects of the PIO and
the 6545 CRT controller directly at addresses of 00-
03 for the PIO and QC-OF for the 6545. One output,
corresponding to addresses 08-0B enables the
second half of the 74LS139, and allows the
decoding of some single 1/0 ports. Port OB is used
to control access to the character generator ROM for
generation of INVERSE and UNDERLINE
characters.
The PIO

The PIO is a Z80 family device which allows 16
bits of fully independent input or output. As a Z80
family device, the PIO's configuration is fully
programmable by the CPU at system initialization
time. The MicroBee uses port B of the PIO (the
second half) for cassette interface, RS232 interface/
network control and speaker driving functions.

Port A is NOT used for any internal functions of the
MicroBee, and is therefore fully available for use in
whatever way is desired by the MicroBee user. It is
normally set up in the software as an 8 bit parallel
input port which uses the strobe line, and interrupts
the CPU when such a strobe is received. Therefore, it
is easy to plug an external keyboard, for example,
into the port A socket, and this function is provided
for in the input stream setup of the MicroBee BASIC.
It may also be used as anything at all by modifying
the 1/0 initialization data in the BASIC scratchpads.

Most of the Z80 CPU signals are used by the PIO
to control direction of data, interrupt control, etc. The
'interrupt enable in' line of the PIO is tied high, and
as such, it becomes the highest priority interrupting
device in any MicroBee.
Speaker

The speaker, used to generate music and error
signals, is driven by one bit of port B in the PIO,
namely bit 6. For this line to act as an output. it is set
up that way in the BASIC ROMS. This digital signal
controls the BC548 transistor, TR3 which in turn
drives the speaker in grounded emitter mode.
RS232

With respect to the f3S232C standard (Australian
Standard V24/V28), the MicroBee is configured as if
it was 'data terminal equipment', which allows
standard connection to MODEM devices.

The RS232 output line, or 'Transmit data' on pin 2
is driven by a transistor which puts 12v on the line
for a low (spacing) digital signal from B5 of the PIO,
and turns off, allowing Ov on to the line for a high
(mark) level from 85 of the PIO. The actual RS232 TX
DATA line will rest at Ov when no character is being
output, corresponding to the MARK condition. A 4 70
ohm resistor protects the output line from damage in
case of external shorts.

The RS232 data input line (pin 3) takes RS232
signals over a voltage range (-12v to +12v generally).
The resistor and diodes limit the PIO input to a Ov to
5v range, the necessary inversion of the signal being
accomplished as part of the software which reads
characters from the RS232 port.

The Clear To Send input from the RS232 port (pin
5) allows transmission from the transmit data line,
and is usually used as a 'printer ready' signal. This
signal is voltage converted as for the data input line.
Transmission of characters is allowed when the CTS
line is at a HIGH voltage. When two pieces of
equipment set up as 'data terminals', swapping over
pins 5 (CTS) and 20 (Data Terminal Ready) in the
connection line as well as pins 2,3 will allow their
use with each other. (Pin 7 on RS232 is the signal
ground pin).

The other circuitry marked CLOCK, and the
capacitor into B7 of the PIO is provided for use
when NETWORKING MicroBees.

The cassette interface of the MicroBee is mainly
software driven, but the MicroBee turns this into a
major advantage by realising far greater
RELIABILITY than rs often obtainable using
hardware designs. This is because the MicroBee
cassette interface software can actually 'track' the
data coming in on a bit-by-bit basis, and therefore
cope with much greater speed irregularities between
tape recorders.

The cassette output consists merely of an RC
network which accepts a signal from B1 of the PIO,
attenuates and then decouples it before sending it to
the cassette recorder 'aux' input. (Microphone inputs
can be used if the 4k7 ohm resistor is increased in
value.)

The cassette input circuit is slightly more
complicated, consisting first of an attenuator I
decoupler, then an op-amp to allow a wide range of
input levels to be squared up before being passed
to the PIO input on BO. The function of the two
diodes is to clip any input signals greater than the
diodes' forward voltage in either direction. The 47pf
capacitor is required by the CMOS op-amp for
precompensation.
The Visual Display Unit

The VDU is that part of the computer which
generates the characters and graphics that are seen
on the monitor and allows the CPU to look at and
modify these.

The MicroBee's VDU is one of its greatest
strengths. By basing it around a 6545 'crt controller',
great flexibility has been realised. Although the
MicroBee BASIC uses a 64 characters by 16 line
display for reasons of compatibility and ability to use
modified television sets, it rs very easy to
'reprogRAM' the 6545 chip to allow configurations
such as 24 lines of 80 characters as often used in
up-market CP/M systems for which you will pay a
small fortune. A total of 2048 video characters
maximum has been provided for just such a use.

The software reprogrammability of the 6545 also
allows advanced features such as keyboard control
of screen positioning (which is retained during
power down thanks to the CMOS memories).

The 6545 device also forms the heart of the
MicroBee's keyboard circuitry, allowing 2 simple
external ICs for a full QWERTY keyboard with 2 key
rollover and automatic repeat !

The other major breakthrough in the MicroBee
VDU is the inclusion and FULL software use of
programmable character generator circuitry to
generate all graphics (both LORES and HIRES) and
video attributes (UNDERLINE and INVERSE).

To achieve graphics capability as well as high
speed output and compatability with earlier Applied
Technology systems, the MicroBee's VDU circuitry is
'memory mapped'. This means that all of the VDU's
normal and graphics characters are accessible as if
they were everyday memory. The 'screen display'
RAM sits from FOOOH (Hexadecimal) to F7FFH
(CPU addresses in hexadecimal, or base 16), while
the PCG. RAM sits from F800H to FFFFH. There is

Page 1 O Supplement to 'Your Computer' February 1982

no separate section for attributes, because the only
modifier allowed for the characters is that of
selecting PCG characters instead of normal
characters by setting 87 of the screen display RAM
high. This is why only one VDU attribute is available
at one time.
General MlcroBee VDU operation

This section will try to explain how the VDU works
conceptually without referring to details of the
circuitry yet.

To complete one scan of a display monitor, the
VDU must generate what are called SYNC and
VIDEO signals. The SYNC signals are timing marks
which tell the monitor when to retrace vertically so as
to start at the top of the screen, and also when to
retrace to the left hand side of the monitor, moving
one scan line down so as to be ready for the beam
to traverse the next scan line from left to right. Do not
confuse 'scan lines' with 'character rows'; one scan
line is the thinnest line discernible on the monitor
screen, whereas the character row contains the
complete height of a character, normally 16 scan
lines high.

The VIDEO signal tells the monitor how bright the
point over which the beam is currently passing
should be. The MicroBee uses only 'on', and 'off'
here, so that a dot is either bright or dark on the
monitor.

Therefore, to successfully display one frame of the
display screen, the VDU must produce and co­
ordinate VIDEO and SYNC signals which combine to
give a picture showing what is 'on the VDU'.

To describe how the VDU generates the frame, we
are starting right at the beginning of one frame scan.

As the beam of the monitor flies from the left of the
screen to the right hand side, the VDU must get the
dots in the right order to be output as the VIDEO
signal. Therefore, to start off, the VDU must output
the top scan line of the first character on the screen
(top left hand character). After it has put out the 8
dots for that section, it must put out the top scan line
of the second character on the screen, and continue
this same process for the top scan line of each of
the first 64 characters on the screen.

At this stage, the VDU must realize that it has

If this makes
your head

buzz, turn to
page 23 for
my BASIC

programming
guide

reached the end· of one scan line, and so must stop
sending out VIDEO, and tell the monitor to return to
the left hand side of the screen by giving a LINE
SYNC PULSE.

When enough time has passed for the monitor to
be ready to start the second scan line, the VDU will
start sending out the SECOND scan line of each of
the same first 64 characters in the same order as the
first scan line.

This process is then repeated until the 16th scan
line has been completed. At this stage, the VDU
knows that is has fully sent out the first character row
and that is must now move on to the second
character row, which starts on the monitor's 17th
scan line.

Thus, on the 17th monitor scan line, the VDU
sends out the first scan line of the second character
row. On the 18th monitor scan line it sends out the
second scan line of the second character row.

Finally, after 16 full character rows have been sent
out, (or 256 monitor scan lines), the VDU must stop
sending VIDEO, and tell the. monitor to retrace to the
top of the screen and do it all again by sending out
a FRAME SYNC PULSE.

The MicroBee VDU must do all of this fifty times
every second to keep up the illusion that all the dots
on the screen are illuminated at once !

To fill .tn some detail, it is necessary to realize that
for each character position, 8 bits of data are stored
in the screen display ram. This data is output on
what is called the 'secondary data bus', because it is
electrically separate from the main system DATA bus
as described under the CPU environs section. 7 bits
of this data give a code of which character to
display. This is exactly the right number, as there are
128 X 2 to the 7th power characters in both the
Character ROM and the PCG ram. Bit 7 fROM the
display RAM selects the Character ROM if it is low,
and the PCG RAM if it is high. Obviously though, the
Character ROM or the PCG RAM must also be told
which actual scan·line of the 16 possible should be
sent out.

Once this information has been given to (say) the
Character ROM, it will produce 8 bits of output
which represent the desired on/off condition of the 8
dots for one character's one particular scan line.
These 8 bits of data (on a bus called the tertiary data
bus), appear all at the same time, but for the monitor
to display them, they must be output serially.

A shift register takes care of converting the parallel
dot data into a serial dot stream which, subject to
inversions in case of a cursor and blanking so that
rubbish is not sent to the monitor when outside the
displayed range of characters, becomes the VIDEO
signal which is mixed with the SYNC signal and sent
to the monitor.

We can now refresh the monitor screen with the
data already in the VDU rams, but how does it get
there in the first place?Just as the VDU circuitry
generates addresses which correspond to the
various positions on the screen, the CPU may also
read and write from any character position in the
screen display ram, and may examine and alter any
of the data contained in the PCG RAM which defines
what the programmable characters look like.

The CPU gains access to the VDU RAM and ROM
address lines through multiplexers which swap
between scanning addresses and CPU addresses as
CPU accesses are made. The secondary and tertiary
data buses are available through two octal (8 bit)
bus transceivers, allowing access to the data lines of
the screen display RAM and the PCG ram/
Character ROM. The black streaks which are
obvious on an inverse screen when VDU accesses
are made show where some time has been stolen by
the CPU during the VDU's monitor refresh period.

Supplement to 'Your Computer' February 1982 Page11

The VDU's specific details
The 'brain centre' of the MicroBee VDU is the 6545

crt controller chip, IC9. It is important to understand
just what the 6545 does and does not do. It does
organise all addresses, scan line row selects, all
sync pulses, blanking and cursor positioning. It does
not ever actually see any of the display data, and it
does no serialisation of this data to produce the
video output.

The data bus on the 6545 is purely to talk to the
CPU about inialization data, where the cursor should
go, how many lines on the screen and so on.

The only timing input to the 6545 is what is called
the 'character clock'. This is (in this case) a 1.25MHz
signal derived externally from the 12MHz clock by
the 74LS161, IC26. This 1.25MHz CCLK is one
eighth of the frequency at which the dots are
clocked out, and so tells the 6545 when to change
addresses for the next character on the screen and
gives it the correct timing for the SYNC pulses.

The 74LS161 does more than just divide by eight,
though, because it also provides divide by 4 and
divide by 2 outputs which are combined by IC30,
inverted by IC23 to give the LOAD* signal, an output
which stays low for one 12M Hz cycle once for each
character. This output causes IC1 2, the 7 4 LS166 to
accept the dot data in parallel (or 'broadside') on the
next rising edge of the 12MHz clock. The time of this
LOAD* signal has been calculated so as to allow for
the propagation delays in the 6545, and access time
of the screen display RAM and then either the PCG
RAM or Character generator ROM before the actual
parallel bit data becomes available.

The 74LS175 device, IC15 manages the task of
synchronizing the start of a new character (the
LOAD* pulse) with the 6545 blanking output (which
indicates when the 6545's output addresses no
longer reflect characters to be output), and the
cursor output, which tells when one character wide
section of the scan line should be inverted. IC1 7 is
an exclusive or gate which is used here to allow the
inversion of the serial output from the 74LS166 shift
register in case of cursor (or if the INVERT line from
the 82S123 were to go high).

Access blanking is the process of setting VIDEO
output to black whenever the CPU is using the
memory and the monitor refresh must be temporarily
abandoned. If access blanking was not used, the
screen would be filled with random scratches
whenever a CPU access was attempted.

The FOOO* signal initiates access blanking by
activating the master clear input on the 74LS175.
This forces the 03 output of the '1 75 low, and thus
clears the shift register, IC1 2, to zero . When the next
LOAD* pulse's positive edge comes along, the 03
output of the '1 75 is still instantaneously low, and so
the shift register stays cleared for the next character
as well. The same LOAP* pulse then strobes the
state of pin 13 of IC15, 03 (high) through to the 03
output, and thus allows the character following to be
serialized as per normal.

Thus an access forces the currently displayed and
next character on the current scan line to be
blanked. This digital blanking ensures minimal
interruption to the monitor refresh.

The other type of blanking, off-screen blanking, is
controlled by the 6545, and synchronized with the
LOAD* pulse as described earlier. This DISPLAY
ENABLE (pin 18) on the 6545 is an output which is
high whenever the current scan position is one that
should be looked up and serialized. It is inverted as
it passes through the 74LS175 since the 0* output
is used, allowing it to be connected in the video line
with a 74LS02 (IC20) gate, so as to set the VIDEO to
black when off the displayed section of the screen.

The video from this gate now has the desired
polarity, and is mixed with the combined
HORIZONTAL and VERTICAL sync line, again
provided by a NOR gate of IC20. The resistors serve
to mix sync and video in the correct proportions. The
22uF capacitor decouples the combined signal
before it is passed to a buffer transistor which drives
the video output circuitry.
Internal VDU buses

It is important to overall understanding of the VDU
to distinguish the separate internal VDU buses over
which data and addresses are sent and to realize
where the actual dot data comes from.

The address line inputs to the screen display RAM,
IC5, select which of the 1024 possible characters on
the screen IC5's data outputs should present the
code for (or where a code on the data inputs is to be
written). During screen refresh, the address lines
used are the 'MA' lines from the 6545 which select
the correct characters as described earlier under
display scanning. When the CPU is accessing the
screen display RAM, however, the relevant address
lines are the CPU signals AO-A 10. Thus, what we
need is a way of switching over large groups of
signals between two alternatives. The quad 2 line to
1 line multiplexers, 74LS157 devices, fulfill this need
and the control signal which switches them either
way is the FOOO* signal.

The screen display RAM DATA lines are
bidirectional, which means that during a read, data
flows out of the device, and when writing, data flows
into it. Therefore these lines form what is called the
secondary data bus, which is linked to the system (or
primary) data bus through a 74LS245 bus
transceiver, IC11, so as to give the CPU access to
the screen display RAM.

An electrically separate data bus is necessary here
because it is very likely that, for example, while the
CPU is receiving instructions from the BASIC ROMs,
the VDU will also need to transfer information from
IC5 into the second stage of multiplexers (IC6, 10,
21).

The address and data lines of the Character ROM,
C13, and the PCG RAM, IC18 are connected in
parallel because they perform similar tasks and the
situation is always that only one is ever used at one
time. The address lines to these devices perform two
functions. A4-A10 select which number character to
look up the dot data for (this line usually comes from
the screen display RAM outputs). AO-A3 select which
of the 16 possible scan line rows to find the dot data
for. Normally this row information comes from the
6545, but on a CPU access of the PCG RAM or
Character ROM, the information about which row to
select comes from the 4 lowest address lines. This
means that the layout of a character in memory
consists of each character in order with its sixteen
scan lines running from top to bottom in consecutive
bytes.

The data outputs from these chips represent the
actual dot data which is serialized by the 7 4 LS166
shift register and sent out as VIDEO. They also form
the tertiary data bus, which is connected to the
primary data bus through IC11, a 74LS245 bus
tranceiver, allowing CPU access to the Character
ROM and PCG R�M. i

Page 12 Supplement to 'Your Computer' February 1982

VDU Memory map controls
The decoding of addresses, and handling of

read/write and data direction controls is done by
IC16 and one half of IC33.

IC16 is an 82S123 fusible fink prom which is
programmed specially for this application to derive
the complex logic with a minimum of parts.

ft is given an FOOO* signal on pin 13 whenever the
address fines match the FOOO-FFFF range and
MREQ* is low. The WR* signal on pin 10 tells it
when a write operation is being re�uested by the
processor so as to modify the VDU s contents. The
MREQ* signal merely indicates when valid CPU
accesses are possible. The SELECT fine is a line
which indicates when the currently displayed
character is a PCG character (normally) or the state
of A 11 from the CPU (during an access, i.e. when
FOOO* is low).

The ROM READ* signal on pin 12 is a special
signal which comes from a 1 bit output port at
address OBH provided by one half of IC33. This flip­
flop is normally in the reset state for the memory
map as described above. ff, however, the processor
temporarily writes a '1' into this port and sets the flip­
flop, the 82S123 is instructed to allow access to the
character generator ROM, IC13, when a read from
FOOOH to F7FFH is done. This is how the inverse
and underline attributes are gained without special
data in the BASIC ROMS: when the INVERSE
keyword is found, the CPU temporarily sets this flip­
flop and takes each byte of the character generator
ROM, inverts it, and places it in the PCG RAM. For
underline, the bottom display line is set to FFH so as
to give a solid fine underneath each character.
The outputs of the 82S123 are as follows:
Pin 1 This fine controls writing into the PCG RAM,
and is normally high, going low when the CPU wants
to write into the PCG.
Pin 2 This fine turns on the output buffers in either
the Gharacter ROM, IC13, or the PCG RAM, IC18
depending upon which one is selected and is
normally low, except when a write is done into the
PCG RAM.
Pin 3 SELECT* is merely the inversion of the
SELECT input to the 82S123, thus forming a
complementary pair which is used to select either
the PCG RAM or the Character ROM.
Pin 4 INVERT is always low, but allows creation of
inverse characters for when a PCG is not present.
Pin 5 This fine enables writing into the screen
display RAM for when the CPU requests it.
Pin 6 Similarly, reading is enabled from the screen
display RAM when this output is low (therefore it is
normally low).
Pin 7 The 'tertiary' data bus transceiver is enabled by
this fine whenever an access to the PCG RAM or
Character ROM is requested by the CPU. (Active low
signal)
Pin 9 The 'secondary' data bus transceiver is
enabled by this signal when an access to the screen
display RAM is desired by the CPU.

Some control signals perform tasks directly as well
as through the 82S1 23.

The FOOO* signal is connected to the select fine on
all the 74LS157 quad 2 fine to 1 fine multiplexers.

These multiplexers are like big mufti-ganged
switches for digital signals. When the FOOO* fine is
high, then the VDU is not being accessed by the
CPU, and should therefore be refreshing the monitor
screen. The multiplexers !Cs 3,2,8 then give the
screen display RAM the relevant MA address lines
from the 6545 which tell which character out of the
1024 possible to look at. !Cs 6,10,21 will give the
character generator ROM or PCG RAM the code of
the character as obtained from the screen display

RAM and the scan line number from the 6545 (RAO­
RA3).

ff the CPU wishes to access the VDU, though,
FOOO* goes low, and the multiplexers switch over to
connect the address fines of the VDU RAMs and
ROMs to the CPU's buffered address bus.

The SELECT signal which emerges from IC21 on
pin 12 thus becomes different things when the CPU
rs accessing the VDU and when it isn't. When FOOO*
is low, the VDU is being accessed, and SELECT
follows A 11 which will select whether the PCG RAM
or Screen display RAM is being accessed (PCG
RAM or Character ROM when ROMREAD*O). When
FOOO* is high, SELECT becomes data bit 7 from IC5,
the screen display ram, and thus 87 selects whether
the character code defined by the B0-86 outputs of
IC5 are shown as a character from the ROM, or a
PCG character.

The screen display RAM is always being used for
some reason, and therefore its chip select fine on
pin 18 is tied to the low level. .Similarly, the Character
ROM is never written to, so the Vpp input on pin 21
is tied high.

see the back
page for
ordering
details

Supplement to 'Your Computer' February 1982 Page1 3

The Keyboard
The MicroBee keyboard interface is one example

of the way clever design can bring down costs
dramatically. The entire count of chips devoted only
to the keyboard is two, a demultiplexer and a
multiplexer.

The keyboard interface relies upon the 'light pen'
feature of the 6545 crt controller chip. This consists
of a LPEN input which strobes the currently
accessed character address into a 16 bit register
pair internal to the 6545 chip.

Accordingly, if some of the lower address lines,
which are constantly being counted through in order
to display characters on the screen, are attached to
some circuitry which assigns each different address
to one particular key on the keyboard, the 'address'
of that key can be captured inside the 6545 and
then converted to ASCII by a keyboard decoding
program in the BASIC ROMs (or CP/M BIOS).

The MA9, MA8, MA7 lines from the 6545 go to a
74LS156 device, which is an open collector dual 2
to 4 line decoder wired as a single 3 to 8 line

decoder by joining pins 1 and 15, which become an
extra address line. This 3 to 8 line decoder is
enabled by the logical or of two conditions, one
being display enable, the other being the
RA4/update strobe used in this context as an update
strobe (see 6545 data for more information).

Therefore, as the screen is refreshed, each of the
eight scanning (or x) lines are driven low in turn. This
action cannot be observed on a CRO until a key is
pressed due to the open collector nature of the
74LS156. If one particular key is pressed, that point
on the x-y matrix is joined, and the corresponding y
line (or input to the 74LS151 multiplexer) will go to
the low logic level (otherwise it is pulled up by the
RN 1 resistor pack).

As the MA4, MA5, MA6 inputs change, the relevant
input will be selected and its complement placed
onto the LPEN input of the 6545, so that as the right
'x' address matches the right 'y' address, a high
going edge is presented to the 6545 LPEN input,
and the data is latched in, ready to be read by the
Z80 and converted into the ASCII code.

Page 14 Supplement to 'Your Computer' February 1982

The CORE board
The CORE board, or TOP board is the plug on

board which contains all of the MicroBee's
executable memory.

The normal BASIC board contains room for 32k
(1kX1024 bytes or characters) of continuous CMOS
RAM and 28k of ROM, 16k of which is supplied as
the MicroWorld BASIC interpreter.

The CORE board contains its own voltage
regulator and handles all the details of 'powering
down' the CMOS RAM by itself. Thus when the
power to the MicroBee is off, it should be possible to
unplug a CORE board and still retain all of the
memory. A Battery Backup voltage of between 3 and
5 volts is required to keep memory intact after
power-down.

A BB rail has been supplied which takes its
power from the 5 volt rail when the power is on
through a 1 N914 diode, and the battery through an
OA97 diode when the power is off (Germanium
diodes have low forward voltage drops giving longer
battery life).

This BB rail supplies all of the RAMs, all of the
CMOS multiplexers, and the 4584 or 74C14 schmitt
trigger device which detects power-down conditions
and battery voltage level.

The power down circuit works by monitoring the
voltage of the unregulated input to the regulators
through a potential divider. When the unregulated
voltage drops below 7.5 volts, the 4584 device
changes state and discharges the 0.22 uF capacitor
through the diode. This holds the RESET* line low,
which both holds the processor in the reset state,
and switches the RAMs over to the power-down
mode, under which they are protected from spurious
writing from the dying Z80.

The 0.22 uF capacitor holds the MicroBee reset for
about 1 /3 of a second after any power interruption,
and also provides the 1 second delay before the
'REPROMPT' key has any effect (it must slowly

discharge the capacitor first through the 680 kohm
resistor). Such" a reset delay is not necessary for a
BASIC only system, but if a MicroBee was for
example running CP/M, a keyboard mounted reset
switch MUST be protected in this way.

Another gate o the 4584 and a BC558 act as both
a 'power on indicator' and a 'battery dead' warning. If
the power is on, but the voltage of the battery drops
below about 2.3v, then the 4584 gate will switch so
as to turn the LED off, indicating lack of battery
power. This dual purpose indicator is not available
on the MicroBee kit version.

The MicroBee memory setup is fairly conventional
in most ways other than the BB circuits.

The AO-A 10 address lines from the processor
connect to all the 24 pin memory type devices on
the CORE board in parallel, as do all the data lines
from the CPU.

A 11 goes to the A 11 input of the 2532 Erasable
Programmable Read Only Memories because these
are 4k*8 devices. The 6116 2k*8 rams need to have
A11 included in the decoding chips (IC2, IC14)
because the_y only have half the capacity of a 2532.

IC26, the ROM decoder provides active low
outputs to select at most one of the 2532s at one
time. Since ROM occupies memory from 8000H
upwards in a BASIC board, IC26 is enabled when
the A15 line goes high, MREO* goes low, and RD*
goes low.

The RAM decoders, IC2, IC14 are enabled when
A15 is low and when MREQ* is low. IC2 further
requires that A14 be low, while IC14 requires A14 to
be high.

Because of the BB requirements, the active low
outputs of the RAM decoders pass through CMOS
multiplexers which provide sufficient speed at a low
power requirement. These devices switch the Chip
Select inputs of the CMOS rams between BB
voltage (for power-down) and the outputs of the
74LS138 decoders (when running).

16K RAM
Space for
RAM upgrade
Sockets come
with upgrade kit

16K BASIC in ROM Space for
optional

networking ROM

Space for
optional
editor/assembler

Supplement to 'Your Computer' February 1982 Page15

p;lS1trl.1'01 �
z omc 11,1

�
-- 4

� �
�-!-� -r��J.....,---,--,----,-���---''-'�-:"T!:rcs

MICROBEE SCHEMATIC DIAGRAM
Note: Due to publishing deadlines, this circuit diagram is not complete.
Complete circuit diagrams will be included with each MicroBee sold.

Page 16 Supplement to 'Your Computer' February 1982

..

�II

-1 --,

�;;
��
�;;;

N
�g � �n� ..

N

��

::;�-------
i .__ --------l
;;: r---r-, I

< ,_

�-
'1111

I

Supplement to 'Your Computer' February 1982 Page 1 7

MICROWORLD BASIC: COMMANDS,
FUNCTIONS AND KEY WORDS

Now before you can start to use your MicroBee, it
is a good idea to familiarise yourself with the actual
STATEMENTS and COM MAN OS supported by
MICROWORLD BASIC. If you are a first time
computer user you should refer to the
MICROWORLD BASIC REFERENCE MANUAL and,
of course the program ideas at the end of this
booklet. However, if you are still confused don't give
up, the light is at the end of the tunnel (or whatever
they say!).

MICROWORLD BASIC is a very powerful extended
BASIC conforming as closely as possible to the
proposed ANSI standards for BASIC. As you may
already realise there are many 'dialects' of BASIC
and as such you may have to slightly modify
programs from various sources to run them under
this particular version of BASIC.

DATA

IN
IN#
INT
INVERSE

REMark used for comment
RENUMbers the lines in a program
Turns off a point on the VDU
Resets pointer in DATA statements
Used to RETURN form a GOSUB
Random number generator
RUNs the program
SAVEs a program on cassette
Sets the number of decimal places
Searches for a string
Turns on a point on the VDU
Returns the sign on the expression
Returns the geometric sine
Prints a space
Slows down the output to VDU
Returns the square root
Sets the increment in FOR ... NEXT
loops
Terminates execution of a program
Sets aside memory for strings
Tabulates the print across the page
Traces the flow of the program

ZONE

STOP
STRS
TAB
TRACE(ON/
OFF)
UNDERLINE Does just that on the VDU
USED Returns the number of PCG characters
USR Call to machine code routine
VAL Returns 'value' of a string
VAR Used to pass the arguments in a

GOSUB
Sets width between,, in PRINT

PCG
PEEK
PLAY
PLOT
POKE
POINT
POS
PRINT
PRMT
READ
Relational
ops
REM
REN UM
RESET
RESTORE
RETURN
RND
RUN
SAVE
SD
SEARCH
SET
SGN
SIN
SPC
SPEED
SOR
STEP

NEXT var Used to exit a FOR ... N EXT loop
NORMAL Clears the VDU attributes
ON GOTO Conditional branching
ON GOSUBConditional branch to a subroutine
OUT OUTputs to a port
OUT# OUTputs to a programmed data

stream
All print uses PCG characters
Gets a byte from memory
Sounds a tone on the internal speaker
Draws lines under graphics
Writes a byte of data into memory
Tests if a point is set on the VDU
Returns the cursor position
Outputs information to the VDU
Alters prompt character for IN PUT
READs from DATA statements
<.>,or= can be used

STATEMENTS and COMMANDS
supported by MICROWORLD BASIC:
ABS Produces ABSolute value of a real no
ASC Returns the ASCII value of a string
ATAN Returns the geometric arc-tangent
AUTO AUTOmatic line numbering
CHR Converts number codes to strings
CLEAR Erases values of variables and strings
CLS Clears the VDU screen
COS Returns geometric cosine
CURS Used to position the CURSor on the

VDU
Provides the DATA for a READ
statement

DELETE DELETES lines from BASIC source
DIM Used to DIMension arrays
EDIT Enter EDIT mode to change a program
END Terminates program
EXEC Auto start for machine code program
EXP Returns natural logarithm
FLT Converts INTEGER into REAL number
FN User defined function
FOR ... NEXT Controls looping
FRACT Returns the fractional part on a

number
Returns total memory left
Returns total string space left
Transfers control to a subroutine
Transfers control to a line number
Special search and replace routine
Selects High RESolution graphics
Conditional test for a line
Used to INPUT data from the
keyboard
IN puts data from a port
Selects programmed data streams
Converts a real number into an integer
Inverts output to VDU to black on
white
Inverts one graphics dot on the screen
Returns character from key board
Returns the length of a string
Assigns a value to a variable
LISTS the program to the VDU
Same as above but to the printer
Loads a file from cassette
Returns the common logarithm
NOT, OR, AND can be used
Selects LOw RESolution graphics
Same as PRINT but to a line printer
Erases the old program

FRE(O)
FRE($)
GOSUB
GOTO
GX
HIRES
IF ... THEN ..
INPUT

INVERT
KEY$
LEN
LET
LIST
LUST
LOAD
LOG
Logical Ops
LORES
LPRINT
NEW

Page 18 Supplement to 'Your Computer' February 1982

CONDENSED MICROWORLD BASIC MANUAL

Page19

After execution, I has

than),> (greater than), = (equal to) or a
combination of any two of these.

The statemenVs to the right of the 'TH EN'
are executed only if the relational test rs true.
Otherwise, either the next numbered line or
the statements to the right of the 'ELSE' are
executed. Examples make this clearer.

10 IF 1<6 THEN 60
20 PRINT "YES"

60 PRINT "NO"

If I is less than 6, branching to line 60 will
occur. If I is equal to or greater than 6. the
program continues at line 20.
INPUT (literal(;) l,)} var (,var} (;}

Statement used to input data from the
keyboard and to assign this to program
variables. The optional literal can be used to
print a message just before the inputting rs
to begin. The literal, 1f used MAY be followed
by a comma, or a semicolon.

A semicolon placed after the last input
variable will inhibit the «CR» and «LF» that
normally occurs after an INPUT statement.
Example:

10 INPUT A, B, AO
20 PRINT A+6, AO'AO
30 END

The program rmmeoiatetv outputs a '?' and
waits for the user to enter the appropriate
data separated by commas. If the user
enters a «CR» before supplying all the
required data, BASIC will pnnt '??'
indicating that more data rs required. If part
of the user data is illegal, MICROWORLD
BASIC will print 'R?' indicating that data
should be reentered from the start of the
input statement.
INVERSE

All PRINT output after this will be black on
white. If the last display mode was a HIRES,
LORES, or PCG, the screen will be cleared
first.

LET var=expr
Statement used to assign the computed

value of an expression to the variable to the
left of the equal sign. The entire expression
must agree m mode. either in integer or real,
with the assigned variable. LET rs optional
and can be deleted.
Example:

1 0 LET 1=2•6+3
the value of 1 5.
LIST(ll,12}

Lists on the VDU the current program in
whole or in part, depending on the opuonal
specification. Below are the 5 variations of
the LIST command:

LIST LISTS entire program
LIST 11 LISTS only line numbered 11
LIST 11, LISTS from line 11 to end of

program
LIST ,11 LISTS from start to line 11
LIST 11 ,12 LISTS from line 11 to 12

inclusive

Listing can be stopped at any time by
striking the BREAK key and may be paused
by CONTROLS (TIS) and hitting any other
key will continue the listing.

See also SPEED
LUST

Same as LIST but output goes to the
'printer' data stream which can be directed
to RS232, cassette or vdu output.
LOAD {'filename')

Loads a file from cassette tape The file
must have been created by MICROWORLD
BASIC using a SAVE command.
BASIC files:

MICROWORLD BASIC will load the first
file encountered on the tape with a 'B' file
type (that rs any file created with the BASIC
SAVE command) 11 no filename is specified
If a filename is specified, each name will be
shown as 1t rs reached on the tape, but
BASIC will continue searching for the
correct file.

The filename can be up to six characters
enclosed by " double quotes as for the
SAVE command.

END
Statement used to terminate program

execution. No message is printed. Return is
made to the command mode where the
prompt '>' is made.

EXEC
This command will jump to the auto·

start address of the machine language
tape which was last loaded Into the
machine. If no tape has been loaded, an
appropriate error message is Issued.
FOR var=expl TO expr2 (STEP expr3)

FOR ... TO statements are used to control
looping. Integer indexed loops are
substantially faster and require less memory
than real indexed loops. Real loops do
permit the fractional steps. If the output
STEP is not specified, the default value is 1.

GOSUB t[expr1 ,expr2, ... J} line no
Transfers execution to a subroutine with a

label equal to the value of the integer
expresston.tine no'. Such a GOSUB is
referred to as a 'computed GOSUB'. The
optional expression ust may be used in
conjunction with a VAR statement to pass
values to the subroutine. The number of
expressions or arguments or arguments
must not exceed the number of variables in
the VAR statement. (See VAR below). Also.
arguments must agree in mode to the VAR
list. The effect is similar to performing a
number of LETs before the GOSUB.
Subroutine nesting is permitted. Exiting a
subroutine with other than a RETURN will
cause random data to remain on the stack,
thus wasting memory. Examples:

10 GOSUB 100
20 PRINT "END":END
100 PRINT "HERE IS THE"
110 RETURN
This short program immediately transfers

to the subroutine at 100 and prints the
message 'HERE IS THE ·. On encountering
the RETURN, execution transfers back to
line 20, the statement following the original
GOSUB. Here the word 'END' rs printed and
the program terminates.

GOTO int-exp
Transfers program execution to the line

number given by the evaluation of the
integer expression. int-exp. If the value of
the int-exp is not a valid line number, an
error condition results.

Example:
10 PRINT "TESTING ... "

so GOTO 10

When line 60 is executed, unconditional
branching to line 10 occurs.
GX

The GX command provides a global
search and replace facility which allows
easy modification of things which occur
many times throughout a BASIC source
program.

The general form of GX is:
GX/stringl /string2/

The BASIC will then search from the start
of the program for lines containing stringl,
the search string. If any such are found, the
line containing that string is listed, with the
exact position of the found string
highlighted. If it is desired to replace string1
with string2, the period key rs pressed. Any
other key will not replace that occurrence of
stringl.

The BASIC will then continue to took for
more references until the end of the
program is found.

HIRES
This command initialises the scratch RAM

used for PCG graphics, and must be used
in the program before either SET or RESET
etc. are used. HIRES will wipe the screen,
but will not affect the actual cursor position.
IF expr rel-op expr THEN statements (ELSE
statements)

IF .. .THEN is used to cause conditional
execution of the statement or statements
following the 'THEN' or optional 'ELSE'. The
relational operator, rel-op, may be < (less

Supplement to 'Your Computer' February 1982

after execution A will be 1 O and BO will be
12.8
DIM list

Used to set up storage for arrays of
integer or real numbers. Arrays may have
one or more dimensions. The dimension
arguments MUST be integer values.
Example

10LET1=10
20 DIM A0(5),81(10,10'1)

In MICROWORLD BASIC, statements and
commands preceded by a number are
entered into memory and become part of the
current program. Line numbers may range
from 1 to 65534. If a statement or command
is entered without a line number, it is
executed directly. Multiple statement lines
are created by using the colon as a
separator.
AUTO int1 , lnt2

This command causes the BASIC to
automatically insert line numbers into the
file as each line of code is entered. The user
may provide one of two parameters after the
word auto, brackets are optional. If one
parameter is given it will be the first line
number inserted. If two parameters are
given, the second will be used as a step
between line numbers. If no parameters are
given the program defaults to line 1 00 with a
step of 10.

To exit from the AUTO mode, simply type a
null line («CR» only). If called again, AUTO
will restart at the number that it finished the
last time.

AUTO mode will automatically edit lines
which already exist, so when an occupied
line is reached, the edit mode is invoked. To
exit this AUTO-editing feature, use the break
key.
CLEAR

This command erases all values of all
variables and strings and also erases any
data structures such as array DI Mens ions.
CLS

This function clears the VDU screen and
places the cursor at the top left hand corner,
and then turns it off for elimination of the
cursor in graphics work.
CURS int·exp
CURS lnt·exp1, int·exp2

The first form of this command places the
cursor at the position specified by the
integer expression. Position O is at the top
left hand corner and 1 023 is at the right. The
expression cannot exceed 1 023 without
causing an error.

The second form of this command allows
x-y cursor addressing, where int-exp1
specifies the column number from left (1) to
right (64), and int-exp2 specifies the vdu line
number from the top of the screen (1) to the
bottom line (16).
DATA expr1 ,expr2,

Provides data for a READ statement. Data
must agree in mode to the corresponding
READ variable. Note that data values may
be expressions as well as constants. DATA
statements must appear singly on a line.
Example

10 READ A,80
20 DATA 10, 2'6.4

EDIT line number
This command edits an already existing

line number in the current users program.
When in EDIT mode the line is printed onto
the VDU and the cursor is placed at the left
hand end of the line.
The following keys have special meaning
during EDIT

CONTROLS (TIS) Moves the cursor to
the right

CONTROL A (TI A) Moves the cursor to
the left

CONTROL W (W) Moves the cursor
one word to the right

DELETE This key deletes the character
under the cursor.

«CR• (CARRIAGE RETURN) Terminates
the EDIT and the altered line is entered into
the program file, just as if it were a new line.

any other key Pressing any other key
will cause that character to be entered into
the line to the left of the cursor.

MACHINE LANGUAGE files:
MICROWORLD BASIC accepts files of

hletype 'M' as machine language files which
are loaded into the memory and optionally
auto-executed (program starts automatically
when loaded). Otherwise, the user may use
EXEC to start up the program.
LOGICAL O:>ERATORS

NOT, OR and AND can be used with
relational operators m IF statements or to
perform logical operations with integer
arithmetic. Examples

10 tr A<2 and 8>6 OR C<lO then 80

Note the operation precedence rs
(1) NOT
(2) AND
(3) OR
Parentheses may be used to alter

precedence

LORES
Lores will initialize the graphics RAM and

prepare to receive set. reset. plot etc
commands for low resolution graphics
mode (128*48). Note that the screen rs not
cleared by this command, and inverse or
underlined characters on the screen when
this command rs executed will change to
random graphics characters.
LPRINT

Same as PRINT but on the 'printer'
output stream.
NEW

Erases current program and variables.
then WARM starts the interpreter

NORMAL
Clears INVERSE and UNDERLINE and

PCG modes and returns PRINT output to
normal format
ON ... GOTO·

ON int exp GOTO line-no 1, line no2,
lline-no3). etc
A conditional branch that depends on expr.
in the following way:

mt-exp+ t Branch to line-no t
1nt-exp=2 Branch to line-no2
int-exp=3 Branch to hne-no3 etc
The ON GOTO differs from the computed

GOTO in that the tine numbers line no1, line­
no2, etc do not have to be calculated from
the value of the expr

If the int-exp is zero or greater than the
number of line numbers 91ven, then
execution will continue with the next
statement
EXAMPLE·

5 INPUT A
10 ON A GOTO 125,230,400,650

125 REMHEREIFA=1

230 REM HERE IF A=2

400 REM HERE IF A=3

650 REM HERE IF A=4
OUT int1 ,int2

Outputs the value of the integer
expression, int2 as a data byte to a PORT
with the address given by integer
expression, mn Of course, int1 and int2
must have values between O and'255
decimal.
PCG

All print output alter this will use the
PROGRAMMABLE CHARACTER
GENERATOR
PLAY n {,ml

This command will sound one note from
the speaker for multiples of 1 /4 second
There are two forms.

The first form without the optional length
will play note number n for 1 /4 second.

The second form wilt play note n for m/4
seconds.

The 25 notes provided are the musical
notes taken from the section of a piano
starting at the A below middle C and then
up for two octaves. The frequencies are
reasonably precise and allow simple
melodies to be played:

Number Note
O rest
1 A
2 A#
3 B
4 C
5 C#
6 D
7 0#
8 E
9 F
10 F#
11 G
12 G#
13 A
14 A#
15 B
16 C
17 C#
18 D
19 0#
20 E
21 F
22 F# 23 G
24 G#
PLOTtfHRHH)x1 ,y1
f TO xn,yn))

The plot command allows graphics
commands to be prformed automatically
along straight lines Joining two points. Plot
can be used in either LORES or HIRES
graphics mode.

Plot will normally be used in the set dot
mode which rs the default for a PLOT
keyword without suffixes.

Lines can also be inverted or reset by the
adcrnon of the letters 'I' and 'A' respectively
after the PLOT keyword

The usage PLOTH will plot a line with the
Y-axis inverted, but note that 1t rs impossible
to have 'PLOTIH' for example.
POKE int-exp1 ,int exp2

This command writes a byte of data
defined by int-exp2 into RAM memory at the
address specified by int-exp l Note both
integer expressions are in decimal.
PRINT list

Statements used to output information
snd data to the console device. The 'list'
consists of variables, constants.
expressions, quoted literal and special
printing functions separated optionally hy
commas, semi-colons or back slashes(/).
A comma produces zone spacing with the

size of the ZONE determined by the ZONE
command.

If a PRINT is terminated by a semicolon,
the final CR and LF «cr»,«lf» is suppressed.
Backward slashes (/) may be used within the
'list' to produce additional CRs and LFs.

The special print functions are TAB(ie) and
SPC(ie). TAB moves the print to the position
equal to the value of the integer expression.
SPC produces the number of spaces
determined by the value of the integer
expression.

Numeric values may be output in one of
two ways: formatted and unformatted.
Consider the latter first. Unformatted printing
is that used in standard BASIC If the value
is between 0.01 and 999999, it will be
printed m ordinary decimal notation.

For smaller values and larger than these,
exponential notation rs used. Best we resort
to examples.

PRINT 65+3 Produces 68
PRINT 500000'2 Produces 1.0 E+6
The formatted printing of numerical values

is useful in business programming where
specific fields must be set up to
accomodate the printed values. The format
specincanon may appear at any point in the
PRINT 'list' It takes one of four forms:
[lint int-exp) Integer format.

The value of the integer expression rs
printed right justified in a field of width 'int'
'inti must ol course. be greater than the
number of d1g1ts rn the value to be printed
plus one (to take care of the sign).
If this is not the case, plus signs will be
printed rn the field.
[Fn1 .n2 real-exp] Real format:

The value of the real expression rs printed
in a field n1 wide and a decimal point n2
diq.ts from the right of the field The field
width must be TWO characters greater than
the number of digits printed

The number of d1g1ts printed should not
exceed the number of significant digits.
Again, plus signs will be printed in the field
if the specification rs incorrect.
[On real-exp] Exponential format:

The value of the real expression is printed
with exponential format in a field n7 wide
with n decimal places.

[An int-exp] ASCII format:
Equivalent to the PRINT CHR$(int-exp)
The value of the integer expression is

output as its equivalent ASCII character a
total of n times. This format is useful for
sending special control characters to the
output device. It also permits printing long
strings of the same character.
The following examples illustrate the points.

10 PRINT l,J;A0*2
20 PRINT "OK" TAB(8);
30 PRINT "DONE'
40 END

This program would produce the following
output for the values, 1=2, J=6, A0=12.4
and ZONE set at 14

2 6 24.8
OK DONE

The format specifications may be linked with
semicolons as below:

1 0 PAI NT [A6 66];[F8.2 A0)-
20 END

For A0=42.6, this program would produce
the output

BBBBBB 42.60
READ ((line no)I var t , var2, var3, ...

This command is used to store values
from DATA statements into the specified
variables. The optional line number is used
to reset the data pointer to a specitrc DATA
statement. Example:

101NPUTI
20 READ (1 0*1+30) AO$
30 PRINT AO$: GOTO 10
40 DATA "MESSAGE NUMBER 1 "
50 DATA "MESSAGE NUMBER 2 "
60 DATA "MESSAGE NUMBER 3 "
RUN

? 2 «CR»
MESSAGE NUMBER 1
? etc.

An attempt to read more data than available
will result in an error.
RELATIONAL OPERATORS

Relational operators enclosed in
parenthesis can be used in integer
expressions. The values are as follows:

TRUE = 1
FALSE = 0

Example:
A= (6>2) returns -1 for A
A= (6<2) returns O for A

REM
Used as the last or only statement of a line

to insert user comments in the program. All
text between REM and the end of the line is
ignored during execution.
REN UM \ new start {.increment {.start
{Jinisnl l }

The renumber command is a complex
program which will regularize the line
numbering of a BASIC program, changing
all references to line numbers in the
process. There are five forms of renum:
REN UM
This form will renumber the entire program
so that when renumbered, the first line
number will be 1 00 and the rest will
increment by 1 O from there on
RENUM n
This form renumbers the entire program so
that when renumbered, the first line number
will be n and the rest will increment by 10.
RENUM n,1
This form renumbers the entire program so
that when renumbered, the first line number
will be n and the rest will increment by 1.
RENUM n.r,s
This form renumbers the section of the
program from the original line numbers
through to the end of the program, so that
the line which was s will have line number n.
incrementing by i.
RENUM n.r.s.t
This form renumbers the section of program
between original line numbers sand f so
that the line which was s will have line
number n, incrementing by i.

t-requency

220
233
247
262
277 294
311
330 349
370 392
415
440
466
494
523
554
587
622
659
698
740
784
831

TO x2,y2 t TO x3,y3

Page 20 Supplement to 'Your Computer' February 1982

Page21

FRE(O}
This integer function returns a number

representing the total memory available for
program and variable storage. If you are
running with 48K of RAM this number will
come out negative! Don't worry, this is only a
restriction caused by the method used to
represent integer numbers. In the imrnedrate
mode use PRINT FRE(O) to give an
immediate indication of memory left at any
particular point in time.
FRE(S}·

Gives the amount of 'string space'
available as a real number. Use STRS (int­
exp) to set up more 'string space'.
LOG (real-exp)

This function returns the common
logarithm of the real expression. The natural
logarithm (to base e) can be found by using
2.30258*LOG (real-exp).

ANTILOGS can be calculated by 10�(real­
exp)
RND-

The random number generator, returns a
real number between O and 1. To get other
sized random numbers see examples below·

RN D' 1 50 Returns a number between
O and 150

RN 0*200-1 00 Returns a number
between -1 00 and + 1 00

INT (RND*6) f-1 Returns an integer
between 1 and 6
SGN (real-exp)

This function returns one of three values
as follows:

-1 11 real-exp <O
0 1f real-exp 70
1 if real-exp >0

SIN (real exp)
This function returns the trigonometric

sine of the real expression considered to be
in radians.
SOR (real-exp)

Produces the positive square root of the
value of the real expression Note m this
particular case the real-exp must be a
posiuve number.
INTEGER FUNCTIONS-
INT (real exp)

Converts the value of the real expression
into an integer.
IN (int-exp)

Inputs a data byte from the input port with
the address given by the value of the integer
expression.
PEEK (int exp)

Reads the data byte stored in memory
location addressed by the value of the
integer expression.
POINT (int-exp1 .mt-axpz)

POINT returns a value depending on
whether the specified dot rs set or not

If the co-ordinates are out of range for the
relevant graphics mode, the value returned
is -1

II the specified point is set. POINT returns
-1.

If the co-ordinates are m range, and the
dot is not set, POINT returns O

The values O and -1 were chosen to
correspond to the two boolean values for an
integer which can be used in an IF
statement directly, so
10 IF POINT(X,Y) THEN LET A�-AB=-B
ELSE SET X.Y
will negate A and B 1f the dot rs set, and 1f 11
was not set, this statement will set 11
POS-

This integer function returns an integer
representing the cursor position on either
the VDU or the line printer.
SEARCH (str-exp t .str-expz .mt-exp]

String str-exp1 is searched for «int-exp» th
occurence of substring str-exp2. The integer
value returned rs the positron of the
beginning of the substring, if found. or zero
if not found. The default value of int-exp rs 1.
Examples always help to Illustrate the point:

AO$= "HOW ARE YOU" define the
string

PRINT SEARCH (A0$,"ARE") look tor the
1st occurence

of "are"
it occurs from character 5 onwards.
PRINT SEARCH (A0$,"0",2) find the

second ·o· in AO$

I support
all these
common
functions.

For advanced programs, 11 should be noted
that the VAR statement can be used to
simulate the PRINT USING type of
command found in other BASICs. Such
statements permit the PRINT statement to
be used with several different sets of
variables.

10 INPUT P
20 GOSUB !P,"CATS"J 100
30 GOSUB 4*P, "CAT FEET") 100
40 GOSUB 4*P*5, "CAT CLAWS") 100

100 VAR (D,00$):PRINT "MY HOUSE HAS
";0;00$:RETURN
For P=6 this program will produce the
following output:

MY HOUSE HAS 6 CATS
MY HOUSE HAS 24 CAT FEET
MY HOUSE HAS 120 CAT CLAWS

ZONE (int}
The statement of the integer '1nl' sets the

ZONE width applied when commas are
used in PRINT statements. The value of 'int'
may range from 1 to 16.

PRINT PEEK (0) This is an exception
which still follows the rule (above): it
means. get the byte from tocation O and
store it in a temporary store, then PRINT the
temporary store.
REAL FUNCTIONS
2ABS (real-exp)

Produces the absolute value of the real
expression, 1f 1t is positive, does nothing. If -
ve then returns same value but posmve.
ATAN(real-exp)

This function returns the trigonometric arc­
tangent of the real expression evaluated in
RADIANS. (Accuracy IS 0.01%)
To convert RADIANS to DEGAEES simply
multiply the result by 57.29577951 (to the
correct number of significant d1g1ts).
COS (real-exp}

This function returns the trigonometric
cosine of the real expression, assumed to
be expressed in RADIANS
EXP (real-exp)

This function returns the value of e
(2.718281828) raised to the 'real-exp' power.
Accuracy is .01 % for normal range This is
the equivalent to taking the NATURAL anti­
logarithm of the expression.
FLT (int exp)

This function converts integer expressions
into real numbers.
FRACT (real-exp)

This function returns the fractional part of
the real expression.
Example:

PRINT FRACT(6.84) produces 0.84
PRINT FRACT(120.) produces 0.0

Supplement to 'Your Computer' February 1982

FUNCTIONS IN
MICROWORLD LEVEL II
BASIC

MICROWORLD BASIC was developed as
an interpreter for use rn business and game
apphcatrons, The choice of functions
reflects this interest. Functions are either
real or integral and produce either real or
integral results depending on the type.
Integer functions should only appear in
integer expressions and real functions only
in real expressions.
Note: A function is different from a
command in that it must always appear on
the right hand side of an equation. Example:

N = PEEK (300) Gets the byte from
location 300 and PUTS 1t into variable N.

AO= RND * 500 Generate a random
number and put 1t into variable AO.

RESET (H) int-exp1 ,int-exp2
This function 'turns off' a graphics point

on the VDU screen. The command is the
same for both HIRES, and LORES graphics
modes, however the maximum co-ordinate
values differ.

The int-exp1 must be in the range Oto 1 27
and specifies a position across the screen,
mt-expz is in the range O to 63 and specifies
a position down the screen for LORES
graphics.

lnt-exp1 must be in the range Oto 511
across the screen to the right, and int-exp2
must be in the range O to 255 up the screen
for HIRES graphics.

RESET 0,0 resets a point at the bottom
left hand corner of the screen whereas
RESET 63,24 resets a point near the centre
of the screen (assumed LORES mode).
SAVE

This command saves a program to tape at
either 300bd or 1200 bd. The 1 200 bd
speed is selected using an 'F' suffix after the
save. e.g.
SAVE "FRED" ; will save at 300bd with
filename FRED
SAVEF "JANE" ; will save at 1200bd with
filename JANE

Note that the filename is obligatory and
must be O .. 6 characters in length See
LOAD for retrieving programs from tape.
SD int-exp

Used to set the number of significant
digits used in REAL calculations for greater
precision or speed. SD can be set from 4 to
14 places. The default value is 8.

As an example, for drawing a circle on the
screen, you would need quick, but not very
accurate trigonometric functions, so use SD
4, but for solving trigonometric equations.
use SD 8.
SET(H} int-exp1 .mt-expz

Set is equivalent to RESET, but will turn a
��shies dot ON, not off.

SPC(int-exp} is used to direct PRINT to
output int-exp spaces before the next item in
the list. SPC is different from TAB(int-exp}
because SPC(n) will always print n spaces
no matter where the cursor rs when 11 is
invoked.

SPC must appear only in a print list.
SPEED

Slows down the VDU output by
introducing a delay between characters.
FORMAT: SPEED n where n=O to 255 (0 is
the fastest and the default.)
STOP

Used in a program to terminate execution.
The following message rs printed:

STOP AT line-no
Where line no is the line number where the
STOP was encountered.
This command, although performing roughly
the same function as an END command. is
normally used during program fault-finding
Execution can be restarted by using the
CONT command
TAB(ie}

TAB rs used to direct PRINT to start at a
particular point on a line. The argument
must be an integer and if the required TAB
has already been passed over, the program
will ignore the integer argument.

TAB must be used in a print list.
TAB(O) is equivalent to TAB(255).

TRACI: ON, TRACE OFF·
When TRACE is turned ON the line

number of each line executed is listed on
the VDU between square I] brackets. TRACE
OFF removes the facility after
troubleshooting is over.
UNDERLINE·

The underline commmand sets up the
VDU to print underlined characters in all
print statements after this one. If the
previous display mode was a graphics one
(PCG, HIRES or LORES}, the screen will also
be cleared first.
VAR (var1 ,var2 }

The first statement of a subroutine to
which arguments are passed. The variables
in the VAR list receive from the calling -
GOSUB. The variables MUST correspond in
position and mode to the expression in the
GOSUB. These variables are common to the
main program and thus can be used to pass
values back to the main program.

1 0 it occurs m the 10th character
NOTE: Integer functions may be used
directly in print statements.
USED·

This function returns the number of PCG
characters used when m HIRES graphics
mode

This information is very useful because
when the graphics subroutines attempt to
use more than 1 28 PCG programmable
characters to draw the hires graphics, an
error rs generated which aborts the program.
String functions
CH Ff {$1(int exp)

This function returns a string consisting of
the ASCII character which corresponds to
the integer expression given by int, exp.

e.q. ring the bell: PRINT CHR$(7)
KEY{$)

This function of no argumerts allows
mspecuon of the Micro Bee keyboard
without stopping as would be necessary for
an "input" statement.

If no key has been pressed, the null string
rs returned If a character rs available from
the keyboard, the string returned consists of
the character pressed only.
STR {$) (nurn exp)

STA converts integers or reals into strings
representing a 'human readable' string of
d1g1ts such as would be seen from a 'PAI NT'
statement.

e.g. A 1 $=STR$(32 78) assigns the string
'32.78' to the string variable A 1 $.

USER DEFINED FUNCTIONS
MICROWORLD BASIC also has provrsron

for the user to define special functions for
himself The basis is the FN statement.
FNn = expr

The defining function can be real or
integer or both depending on its
construction. The FORMAT rs FNn where n
is an integer between 1 and 7. If, when
defining an expression a dummy variable rs
required, a'#' sign should be used to
indicate where the dummy variable should
appear. Example:

10 FN2 - 3 14159 * # 1.8
When a reference is made to the defined
expression in a program, it appears as
FNn(expr) The value of the argument would
be passed into each '#' symbol of the
defining statement. Example:

10 FNO - # + #
40 PRINT FN0(6)

This program will print the value 12 when
line 40 rs executed.
Some special functions:
FNn SIN(#)/COS(#) This real function
calculates the trigonometric tangent of an
angle the angle must be expressed m'
RADIANS.

FNn ATAN(#/SQR(1·#*#)) This real
function calculates the inverse trigonometric
sine (ARC SINE)
MACHINE LANGUAGE SUBROUTINES·
USR (int-exp1 ,int·exp2)

This integer function produces a call to a
machine language routine given by the
integer expression mt-exo t The value of
int-exp2 is passed in the BC register pair
The mt-expz is optional, in which case BC
will contain zero The machine language
program may use all registers. but the stack
must be managed so that PUSHes and
POPs (1f that's how you say 1t) are equal rn
number. In this case a machine language
return instruction will produce reentry back
to MtCROWORLD BASIC. To pass a value
back it should be placed in the B and C
registers before return.

Page 22

Learn as you practice
with my easy guide
into BASIC programming

Supplement to 'Your Computer' February 1982

GETIING STARTED WITH MICROWORLD
BASIC
About time! Let's get down to what it's all about. This
section is included to help you get started. It rs not
an exercise in how to write well-structured BASIC
programs and is by no means an exhaustive
description of how to use your MicroBee. .

The first step, if you have not done 1t already rs to
connect up your MicroBee as outlined earlier. You
must use a TV monitor equipped for 1 V video with
combined sync or, alternatively an ordinary TV set
equipped with a modulator. If you a_re m doubt
contact the Technical Support Section at APPLIED
TECH NO LOGY (Phone (02) 487 2711) for a detailed
application note. Note if you have an ordinary TV set
such as a small portable black and white set any TV
service technician will convert it for you at a modest
cost.

The next step is to connect the MicroBee power
pack to the MicroBee console using the cables
provided. NOTE: use only the cables as supplied as
incorrect connection could result in damage to your
MicroBee and may invalidate your warranty. Connect
the power pack to the console and connect the
video lead to the TV monitor. If all is well plug in the
TV and the MicroBee power pack to the 240V main
supply and switch on. You should hear the speaker
sound out a tone indicating that BASIC rs running.

On the TV screen you should see some form of
display indicating that the MicroBee VDU is
outputting characters. If it does all is well. If not don't
panic, just recheck everything carefully.

Now for the best part. Because your computer has
non-volatile memory and if it has been used
beforehand there may be a program already there!
Just type the following on the keyboard:

RUN and hit the RETURN key. Note that we will
now abreviate this to

RUN «CR»
Also note that MICROWORLD BASIC doesn't care

if you type in lower case or upper case. So just type
'run' and hit «CR».

If a program is in memory just follow the
instructions on the screen. If not we will have to
move to the next section, won't we.

Before we do however we should think about
connecting a tape recorder (a low cost portable one
is excellent) to the MicroBee so that we can save
programs and reload them at a later stage. Again
refer to section 2 for the connection details.
SOME FUN PROGRAMS

Now for the good bit! Let's really start to learn
about MicroBee the easy way. Don't forget that if you
don't understand a particular point refer back to the
manuals as this is the most effective way to learn
how to get the most from your MicroBee.
PROGRAM 1: THE FIRST ONE!

Type NEW «CR» This clears out memory for a
new program
Type AUTO «CR» Sets up auto line numbering
and the screen will respond with

00100 - (you write here)

Now type the following on the line after the 100-

PRI NT "HELLO, WHAT IS YOUR NAME"; and press
RETURN «CR» as this is the way we enter every line
in BASIC.

The computer will respond with

00110 _

Type INPUT A1 $ and press «CR»
the computer will respond with

00120 _

Type PRINT" GLAD TO MEET YOU, ";A1 $ «CR»
The computer will respond with

00130 _

Type END and press «CR»
Press «CR» again to exit AUTO mode
The computer will respond with

Then type LIST and press «CR»
The computer should respond with

00100 PRINT "WHAT IS YOUR NAME";
00110 INPUT A1 $
00120 PRINT "GLAD TO MEET YOU , ";A1 $
00130 END

If it does, all is well. If it doesn't, the best approach is
for you to start again and type NEW. Later on you
should look at the MICROWORLD BASIC manual
under the section on EDITING a BASIC program so
that you can avoid this time consuming step.

Now, assuming you have this program and the
computer outputs the correct LISTing you should
type RUN «CR» and watch what happens ..
Notice that the computer outputs the question

WHAT IS YOUR NAME?, (your own name)
Fascinating!!! You are now a programmer, you have
programmed the computer to ask a question and,
after receiving an input from the key board, u has
combined your own name into its next reply. Your
MicroBee is under your control and already has
intelligence!

Now let's clean up the program a bit.
Type 50 CLS «CR» This will clear the VDU screen
before
we run the program

Next type
130 PLAY 10,10 «CR»
140 GOTO 50 «CR»

and then type LIST «CR»
the computer should respond with

00050 CLS
00100 PRINT "WHAT IS YOUR NAME, ";A1$
00110 INPUT A1$
00120 PRINT "GLAD TO MEET YOU ";A1$
00130 PLAY 10,10
00140 GOTO 50

Now press RUN «CR» and the program will execute
again.

Notice that the screen now clears before the
computer asks the question. Much tidier isn't it.
Notice that now we play a tone for a short time and
repeat the program. We have now caused the
computer to loop back, ask questions, answer them,
play a tone after clearing its own screen. Not bad
after 10 minutes programming!!!

Supplement to 'Your Computer' February 1982 Page23

Now for a couple of other tricks. Let's try
RENUMbering the program. Recall that Wf? have
used line numbers for the BASIC source file and
until we started editing, the lines started at 100 and
incremented by 1 O lines at a time. Notice also th_at
the program still ran but let's tidy things a little bit by
introducing new feature: LINE RENUMBERING.
With the program file still in memory type
RENUM 1,1 «CR»
and then type
LIST «CR» .
and notice that the program now starts at line
number 1 and numbers the lines consecutively.

Perhaps you would like to save your J]rogram on
cassette tape to avoid having to retype u at a later
date. Connect a small cassette tape recorder to the
appropriate leads from the MICRO-BEE power pack,
insert a blank cassette, plug in (and don't forget to
turn on!) to the 240 Volt supply, press down the
PLAY and RECORD buttons and make sure the tape
runs past the clear leader section till the recording
head is well onto the oxide (brown) section of the
tape.
Then type

SAVE "PROG1" «CR» . .
Notice the display will show a '*' symbol which will
slowly flash on and off as the tape is bei_ng recorded.
When the dumping of the program rs finished, the
Micro Bee will sound a tone (the same as � G) and
reprompt ready to accept the next instruction.

To reload the program at a later time, connect the
recorder as before but DO NOT PRESS PLAY or
RECORD.
Type

LOAD «CR»
Then press the PLAY button on the tape recorder
(rewind the tape to the start if you have not already
done so) and watch the VDU screen. As the tape
starts to load you will see the file name appear _on
the screen and as the loading continues you w1I_I see
the '*' slowly flashing ir.dicating that the load rs in
progress. wnenthe program has finished loading
the loudspeaker will sound a brief tone and the
BASIC will return to the prompt(>) ready to accept
the next instruction.

compare this
with other

BASICS

Page 24 Supplement to 'Your Computer' February 1982

BASIC applications programs
About these programs ...

The only real way to learn how to be proficient
in programming is to practise. One easy way to
do this is to work through specific examples
which demonstrate certain programming
techniques.

The programs detailed below have been
carefully selected to enable you to evaluate
MicroWorld BASIC for the MicroBee.

To simplify the typing required to get these
programs running, you can eliminate any REM
statement and anything following in the same
line.

TUNES is a short program designed to
demonstrate the music making facilities of the
MicroBee using data and read statements. Why not
try writing your own tunes.

To add more tunes, start inserting lines at line 80,
starting with a
00080 DAT A -2
to separate the new tune from the 'on top of old
smokey', , Y' and then add your notes as described under PLA
in the BASIC section.

00005 DATA "Westminster chimes"
00010 DATA 13,9,11,4,0,4,11,13,9
00011 DATA -2 : REM end of first tune
00020 DATA "Twinkle twinkle ... "
00030 DATA 4,4,-3,11,11,-3,13,13,11
00031 DATA -2
00035 DATA "On top of old smokey"
00040 DATA 4,4,8,11,16,16,16,13,13,13
00050 REM
00060 REM Insert new tunes in here after line 70
00070 REM
00999 DATA -1 : REM end of ALL tunes
09000 READ AO$
09010 CLS:PRINT A0$:CURS O
09100 FOR 0=1 TO 0300:NEXT O
10000 READ A
1 0009 IF A=-2 THEN 9000
10010 IF A=-1 THEN END
10020 IF A>=O THEN PLAY A ELSE GOSUB 20000
10030 GOTO 1 0000
20000 FOR Z=O TO 20:NEXT Z
20010 RETURN

ART is a simple LORES graphics program, which
produces quite abstract images on the VDU screen.

00100 PRMT()
00110 CLS
00120 CURS 200:UNDERLINE:PRINT "MICRO-BEE
ABSTRACT ART PROGRAM"
00130 PRINT:PRINT:NORMAL: PRINT" Prints
various random patterns of rectangles"
00140 PRINT" Please give me your
requests":PLAY 10,3:PLAY 12,4:PLAY 15,5
00150 IN PUT" What is your name, please_? ";N5$
00160 FOR W=1 TO 1500:N EXT W: REM Time
delay . .
001 70 IN PUT " Hew many different sized
rectangles (1 to 4)? ";F
00180 IF F<O OR F>4 THEN170
00190 IN PUT'' How many rectangles do you want
in the picture (1 0 to 30) ? ";O
00200 IF (0<10) OR (0>30) THEN 190
00210 CLS:LORES :Z=1
00220 PLAY INT(RND*24),4:M=INT(RND*119)
00230 N=INT(RND*39)
00240 P=INT(RND*FLT(F))

00250 IF M<8 THEN 490
00260 IF N<8 THEN 480
00270 S= N-2*P
00280 FOR R=M-2*P TO M+2*P
00290 SET(R,S)
00300 NEXT R
00320 FOR S=N-2*P TO N+2*P
00330 SET(R,S)
00340 NEXT S
00360 FOR R=M+2*P TO M-2*P STEP -1
00370 SET (R,S)
00380 NEXT R
00400 FOR S=N+2*P TO N-2*P STEP -1
00410 SET (R,S)
00420 NEXT S
00430 2=2+1
00440 IF Z=Q+1 Tl-;f EN 460
00450 GOTO 220
00460 CURS O:PRINT "Drawn by ";N5$;" age 5"
00470 END •
00480 N=8:GOT0270
00490 M=8_:__GOT0260

CHEQUE is a program which will help you
balance your personal cheque account.

00100 CLS
00110 PR I NT " Personal Cheque Book
Reconcilliation"
00120 REM - determine if positive dollar amount
entered
00130 PRINT
00140 PRINT" What is the closing balance from
the statement ":
00150 INPUT E1
00160 REM- test for valid input
00170 IF E1*100=1NT(E1*100) THEN 210
00180 REM- invalid amount. display error, loop to
reenter
00190 GOSUB 790
00200 GOT0140
00210 PRINT
00220 PRINT" Enter amount of each deposit not
shown on the statement"
00230 PRINT" (Enter zero when all outstanding
deposits are entered)"
00240 01 =0
00250 IN PUT" "; A 1

00260 REM - are all deposits entered?
00270 IF A1=0 THEN 350
00280 REM - no, test for validity
00290 IF A1>0 THEN 330
00300 REM - invalid, print standard error, loop to
reenter
00310 GOSUB 830
00320 GOTO 250
00330 D1=D1+A1
00340 GOTO 250
00350 PRINT
00360 PRINT" Enter amount of each cheque not
on statement"
00370 PRINT" (Enter zero when all outstanding
cheques are entered)"
00380 C1=0
00390 IN PUT" "; A 1
00400 REM - are all outstanding cheques entered?
00410 IFA1=0THEN 490
00420 REM- test for valid entry
00430 IF A1 >O THEN 470
00440 REM- invalid, print standard error, loop to
reenter
00450 GOSUB 830
00460 GOTO 390
00470 C1=C1+A1
00480 GOT0390
00490 PRINT
00500 PRINT"Account Balance =+$";(E1+D1)-C1.
00510PRINT
00520 PRINT "Enter your chequebook balance":
00530 INPUT 81 '
00540 PRINT"Enter the amount of service charges"·
00550 INPUT S1 '
00560 REM- test for valid entry
00570 IF S1 >=O TH EN 610
00580 REM - invalid. print standard error, loop to
reenter
00590 GOSUB 830
00600 GOTO 540
00610PRINT
00620 PRINT" Adjusted Account Balance= $"·B1-
S1 '
00630 Z1=E1+D1-C1+S1-B1:IF 21=0 THEN 710
00640 PRINT
00650 PRINT "Your account is out of balance"
00660 PRINT" Make sure you have included all
transactions against"
00670 PRINT" this account, including automatic
deposits, interest"
00680 PR I NT" payments and authorized
withdrawals."
00690 REM
00700 REM-end of program or restart?
00710 PRINT
00720 PRINT"Would you like to rerun this program
for new data Y/N?"
00730 INPUT Z1 $
00740 IF Z1$="y" THEN 100
00750 IF 21$="Y" THEN 100
00760 IF Zi $="N" THEN 870
00770 IF 21 $="n" THEN 870
00780 GOTO 720
00790 PRINT
00800 PRINT" error: enter a valid dollar amount
only!"
00810 PRINT
00820 RETURN
00830 PRINT
00840 PRINT" error: enter a positive valid dollar
amount only."
00850 PRINT
00860 RETURN

• 00870 END

Supplement to 'Your Computer' February 1982 Page25

CLOCK is a fascinating program demonstrating
the use of mixed HIRESolution graphics and text.

It simulates an analog clock, and if you read the
REMarks, you will see how to adjust the time, and
the speed of the clock. This program is a sure
winner to impress your friends.

00100 REM This is a mixed hires graphics and text
demonstration
00110 REM program for the MicroBee.
00120 REM 6/1 /82
00130 REM
00140 REM To speed up clock, type 5 ... 9 (9 is
fastest)
00150 REM to slow down clock, type 5 ... 1 (1 is
slowest)
00160 REM to exit program, type q
00170 REM to move the minute hand on, type m
00180 REM this also resets the "seconds" timer
00190 REM to move the hour hand on, type h
00200 REM
00210 0=1 : REM 0=2000 : rem large main timing
delay
00220 P1 =355/113 : REM close approximation to Pl
00230 Z=5: REM small delay
00240 R6=80:R7=100: REM set lengths of small
and large hands
00250 CLS
00260 HIRES
00270 REM print the numbers on the clock ...
00280 CURS 32,8:PRINT"*"
00290 CURS 32,2:PRINT"12"
00300 CURS 32,14:PRINT"6"
00310 CURS 49,8:PRINT"3"
00320 CURS 15,8:PRINT "9"
00330 CURS 40,3:PRINT"1"
00340 CURS 46,5:PRINT "2"
00350 CURS 46,11 :PRINT "4"
00360 CURS 40,13:PRINT "5"
00370 CURS 24,13:PRINT "7"
00380 CURS 18,11 :PRINT "8"
00390 CURS 18,5:PRINT "10"
00400 CURS 24,3:PRINT "11"
00410 CURS O
00420 A0=0:80=0: REM reset hours and minutes
00430 REM hours jumps to here
00440 GOSUB [BO] 1000
00450 REM minutes to here
Page 26 Supplement to 'Your Computer' February 1982

This great clock
proqramme tells you
it's time fOr a Micro Bee

00460 GOSUB [AO] 2000
00470 Y=O
00480 GOSUB 5000 : REM look at keyboard
00490 Y=Y+1 :IF Y<D THEN 480
00500 FOR Y=O TO 1 OO*Z
00510 NEXTY
00520 GOSUB [AO] 2000
00530 AO=AO+ 1
00540 REM Chime on the quarter hour ...
00550 IF A0=15 OR A0=30 OR A0=45 THEN
PLAY 12
00560 IF A0=<60 THEN 450
00570 GOSUB [BO] 1000
00580 A0=0:80=80+1
00590 REM Play Westminster Chimes
00600 PLAY 13:PLAY 9:PLAY 11 :PLAY 4:PLAY
O:PLAY 4:PLAY 11
00610 PLAY 13:PLAY 9
00620 FOR Y=1 TO INT(BO):PLAY O:PLAY 1 :NEXT Y
00630 IF 80<12 THEN 430
00640 PLAY 1+1NT(RND*24)
00650 GOTO 420
00660 GOTO 660
01000 REM This draws small hand at posn pO
01002 VAR (PO)
01010 TO=P1 /6*(3-PO)-P1 /150
01020 PLOT!
251 +INT(14*COS(T0)),136+1NT(14*SIN(TO)) TO
251 + I NT(R6*COS(T0)),136+ I NT(R6*.688*SI N(TO))
01050 RETURN
02000 REM This draws big hand at posn pO
02002 VAR (PO)
02010 TO=P1 /30*(15-PO)+P1 /150
02020 PLOT!
251 +INT(14*COS(T0)),136+1NT(14*SIN(TO)) TO
251 + I NT(R7*COS(T0)),136+ I NT(R7*.688*SI N(TO))
02050 RETURN
05000 REM look and keyboard and do delay
05010 A1$=KEY$•
05020 IF A1 $=""THEN RETURN : REM if no key
pressed
05030 IF A1$ >= "O" AND A1$ <= "9" THEN LET
Z=INT(VAL(A1$))
05040 IF A1 $="q" THEN CLS:END:REM quit clock
program
05050 REM allow the use of the "h" key for setting
hours
05060 IF A 1 $="h" THEN GOSU B [BO] 1000: LET
80=80+1:GOSUB[BOJ1000:IF 80=12 THEN LET
80=0

05070 REM and the "m" key for minutes
05080 IF A1 $="m" THEN LET Y=O:GOSUB [AO]
2000:LET AO=A0+1 :GOSUB[AOJ 2000:IF A0=60
THEN LET AO=O
05090 RETURN

This program gives you a way of entering machine
language programs into some sp�,re memory high
up in the MicroBee "memory map . This BASIC
program was designed to enter a "glass typewriter"
machine language program.

The bytes to be entered are as follows:
205,6,128,71,205,12,128,195,0,244,0

For different length programs (if you know Z80
machine code) you could alter the "TO" value in
lines 100 and 140.

00090 REM *** this program writes machine code
programs***
00091 REM *** and stores them at F400 (62464)***
00092 REM *** to operate type USR (62464,0) ***

00093 REM
00100 FOR 8=62464 TO 62474
0011 0 IN PUT "type in a byte";A
00120 POKE B,A
00130NEXTB
00140 FOR W=62464 TO 62474
00150 PRINT PEEK (W)
00160NEXTW
00170 END

To run the machine language program AFTER you
have used the BASIC program to enter the bytes,
type (in the immediate mode),
PRINT USR(62464) «CR»

Then type any key and see it appear on the VDU
without response from the BASIC. Press REPT to
return to BASIC.

MATRIX is an example of the complex arithmetic
handling powers of MicroWorld BASIC. It rs also a
good illustration of the use of arrays. .

The best way to see how this program works 1� to
consider the following example, and then play with
the program yourself.

YOU: RUN «CR»
BEE: Enter command as follows ...

->
YOU: a= «CR» Or any lower case a-] variable
name
BEE: Number of rows?
YOU: 2 «CR»
BEE: Number of columns?
YOU: 2 «CR»
BEE:? · t' YOU: 1 «CR» 2 «CR» Entering data into ma nx

3 «CR» 4 «CR»
BEE:->
YOU: b=a*a «CR» Matrix multiplication
BEE:->
YOU: b «CR» ·Print matrix b (result of a*a)

00001 REM "Matrix arithmetic package for Z80
MicroWorld Basic"
00003 REM
00005 REM NUMBER OF POSSIBLE VARIABLES
00010 N=10
00015 REM MAXIMUM NUMBER OF ROWS OR
COLUMNS P__ER MATRIX ..
00020 S=10
00110 DIM AO(N,'S,S), RO(S,S), R(N), C(N)
00120 REM SET ALL MATRICES TO 0*0

00130 FOR 1=1 TO N
00140 R(l)=O: C(l)=O
00150 NEXT I
00200 CLS
00210 PRINT "Enter command as fo!lows ... "
00215 PRINT "1) print a matrix 'a'"
00220 PRINT "2) entry 'a='"
00230 PRINT "3) assignment between variables 'a=b'"
00240 PRINT "4) matrix multiplication 'a=b*c'"
00245 PRINT "5) scalar multiplication 'a=b.<real>'"
00250 PRINT "6) matrix addition 'a=b+c'"
00260 PRINT
01000 REM GET INPUT STRING AND DO AS ASKED
01010 INPUT"->" CO$
01020 IFCO$=""THEN 1000
01025 IF C0$="quit" THEN END
01030 IF C0$="help" THEN 200
01070 P=1 : REM POSITION IN STRING SO FAR
01100 REM GET FIRST VARIABLE
01110 GOSUB 40400
01120 IF X=O THEN 9000: REM ERROR***
01130 A=X
02000 IF P-1 = LEN(C0$) THEN 4000:REM PRINT A
MATRIX
02010 GOSUB 40000: REM SKIP SPACES
02020 IF C0$(;P,P) <> "=" TH EN 9200
02050 IF P=LEN(C0$) THEN 3000: REM GET A
MATRIX
02060 GOSUB 40000: REM SKIP SPACES
02070 IF C0$(;P,P)=' 'THEN 3000:HAD SPACES AFTER
= SO GET MAT
02100 P=P+1 : REM POINT TO NEXT VARIABLE
CHAR
02110 GOSUB 40400: REM GET VARIABLE NUMBER
IN X
02120 IF X=O THEN 9000: REM ERROR***
02130 B=X: REM FIRST ARGUMENT OF SOURCE
02135 IF R(B) = 0 THEN 9500: REM*** UNASSIGNED

Supplement to 'Your Computer' February 1982 Page27

02140 IF P-1 = LEN(C0$) THEN 5000: REM S1RAIGHT
ASSIGNMENT
02180 REM IT IS AN OPERATION!!
02185 GOSUB 40000:REM SKIP SPACES
02190 IF C0$(:P,P)="+" THEN 6000: MATRIX
ADDITION
02200 IF C0$(;P,P)="*" THEN 7000: MATRIX
MULTIPLICATION
02210 IF C0$(:P,P)="." THEN 8000: SCALAR
MULTIPLICATION
02220 GOTO 9600
03000 REM
03010 REM GET A MATRIX
03020 INPUT "Number of rows?" R(A)
03030 IF R(A) <1 OR R(A) > S THEN 3020
03040 REM GET NO. COLUMNS
03050 INPUT "Number of columns?" C(A)
03060 IF C(A) < 1 OR C(A) > S THEN 3050
03070 REM NOW GET ARRAY
03080 FOR 1=1 TO R(A)
03090 FOR J=1 TO C(A)
03100 INPUT AO(A,J,1);: PRINT
0311 0 N EXT J '
03120 PRINT
03130 NEXT I
03140 GOTO 1000
04000 REM
04010 REM PRINT A MATRIX
04020 GOSUB [A] 40200
04030 GOTO 1000
05000 REM
05010 REM STRAIGHT ASSIGNMENT
05040 FOR 1=1 TO R(B)
05050 FOR J=1 TO C(B)
05060 AO(A,J,I) = AO(BJ I)
05070 NEXT J ' '
05080 NEXT I
05090 R(A) = R(B)
05100 C(A) = C(B)
05110 GOTO 1000
06000 REM MATRIX ADDITION
06010 IF P=LEN(C0$) THEN 9300: REM ERROR***
MISSING ARG
06020 P=P+1
06030 GOSUB 40400: REM GET THIRD ARG IN X
06040 IF X=O THEN 9000
06050 REM NEED BAND XTO HAVE SAME
DIMENSIONS
06055 IF R(X)=O THEN 9500
06060 IF R(X) <> R(B) OR C(X) <> C(B) THEN 9400
06070 FOR 1=1 TO R(B)
06080 FOR J=1 TO C(B)
06090 AO(A,J,I) = AO(B,J,I) + AO(X J 1)7+1-1
06100 NEXT J ' '
06110 NEXT I
061 20 R(A) = R(B)
06130 C(A) = C(B)
06140 GOTO 1000
07000 REM MATRIX MULTIPLICATION
07010 REM CHECK FOR THIRD ARGUMENT
07020 IF P=LEN(C0$) THEN 9300: REM ERROR***
MISSING ARG
07030 P=P+1
07040 GOSUB 40400: REM GET THIRD ARG IN X
07050 IF X=O THEN 9000: REM*** ERROR BAD
VARIABLE NAME
07060 REM CHECK THAT ROWS/ COLUMNS WILL
WORK
07065 IF R(X)=O THEN 9500 :REM*** UNASSIGNED
ERROR
07070 IF C(B) <> R(X) THEN 9700
07090 FOR 1=1 TO R(B)
07100 FOR J=1 TO C(X)
07105 SO=O
07110 FOR K=1 TO R(X)
07120 SO=SO+AO(B,K,l)*AO(XJ K)
07130 NEXT K ''

Page 28 Supplement to 'Your Computer' February 1982

07140 RO(J,l)=SO
07150 NEXT J
07160 NEXT I
07200 REM ASSIGN RESULT TO DESTINATION A
07210 FOR 1=1 TO R(B)
07220 FOR J=1 TO C(X)
07230 AO(A,J ,I)= RO(J ,I)+ 1-1
07240 NEXT J
07250 NEXT I
07260 REM ASSIGN CORRECT DIMENSIONS TO A
07270 R(A) = R(B)
07280 C(A) = C(X)
07 400 GOTO 1000
08000 REM SCALAR MULTIPLICATION
08010 IF P=LEN(C0$) THEN 9300
08015 P=P+1
08020 NO$ = C0$(;P)
08030 N1 = VAL(N0$)
08050 FOR I = 1 TO R(B)
08060 FOR J = 1 TO C(8)
08070 AO(A,J,I) = N 1 *AO(B,J,I)
08080 NEXT J
08090 NEXT I
08100 R(A) = R(B)
08110 C(A) = C(B)
08120 GOTO 1 000
08999 STOP
09000 PRINT C0$(;P,P); "is not a variable"
09010 GOTO 9900
09200 PRINT "Missing equals ... "
0921 0 GOTO 9900
09300 PRINT "Missing argument"
09310 GOTO 9900
09400 PRINT "Cannot add matrices of different
dimensions"
09410 GOTO 1000
09500 PRINT "Unassigned variable"
09510 P=P-1
09520 GOTO 9900
09600 PRINT "Not an operation"
09610 GOTO 9900
09700 PRINT "Cannot compose due to mismatched
codomain and domain"
09710 GOTO 1000
09900 PR I NT CO$
09905 IF P=1 THEN GOTO 9950
09910 FOR 1=1 TO P-1
09920 PRINT""·
09930 NEXT I '
09950 PRINT",.."
09960 GOTO 1000
40000 REM SUBROUTINE TO SKIP SPACES
40010 IF P = LEN(C0$) TH EN 40090
40020 REM OK TO SEE IF THERE ARE SOME
SPACES
40030 IF C0$(;P,P) <>""THEN 40090: REM NOT A
SPACE
40040 P=P+1
40050 GOTO 40030
40090 RETURN
40095 REM
40200 REM
40210 REM PRINT MATRIX [XJ
40220 VAR(X)
40230 IF R(X)=O THEN PRINT "Unassigned": RETURN
40240 REM
40250 FOR 1=1 TO R(X)
40260 FOR J=1 TO C(X)
40270 PRINT AO(X,J,I),
40280 NEXT J
40290 PRINT
40300 NEXT I
40310 RETURN
40400 REM
40410 REM GET A VARIABLE NAME IN X FROM CO$
40420 REM RETURNING O IF ERROR '
40430 REM USES CO$, P, X
40440 GOSUB 40000: REM SKIP SPACES

40450 IF C0$(;P,P) <"a" OR C0$(;P,P) >"z" THEN LET
X=O : GOTO 40590
40460 X=ASC(C0$(;P,P)) - ASC("a'1 + 1
40470 IF X>N THEN LET X=O: GOTO 40590
40480 P=P+1
40590 RETURN

DIFF is a program using HIRES graphics and the
PLOT command to show the effect of a secant
approaching a tangent to a parabola.

mustratinp Maths
problems rs no problem
with Microsee. You can
combine words, numbers
and graphics. The best
educational programmes
can be written on the
Microsee.

00100 REM This program illustrates the first principles
00110 REM of differentiation
00120 REM
00140 SD 14 : REM set up for high precision
00150 FNO = 75+(#-250)*(#-250)/150
00160 FN 1 = 75+(#-250)*(#-250)/150
00170 HIRES
00180 V = 4096*15 + 64*14
00190 LO=O : REM set up for no erase after first draw
00200 HIRES
00210 REM draw axes
00220 PLOT 50,0 TO 50,255
00230 PLOT 0,35 TO 511,35
00240 REM draw parabola
00250 FOR X= 100 TO 400
00260 SET X,FNO(X)
00270 NEXT X
00280 P1 = 264 : 01 = 380
00290 PLOT I NT(P1),I NT(FN 1 (P1)) TO I NT(P1),35
00300 POKE V+ I NT(P1 /8),ASCC'x'')
70310 POKE V+1024+1NT(P1/8),0
00320 REM *** let h -> 0
00330 FOR 01 = 01 TO P1+1 STEP-16
00340 PLOTI I NT(01),I NT(FN 1 (01)) TO I NT(01),35
00350 GOSUB [P1 ,01 J 490
00360 POKE V+I NT(01 /8)-1,ASC("x'')
00370 POKE V+INT(01/8),ASC("+')
00380 POKE V+INT(01/8)+1,ASCC'h'')
00390 POKE V+INT(01/8)+2,ASCC' '')
00400 POKE V+INT(01/8)+3,ASC(" ")

00410 FOR Z V+1023+1NT(01/8) TO
V+1027+1NT(01/8)
00420 POKE Z,O
00430 NEXT Z
00440 REM*** ERASE LAST SECANT OR LINE
00441 IF LOO THEN 460
00450 GOSU B [LO,L 1] 560 : PLOTI I NT(L 1),I NT(FN 1 (L 1))
TO I NT(L 1),35
00460 LO=P1 : L1 = 01
00470 NEXT 01
00480 GOTO 480
00490 REM DRAWS A SECANT TH RU P1 OR 01
00500 VAR(X1 ,X2)
00510 EO = 30
00520 IF ABS(X1-X2)<30 THEN LET EO = (70-ABS(X1-
X2))/2
00530 MO= (FN1(X2)-FN1(X1))/(X2-X1)
00540 PLOT! INT(X1-EO),INT(FN1(X1)-EO*MO) TO
INT(X2+ EO),I NT(FN 1 (X2)+ EO*MO)
00550 RETURN
00560 REM CLEAR THE SECANT THRU P1 OR 01
00570 VAR(X1 ,X2)
00580 EO = 30
00590 IF ABS(X1-X2)<30 THEN LET EO = (70-ABS(X1-
X2))!2
00600 MO= (FN1(X2)-FN1(X1))/(X2-X1)
00610 PLOTI INT(X1-EO),INT(FN1 (X1}-EO*MO) TO
I NT(X2+ EO),I NT(FN 1 (X2)+ EO*MO)
00620 RETURN
00630 ENO

Supplement to 'Your Computer' February 1982 Page29

BARS is a typical example of the use of graphics to
present information more effectively than just numbers
alone.

00100 REM This is a LORES graphics demonstration
which
00110 REM accepts input data in numerical form, and
gives
00120 REM a representation of this in BAR CHART form
00130 REM
00140 DIM M0(12): REM Holds the data for each month
00150 CLS
00160 PRINT "Enter your input data for each of the
twelve"
00170 PRINT "months just using integer values"
00175 PRINT "Use numbers less than 10000 please"
00180 PRINT
00190 REM Get the data for each month in turn from
operator
00200 REM and find the maximum at the same time
00210 M1 =0 : REM set maximum to zero for start
00220 A=O : REM index to maximum entry
00230 FOR 1=1 TO 12
00240 PRINT "Data for month ";I;
00250 IN PUT MO(I)
00260 IF MO(l)>M1 THEN LET M1=MO(l):A=I
00270 NEXT I
00280 REM now scale the graph so that the largest
entry,indexed
00290 REM to by A takes up the whole screen
00300 S0=42/M1 : REM use 42
00310 REM now print out the columns
00320 CLS:LORES
00330 FOR 1=1 TO 12
00340 REM fill in one bar
00350 IF INT(SO*MO(l))=O THEN CURS 5*1-2,15: GOTO
410
00360 FOR J=5 TO 12
00370 PLOT 10*(1-1)+J,3 TO 10*(1-1)+J,I NT(SO*MO(I))
00380 NEXT J
00390 REM print the value above the bar ...
00400 CURS 5*1-2,15-INT(SO*MO(l)/42*14+1)
00410 C=INT(MO(I))
00420 PRINT [14 CJ;
00430 NEXT I
00440 CURS 1,16
00450 PRINT" Jan Feb Mar Apr May Jun Jul Aug
Sep Oct Nov Dec";

00455 CURS O
00460 GOTO 460

Page 30 Supplement to 'Your Computer' February 1982

More great programmes
like this one are
available right now for
your Mlcroaee.
Your Microaee comes with an
extended BASIC manual, full
of a huge variety of great
programming ideas.

CUBE, a simple HIRESolution graphics program,
shows the use of the SET routines and the passing of
parameters to subroutines using GOSUB [...] and VAR
commands.

Try it first, and then perhaps you might like to rewrite it
using the PLOT command to see how much faster 1t can
be made to run.

00005 CLS: HIRES
00006 L 1=110 : L2=80
00007 P1 =350 : P2=30
00008 01 =P1 +30 : 02 = 60
00010 GOSUB [P1,P2,L1,L2 J 6000
00020 GOSUB [01 ,02,L1 ,L2 J 6000
00040 GOSUB [P1 ,P2+L2, 01 ,02+L2 J 2000
00050 GOSUB [P1+L1 ,P2+L2, 01+L1 ,02+L2 J 2000
00060 GOSU B [PH L 1 ,P2, 01 + L1 ,02] 2000
00070 GOSU B [P1 ,P2, 01 ,02] 2000
01000 LIST 6000,
01999 GOTO 1999
02000 REM This program draws a line between 2 points
02010 REM with co-ordinates X1 ,Y1 and X2,Y2
02015 VAR(X1 ,Y1 ,X2,Y2)
02020 IF A8S(X2-X1)>ABS(Y2-Y1) THEN GOTO 2200
02030 REM draw y's by ones
02040 IF Y2-Y1 =0 THEN SET INT(X1),INT(Y1):
RETURN
02050 SO= SGN(Y2-Y1)
02060 S1 = (X2-X1)/ABS(Y2-Y1): X3 = X1
02070 FOR Y3 = Y1 TO Y2 STEP SO
02080 X3 = X3 + S1
02090 SET I NT(X3),I NT(Y3)
02100 NEXT Y3
02110 RETURN
02200 REM draws by X's by ones
02210 SO= SGN(X2-X1)
02220 S1 = (Y2-Y1)/ABS(X2-X1) : Y3 = Y1
02230 FOR X3 = X1 TO X2 STEP SO
02240 Y3 = Y3 + S1
02250 SET INT(X3),INT(Y3)
02260 NEXT X3
02270 RETURN
03000 REM This program clears a line between 2 points
03010 REM with co-ordinates X1 ,Y1 and X2,Y2
03015 VAR(X1 ,Y1 ,X2,Y2)
03020 IF ABS(X2-X1)>ABS(Y2-Y1) THEN GOTO 3200
03030 REM clear Y's by ones
03040 IF Y2-Y1 =O THEN RESET INT(X1),INT(Y1):
RETURN
03050 SO= SGN(Y2-Y1)
03060 S1 = (X2-X1)/ABS(Y2-Y1): X3 = X1
03070 FOR Y3 = Y1 TO Y2 STEP SO
0308°0 X3 = X3 + S1
03090 IF INT(Y3)<> FNO(INT(X3)) THEN RESET
I NT(X3),I NT(Y3)
03100 NEXT Y3

03110 RETURN
03200 REM Clears X's by ones
03210 SO= SGN(X2-X1)
03220 S1 = (Y2-Y1)/ABS(X2-X1) : Y3 = Y1
03230 FOR X3 = X1 TO X2 STEP SO
03240 Y3 = Y3 + S1
03250 IF INT(Y3)<> FNO(INT(X3)) THEN RESET
I NT(X3),I NT(Y3)
03260 NEXT X3
03270 RETURN
04000 REM This routine draws a line, but only horizontal
and vertical
04010 VAR(X1 ,Y1 ,X2,Y2)
04020 IF X1=X2 THEN GOTO 4090
04025 Z = I NT(Y1)
04030 FOR W = INT(X1) TO INT(X2) STEP INT(SGN(X2-
X1))
04040 SET W,Z
04050 NEXTW
04060 RETURN
04090 W = INT(X1)
04100 FOR Z = INT(Y1) TO INT(Y2) STEP INT(SGN(Y2-
Y1))
04110 SET W,Z
04120 NEXT Z
04130 RETURN
06000 REM This subroutine draws a square of lengths
11,12
06005 REM with the bottom corner at a1 ,b1
06010 VAR(A 1,81 ,L 1,L2)
06020 REM Draw lett side, then top, then right, then
bottom
06030 GOSUB [A1,B1,A1,B1+L2 J 4000
06040 GOSUB I A1 ,B1+L2,A1 +L1 ,B1+L2 J 4000
06050 GOSUB A1+L1 ,B1+L2,A1+L1 ,B1 J 4000
06060 GOSUB [A1+L1 ,B1 ,A1 ,B1 J 4000
06999 RETURN
65000 END

Turn over the
page to find
out how to get
your Microaee.

Supplement to 'Your Computer' February 1982 Page31

Save Hme and order your
MlcroBee direct on our Hotline
number. Just give your
Bankcard Number and name.
We check stocks and get the
goods on the way.

S+

How to order your
IVlicroBee
(02)487 3798 a

MICROBEE HOTLINE

Postcode ! I [

DELIVERY ADDRESS

Address.

Nome .

5 CHECK STEPS 1, 2, 3 & 4

CAT. NO. DESCRIPTION OF GOODS QTY. PRICE EA. AMOUNT EXTENDED
MicroBee kit Including 16K RAM,

sockets ·and· full Instructions. $399.0(
12 inch Video Monitor $129.5(
Cassette Recorder . $35.00

Blank C10 computer casettes $1.00

16K RAM expansion kit (Includes
powerdown RAM ICs, sockets
and fitting instructions. $120.0(

Handling/packing $6.00 2 POSTAGE CALCULATION
There is a standard charge ot $6.00 tor Postage calcootion postage and packin� on the MicroBee. Heavy

or easily damaged items sue as monitors will be sent
Sub-total freight on via rood freight. It you live near a pickup

station. we con send items via overnight treightbag tor
Insurance add $7.50 - anvwhere in Australia.

$1 per $100
NLY AMOUNT

ENCLOSED

Applied Technology Ply Ltd
- Send your order to:

PO Box 311, Hornsby 2077
Showroom/Office at 1A Pattison Ave. Waltara NSW
Hours: 9-5 Monday to Saturday

1
Phone: (02) 487 2711 Telex: APPTEC AA72767

PLEASE DETAIL YOUR REQUIREMENTS BELOW

OFFICE USE O
TPN NUMBER

Customers please note: Stocks
of the M icrofsee are expected to be
available mid February. Please
phone to check stocks before
ordering.

3 JMETHOD OF PAYMENT Money order o
Crossed cheque D

. Bankcard D
• Pleose debit my Bankcard

Bankcard number

.
Cardholders • signature '

Nome ' ... '
VISA

Expires end I

EASY
FNE
STEP
MAIL

ORDER
FORM

Page 32 Supplement to 'Your Computer' February 1982 Glover & Assoc AT/13

