

 ATOMIC THEORY AND PRACTICE

 Contents

 Introduction - 1

 BASIC PROGRAMMING

 Chapter 1 - Start Here 3

 2 - Calculating in BASIC 11

 3 - Planning a Program 17

 4 - Writing a BASIC Program 23

 5 - Loops 33

 6 - Subroutines 39

 7 - Arrays and Vectors 45

 8 - Strings 57

 9 - Reading and Writing Data 67

 10 - More Space and More Speed 73

 11 - Advanced Graphics 79

 12 - What to do if Baffled 91

 ASSEMBLER PROGRAMMING

 Chapter 13 - Assembler Programming 95

 14 - Jumps, Branches, and Loops 105

 15 - Logical Operations, Shifts, and Rotates 111

 16 - Addressing Modes and Registers 117

 17 - Machine-Code in BASIC 123

 REFERENCE SECTION

 Chapter 18 - ATOM Operating System 131

 19 - Cassette Operating System 139

 20 - BASIC Statements, Functions, and Commands 143

 21 - BASIC Characters and Operators 155

 22 - Extending the ATOM 161

 23 - Mnemonic Assembler 171

 24 - Assembler Mnemonics 181

 25 - Operating System Routines and Addresses 191

 26 - Syntax Definition 199

 27 - Error Codes 205

 Index - 211

1

Introduction
This manual explains how to connect up the ATOM, and how to program it

in BASIC or Assembler. The manual is arranged in three sections

printed on different coloured paper. If you have never programmed

before you should read the BASIC section, on plain paper, starting

from Chapter 1; but be warned that you are setting off on an adventure

which will require some changes of attitude towards computers. The

only way to learn the art of programming is by practice, and so every

section of this manual includes many example programs which illustrate

the concepts being explained. These should be typed in and tried out,

even if at first you do not fully understand how they work. By the end

of chapter 4 you will be able to write your own programs for many

different types of problem, and you may wish to stop there. The

subsequent chapters, 5 to 12, deal with progressively more advanced

features of the ATOM's BASIC.

 If you have already programmed in BASIC you may prefer to turn to

chapters 20 and 21 in the reference section; these contain a complete

summary of all the BASIC statements, functions, commands, and

operators. You will be pleased to discover a number of extensions in

ATOM BASIC that are not found in other BASICS.

 If you want to learn to program in Assembler you should turn to

the second section of the manual which is printed on coloured paper,

and read from chapter 13 onwards. Readers experienced in Assembler

programming can jump to chapter 23 in the reference section, which

gives a concise description of the ATOM assembler.

 The third section of the manual, printed on plain paper, is the

reference section. It contains a summary of all the ATOM's facilities,

a listing of the special addresses in the ATOM, and the error codes.

 If you have a minimal ATOM you will be able to run all programs

whose sizes are given as less than 512 bytes, or which are so short

that no size is given. Longer programs will require additional memory,

but many programs can be reduced in size by using the abbreviations

explained in chapter 10.

Acknowledgements

The preparation of this manual would not have been possible without

the continuous assistance of everyone at Acorn. In particular I am

grateful to Roger Wilson for providing details of the operation of the

BASIC interpreter, and for assistance with editing the source of this

manual; to Nick Toop for explaining many details of the ATOM's

circuitry; and to Laurence Hardwick for testing the example programs.

I would also like to thank the many people who provided comments on

previous drafts of the manual.

 The following example programs were provided by Roger Wilson:

Curve Stitching in a Square, Tower of Hanoi, Eight Queens, Prime

Numbers, Arbitrary Precision Powers, Day of Week, Random Rectangles,

and Renumber; and the following by Nick Toop: Simultaneous Equations,

Encoder/Decoder, Three-Dimensional Plotting, and Saddle Curve.

 The manual was prepared and edited on an Acorn System Three, and

the final artwork was prepared using the Acorn Text Processing

Package.

2

 CONNECTIONS TO ATOM

ATOM KEYBOARD

3

1 Start Here
If you bought the ATOM ready built, together with a power supply and a

cable to connect it to a TV set, then carry on reading. Otherwise you

should refer to the Technical Manual for details of how to assemble an

ATOM kit, and for details of the required accessories.

 The ATOM connects to the aerial socket of an ordinary

black-and-white or colour TV set. The ATOM will not affect the normal

operation of the TV in any way. Connect the UHF output from the ATOM

to the aerial socket of the TV set; see Fig. 1. Connect the ATOM's

power supply to a mains socket, and plug the power connector into the

back of the ATOM; again, see Fig. 1. Press the key marked BREAK on the

top right of the ATOM's keyboard. Switch on the TV set, and turn the

set's volume control down. The ATOM makes use of a TV channel that is

not occupied by any TV stations, and it is necessary to tune to this

channel in order to get the correct display from the ATOM. If the TV

set you are using has push buttons to select stations, choose an

unused button and tune the TV by rotating the button. If the TV has a

single numbered tuning dial, turn the dial to somewhere near channel

36. Tune in the TV set until the screen is black, with the following

display in the top left-hand corner of the screen:

ACORN ATOM

>X

Adjust the contrast and brightness controls so that the letters are

clearly legible, and tune the TV set carefully until the letters are

sharp and clear.

 The '>' sign is called the ATOM's 'prompt'. It indicates that the

computer is waiting for something to be typed in; a command, perhaps,

or a program. The white rectangle, 'X', is called the 'cursor'; it

indicates where on the screen the next character you type in will

appear.

1.1 What the ATOM Can Do

The ATOM understands the following special words and symbols:

Commands

LIST, LOAD, NEW.

Functions

ABS, BGET, CH, COUNT, EXT, FIN, FOUT, GET, LEN, PTR, RND, TOP.

Connectives

AND, OR, STEP, THEN, TO.

4

Statements

BPUT, CLEAR, DIM, DO, DRAW, END, FOR, GOSUB, GOTO, IF, INPUT, LET,

LINK, MOVE, NEXT, OLD, PLOT, PRINT, PUT, REM, RETURN, RUN, SAVE, SGET,

SHUT, SPUT, UNTIL, WAIT.

Operators

!, #, $, &, *, +, -, /, :, < =, >, ?, \, <>, < >=.

These words and symbols will be explained over the course of the next

12 chapters; for the moment just observe that many of these words have

an obvious meaning; for example, try typing:

 PRINT "HELLO"

after the '>' prompt sign. Note that the quotation marks are obtained

by holding down the SHIFT key and typing the '2' key. Now type RETURN

to indicate that the line is finished, and the ATOM will do just that:

HELLO>x

To perform calculations you just need to type PRINT followed by the

expression you want to evaluate. For example, try:

 PRINT 7+6*2

When you type RETURN the answer will be printed out. You can try

typing anything you like, but any words not on the above lists will

probably cause an error. For example, try typing:

 HELLO

after the ATOM's '>' prompt. The ATOM will reply with a 'bleep' and

will print:

 ERROR 94

which means that HELLO is not one of the statements or commands that

the ATOM understands.

1.2 A Demonstration

Now that you are in control of your ATOM you may like a quick

demonstration of some more complicated things that it can do. No

attempt is made here to explain how these examples work; for that you

will have to read the rest of the first section of this manual.

 You can make ATOM do a lot of typing with very little effort; try

entering:

 DO PRINT "ATOM-"; UNTIL 0

Note the difference between the '0' of DO, which is the letter '0',

and the '0' at the end of the statement, which is the digit '0' on the

top row of the keyboard. You will have to type the ESC (escape) key,

which is at the top left of the keyboard, to stop this program.

 Now try typing in the following line:

 DO PRINT $RND&3+8,$8,$128; UNTIL 0

You will need to use the SHIFT key to get some of the special symbols.

This program is longer than one line of the screen, but just keep

typing and it will appear on a second line. Then press RETURN to run

the program. Again, you will have to type ESC to stop this program.

 To demonstrate the graphics commands type:

 CLEAR0; MOVE 10,0; DRAW 60,50

and the ATOM will draw a line on the screen. If you feel like trying a

more complicated graphics program, type in the following:

5

 CLEAR0;MOVE32,24;Y=1;DOPLOT1,0,Y;PLOT1,Y,0;Y=-Y-2*Y/A.Y;U.0

Press ESC to get back the ATOM's prompt.

 To demonstrate the ATOM's assembler enter the following line after

the prompt:

 P=320;[INX; LDA 0,X; STA #B002; JMP 320;]

An assembler listing will be printed out, and the machine code will be

put into memory at 320. To execute the program, type:

 LINK 320

and the ATOM will make a buzzing noise. It is playing the random

contents of its memory through its internal loudspeaker. To stop the

program you will have to type BREAK, because it is a machine-code

program.

 You may question the usefulness of these examples, but they do

illustrate the wide range of different tasks the ATOM is capable of.

These 'programs' all fitted onto two lines of the display; to see what

you will be able to do with a longer program take a look at the many

examples later on in this manual.

1.3 The Keyboard

The ATOM keyboard is designed to the standard layout generally

accepted in the computer industry; see Fig. 2. In most respects it is

just like the keyboard of an ordinary typewriter, but there are some

important differences. For a start there are several keys not found on

typewriters, such as DELETE, REPT, CTRL, and BREAK. The purpose of

each of these keys will be explained in the following sections.

 Another difference is that the letters A-Z will appear in

capitals, rather than lower-case, when they are typed by themselves.

Try typing in the letters 'ABC' and observe that they appear, as you

type them, on the screen:

>ABCx

From now on, in the examples, the cursor will not be drawn in for

simplicity.

1.3.1 SHIFT

Some keys carry two legends. For example, each digit key (except 0)

also has a special symbol or punctuation mark above it. The lower

symbol on each of these keys is obtained by simply typing that key;

the upper symbol is obtained by holding one of the SHIFT keys down,

and typing that key. This aspect of the keyboard is just like a

typewriter.

 If the SHIFT key is held down in conjunction with one of the keys

bearing a single legend, such as A-Z and 0, [, etc, then the character

will appear inverted; i.e. as a black character on a white square.

Inverted A-Z correspond to lower case letters, and will be represented

by lower case letters a-z in this manual. Inverted @, [, \ etc. will

be represented by @, [, \ etc.

1.3.2 LOCK

The LOCK key, when pressed on its own, changes the way the SHIFT key

operates with the letters A-Z. Initially the keyboard will give

inverted A-Z in conjunction with the SHIFT key, and plain A-Z

otherwise. If the LOCK key is now pressed once the keyboard will

normally give inverted A-Z, and will give plain A-Z only when the

SHIFT key is held down. Pressing LOCK again will revert to the

previous state.

6

1.3.3 DELETE

The advantage of a TV screen over a piece of paper is that mistakes

can be corrected without trace of the error. The DELETE key will erase

the last character on the line, and the cursor will back up one space.

Mistakes can thus be deleted and retyped with little effort.

1.3.4 RETURN

The RETURN key is a signal to the computer that you have finished

typing in a line of characters. The cursor will move to the start of

the next line, and the computer may respond to what you have typed by

typing out a reply.

1.3.5 Repeat - REPT

If the 'repeat' key, marked REPT, is held down with another key, that

key is typed repeatedly. REPT is useful in conjunction with DELETE to

erase several characters very rapidly. Note that pressing REPT on its

own will have no effect.

1.3.6 Control - CTRL

There are several special functions available from the keyboard which

are obtained by typing certain keys with the 'control' key - marked

CTRL - held down. Only the following two control functions will be

mentioned here:

CTRL-G gives a bleep in the ATOM's loudspeaker.

CTRL-L clears the screen.

1.3.7 BREAK

The BREAK key will reset the computer, and return it to the state it

was in just after switching on. It should not normally be necessary to

type BREAK, but some assembler programs can cause loops which cannot

be stopped in any other way. Note that the contents of memory are

preserved when BREAK is typed, and any stored program can be

recovered.

1.4 Scrolling

When the cursor reaches the bottom of the screen further lines typed

in will cause the screen to 'scroll'; every line is shifted up so that

you always see the last 16 lines of what has been typed, and the top

line of text on the screen will be lost.

1.5 Storing Text

Any line typed after the ATOM's '>' prompt which starts with a number

is not executed, but stored as text in the ATOM's memory. Any type of

input can be stored in this way; it could be the text of a document, a

program in BASIC, an assembler program, or data for a program. This

section shows how to enter a piece of text, which can then be stored

on cassette, edited, or output to a printer. The same method would be

used for entering a program.

 The line must start with a line number, which can be any number

within the range 1 to 32767, and there is no need to use consecutive

line numbers for consecutive lines; indeed, it is wise to choose line

numbers spaced by about 10 as you will soon realise. After the line

number you should type the line of text. For example, enter the

following:

7

 10 IN XANADU DID KUBLA KHAN

 20 A STATELY PLEASURE-DOME DECREE:

 30 WHERE ALPH, THE SACRED RIVER, RAN

 40 DOWN TO A SUNLESS SEA.

Remember to type RETURN at the end of each line. Each line number can

be followed by up to 64 characters; if you try to type more than 64

characters the ATOM will refuse to proceed until you have deleted some

characters.

 The reason for spacing line numbers somewhat apart is that it is

then a simple matter to insert new lines between existing lines. For

example, to insert a line before line 40, type:

 36 THROUGH CAVERNS MEASURELESS TO MAN

The computer will sort the lines into the right order, according to

their line numbers, irrespective of the order in which you entered

them.

1.6 Commands

Commands typed in after the '>' prompt, without a preceding line

number, and followed by RETURN, are executed immediately by ATOM

rather than being stored in its memory. For example, now type the

command:

 LIST

This will cause the stored text to be typed out:

 10 IN XANADU DID KUBLA KHAN

 20 A STATELY PLEASURE-DOME DECREE:

 30 WHERE ALPH, THE SACRED RIVER, RAN

 36 THROUGH CAVERNS MEASURELESS TO MAN

 40 DOWN TO A SUNLESS SEA.

There are several options with the LIST command. For example:

 LIST 10 will list line 10 only.

 LIST 20,40 will list lines 20 to 40 inclusive.

 LIST 20, will list line 20 onwards.

 LIST ,30 will list up to line 30.

A listing can be stopped by typing ESC (escape).

1.7 Editing

One powerful feature of the ATOM's text and program storage is that

stored lines can be modified very simply by typing the same line

number followed by the new version. For example, to change line 20 in

the text just type:

 20 NEW LINE TWO

and try listing the program again to see the effect.

To delete a line simply type the line number followed by RETURN.

1.8 Other Commands

Some other useful commands are described here:

NEW will clear the stored text so that a new piece of text can be

typed in. It should always be typed before entering a new piece of

text.

OLD can be typed after typing BREAK to retrieve the text previously in

8

memory. Note that you should only type OLD if there is already text in

memory.

1.9 Errors

By now you the ATOM will probably have made a 'bleep' followed by the

message:

ERROR X

where X is the error code number. There are two possible reasons for

errors:

1. You typed something, probably a command, that the ATOM was not

expecting or could not interpret.

2. The ATOM was commanded to do something that it could not do.

For example, typing 'ABC' followed by a RETURN will give the error

message:

ERROR 94

which is probably the most common error; it means that 'ABC' was not a

legal command.

 Remember that it is impossible to cause physical damage to the

ATOM, whatever you type at the keyboard. The worst you can do is to

lose the stored text, and even that is extremely unlikely. Most errors

are really warnings, and a complete explanation of all the error codes

is given in Chapter 27.

1.10 Saving Text or Programs on Tape

Having entered some stored text into the ATOM's memory, this section

will show how to save this text, and load it back at a later time.

 Text and programs can be saved on standard cassette (or

reel-to-reel) tapes using the ATOM's cassette interface. Connect the

cassette output from the ATOM to the input of a cassette recorder, and

the output from tne recorder to the input of the ATOM. The tape load

routine uses software averaging techniques to minimise the likelihood

of errors on loading, and no trouble should be experienced in

transferring tapes from one machine to another.

1.10.1 Setting Up

Before loading and saving files using the cassette interface it is

worth entering the following simple routines to check that the

cassette system is working correctly, and to find out the best setting

of the recorder's volume control.

 Enter the following line after the ATOM's prompt:

 DO BPUT A,88; WAIT; WAIT; WAIT; WAIT; UNTIL 0

Type RETURN and record on the recorder for a few minutes. To stop the

program type ESC (escape). This program has recorded a sequence of Xs,

in coded form, on the tape. If you play it back it should sound like a

series of short buzzes.

 Now enter the following line, which is a program to read

characters from the tape and print them on the screen:

 DO PRINT $BGET A; UNTIL 0

The dollar symbol is obtained by holding the SHIFT key down and typing

'4'. Press RETURN, rewind the tape, and play back the 'X's that you

recorded. If all is well a stream of 'X's should be printed out, and

adjust the volume setting on the recorder so that no other characters

appear, indicating errors. When you are satisfied that all is well,

9

proceed to the next section.

1.10.2 Text Files

The information is stored as a stream of audible tones on tape; each

section of information is referred to as a 'file'. Several different

files can be saved on one tape, and they are identified by having

unique 'filenames'. Filenames can be anything containing up to 16

letters, digits, or spaces: suitable names are "DATA FILE", "22/4/80",

etc.

1.10.3 SAVE

First check that the stored text is still there by typing LIST. To

save the stored text to tape, type:

 SAVE "EXAMPLE"

where "EXAMPLE" is the filename chosen for illustration. Type RETURN,

and the message:

RECORD TAPE

will be printed on the screen. Put the tape recorder to record, and

allow the tape to run well past the leader. Now type RETURN (or any

other key) and the cursor will move to the start of the next line,

indicating that the text is being recorded. After a short delay the

'>' prompt will reappear, and you can turn the tape-recorder off.

1.10.4 *CAT

The *CAT command will give a complete catalogue of all the files on a

cassette. The '*' asterisk is used to distinguish the cassette

operating-system commands from the BASIC commands. Rewind the tape and

type:

 *CAT

The ATOM will reply with:

PLAY TAPE

and you should then play the tape, and press any key to start the

catalogue. As a file is encountered on the tape the filename will be

printed out, together with additional information about the file:

EXAMPLE XXXX XXXX XXXX XX

where the 'X's represent four numbers which you can ignore for the

moment (see Section 19.3 for details).

 When you have finished you can get back to the '>' prompt by

typing CTRL (control).

1.10.5 LOAD

Switch off the ATOM, in order to cause the saved text to be lost, and

then switch on again and type:

 LOAD "EXAMPLE"

The ATOM will reply with:

PLAY TAPE

and the tape should be rewound and played, and RETURN pressed. The

computer will search through the tape for a file of the specified

filename, EXAMPLE in this case, and then load it into its memory. If

all is well the prompt should reappear, and then typing:

 LIST

10

will give a listing of the text that was previously saved.

1.10.6 File Blocks

If you save a long file on tape, and play it back, you will discover

that it is broken up into a number of short blocks, with gaps in

between, and that when the file is catalogued its name appears several

times, once for each block. This is done for greater reliability, and

if the tape is damaged in the middle of one block it will still be

possible to load back the other blocks of the file.

 One further message that may be given when loading tapes is:

REWIND TAPE

This implies that you have started playing the tape in the middle of

the file you wanted to load. Rewind the tape, press RETURN, and the

message:

PLAY TAPE

will be given again.

1.10.7 Errors when Using Tape

If an error is found when loading back a tape file, the message:

SUM

ERROR 6

is given. This might be caused by bad adjustment of the tape-recorder

playback volume, a damaged or dirty tape, or recording a file over

part of a previous file.

 If you choose an invalid name for a file, the message:

NAME

ERROR 118

will be given.

11

2 Calculating in BASIC
The ATOM computer understands a language called BASIC which, because

of the ease of writing programs in it, has become the most popular

language for use on small computer systems. BASIC was invented in 1964

at Dartmouth College, New Hampshire, and it stands for Beginner's

All-purpose Symbolic Instruction Code. This chapter introduces some of

the facilities available in the BASIC language.

 The BASIC language consists of 'statements', 'operators', and

'functions'. The 'statements' are words like PRINT and INPUT which

tell the computer what you want to do; they are followed by the things

you want the computer to operate on.

 The 'operators’ are special symbols such as the mathematical signs

'+’ and '-' meaning 'add' and ’subtract'.

 The 'functions' are words like the statements, but they have a

numerical value; for example, RND is a function which has a random

value.

2.1 PRINT

This is by far the most useful BASIC statement; it enables programs to

print out the results of their calculations.

 Try typing:

 PRINT 7+3

The ATOM will print:

 10>

The '>' prompt reappears immediately after the answer, 10, is printed

out. This is the best way to use BASIC as a simple calculator; type

PRINT followed by the expression you want to evaluate.

 Try the effect of the following:

 PRINT 7-3

 PRINT 7*3

 PRINT 7/3

You will discover that '*’ means multiply; it is the standard multiply

symbol on all computers. Also '/’ means divide, but you may be

surprised that the answer to 7/3 is given as 2, not 2 and 1/2. ATOM

BASIC only deals in whole numbers, or integers, so the remainder after

the division is lost. The remainder can be obtained by typing:

 PRINT 7%3

The '%' operator means ’give remainder of division'.

 More complex expressions are evaluated according to the standard

rules of mathematics, so the expression:

 PRINT 2+3*4-5

has the result 9. Multiplications and divisions are performed first,

followed by additions and subtractions. Round brackets can be used to

make sure that operations are performed in the correct order; anything

enclosed in brackets is evaluated first. Thus the above expression

could also be written:

12

 PRINT (2+(3*4))-5

There is no limit to the complexity of expressions that ATOM BASIC can

evaluate, provided they will fit on two lines of the VDU. You will

notice that ATOM BASIC calculates extremely rapidly. Try typing:

 PRINT 9*9*9*9*9*9*9*9*9

 ATOM BASIC can calculate with numbers between about 2000 million

and -2000 million, which gives an accuracy of between nine and ten

digits. Furthermore, because whole numbers are used, all calculations

in this range are exact.

2.1.1 Printing Several Things

You can print the results of several calculations in one PRINT

statement by separating them with commas:

 PRINT 7, 7*7, 7*7*7, 7*7*7*7

which will print out:

 7 49 343 2401

Note that each number is printed out on the right-hand side of a

column eight characters wide. This ensures that when large numbers of

results are printed out they will be in neat columns on the screen.

2.1.2 Printing Strings

PRINT can also be used to print out words, or indeed, any required

group of characters. Arbitrary groups of characters are referred to

simply as 'strings', and to identify the characters as a string they

are enclosed in double quotes. For example:

 PRINT "THE RESULT"

will cause:

THE RESULT>

to be printed out. The characters in quotes are copied faithfully,

exactly as they appear in the PRINT statement. Thus you could type:

 PRINT "55*66=", 55*66

where the expression inside quotes is a string just like any other.

This would print out:

55*66= 3630>

2.2 Variables - A to Z

You will probably be familiar with the use of letters, such as X and

N, to denote unknown quantities. E.g.: "the nth. degree", "X marks the

spot", etc. In ATOM BASIC any letter of the alphabet, A to Z, may be

used to denote an unknown quantity, and these are called 'variables'.

The equals sign '=' is used to assign a particular value to a

variable. For example, typing:

 X=6

will assign the value 6 to X. Now try:

 PRINT X

and, as expected, the value of X will be printed out. Note the

difference between this and:

 PRINT "X"

13

The assignment statement 'X=6' should be read as 'X becomes 6' because

it denotes an operation which changes the value of X, rather than a

statement of fact about X. The following statement:

 X=X+1

is perfectly reasonable, and adds 1 to the previous value of X. In

words, the new value of X is to become the old value of X plus one.

 Now that we can use variables to stand for numbers, they can

also be used in expressions. For example, to print the first four

powers of 12 we can type:

 T=12

 PRINT T, T*T, T*T*T, T*T*T*T

2.3 Getting the Right Answer

Suppose you wanted to calculate half of 777. You might type:

 PRINT 777/2

and you would get the answer 388. Then, to get the remainder, you

would type:

 PRINT 777%2

and the answer will be l. So the exact answer is 388 and one half.

 Suppose, however, you decided to try:

 PRINT 1/2*777

thinking it would give 'a half times 777', you would be surprised to

get the answer 0. The reason lies in the fact that the calculation is

worked out from left to right in several stages, and at every stage

only the whole-number part of the result is kept. First 1/2 is

calculated, and the result is 0 because the remainder is not saved.

Then this is multiplied by 777 to give 0!

 Fortunately there is a simple rule to avoid problems like this:

Do Divisions Last!

The division operation is the only one that can cause a loss of

accuracy; all the other operations are exact. By doing divisions last

the loss of accuracy is minimised.

 Applying this rule to the previous example, the division by two

should be done last:

 PRINT (1*777)/2

which is obviously the same as what was written earlier.

2.3.1 Fixed-Point Calculations

An alternative way to find half of 777 is to imagine the decimal point

moved one place to the right, and write:

 PRINT 7770/2

The result will then be 3885, or, with the decimal point moved back to

the correct place, 388.5. For example, in an accounting program you

would use numbers to represent pence, rather than pounds. You could

then work with sums of up to 20 million pounds. Results could be

printed out as follows:

 PRINT R/100, "POUNDS", R%100, "PENCE"

2.4 Print Field Size - '@'

Numbers are normally printed out right-justified in a field of 8

character spaces. If the number needs more than 8 spaces the field

14

size will be exceeded, and the number will be printed in full without

any extra spaces. Note that the minus sign is included in the field

size for negative numbers.

 It is sometimes convenient to alter the size of the print field.

The variable '@' determines this size, and can be altered for other

field widths. For example:

 @=32

will print one number per line, because there are 32 character

positions on each line.

 The value of '0’ can be zero, in which case no extra spaces will

be inserted before the numbers.

2.5 Printing a New Line

A single quote in a PRINT statement will cause a return to the start

of the next line. Thus:

 PRINT "A" ' "T" ' "O" ' "M"

will print out:

A

T

O

M

>

This is an improvement over most other versions of BASIC, which would

require four separate PRINT statements for this example.

2.6 Multiple-Statement Lines - ';'

ATOM BASIC allows any number of statemerits to be strung together on

each line provided they are separated by semicolons. For example the

following line:

 A=1;B=2;C=3;PRINT A,B,C'

will print:

 1 2 3

2.7 Hexadecimal Numbers

Numbers can also be represented in a notation called 'hexadecimal'

which is especially useful for representing addresses in the computer.

Hexadecimal notation is explained in section 13.1.1; all that needs to

be mentioned here is that hexadecimal notation is just an alternative

way of writing numbers which makes use of the digits 0 to 9 and the

letters A to F. The '#' symbol, called 'hash', is used to introduce a

hexadecimal number. Thus #E9 is a perfectly good hexadecimal number

(nothing to do with the variable E).

 PRINT #8000

will print:

 32768>

The PRINT statement prints the number out in decimal. #8000 is the

address of the display area, and is a more convenient way of

specifying this address than its decimal equivalent.

 A number can be printed in hexadecimal by prefixing it with an ’&'

ampersand in the PRINT statement. Thus:

 PRINT &32768

15

will print:

 8000>

2.8 Logical Operations

In addition to the arithmetic operations already described, ATOM BASIC

provides three operations called 'logical operations': '&' (AND), '\'

(OR), and ':' (Exclusive-OR). These are all operations between two

numbers, so there is no danger of confusing this use of '&' with its

use to specify printing in hex as covered in the previous section.

These are especially useful when controlling external devices from a

BASIC program. Note that the '\' symbol is obtained on the keyboard by

typing ’shift \', and it will appear on the display as an inverted

'\'.

 The following table gives the results of these three operations

for the numbers 0 and 1:

Operands A & B A \ B A : B

 A B

 0 0 0 0 0

 0 1 0 1 1

 1 0 0 1 1

 1 1 1 1 0

Try typing the following:

 PRINT 0 & 1

 PRINT 1 \ 1

 PRINT 1 : 1

and verify that the results agree with the table.

2.9 Peeking and Poking

Many BASICs have PEEK and POKE functions which do the following:

PEEK looks at the contents of a place in memory, or memory location

POKE changes the contents of a memory location.

The '?' operator, called 'query', is used for poking and peeking in

ATOM BASIC and it provides a more elegant mechanism than the two

functions provided in other BASICs.

 The contents of some memory location whose address is A is given

by typing:

 PRINT ?A

For example, to look at the contents of location #C000 type:

 PRINT ?#C000

and the result will be 60 (this is the first location in the ATOM

ROM).

 To change the contents of a location whose address is A to 13 just

type:

 ?A=13

For example, to change the contents of the memory location

corresponding to the top left-hand corner of the screen type:

16

 ?#8000=127

and a white block will appear in the top left of the screen (see

section 18.5 for an explanation).

 As another useful example try:

 ?#E1=0

which will turn the cursor off. To turn the cursor back on again type:

 ?#E1=#80

17

3 Planning a Program
The first step in writing a program, whether it will eventually be

programmed in BASIC or Assembler, is to express your problem in terms

of simple steps that the computer can understand.

 The Atom could be put to an immense number of different uses;

anything from solving mathematical problems, controlling external

equipment, playing games, accounting and book-keeping, waveform

processing, document preparation...etc. The list is endless. Obviously

all these applications cannot be included in a computer's repertoire

of operations. Instead what is provided is a versatile set of more

fundamental operations and functions which, in combination, can be

used to solve such problems.

 It is therefore,up to you to become familiar with the fundamental

operations that are provided, and learn how to solve problems by

combining these operations into programs.

 Programming is rather like trying to explain to a novice cook, who

understands little more than the meanings of the operations 'stir',

'boil’, etc, how to bake a cake. The recipe corresponds to the

program; it consists of a list of simple operations 'stir', 'bake',

with certain objects such as 'flour', 'eggs':

 Recipe 1. Sponge Cake

 1. Mix together 4 oz. sugar and 4 oz. butter.

 2. Stir in 2 eggs.

 3. Stir in 4 oz. flour.

 4. Put into tins.

 5. Bake for 20 mins. at Mark 4.

 6. Remove from oven and eat.

 7. END

The recipe is written so that, provided all the ingredients are

already to hand, the cook can follow each command in turn without

having to look ahead and worry about what is to come.

 Similarly, a computer only executes one operation at a time, and

cannot look ahead at what is to come.

3.1 Flowcharts

Before writing a program in BASIC or Assembler it is a good idea to

draw a 'flowchart' indicating the operations required, and the order

in which they should be performed. The generally accepted standard is

for operations to be drawn inside rectangular boxes, with lines

linking these boxes to show the flow of control. A simple flowchart

for the program to bake a cake might be drawn as follows:

18

3.2 Decisions

Many recipes do not just contain a sequence of steps to be performed,

but contain conditions under which several different courses of action

should be taken. For example, for a perfect cake line 5 would be

better written:

 5. Bake until golden brown.

It would then be necessary to open the oven door every five minutes

and make a decision about the colour of the cake. Decisions are

represented in flowcharts by diamond-shaped boxes, with multiple exits

labelled with the possible outcomes of the decision. The new flowchart

would then be:

Mix together

4 oz. sugar

4 oz. butter

Stir in two

eggs.

Stir in 4 oz.

flour.

Bake for 20

mins.

START

END

Put in tins.

19

The action 'bake for 5 mins.' is repeatedly performed until the test

'is it brown?' gives the answer 'yes'. Of course the program would go

dramatically wrong if the oven were not switched on; the program would

remain trapped in a loop.

 With these two simple concepts, the action and the decision,

almost anything can be flowcharted. Part of the trick in flowcharting

programs is to decide how much detail to put into the flowchart. For

example, in the cake program it would be possible to add the test 'is

butter and sugar mixed?' and if not, loop back to the operation 'mix

butter and sugar'. Usually flowcharts should be kept as short as

possible so that the logic of the program is not obscured by a lot of

unnecessary fine detail.

3.3 Counting

Recipes sometimes require a particular series of operations to be

performed a fixed number of times. The following recipe for puff

pastry illustrates this:

 Recipe 2. Puff Pastry

 1. Mix 6 oz. flour with 2 oz. butter.

 2. Roll out pastry.

 3. Spread with 2 oz. butter.

Mix together

4 oz. sugar

4 oz. butter

Stir in two

eggs.

Stir in 4 oz.

flour.

Put in tins.

Bake for 20

mins.

START

END

Is

it brown

?

yes

no

20

 4. Fold in half.

 5. Repeat steps 2 to 4 a further 3 times.

 6. END

In this recipe the cook has to perform operations a total of 4 times.

A cook would probably keep a mental note of how many times he has

performed these operations; for the sake of the flowchart it is

convenient to give the number of operations a label, such as T. The

flowchart of the puff pastry recipe would then be:

The loop consisting of statements 2 to 4 is performed 4 times; the

test at the end gives the answer 'no' for T=1, 2, and 3, and the

answer 'yes' for T=4.

 To perform an operation several times in a BASIC or Assembler

program an identical method can be used; a counter, such as T, is used

to count the number of operations and the counter is tested each time

to determine whether enough operations have been completed.

3.4 Subroutines

A recipe may include a reference to another recipe. For example, a

typical recipe for apple tart might be as follows:

Mix together

6 oz. Flour

2 oz butter

T = 0

Roll out

pastry.

Spread with

2 oz. butter

Add 1 to T

START

END

Is

T = 4

?

yes

no

21

 Recipe 3. Apple Tart

 1. Peel and core 6 cooking apples.

 2. Make pastry as in recipe 2.

 3. Line tart tin with pastry.

 4. Put in apple.

 5. Bake for 40 mins. mark 4.

 6. END

To perform step 2 it is necessary to insert a marker in the book at

the place of the original recipe, find the new recipe and follow it,

and then return to the original recipe and carry on at the next

statement.

 In computer programming a reference to a separate routine is

termed a 'subroutine call'. The main recipe, for apple tart, is the

main routine; one of its statements calls the recipe for puff pastry,

the subroutine. Note that the subroutine could be referred to many

times throughout the recipe book; in the recipe for steak and kidney

pie, for example. One reason for giving it separately is to save

space; otherwise it would have to be reproduced for every recipe that

needed it.

 Note that, in order not to lose his place, the cook needed a

marker to insert in the recipe book so that he should know where to

return to at the end of the subroutine. In BASIC or assembler programs

the computer keeps a record of where you were when you call a

subroutine, and returns you there automatically at the end of the

subroutine. In other respects, the process of executing a subroutine

on a computer is just like this analogy.

3.5 Planning a Program

Before writing a program in BASIC or Assembler it is a good idea to

express the problem in one of the forms used in this chapter:

1. As a list of numbered steps describing, in words, exactly what to

do at each step.

2. As a flowchart using the following symbols:

for actions

for decisions

START

start of program

END

end of program

Having done this, the job of writing the program in BASIC or Assembler

will be relatively easy.

22

23

4 Writing a BASIC Program
Commands and statements typed after the ATOM's prompt are executed

immediately, as we have seen in Chapter 3. However if you start the

line with a number, the line is not executed but stored as text in the

ATOM's memory.

4.1 RUN

First type 'NEW' to clear the text area. Then try typing in the

following:

 10 PRINT "A PROGRAM!"

 20 END

When these lines have been typed in you can list the text by typing

LIST. Now type:

 RUN

The stored text will be executed, one statement at a time, starting

with the lowest-numbered statement, and the message 'A PROGRAM!' will

be printed out. The text you entered formed a 'program', and the

program was executed, statement by statement, when you typed RUN. The

END statement is used to stop execution of the program; if it is

omitted an error message will be given.

4.2 INPUT

Type NEW again, and then enter the following program:

 10 INPUT N

 20 N=N+1

 30 PRINT N

 40 END

The INPUT statement enables you to supply numbers to a running

program. When it is executed it will print a question mark and wait

for a number to be typed in. The variable specified in the INPUT

statement will then be set to the value typed in. To illustrate, type:

RUN

The program will add 1 to the number you type in; try running it again

and try different numbers.

 The INPUT statement may contain more than one variable; a question

mark will be printed for each one, and the values typed in will be

assigned to the variables in turn.

 The INPUT statement may also contain strings; these will be

printed out before each question mark. The following program

illustrates this; it converts Fahrenheit to Celsius (Centigrade),

giving the answer to the nearest degree:

 10 INPUT "FAHRENHEIT" F

 20 PRINT (10*F-315)/18 " CELSIUS" '

 30 END

24

The value, in Fahrenheit, is stored in the variable F. The expression

in the PRINT statement converts this to Celsius.

4.3 Comments - REM

The REM statement means 'remark’; everything on the line following the

REM statement will be ignored when the program is being executed, so

it can be used to insert comments into a program. For example:

 5 REM PROGRAM FOR TEMPERATURE CONVERSION

4.4 Functions

Functions are operations that return a value. Functions are like

statements in that they have names, consisting of a sequence of

letters, but unlike statements they return a value and so can appear

within expressions.

4.4.1 RND

The RND function returns a random number with a value anywhere between

the most negative and most positive numbers that can be represented in

BASIC. To obtain smaller random numbers the '%' remainder operator can

be used; for example:

 PRINT RND%4

will print a number between -3 and +3.

4.4.2 TOP

TOP returns the address of the first free memory location after the

BASIC program.

 PRINT &TOP

will print TOP in hexadecimal. This will be #8202 if you have not

entered a program (or have just typed NEW) on the unexpanded ATOM, and

#2902 on an expanded ATOM.

 PRINT TOP-#8200

is a useful way of finding out how many bytes are used up by a

program; on an unexpanded ATOM there is a total of 512 bytes for

programs.

4.4.3 ABS

The ABS function can be used to give the absolute or positive value of

a number; the number is written in brackets after the function name.

For example:

 PRINT ABS(-57)

will print 57. One use of ABS is in generating positive random

numbers. For example:

 PRINT ABS(RND)%6

gives a random number between 0 and 5.

4.5 Escape – ESC

It is possible to create programs which will never stop; see the

following example in section 4.6. The escape key 'ESC' at the top left

of the keyboard will stop any BASIC program and return control to the

'>' prompt.

25

4.6 GOTO

In the above programs the statements were simply executed in ascending

order of their line numbers. However it is sometimes necessary to

transfer control forwards or backwards to somewhere other than the

next numbered statement. The GOTO (go to) statement is used for this

purpose; the GOTO statement specifies the statement to be executed

next. For example, type:

 1 REM Stars

 10 PRINT "*"

 20 GOTO 10

A flowchart for this program makes it clear that the program will

never stop printing stars:

To stop the program you will have to type ESC (escape).

4.6.1 Labels - a to z

ATOM BASIC offers another option for the GOTO statement. Instead of

giving the number of the statement to be executed next, a statement

can be designated by a 'label', and the GOTO is followed by the

required label.

 A label can be one of the lower-case letters a to z, which are

obtained on the ATOM by typing the letter with the shift key held

down. Labels appear on the VDU as upper-case inverted letters, so they

are very easily identified in programs. For typographical convenience

labels will be represented as lower-case letters in this manual.

 To illustrate the use of labels, rewrite the ’STARS' program as

follows, using the label 's':

 10s PRINT "*"

 20 GOTO s

Note that there must be no spaces between the line number and the

label.

 There are two advantages to using labels, rather than line

numbers, in GOTO statements. First, programs are clearer, and do not

depend on how the program lines are numbered. Secondly, the GOTO

statement is faster using a label than using a line number. To

demonstrate this, enter the following program which generates a tone

of 187 Hz in the loudspeaker:

 10 P=#B002

 20a ?P=?P:4; GOTO a

This program works as follows: P is the location corresponding to the

input/output port, and exclusive-ORing this location with 4 will

change the output line connected to the loudspeaker. The frequency

generated implies that the statements on line 20 are executed in about

2.5 milliseconds (twice per cycle).

START

Print a star

26

 Try removing the label and rewrite the program as follows:

 10 P=#B002

 20 ?P=?P:4; GOTO 20

The GOTO statement is now slightly slower, and the tone generated will

have the lower frequency of 144 Hz. The highest frequency that can be

generated by a BASIC program is 322 Hz, as follows:

 10 REM 322 Hz

 20 P=#B002

 30 FOR Z=0 TO 10000000 STEP 4;?P=Z;N

To play tunes you will need to use an assembler program; see Section

15.4.

4.6.2 Switches

The GOTO statement may be followed by any expression which evaluates

to a valid line number; for example:

 10 REM Two-Way Switch

 20 INPUT "TYPE 1 OR 2" L

 30 GOTO (40*L)

 40 PRINT "ONE"

 50 END

 80 PRINT "TWO"

 90 END

If L is 1 the expression (40*L) will be equal to 40, and the program

will print 'ONE'. If L is 2 the expression will be equal to 80 and the

program will print 'TWO’. The flowchart for this program is as

follows:

4.6.3 Multi-Way Switches

Finally here is an example of a multi-way switch using GOTO. The

program calculates a random number between 0 and 5 and then goes to a

Print 'TWO'

Print

'Type 1 or 2'

Read value

for L

Print 'ONE'

START

L

L=1 L=2

END END

27

line number between 30 and 35. Each of these lines consists of a PRINT

statement which prints the face of a dice. The single quote in the

print statement gives a 'return' to the start of the next line.

 10 REM Dice Tossing

 20 GOTO (30+ABS(RND)%6)

 30 PRINT'" *"''; END

 31 PRINT" *"''"*"'; END

 32 PRINT" *"'" *"'"*"'; END

 33 PRINT"* *"''"* *"'; END

 34 PRINT"* *"'" *"'"* *"'; END

 35 PRINT"* *"'"* *"'"* *"'; END

Description of Program:

20 Choose random number between 30 and 35

30-35 Print corresponding face of a dice

Sample runs:

>RUN

 *

 *

*

>RUN

* *

 *

* *

>RUN

* *

* *

* *

4.7 Graphics

The ATOM has no less than 9 different graphics modes available from

BASIC. This section provides a brief introduction to graphics mode 0,

the lowest resolution mode, which is available on the unexpanded ATOM.

With more memory added to the ATOM the other graphics modes are

available, and these are explained in Chapter 11. A special feature of

mode 0 is that it is possible to mix graphics with any of the ATOM's

characters.

 Graphics treats the screen as a piece of graph paper on which it

is possible to draw lines and plot points. Points on the screen are

called 'picture elements' or ’pixels' for short, because they are

actually small squares. Each pixel on the screen is specified by its

coordinates in the two directions, horizontal and vertical, and these

coordinates will be referred to as X and Y respectively. The graphics

screen is labelled as follows in mode 0:

63,0

63,47 0,47

0,0 X

Y

28

4.7.1 CLEAR

To prepare the screen for graphics the statement CLEAR is used. It is

followed by the graphics mode number. On the unexpanded ATOM the only

legal option is:

 CLEAR 0

4.7.2 MOVE

Any point on the screen can be specified by moving the 'graphics

cursor' to that point with the MOVE statement. The graphics cursor

does not show on the screen, and it is different from the ordinary

cursor which is visible in character mode. The format of the statement

is:

 MOVE X,Y

where X and Y can be numbers, or arbitrary expressions provided they

are enclosed in brackets. For example, to move the graphics cursor to

the origin, X=0 Y=0, type:

 MOVE 0,0

The MOVE statement will normally be the first graphics statement of

any program.

4.7.3 DRAW

The DRAW statement will plot a line anywhere on the screen. The line

starts from the position of the graphics cursor, and ends at the point

specified in the statement, and tie graphics cursor will be moved to

that point. For example:

 DRAW 63,47

will draw a line to the top right-hand corner of the screen, and leave

the graphics cursor at that point. It is quite legal, and safe, to

draw off the screen; the line will just not appear.

4.7.4 Example

The following simple program will draw a rectangle, rotated by the

amount entered for R. Try typing in numbers between 0 and 47 for R:

 10 REM Rotating Rectangle

 20 X=63; Y=47

 30 INPUT R

 40 CLEAR 0

 50 MOVE R,0

 60 DRAW X,R; DRAW (X-R),Y

 70 DRAW 0,(Y-R); DRAW R,0

 80 GOTO 30

4.7.5 Plotting Points

One way of plotting a single point at X,Y on the screen is to write:

 MOVE X,Y; DRAW X,Y

A more elegant way is given in Section 11.3.

4.8 Conditions - IF...THEN

One of the most useful facilities in BASIC is the ability to execute a

statement only under certain specified conditions. To do this the

IF...THEN statement is used; for example:

29

 IF A=0 THEN PRINT "ZERO"

will execute the PRINT statement, and print "ZERO", only if the

condition A=0 is true; otherwise everything after THEN will be skipped

and execution will continue with the next line.

4.8.1 Relational Operators

The part of the IF...THEN statement after the IF is the 'condition'

which can be any two expressions separated by a 'relational operator'

which compares the two expressions. Six different relational operators

can be used:

 = equal <> not equal

 > greater than <= less than or equal

 < less than >= greater than or equal

where each operator on the left is the opposite of the operator on the

right.

 The expressions on each side of the relational operators can be as

complicated as required, and the order is unimportant. There is no

need to put brackets around the expressions.

For example, the following program prints one of three messages

depending on whether a number typed in is less than 7, equal to 7, or

greater than 7:

 10 REM Guess a number

 20 INPUT"GUESS A NUMBER" N

 30 IF N<7 THEN PRINT "TOO SMALL"

 40 IF N=7 THEN PRINT "CORRECT!"

 50 IF N>7 THEN PRINT "TOO LARGE"

 60 END

A flowchart for this program is as follows:

30

4.8.2 THEN Statement

The statement after THEN can be any statement, even an assignment

statement as in:

 IF A=7 THEN A=6

Note that the meaning of each '=' sign is different. The first 'A=7'

is a condition which can be either true or false; the second 'A=6' is

an assignment statement which instructs the computer to set the

variable A to the value 6. To make this distinction clear the above

statement should be read as: 'If A is equal to 7 then A becomes 6'.

4.8.3 Conjunctions - AND and OR

Conditions can be strung together using the conjunctions AND and OR,

so, for example:

 10 INPUT A,B

 20 IF A=2 AND B=2 THEN PRINT "BOTH"

 30 GOTO 10

Print 'GUESS

A NUMBER'

Input N

START

Is

N < 7

?

no

yes

END

Is

N = 7

?

no

yes

Is

N > 7

?

no

yes

Print

'Too Small'

Print

'Correct!'

Print

'Too Large'

31

will only print "BOTH" if both A and B are given the value 2.

Alternatively:

 10 INPUT A,B

 20 IF A=2 OR B=2 THEN PRINT "EITHER"

 30 GOTO 10

will only print "EITHER" if at least one of A and B is equal to 2.

4.9 Logical Variables

An alternative form for the condition in an IF...THEN statement is to

specify a variable whose value denotes either 'true' or 'false'. The

values 'true’ and 'false' are represented by 1 and 0 respectively, so:

 A=1; B=0

sets A to 'true' and B 'false'. Logical variables can be used in place

of conditions in the IF statement; for example:

 IF A THEN PRINT "TRUE"

will print "TRUE".

 A logical variable can also be set to the value of a condition:

 A=(L=100)

This statement will set A to 'true' if L is 100, and to 'false’

otherwise. The condition must be placed in brackets as shown.

4.10 Iteration

One way of printing the powers of 2 would be to write:

 10 REM Powers of Two

 20 P=1; T=2; @=0

 30 PRINT "2 ^ ", P, " = ", T '

 40 T=T*2; P=P+1

 50 GOTO 30

which will print out:

2 ^ 1 = 2

2 ^ 2 = 4

2 ^ 3 = 8

2 ^ 4 = 16

2 ^ 5 = 32

2 ^ 6 = 64

and so on without stopping. This is a bit inelegant; suppose we wished

to print out just the first 12 powers of 2. It is simply a matter of

detecting when the 12th. power has just been printed out, and stopping

then. This can be done with the IF statement as follows:

 10 REM First Twelve Powers of Two

 20 P=1; T=2; @=0

 30 PRINT "2 ^ ", P, " = ", T '

 40 T=T*2; P=P+1

 50 IF P<=12 GOTO 30

 60 END

The IF statement is followed by a GOTO statement; if P is less than 12

the condition will be true, and the program will go back to line 30.

32

After the twelth power of 2 has been printed out P will have the value

13, which is not less than or equal to 12, and so the program will

stop.

 With the IF statement we have the ability to make the computer do

vast amounts of work as a result of very little effort on our part.

For example we can print 256 exclamation marks simply by running the

following program:

 10 I=0

 20 PRINT"!"; I=I+1

 30 IF I<256 GOTO 20

 40 END

4.10.1 Cubic Curve

Perhaps a more useful example is the following program, which

calculates the value of:

X
3
 - 600x

for 64 values of x and plots a graph of the resulting curve:

 1 REM Cubic Curve

 10 CLEAR 0

 20 MOVE 0,24; DRAW 63,24

 30 MOVE 32,0; DRAW 32,47

 40 MOVE -1,-1

 50 X=-33

 55 Y=(X*X*X-600*X)/400

 60 DRAW (32+X),(24+Y)

 70 X=X+1

 80 IF X<33 THEN GOTO 55

 90 END

Description of Program:

10 Use graphics mode 0

20-30 Draw axes

40 Move graphics cursor off screen

50-80 Plot curve for values of X from -32 to 32

55 Equation to be evaluated divided by 400 to bring the

 interesting part of the cubic curve into range

60 Draw to next point, with origin at (32,24).

Program size: 190 bytes

33

5 Loops
The previous section showed how the IF statement could be used to

cause the same statements to be executed several times. Recall the

program:

 10 I=0

 20 PRINT"!"; I=I+1

 30 IF I<256 GOTO 20

 40 END

which prints out 256 exclamation marks (half a screen full). This

iterative loop is such a frequently-used operation in BASIC that all

BASICs provide a special pair of statements for this purpose, and ATOM

BASIC provides a second type of loop for greater flexibility.

5.1 FOR...NEXT Loops

The FOR statement, together with the NEXT statement, causes a set of

statements to be executed for a range of values of a specified

variable. To illustrate, the above example can be rewritten using a

FOR...NEXT loop as follows:

 10 FOR I=1 TO 256

 20 PRINT "!"

 30 NEXT I

 40 END

The FOR statement specifies that the statements up to the matching

NEXT statement should be executed for each value of I from 1 to 256

(inclusive). In this example there is one statement between the FOR

and NEXT statements, namely:

 PRINT "!"

This statement has been indented in the program to make the loop

structure clearer; in fact the spaces are ignored by BASIC.

 The NEXT statement specifies the variable that was specified in

the corresponding FOR statement. This variable, I in the above

example, is called the 'control variable' of the loop; it can be any

of the variables A to Z.

 The value of the control variable can be used inside the loop, if

required. To illustrate, the following program prints out all

multiples of 12 up to 12*12:

 10 FOR M=1 TO 12

 20 PRINT M*12

 30 NEXT M

 40 END

The range of values specified in the FOR statement can be anything you

wish, even arbitrary expressions. Remember, though, that the loop is

always executed at least once, so the program:

34

 10 FOR N=1 TO 0

 20 PRINT N

 30 NEXT N

 40 END

will print '1' before stopping.

5.1.1 STEP Size

It is also possible to specify a STEP size in the FOR statement; the

STEP size will be added to the control variable each time round the

loop, until the control variable exceeds the value specified after TO.

If the STEP size is omitted it is assumed to be 1. This provides us

with an alternative way of printing the multiples of 12:

 10 FOR M=12 TO 12*12 STEP 12

 20 PRINT M

 30 NEXT M

 40 END

5.1.2 Graph Plotting Using FOR...NEXT

The FOR...NEXT loop is extremely useful when plotting graphs using the

ATOM's graphics facilities. Try rewriting the Cubic Curve program of

Section 4.10.1 using a FOR...NEXT loop.

 The following curve-stitching program is quite fun, especially in

the higher graphics modes. It simulates the curves produced by

stitching with threads stretched between two lines of holes in a

square of cardboard. The curve produced as the envelope of all the

threads is a parabola:

 1 REM Curve Stitching in a Square

 10 V=46

 20 INPUT Q

 30 CLEAR 0

 40 FOR Z=0 TO V STEP Q; Y=V-Z

 50 MOVE 0,Z; DRAW Y,0

 60 MOVE Y,V; DRAW V,Z

 70 NEXT Z

 80 END

The value of Q typed in should be between 2 and 9 for best results; V

determines the size of the square that is drawn. The program works

best when V is a multiple of Q.

5.2 DO...UNTIL Loops

ATOM BASIC provides an alternative pair of loop-control statements: DO

and UNTIL. The UNTIL statement is followed by a condition, and

everything between the DO statement and the UNTIL statement is

repeatedly executed until the condition becomes true. So, to print 256

exclamation marks in yet another way write:

 10 I=0

 20 DO

 30 I=I+1

 40 PRINT "!"

 50 UNTIL I=256

 60 END

Again, the statements inside the DO...UNTIL loop may be indented to

make the structure clearer.

35

 The DO...UNTIL loop is most useful in cases where a program is to

carry on until certain conditions are satisfied before it will stop.

To illustrate, the following program prompts for a series of numbers,

and adds them together. When a zero is entered the program terminates

and prints out the sum:

 10 S=0

 20 DO INPUT J

 30 S=S+J

 40 UNTIL J=0

 50 PRINT "SUM =", S '

 60 ENDD

Note that a statement may follow the DO statement, as in this example.

5.2.1 Greatest Common Divisor

The following simple program uses a DO...UNTIL loop in the calculation

of the greatest common divisor (GCD) of two numbers; i.e. the largest

number that will divide exactly into both of them. For example, the

GCD of 26 and 65 is 13. If the numbers are coprime the GCD will be l.

 1 REM Greatest Common Divisor

 80 INPUT A,B

 90 DO A=A%B

 100 IFABS(B)>ABS(A) THEN T=B; B=A; A=T

 120 UNTIL B=0

 130 PRINT "GCD =" A '

 140 END

Description of Program:

80 Input two numbers

90 Set A to remainder when it is divided by B

100 Make A the larger of the two numbers

120 Stop when B is zero

130 A is the greatest common divisor.

Variables:

A,B - Numbers

T - Temporary variable

Program size: 137 bytes

The method is known as Euclid's algorithm, and to see it working

insert a line:

 95 PRINT A,B'

The ABS functions ensure that the program will work for negative, as

well as positive, numbers.

5.2.2 Successive Approximation

The DO...UNTIL loop construction is especially useful for problems

involving successive approximation, where the value of a function is

calculated by obtaining better and better approximations until some

criterion of accuracy is met.

The following iterative program calculates the square root of any

number up to about 2,000,000,000. Also shown is the output obtained

when calculating the square root of 200,000,000:

 10 REM Square Root

 20 INPUT S

36

 100 Q=S/2

 110 DO Q=(Q+S/Q)/2

 115 IF Q>65535 THEN Q=65535

 120 UNTIL (Q-1)*(Q-1)<S AND (Q+1)*(Q+1)>S

 130 PRINT Q

 140 END

Description of Program:

20 Input number

100 Choose starting value

110 Calculate next approximation

120 Carry on until the square lies between the squares of the

 numbers either side of the root.

130 Print square root.

Variables:

Q - Square root

S - Number

Program size: 118 bytes

Sample run:

>RUN

?200000000

 14142>

5.3 Nested Loops

FOR...NEXT and DO...UNTIL loops may be nested; the following example

will print the squares, cubes, and fourth powers of the numbers 1 to

15 in a neat table:

 1 REM Powers of Numbers

 5 PRINT " X X^2"

 8 PRINT " X^3 X^4"

 10 FOR N=1 TO 15

 20 J=N

 30 FOR M=1 TO 4

 40 PRINT J; J=J*N

 50 NEXT M

 60 NEXT N

 70 END

The statements numbered 20 to 50 are executed 15 times, for every

value of N from 1 to 15. For each value of N the statements on line 40

are executed four times, for values of M from 1 to 4. Thus 15*4 or 60

numbers are printed out.

5.3.1 Mis-Nested Loops

Note that loops must be nested correctly. The following attempt at

printing out 100 pairs of numbers will not work:

 10 FOR A=1 TO 10

 20 FOR B=1 TO 10

 30 PRINT A,B

 40 NEXT A

 50 NEXT B

The program will, if RUN, give an error (ERROR 230). The reason for

the error will become clear if you try to indent the statements within

each loop, as in the previous example.

37

5.4 WAIT Statement

ATOM BASIC includes an accurate timing facility, derived from the main

CPU clock. To understand the operation of the WAIT statement, imagine

that the ATOM contains a clock which 'ticks' sixty times a second. The

WAIT statement causes execution to stop until the next clock tick.

Thus it automatically synchronises the program to an accurate time.

 The WAIT statement makes it a simple matter to write programs to

give any required delay. For example, the following program gives a

delay of 10 seconds:

 FOR N=1 TO 10*60; WAIT; NEXT N

You are perhaps wondering why WAIT does not just give a delay of 1/60

second, rather than waiting for the next clock tick. The reason is

that if only a delay function were provided, you would have to know

exactly how long the other statements in the loop took to execute if

you wanted accurate timinq. In fact, with the WAIT function, all you

need to do is to ensure that the statements in the loop take less than

1/60th. of a second, so as not to miss the next tick.

5.4.1 Digital Clock

The following digital clock displays the time as six digits in the top

left-hand corner of the screen.

 10 REM Digital Clock

 20 INPUT "TIME" H,M,S

 30 PRINT $12; ?#E1=0

 40 T=((H*100)+M)*100+S

 50 DO FOR S=1 TO 55; WAIT; NEXT S

 60 PRINT $30,T; T=T+1

 70 IF T%100=60 THEN T=T+40

 80 IF T%10000=6000 THEN T=T+4000

 90 UNTIL 0

Description of Program:

20 Input the starting time

30 Clear screen; turn off cursor

40 Set up time as 6-digit number

50 Use up rest of a second

60 Print T in top left-hand corner of screen

70-80 Update minutes and hours

Variables:

H – Hours

M – Minutes

S – Seconds

T - Six-digit number representing time

Program size: 216 bytes

To turn the cursor back on after running this program type a

form-feed; i.e. CTRL-L.

5.4.2 Reaction Timer

The following reaction-timer program uses WAIT to calculate your

reaction time, and prints out the time in centiseconds (i.e.

hundredths of a second) to the nearest 2 centiseconds. It blanks the

screen, and then, after a random delay, displays a dot at a random

place on the screen. When you see the dot you should press the SHIFT

key as quickly as possible; the program will then display your

reaction time.

38

 1 REM Reaction Timer

 10 CLEAR 0

 20 X=ABS(RND)%64; Y=ABS(RND)%48

 30 FOR N=1 TO ABS(RND)%600+300

 35 IF ?#B001<>#FF PRINT "CHEAT!":G.120

 40 WAIT; NEXT N

 50 MOVE X,Y; DRAW X,Y

 60 T=0

 70 DO T=T+1; WAIT

 80 UNTIL ?#B001<>#FF

 90 PRINT "REACTION TIME ="

 100 PRINT T*10/6, " CSEC." '

 110 IF T>18 PRINT "WAKE UP!" '

 120 END

Description of Program:

20 Choose random X,Y coordinates for point on screen.

30-40 Wait for random time between 6 and 9 seconds.

50 Plot point at X,Y

60-70 Count sixtieths of a second

80 #B001 is the address of the input port to which the SHIFT

 Key is connected; the contents of this location are #FF

 until the SHIFT key is pressed.

90-100 Print reaction time converted to centiseconds.

110 If appalling reactions, print message.

Variables:

N - Counter for random delay

T - counter in sixtieths of a second for reaction time

X,Y - random coordinates for point on screen.

Program size: 273 bytes

39

6 Subroutines
As soon as a program becomes longer than a few lines it is probably

more convenient to think of it as a sequence of steps, each step being

written as a separate 'routine', an independent piece of program which

can be tested in isolation, and which can be incorporated into other

programs when the same function is needed.

6.1 GOSUB

Sections of program can be isolated from the rest of the program using

a BASIC construction called the 'subroutine'. In the main program a

statement such as:

 GOSUB 1000

causes control to be transferred to the statement at line 1000. The

statements from line 1000 comprise the subroutine. The subroutine is

terminated by a statement:

 RETURN

which causes a jump back to the main 'calling' program to the

statement immediately following the GOSUB 1000. It is just as if the

statements from 1000 up to the RETURN statement had simply been

inserted in place of the GOSUB 1000 statement in the main program.

 As an example, consider the following program:

 10 A=10

 20 GOSUB 100

 30 A=20

 40 GOSUB 100

 50 END

 100 PRINT A '

 110 RETURN

Lines 100 and 110 form a subroutine, separate from the rest of the

program, and they are terminated by RETURN. The subroutine is called

twice from the main program, in lines 20 and 40. The program, when

RUN, will print:

 10

 20

>

6.1.1 Chequebook-Balancing Program

As a more serious example, consider a program for balancing a

chequebook. The program will have three distinct stages; reading in

the credits, reading in the debits, and printing the final amount. We

can immediately write the main program as:

 10 REM Chequebook-Balancing Program

 20 PRINT "ENTER CREDITS"'

 30 GOSUB 1000

40

 40 PRINT "ENTER DEBITS"

 50 GOSUB 2000

 60 PRINT "TOTAL IS "

 70 GOSUB 3000

 80 END

Now all we have to do is write the subroutines at lines 1000, 2000,

and 3000!

 The subroutines might be written as follows:

 1000 REM Sum Credits in C

 1010 REM Changes C,J

 1020 C=0

 1030 DO INPUT J; C=C+J

 1040 UNTIL J=0

 1050 RETURN

 2000 REM Sum Debits in D

 2010 REM Changes D,J

 2020 D=0

 2030 DO INPUT J; D=D+J

 2040 UNTIL J=0

 2050 RETURN

 3000 REM Print Total in T

 3010 REM Changes T; Uses C,D

 3020 T=C-D; @=5

 3030 PRINT T/100," POUNDS",T%100," PENCE"

 3040 RETURN

Values are entered in pence, and entering zero will terminate the list

of credits or debits.

 The two subroutines at 1000 and 2000 are strikingly similar, and

this suggests that it might be possible to dispense with one of them.

Indeed, the main part of the chequebook-balancing program can be

written as follows, eliminating subroutine 1000:

 10 REM Chequebook-Balancing Program

 20 PRINT "ENTER CREDITS"'

 30 GOSUB 2000

 40 C=D

 50 PRINT "ENTER DEBITS"'

 60 GOSUB 2000

 70 PRINT "TOTAL IS "

 80 GOSUB 3000

 90 END

 In conclusion, subroutines have two important uses:

1. To divide programs into modules that can be written and tested

separately, thereby making it easier to understand the operation of

the program.

2. To make it possible to use the same piece of program for a number

of similar, related, functions.

As a rough guide, if a program is too long to fit onto the screen of

the VDU it should be broken down into subroutines. Each subroutine

should state clearly, in REM statements at the start of the

subroutine, the purpose of the subroutine, which variables are used by

the subroutine, and which variables are altered by the subroutine. A

few moments spent documenting the operation of the subroutine in this

41

way will save hours spent at a later date trying to debug a program

which uses the subroutine.

6.2 GOSUB Label

The GOSUB statement is just like the GOTO statement that has already

been described, in that it can be followed by a line number, an

expession evaluating to a line number, or a label. Labels are of the

form a to z, and the first line of the subroutine should contain the

label immediately following the line number.

6.2.1 Linear Interpolation

The following program uses linear interpolation to find the roots of

an equation using only integer arithmetic, although the program could

be modified to use floating-point statements.

 The equation is specified in a subroutine, y, giving Y in terms of

X; the program finds solutions for Y=0.

 As given, the program finds the root of the equation:

X
2
 - x - 1 = 0

The larger root of this equation is phi, the golden ratio. A scaling

factor of S=1000 is included in the equation so that calculations can

be performed to three decimal places.

 The program prompts for two values of X which lie either side of

the root required.

 1 REM Linear Interpolation

 5 S=1000; @=0; I=1

 10 INPUT "X1",A,"X2",B

 20 A=A*S; B=B*S

 30 X=A; GOSUB y; C=Y

 40 X=B; GOSUB y; D=Y

 50 IF C*D<0 GOTO 80

 60 PRINT "ROOT NOT BRACKETED"

 70 END

 80 DO I=I+1

 90 X=B-(B-A)*D/(D-C); GOSUB y

 100 IF C*Y<0 THEN A=X; C=Y; GOTO 120

 110 B=X; D=Y

 120 UNTIL ABS(A-B)<2 OR ABS(Y)<2

 130 PRINT"ROOT IS X="

 140 IF X<0 PRINT "-"

 145 PRINT ABS(X)/S,"."

 150 DO X=ABS(X)%S; S=S/10

 155 PRINT X/S; UNTIL S=1

 160 PRINT'"NEEDED ",I," ITERATIONS."'

 170 END

 200yY=X*X/S-X-1*S

 210 RETURN

Description of Program:

5-70 Check that starting values bracket a root

80-120 Find root by successive approximation

130-145 Print integer part of root

150-155 Print decimal places

160 Print number of iterations needed

200-210 y: Subroutine giving Y in terms of X, with appropriate

 scaling.

42

Variables:

A - Lower starting value of X

B - Upper starting value of X

C - Value of Y for X=A

D - Value of Y for X=B

I - Iteration number

S - Scaling factor; all numbers are multiplied by S and held as

integers.

X - Root being approximated

Y - Value of equation for given,X

Program size - 466 bytes

Sample run:

>RUN

X1?1

X2?3

ROOT IS X= 1.618

NEEDED 7 ITERATIONS.

6.3 Subroutines Calling Subroutines

Often the task carried out by a subroutine may itself usefully be

broken down into a number of smaller steps, and so it might be

convenient to include calls to subroutines within other subroutines.

This is perfectly legal, and subroutines may be nested up to a maximum

depth of 15 calls.

6.4 Recursive Subroutine Calls

Sometimes a problem can be more simply expressed if it is allowed to

include a reference to itself. When a subroutine includes a call to

itself in this way it is known as a 'recursive' subroutine call, and

it is possible to use recursive calls in ATOM BASIC provided that the

depth of recursion is limited to 15 calls. The following half-hearted

program uses a recursive call to print out ten stars without using a

loop:

 10 REM Recursive Stars

 20 P=10; GOSUB p

 30 END

 100pREM Print P stars

 110 IF P=0 RETURN

 120 P=P-1

 130 GOSUB p; REM Print P-1 stars

 140 PRINT "*"

 150 RETURN

This program could, of course, be written more effectively using a

simple FOR...NEXT loop. The following programs, however, use recursion

to great benefit to solve mathematical problems that would be much

harder to solve using iteration alone.

6.4.1 Tower of Hanoi Problem

In the Tower of Hanoi problem three pegs are fastened to a stand, and

there are a number of wooden discs each with a hole at its centre. The

discs are all of different diameters, and they all start on one peg,

arranged in order of size with the largest disc at the bottom of the

pile.

 The problem is to shift the pile to another peg by transferring

43

one disc at a time, with the restriction that no disc may be placed on

top of a smaller disc. The number of moves required rises rapidly with

the number of discs used; the problem was classically described with

64 discs, and moving one disc per second the solution of this problem

would take more than 500,000 million years!

 A recursive solution to the problem, stated in words, is:

To move F discs from peg A to peg B:

1. Move F-1 discs to peg C.

2. Move bottom disc to peg B.

3. Move F-1 discs to peg B.

Also, when F is zero there is no need to do anything. Steps 1 and 3 of

the procedure contain a reference to the whole procedure, so the

solution is recursive.

 The following program will solve the problem for up to 13 discs,

and displays the piles of discs at every stage in the solution:

 1 REM Tower of Hanoi

 10 PRINT$12

 20 A=TOP;D=A+4

 40 V=-3;W=-1

 60 !D=#1020300;!A=0

 70 INPUT"NUMBER OF DISCS "F

 80 A?1=F;?D=F

 85 N=64/3

 90 CLEAR0

 100 FORQ=1TOF;MOVE(F-Q),(2*(F-Q));PLOT1,(2*Q-1),0;NEXT

 110 GOSUBh;END

 1000hIF?D=0 RETURN

 1010 D!4=!D-1;D?6=D?1;D?5=D?2;D=D+4;GOSUBh

 1020 MOVE(F-D?-4+D?V*N-N),(D?V?A*2);PLOT1,(D?-4*2-1),0

 1030 MOVE(D?W*N-N),(D?W?A*2-2);PLOT3,(F+D?-4),0

 1040 A?(D?W)=A?(D?W)+W;A?(D?V)=A?(D?V)-W

 1050 D?3=D?-2;D?2=D?W;D?1=D?V;GOSUBh

 1060 D=D-4;RETURN

Description of Program:

100 Draw starting pile of discs

110 Subroutine h is called recursively to move the number of

 discs specified in ?D.

1000 h: Subroutine to move ?D discs

1010 Recursive call to move ?D-1 discs

1020 Draw new disc on screen

1030 Remove old disc from screen

1040 Set up array A

1050 Recursive call to put back ?D-1 discs

Variables:

A?N - Number of discs on pile N

D - Stack pointer

?D - How many discs to transfer

D?1 - Destination Pile

D?2 - Intermediate pile

D?3 - Source pile

F - Total number of discs

N - One third of screen width

V - Constant

W - Constant

Program size: 461 bytes

Stack usage: (4 * number of discs) bytes

44

6.3.2 Eight Queens Problem

A classical mathematical problem consists of placing eight queens on a

chessboard so that no queen attacks any other. The following program

find all possible solutions to the problem, and draws a diagram of the

board to show each solution as it is found. The program uses many

abbreviations to keep it small enough to fit on an unexpanded ATOM

(for a complete explanation of these abbreviations, see section 10.1):

 1 REM Eight Queens

 30 C=0;D=TOP;E=D+3;A=D+27;!D=0

 60 @=0;GOS.t;P.$13"THERE ARE "C" SOLUTIONS"';END

 100tIF?D=#FF C=C+1;GOTOd

 110 ?A=(?D|D?1|D?2):#FF

 120lIF?A=0R.

 130 A?1=?A&-?A

 140 ?E=?D|A?1;E?1=(D?1|A?1)*2;E?2=(D?2|A?1)/2

 150 D=D+3;E=E+3;A=A+2;GOS.t;D=D-3;E=E-3;A=A-2

 160 ?A=?A&(A?1:#FF);GOTOl

 200dCLEAR0;FORZ=0TO32S.4;MOVE0,Z;DRAW31,Z;MOVEZ,0;DRAWZ,32;N.

 210 Q=0;FORZ=3TO24STEP3;P=TOP?Z-Q;S=-2;DOS=S+4;P=P/2;UNTILP=0

 220 Q=TOP?Z;PLOT13,(Z/3*4-2),S;N.;P.$30 C;R.

Description of Program:

30 Initialise array space. D is vector of attacks, ?D is row

 attacks,D?1 is left diagonal attacks, D?2 is right diagonal

 attacks.

60 Call recursive analyser and print answer.

100 t: Recursive analyser: if all rows attacked have found a

 solution.

110 Calculate possible places to put new queen.

120 If no possible place, end this recursive attempt.

130 Find least significant bit in possible places to use as new

 queen position.

140 Calculate new attacked values.

150 Recursive call of analyser.

160 Remove this position from possible position and see if done.

200 d: Have solution, display board matrix.

210 Plot pixels at positions of queens.

220 Print the solution number at screen top and end recursion.

Variables:

?A - Possible position; value of A changes

C - Solutions counter

?D - Row attacks; value of D changes

E - Holds D+3 to make program shorter

Program size: 440 bytes

Vectors: 30 bytes

Total storage: 470 bytes.

\ \

\ \ \

45

7 Arrays and Vectors
So far we have met just 26 variables, called A to Z. Suppose you

wanted to plot a graph showing the mean temperature for every month of

the year. You could, at a pinch, use the twelve letters A to L to

represent the mean temperatures, and read in the temperatures by

saying:

 INPUT A,B,C,D,E,F,G,H,I,J,K,L

However there is a much better way. A mathematician might call the

list of temperatures by the names:

t
1
, t

2
, t

3
, t

12
.

where the 'subscript', the number written below the line, is the

number of the month in the year. This representation of the twelve

temperatures is much more meaningful than using twelve different

letters to stand for them, and there is no doubt about which symbol

represents the temperature of, for example, the third month.

 A similar series of variables can be created in ATOM BASIC, and

these are called 'arrays'. Each array consists of an array

'identifier', or name, corresponding to the name 't' in the above

example, and a 'subscript'. On most computers there is no facility for

writing subscripts, so some other representation is used. Each member

of the array can act as a completely independent variable, capable of

holding a value just like the variables A to Z. The members of an

array are called the array 'elements'. The total number of possible

elements depends on how the array was set up; in the above example

there were twelve elements, with subscripts from 1 to 12.

 In addition to the standard type of array, ATOM BASIC provides two

other types of array called 'byte vectors' and 'word vectors'. Byte

vectors are useful when only a small range of numbers are needed, and

they use less storage space than word arrays. Word vectors use the

same amount of storage as arrays, but can be manipulated in a more

flexible manner.

7.1 Arrays - AA to ZZ

The array in ATOM BASIC consists of a pair of identical letters a

followed by the subscript in brackets: for example, EE(3). Each

element in this type of array can contain numbers as large as the

simple variables A to Z, namely, between about -2000 million and 2000

million.

 Before an array can be used space must be reserved for it by a

DIM, or 'dimension', statement which tells BASIC how large the array

is to be. For example, to reserve space for an array called AA with

the five elements AA(0), AA(1), AA(2), AA(3), and AA(4), the statement

would be:

 DIM AA(4)

The DIM statement allocates space for arrays starting at the first

free memory location after the program text. If this were the first a

DIM statement encountered in the program the element AA(0) would be at

46

TOP, above the program text:

TOP: ? ? ? ? ?

 ^ ^ ^ ^ ^

 AA(0) AA(1) AA(2) AA(3) AA(4)

The question marks represent unspecified values, depending on what the

array contained when it was dimensioned. If now another array were

dimensioned with the statement:

 DIM BB(3)

space for the array BB would be reserved immediately following on from

AA.

 Array elements can appear in expressions, and be assigned to, just

like the simple variables A to Z. For example, to make the value of

AA(3) become 776 we would execute:

 AA(3)=776

Then we could execute:

 AA(1)=AA(3)*2

 AA(0)=AA(3)-6

and so on. The resulting array would now be:

 TOP: 770 1552 ? 776 ?

 ^ ^ ^ ^ ^

 AA(0) AA(1) AA(2) AA(3) AA(4)

 There are two places in BASIC programs where array elements may

not be used; these are:

1. As the control variable in a FOR...NEXT loop.

2. In an INPUT statement.

In these two cases the simple variables, A to Z, must be used.

7.1.1 Histogram

The following program illustrates the use of arrays to plot a

histogram of the temperature over the twelve months of the year. The

temperatures, assumed to be in the range 0 to 100, are first entered

in and are stored in the array TT(1..12).

 1 REM Histogram

 10 DIM TT(12)

 20 FOR J=1 TO 12;INPUT K

 30 TT(J)=K; NEXT J

 40 PRINT $12; CLEAR 0; @=5

 50 MOVE 60,12; DRAW 12,12

 60 DRAW 12,42

 70 FOR N=11 TO 0 STEP -1

 80 IF N=7 PRINT "TEMP."

 90 IF N%2=0 PRINT N*10

 100 PRINT';NEXT N

 110 PRINT " JAN MAR MAY JUL SEP NOV"'

 120 PRINT " FEB APR JUN AUG OCT DEC"'

 130 PRINT " MONTH"'

47

 140 FOR N=1 TO 12; J=11+4*N

 150 MOVE J,12; DRAW J,(TT(N)*3/10+12)

 160 NEXT N; END

Description of Program:

20-30 Input 12 values

40 Clear screen

50-60 Draw axes

70-100 Label vertical axis

110-130 Label horizontal axis

140-160 Plot histogram bars

Program size: 415 bytes

Array storage: 52 bytes

7.1.2 Sorting Program

The following program illustrates the use of arrays to sort a series

of numbers into ascending order. It uses a fairly efficient sorting

procedure known as the 'Shell' sort. The program, as written, reads in

20 numbers, calls a subroutine to sort the numbers into order, and

prints the sorted numbers out.

 1 REM Sorting

 5 DIM AA(20)

 10 FOR N=1 TO 20; INPUT J

 20 AA(N)=J; NEXT N

 30 N=20; GOSUB s

 40 FOR N=1 TO 20; PRINT AA(N)'

 50 NEXT N

 60 END

 100sM=N

 110 DO M=(M+2)/3

 120 FOR I=M+1 TO N

 130 FOR J=I TO M+1 STEP -M

 140 IF AA(J)>=AA(J-M) GOTO b

 150 T=AA(J); AA(J)=AA(J-M); AA(J-M)=T

 160 NEXT J

 170b NEXT I

 180 UNTIL M=1; RETURN

Description of Program:

5-20 Read in array of numbers

30 Call Shell sort

40-50 Print out sorted array

100-180 s: Shell sort subroutine

140-150 Swap elements which are out of order.

Variables:

AA(1..20) - Array to hold numbers

I,J - Loop counters

N - Number of elements in array AA

M - Subset step size

T - Temporary variable

Program size: 332 bytes

Array storage: 84 bytes

7.1.3 Arbitrary-Precision Arithmetic

The following program allows powers of two to be calculated to any

precision, given enough memory. As it stands the program will

calculate all the powers of 2 having less than 32 digits. The digits

48

are stored in an array AA, one digit per array element. Every power of

2 is obtained from the previous one by multiplying every element in

the array by 2, and propagating a carry when any element becomes more

than one digit.

 5 REM Powers of Two

 10 DIM AA(31)

 20 @=1; P=0

 30 AA(0)=1

 40 FOR J=1 TO 31

 50 AA(J)=0

 60 NEXT J

 70 DO J=31

 80 DO J=J-1; UNTIL AA(J)<>0

 85 PRINT'"2^" P "="

 90 FOR K=J TO 0 STEP -1

 94 PRINT AA(K)

 96 NEXT K

 110 C=0

 120 FOR J=0 TO 31

 130 A=AA(J)*2+C

 140 C=A/10

 150 AA(J)=A%10

 160 NEXT J

 170 P=P+1

 180 UNTIL AA(31)<>0

 190 END

Description of Program:

40-60 Zero array of digits

80 Ignore leading zeros

85-96 Print power

110-160 Multiply current number by 2

180 Stop when array overflows.

Variables:

AA - Array of digits; one digit per element

C - Decimal carry from one digit to next

J - Digit counter

K - Digit counter

P - Power being evaluated

Program size: 356 bytes

Array usage: 124 bytes

Total memory: 480 bytes.

7.1.4 Digital Waveform Processing

The following program uses a 256-element array to store a waveform

which can be low-pass filtered, converted to a square wave, or printed

out.

 1 REM Digital Waveform Processing

 5 DIM AA(255)

 10 H=2000

 15 CLEAR4

 23 GOS.s; GOS.q

 25 Z=160; GOS.p

 28 GOS.l

 30 Z=96; GOS.p

 32 GOS.s

 34 Z=32; GOS.p

49

 90 END

 1000pREM Plot Waveform

 1005 MOVE 0,96

 1010 FOR N=0 TO 255

 1020 PLOT13,N,(Z+AA(N)/H)

 1030 NEXT N

 1040 RETURN

 2000sREM Make Sine Wave

 2010 S=0;C=40000

 2020 FOR N=0 TO 255

 2030 AA(N)=-S

 2040 C=C-S/10

 2050 S=S+C/10

 2060 NEXT N

 2070 RETURN

 3000qREM Make Square Wave

 3010 FOR N=0 TO 255

 3020 IF AA(N)>=0 AA(N)=40000

 3030 IF AA(N)<0 AA(N)=-40000

 3035 NEXT N

 3040 RETURN

 4000lREM Low Pass Filter

 4010 B=0

 4020 FOR N=0 TO 255

 4030 B=AA(N)*360/1000+B*697/1000

 4040 AA(N)=B; NEXT N

 4050 RETURN

Description of Program:

23 Calculate a square wave

25 Plot it at top of screen

28 Low-pass filter the square wave

30 Plot it in centre of screen

32 Calculate a sine wave

34 Plot it at bottom of screen

1000-1040 p: Plots waveform

2000-2070 s: Calculates a sine wave.

3000-3040 q: Squares-up the waveform

4000-4050 l: Low-pass filters the waveform

Variables:

AA(0...255) - Array of points, values between -40000 and 40000.

B - Previous value for low-pass filter

C - Cosine of waveform

H - Scalinq factor for plotting waveforms

N - Counter

S - Sine of waveform

Z - Vertical coordinate for centre of waveform.

Program size: 564 bytes.

Array storage: 1024 bytes

Total memory: 1588 bytes

50

Sample plot:

7.1.5 Subscript Checking

Many BASIC interpreters perform extensive checking whenever an array

element is used in a program. For example, if an array were

dimensioned:

 DIM RR(10)

then every time the array were used the subscript would be checked to

make sure that it was both 0 or greater, and 10 or less. Obviously

these two checks slow down the execution of a program, and so in ATOM

BASIC only the first check is performed, so that only positive

subscripts are allowed. It is left to the programmer to ensure that

subscripts do not go out of range. Assigning to an array whose

subscript is out of range will change the values of other arrays, or

strings, dimensioned after that array.

 If required, the programmer can easily add array subscript

checking; for example, if the array assignment were:

 RR(A)=35

the statement:

 IF A>10 THEN ERROR

could be added before the assignment to cause an error if the array

subscript, A, went out of range.

7.1.6 Multi-Dimensional Arrays

The standard types of array in ATOM BASIC are one-dimensional. In

other words, they have just one subscript, and so can be visualised as

lying in a straight line; hence the name 'array'.

 Sometimes it is convenient to make each element of an array

represent a cell in a square 'matrix'; each element would then have

two subscripts corresponding to the column and row of that square.

Such two-dimensional arrays are called 'matrices'. Consider the

following representation of a 3 by 6 matrix:

51

 0 1 2 3 4 5

0

1

2 X

The whole matrix has 3 x 6 = 18 elements, and the element shown with

an X would have the subscripts (2,4).

 ATOM BASIC does not have a direct representation for

two-dimensional (or higher dimension) arrays, but they are easily

represented using the single-dimension arrays AA to ZZ as described in

the following sections.

7.1.7 Calculation of Subscripts

To represent a two-dimensional matrix using a one-dimensional array

imagine the matrix divided into rows as shown:

 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2

The first element of row 1, with subscripts (1,0), follows immediately

after the last element of row 0, with coordinates (0,5). Consider the

general case where the matrix has M rows numbered 0 to N-l, and N

columns numbered 0 to N-1. The matrix can be dimensioned, using a

one-dimensional array, with the DIM statement:

 DIM XX(M*N-1)

Any array element, with subscripts A and B, can be referenced as:

 XX(A*N+B)

In the earlier example the array had dimensions 3 x 6 and so would be

dimensioned:

 DIM XX(17)

The array element with subscripts (2,4) would be given by:

 XX(16)

7.1.8 Solving Simultaneous Equations

The following program will solve a number of linear simultaneous

equations, using a matrix to hold the coefficients of the equations,

and a matrix inversion technique to find the solution. The program

prints the solutions as integers, where possible, or as exact

fractions.

 This method has the advantage over the standard pivotal

condensation technique that for integer coefficients the answers are

exact integers or fractions.

 The example run shown solves the pair of equations:

 a + 2b + 1 = 0

4a + 5b + 2 = 0

 10 REM Simultaneous Equations

 50 INPUT"NUMBER OF EQUATIONS="N

 60 I=N*N;J=N*(N+1)

52

 65 DIM AA(I),CC(J),II(N)

 70 @=0;FOR I=1TON;FOR J=1TO N+1

 80 PRINT"C("I","J")=";INPUT C

 90 CC((I-1)*(N+1)+J)=C;NEXT J;NEXT I

 100 L=N+1;GOSUB c;E=D;M=1-2*(N%2)

 110 PRINT'"SOLUTION:"'

 112 IF E<0 E=-E;M=-M

 115 IF E=0 PRINT"DEGENERATE!"';END

 120 FOR L=1TON;GOSUB c

 125 PRINT"X("L")="

 130 A=M*D;B=E;DO A=A%B

 140 IF ABS(B)>ABS(A) THEN T=B;B=A;A=T

 150 UNTIL B=0;A=ABS(A)

 151 P.(M*D)/A;IF E/A<>1 PRINT"/"E/A

 155 M=-M;PRINT';NEXT L;END

 160cFOR I=1TON;FOR J=1TON;K=I*N-N+J

 170 IF J<L AA(K)=CC(K+I-1)

 180 IF J>=L AA(K)=CC(K+I)

 190 NEXT J;NEXT I

 200dD=0;F=1;S=1

 210 FOR J=1TON;II(J)=J;F=F*J;NEXT J

 215 GOSUB f

 220 FOR H=2TOF;GOSUB e;NEXT H;RETURN

 230eI=N-1;J=N

 240gIF II(I)>=II(I+1) I=I-1;GOTO g

 250hIF II(I)>=II(J) J=J-1;GOTO h

 260 GOSUB i;I=I+1;J=N;IF I=J GOTO f

 270 DO GOSUB i;I=I+1;J=J-1;UNTIL I>=J

 280fP=1;FOR K=1TON;P=P*AA(N*K-N+II(K))

 290 NEXT K;D=D+S*P;RETURN

 300iK=II(I);II(I)=II(J);II(J)=K

 310 S=-S;RETURN

Description of Program:

50-60 Allocate space for matrix

70-90 Read in matrix of coefficients

120-155 Print solutions

130-150 Find GCD of solution, so it is printed in lowest terms

160-190 c: Permute terms to obtain next addition to determinant;

 i.e. for 5 equations, starting with (1,2,3,4,5) run through

 all permutations to (5,4,3,2,1).

280-290 f: Add in next product to determinant.

300-310 i: Swap terms in permutation.

Variables:

AA(1...N*N) - Matrix

CC(1...N*N+N) - Matrix of coefficients

S - Signature of permutation.

Program Size: 932 bytes.

Variable Space: (2*(N*N+N)+3)*4 bytes

Sample run:

>RUN

NUMBER OF EQUATIONS=?2

C(1,1)=?1

C(1,2)=?2

C(1,3)=?1

C(2,1)=?4

C(2,2)=?5

C(2,3)=?2

53

SOLUTION:

X(1)= 1/3

X(2)= -2/3

7.2 Byte Vectors Using, '?'

It is sometimes wasteful of memory to allocate space for numbers over

the range provided by word arrays so a second type of array

representation is provided which only allocates one byte, rather than

four bytes, for each array element. These are referred to as 'byte

vectors', and they are in effect one-dimensional arrays. Byte vectors

differ from word arrays in that they use one of the simple variables A

to Z to hold the 'base' address of the array; i.e. the address in

memory where the zeroth element of the array will reside. The array

subscripts are simply 'offsets' from this base address; i.e. the

subscript is added to the base address to give the address of the

array element. The vector elements are written as:

 A?0, A?1, A?2, ... etc

where A is the simple variable used to hold the base address of the

vector, and the number following the question mark is the subscript.

 Note that the zeroth element of a byte vector, A?0, is equivalent

to ?A, the contents of the location with address A. Similarly A?1 is

equivalent to ?(A+1), and so on.

 Byte vectors can be dimensioned by the DIM statement; for example,

to dimension a byte vector with elements from A?0 to A?11 the

statement would be:

 DIM A(11)

Because the DIM statement dimensions arrays and vectors from the end

of the program onwards, the above DIM statement is equivalent to:

 T=TOP; A=T; T=T+12

where T is a variable used to keep track location. Note that space for

vectors can be reserved anywhere in memory, as distinct from arrays

which can only be assigned from TOP onwards using the DIM statement.

For example, to assign space for a vector S corresponding to the

screen memory, simply execute:

 S=#8000

Elements of this vector would then correspond to locations on the

screen; e.g. S?31 is the location corresponding to the top right-hand

corner of the screen.

 Each element of a byte array can hold a positive number between 0

and 255, or a single character. Strings are simply byte vectors

containing characters. Note that the subscript of a byte array can be

an arbitrary expression provided that it is enclosed in brackets.

7.3 Word Vectors Using '!'

A second representation for word arrays is provided in ATOM BASIC

using the word indirection operator '!', and is mentioned here for

completeness, although for simple problems involving arrays the word

arrays AA to ZZ are probably more convenient. Word vectors are similar

to the byte vectors already described, but each element of the vector

consists of a word rather than a byte. Each element consists of the

base address variable separated from the subscript, or offset, by a

'pling' '!'. Note that the subscript should be incremented by 4 for

each element, since each element is offset 4 bytes from the previous

one. For example, a word vector W might have the six elements:

54

 W!0, W!4, W!8, W!12, W!l6, W!20.

Space can be dimensioned for word vectors by using the DIM statement,

and allowing 4 bytes per element; for example, to provide storage for

the above 6 elements, execute:

 DIM W(23)

Note that the zeroth element of the vector, W!0, is equivalent to !W.

7.3.1 Prime Numbers

The following program finds all the prime numbers up to 99999. It uses

a word vector to store primes already found, and only tests new

candidates for divisibility by these numbers:

 1 REM Prime Numbers

 10 @=8;S=4;Z=0;J=TOP;G=J;!G=3;P=G+S

 20 FORT=3TO99999STEP2

 30cIFT%!G=Z G=J;N.

 40 IFT>!G*!G G=G+S;G.c

 50 P.T;!P=T;G=J;P=P+S;N.

 60 END

Description of Program:

10 Set up vector

20 Test all odd numbers

30 If divisible, try another.

40 Have we tried enough divisors?

50 Must be prime - print it.

Variables:

!G - Divisor being tested

J - Equal to TOP

!P - Vector of divisors

S - Bytes per word

T - Candidate for prime

Z - Constant zero.

Program size: 155 bytes

Vector: as required.

7.3.2 Call by Reference

A major advantage of word vectors over the word arrays is that their

base addresses are available as values, and so can be passed to

subroutines. As an example, consider this program:

 10 A=TOP; B=A+40

 .

 .

 90 P=A; GOSUB p; REM Output A

 94 P=B; GOSUB p; REM Output B

 98 END

 100pREM Print 10 Elements of array P

 105 @=8; PRINT '

 110 FOR J=0 TO 39 STEP 4

 120 PRINT P!J

 130 NEXT J

 140 PRINT '

 150 RETURN

55

In this example subroutine p can be used to print any array by passing

its base address over in the variable P; this is known as a 'call by

reference' because the subroutine is given a reference to the array,

rather than the actual values in the array.

7.3.3 Arbitrary Precision Powers

The following program illustrates the use of word vectors to calculate

the value of any number raised to any other number exactly, limited

only by the amount of memory available. The program stores four

decimal digits per word, so that the product of two words will not

cause overflow, and the result is calculated as a word vector.

 1 REM Arbitrary Precision Powers

 5 T=#3BFF

 10 H=(T-TOP)/3; DIM P(H),S(H),D(H)

 15 H=10000

 20 @=0;PRINT'" POWER PROGRAM"

 30 PRINT'" COMPUTES Y^X, WHERE X>0 AND Y>0"

 40 INPUT'" VALUE OF Y"Y," VALUE OF X"X

 50 IFX<1ORY<1PRINT" VALUE OUT OF RANGE";RUN

 60 M=Y;N=X;GOSUBp

 70 PRINT Y"^"X"="P!!P;IF!P<8 RUN

 90 F.L=!P-4TO4STEP-4

 95 IFL!P<100P.0

 100 IFL!P<10P.0

 110 IFL!P<1P.0

 120 P.L!P;N.;RUN

 140*

 200pJ=M;IFN%2=0J=1

 210 R=P;GOS.e;J=M;R=S;GOS.e;IFN=1R.

 250 B=S;DOA=B;GOS.m;B=E

 255 N=N/2;A=P;IFN%2GOS.m;P=E

 260 U.N<2;R.

 280*

 300m!D=!A+!B+4;F.J=4TO!D+4S.4

 310 D!J=0;N.;W=D-4

 320 F.J=4TO!B S.4;C=0;G=B!J

 325 V=W+J;F.L=4TO!A S.4

 330 Q=A!L*G+C+V!L;V!L=Q%H

 340 C=Q/H;N.;V!L=C;N.

 370 DO!D=!D-4;U.D!!D<>0;E=D;D=A;R.

 380*

 400e!R=0;DO!R=!R+4;R!!R=J%H

 410 J=J/H;U.J<1;R.

Description of Program:

5 Set T to top of lower text space.

10 Divide available memory between P, S, and D

20-40 Read in values of Y and X

50 Disallow negative values

60 Calculate power

70 Print result if fits in one word

90 Print rest of result, filling in leadinq zeros.

140 Blank line to make listing clearer.

200-260 p: Calculates power. Looks at binary representation of X and

 for each bit squares B, and if bit is a 1 multiplies P by

 current B.

300-370 m: Multiply together the vectors pointed to by A and B and

 put the result into the vector pointed to by D. Pointers to

 vectors get changed; E points to result.

56

400-410 e: Unpack J into vector pointed to by R; store number of

 words in !R.

Variables:

D!0... - Workspace vector

H - Radix for arithmetic

P!1... - Vector for unpacked result

!P - Number of elements used in P

S!0... - Workspace vector

T - Top of available memory

Program size: 733 bytes.

Additional storage: as available.

Sample run:

>RUN

 POWER PROGRAM

 COMPUTES Y^X, WHERE X>0 AND Y>0

 VALUE OF Y?16

 VALUE OF X?64

 16^64=1157920892373161954235709850086879078532699846656405640394575

84007913129639936

7.3.4 Vectors of Vectors

A second way of representing two-dimensional arrays is possible using

the ATOM's indirection operators '?' and '!'; this avoids the need for

a multiplication to calculate the subscript, but does require slightly

more storage. The idea is to think of a two-dimensional matrix as a

vector of vectors; first a vector is created containing the addresses

of the rows of the matrix. For example, for a matrix called X with

columns 0 to M, and rows 0 to N, the following statements will set up

the vector of row addresses:

 DIM X(2*N-1)

 FOR J=0 TO N*2 STEP 2; DIM Q(M); X!J=Q; NEXT J

A word array is used to hold the base addresses. Q is a variable used

to hold the base address temporarily. Now that the vector of row base

addresses has been set up, the element with subscripts A,B is:

 X!(A*2)?B

57

8 Strings
A 'string' is a sequence of characters; the characters can be anything

- letters, digits, or punctuation marks. They can even be control

characters.

8.1 Quoted Strings

Strings are represented in a program by enclosinq the characters

between quotation marks; quoted strings have already been introduced

in the context of the PRINT and INPUT statements. For example:

 "THIS IS A STRING"

To represent a quotation mark in a quoted string the quotation mark is

typed twice. Valid strings always contain an even number of quotation

marks. For example:

 PRINT"HE SAID: ""THIS IS A VALID STRING"""

will print:

HE SAID: "THIS IS A VALID STRING"

8.2 String Variables

The variables A to Z have already been met, where they are used to

represent numbers. These variables can also be used to represent

strings, and strings can be manipulated, input with the INPUT

statement, printed with the PRINT statement, and there are several

functions for manipulating strings.

8.2.1 Allocating Space for Strings

BASIC allows strings of any size up to 255 characters. To use string

variables space for the strings should first be allocated by means of

a DIM (dimension) statement. For example, for a string of up to 10

characters using the variable A the statement would be:

 DIM A(10)

Any number of strings can be dimensioned in one DIM statement.

8.2.2 String Operator '$'

Having allocated space for the string it can then be assigned a value.

For example:

 $A="A STRING"

The '$' is the string-address operator. It specifies that the value

following it is the address of the first character of a string.

 The effect of the statement DIM A(10) is to reserve 11 memory

locations in the area of free memory above the text of the BASIC

program, and to put the address of the first of those locations into

A. In other words, A is a pointer to that area of memory. After the

above assignment the contents of those locations are as follows:

58

A: A S T R I N G ~ ? ?

The question-marks indicate that the last two locations could contain

anything. The character '~' represents 'return' which is automatically

stored in memory to indicate the end of the string. The DIM statement

allocates one extra location to hold this terminator character,

although you will not normally be aware of its presence.

 Note that it would be dangerous to allocate a string of more than

10 characters to A since it would exceed the space allocated to A.

8.2.3 Printing strings

A string variable can be printed by writing:

 PRINT $A

This would print:

A STRING>

and no extra spaces are inserted before or after the string.

8.2.4 String Assignment

Suppose that a second string is dimensioned as follows:

 DIM B(8)

The string $A can be assigned to $B by the statement:

 $B=SA

which should be read as 'string B becomes string A'. The result of

this assignment in memory is as follows:

A: A S T R I N G ~ ? ? A S T R I N G ~

 ^ ^

 A B

8.2.5 String Equality

It is possible to test whether two strings are equal with the IF

statement. For example:

 $A="CAT"; $B="CAT"

 IF $A=$B PRINT "SAME"

would print SAME.

8.2.6 String Input

The INPUT statement may specify a string variable, in which case the

string typed after the '?' prompt, and up to the 'return', will be

assigned to the string variable. The maximum length of line that can

be typed in to an INPUT statement is 64 characters so, for safety, the

string variable in the INPUT statement should be dimensioned with a

length of 64.

8.3 String Functions

Several functions are provided to help with the manipulation of

strings.

59

8.3.1 Length of a String - LEN

The LEN function will return the number of characters in the string

specified in its argument. For example:

 $A="A STRING"

 PRINT LEN(A)

will print the value 8. Note that:

 $B=""""

 PRINT LEN(B)

will print 1 since the string B contains only a single quote

character.

8.3.2 CH

The CH function will return the ASCII value of the first character in

the string specified by its argument. Thus:

 CH"A"

will be equal to 65, the ASCII code for A. The string terminating

character 'return' has a value of 13, so:

 CH""

will be equal to 13.

8.4 String Manipulations

The following sections show how the characters within strings can be

manipulated, and how strings can be concatenated into longer strings

or broken down into substrings.

8.4.1 Character Extraction - '?'

Individual characters in a string can be accessed with the

question-mark '?' operator. Consider again the representation of the

string A. Number the characters, starting with zero:

A: A S T R I N G ~ ? ?

 0 1 2 3 4 5 6 7 8 9 10

 ^

 A

The value of the Nth. character in the string is then simply A?N. For

example, A?7 is "G", etc. In general A?B is the value of the character

stored in the location whose address is A+B; therefore A?B is

identical to B?A. In other words, a string is being thought of as a

byte vector whose elements contain characters; see section 7.2.

 The following program illustrates the use of the '?' operator to

invert all the characters in a string which is typed in:

 1 REM Invert String

 5 DIM Q(64)

 10 INPUT $Q

 20 FOR N=0 TO LEN(Q)-1

 30 Q?N=Q?N | #20

 40 NEXT N

 50 PRINT $Q

 60 RUN

\

60

8.4.2 Encoding/Decoding Program

As a slightly more advanced example of string operations using the '?'

operator, the following program will produce a very secure encoding of

a message. The program is given a number, which is used to 'seed'

BASIC's random number generator. To decode the text the negative of

the same seed must be entered.

 1 REM Encoder/Decoder

 10 S=TOP; ?12=0

 20 INPUT'"CODE NUMBER"T

 30 !8=ABS(T)

 40 INPUT'$S

 50 FOR P=S TO S+LEN(S)

 60 IF ?P<#41 GOTO 100

 70 R=ABS(RND)%26

 80 IF T<0 THEN R=26-R

 90 ?P=(?P-#41+R)%26+#41

 100 NEXT P

 110 PRINT $S

 120 GOTO 40

Description of Program:

20 Input code number

30 Use code number to seed random number generator

40 Read in line of text

50-100 For each character, if it is a letter add the next random

 number to it, modulo 26.

110 Print out encoded string.

Variables:

P - Address of character in string

R - Next random number

S - Address of string; set to TOP.

T - Code number

Program size:

String storage: up to 64 bytes

Sample run:

>RUN

CODE NUMBER?123

?MEETING IN LONDON ON THURSDAY

BGYKPYI CM NHSHVO VU RGFGDHJI

? >

>RUN

CODE NUMBER?-123

?BGYKPYI CM NHSHVO VU RGFGDHJI

MEETING IN LONDON ON THURSDAY

? >

To illustrate how secure this encoding algorithm is you may like to

attempt to find the correct decoding of the following quotation:

YUVHW ZY WKQN IAVUAG QM SHXTSDK

GSY IEJB RZTNOL UFQ FTONB JB BY

CXRK QCJF UN TJRB.

SWB FJA IYT WCC LQFWHA YHW OHRMNI OUJ

61

HTJ I TYCU GQYFT FT SGGHH HJ FRP ELPHQMD,

RW LN QOHD OQXSER CUAB.

DKLCLDBCV.

8.4.3 Concatenation

Concatenation is the operation of joining two strings together to make

one string. To concatenate string B to the end of string A execute:

 $A+LEN(A)=$B

For example:

 10 DIM A(10),B(5)

 20 $A="ATOM"

 30 $B="BASIC"

 40 $A+LEN(A)=$B

 50 PRINT $A

 60 END

will print:

ATOMBASIC>

8.4.4 Right-String Extraction

The right-hand part of a string A, starting at character N, is simply:

 $A+N

For example, executing:

 10 DIM A(10),B(5)

 20 $A="ATOMBASIC"

 30 $B=$A+4

 40 END

will give string B the value "BASIC".

8.4.5 Left-String Extraction

A string A can be shortened to the first N characters by executing:

 $A+N=""

Since the 'return' character has the value 13, this is equivalent to:

 A?N=13

8.4.6 Mid-String Extraction

The middle section of a string can be extracted by combining the

techniques of the previous two sections. For example, the string

consisting of characters M to N of string A is obtained by:

 $A+N=""; $A=$A+M

For example:, if the following is executed:

 10 DIM A(10)

 20 $A="ATOMBASIC"

 30 $A+5=""; $A=$A+1

 40 END

then string A will have the value “TOMB”.

62

8.5 Arrays of Fixed-Length Strings

The arrays AA to ZZ may be used as string variables, thus providing

the ability to have arrays of strings. To allocate space for an array

of strings the DIM statement can be incorporated into a FOR...NEXT

loop. For example, the followinq program allocates space for 21

strings, AA(0) to AA(20), each capable of holding 10 characters:

 25 DIM AA(20)

 35 FOR N=0 TO 20

 40 DIM J(10)

 50 AA(N)=J

 60 NEXT N

Note the use of a dummy variable J to allocate the space for each

string. Individual elements of the string array can then be assigned

to as follows:

 $AA(0)="ZERO"

 $AA(10)="TEN"

and so on.

8.5.1 Day of Week

The following program calculates the day of the week for any date in

the 20th. century. It stores the names of the days of the week in a

string array.

 1 REM Day of Week

 10 DIM AA(6)

 20 FOR N=0 TO 6; DIM B(10); AA(N)=B; NEXT N

 30 $AA(0)="SUNDAY"; $AA(1)="MONDAY"

 40 $AA(2)="TUESDAY";$AA(3)="WEDNESDAY"

 50 $AA(4)="THURSDAY";$AA(5)="FRIDAY"

 60 $AA(6)="SATURDAY"

 70 INPUT"DAY OF WEEK"''"YEAR "Y,"MONTH "M,"DATE IN MONTH "D

 80 Y=Y-1900

 90 IF Y<0 OR Y>99 PRINT"ONLY 20TH CENTURY !"';GOTO 70

 100 IF M>2 THEN M=M-2; GOTO 120

 110 Y=Y-1; M=M+10

 120 E=(26*M-2)/10+D+Y+Y/4+19/4-2*19

 130 PRINT"IT IS " $AA(ABS(E%7)) ''

 140 END

Description of Program:

10-20 Allocate space for string array

30-60 Set array elements

70 Input date

80-120 Calculate day

130 Print day of week.

Variables:

$AA(0...6) - String array to hold names of days

B - Temporary variable to hold base address of each string

D - Date in month

E - Expression which, modulo 7, gives day of week.

M - Month

N - Counter

Y - Year in 20th. century.

Program size: 458 bytes.

Array storage: 105 bytes.

63

Total memory: 563 bytes.

8.6 Arrays of Variable-Length Strings

The most economical way to use the memory available is to allocate

only as much space as is needed for each string. For example the

following program reads in 10 strings and saves them in strings called

VV(1) to VV(10):

 10 DIM VV(10),T(-1)

 20 FOR N=1 TO 10

 30 INPUT $T

 40 VV(N)=T

 50 T=T+LEN(T)+1

 60 NEXT N

 70 INPUT "STRING NUMBER",N

 80 PRINT $VV(N),'

 90 GOTO 70

The statement DIM T(-1) sets T to the address of the first free memory

location. T is then incremented past each string to the next free

memory location as each string is read in. Finally, when 10 strings

have been read in the program prompts for a string number and types

out the string of that number.

 For example, if the first three strings entered were: "ONE",

"TWO", and "THREE", the contents of memory would be:

O N E ~ T W O ~ T H R E E ~ ? ? ? ...

 ^ ^ ^ ^

 VV(1) VV(2) VV(3) T

8.7 Reading Text

Some BASICs have statements READ and DATA whereby strings listed in

the DATA statements can be read into a string variable using the READ

statement.

 Although ATOM BASIC does not provide these actual statements,

reading strings specified as text is a fairly simple matter. The

following program reads the strings "ONE", "TWO" ... etc. into a

string variable, $A, and prints them out. The strings for the numbers

are specified as text after the program. They are identified by a

label 't', and a call to subroutine 'f' sets Q to the address of the

first string. Subroutine 'r' will then read the next string from the

list:

 10 REM Read Text

 20 DIM A(40); L=CH"t"

 25 GOSUB f

 30 FOR J=1 TO 20; GOSUB r

 40 PRINT $A '

 50 NEXT J

 60 END

 500fREM point Q to text

 510 Q=?18*256

 520 DO Q=Q+1

 530 UNTIL ?Q=#D AND Q?3=L

 540 Q=Q+4; RETURN

 550*

 600rREM read next entry into A

64

 605 REM changes: A,Q,R

 610 R=-1

 620 DO R=R+1; A?R=Q?R

 630 UNTIL A?R=CH"," OR A?R=#D

 640 IF A?R=#D Q=Q+3

 650 Q=Q+R+1; A?R=#D; RETURN

 660*

 800tONE,TWO,THREE,FOUR,FIVE

 810 SIX,SEVEN,EIGHT,NINE,TEN

 820 ELEVEN,TWELVE,THIRTEEN

 830 FOURTEEN,FIFTEEN,SIXTEEN

 840 SEVENTEEN,EIGHTEEN,NINETEEN

 850 TWENTY

Description of Program:

25 Find the text

30 Read in the next string

40 Print it out

500-550 f: Search for label t and point Q to first string

600-660 r: Read up to comma or return and put string into $A

800-850 t: List of 20 strings

Variables:

$A - String

J - Counter

L - Label for text

Q - Pointer to strings

R - Temporary pointer

Program size: 511 bytes

String storage: 41 bytes

Total memory: 552 bytes.

The program can be modified to read from several different blocks of

text with different labels by changing the value of L. Also note that

the character delimiting the strings may be any character, specified

in the CH function in line 630.

8.7.1 Reading Numeric Data

Numeric data can be specified as strings of characters as in in the

Read Text program of the previous section, and converted to numbers

using the VAL command in the extension ROM. For example, modify the

Read Text program by changing line 40 to:

 40 FPRINT VAL A

and provide numeric data at the label 't', for example as follows:

 800t1,2,3,4,1E30,27,66

 810 91,1.2,1.3,1.4,1.5

 820 13,14,15,16,17

 830 18,19,20

8.8 Printing Single Characters - '$'

A special use of the '$' operator in the PRINT statement is to print

characters that can not conveniently be specified as a string in the

program, such as control characters and graphics symbols. Normally '$'

is followed by a variable used as the base address of the string. If,

however, the value following the dollar is less than 255, the

character corresponding to that code will be printed instead.

 The following table gives the control codes, characters, and

graphics symbols corresponding to the different codes:

65

 Hex: Decimal: Character Printed:

 #00 - #1F 0 - 31 Control codes

 #20 - #5F 32 - 95 ASCII cHaracters

 #60 - #9F 96 - 159 Inverted ASCII characters

 #A0 - #DF 160 - 223 Grey graphics symbols

 #E0 - #FF 224 - 255 White graphics symbols

Note that only half of the 64 possible white graphics symbols can be

obtained in this way.

 The most useful control codes are specified in the following

sections; for a full list of control codes see section 18.1.3.

8.8.1 Cursor Movement

The cursor can be moved in any of the four directions on the screen

using the following codes:

 Hex: Decimal: Cursor Movement:

 #08 8 Left

 #09 9 Right

 #0A 10 Down

 #0D 11 Up

The screen is scrolled when the cursor is moved off the bottom line of

the screen; the cursor cannot be moved off the top of the screen. Note

that the entire screen memory is modified by scrolling; every line is

shifted up one line, and the bottom line is filled with spaces.

8.8.2 Screen Control

The following control codes are useful for controlling the VDU screen:

 Hex: Decimal: Control Character:

 #0C 12 Clear screen and home cursor

 #1E 30 Home cursor to top left of screen

8.8.3 Random Walk

The following program prints characters on the screen following a

random walk. One of the cursor control codes, chosen at random, is

printed to move the cursor; a white graphics character, chosen at

random, is then printed followed by a backspace to move the cursor

back to the character position.

 1 REM Random Walk

 10 DO

 20 PRINT $ABS(RND)%4+8, $(#A0+ABS(RND)%#40), $8

 30 UNTIL 0

66

67

9 Reading and Writing Data
The reader should now be familiar with the three types of data that

can be manipulated using ATOM BASIC, namely:

1. Words i.e. numbers between -2000 million and 2000 million

(approximately).

Storage required: 4 bytes

e.g. variables A to Z

 arrays AA(1) ... etc.

 word vectors A!4 ...etc.

 indirection !A ...etc.

2. Bytes i.e. numbers between 0 and 255, or single characters, or

logical values.

Storage required: 1 byte

e.g. byte vectors A?1 ... etc.

 indirection ?A ...etc.

3. Strings i.e. sequences of between 0 and 255 characters, followed by

a 'return'.

Storage required: Length+1 bytes

e.g. quoted string "A STRING"

 string variable $A ...etc.

All these types of data can be written to cassette and read from

cassette, making it very simple to make files of data generated by

programs.

 The ATOM BASIC functions and statements for cassette input and

output are designed to be fully compatible with the disk operating

system, should that be added at a later stage. When the disk operating

system is used, several files can be used by one program, and the

individual files are identified by a 'file handle', a number

specifying which file is being referred to. Although this facility is

not available when working with a cassette system, the file handle is

still required for compatibility.

9.2 Output

To output a word to cassette the PUT statement is used. Its form is:

 PUT A,W

where A and W are the file handle, and word for output, respectively.

 To output a byte to cassette the BPUT statement is used; the form

is:

 BPUT A,B

where A is the file handle, and B is the byte for output.

 To output a string the SPUT statement is used. The form is:

 SPUT A,S

where A is the file handle, and S is the base address of the string.

68

9.3 Input

To read a word from cassette the GET function is used. Its form is:

 GET A

where A is the file handle. The function returns the value of the

word.

 To read a byte the BGET function is used. Its form is:

 BGET A

where A is the file handle. The BGET function returns the value of the

byte, and can therefore be used in expressions; for example:

 PRINT BGET A + BGET A

will read two bytes from cassette and print their sum.

 To read strings the SGET statement is used. The form is:

 SGET A, S

where A is the file handle, and S is the base address where the string

will be stored. The string S should be large enough to accomodate the

string being read.

 Note the difference between SGET, which is a statement, and the

functions BGET and GET; SGET cannot be used in expressions.

9.4 Find Input and Find Output

The functions FIN (find input) and FOUT (find output) can optionally

be called before inputting from, or outputting to, cassette. The

functions are called with a null string as the argument, and they

return the value 13; when used with a disk system the argument is the

file name, and the value returned is the file handle.

 The FOUT function is called as follows:

 A=FOUT""

and it will cause the message:

RECORD TAPE

to be printed, and the program will wait for a key to be pressed

before continuing execution.

 The FIN function is called as follows:

 A=FIN""

and it causes the message:

PLAY TAPE

to be printed, and again the program will wait for a key to be

pressed. A dummy variable, such as A in this example, should be used

to hold the file handle.

9.4.1 Data on Cassette

The following program prompts for a series of values, terminated by a

zero, and saves them on a cassette tape. The first byte saved on the

tape is the number of words of data saved.

 1 REM Data to Cassette

 10 DIM VV(20)

 20 N=0

 30 DO INPUT J

 40 VV(N)=J; N=N+1

 50 UNTIL J=0 OR N>20

 60 A=FOUT""

69

 70 BPUT A,(N-1)

 80 FOR M=0 TO N-1

 90 PUT A,VV(M)

 100 NEXT M

 110 END

Description of Program:

30-50 Input numbers

60 Warn user to start tape

70 Output number of bytes

80-100 Save values on cassette

Variables:

A - Dummy file handle

J - Temporary variable for values input

M - Counter

N - Counter for number of values

VV(0...20) - Array of numbers

The next program reads the values back in and plots a histogram of the

values. The program automatically scales the values if they are too

large to fit onto the screen.

 1 REM Plot Histogram from Cassette

 10 DIM VV(20)

 20 A=FIN""; N=BGET A

 30 FOR M=0 TO N

 40 VV(M)= GET A

 50 NEXT M

 60 REM X=Maximum, Y=Minimum

 70 X=VV(0); Y=VV(0)

 80 FOR M=1 TO N

 90 IF X<VV(M) THEN X=VV(M)

 100 IF Y>VV(M) THEN Y=VV(M)

 110 NEXT M

 120 S=(X-Y+63)/64

 130 REM Plot Histogram

 135 CLEAR 0

 140 FOR M=0 TO N

 150 MOVE 0,M

 160 DRAW ((VV(M)-Y)/S),M

 170 NEXT M

 180 GOTO 180

Description of Program:

20-50 Read values into array

70-110 Find maximum and minimum values in array

120 Calculate scaling factor

140-170 Plot scaled histogram

180 Wait for ESC key.

Variables:

A - Dummy file handle

M - Counter

N - Number of values in array

S - Scale factor for array

VV(0...20) - Array of values

X - Maximum value

Y - Minimum value

70

9.5 Reading and Writing Speed

When writing data to the cassette it is important to remember that the

program reading the data back will not be able to control the

cassette; it will have to read the data before it has passed under the

tape head. If the program to read the data will spend a substantial

time between reading, it may miss bytes passing under the tape head

unless a delay is inserted between bytes when writing to tape.

 As a general guide, the program to read the data should take no

longer to read each byte than the program to write the data takes to

write it.

9.6 Animal Learning Program

The following program illustrates how a computer can be 'taught'

information, so that a 'database' of replies to questions can be built

up. The computer plays a game called 'Animals'; the human player

thinks of an animal and the computer tries to guess it by asking

questions to which the answer is either 'yes' or 'no'. Initially the

computer only knows about a dog and a crow, but as the game is played

the computer is taught about all the animals that it fails to guess.

 The program uses the cassette input/output statements to load the

database, or tree, from cassette at the start of the game, and to save

the enlarged database at the end of the game.

 First create a database by typing:

 GOSUB 9000;

and record the database on a cassette. Then RUN the program and load

the database you have just recorded. When the reply 'NO' is given to

the question 'ARE YOU THINKING OF AN ANIMAL' the program will save the

new, enlarged, database on cassette. Also given is a sample run which

was obtained after several new animals had been introduced to the

computer.

 1 REM Animals

 10 REM Load Tree

 20 F=FIN""

 23 DO UNTIL BGET F=#AA

 25 FOR T=TOP TO TOP+GET F

 30 ?T=BGET F; NEXT T

 35 DO X=TOP

 40 PRINT'"ARE YOU THINKING OF AN ANIMAL"

 45 GOSUB q

 48 IF Q=0 THEN GOSUB z; END

 50 DO PRINT $X+1

 60 GOSUB q

 65 P=X+LENX+1+Q; X=!P+TOP

 70 UNTIL ?X<>CH"*"

 75 PRINT"IS IT " $X

 80 GOSUB q

 85 IF Q=4 PRINT "HO-HO";UNTIL 0

 90 DO INPUT"WHAT WERE YOU THINKING OF"$T

 95 UNTIL LEN T>2

 98 L=T; GOSUB s

 100 PRINT" TELL ME A QUESTION "

 110 PRINT"THAT WILL"'"DISTINGUISH "

 120 PRINT "BETWEEN " $L " AND " $X '

 130 $T="*"; R=T+1

 140 INPUT $R; !P=T-TOP; GOSUB s

 145 K=T; T=T+8; GOSUB j

 150 GOSUB q

71

 160 K!Q=X-TOP; K!(4-Q)=L-TOP

 170 UNTIL 0

 1000qINPUT $T

 1010 IF ?T=CH"Y"THEN Q=4; RETURN

 1020 IF ?T=CH"Q"THEN END

 1030 Q=0; RETURN

 2000j$T=$R; A=1

 2010 DO A=A+1

 2020 V=T?(A+4); $T+A+4=""

 2030 IF $T+A=" IT " UNTIL 1; GOTO k

 2035 T?(A+4)=V

 2040 UNTIL A=LEN T-5

 2100 PRINT"WHAT WOULD THE ANSWER BE"'

 2110 PRINT"FOR " $X

 2120 RETURN

 2150kT?(A+4)=V; $T+A+1=""

 2160 PRINT $T,$X,$T+A+3

 2170 RETURN

 3000sT=T+LEN T+1; RETURN

 9000 REM Set-Up File

 9010 T=TOP; $T="*DOES IT HAVE FOUR LEGS"

 9015 GOSUB s; P=T; T=T+8; !P=T-TOP

 9020 $T="A CROW"; GOSUB s; P!4=T-TOP

 9025 $T="A DOG"; GOSUB s

 9100zREM Save Tree

 9110 F=FOUT ""

 9112 BPUT F,#AA; WAIT

 9115 PUT F,(T-TOP-1)

 9120 FOR N=TOP TO T-1

 9130 BPUT F, ?N

 9140 NEXT N

 9150 RETURN

Description of Program:

20-30 Load previous tree

23 Look for start flag

35 Reset X to top of tree

50 Print next question

70 Carry on until not a question

75 Guess animal

90-95 Wait for a sensible reply

98 Find end of reply

1000-1030 q: Look for Y, N, or Q; set Q accordingly

2000-2120 j: Look for "IT "in question and print question with "IT"

 replaced by name of animal.

3000 s: Move T to end of string $T.

9000 Set up tree file

9100 z: Save tree file.

Variables:

F - Dummy file handle

K - Pointer to addresses of next two branches of tree

L - Pointer to animal typed in

P - Pointer to address of next question or animal.

Q - Value of reply to question; no=0, yes=4.

R - Pointer to question typed in

T - Pointer to next free location

X - Pointer to current position on tree

Program size: 1254 bytes

Additional storage: as required for tree.

72

Sample run:

>RUN

ARE YOU THINKING OF AN ANIMAL?Y

DOES IT HAVE FOUR LEGS?Y

CAN YOU RIDE IT?N

DOES IT HAVE STRIPES?N

IS IT A DOG?N

WHAT WERE YOU THINKING OF?A MOUSE

 TELL ME A QUESTION THAT WILL

DISTINGUISH BETWEEN A MOUSE AND A DOG

?DOES IT SQUEAK

DOES A DOG SQUEAK?NO

ARE YOU THINKING OF AN ANIMAL?Y

DOES IT HAVE FOUR LEGS?Y

CAN YOU RIDE IT?N

DOES IT HAVE STRIPES?N

DOES IT SQUEAK?Y

IS IT A MOUSE?Y

HO-HO

ARE YOU THINKING OF AN ANIMAL?N

RECORD TAPE

>

73

10
This chapter shows how to abbreviate programs so that they will fit

into a smaller amount of memory, and how to write programs so that

they will run as fast as possible.

10.1 Abbreviating BASIC Programs

Most versions of BASIC demand a large amount of redundancy. For

example, the command PRINT must usually be specified in full, even

though there are no other statements beginning with PR. In ATOM BASIC

it is possible to shorten many of the statement and function names,

and omit many unnecessary parts of the syntax, in order to save memory

and increase execution speed. The examples in this manual have avoided

such abbreviations because they make the resulting program harder to

read and understand, but a saving of up to 30% in memory space can be

obtained by abbreviating programs as described in the following

sections.

10.1.1 Statements and Functions

All statement and function names can be abbreviated to the shortest

sequence of characters needed to distinguish the name, followed by a

full stop. The following abbreviations are possible:

 Name: Abbreviation:

 ABS A.

 AND A.

 BGET B.

 BPUT B.

 CH

 CLEAR

 COUNT C.

 DIM

 DO

 DRAW

 END E.

 EXT E.

 FIN F.

 FOR F.

 FOUT FO.

 GET G.

 GOSUB GOS.

 GOTO G.

 IF

 INPUT IN.

 LEN L.

 LET L.

 LINK LI.

 LIST L.

 LOAD LO.

 MOVE

 NEW N.

 NEXT N.

More Space and More
Speed

74

 OLD

 OR

 PLOT

 PRINT P.

 PTR

 PUT

 REM

 RETURN R.

 RND R.

 RUN

 SAVE SA.

 SGET S.

 SHUT SH.

 SPUT SP.

 STEP S.

 THEN T.

 TO

 TOP T.

 UNTIL U.

 WAIT

10.1.2 Spaces

Spaces are largely irrelevant to the operation of the BASIC

interpreter, and they are ignored when encountered in a program. Their

only effect is to cause a 13 microsecond delay in execution. There is

one place where a space is necessary to avoid an ambiguity as in the

following example:

 FOR A=B TO C

where the space after B is compulsory to make it clear that B is not

the first letter of a function name.

10.1.3 LET

Some BASICs demand that every assignment statement begin with the word

LET; e.g.:

 LET A=B

In ATOM BASIC the LET statement may be omitted, with a decrease in

execution time.

10.1.4 THEN

The word THEN in the second part of an IF statement may be omitted.

For example:

 IF A=B C=D

is perfectly legal. However, note that if the second statement begins

with a T, or a '?' or '!' unary operator, some delimiter is necessary:

 IF A=B THEN T=Q

Alternatively a statement delimiter ';' can be used as the delimiter:

 IF A=B; T=Q

10.1.5 Brackets

Brackets enclosing a function argument, or an array identifier, are

unnecessary and may be omitted when the argument, or array subscript,

is a single variable or constant.

 For example, AA(3) may be written AA3, ABS(RND) may be written

ABSRND, but AA(B+2) cannot be abbreviated.

75

10.1.6 Commas

The commas separating elements in a PRINT statement can be omitted

when there is no ambiguity.

 For example:

 PRINT A,B,C,"RESULT",J

may be shortened to:

 PRINTA B C"RESULT"J

Note that the comma in:

 PRINT &A,&B

is, however, necessary to distinguish the numbers from the single

number (A&B) printed in hex.

10.1.7 Multi-Statement Lines

Each text line uses one byte per character on the line, plus two bytes

for the line number and a one-byte terminator character; thus writing

several statements on one line saves two bytes per statement. Note

that there are two occasions where this cannot be done:

1. After an IF statement, because the statements on the line following

the IF statement would be skipped if the condition turned out false.

2. Where the line number is referred to in a GOTO or GOSUB statement.

10.1.8 Control Variable in NEXT

The FOR...NEXT control variable may be omitted from the NEXT

statement; the control variable will be assumed to be the one

specified in the most recently activated FOR statement.

10.2 Maximising Execution Speed

ATOM BASIC is one of the fastest BASIC interpreters available, and all

of its facilities have been carefully optimised for speed so that

calculations will be performed as quickly as possible, and so that

real-time graphics programs are feasible.

 To obtain the best possible speed from a program the following

hints should be borne in mind; but note that many of these suqgestions

reduce the legibility of the program, and so should only be used where

speed is critical.

1. Use the FOR...NEXT loop in preference to an IF statement and a

GOTO.

2. Use labels, rather than line numbers, in GOTO and GOSUB statements.

3. Avoid the use of constants specified in the body of programs;

instead use variables which have been set to the correct value at the

start of the program. For example, replace:

 A=A*1000

by:

 T=1000

 .

 .

 A=A*T

4. Write statements in-line, rather than in subroutines, when the

subroutines are only called once, or when the subroutine is shorter

than two or three lines.

76

5. If a calculation is performed every time around a loop, make sure

that the constant part of the calculation is performed only once

outside the loop. For example:

 FOR J=1 TO 10

 FOR K=1 TO 10

 VV(K)=VV(J)*2+K

 NEXT K

 NEXT J

could be written as:

 FOR J=1 TO 10

 Q=VV(J)*2

 FOR K=1 TO 10

 VV(K)=Q+K

 NEXT K

 NEXT J

6. Where several nested FOR...NEXT loops are being executed, and the

order in which they are performed is not important, arrange them so

that the one executed the greatest number of times is at the centre.

For example:

 FOR J=1 TO 2

 FOR K=1 TO 1000

 .

 .

 NEXT K

 NEXT J

is faster than:

 FOR K=1 TO 1000

 FOR J=1 TO 2

 .

 .

 NEXT J

 NEXT K

because in the second case the overhead for setting up the inner loop

is performed 1000 times, whereas in the first example it is only

performed twice.

7. Choose the FOR...NEXT loop parameters so as to minimise

calculations inside the loop. For example:

 FOR N=0 TO 9

 DRAW AA(2*N), AA(2*N+1)

 NEXT N

could be rewritten as the faster:

 FOR N=0 TO 18 STEP 2

 DRAW AA(N),AA(N+1)

 NEXT N

8. Use word operations rather than byte operations where possible. For

example, to clear the graphics screen to white it is faster to

execute:

77

 FOR N=#8000 TO #9800 STEP 4; !N=-1; NEXT N

than the following:

 FOR N=#8000 TO #9800; ?N=-1; NEXT N

9. The IF statement containing several conditions linked by the AND

connective, as, for example:

 IF A=2 AND B=2 AND C=2 THEN

will evaluate all the conditions even when the earlier ones are false.

Rewriting the statement as:

 IF A=2 IF B=2 IF C=2 THEN

avoids this, and so gives faster execution.

78

79

11 Advanced Graphics
The ATOM provides nine different graphics modes, up to a resolution of

256x192 in black and white, and 128x192 in four selectable colours.

The graphics modes use the BASIC statements PLOT, DRAW, and MOVE in an

identical way. All the black-and-white graphics commands are present

in the unexpanded ATOM, although extra memory will be required for the

higher-resolution graphics modes. Colour plotting requires the

addition of an assembler routine, or the COLOUR statement provided in

the extension ROM.

11.1 Graphics Modes

The nine graphics modes are listed below:

 Mode: Resolution: Memory:

 X: Y:

 0 64 48 0.5 K

 1a 64 64 1 K

 1 128 64 1 K

 2a 128 64 2 K

 2 128 96 1.5 K

 3a 128 96 3 K

 3 128 192 3 K

 4a 128 192 6 K

 4 256 192 6 K

11.2 CLEAR

This statement clears the screen and puts it into graphics mode. It is

followed by a number, or expression in brackets, to specify the mode.

The graphics screen is labelled as follows:

The smallest square which can be plotted on the display is referred to

as a 'pixel' (or 'picture element').

11.3 PLOT

The graphics statements include a versatile 'PLOT K,X,Y' statement,

the value of K determining whether to draw or move, plot lines or

points, whether to set, clear, or invert, and whether to take the

parameters X and Y as the absolute screen position, or as a

displacement from the last point. The values K, X, and Y can be

arbitrarily-complicated expressions.

0,0 X

Y

80

 K: Function:

 0 Move relative to last position

 1 Draw line in white relative to last position

 2 Invert line relative to last position

 3 Draw line in black relative to last position

 4 Move to absolute position

 5 Draw line in white to absolute position

 6 Invert line to absolute position

 7 Draw line in black to absolute position

 8 Move relative to last position

 9 Plot point in white relative to last position

 10 Invert point relative to last position

 11 Plot point in black relative to last position

 12 Move to absolute position

 13 Plot point in white at absolute position

 14 Invert point at absolute position

 15 Plot point in black at absolute position

11.4 DRAW and MOVE

In addition DRAW and MOVE statements are provided as convenient

aliases for drawing a line and moving to an absolute X,Y position.

 MOVE X,Y is equivalent to PLOT 12, X, Y.

 DRAW X,Y is equivalent to PLOT 5, X, Y.

11.4.1 Random Rectangles

The following program illustrates the use of relative plotting using

the PLOT statement, and draws random rectangles on the display. The

program will work in any of the graphics modes.

 10 REM Random Rectangles

 13 S=20

 16 Z=1;B=0

 17 W=64;H=48

 18 E=W-S;F=H-S

 20 CLEARB

 30 FORQ=0TO7

 32 MOVE(ABSRND%E),(ABSRND%F)

 35 C=ABSRND%S+1;D=ABSRND%S+1;GOSUBs

 37 NEXTQ;FOR Q=0TO20000;NEXTQ

 38 GOTO20

 100sPLOTZ,C,0

 110 PLOTZ,0,D

 120 PLOTZ,-C,0

 130 PLOTZ,0,-D

 140 RETURN

Description of Program:

13-18 Set up constants

20 Initialise graphics

30 Draw 41 rectangles

32 Move to random point, leaving margin for size of largest

 rectangle.

35 Choose random rectangle

37 Wait; then repeat.

100-140 s: Draw rectangle.

81

Variables:

C,D - Dimensions of rectangle

E,F - Dimensions of safe part of screen to start drawing rectangle.

H - Screen height

Q - Counter

S - Size of squares

W - Screen width

Z - Plot mode; draw relative.

Program size: 278 bytes

11.5 Advanced Graphics Examples

The following examples are designed for use with the higher-resolution

graphics modes, and illustrate some of the applications that are

possible using the ATOM's graphics facilities.

11.5.1 The Sierpinski Curve

This curve is of interest to mathematicians because it has the

property that it encloses every interior point of a square, and yet it

is a closed curve whose area is less than half that of the square.

This program draws successive generations to illustrate how the

Sierpinski curve, which is the limit of these polygonal drawings, is

constructed.

 1 REM Sierpinski Curve

 10 INPUT"MODE"O

 15 INPUT"SIZE"K

 20 CLEARO

 30 S=5

 40 J=1

 50 FOR I=1 TO 5

 60 J=J*2;D=K/J/4

 70 X=K-5*D; Y=K-2*D

 80 T=1; MOVE X,Y

 90 X=X+D; A=J; B=J; GOTO s

 100aIF A=J AND B=J GOTO z

 110sP=J; Q=A; R=B

 120vIF P<2 GOTO z

 130 IF P=2 GOSUB o; GOTO a

 140 P=P/2

 150 IF Q<P OR P+1<Q GOTO n

 170 IF R<P OR P+1<R GOTO n

 190 GOSUB c; GOTO a

 200nIF Q>=P THEN Q=Q-P

 210 IF R>=P THEN R=R-P

 220 GOTO v

 230zREM end of loop

 240 FOR N=1 TO 1000;NEXT

 250 CLEARO

 260 NEXT I

 270 END

 1000cGOTO(1000+100*T)

 1100 X=X+D

 1105 PLOTS,X,Y

 1110 X=X+D;Y=Y+D;PLOTS,X,Y

 1120 Y=Y+D;B=B+1;T=4;RETURN

 1200 Y=Y-D

 1205 PLOTS,X,Y

 1210 X=X+D;Y=Y-D;PLOTS,X,Y

82

 1220 X=X+D;A=A+1;T=1;RETURN

 1300 X=X-D

 1305 PLOTS,X,Y

 1310 X=X-D;Y=Y-D;PLOTS,X,Y

 1320 Y=Y-D;B=B-1;T=2;RETURN

 1400 Y=Y+D

 1405 PLOTS,X,Y

 1410 X=X-D;Y=Y+D;PLOTS,X,Y

 1420 X=X-D;A=A-1;T=3;RETURN

 2000oGOTO(2000+100*T)

 2100 X=X+D;PLOTS,X,Y

 2110 X=X+D;Y=Y+D;PLOTS,X,Y

 2120 X=X+D;Y=Y-D;GOTO 1305

 2200 Y=Y-D;PLOTS,X,Y

 2210 X=X+D;Y=Y-D;PLOTS,X,Y

 2220 X=X-D;Y=Y-D;GOTO 1405

 2300 X=X-D;PLOTS,X,Y

 2310 X=X-D;Y=Y-D;PLOTS,X,Y

 2320 X=X-D;Y=Y+D;GOTO 1105

 2400 Y=Y+D;PLOTS,X,Y

 2410 X=X-D;Y=Y+D;PLOTS,X,Y

 2420 X=X+D;Y=Y+D;GOTO 1205

Description of Program:

50 Plot five generations

l000-1420 Plot centre square

2000-2420 Not a centre square

Variables:

A,B - Coordinates of current square

D - Number of cells in a quarter of a square

J - Number of squares in picture

K - Resolution of screen

O - Graphics mode

S - Argument for PLOT statement

T - Angle in units of 90 degrees.

X,Y - Current drawing position

Program size: 1047 bytes

Sample plot:

83

11.5.2 Three-Dimensional Plotting

The following program will plot a perspective view of a

three-dimensional object or curve as viewed from any specified point

in space. The program is simply provided with a subroutine giving the

coordinates of the object to be drawn, or the equation of the curve.

 The program below plots a perspective view of the curve

1/(1+x^2+y^2) for a range of values of x and y. The function has been

scaled up by a factor of 300 to bring the interesting part of the

curve into the correct range. The program is provided with an equation

of the curve, specifying z (the vertical axis) in terms of x, and y

(the two horizontal axes), and the view position. It projects every

point on the surface onto a plane perpendicular to the line joining

the view position to the origin. The example given here draws line of

equal y, and the surface is drawn as if viewed from the point x=30,

y=40, z=8; i.e. slightly above the surface.

 1 REM Three-Dimensional Plotting

 50 L=30;M=40;N=8

 110 Z=0;CLEAR4

 120 A=#8000;B=#9800

 130 FORJ=A TO B STEP4;!J=-1;N.

 150 S=L*L+M*M;GOS.s;R=Q

 160 S=S+N*N;GOS.s;S=L*L+M*M

 170 T=L*L+M*M+N*N

 200 F.U=-20TO20

 210 V=-20;GOS.c;GOS.b

 220 F.V=-19TO20;GOS.c;GOS.a;N.;N.

 230 END

 400sQ=S/2

 410 DOQ=(Q+S/Q)/2

 415 U.(Q-1)*(Q-1)<S AND(Q+1)*(Q+1)>S

 420 R.

 500 REM DRAWTO(U,V,W)

 510aZ=3

 520bO=T-U*L-V*M-W*N

 530 C=T*(V*L-U*M)*4/(R*O)+128

 540 D=96+3*Q*(W*S-N*(U*L+V*M))/(R*O)

 560 PLOT(Z+4),C,D;Z=0;R.

 600cW=300/(10+U*U+V*V)-10;R.

Description of Program:

50 Set up view position

110 Set move mode, and clear screen

120-130 Invert screen

150-170 Calculate constants for linear projection

200-230 Scan X,Y plane evaluating function and plotting projected

 lines.

400-420 s: Square root routine (see Section 5.2.2).

500-560 a: Calculate projected position of next point and move to it

 (Z=0) or draw to it (Z=3)

600 c: Function for evaluation

Variables:

A - Display area start

B - Display area end

C,D - Coordinates of projected point

J - Display location to be cleared

Q,R,S,T - Constants for projection

U,V - Scan variables

84

W - Function value

Program size: 491 bytes.

Sample Plot:

11.6 Plotting Hex Characters

In the higher graphics modes, modes 1 to 4, characters cannot be

plotted on the screen directly but it is fairly simple to draw

characters using the graphics statements. The following simple

routines will draw the hex characters 0 to F, with any desired

scaling, and with an optional slope. The routines are useful for

labelling graphs drawn in the higher-resolution graphics modes.

Routine p plots a single hex character; routine q plots two hex

characters. The routine is demonstrated by drawing random hex

characters in a circle.

 1 REM Plotting Hex Characters

 10 N=TOP; !N=#6E3E4477; N!4=#467B6B4D

 12 N!8=#795F4F7F; N!12=#1B3B7C33

 20 V=2; H=2; S=0

 25 CLEAR 0

 30 X=30; Y=0

 40 MOVE (32+X),(24+Y)

 50 X=X+Y/6;Y=Y-X/6

 60 A=ABSRND&#F

 70 GOSUBp

 90 GOTO 40

 1000qREM Plot B as 2 hex digits

 1010 A=B/16; GOSUB p

 1020 A=B&#F

 2000pREM Plot A in hex

 2001 REM uses:A,H,J,K,L,N,Q,V

 2010 Q=N?A

 2020 FOR J=1 TO 7

 2030 K=(2-J%6)%2;L=(2-(J-1)%4)%2

 2040 PLOT(Q&1),(L*H+K*S),(K*V)

 2050 Q=Q/2; NEXT J

 2060 PLOT0,((H+2)/2),0; RETURN

85

Description of Program:

10-12 Set up plotting statements for the 16 characters.

20 Scales for letters 30-50 Move X,Y around a circle

60-70 Plot random character

1000-1020 q: Plot low-order byte of B as two hex digits

2000-2060 p: Plot low-order hex digit of A in hex

Variables:

A - Hex digit to be plotted

B - Byte to be plotted

H - Horizontal scaling

N - Vector containing character plotting statements

Q - Next plot statement; low-order bit determines whether to draw or

move.

S - Slope factor

V - Vertical scaling

X,Y - Coordinates of point on circle.

Program size: 457 bytes

Vector: 16 bytes

11.7 Animated Graphics

The graphics statements are optimised for speed. For example, to draw

a diagonal across the screen using:

 MOVE 0,0 ; DRAW 255,191

takes under 40 msec. The following program uses animated graphics to

display a clock whose hands move to show the correct time. The hands

are drawn using the statement PLOT 6, and the same statement is

repeated to remove each hand’s old position before drawing its new

position. The clock keeps accurate time by executing the WAIT

statement:

 1 REM Clock

 10 CLEAR4;E=128;F=96

 15 J=71;K=678;Q=100;R=#B001

 20 X=0;Y=8000;G=90

 30 MOVE(X/Q+E),(Y/Q+F)

 40 FORL=0 TO 59

 45 IF L%5<>0 GOTO c

 50 DRAW(X/G+E),(Y/G+F)

 55 MOVE(X/Q+E),(Y/Q+F)

 60cGOSUBi;GOSUBp

 68 NEXTL

 70 X=0;Y=5000;S=0

 72 DO A=0;B=6600

 80 FOR H=0 TO 4

 82 GOSUBh;C=X;D=Y;X=A;Y=B

 84 FOR M=0 TO 11

 85 GOSUBh;A=X;B=Y

 87 X=0;Y=7000

 88 IF ?R<>#FF GOTO b

 90 FOR L=0 TO 59

 110 GOSUB s

 120 FOR N=S TO 55;WAIT;NEXT N

 130 S=0

 140 GOSUBs;GOSUBi

 150 NEXT L

 155bX=A;Y=B

 160 GOSUBh;GOSUBi

86

 170 NEXT M

 175 A=X;B=Y;X=C;Y=D

 180 GOSUBh;GOSUBi

 200 NEXT H; UNTIL 0

 399 REM

 400hMOVE E,F

 410 V=X/2/Q;U=Y/2/Q;W=V/5;T=U/5

 415 WAIT

 420 PLOT6,(V-T+E),(U+W+F)

 430 PLOT6,(X/Q+E),(Y/Q+F)

 440 PLOT6,(V+T+E),(U-W+F)

 450 PLOT6,E,F;S=S+5;RETURN

 500iWAIT;X=X+J*Y/K

 510 Y=Y-J*X/K;S=S+1;RETURN

 600sMOVE E,F

 620pWAIT;PLOT6,(X/Q+E),(Y/Q+F)

 630 S=S+1;RETURN

Description of Program:

40-68 Draw clock face

80-84 Do hours and minutes

88 If shift key down miss out seconds

90-150 Do seconds

120 Use up remainder of each second

400-450 h: Draw hour/minute hand from centre of screen to X,Y

500-510 i: Increment X,Y one sixtieth of way around circle.

600 s: Draw second hand

620-630 p: Plot to point X,Y

Variables:

A,B - Coordinates of tip of minute hand

C,D - Coordinates of tip of hour hand

E,F - Coordinates of centre of screen

H - Twelves of minutes counter

J,K - Incremental variables; J/K = 2*PI/60 approx.

L - Seconds counter

M - Minutes counter

N - Counter

Q - Scaling factor

R - Address of shift key

S - Sixtieths of a second used out of current second

X,Y - Coordinates on screen scaled by Q

Program size: 806 bytes

87

Sample Plot:

To set the correct time hold the shift key down after typing RUN, and

release it when the hour and minute hands are in the correct

positions.

11.8 Plotting in BASIC

To illustrate how the plotting statements work, the following BASIC

programs will plot points on the screen in the different graphics

modes without using PLOT, DRAW, or MOVE.

11.8.1 Plotting and Testing Points in Mode 0

The following BASIC program will plot a point in the graphics mode 0;

the main program sets up a vector V which contains bytes with a single

bit set to denote the bit to be plotted. Subroutine p plots a point at

the coordinates X and Y.

 1 REM Plot in Mode 0

 10 DIM V(5)

 20 !V=#04081020; V!4=#102

 100 REM Plot point at X,Y

 110 REM Changes: P; Uses V,X,Y

 120pP=X/2+(47-Y)/3*32+#8000

 130 ?P=?P|V?(X&1+(47-Y)%3*2);RETURN

Using this method it is possible to determine the state of any point

on the screen, as well as actually plotting points. For example,

changing line 130 to:

 130 Q=(?P&(V?(X&1+(47-Y)%3*2))<>0)

uses Q as a logical variable whose value is set to ’true' if the point

X,Y is set, and to 'false' if the point is clear.

 Note that the screen should be cleared by writing #40 in every

location (or with the statement CLEAR 0) before plotting in graphics

mode zero with this routine.

\

88

11.8.2 Plotting in Higher Graphics Modes

To set the ATOM to a higher graphics mode the following character

should be stored in location #B000:

 Mode: Value:

 0 #00

 1a #10

 1 #30

 2a #50

 2 #70

 3a #90

 3 #B0

 4a #D0

 4 #F0

This operation is performed automatically for modes 0, 1, 2, 3, and 4

by the CLEAR statement. Modes 1a, 2a, 3a, and 4a are colour graphics

modes; see section 11.9 below.

 To illustrate plotting in the higher modes the following BASIC

program will plot a point on the screen at the coordinates X,Y in the

highest-resolution graphics mode:

 10 DIM V(7)

 20 !V=#10204080; V!4=#1020408

 30 ?#B000=#F0

 100 REM Plot point at X,Y

 110 REM Changes: P; Uses: V,X,Y

 100pP=X/8+(191-Y)*32+#8000

 102 ?P=?P|V?(X&7);RETURN

Again the program can be modified to test the state of points of the

screen.

11.9 Colour Graphics

The ATOM provides three additional graphics modes which provide

graphics in four selectable colours up to a maximum definition of

128x192. These modes are known as 1a, 2a, 3a, and 4a. The BASIC's

PLOT, DRAW, and MOVE statements can be used in the 4-colour modes

provided that a point-plotting routine, written in assembler, is

provided to replace the black-and-white point plotting routines.

Alternatively the COLOUR statement, provided in the extension ROM, can

be used; see Section 22.2. The address of the point-plotting routine

used by PLOT, MOVE, and DRAW is stored in RAM at #3FE and #3FF. The

following information is passed down to the point-plotting routine in

zero page:

 Location: Function:

 5A X coordinate - low byte

 5B " " high byte

 5C Y coordinate - low byte

 5D " " high byte

 5E 1: set bit, 2: invert bit, else, clear bit.

 5F Free for workspace

 60 " "

The following BASIC program demonstrates how an assembler

point-plotting routine can be provided to give four-colour plotting in

graphics mode 4a, the highest-resolution colour graphics mode:

\

89

 10 REM 4-Colour Plot

 12 GOSUB 400

 16 CLEAR4;?#B000=#D0

 18 ?#3FE=Q;?#3FF=Q&#FFFF/256

 30 FOR J=0 TO 64 STEP 2

 40 ?C=J%3*4;MOVE J,0

 50 DRAW 127,J;DRAW(127-J),191

 60 DRAW 0,(191-J);DRAW J,0

 70 NEXT J

 80 END

 400 DIM V(11),C(0),P(-1),Q(-1)

 420 !V=#01041040;V!4=#02082080;V!8=#030C30C0

 430 P.$21

 508[

 510 LDA@0;STA #5F

 520 LDA#5C;LSR A;ROR #5F

 530 LSRA;ROR#5F;LSRA;ROR#5F

 540 STA#60;LDA#5A;LSRA;LSRA

 550 CLC;ADC#5F;STA#5F

 560 LDA#60;ADC@#80;STA#60

 570\#5F AND #60 CONTAIN ADDRESS

 580 LDA#5A;AND@3;CLC;ADCC;TAY

 590 LDX@0;LDAV,Y;ORA(#5F,X)

 600 STA(#5F,X);RTS

 610]

 620 P.$6

 630 RETURN

Description of Program:

12 Assemble point plotting routine

16 Clear display; set mode 3a

18 Change point plotter vector

30-70 Demonstration program; curve stitching in 4 colours

400 Set up variable space

420 Vectors for three colours

430 Disable assembler listing

508-610 Assembler point-plotter program

620 Turn screen back on

Variables:

C - Colour: 0, 4, or 8.

P - Location counter

Q - Address of point-plotting routine

V - Vectors for setting bits

Program size: 558 bytes

Vectors: 13 bytes

Note that the routine only sets bits, and plots in three colours - the

fourth colour being the background colour. It would be a simple matter

to modify the routine so that it was able to set or unset bits; i.e.

plot in the background colour.

90

91

12 What to do if Baffled
This section is the section to read if all else fails; you have

studied your program, and the rest of the manual, and you still cannot

see anything wrong, but the program refuses to work.

 There are two types of programming errors; errors of syntax, and

errors of logic.

12.1 Syntax Errors

Syntax errors are caused by writing something in the program that is

not legal, and that is therefore not understood by the BASIC

interpreter. Usually this will give rise to an error, and reading the

description of that error code in Chapter 27 should make the mistake

obvious.

 Typical causes of syntax errors are:

1. Mistyping a digit '0' for a letter 'O', and vice-versa. E.g.:

 F0R N=1 T0 3

2. Mistyping a digit '1' for a letter 'I', and vice-versa. E.g.:

 1F J=2 PR1NT "TWO"

3. Forgetting to enclose an expression in brackets when it is used as

a parameter in a statement. E.g.:

 MOVE X+32,Y

In some cases a syntax error is interpreted as legal by BASIC, but

with a different meaning from that intended by the programmer, and no

error message will be given. E.g.:

 MOVE O,O

was intended to move to the origin, but in fact moves to some

coordinates dependent on the value of the variable O.

12.2 Logical Errors

Errors of logic arise when a program is perfectly legal, but does not

do what the programmer intended, probably because the programmer

misinterpreted something in this manual, or because a situation arose

that was not forseen by the programmer. Common logical errors are:

l. Unitialised variables. Remember that the variables A-Z initially

contain unpredictable values, and so all the variables used in a

program should appear on the left hand side of an assignment

statement, in an INPUT statement, dimensioned by a DIM statement, or

as the control variable in a FOR...NEXT loop, at least once in the

program. These are the only places where the values of variables are

changed.

2. The same variable is used for two purposes. It is very easy to

forget that a variable has been used for one purpose at one point in

the program, and to use it for another purpose when it was intended to

save the variable's original value. It is good practice to keep a list

of the variables used in a program, similar to the list given after

92

the application programs in this manual, to avoid this error.

3. Location counter P not set up when assembling. The value of P

should be set before assembling a program to the address of an unused

area of memory large enough to receive the machine code, and P should

not be used for any other purpose in the program.

4. Graphics statements used without initialising graphics. The CLEAR

statement must precede use of any graphics statements.

5. Assigning to a string variable and exceeding the allocated space.

Care should be taken that enough space has been allocated to string

variables, with DIM, to receive the strings allocated to them.

6. Assigning outside the bounds of an array or vector. Assigning to

array or vector elements above the range dimensioned in the DIM

statement will overwrite other arrays, vectors, or strings.

12.3 Suspected Hardware Faults

This section deals with faults on an ATOM which is substantially

working, but which exhibits faults which are thought to be due to

hardware faults rather than programming faults. Hardware fault-finding

details are provided in the Technical Manual; this section describes

only those hardware problems that can be tested by running software

diagnostics.

12.3.1 RAM Memory Faults

The following BASIC program can be used to verify that the ATOM's

memory is working correctly:

 1 REM MEMORY TEST

 10 INPUT"FROM"A," TO"B

 20 DO ?12=0; R=!8

 30 FOR N=A TO B STEP4;!N=RND; NEXT N

 35 ?12=0; !8=R

 40 FOR N=A TO B STEP4

 50 IF !N<>RND PRINT'"FAIL AT "&N'

 60 NEXT N

 70 P." OK"; UNTIL 0

The first address entered should be the lowest address to be tested,

and the second address entered should be four less than the highest

address to be tested. For example, to test the screen memory enter:

>RUN

FROM?#8000

 TO?#81FC

The program stores random numbers in the memory locations, and then

re-seeds the random-number generator and checks each location is

correct.

12.3.2 ROM Memory Faults

The BASIC interpreter, operating system, and assembler, are all

contained in a single 8K ROM, and as all ROMs are thoroughly tested

before despatch it is very unlikely that a fault could be present.

However, if a user suspects a ROM fault the following program should

be entered and run; the program obtains a 'signature' for the whole

ROM, this signature consistinq of a four-digit hexadecimal number. The

program should be run for each 4K half of the ROM.

93

 1 REM CRC Signature

 10 INPUT "PROM ADDRESS", P

 20 C=0;Z=#FFFF;Y=#2D

 30 FOR Q=0 TO #FFF

 35 A=P?Q

 40 FOR B=1 TO 8

 60 C=C*2+A&1;A=A/2

 70 IFC>Z C=C:Y;C=C&Z

 80 NEXT B; NEXT Q

 110 PRINT "SIGNATURE IS" &C'

 120 END

Program size: 213 bytes

Sample run:

>RUN

PROM ADDRESS?#C000

SIGNATURE IS D67D

>RUN

PROM ADDRESS?#F000

SIGNATURE IS E386

>

The program takes about 6 minutes to run, and if these signatures are

obtained the ROM is correct.

 The Atom extension ROM, described in chapter 22, can be tested by

giving the reply #D000 to the prompt. It should give a signature of

AAA1.

12.3 Programming Service

If all else fails, owners of an ATOM may make use of the free

Programming Service provided by Acorn. To ensure a rapid reply to any

queries the special Programming Service Forms, supplied with the ATOM,

must be used to submit the problem. New forms will be supplied with

the reply to any queries, or on request.

 All reports should be accompanied by a full description of the

problem or fault, and the occasions when it occurs. Please also

enclose a stamped addressed envelope for the reply. A program should

be supplied which illustrates the problem or suspected fault. This

program should preferably be only four or five lines long, and should

be written in the space provided on the Programming Service Form, with

any spaces in the original carefully included. If the problem or fault

is only exhibited by a longer program the report form should be

accompanied by a cassette tape recording of the program, and the title

of the file on the tape should be entered on the form. The cassette

will be returned with the reply.

94

95

13 Assembler Programming
In BASIC there are operators to perform multiplication, division,

iteration etc., but in assembler the only operations provided are far

more primitive and require a more thorough understanding of how the

inside of the machine works. The ATOM is unique in that it enables

BASIC and assembler to be mixed in one program. Thus the critical

sections of programs, where speed is important, can be written in

assembler, but the body of the program can be left in BASIC for

simplicity and clarity.

 The following table gives the main differences between BASIC and

assembler:

 BASIC Assembler

 26 variables 3 registers

 4-byte precision 1 byte precision

 Slow – assignment takes Fast – assignments take

 over 1 msec. 10 usec.

 Multiply and divide No multiply or divide

 FOR...NEXT and Loops must be set up

 DO...UNTIL loops by the programmer

 Language independent of Depends on instruction

 Computer set of chip

 Protection against No protection

 overwriting program

 However, do not be discouraged; writing in assembler is rewarding

and gives you a greater freedom and more ability to express the

problem that you are trying to solve without the constraints imposed

on you by the language. Remember that, after all, the BASIC

interpreter itself was written in assembler.

 A computer consists of three main parts:

1. The memory

2. The central processing unit, or CPU.

3. The peripherals.

In the ATOM these parts are as follows:

1. Random Access Memory (RAM) and Read-Only Memory (ROM).

2. The 6502 microprocessor.

3. The VDU, keyboard, cassette interface, speaker interface...etc.

When programming in BASIC it is not necessary to understand how these

parts are working together, and how they are organised inside the

computer. However in this section on assembler programming a thorough

understanding of all these parts is needed.

13.1 Memory

The computer's memory can be thought of as a number of 'locations’,

each capable of holding a value. In the unexpanded ATOM there are 2048

locations, each of which can hold one of 256 different values. Only

512 of these locations are free for you to use for programs; the

remainder are used by the ATOM operating system, and for BASIC's

variables.

96

 Somehow it must be possible to distinguish between one location

and another. Houses in a town are distinguished by each having a

unique address; even when the occupants of a house change, the address

of the house remains the same. Similarly, each location in a computer

has a unique 'address', consisting of a number. Thus the first few

locations in memory have the addresses 0, 1, 2, 3...etc. Thus we can

speak of the 'contents' of location 100, being the number stored in

the location of that address.

13.2 Hexadecimal Notation

Having been brought up counting in tens it seems natural for us to use

a base of ten for our numbers, and any other system seems clumsy. We

have just ten symbols, 0, 1, 2, ... 8, 9, and we can use these symbols

to represent numbers as large as we please by making the value of the

digit depend on its position in the number. Thus, in the number 171

the first '1' means 100, and the second '1' means 1. Moving a digit

one place to the left increases its value by 10; this is why our

system is called 'base ten' or 'decimal'.

 It happens that base 10 is singularly unsuitable for working with

computers; we choose instead base 16, or 'hexadecimal', and it will

pay to spend a little time becoming familiar with this number system.

 First of all, in base 16 we need 16 different symbols to represent

the 16 different digits. For convenience we retain 0 to 9, and use the

letters A to F to represent values of ten to fifteen:

Hexadecimal digit: 0 1 2 3 4 5 6 7 8 9 A B C D E F

Decimal value: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

The second difference between base 16 and base 10 is the value

accorded to the digit by virtue of its position. In base 16 moving a

digit one place to the left multiplies its value by 16 (not 10).

Because it is not always clear whether a number is hexadecimal or

decimal, hexadecimal numbers will be prefixed with a hash ’#' symbol.

Now look at the following examples of hexadecimal numbers:

 #B1

The 'B' has the value 11*16 because it is one position to the left of

the units column, and there is 1 unit; the number therefore has the

decimal value 176+1 or 177.

 #123

The '1' is two places to the left, so it has value 16*16*1. The '2'

has the value 16*2. The '3' has the value 3. Adding these together we

obtain: 256+32+3 = 291.

 There is really no need to learn how to convert between

hexadecimal and decimal because the ATOM can do it for you.

13.2.1 Converting Hexadecimal to Decimal

To print out the decimal value of a hexadecimal number, such as #123,

type:

 PRINT #123

The answer, 291, is printed out.

13.2.2 Converting Decimal to Hexadecimal

To print, in hexadecimal, the value of a decimal number, type:

 PRINT &123

The answer, #7B, is printed out. The '&' symbol means 'print in

97

hexadecimal'. Thus writing:

 PRINT {

will print 123.

13.3 Examining Memory Locations – '?'

We can now look at the contents of some memory, locations in the

ATOM's memory. To do this we use the '?’ query operator, which means

'look in the following memory location'. The query is followed by the

address of the memory location we want to examine. Thus:

 PRINT ?#E1

will look at the location whose address is #El, and print out its

value, which will be 128 (the cursor flag). Try looking at the

contents of other memory locations; they will all contain numbers

between 0 and 255.

 It is often convenient to look at several memory locations in a

row. For example, to list the contents of the 32 memory locations from

#80 upwards, type:

 FOR N=0 TO 31; PRINT N?#80; NEXT N

The value of N is added to #80 to give the address of the location

whose contents are printed out; this is repeated for each value of N

from 0 to 31. Note that N?#80 is identical to ?(N+#80).

13.4 Changing Memory Locations

A word of caution: although it is quite safe to look at any memory

location in the ATOM, care should be exercised when changing memory

locations. The examples given here specify locations that are not used

by the ATOM system; if you change other locations, be sure you know

what you are doing or you may lose the stored text, or have to reset

the ATOM with BREAK.

 First print the contents of #80. The value there will be whatever

was in the memory when you switched on, because the ATOM does not use

this location. To change the contents of this location to 7, type:

 ?#80=7

To verify the change, type:

 PRINT ?#80

Try setting the contents to other numbers. What happens if you try to

set the contents of the location to a number greater than 255?

13.5 Numbers Representing Characters

If locations can only hold numbers between 0 and 255, how is text

stored in the computer's memory? The answer is that each number is

used to represent a different character, and so text is simply a

sequence of numbers in successive memory locations. There is no danger

in representing both numbers and characters in the same way because

the context will always make it clear how they should be interpreted.

 To find the number corresponding to a character the CH function

can be used. Type:

 PRINT CH"A"

and the number 65 will be printed out. The character "A" is

represented internally by the number 65. Try repeating this for B, C,

D, E... etc. You will notice that there is a certain regularity. Try:

 PRINT CH"0"

98

and repeat for 1, 2, 3, 4...etc.

13.6 The Byte

The size of each memory location is called a 'byte'. A byte can

represent any one of 256 different values. A byte can hold a number

between 0 and 255 in decimal, or from #00 to #FF in hexadecimal. Note

that exactly two digits of a hex number can be held in one byte.

Alternatively a byte can be interpreted as one of 256 different

characters. Yet another option is for the byte to be interpreted as

one of 256 different instructions for the processor to execute.

13.7 The CPU

The main part of this chapter will deal with the ATOM's brain, the

Central Processing Unit or CPU. In the ATOM this is a 6502, a

processor designed in 1975 and the best-selling 8-bit microprocessor

in 1979. Much of what you learn in this chapter is specific to the

6502, and other microprocessors will do things more or less

differently. However, the 6502 is an extremely popular microprocessor

with a modern instruction set, and a surprisingly wide range of

addressing modes; furthermore it uses pipelining to give extremely

fast execution times; as fast as some other microprocessors running at

twice the speed.

 The CPU is the active part of the computer; although many areas of

memory may remain unchanged for hours on end when a computer is being

used, the CPU is working all the time the machine is switched on, and

data is being processed by it at the rate of 1 million times a second.

The CPU's job is to read a sequence of instructions from memory and

carry out the operations specified by those instructions.

13.8 Instructions

The instructions to the CPU are again just values in memory locations,

but this time they are interpreted by the CPU to represent the

different operations it can perform, For example, the instruction #18

is interpreted to mean 'clear carry flag'; you will find out what that

means in a moment. The first byte of all instructions is the operation

code, or 'op code'. Some instructions consist of just the op code;

other instructions specify data or an address in the bytes following

the op code.

13.9 The Accumulator

Many of the operations performed by the CPU involve a temporary

location inside the CPU known as the accumulator, or A for short

(nothing to do with BASIC's variable A). For example, to add two

numbers together you actually have to load the first number into the

accumulator from memory, add in the second number from memory, and

then store the result somewhere. The following instructions will be

needed:

Mnemonic Description Symbol

LDA Load accumulator with memory A=M

STA Store accumulator in memory M=A

ADC Add memory to accumulator with carry A=A+M+C

We will also need one extra instruction:

CLC Clear carry C=0

The three letter names such as LDA and STA are called the instruction

mnemonics; they are simply a more convenient way of representing the

99

instruction than having to remember the actual op code, which is just

a number.

13.10 The Assembler

The ATOM automatically converts these mnemonics into the op codes.

This process of converting mnemonics into codes is called

'assembling'. The assembler takes a list of mnemonics, called an

assembler program, and converts them into 'machine code', the numbers

that are actually going to be executed by the processor.

13.10.1 Writing an Assembler Program

Enter the following assembler program:

 10 DIM P(-1)

 20[

 30 LDA #80

 40 CLC

 50 ADC #81

 60 STA #82

 70 RTS

 80]

 90 END

The meaning of each line in this assembler program is as follows:

10. The DIM statement is not an assembler mnemonic; it just tells the

assembler where to put the assembled machine code; at TOP in this

case.

20. The '[' and ']’ symbols enclose the assembler statements.

30. Load the accumulator with the contents of the memory location with

address #80. (The contents of the memory location are not changed.)

40. Clear the carry flag.

50. Add the contents of location #81 to the accumulator, with the

carry. (Location #81 is not changed by this operation.)

60. Store the contents of the accumulator to location #82. (The

accumulator is not changed by this operation.)

70. The RTS instruction will usually be the last instruction of any

program; it causes a return to the ATOM BASIC system from the

machine-code program.

80. See 20.

90. The END statement is not an assembler mnemonic; it just denotes

the end of the text.

Now type RUN and the assembler program will be assembled. An

'assembler listing' will be printed out to show the machine code that

the assembler has generated to the left of the corresponding assembler

mnemonics:

100

RUN

 20 824D

 30 824D A5 80 LDA #80

 40 824F 18 CLC

 50 8250 65 81 ADC #81

 60 8252 85 82 STA #82

 70 8254 60 RTS

The program has been assembled in memory starting at #824D,

immediately after the program text. This address may be different when

you do this example if you have inserted extra spaces into the

program, but that will not affect what follows. All the numbers in the

listing, except for the line numbers on the left, are in hexadecimal;

thus #18 is the op code for the CLC instruction, and #A5 is the op

code for LDA. The LDA instruction consists of two bytes; the first

byte is the op code, and the second byte is the address; #80 in this

case.

 Typing RUN assembled the program and stored the machine code in

memory directly after the assembler program. The address of the end of

the program text is called TOP; type:

 PRINT &TOP

and this value will be printed out in hexadecimal. It will correspond

with the address opposite the first instruction, #A5. The machine code

is thus stored in memory as follows:

A5 80 18 65 81 85 82 60

 ^

 TOP

So far we have just assembled the program, generated the machine code,

and put the machine code into memory.

13.10.2 Executing a Machine-Code Program

To execute the machine-code program at TOP, type:

 LINK TOP

What happens? Nothing much; we just return to the '>' prompt. But the

program has been executed, although it only took 17 microseconds, and

the contents of locations #80 and #81 have indeed been added together

and the result placed in #82.

 Execute it again, but first set up the contents of #80 and #81 by

typing:

 ?#80=7; ?#81=9

If you wish you can also set the contents of #82 to 0. Now type:

 LINK TOP

and then look at the contents of #82 by typing:

 PRINT ?#82

 mnemonic statement

 instruction data/address

 instruction op code

 location counter

statement line number

101

The result is 16 (in decimal); the computer has just added 7 and 9 and

obtained 16!

13.11 Carry Flag

Try executing the program for different numbers in #80 and #81. You

might like to try the following:

 ?#80=140; ?#81=150

 LINK TOP

What is the result?

 The reason why the result is only 34, and not 290 as one might

expect, is that the accumulator can only hold one byte. Performing the

addition in hexadecimal:

 Decimal Hexadecimal

 140 8C

 +150 +96

 ——— ———

 290 122

 ——— ———

Only two hex digits can fit in one byte, so the '1' of #122 is lost,

and only the #22 is retained. Luckily the '1' carry is retained for us

in, as you may have guessed, the carry flag. The carry flag is always

set to the value of the carry out of the byte after an addition or

subtraction operation.

13.12 Adding Two-Byte Numbers

The carry flag makes it a simple matter to add numbers as large as we

please. Here we shall add two two-byte numbers to give a two-byte

answer, although the method can be extended to any number of bytes.

Modify the program already in memory by retyping lines 50 to 120,

leaving out the lower-case comments, to give the following program:

 10 DIM P(-1)

 20[

 30 LDA #80 low byte of one number

 40 CLC

 50 ADC #82 low byte of other number

 60 STA #84 low byte of result

 70 LDA #81 high byte of one number

 80 ADC #83 high byte of other number

 90 STA #85 high byte of result

 100 RTS

 110]

 120 END

Assemble the program:

RUN

 20 826K

 30 826E AS 80 LDA #80

 40 8270 18 CLC

 50 8271 65 82 ADC #82

 60 8273 85 84 STA #84

 70 8275 A5 81 LDA #81

 80 8277 65 83 ADC #83

 90 8279 85 85 STA #85

102

 100 827B 60 RTS

Now set up the two numbers as follows:

 ?#80=#8C; ?#81=#00

 ?#82=#96; ?#83=#00

Finally, execute the program:

 LINK TOP

and look at the result, printing it in hexadecimal this time for

convenience:

 PRINT &?#84, &?#85

The low byte of the result is #22, as before using the one-byte

addition program, but this time the high byte of the result, #1, has

been correctly obtained. The carry generated by the first addition was

added in to the second addition, giving:

0+0+carry = 1

 Try some other two-byte additions using the new program.

13.13 Subtraction

The subtract instruction is just like the add instruction, except that

there is a 'borrow’ if the carry flag is zero. Therefore to perform a

single-byte subtraction the carry flag should first be set with the

SEC instruction:

SBC Subtract memory from accumulator with borrow A=A-M-(1-C)

SEC Set carry flag C=1

13.14 Printing a Character

The ATOM contains routines for the basic operations of printing a

character to the VDU, and reading a character from the keyboard, and

these routines can be called from assembler programs. The addresses of

these routines are standardised throughout the Acorn range of

software, and are as follows:

 Name Address Function

 OSWRCH #FFF4 Puts character in accumulator to output (VDU)

 OSRDCH #FFE3 Read from input (keyboard) into accumulator

In each case all the other registers are preserved. The names of these

routines are acronyms for 'Operating System WRite CHaracter' and

'Operating System ReaD CHaracter' respectively. These routines are

executed with the following instruction:

JSR Jump to subroutine

A detailed description of how the JSR instruction works will be left

until later.

 The following program outputs the contents of memory location #80

as a character to the VDU, using a call to the subroutine OSWRCH:

 10 DIM P(-1)

 20 W=#FFF4

 30[

 40 LDA #80

 50 JSR W

 60 RTS

 70]

 80 END

103

The variable W is used for the address of the OSWRCH routine. Assemble

the program, and then set the contents of 480 to #21:

 ?#80=#21

Then execute the program:

 LINK TOP

and an exclamation mark will be printed out before returning to the

ATOM's prompt character, because 021 is the code for an exclamation

mark. Try executing the program with different values in #80.

13.15 Immediate Addressing

In the previous example the instruction:

 LDA #80

loaded the accumulator with the contents of location #80, which was

then set to contain #21, the code for an exclamation mark. If at the

time that the program was written it was known that an exclamation

mark was to be printed it would be more convenient to specify this in

the program as the actual data to be loaded into the accumulator.

Fortunately an 'Immediate' addressing mode is provided which achieves

just this. Change the instruction to:

 LDA @#21

where the '@' (at) symbol specifies to the assembler that immediate

addressing is required. Assemble the program again, and note that the

instruction op-code for LDA @#21 is #A9, not #A5 as previously. The

op-code of the instruction specifies to the CPU whether the following

byte is to be the actual data loaded into the accumulator, or the

address of the data to be loaded.

104

105

14
All the assembler programs in the previous section have been executed

instruction by instruction following the sequence specified by the

order of the instructions in memory. The jump and branch instructions

enable' the flow of control to be altered, making it possible to

implement loops.

14.1 Jumps

The JMP instruction is followed by the address of the instruction to

be executed next.

JMP Jump

14.2 Labels

Before using the JMP instruction we need to be able to indicate to the

assembler where we want to jump to, and to do this conveniently

'labels' are needed. In the assembler labels are variables of the form

AA to ZZ followed by a number (0, 1, 2 ... etc). If you are already

familiar with ATOM BASIC you will recognise these as the arrays.

 First the labels to be used in an assembler program must be

declared in the DIM statement. Note that we still need to declare

P(-1) as before, and this must be the last thing declared. For

example, to provide space for four labels LL0, LL1, LL2, and LL3 we

would declare:

 DIM LL(3), P(-1)

Labels used in a program are prefixed by a colon ':' character. For

example, enter the following assembler program:

 10 DIM LL(3),P(-1)

 20 W=#FFF4

 30[

 40:LL0 LDA @#2A

 50:LL1 JSR W

 60 JMP LL0

 70]

 80 END

To execute the program the procedure is slightly different from the

previous examples, because space has now been assigned at TOP for the

labels. When using labels in an assembler program you should place a

label at the start of the program, as with LLO in this example, and

LINK to that label. So, in this example, execute the program with:

 LINK LL0

The program will output an asterisk, and then jump back to the

previous instruction. The program has become stuck in an endless loop!

If you know BASIC, compare this program with the BASIC program in

section 4.6 that has the same effect.

 A flowchart for this program is as follows:

Jumps, Branches, and
Loops

106

 Try pressing ESCAPE. ESCAPE will not work; it only works in BASIC

programs, and here we are executing machine code instructions so

ESCAPE is no longer checked for. Fortunately there is one means of

salvation: press BREAK, and then type OLD to retrieve the original

program.

14.3 Flags

The carry flag has already been introduced; it is set or cleared as

the result of an ADC instruction. The CPU contains several other

flags, which are set or cleared depending on the outcome of certain

instructions; this section will introduce another one

14.3.1 Zero Flag

The zero flag, called Z, is set if the result of the previous

operation gave zero, and is cleared otherwise. So, for example:

 LDA #80

would set the zero flag if the contents of #80 were zero.

14.4 Conditional Branches

The conditional branches enable the program to act on the outcome of

an operation. The branch instructions look at a specified flag, and

then either carry on execution if the test was false, or cause a

branch to a different address if the test was true. There are 8

different branch instructions, four of which will be introduced here:

BEQ Branch if equal to zero (i.e. Z=1)

BNE Branch if not equal to zero (i.e. Z=0)

BCC Branch if carry-flag clear (i.e. C=0)

BCS Branch if carry-flag set (i.e. C=1)

The difference between a 'branch' and a 'jump' is that the jump

instruction is three bytes long (op-code and two-byte address) whereas

the branch instructions are only two bytes long (op-code and one-byte

offset). The difference is automatically looked after by the

assembler.

 The following simple program will print an exclamation mark if #80

contains zero, and a star if it does not contain zero; the comments in

lower-case can be omitted when you enter the program:

 10 DIM BB(3),P(-1)

 20 W=#FFF4

 30[

 40:BB0 LDA #80

 50 BEQ BB1 if zero go to BB1

 60 LDA @#2A star

 70 JSR W print it

 80 RTS return

 90:BB1 LDA @#21 exclamation mark

 100 JSR W print it

START

Print a star

107

 110 RTS return

 120]

 130 END

A flowchart for this program is as follows:

Now assemble the program with RUN as usual. You will almost certainly

get the message:

OUT OF RANGE:

before the line containing the instruction BEQ BB1, and the offset in

the branch instruction will have been set to zero. The message is

produced because the label BB1 has not yet been met when the branch

instruction referring to it is being assembled; in other words, the

assembler program contains a forward reference. Therefore you should

assemble the program a second time by typing RUN again. This time the

message will not be produced and the correct offset will be calculated

for the branch instruction.

 Note that whenever a program contains forward references it should

be assembled twice before executing the machine code.

 Now execute the program by typing:

 LINK BB0

for different values in #80, and verify that the behaviour is as

specified above.

14.5 X and Y registers

The CPU contains two registers in addition to the accumulator, and

these are called the X and Y registers. As with the accumulator, there

are instructions to load and store the X and Y registers:

LDX Load X register from memory X=M

LDY Load Y register from memory Y=M

STX Store X register to memory M=X

STY Store Y register to memory M=Y

However the X and Y registers cannot be used as one of the operands in

arithmetic or logical instructions like the accumulator; they have

their own special uses, including loop control and indexed addressing.

Print ‘!’

Look at

location #80

Print ‘*’

START

no yes

END END

is

it zero

?

108

14.6 Loops in Machine Code

The X and Y registers are particularly useful as the control variables

in iterative loops, because of four special instructions which will

either increment (add 1 to) or decrement (subtract 1 from) their

values:

INX Increment X register X=X+1

INY Increment Y register Y=Y+1

DEX Decrement X register X=X-1

DEY Decrement Y register Y=Y-1

Note that these instructions do not affect the carry flag, so

incrementing #FF will give #00 without changing the carry bit. The

zero flag is, however, affected by these instructions, and the

following program tests the zero flag to detect when X reaches zero.

14.6.1 Iterative Loop

The iterative loop enables the same set of instructions to be executed

a fixed number of times. For example, enter the following program:

 10 DIM LL(4),P(-1)

 20 W=#FFF4

 30[

 40:LL0 LDX @8 initialise X

 50:LL1 LDA @#2A code for star

 60:LL2 JSR W output it

 70 DEX count it

 80 BNE LL2 all done?

 90 RTS

 100]

 110 END

A flowchart for the program is as follows:

X = 8

Subtract 1

from X

START

END

X = 0

?

yes

no

Print “*”

109

Assemble the program by typing RUN. This program prints out a star,

decrements the X register, and then branches back if the result after

decrementing the X register is not zero. Consider what value X will

have on successive times around the loop and predict how many stars

will be printed out; then execute the program with LINK LLO and see if

your prediction was correct. If you were wrong, try thinking about the

case where X was initially set to 1 instead of 8 in line 40.

 How many stars are printed if you change the instruction on line

40 to LDX @0 ?

14.7 Compare

In the previous example the condition X=0 was used to terminate the

loop. Sometimes we might want to count up from 0 and terminate on some

specified value other than zero. The compare instruction can be used

to compare the contents of a register with a value in memory; if the

two are the same, the zero flag will be set. If they are not the same,

the zero flag will be cleared. The compare instruction also affects

the carry flag.

CMP Compare accumulator with memory A-M

CPX Compare X register with memory X-M

CPY Compare Y register with memory Y-M

Note that the compare instruction does not affect its two operands; it

just changes the flags as a result of the comparison.

 The next example again prints 8 stars, but this time it uses X as

a counter to count upwards from 0 to 8:

 10 DIM LL(2),P(-1)

 20 W=#FFF4

 30[

 40:LL0 LDX @0 start at zero

 50:LL1 LDA @#2A code for star

 60 JSR W output it

 70 INX next X

 80 CPX @8 all done?

 90 BNE LL1

 100 RTS return

 110]

 120 END

In this program X takes the values 0, 1, 2, 3, 4, 5, 6, and 7. The

last time around the loop X is incremented to 8, and the loop

terminates. Try drawing a flowchart for this program.

14.8 Using the Control Variable

In the previous two examples X was simply used as a counter, and so it

made no difference whether we counted up or down. However, it is often

useful to use the value of the control variable in the program. For

example, we could print out the character in the X register each time

around the loop. We therefore need a way of transferring the value in

the X register to the accumulator so that it can be printed out by the

OSWRCH routine. One way would be to execute:

 STX #82

 LDA #82

where #82 is not being used for any other purpose. There is a more

convenient way, using one of four new instructions:

TAX Transfer accumulator to X register X=A

TAY Transfer accumulator to Y register Y=A

110

TXA Transfer X register to accumulator A=X

TYA Transfer Y register to accumulator A=Y

Note that the transfer instructions only affect the register being

transferred to.

 The following example prints out the alphabet by making X cover

the range #41, the code for A, to #5A, the code for Z.

 10 DIM LL(2),P(-1)

 20 W=#FFF4

 30[

 40:LL0 LDX @#41 start at A

 50:LL1 TXA put it in A

 60 JSR W print it

 70 INX next one

 80 CPX @#5B done Z?

 90 BNE LL1 if so - continue

 100 RTS else - return

 110]

 120 END

Modify the program to print the alphabet in reverse order, Z to A.

 All these examples could have used Y as the control variable

instead of X in exactly the same way.

111

15
So far we have considered each memory location, or memory byte, as

being capable of holding one of 256 different numbers (0 to 255), or

one of 256 different characters. In this section we examine an

alternative representation, which is closer to the way a byte of

information is actually stored in the computer's memory.

15.1 Binary Notation

The computer memory consists of electronic circuits that can be put

into one of two different states. Such circuits are called bistables

because they have two stable states, or flip/flops, for similar

reasons. The two states are normally represented as 0 and 1, but they

are often referred to by different terms as listed below:

 State:

 0 1

 zero one

 low high

 clear set

 off on

When the digits 0 and 1 are used to refer to the states of a bistable

they are referred to as 'binary digits', or 'bits' for brevity.

 With two bits you can represent four different states which can be

listed as follows, if the bits are called A and B:

 A: B:

 0 0

 0 1

 1 0

 1 1

With four bits you can represent one of 16 different values, since

2x2x2x2=16, and so each hexadecimal digit can be represented by a

four-bit binary number. The hexadecimal digits, and their binary

equivalents, are shown in the following table:

Logical Operations,
Shifts, and Rotates

112

 Decimal: Hexadecimal: Binary:

 0 0 0 0 0 0

 1 1 0 0 0 1

 2 2 0 0 1 0

 3 3 0 0 1 1

 4 4 0 1 0 0

 5 5 0 1 0 1

 6 6 0 1 1 0

 7 7 0 1 1 1

 8 8 1 0 0 0

 9 9 1 0 0 1

 10 A 1 0 1 0

 11 B 1 0 1 1

 12 C 1 1 0 0

 13 D 1 1 0 1

 14 E 1 1 1 0

 15 F 1 1 1 1

Any decimal number can be converted into its binary representation by

the simple procedure of converting each hexadecimal digit into the

corresponding four bits. For example:

 Decimal: 25

 Hexadecimal: 19

 Binary: 0001 1001

Thus the binary equivalent of #19 is 00011001 (or, leaving out the

leading zeros, 11001).

 Verify the following facts about binary numbers:

1. Shifting a binary number left, and inserting a zero after it, is

the same as multiplying its value by 2.

e.g. 7 is 111

 14 is 1110.

2. Shifting a binary number right, removing the last digit, is the

same as dividing it by 2 and ignoring the remainder.

15.2 Bytes

We have already seen that we need exactly two hexadecimal digits to

represent all the different possible values in a byte of information.

It should now be clear that a byte corresponds to eight bits of

information, since each hex digit requires four bits to specify it.

The bits in a byte are usually numbered, for convenience, as follows:

 7 6 5 4 3 2 1 0

 0 0 0 1 1 0 0 1

Bit 0 is often referred to as the 'low-order bit’ or

'least-significant bit', and bit 7 as the 'high-order bit' or

'most-significant bit'. Note that bit 0 corresponds to the units

column, and moving a bit one place to the left in a number multiplies

its value by 2.

15.3 Logical Operations

Many operations in the computer's instruction set are easiest to think

of as operations between two bytes represented as two 8-bit numbers.

This section examines three operations called 'logical' operations

113

which are performed between the individual bits of the two operands.

One of the operands is always the accumulator, and the other is a

memory location.

AND AND accumulator with memory A=A&M

The AND operation sets the bit of the result to a 1 only if the bit of

one operand is a 1 AND the corresponding bit of the other operand is a

1. Otherwise the bit in the result is a zero. For example:

 Hexadecimal: Binary:

 A9 1 0 1 0 1 0 0 1

 E5 1 1 1 0 0 1 0 1

 —— ———————————————

 Al 1 0 1 0 0 0 0 1

One way of thinking of the AND operation is that one operand acts as a

'mask', and only where there are ones in the mask do the corresponding

bits in the other operand 'show through'; otherwise, the bits are

zero.

ORA OR accumulator with memory A=A\M

The OR operation sets the bit of the result to a 1 if the

corresponding bit of one operand is a 1 OR the corresponding bit of

the other operand is a 1, or indeed, if they are both ones; otherwise

the bit in the result is zero. For example:

 Hexadecimal: Binary:

 A9 1 0 1 0 1 0 0 1

 E5 1 1 1 0 0 1 0 1

 —— ———————————————

 ED 1 1 1 0 1 1 0 1

EOR Exclusive-OR accumulator with memory A=A:M

The exclusive-OR operation is like the OR operation, except that the

corresponding bit in the result is 1 only if the corresponding bit of

one operand is a 1, or if the corresponding bit of the other operand

is a 1, but not if they are both ones. For example:

 Hexadecimal: Binary:

 A9 1 0 1 0 1 0 0 1

 E5 1 1 1 0 0 1 0 1

 —— ———————————————

 4C 0 1 0 0 1 1 0 0

Another way of thinking of the exclusive-OR operation is that the bits

of one operand are inverted where the other operand has ones.

15.4 Music

Music is composed of vibrations of different frequencies that

stimulate our ears to give the sensations of tones and noise. A single

tone is a signal with a constant rate of vibration, and the 'pitch' of

the tone depends on the frequency of the vibration: the faster the

vibration, or the higher the frequency of vibration, the higher is the

perceived pitch of the tone. The human ear is sensitive to frequencies

from about 10 Hz (10 vibrations per second) up to about 16 kHz (16,000

vibrations a second). Since the ATOM can execute up to 500000

instructions per second in machine code, it is possible to generate

tones covering the whole audible range.

 The ATOM contains a loudspeaker which is controlled by an output

114

line. The loudspeaker is connected to bit 2 of the output port whose

address is #B002:

 7 6 5 4 3 2 1 0

To make the loudspeaker vibrate we can exclusive-OR the location

corresponding to the output port with the binary number 00000100 so

that bit 2 is changed each time. To make the ATOM generate a tone of a

particular frequency we need to make the output driving the

loudspeaker vibrate with the required frequency. Try the following

program:

 10 DIM VV(4),P(-1)

 20 L=#B002

 30[

 40:VV0 LDA L

 50:VV1 LDX #80

 60:VV2 DEX

 70 BNE VV2

 80 EOR @4

 90 STA L

 100 JMP VV1

 110]

 120 END

The immediate operand 4 in line 80 corresponds to the binary number

00000100. The program generates a continuous tone, and can only be

stopped by pressing BREAK. (To get the program back after pressing

BREAK, type OLD.) The inner loop, lines 60 and 70, gives a delay

depending on the contents of #80; the greater the contents of #80, the

longer the delay, and the lower the pitch of the tone in the

loudspeaker.

15.4.1 Bleeps

To make the program generate a tone pulse, or a bleep, of a fixed

length, we need another counter to count the number of iterations

around the loop, and to stop the program when a certain number of

iterations have been performed. The following program is based on the

previous example, but contains an extra loop to count the number of

cycles. The only lines you need to enter are 45, 95, 100, and 105:

 5 REM Bleep

 10 DIM VV(4),P(-1)

 20 L=#B002

 30[

V

115

 40:VV0 LDA L

 45 LDY #81

 50:VV1 LDX #80

 60:VV2 DEX

 70 BNE VV2

 80 EOR @4

 90 STA L

 95 DEY

 100 BNE VV1

 105 RTS

 110]

 120 END

Now the program generates a tone pulse whose frequency is determined

by the contents of #80, and whose length is determined by #81.

 To illustrate the operation of this program, the following BASIC

program calls it, running through tones of every frequency it can

generate:

 200 ?#81=255

 210 FOR N=1 TO 256

 220 ?#80=N

 230 LINK VV0

 240 NEXT N

 250 END

This program should be entered into memory with the previous example,

and the END statement at line 120 should be deleted so that the BASIC

program will execute the assembled Bleep program.

 Try changing the statement on line 220 to:

 220 ?#80=RND

to give something reminiscent of certain modern music!

 One disadvantage of this program, which you may have noticed, is

that the length of the bleep gets progressively shorter as the

frequency of the note gets higher; this is because the program

generates a fixed number of cycles of the tone, so the higher the

frequency, the less time these cycles will take. To give bleeps of the

same duration it is necessary to make the contents of #81 the inverse

of #80. For an illustration of how to achieve this, see the

Harpsichord program of section 17.2.

15.5 Rotates and Shifts

The rotate and shift operations move the bits in a byte either left or

right. The ASL instruction moves all the bits one place to the left;

what was the high-order bit is put into the carry flag, and a zero bit

is put into the low-order bit of the byte. The ROL instruction is

identical except that the previous value of the carry flag, rather

than zero, is put into the low-order bit.

 The right shift and rotate right instructions are identical,

except that the bits are shifted to the, right:

ASL Arithmetic shift left one bit (memory or accumulator)

LSR Logical shift right one bit (memory or accumulator)

7 6 5 4 3 2 1 0 C 0

7 6 5 4 3 2 1 0 0 C

116

ROL Rotate left one bit (memory or accumulator)

ROR Rotate right one bit (memory or accumulator)

15.6 Noise

It may seem surprising.that a computer, which follows an absolutely

determined sequence of operations, can generate noise which sounds

completely random. The following program does just that; it generates

a pseudo-random sequence of pulses that does not repeat until 8388607

have been generated. As it stands the noise it generates contains

components up to 27kHz, well beyond the range of hearing, and it takes

over 5 minutes before the sequence repeats.

 The following noise program simulates, by means of the shift and

rotate instructions, a 23-bit shift register whose lowest-order input

is the exclusive-OR of bits 23 and 18:

 10 REM Random Noise

 20 DIM L(2),NN(1),P(-1)

 30 C=#B002

 40[

 50:NN0 LDA L; STA C

 60 AND @#48; ADC @#38

 70 ASL A; ASL A

 80 ROL L+2; ROL L+1; ROL L

 90 JMP NN0

 100]

 110 LINK NN0

Incidentally, the noise generated by this program is an excellent

signal for testing high-fidelity audio equipment. The noise should be

reproduced through the system and listened to at the output. The noise

should sound evenly distributed over all frequencies, with no

particular peak at any frequency revealing a peak in the spectrum, or

any holes in the noise revealing the presence of dips in the spectrum.

7 6 5 4 3 2 1 0 C

7 6 5 4 3 2 1 0 C

117

16
16.1 Indexed Addressing

So far the X and Y registers have simply been used as counters, but

their most important use is in 'indexed addressing'. We have already

met two different addressing modes: absolute addressing, as in:

 LDA U

where the instruction loads the accumulator with the contents of

location U, and immediate addressing as in:

 LDA @#21

where the instruction loads the accumulator with the actual value #21.

 In indexed addressing one of the index registers, X or Y, is used

as an offset which is added to the address specified in the

instruction to give the actual address of the data. For example, we

can write:

 LDA S,X

If X contains zero this instruction will behave just like LDA S.

However, if X contains 1 it will load the accumulator with the

contents of 'one location further on from S'. In other words it will

behave like LDA S+1. Since X can contain any value from 0 to 255, the

instruction LDA S,X gives you access to 256 different memory

locations. If you are familiar with BASIC's byte vectors you can think

of S as the base of a vector, and of X as containing the subscript.

16.1.1 Print Inverted String

The following program uses indexed addressing to print out a string of

characters inverted. Recall that a string is held as a sequence of

character codes terminated by a #D byte:

 10 DIM LL(2),S(64),P(-1)

 20 W=#FFF4

 30[

 40:LL0 LDX @0

 50:LL1 LDA S,X

 60 CMP @#D

 70 BEQ LL2

 80 ORA @#20

 90 JSR W

 100 INX

 110 BNE LL1

 120:LL2 RTS

 130]

 140 END

Assemble the program by typing RUN twice, and then try the program by

entering:

 $S="TEST STRING"

 LINK LL0

Addressing Modes and
Registers

118

16.1.2 Index Subroutine

Another useful operation that can easily be performed in a

machine-code routine is to look up a character in a string, and return

its position in that string. The following subroutine reads in a

character, using a call to the OSRDCH read-character routines, and

saves in ?F the position of the first occurrence of that character in

$T.

 1 REM Index Routine

 10 DIM RR(3),T(25),F(0),P(-1)

 20 R=#FFE3; $T="ABCDEFGH"

 30[

 160\Look up A in T

 165:RR1 STX F; RTS

 180:RR0 JSR R; LDX @LEN(T)-1

 190:RR2 CMP T,X; BEQ RR1

 210 DEX; BPL RR2; BMI RR0

 220]

 230 END

The routine is entered at RR0, and as it stands it looks for one of

the letters A to H.

16.2 Summary of Addressing Modes

The following sections summarise all the addressing modes that are

available on the 6502.

16.3 Immediate

When the data for an instruction is known at the time that the program

being written, immediate addressing can be used. In immediate

addressing the second byte of the instruction contains the actual 8-

bit data to be used by the instruction.

 The '@' symbol denotes an immediate operand.

Examples: LDA @M

 CPY @J+2

16.4 Absolute

Absolute addressing is used when the effective address, to be used by

the instruction, is known at the time the program is being written. In

absolute addressing the two bytes following the op-code contain the

16-bit effective address to be used by the instruction.

Instruction:

07

07 A9

A:

LDA @7

119

Examples: LDA K

 SBC #3010

16.5 Zero Page

Zero page addressing is like absolute addressing in that the

instruction specifies the effective address to be used by the

instruction, but only the lower byte of the address is specified in

the instruction. The upper byte of the address is assumed to be zero,

so only addresses in page zero, from #0000 to #00FF, can be addressed.

The assembler will automatically produce zero-page instructions when

possible.

Examples: BIT #80

 ASL #9A

16.6 Indexed Addressing

Indexed addressing is used to access a table of memory locations by

specifying them in terms of an offset from a base address. The base

address is known at the time that the program is written; the offset,

which is provided in one of the index registers, can be calculated by

the program.

 In all indexed addressing modes one of the 8-bit index registers,

X and Y, is used in a calculation of the effective address to be used

by the instruction. Five different indexed addressing modes are

available, and are listed in the following section.

16.6.1 Absolute,X – Absolute,Y

The simplest indexed addressing mode is absolute indexed addressing.

In this mode the two bytes following the instruction specify a 16-bit

address which is to be added to one of the index registers to form the

effective address to be used by the instruction:

Instruction:

34

80 A5

A:

LDA #80 #0080: 34

Data:

Instruction:

34

10 AD

A:

LDA #3010 30 #3010: 34

Data:

120

Examples: LDA M,X

 LDX J,Y

 INC N,X

16.6.2 Zero,X

In zero,X indexed addressing the second byte of the instruction

specifies an 8-bit address which is added to the X-register to give a

zero-page address to be used by the instruction.

 Note that in the case of the LDX instruction a zero,Y addressing

mode is provided instead of the zero,X mode.

Examples: LSR #80,X

 LDX #82,Y

16.7 Indirect Addressing

It is sometimes necessary to use an address which is actually computed

when the program runs, rather than being an offset from a base address

or a constant address. In this case indirect addressing is used.

 The indirect mode of addressing is available for the JMP

instruction. Thus control can be transferred to an address calculated

at the time that the program is run.

Examples: JMP (#2800)

 JMP (#80)

 For the dual-operand instructions ADC, AND, CMP, EOR, LDA, ORA,

SEC, and STA, two different modes of indirect addressing are provided:

pre-indexed indirect, and post-indexed indirect. Pure indirect

addressing can be obtained, using either mode, by first setting the

respective index register to zero.

Instruction:

02

B6

X:

LDA #80,X 80

+ = #0082: 78

Data:

78 A:

Instruction:

12

20 BD

X:

LDA #3120,X 31

+ = #3132: 78

Data:

78 A:

121

16.7.1 Pre-Indexed Indirect

This mode of addressing is used when a table of effective addresses is

provided in page zero; the X index register is used as a pointer to

select one of these addresses from the table.

 In pre-indexed indirect addressing the second byte of the

instruction is added to the X register to give an address in page

zero. The two bytes at this page zero address are then used as the

effective address for the instruction.

Examples: STA (J,X)

 EOR (#60,X

16.7.2 Post-Indexed Indirect

This indexed addressing mode is like the absolute,X or absolute,Y

indexed addressing modes, except that in this case the base address of

the table is provided in page zero, rather than in the bytes following

the instruction. The second byte of the instruction specifies the

page-zero base address.

 In post-indexed indirect addressinq the second byte of the

instruction specifies a page zero address. The two bytes at this

address are added to the Y index register to give a 16-bit address

which is then used as the effective address for the instruction.

Examples: CMP (J),Y

 ADC (066),Y

Instruction:

10

B1

Y:

LDA (#70),Y 70

+ = #3553: 23

23 A:

#0070: 43 35

Instruction:

05

A1

X:

LDA (#70,X) 70

+ = #0075: 23 30 #3023: AC

AC A:

122

16.8 Registers

This section gives a short description of all the 6502's registers:

Accumulator – A

8-bit general-purpose register, which forms one operand in all the

arithmetic and logical instructions.

Index Register – X

8-bit register used as the offset in indexed and pre-indexed indirect

addressing modes, or as a counter.

Index Register – Y

8-bit register used as the offset in indexed and post-indexed indirect

addressing modes.

Status Register – S

8-bit register containing status flags and interrupt mask:

Bit 0 – Carry flag (C). Set if a carry occurs during an add

operation; cleared if a borrow occurs during a subtract operation;

used as a ninth bit in the shift and rotate instructions.

Bit 1 – Zero flag (Z). Set if the result of an operation is zero;

cleared otherwise.

Bit 2 – Interrupt disable (I). If set, disables the effect of the

IRQ interrupt. Is set by the processor during interrupts.

Bit 3 – Decimal mode flag (0). If set, the add and subtract

operations work in binary-coded-decimal arithmetic; if clear, the

add and subtract operations work in binary arithmetic.

Bit 4 – Break command (B). Set by the processor during a BRK

interrupt; otherwise cleared.

Bit 5 – Unused.

Bit 6 – Overflow flag (V). Set if a carry occurred from bit 6 during

an add operation; cleared if a borrow occurred to bit 6 in a

subtract operation.

Bit 7 – Negative flag (N). Set if bit 7 of the result of an

operation is set; otherwise cleared.

Stack Pointer – SP

8-bit register which forms the lower byte of the address of the next

free stack location; the upper byte of this address is always #01.

Program Counter – PC

16-bit register which always contains the address of the next

instruction to be fetched by the processor.

123

17 Machine-Code in BASIC
Machine-code subroutines written using the mnemonic assembler can be

incorporated into BASIC programs, and several examples are given in

the following sections.

17.1 Replace Subroutine

The following machine-code routine, 'Replace’, can be used to perform

a character-by-character substitution on a string. It assumes the

existence of three strings called R, S, and T. The routine looks up

each character of R to see if it occurs in string S and, if so, it is

replaced with the character in the corresponding position in string T,

 For example, if:

 $S="TMP"; $T="SNF"

then the sequence:

 $R="COMPUTER"

 LINK LL0

will change $R to "CONFUSER".

 10 REM Replace

 20 DIM LL(4),R(20),S(20),T(20)

 40 FOR N=1 TO 2; DIM P(-1)

 50[

 60:LL0 LDX @0

 70:LL1 LDY @0; LDA R,X

 80 CMP @#D; BNE LL3; RTS finished

 90:LL2 INY

 100:LL3 LDA S,Y

 110 CMP @#D; BEQ LL4

 120 CMP R,X; BNE LL2

 130 LDA T,Y; STA R,X replace char

 140:LL4 INX; JMP LL1 next char

 150]

 160 NEXT N

 200 END

The routine has many uses, including code-conversion, encryption and

decryption, and character rearrangement.

17.1.1 Converting Arabic to Roman Numerals

To illustrate one application of the Replace routine, the following

program converts any number from Arabic to Roman numerals:

 10 REM Roman Numerals

 20 DIM LL(4),Q(50)

 30 DIM R(20),S(20),T(20)

 40 FOR N=1 TO 2; DIM P(-1)

 50[

 60:LL0 LDX @0

 70:LL1 LDY @0; LDA R,X

124

 80 CMP @#D; BNE LL3; RTS finished

 90:LL2 INY

 100:LL3 LDA S,Y

 110 CMP @#D; BEQ LL4

 120 CMP R,X; BNE LL2

 130 LDA T,Y; STA R,X replace char

 140:LL4 INX; JMP LL1 next char

 150]

 160 NEXT N

 200 $S="IVXLCDM"; $T="XLCDM??"

 210 $Q=""; $Q+5="I"; $Q+10="II"

 220 $Q+15="III"; $Q+20="IV"; $Q+25="V"

 230 $Q+30="VI"; $Q+35="VII"

 240 $Q+40="VIII"; $Q+45="IX"

 250 DO $R="";D=10000

 255 INPUT A

 260 DO LINK LL0

 270 $R+LEN(R)=$(Q+A/D*5)

 280 A=A%D; D=D/10; UNTIL D=0

 290 PRINT $R; UNTIL 0

Description of Program:

20-30 Allocate labels and strings

40-160 Assemble Replace routine.

200 Set up strings of Roman digits

210-240 Set up strings of numerals for 0 to 9.

255 Input number for conversion

260 Multiply the Roman string R by ten by performing a character

 substitution.

270 Append string for Roman representation for A/D to end of R.

280 Look at next digit of Arabic number.

290 Print Roman string, and carry on.

Variables:

A – Number for conversion

D – Divisor for powers of ten.

LL(0..4) – Labels for assembler routine.

LL0 – Entry point for Replace routine.

N – Counter for two-pass assembly.

P – Location counter.

Q – $(Q+5*x) is string for Roman numeral X.

$R – String containing Roman representation of A.

$S – Source string for replacement.

$T – Target string for replacement.

Program size: 579 bytes.

17.2 Harpsichord

The following program simulates a harpsichord; it uses the central

section of the ATOM's keyboard as a harpsichord keyboard, with the

keys assigned as follows:

where the S key corresponds to middle C. The space bar gives a 'rest',

and no other key on the keyboard has any effect.

 The tune is displayed on a musical stave as it is played, with the

A S D F F G H J K L ; [

P @ E R Y U I

]

125

black notes designated as sharps. Pressing RETURN will then play the

music back, again displaying it as it is played.

 The program uses the Index routine, described in Section 16.3, to

look up the key pressed, and a version of the Bleep routine in Section

15.4.1.

 1 REM Harpsichord

 10 DIM S(23),T(26),F(0)

 15 DIM WW(2),RR(2),Z(128)

 20 DIM P(-1)

 30 PRINT $21

 100[\GENERATE NOTE

 110:WW0 STA F; LDA @0

 120:WW2 LDX F

 130:WW1 DEX; NOP; NOP; BNE WW1

 140 EOR @4; STA #B002

 150 DEY; BNE WW2; RTS

 160\READ KEY & LOOK UP IN T

 165:RR1 STX F; RTS

 170:RR0 JSR #FFE3

 180 LDX @25

 190:RR2 CMP T,X; BEQ RR1

 210 DEX; BPL RR2; BMI RR0

 220]

 230 PRINT $6

 380 X=#8000

 390 D=256*#22

 393 S!20=#01016572

 395 S!16=#018898AB

 400 S!12=#01CBE401

 410 S!8=#5A606B79

 420 S!4=#8090A1B5

 430 S!0=#C0D7F2FF

 450 $T="ASDFGHJKL;[]?ER?YUI?P@? ?"

 460 T?24=#1B; REM ESCAPE

 470 CLEAR 0

 480 DO K=32

 500 FOR M=0 TO 127; LINK RR0

 505 IF ?F<>25 GOTO 520

 508 IF M<>0 Q=M

 510 M=128; GOTO 540

 520 Z?M=?F

 530 GOSUB d

 540 NEXT M

 780 K=32

 800 FOR M=0 TO Q-1; WAIT; WAIT

 810 ?F=Z?M; GOSUB d

 820 NEXT M

 825 UNTIL 0

 830dREM DRAW TUNE

 840 IF K<31 GOTO e

 850 CLEAR 0

 860 FOR N=34 TO 10 STEP -6

 870 MOVE 0,N; DRAW 63,N

 880 NEXT N

 890 K=0

 900eIF ?F=23 GOTO s

 910 IF ?F>11 K?(X+32*(27-?F))=35; K=K+1

 920 K?(X+32*(15-?F%12))=15

 930 K=K+1

126

 960 A=S?(?F); Y=D/A

 970 LINK WW0

 980 RETURN

 990sFOR N=0 TO 500;NEXT N

 995 K=K+1; RETURN

Description of Program:

100-150 Assemble bleep routine

160-210 Assemble index routine

393-430 Set up note values

450-460 Set up keyboard table

480-825 Main program loop

500-540 Play up to 128 notes, storing and displaying them.

800-820 Play back tune

830 d: Draw note on staves and play note

840-880 If first note of screen, draw staves

900-920 Plot note on screen

960-970 Play note

990-995 Wait for a rest

Variables:

A – Note frequency

D – Duration count

?F – Key Index

K – Column count on screen

M – Counter

N – Counter

P – Location counter

Q – Number of notes entered

RR(0..2) – Labels in index routine

RR0 – Entry point to read routine

S?0..S?23 – Vector of note periods

T?0..T?26 – Vector of keys corresponding to vector S

WW(0..2) – Labels in note routine

WW0 – Entry point to note routine

X – Screen address

Y – Number of cycles of note to be generated

Z(0..128) – Array to store tune.

Program size: 1049 bytes

Extra storage: 205 bytes

Machine code: 41 bytes

Total size: 1295 bytes

17.3 Bulls and Cows or Mastermind

Bulls and Cows is a game of logical deduction which has become very

popular in the plastic peg version marketed as 'Mastermind'. In this

version of the game the human player and the computer each think of a

'code', consisting of a string of four digits, and they then take

turns in trying to guess the other player's code. A player is given

the following information about his guess:

The number of Bulls – i.e. digits correct and in the right position.

The number of Cows – i.e. digits correct but in the wrong position.

Note that each digit can only contribute to one Bull or one Cow. The

human player specifies the computer's score as two digits, Bulls

followed by Cows. For example, if the code string were '1234' the

score for guesses of '0004’, '4000', and '4231' would be '10’, '01',

and '22' respectively.

 The following program plays Bulls and Cows, and it uses a

127

combination of BASIC statements to perform the main input and output

operations, and assembler routines to speed up sections of the program

that are executed very frequently; without them the program would take

several minutes to make each guess.

 10 REM Bulls & Cows

 20 DIM M(3),N(3),C(0),B(0),L(9)

 23 DIM GG(10),RR(10)

 25 DIM LL(10)

 50 GOSUB z; REM Assemble code

 60 GOSUB z; REM Pass Two

 1000 REM MASTERMIND *****

 1005 Y=1; Z=1

 1007 @=2

 1010 GOSUB c

 1015 G=!M ;REM MY NUMBER

 1020 GOSUB c; Q=!M

 1030 I=0

 1040 DO I=I+1

 1050 PRINT "(" I ")" '

 1100 IF Y GOSUB a

 1150 IF Z GOSUB b

 1350 UNTIL Y=0 AND Z=0

 1400 PRINT "END"; END

 1999***********************************

 2000 REM Find Possible Guess

 2010fGOSUB c; F=!M

 2160wLINK LL7

 2165 IF !M=F PRINT "YOU CHEATED"; END

 2170 X=1

 2180v!N=GG(X)

 2190 LINK LL2

 2200 IF !C&#FFF<>RR(X) THEN GOTO w

 2210 IF X<I THEN X=X+1; GOTO v

 2220 Q=!M; RETURN

 3999***********************************

 4000 REM Choose Random Number

 4005cJ=ABSRND

 4007 REM Unpack Number

 4010uFOR K=0 TO 3

 4020 M?K=J%10

 4030 J=J/10

 4040 NEXT

 4050 RETURN

 4999***********************************

 5000 REM Print Guess

 5010gFOR K=0 TO 3

 5020 P. $(H&15+#30)

 5030 H=H/256; NEXT

 5040 RETURN

 5999***********************************

 6000 REM Your Turn

 6040aPRINT "YOUR GUESS"

 6045 INPUT J

 6050 GOSUB u

 6060 !N=G

 6065 LINK LL2

 6070 P.?B" BULLS, " ?C" COWS"'

 6075 IF!C<>#400 RETURN

 6080 IF Z PRINT"...AND YOU WIN"'

128

 6083 IF Z:1 PRINT" ABOUT TIME TOO!"'

 6085 Y=0

 6090 RETURN

 6999***********************************

 7000 REM My Turn

 7090bPRINT " MY GUESS: "

 7100 H=Q; GOSUB g

 7110 PRINT '

 7120 INPUT "REPLY" V

 7140 RR(I)=(V/10)*256+V%10

 7150 GG(I)=Q

 7225 IF V<>40 GOSUB f; RETURN

 7230 IF Y PRINT"...SO I WIN!"'

 7235 Z=0

 7240 RETURN

 7999***********************************

 9000zREM Find Bulls/Cows

 9035 PRINT $#15 ;REM Turn off screen

 9045 DIM P(-1)

 9050[

 9055\ find bulls & cows for m:n

 9060:LL2 LDA @0; LDX @13 ZERO L,B,C

 9065:LL3 STA C,X; DEX; BPL LL3

 9100 LDY @3

 9105:LL0

 9120 LDA M,Y

 9130 CMP N,Y is bull?

 9140 BNE LL4 no bull

 9150 INC B count bull

 9160 BPL LL1 no cows

 9165:LL4

 9170 TAX not a bull

 9180 INC L,X

 9190 BEQ LL6

 9200 BPL LL5 not a cow

 9210:LL6 INC C

 9220:LL5 LDX N,Y; DEC L,X

 9225 BMI LL1; INC C

 9260:LL1 DEY; BPL LL0 again

 9350 RTS

 9360\ increment M

 9370:LL7 SED; SEC; LDY @3

 9380:LL9 LDA M,Y; ADC @#90

 9390 BCS LL8; AND @#0F

 9400:LL8 STA M,Y; DEY

 9410 BPL LL9; RTS

 9500]

 9900 PRINT $#6 ;REM Turn Screen on

 9910 RETURN

Description of Program:

20-25 Declare arrays and vectors

50-60 Assemble machine code

1010 Computer chooses code

1020 Choose number for first guess

1040-1350 Main program loop

1050 Print turn number

1100 If you have not finished – have a turn

1150 If I have not finished – my turn

1350 Carry on until we have both finished

129

1999 Lines to make listing more readable.

2000-3999 f: Find a guess which is compatible with all your replies to

 my previous guesses.

4000-4999 c: Choose a random number

4007-4050 u: Unpack J into byte vector M, one digit per byte.

5000-5040 g: Print guess in K as four digits.

6000-6090 a: Human's guess at machine's number; print score.

7000-7240 b: Machine's guess at human's code.

9000-991O z: Subroutine to assemble machine-code routines

9055-9350 Find score between numbers in byte vectors M and N; return in

 ?B and ?C.

9360-9500 Increment number in vector M, in decimal, one digit per byte.

Variables:

?B – Number of Bulls between vectors M and N

?C – Number of Cows between vectors M and N

GG(1..10) – List of human's guesses

H – Computer's number

I – Turn number

J – Human's guess as 4-digit decimal number

K – Counter

L – Vector to count occurrences of digits in numbers

LL(0..10) – Labels in assembler routines

LL2 – Entry point to routine to find score between 2 codes

LL7 – Entry point to routine to increment M

!M, !N – Code numbers to be compared

P – Location counter

Q – Computer's guess, compatible with human's previous replies.

RR(1..10) – List of human's replies to guesses GG(1..10)

Y – Zero if human has finished

Z – Zero if computer has finished.

Program size: 1982 bytes

Additional storage: 152 bytes

Machine-code: 223 bytes

Total storage: 2357 bytes

Sample run:

>RUN

(1)

YOUR GUESS?1122

0 BULLS, 0 COWS

MY GUESS: 6338

REPLY?10

(2)

YOUR GUESS?3344

0 BULLS, 0 COWS

MY GUESS: 6400

REPLY?20

(3)

YOUR GUESS?5566

0 BULLS, 0 COWS

MY GUESS: 6411

REPLY?10

(4)

YOUR GUESS?7788

1 BULLS, 1 COWS

MY GUESS: 6502

REPLY?40

...SO I WIN!

(5)

130

YOUR GUESS?

131

18 ATOM Operating System
18.1 Keyboard

18.1.1 Teletype/Typewriter Nodes

After switching on, or typing BREAK, the ATOM is in teletype mode. In

this mode all the alphabetic keys produce upper case letters, and the

SHIFT key is used to obtain the lower-case letters. This mode is most

convenient for normal operation of the ATOM because all commands are

typed in upper case.

 When entering documents which contain mixed lower and upper case

it is convenient to have the ATOM keyboard behave like a standard

typewriter; i.e. for the alphabetic keys to produce lower case, and

upper case when shifted. This state may be obtained by typing the LOCK

key. The mode is cancelled by typing LOCK a second time. Note that the

LOCK key only affects the alphabetic keys, A - Z.

18.1.2 SHIFT Key

All but one of the 128 ASCII codes are available from the ATOM

keyboard. The code which cannot be obtained appears as a back-arrow on

the display.

 The codes which can be obtained, but which are not marked on the

keyboard, are as follows:

 SHIFT + Displayed as ASCII character Code in hex

 @ Inverted @ \ #60

 A Inverted A a #61

 Z Inverted Z z #7A

 [Inverted [{ #7B

 \ Inverted \ | #7C

] Inverted] } #7D

 ^ Inverted ^ ~ #7E

18.1.3 Control Codes

The following list gives all the control codes that perform special

functions on the ATOM. They are all available from the keyboard, by

typing CTRL with the specified key, or from programs.

STX (CTRL-B, 2) Start printer

This code, which is not sent to the printer, starts the printer output

stream. All further output is sent to the printer as well as the VDU

until receipt of an ETX code.

ETX (CTRL-C, 3) End printer

Ends the printer output stream.

ACK (CTRL-F, 6) Start screen

132

Starts the output stream to the VDU screen, and resets the VDU to

character mode. This code is sent to the VDU on BREAK.

BELL (CTRL-G, 7) Bleep

Causes the output stream to make a 1/2 second bleep on the internal

speaker.

BS (CTRL-H, 8) Backspace

Moves the cursor back one position.

HT (CTRL-I, 9) Horizontal tab

Moves the cursor forward one position.

LF (CTRL-J, 10) Linefeed

Moves the cursor down one line.

VT (CTRL-K, 11) Vertical tab

Moves the cursor up one line.

FF (CTRL-L, 12) Formfeed

Clears the screen, moves the cursor to the top left-hand corner, and

sets the VDU to character mode.

CR (CTRL-M, 13) Return

Moves tle cursor to the start of the current line.

SO (CTRL-N, 14) Page mode on

Turns on paged mode, and resets the line count to zero. Every time the

screen in scrolled the line count is incremented. In paged mode the

UDU will wait for a key to be typed every time the line count reaches

16.

SI (CTRL-O, 15) Page mode off

Turns off paged mode. This is the mode set on BREAK and on power-up.

NAK (CTRL-U, 21) End screen

Ends the output stream to the VDU; the only code recognised when in

this condition is ACK.

CAN (CTRL-X, 24) Cancel

Deletes the line currently being typed, and returns the cursor to the

start of the following line. Only happens in BASIC's input modes.

ESC (CTRL-[, 27) Escape

Causes an escape from an executing BASIC program. If typed twice,

resets the VDU to character mode.

RS (CTRL-^, 30) Home cursor

Moves the cursor to the top left-hand corner of the screen.

18.4 Screen Editing

Three keys on the ATOM keyboard have special functions, and are used

in conjunction with the SHIFT key for screen editing. Their functions

133

are:

 Cursor up

 SHIFT Cursor down

 Cursor right

 SHIFT Cursor left

 COPY Read character under cursor

Pressing the first four key combinations move the cursor around the

screen but do not send any new characters down the input channel. They

may be typed at any time and will have no effect on the ATOM, or on

programs; they just determine where the cursor is positioned.

 The COPY key will read the character under the cursor, and

transmit that character to the input stream; the effect is the same as

if that character had been typed at the keyboard. After reading a

character the cursor is automatically moved one place to the right.

 For example, suppose we wanted to edit a piece of stored text.

First the text is listed as shown:

>LIST

 10 PIECE OF TEXTUAL MATERIAL

>.

After listing the program the cursor is positioned after the prompt,

as shown. First move the cursor vertically upwards, using the) key,

until it is opposite the line we wish to edit:

>LIST

 . 10 PIECE OF TEXTUAL MATERIAL

>

Now use the COPY key to read the correct part of the line:

>LIST

 10 PIECE OF.TEXTUAL MATERIAL

>

Note that the cursor inverts every character it passes over. If any

inverted characters are present in the text, these will be un-inverted

by the cursor.

 Now type in the corrected part of the line:

>LIST

 10 PIECE OF CAKE.AL MATERIAL

>

As no more of the old line is required the return key is pressed, and

the program may be listed again to verify that the editing gave the

correct result.

 The key may be used to omit parts of the old line that are no
longer required and SHIFT may be used to backspace the cursor in

order to make room for inserting extra characters in the line. If you

change your mind while editing a line, type CTRL-X (cancel) and the

old line will be unchanged.

18.5 The VDU

The character display shows the contents of memory from #8000 to

#81FF, mapped one character cell per byte. The address of the top

134

left-hand cell is #8000, and the address of the Cth column in the Lth

line is simply:

 #8000+32*L+C

where 0<=C<=31 and 0<=L<=15, and L=0, C=0 corresponds to the top left-

hand character position.

 The value stored in the memory cell determines the character

displayed. All 256 different possible codes produce different

displayed characters (with two exceptions), and the codes are assigned

as follows:

 Hex Code: Characters:

 #00 – #1F 0 to <- (including alphabet)

 #20 – #3F space to ? (including digits)

 #40 – #7F white graphics symbols

 #80 – #9F inverted 0 to <-

 #A0 – #BF inverted space to ?

 #C0 – #FF grey graphics symbols

The complete character set is displayed by executing:

 FOR N=0 TO 255; N?#8000=N; NEXT N

which will generate the display shown below:

The graphics symbols consist of a block divided into 6 pixels, the

state of each pixel being determined by the lower 6 bits of the byte,

as follows:

If the bit is set, the corresponding pixel is grey or white; if the

bit. is clear the pixel is black. Note that #20 and #40, and #7F and

#A0 give the same graphics patterns.

 Note that in all cases except #20 to #3F the code stored in the

cell differs from the ASCII code for the character displayed. If C is

the ASCII code for the character to be displayed, the code to be

stored in the cell is obtained by:

 C=C+#20; IF C<#80 THEN C=C:#60

Similarly, to obtain the ASCII code for a character from the value V

stored in the screen memory, execute:

 IF V<#80 THEN V=V:#60

 V=V-#20

5 4

3 2

1 0

135

18.6 Changing Text Spaces

The 'text space' is the region of memory used by the ATOM for storing

the text of programs. On switching on, or pressing BREAK, the ATOM is

initialised with a fixed text space at address #8200 in the unexpanded

ATOM, or at #2900 in the ATOM with extra memory in the lower text

space. However, it is possible to change the value of the text-space

pointer so that text can be entered and stored in different areas of

memory. It is even possible to have several different programs

resident concurrently in memory, in different text spaces.

 The memory location 18 (decimal) contains a pointer to the first

page of the BASIC text. This value is refered to by the system in the

following cases:–

1. During line editing in direct mode

2. During a SAVE statement; the save parameters are ?18*256 and TOP

3. During a LOAD command; a new program is loaded to ?18*256

4. During the execution of a GOTO or GOSUB statement or a RUN

statement, labels with known values being the exception.

 Changing ?18 in programs permits a BASIC program in one text area

to call subroutines in a BASIC program in another text area. The value

of TOP will not change with use like this, so its use as a memory

space allocator and pointer to the end of text in the line editor must

be watched carefully.

18.6.1 Calling Subroutines in Different Text Spaces

The following example shows the entering of a subprograrn and main

program in different text spaces. First enter a subroutine in the

first text space:

 ?18=#82

 NEW

 10 PRINT"TEXT AREA ONE"'

 20 RETURN

Now change the value of the text-space pointer and enter a program; to

call this subroutine into the second text space:

 ?18=#83

 NEW

 10 REM CALL SUBROUTINE IN #82

 20 ?18=#82

 30 GOSUB 10

 40 REM PROVE YOU'RE BACK

 50 PRINT"TEXT AREA TWO"'

 60 GOSUB 10

 70 ?18=#83;REM BACK FOREVER

 80 END

Now run the program:

 RUN

TEXT AREA ONE

TEXT AREA TWO

TEXT AREA ONE

Note that switching back to the first text space by typing:

?18=#82

will not change the value of TOP:

 PRINT & TOP'

 8398

136

To reset TOP, type:

 END

 PRINT & TOP'

 8225

18.7 Renumbering Programs

The following routine can be used to renumber the line-numbers of a

program or piece of text. The program and renumber routine must both

be in memory at the same time, in different text spaces. Note that the

renumber program only renumbers the line numbers; it does not renumber

numbers in GOTO or GOSUB statements.

18.7.1 Renumbering in the Expanded ATOM

In an expanded ATOM, with the default text space at #2900, the

renumber routine can conveniently be entered at #8200 by typing:

 ?18=#82

 NEW

before loading it from tape, or entering it from the keyboard.

 1 REM Renumber

 10 INPUT"TEXT SPACE TO RENUMBER"Z

 15 Z=Z*256

 20 INPUT"START AT"A,"STEP"B

 30 ?18=Z/256

 40 IFZ?1=255 END

 50 DOZ?1=A/256;Z?2=A;A=A+B

 55 Z=Z+3+LEN(Z+3)

 60 UNTILZ?1=255;END

The program to be renumbered should be in the default text space, #29.

Then RUN the program, and reply to the prompts as follows:

TEXT SPACE TO RENUMBER ?029

START AT?10

STEP?10

The program will switch back to the usual text space, and the

renumbered program can be listed.

18.7.2 Renumbering Using the Screen Memory

In an unexpanded ATOM there may be no space in the upper text space to

load the renumber program. However, with care, it can be loaded from

tape, or typed in, and executed in the area of memory that is

displayed on the VDU. The size of the program is about #A0 bytes,

which will occupy memory corresponding to about 6 lines of the

display. Provided that the cursor is kept below the sixth line of the

display, and is not allowed to reach the bottom line of the display

when it will cause scrolling, the VDU memory can be safely used as a

temporary text space in this way.

 First type:

 ?18=#80

to set the text space to the screen area of memory. Move the cursor to

the 6th. line of the display using the edit key, and type:

 LOAD "RENUMBER"

Alternatively, enter the program from the keyboard in the usual way.

The top few lines of the display will be filled with strange

137

characters, corresponding to the text of the program stored directly

in the screen memory. Now type:

 RUN

and reply to the prompts of the renumber program as follows (or, as

desired):

TEXT SPACE TO RENUMBER?082

START AT?10

STEP?10

When the program has run the screen can be allowed to scroll,

corrupting the renumber program, and you can list the renumbered

program.

18.8 Trapping Errors

The memory locations 16 and 17 contain a pointer, low byte in 16, high

byte in 17, to the start of a BASIC program which is entered whenever

an error occurs. In direct mode they are set to point at a program in

the interpreter which reads:

 @=1;P.$6$7'"ERROR "?0;@=8;IF?1|?2P." LINE"!1& #FFFF

 0 P.';E.

Location 0 contains the error number and locations 1 and 2 contain the

line number where the interpreter thinks it occurred. Programs

intended to handle errors should store the value of !1 since it is

changed whenever a return is executed. The first character in a text

space that can be pointed to by ?16 and ?17 is at the start of the

text space plus three, and this is the first character of the listed

program. All interpreter stacks are cleared after an error but the

values of labels are not forgotten.

18.8.1 On Error Goto

To provide a GOTO on an error it is necessary to provide a string

containing the GOTO statement, and write the address of this string in

locations 16 and 17. For example, to provide a jump to line 170 on an

error:

 10 DIM A(8)

 20 $A="GOTO 170"

 30 ?16=A; ?17=A&#FFFF/256

18.8.2 Calculator Program

The following program simulates a desk-top calculator; it will

evaluate any expression which is typed in, and any error will cause

the message "BAD SYNTAX" to be printed out. The program uses integer

BASIC statements, but could easily be modified to use the floating-

point extension:

 10 E=TOP; $E="P.""BAD SYNTAX""';G.30"

 20 ?16=E; ?17=E/256

 30 @=0; DO IN.A; P.$320"="A; U.0

\

138

139

19
The Cassette Operating System, or COS, saves and loads data to and

from tape using the Computer Users Tape Standard (CUTS), which is also

known as Kansas City Standard. Data is coded as audio tones on the

tape. A logic 0 consists of 4 cycles of a 1.2 kHz tone, and a logic 1

consists of 8 cycles of a 2.4 kHz tone. Each byte of data is preceeded

by a logic zero start bit, and is terminated by a logic 1 stop bit.

Each bit lasts for 3.33 mS, giving an operating speed of 300

bits/second.

19.1 Named Files

Named files are stored as a number of blocks, each of which is 256

bytes or less, and includes a checksum over all the bytes in the

block. Each block is identified by a name header, and includes the

start address for loading that block, the execution address for that

block, and the number of bytes in that block minus one.

19.2 Unnamed Files

Unnamed files are stored as a two-byte start address, a two-byte end

address, and end minus start bytes of data. An unnamed file could have

no name at all (when using *LOAD and *SAVE), or it may have a zero

length name denoted by "". Unnamed files may thus be used anywhere

that named files could be used. The format of an unnamed file on tape

corresponds to the format of an Acorn System One computer.

19.3 Commands

All COS commands start with an asterisk to distinguish them from BASIC

commands. Note the difference between SAVE and *SAVE, and LOAD and

*LOAD:

SAVE creates text files from the ATOM's text space. No start address

is specified. The execution address is automatically set to #C2B2, the

entry point to BASIC.

*SAVE saves a block of memory whose start and end addresses must be

specified.

LOAD loads text files to the current text space.

*LOAD loads a block of memory to a fixed address, or to an address

specified in the command.

*CAT Catalogue tape *.

The *CAT command gives a catalogue of a tape. Each block of a named

file will appear in the catalogue as follows:

FILENAME SSSS EEEE NNNN BB

Where FILENAME is the name of the file

 SSSS is the start address of the block

 EEEE is the execution address of the file (used by RUN)

 NNNN is the block number, startinq at zero

and BB is the number of data bytes in the block, minus one.

All the numbers are in hexadecimal.

Casette Operating
System

140

 Unnamed files will appear in the catalogue as:

 SSSS LLLL

where SSSS is the start address

and LLLL is the last address, plus one. Again, both numbers are in

hexadecimal.

*LOAD Load file *L.

To load a named file the syntax is:

 *LOAD "FILENAME" XXXX

where XXXX is a hexadecimal address specifying where the data is to be

loaded. If XXXX is omitted the data will be loaded back to the address

from which it was originally saved. On pressing RETURN the system will

reply:

PLAY TAPE

The cassette recorder should be played, and the ATOM's space bar

pressed to indicate that this has been done.

 The COS will display the names of any files that are encountered

on the tape before the specified file is found. When the file is found

it will be loaded and on completion the '>' prompt will reappear.

 If the file to be loaded is part way past the tape heads the COS

will display:

REWIND TAPE

The tape should then be rewound and the space bar pressed again, to

which the COS will reply:

PLAY TAPE

and the loading process can be repeated.

To load an unnamed file the syntax is:

 *LOAD "" XXXX or

 *LOAD XXXX

where XXXX is again the optional, hexadecimal, start address. Since

there is no name search the space bar should only be pressed during

the hiqh-tone leader, and the first file encountered will be loaded.

Unnamed files consist of a single block, a R there is no error

checking; however they provide the fastest way of having and loading

data or programs.

CTRL and SHIFT

During loading and *CAT:

CTRL will cause a return to the ATOM '>' prompt. If pressed during

loading an error message will be given to indicate that part of the

file being loaded was lost.

SHIFT will override the search for the high-tone leader, and can thus

be used to load and catalogue files with very short periods of

high-tone leader.

Note that there is no way to exit from SAVE or *SAVE except by BREAK.

*SAVE Save file *S.

To save a named file on tape the syntax is:

 *SAVE "FILENAME" SSSS LLLL EEEE

where FILENAME is the filename of up to 16 characters

141

 SSSS is the start address

 LLLL is the end address plus one

 EEEE is the optional execution address

The execution address is used by the RUN command, and if omitted will

default to the start address.

 On pressing return the COS will respond with:

RECORD TAPE

The tape recorder should now be started in record mode, and the space

bar pressed to indicate that this has been done. Once started, SAVE

cannot be aborted except by BREAK.

To save an unnamed file the syntax is:

 *SAVE "" SSSS LLLL or

 *SAVE SSSS LLLL

where SSSS and LLLL are as above, and the data will be saved as one

continuous block.

*MON Enable messages *M.

The usual condition after switch-on and BREAK is for the messages:

PLAY/RECORD/REWIND TAPE

to be produced. The MON command may be used to enable messages if they

have been disabled.

*NOMON Disable messages *N.

This command turns off messages produced by the COS.

*PLOAD Finish loading *F.

The normal LOAD command demands that files are loaded from the start

of the first block, and will request that the tape be rewound if

started in the middle of the file. FLOAD allows loading to commence

from the start of any block in the file, and the syntax of the command

is:

 FLOAD "FILENAME" SSSS

where SSSS is an optional start address specifying the address to

which the start of the first block is loaded if relocation is

required.

 FLOAD is useful after a checksum error has been encountered. The

tape may be stopped and rewound to any point before the block that

produced the error. FLOAD is then used to allow loadinq to continue,

and the block headers will ensure that the blocks are being loaded in

the correct place.

*RUN Load and execute machine code file *R.

The syntax of this command is:

 RUN "FILENAME" SSSS

The function is exactly as for LOAD, but on completion of loading

execution is transferred to the execution address specified when the

file was created. The optional start address SSSS may be used to

relocate the file. The execution address is not affected by

relocation.

142

*DOS Link to Disk Operating System *D.

This command initialises the Disk Operating System, if present, by

linking to #E000.

19.4 Errors

The following error messages are given for errors in commands to the

COS; i.e. for commands starting with '*':

SUM

ERROR 6 Checksum error

COM?

ERROR 48 Command error

NAME

ERROR 118 Name error

SYN?

ERROR 135 Syntax error

ERROR 165 Premature exit from loading

19.5 Appending Text from Several Files

A BASIC or Assembler subroutine may often be required for several

different programs. In this case it is possible to store the

subroutine text on a separate file, and append this text to the text

in memory every time the subroutine is needed in a program.

 The subroutine text should be entered in memory on its own, and

should be written with fairly high line numbers, such as 9000-9999.

The subroutine is then saved as usual; e.g.:

 SAVE "SUB9"

A later date a program is written which needs a copy of this

subroutine. First check that the program does not use any line numbers

above the first line of the program. Then find the address of the end

of the program by typing:

 PRINT &TOP-2

Remember that this address will be in hexadecimal. Now, using *LOAD,

load the subroutine into memory starting at the address printed out in

the above step:

 *LOAD "SUB9" XXXX

where XXXX is the address that was printed out. Finally, to reset TOP

to the end of the subroutine, type:

 END

 Any number of text files can be appended in this way, but note

that, unless the resulting text is to be renumbered, the parts

appended should use line numbers which are larger than any line number

in the text file already in memory.

143

20
All the ATOM BASIC statements, functions, and commands are listed in

the following pages in alphabetical order. Following each name is,

where applicable, an explanation of the name and the shortest

abbreviation of that name. The following symbols will be used; these

are defined more fully in Chapter 26:

<variable> – one of the variables A to Z, or @.

<factor> – a variable, a constant, a function, an array, an

indirection, or an expression in brackets, any of which may optionally

be preceded by a + or – sign; e.g.:

A, -1234, ABS(12), AA(3), !A, (2*A+B).

<expression> – any arithmetic expression; e.g.:

A+B/2*(27-R)&H.

<relational expression> – an expression, or a pair of expressions

linked by a relational operator; e.g.:

A, A>=B, $A="CAT"

<testable expression> – any number of <RELATIONAL expressions>

connected by AND or OR; e.g.:

A>B AND C>D.

<string right> – a quoted string, or an expression optionally preceded

by a dollar; e.g.:

"STRING", $A.

ABS Absolute value A.

This function returns the absolute value of its argument, which is a

<factor>. ABS will fail to take the absolute value of the maximum

negative integer, -2147483648, since this has no corresponding

positive value. The most common use of ABS is in conjunction with RND

to produce random numbers in a specified range, see RND. Example:

 PRINT ABS-1,ABS(-1),ABS1,ABS(1)'

 1 1 1 1

AND Relational AND A.

This symbol provides the logical AND operation between two <RELATIONAL

expression>s. Its form is <RELATIONAL expression a> AND <RELATIONAL

expression b> and the result will be true only if both <RELATIONAL

expression>s are true. AND has the same priority as OR. Example:

 IF A=B AND C=D PRINT"EQUAL PAIRS"'

BASIC Statements,
Functions, and Commands

144

BGET Byte get B.

This function returns a single byte from a random file. The form of

the instruction is:

 BGET <factor>

where <factor> is the file's handle returned by the FIN function. The

next byte from the random file is returned as the least significant

byte of the value, the other three bytes being zero. In the DOS the

sequential pointer will be moved on by one and the operating system

will cause an error if the pointer passes the end of the file.

Example:

 A=FIN"FRED"

 PRINT "THE FIRST BYTE FROM FRED IS "BGET A'

BPUT Byte put B.

This statement sends a single byte to a random file. The form of the

statement is:

 BPUT <factor>, <expression>

where <factor> is the file's handle returned by the FOUT function; the

<expression> is evaluated and its least significant byte is sent to

the random file. If you are using the DOS, the random file's

sequential pointer will be moved on by one and the operating system

will cause an error if the length of the file exceeds the space

allowed. Example:

 A=FOUT"FRED"

 BPUT A, 23

CH Change character to number CH

This function returns the number representing the first ASCII

character of the string supplied as its argument. It differs from

straight use of the '?' operator in that it can take an immediate

string argument or an <expression>. Examples:

 PRINT CH""'

 13 (value of string terminatinq character)

 PRINT CH"BETA"'

 66

 S=TOP;$S="BETA"

 PRINT ?S/CH$S,CHS'

 66 66 66

 PRINT S?LENS,CH$S+LENS'

 65 65

CLEAR Clear graphics screen CLEAR

This statement clears the screen and initialises the display for the

graphics mode specified its argument:

CLEAR 0 : Screen is 64*48 (semi-graphics mode)

CLEAR 1 : Screen is 128*64

CLEAR 2 : Screen is 128*96

CLEAR 3 : Screen is 128*192

CLEAR 4 : Screen is 256*192

In graphics modes 1 to 4 an error will be caused if the text space and

graphics area conflict.

145

COUNT Count of characters printed C.

This function returns the number of characters printed since the last

return, and is thus the column position on a line at which the next

character will be printed. COUNT is useful for positioning table

elements etc. Example:

 DO PRINT"=";UNTIL COUNT=20

====================>

DIM Dimension statement DIM

This statement automatically allocates space after the end of the text

for arrays or strings. DIM causes an error if used in direct mode.

Associated with DIM is a 16 bit location referred to as the 'free

space pointer'. The RUN statement sets this pointer to the value of

TOP. A declaration:

 DIM A(Q)

sets A to the current value of the free space pointer, and the pointer

is moved up by (Q+1) bytes. A declaration:

 DIM AA(Q)

allocates space for an array AA with elements AA(0) to AA(Q), and

moves the value of the free space pointer up by 4*(Q+1) bytes.

 A special use of DIM is to set the value of P for assembling:

 DIM P(-1)

sets P to the current value of the free space pointer, without

changing the pointer's value. Several items may be dimensioned in one

DIM statement:

 DIM A(2),AA 45,BB(67),CC(F)

DRAW Draw line to absolute position DRAW

The statement DRAW A,B is equivalent to PLOT 5,A,B.

DO Start of DO...UNTIL loop DO

This statement is part of the DO...UNTIL control expression. As the

BASIC interpreter passes DO it saves that position and will return to

it if the UNTIL statement's condition is false. No more than 11 active

DO statements are allowed. See UNTIL for examples.

END End of program E.

This statement has two functions:

1. Termination of an executing program

2. Resetting the value of TOP to point to the first free byte after

the program text.

END can be used in direct mode to set TOP. Programs can have as many

END statements as required and they do not need to have an END

statement as a last line, although an error will be caused on

execution past the end of the program. See also TOP. Example:

 IF SZ="FINISH" END; REM conditional end

EXT Extent of random file E.

In the DOS this function returns the EXTent (length) of a random file

in bytes. The file can be either an input or an output file, and the

form of the instruction is

146

 EXT<factor>

where factor is the file's handle found using either FIN or FOUT.

 In the COS, execution of this function results in an error.

Example:

 A=FIN"FRED"

 PRINT "FRED IS "EXT(A)" BYTES LONG"'

FIN Find Input F.

In the DOS this function initialises a random file for input (with

GET, BGET, and SGET) and updating (with PUT, BPUT, and SPUT), and

returns a number which uniquely represents the file. This 'file

handle' is used in all future references to the file. Zero is returned

if the file does not exist. The file handle is only a byte long (1 –

255) and can be stored in variables or using ! or ?. Usage of a file

handle not given by the operating system will result in an error.

 In the COS the message PLAY TAPE will be printed, and the system

will wait for any key to be pressed.

FOR Start of FOR...NEXT loop F.

This statement is the first part of the FOR...NEXT loop, which allows

a section of BASIC text to be executed several times. The form of the

FOR statement is:

 FOR (a) = (b) TO (c) STEP (d)

where (a) is the CONTROL VARIABLE which is used to test for loop

completion

 (b) is the initial value of the control variable

 (c) is the limit to the value of the control variable

 (d) is the step size in value of the control variable for each

pass of the loop; if omitted, it is assumed to be 1.

Items (b) (c) (d) are <expression>s they are evaluated only once, when

the FOR statement is encountered, and the values are stored for later

reference by the NEXT statement. No more than 11 nested FOR statements

are allowed by the interpreter. Examples:

 FOR Z=0 TO 11

 FOR @=X TO Y

 FOR U=-7 TO 0

 FOR G=(X+1)*2 TO Y-100

 FOR J=0 TO 9 STEP 3

 FOR K=X+1 TO Y+2 STEP I

 FOR Q=-10*ABSX TO -20*ABSY STEP -ABSQ

FOUT Find output FO.

In the DOS this function initialises a random file for output (with

PUT, BPUT, and SPUT), and returns a number which uniquely specifies

the output file. This 'file handle' is used in all future references

to the file. Zero will be returned there is a problem associated with

using the file as an output file; e.g.:

 (a) write protected file

 (b) write protected disc

 (c) insufficient space in directory

 (d) file already in use as an input file

 (e) insufficient memory space

The number returned is only a byte long (1-255) and can be stored in

variables or using ! or ?. Usage of a number not given by the

147

operating system will result in an error.

 In the COS the message RECORD TAPE will be printed, and any key

waited for. Example:

 A=FOUT"FRED"

 IF A=O PRINT "WE HAVE A PROBLEM WITH FRED"'

GET Get word from file G.

This function reads a 32 bit word from a random file and returns its

value. The form of the instruction is:

 GET<factor>

where <factor> is the file's handle found with the FIN function. The

first byte fetched from the file becomes the least significant byte of

the value.

 In the the DOS the random file's sequential pointer will be moved

on by 4 and the operating system will cause an error if the pointer

passes the end of the file. Example:

 A=FIN"FRED"

 PRINT "THE FIRST WORD FROM FRED IS "GET A'

GOSUB Go to subroutine GOS.

This statement gives the ability for programs to call sub programs.

The GOSUB statement stores its position so that it can come back later

on execution of a RETURN statement. Like GOTO it ran be followed by an

<factor> whose value is a line number, or by a label. No more than 14

GOSUB statements without RETURNs are allowed. Example:

 10 GOSUB a

 20 GOSUB a

 30 END

 100a PRINT"THIS IS A SUB PROGRAM"'

 200 RETURN

When RUN this will print.:

THIS IS A SUB PROGRAM

THIS IS A SUB PROGRAM

>

GOTO Go to line G.

This statement overrides the sequential order of proqram statement

execution. It can be used after an IF statement to give a conditional

change in the proqram execution. The form of the statement is either:

 GOTO <factor>

or GOTO <label>

The GOTO statement can transfer to either an unlabelled line, by

specifying the line's number, or to a labelled line, by specifying the

line's label.. Examples:

 10 IF A=0 PRINT"ATTACK BY KLINGON "Z;GOTO x

 20 PRINT"YOU ARE IN QUADRANT "X Y

 30x PRINT'"STARDATE "T'

 100m INPUT"CHOICE "A

 110 IF A<1 OR A>9 PRINT"!!!!!"; GOTO m

 120 GOTO(A*200); REM GO EVERYWHERE !

148

IF If statement IF

This statement is the main control mechanism of BASIC. It is followed

by a <TESTABLE expression>, which is a single byte. If TRUE (non-zero)

the remainder of the line will be interpreted; if FALSE (zero)

execution will continue on the next line. After the <TESTABLE

expression>, IF can be followed by one of two different options:

1. The symbol THEN, followed by any statement.

2. Any statement, provided that the statement does not begin with T or

a unary operator '!' or '?'.

Examples:

 IF A<3 AND B>4 THEN C=26

 IF A<3 IF B>4 C=26; REM equivalent condition to above

 IF A>3 OR B<4 THEN C=22; REM complementary condition to above

 IF A>3 AND $S="FRED" OR C=22; REM AND and OR have equal priority

INPUT Input statement IN

This statement receives data from the keyboard. The INPUT statement

consists of a list of items which can be:

(a) a string delimited by "quotes

(b) any ' new-line symbols

(c) a <variable> or a $<expression> separated from succeeding

items by a comma.

Items (a) and (b) are printed out, and for each item (c) a '?' is

printed and the the program will wait for a response. If the item is a

<variable>, the response can be any valid <expression> if the item was

a $<expression>, the response is reated as a stririg and will be

located in memory starting at the address given by evaluating the

<expression>. If an invalid response is typed, no chanqe to the

original is made. Example:

 INPUT"WHAT IS YOUR NAME "$TOP,"AND HOW OLD ARE YOU "A

When RUN this will produce:

WHAT IS YOUR NAME ?FRED

AND HOW OLD ARE YOU ?100

LEN Length of string L.

This function returns the number of characters in a string. The

argument for LEN is a <factor> which points to the first character in

the string. Valid strings have between 0 and 255 characters before a

terminating return; invalid strings for which the terminating return

is not found after 255 characters will return length zero. Example:

 $TOP="FRED";PRINT"LENGTH OF "$TOP" IS "LEN TOP'

LET Assignment statement omit

This statement is the assignment statement and the word LET is

optional. There are two types of assignment statement:

l. Arithmetic

 LET<variable>=<expression>

 <variable>!<factor>=<expression>

 <variable>?<factor>=<expression>

 !<factor>=<expression>

 ?<factor>=<expression>

2. String movement

149

 LET$<expression>=<string right>

In each case the value of the right hand side is evaluated, and then

stored as designated by the left hand side. The word LET is not legal

in an array assignment.

LINK Link to machine code subroutine LI.

This statement causes execution of a machine code subroutine at a

specified address. Its form is:

 LINK <factor>

where <factor> specifies the address of the subroutine. The

processor's A, X and Y registers will be initialised to the least

significant bytes of the BASIC variables A, X and Y, and the decimal

mode flag will be cleared. The return to the interpreter from the

machine code program is via an RTS instruction. Examples:

 Q-TOP; !Q=06058; LINK Q; REM clear interrupt flag

 Q-ZOP; !Q=06078; LINK Q; REM set interrupt flag

 LINK #FFE3;REM wait for key to be pressed

LIST List BASIC text L.

This command will list program lines in the current text area. It can

be interrupted by pressing ESC and can take any of these forms:

 LIST list all lines

 LIST 10 list line 10

 LIST , 40 list all lines up to 40

 LIST 100 , list all lines from 100

 LIST 10,40 list all lines between 10 and 40

LOAD Load BASIC program LO.

This command will load a BASIC program into the current text area. Its

form is:

 LOAD <string right>

and it will pass the string to the operating system and request the

operating system to complete the transfer before returning (in case

the transfer is by interrupt or direct memory access). Then the text

area is scanned through to set the value of TOP; if the file was

machine code or data and not a valid BASIC program the prompt may not

reappear. Example:

 LOAD"FRED"

MOVE Move to absolute position MOVE

The statement MOVE A,B is equivalent to PLOT 4,A,B.

NEW Initialise text area N.

This command inserts an 'end of text' marker at the start of the text

area, and changes the value of TOP accordingly. The OLD command

provides an immediate recovery.

NEXT Terminator of FOR...NEXT loop N.

This statement is half of the FOR...NEXT control loop. When the word

NEXT is encountered, the interpreter increases the value of the

control variable by the step size, and if the control variable has not

exceeded the loop termination value control is transfered back to the

statement after the FOR statement; otherwise execution proceeds to the

150

statement after the NEXT statement. The NEXT statement optionally

takes a <variable> which will cause a return to the same level of

nesting as the FOR statement with the same control variable, or an

error if no such FOR statement is active. Examples:

 @=2

 FOR Z=0 TO 9; PRINT Z; NEXT; PRINT'

 0 1 2 3 4 5 6 7 8 9

 FOR Z=0 TO 9 STEP 2; PRINT Z; NEXT Z;PRINT'

 0 2 4 6 8

 FOR Z=0 TO 9; PRINT Z; NEXT Y

 0

ERROR 230

>

OLD Recover text area OLD

This statement executes ?(?18*256+1)=0;END to recover a text space

after typing NEW. If the first line number in the text area is greater

than 255 it will be changed by the OLD statement.

OR Relational OR OR

This symbol provides the logical OR operation between two <RELATIONAL

expressions>. Its form is <RELATIONAL expression a> OR <RELATIONAL

expression b> and the result will be true (non-zero) if either

<RELATIONAL expression> is true. OR has the same priority as AND.

Example:

IF A=B OR C=D PRINT"At least one pair equal"'

PLOT Plot statement PLOT

This statement takes three arguments: a parameter that determines how

to plot, and a pair of relative or absolute cartesian coordinates. The

first parameter is as follows:

 0 plot line relative to last point with no change in pixels

 1 as 0 but set pixels

 2 as 0 but invert pixels

 3 as 0 but clear pixels

 4 plot line to absolute position with no change in pixels

 5 as 4 but set pixels

 6 as 4 but invert pixels

 7 as 4 but clear pixels

 8 plot point relative to last point with no change in pixel

 9 as 8 but set pixel

10 as 8 but invert pixel

11 as 8 but clear pixel

12 plot point at absolute position with no change in pixel

13 as 12 but set pixel

14 as 12 but invert pixel

15 as 12 but clear pixel

PRINT Print statement P.

This statement outputs results and strings to the screen.. A PRINT

statement consists of a list of the following items:

(a) a string delimited by "quotes, which will be printed.

(b) any ' symbols which will cause a 'newline'.

151

(c) the character '&' which forces hexadecimal numerical print

out until the next comma.

(d) an <expression> whose value is printed out in either decimal

or hexadecimal, right hand justified in a field width defined by

'@'

(e) a $<expression> if the value of the <expression> is between

0 and 255, the ASCII character corresponding to that value will

be printed out; otherwise the string pointed to by that value

will be printed out.

Examples:

 PRINT '

 PRINT"Hello"'

Hello

 PRINT 1'

 1

 PRINT 1'2'3'

 1

 2

 3

 PRINT"40*25="40*25'

40*25= 1000

 PRINT$CH"e"'

e

 PRINT$12

 DO INPUT"Who are you "$TOP;PRINT"Hi "$TOP'; UNTIL $TOP=""

Who are you ?fred

Hi fred

Who are you ?

 PRINT&0 10 20 30'

 0 A 14 1E

PTR Pointer of random file PTR

In the DOS this function and statement allows the manipulation of the

pointers in sequential files. Its form is:

 PTR<factor>

where <factor> is the file's handle found using FIN or FOUT, and it

may appear on the left hand side of an equal sign or in an expression.

 In the COS PTR will cause an error. Examples:

 A=FIN"FRED"

 PRINT PTR AI

 0

 PTRA=PTRA+23

PUT Put word to random file PUT

This statement sends a four byte word to a sequential output file. The

form of the instruction is:

 PUT <factor> , <expression>

where <factor> is the file's handle returned by the FOUT function. The

<expression> is evaluated and sent, least significant byte first, to

the sequential output file. The seguential output file's pointer will

be moved on by four and the operating system will cause an error if

the length of the file exceeds the space allowed. Example:

 A=FOUT"FRED"

 PUT A , 123456

152

REM Remark REM

This statement causes the interpreter to ignore the rest of the line,

enabling comments to be written into the program. Alternatively

comments can be written on lines branched around by a GOTO statement.

RETURN Return from subroutine R.

This statement causes a return to the last encountered GOSUB

statement. See GOSUB for examples.

RND Random number R.

This function returns a random number between -2147483648 and

2147483647, generated from a 33 bit pseudo-random binary sequence

generator which will only repeat after over eight thousand million

calls. The sequence is not initialised on entering the interpreter,

but locations 8 to 12 contain the seed, and can be set using '!' to a

chosen startinq point. To produce random numbers in some range A to B

use:

 ABSRND%(B-A)+A

RUN Execute BASIC text from beginning RUN

This statement will cause the interpreter to cornmence execution at

the lowest numbered line of the current text area. Since it is a

statement, it may be used in both direct mode and programs.

SAVE Save BASIC text space SA.

This statement will cause the current contents of the memory between

the start of the text area, given by ?18*256, and the value of TOP, to

be saved by the operating system with a specified name. The operating

system is not requested to wait until the transfer is finished before

returning to the interpreter. Example:

 SAVE"FRED"

SGET String get S.

This statement reads a string from a random file. The form of the

statement is:

 SGET <factor>, <expression>

where <factor> is the file's handle returned by the FIN function. The

<expression> is evaluated to form an address, and bytes are taken from

the sequential input file and put in memory at consecutive locations

starting at that address, until a 'return' is read. The sequential

input file's pointer will be moved on by the length of the string plus

one and the operating system will cause an error if the pointer passes

the end of the input file.

SHUT Finish with random file SH.

In the DOS this statement closes random input or output files. The

form of the statement is:

 SHUT <factor>

where <factor> is the file's handle found with either FIN or FOUT. If

it is an output file any information remaining in buffer areas in

memory is written to the file. If the <factor> has value zero, all

current sequential files will be closed. In the COS this statement is

ignored.

153

SPUT String put SP.

This statement writes a string to a random file. The form of the

instruction is:

 SPUT <factor>, <string right>

where <factor> is the file's handle returned by the FOUT function.

Every byte of the string, including the terminating 'return'

character, is sent to the file. In the DOS the random file's

sequential pointer will be moved on by the length of the string plus

one, and the operating system will cause an error if the length of the

file exceeds the space allowed; Example:

 A=FOUT"FRED"

 SPUT A , "THIS IS FILE FRED"

STEP Step specifier in FOR statement S.

This symbol is an optional parameter in the FOR statement, used to

specify step sizes other than the default of +1. It is followed by an

<expression> which is evaluated and its value stored along with the

other FOR parameters. See FOR for examples.

THEN Connective in IF statement omit

This symbol is an option in the IF statement; it can be followed by

any statement.

TO Limit specifier in FOR statement TO

This symbol is required in a FOR statement to specify the limit which

is to be reached before the FOR..NEXT loop can be terminated. See FOR

for examples.

TOP First free byte T.

This function returns the address of the first free byte after the end

of a stored BASIC program. Its value is adjusted during line editing

and by the END statement and LOAD command. It is vital for TOP to have

the correct value (set by END) before using the line editor. See also

END.

UNTIL Terminator of DO...UNTIL loop U.

This statement is part of the DO..UNTIL repetitive loop. UNTIL takes a

<TESTABLE expression> and will return control to the character after

DO if this is zero (false), otherwise execution will continue with the

next statement. Examples:

 DO PRINT"#";UNTIL 0; REM do forever

 DO PRINT"#"; UNTIL COUNT=20; PRINT'

####################

 DO INPUT"Calculation "A; PRINT"Answer is "A'; UNTIL A=12345678

Calulation ?2*3

Answer is 6

Calculation ?A

Answer is 6

Calculation ?12345678

Answer is 12345678

WAIT Wait statement WAIT

This statement waits until the next 60 Hz vertical sync pulse from the

CRT controller. The statement has two uses: to give a delay of one

154

sixtieth of a second, and to wait until flyback so that a subsequent

graphics command will not cause noise on the screen. Examples:

 FOR Z=1 TO 60; WAIT; NEXT; REM wait a second.

 MOVE 0,0; WAIT; DRAW 8,8; REM noise-free plotting

155

21
This section lists all the ATOM BASIC special characters and

operators. They are followed by a description of the character or

operator, and its name enclosed in {} brackets. Lower case characters

in <> brackets refer to the syntax definition in Chapter 26.

21.1 Special Character

 Line terminator {RETURN}

This character is used to terminate a statement or command, or a line

input to the INPUT statement, and as the terminator for strings.

 Cancel input {CAN (CTRL-X)}

This character will, when typed from the keyboard, delete the current

input buffer and give a new line.

 Escape {Esc}

This character, typed on the keyboard, will stop any BASIC program and

return to direct mode. BASIC checks for escape at every statement

terminator. Typing escape when in direct mode resets the screen to

character mode.

 The ESC key can be disabled from a program by executing:

 #B000=10

 Separator {space}

This character is stored intact to allow formatting of programs. Space

may be used anywhere except:

1. In control words.

2. After the # {hash} symbol.

3. Between line number and label.

It may be necessary to insert spaces to avoid ambiguity as, for

example, in:

 FORZ=V TOW STEPX

Here a separator character is needed between V and T, and similarly

between W and S, to eliminate the possibility of a function called

VTOWSTEP.

" String delimiter {double quote}

This character is used as the delimiting character whenever a string

is to be part of a BASIC statement (i.e. everywhere except when

inputting strings with an INPUT statement). If you wish to include in

a string it should be written "". The simple rule for valid strings is

that they have an even number of "characters in them.

BASIC Characters and
Operators

156

' New line {single quote}

This character may be used in PRINT and INPUT statements to generate a

new line by generating both CR and LF codes. The value of COUNT will

be set to zero.

() {round brackets}

These characters provide a means of overriding the normal arithmetic

priority of the operators in an <expression>. The contents of brackets

are worked out first, starting with the innermost brackets.

, Separator {comma}

This character is used to separate items in PRINT and INPUT

statements.

. {stop}

This character is used to allow a shorter representation for some of

the key-words, thus using less memory space to store the program.

; Statement terminator {semi -colon}

This character is the statement terminator used in multi-statement

lines.

@ Numeric field width {at}

This character is a variable which controls the PRINT statement. It

specifies the number of spaces in which a number will be printed,

right justified. If the field size is too small to print the number,

the number is printed in full without any extra spaces; thus field

sizes of 0 and 1 give the same result of minimum-width printing. The -

siqn is printed in front of a negative number and counts towards the

number of characters in the number. On initial entry into BASIC, any

error, or following use of the LIST statement or assembler, @ is set

to 8. Example:

 @=5;PRINT1,12,123,1234,12345,123456'

 1 12 123 123412345123456

a - z Labels

These characters provide a very fast means of transferring control

with the GOTO and GOSUB statements. A line may be labelled by putting

one of a-z immediately after the line number (no blanks are allowed

before the label). Transfer to a labelled line is achieved by a GOTO

or GOSUB statement followed by the required label. Example:

 10a PRINT"looping"'

 20 GOTO a

>RUN

looping

looping

looping

21.2 Operators

! Word indirection {pling}

This character provides word indirection. It can be both a binary and

a unary operator and appear on the left-hand side of an equal siqn as

well as in <expression>s.

157

 As a unary operator on the LEFT of an equals sign it takes a

<factor> as an argument and will treat this as an address. The

<expression> on the right of the equals sign is evaluated and then

stored, startinq with the least siqnificant byte, in the four

locations starting at this address. Example:

 !A=#12345678

will store values in memory as follows:

 A A+1 A+2 A+3

 As a binary operator on the LEFT of an equals sign it takes two

arguments; a <variable> on the left and a <factor> on the right. These

two values are added together to create the address, and the value is

stored at this address as above. Example:

 A!B=#12345678

As a unary operator in an <expression> it takes a <factor> as an

argument and will treat this as an address. The value is that

contained in the four bytes at this address. For example, if the

contents of memory are as follows:

 A A+1 A+2 A+3

Then the value printed by

 PRINT !A

will be 24 (decimal).

 As a binary operator in an <expression> it takes two arguments, a

<factor> on either side. The sum of these two values is used as the

address, as above. Example:

 PRINT A!B

Hexadecimal constant {hash or pound}

 This character denotes the start of a hexadecimal value in

<factor>. It cannot be followed by a space and there is no check made

for overflow of the value. The valid hexadecimal characters are 0 to 9

and A to F.

$ String pointer {dollar}

 This character introduces a pointer to a string; whenever it

appears it can be followed by an <expression>. In a PRINT statement,

if the pointer is less than 256, the ASCII character corresponding to

the value of the pointer will be printed. Dollar can be used on the

left of an equals sign as well as anywhere a string can be used. If

the only choice allowed is either a dollar or a string in double

quotes, then it is possible to omit the dollar. Strings may contain up

to 255 characters. Examples:

 IF$A=$B........ string equality test

 IF$A="FRED".... string equality test

 $A="JIM"....... move string JIM to where A is pointing

 $A=$B.......... copy B's string to where A points

18 00 00 00

78 56 34 12

158

 PRINT$A........ print the string A is pointinq at

 PRINT$A+1...... print the string (A+1) is pointing at

 PRINT$64....... print ASCII character 64 i.e. @

% Remainder {percent}

This character is the operation of signed remainder between two

values. Its form is <factor a>%<factor b>. The sign of the result is

the same as the sign of the first operand.

& Hexadecimal/AND {ampersand}

This character has two distinct uses:

1. To print hexadecimal values in the PRINT statement. Its form here

is as a prefix in front of the particular print item which is to be

printed in hexadecimal.

2. As the operation of bitwise logical AND between two values. Its

form here is <factor a> & <factor b> and the result is a 32 bit word,

each bit of which is a logical AND between corresponding bits of the

operands.

* Multiply {star}

This character is the operation of signed multiplication between two

32 bit values. Its form is <factor a> * <factor b>.

+ Add {plus}

This character has two similar uses:

1. As the unary operation "do not change sign". Its form here is

+<factor>.

2. As the operation of addition between two 32 bit values. Its form

here is <term a> + <term b>.

- Subtract (minus}

This character has two similar uses:

1. As the unary operation of negate. Its form here is -<factor>, and

the result is 0 - <factor>.

2. As the operation of subtraction between two 32 bit values. Its form

here is <term a> -<term b> and the result is found by subtracting

<term b> from <term a>.

/ Divide {slash}

This character is the operation of signed division between two 32 bit

values. Its form is <factor a>/<factor b> and the result is found by

dividing <factor a> by <factor b>.

: Exclusive OR {colon}

This character is the operation of bitwise logical exclusive-OR

between two 32 bit <term>s. Its form is <term a>:<term b> and the

result is a 32 bit word each bit of which is the exclusive-OR of

corresponding bits in <term a> and <term b>.

< Less-than {left trianqular bracket}

This character is the relational operator "less than" betveen two

<expression>s. Its form is <expression a> < <expression b> and it

returns a truth value, of 'true' if <expression a> is less than

159

<expression b> and 'false' otherwise, which can be tested by IF and

UNTIL statements.

= Equals {equal}

This character has two uses:

l. As the relational operator "equal to" between two <expression>s.

Its form is <expression a> = <expression b> and it returns a truth

value, of 'true' if <expression a> is equal to <expression b> and

'false' otherwise, which can be tested by IF and UNTIL statements.

2. As the assignment operation "becomes". The object on the left hand

side is assigned the value of the right hand side. There are three

similar uses of this:

1. Arithmetic Example:

 <variable>=<expression> A=2

 <variable>!<factor>=<expression> A!J=3

 <variable>?<factor>=<expression> A?J=4

 !<factor>=<expression> !J=5

 ?<factor>=<expression> ?J=6

 <ARRAY element>=<expression> W(1)=7

2. String movement

 $<expression>=<string right> $A="FRED"

3. FOR statement

 FOR<variable>=<expression>.... FOR A=0 TO..

> Greater-than {right triangular bracket}

This character is the relational operator "greater than" between two

<expression>s. Its form is <expression a> > <expression b> and it

returns a logical value, of 'true' if <expression a> is greater than

<expression b> and 'false' otherwise, which can be tested by IF and

UNTIL statements.

? Byte indirection {query}

This character provides byte indirection. It can be either a binary or

a unary operator and appear on the left-hand of an equals sign as well

as in <expression>s.

 As a unary operator on the LEFT of an equals sign it takes a

<factor> as an argument and will treat this as an address; the

<expression> on the right of the equals sign is evaluated and its

least significant byte is stored at that address. Example:

 ?A=#12345678

will store into memory as follows:

 A

 As a binary operator on the LEFT of an equals sign it takes two

arguments, a <variable> on the left and a <factor> on the right. These

two values are added together to create the address where the value

will be stored as above. Example:

 A?B=#12345678

 As a unary operator in an <expression> it takes a <factor> as an

78

160

argument and will treat this as an address; the value is a word whose

most significant three bytes are zero and whose least significant byte

is the contents of that address. Example:

 PRINT ?A

 As a binary operator in an <expression>, it takes two arguments, a

<factor> on either side. The sum of these two values is the address

used as above. Example :

 PRINT A?B

\ OR {inverted backslash}

This character is the binary operation of bitwise logical OR between

two 32 bit <term>s. Its form is <term a>\<term b> and the result is a

32 bit word each bit of which is an or operation between corresponding

bits of <term a> and <term b>.

<> Not equal {left and right triangular brackets}

This symbol is the relational operator "not equal to" between two

<expression>s. Its form is <expression a> <> <expression b> and it

returns a truth value, of 'true' if <expression a> is not equal to

<expression b> and 'false' otherwise, which can be tested by IF and

UNTIL statements.

<= Less or equal (left triangular bracket, equal}

This symbol is the relational operator "less than or equal" between

two <expression>s. Its form is <expression a> <= <expression b> and it

returns a truth value, of 'true' if <expression a> is less than or

equal to <expression b> and 'false' otherwise, which can be tested by

IF and UNTIL statements.

>= Greater or equal {right triangular bracket, equal}

This symbol is the relational operation "greater than or equal to"

between two <expression>s. Its form is <expression a> >= <expression

b> and it returns a truth value, of 'true' if <expression a> is

greater than or equa1 to <expression b> and false otherwise, which can

be tested by IF and UNTIL statements.

161

22 Extending the ATOM
22.1 Floating-Point Extension to BASIC

The ATOM's BASIC can be extended to provide floating-point arithmetic,

and many scientific functions, simply by inserting an extra 4K ROM

chip into a socket on the ATOM board (see Technical Manual). The

floating-point extension adds 27 new variables, %@ and %A to %Z, 27

floating-point arrays %@@ and %AA to %ZZ, and the following special

statements and functions to the existing integer BASIC, including a

statement for plotting in the ATOM's four-colour graphics modes:

Floating-Point Statements

COLOUR, FDIM, FIF, FINPUT, FPRINT, FPUT, FUNTIL, STR.

Floating-Point Functions

ABS, ACS, ASN, ATN, COS, DEG, EXP, FGET, FLT, HTN, LOG, PI, RAD, SGN,

SIN, SQR, TAN, VAL.

Floating-Point Operators

!, %, ^.

The extension ROM does not in any way alter the operation of the

existing BASIC statements, functions, or operators, and floating-point

arithmetic may be mixed with integer arithmetic in the same line.

 All the extension-ROM statements and functions, except COLOUR and

FLT, and all the extension-ROM operators, expect floating-point

expressions as their arguments.

 Whenever the context demands a floating-point expression, or

factor, all calculations are performed in floating-point arithmetic

and all integer functions and variables are automatically floated. An

integer expression may be explicitly floated with the FLT function,

which takes an integer argument. For example:

 FPRINT FLT(2/3)

 will print 0.0 because the division is performed in integer

arithmetic and then floated. Therefore:

 FPRINT FLT(PI)

will convert PI to an integer, and then float it, printing 3.00000000.

 When the context demands an integer expression, or factor, all

calculations are performed in integer arithmetic, and floating-point

functions will be automatically converted to integers. For example:

 PRINT SQR(10)

will print 3. Floating-point expressions used in an integer context

must be fixed by the '%' operator. For example:

 PRINT %(3/2+1/2)

will print 2, since the expression is evaluated using floating-point

arithmetic and then fixed, whereas:

162

 PRINT 3/2+1/7

will print 1, since in each case integer division is used.

 Since there are both integer and floating-point versions of the

ABS function, the context will determine how its argument is

evaluated. For example:

 PRINT ABS(2/3+1/3)

will print 0, whereas:

 FPRINT ABS(2/3+1/3)

will print 1.00000000. The floating-point function may be obtained in

an integer context by prefixing it with the '%' operator. Thus:

 PRINT %ABS(2/3+1/3)

will print 1.

22.1.1 Floating-Point Representation

Each floating-point number occupies five bytes; a four-byte mantissa

and a one-byte exponent:

The mantissa is stored in sign and magnitude form. Since it will

always be normalized, it logically always has a '1' as its top bit.

This position is therefore used to store the sign. The exponent is an

ordinary 8-bit signed number. A higher precision is used for internal

calculations to preserve accuracy. The representation provides about

9.5 significant figures of accuracy, and allows for numbers in the

range 1E-38 to 1E+38 approximately. All the possible 32-bit integers

in the standard integer BASIC can be floated without loss of accuracy.

22.1.2 Floating-Point Statements

FDIM Floating-point dimension

Allocates space after the end of text for the floating-point arrays

%@@ and %AA to %ZZ. Example:

 FDIM %JJ(5)

allocates space for elements %JJ(0) to %JJ(5), a total of 30 bytes.

FIF Floating-point IF

Same syntax as IF, but connectives such as AND and OR are not allowed.

Example:

 FIF %A < %B FPRINT %A "IS LOWER THAN "%B

FINPUT Floating-point input FIN.

Exactly as INPUT, but takes a floating-point variable or array

element, and does not allow strings to be input. Example:

3

4

2

1

0

31 bits of manitssa

 8-bit

exponent sign bit

assumed position of binary point

.

163

 FINPUT"Your weight "%A

FPRINT Floating-point print FP.

Exactly as PRINT except that no $ expressions are allowed, and all

expressions are treated as floating-point expressions. Floating-point

numbers are printed out right justified in a field size determined by

the value of 0. Example:

 FPRINT"You are "%H" metres tall"''

FPUT Floating-point put

FPUT writes the 5 bytes representing a floating-point number to the

sequential file whose handle is specified by its argument. Example:

 FPUTA,2"32+1

FUNTIL Floating-point until FU.

As UNTIL, except no connectives (OR or AND) are allowed. Matches with

DO statement. Example:

 DO%A=%A+.1;FUNTIL%A>2

STR Convert to string

STR converts a floating-point expression into a string of characters.

It takes two arguments, the floating point expression, and an integer

expression which is evaluated to give the address wher the string is

to be stored. Example:

 STR PI, TOP

 PRINT $TOP1

3.14159265

22.1.3 Floating-Point Functions

ABS Absolute value

Returns the absolute value of a floating-point argument. Example:

 FPRINT ABS -2.2

2.20000000

ACS Arc cosine

Returns arc cosine of argument, in radians. Example:

 FPRINT ACS 1

 0.0

ASN Arc sine

Returns arc sine of argument, in radians. Example:

 FPRINT ASN 1

1.57079633

ATN Arc tangent

Returns arc tangent of argument, in radians. Example:

 FPRINT ATN 1

7.85398163E-1

COS Cosine C.

Returns cosine of angle in radians. Example:

164

 FPRINT COS 1

5.40302306E-1

DEG Radians to degrees D.

Converts its argument from radians to degrees. Example:

 FPRINT DEG PI

180.000000

EXP Exponent E.

Returns exponent (i.e. e^<factor>). Example:

 FPRINT EXP 1

2.71828183

FGET Floating-point GET

Same as GET, but reads five bytes from a serial file and returns a

floating-point number.

FLT Float F.

Takes an integer argument and converts it to a floating-point number.

Example:

 FPRINT FLT(4/3)

1.00000000

HTN Hyperbolic tangent H.

Returns the hyperbolic tangent of an angle in radians. Example:

 FPRINT HTN 1

7.61594156E-l

LOG Natural logarithm L.

Returns the natural logarithm of its argument. Example:

 FPRINT LOG 1

 0.0

PI

Returns the constant pi. Example:

 FPRINT PI

3.14159265

RAD Degrees to radians R.

Converts its argument from degrees to radians. Example:

 FPRINT RAD 90

1.57079632

SGN Sign

Returns -1, 0, or 1 depending on whether its floating-point argument

is negative, zero, or positive respectively.

SIN Sine

Returns sine of an angle in radians. Example:

 FPRINT SIN PI

 0.0

165

SQR Square root

Returns square root of argument. Example:

 FPRINT SQR 2

1.41421356

TAN Tangent T.

Returns tangent of angle in radians. Example:

 FPRINT TAN PI

 0.0

VAL Value of a string V.

Returns a number representing the string converted to a number. If no

number is present, zero will be returned. VAL will read up to the

first illegal character, and cannot cause an error. Example:

 FPRINT VAL "2.2#"

2.20000000

22.1.4 Floating-Point Operators

! Floating point indirection {pling}

The floating-point indirection operation makes it possible to set up

vectors of floating-point numbers. The operator returns the five bytes

at the address specified by its operand. For example, to set up a

floating-point vector of three elements:

 DIM A(14); %!A=PI; %!(A+5)=3; %!(A+10)=4

% Convert to integer {percent}

The unary % operator converts its floating-point argument to an

integer. For example:

 PRINT %(3/2+1/2)

 2

^ Raise to power {up arrow}

Binary operator which raises its left-hand argument to the power of

its right-hand argument; both arguments must be floating-point

factors.

Example:

 FPRINT 2"32

4.29496728E9>

22.1.5 Floating-Point Variables

The floating-point variables %0 and %A to %Z are stored from #2800

onwards, five bytes per variable, thus taking a total of 135 bytes.

Thus, for example, a floating-point vector:

 %!#2800

may be set up whose elements:

 %!(#2800+0), %!(#2800+5), %!(#2800+10) ...

will correspond to the variables:

%@, %A, %B ... etc.

For example, the floating-point variables may be initialised to zero

166

by executing:

 FOR J=0 TO 26*5 STEP 5

 %!(#2800+J)=0

 NEXT J

22.1.6 Examples

The following program plots curves of the sine and tangent functions,

using the floating-point routines.

 1 REM Sine and Tangent

 5 PRINT $30 ; CLEAR 0

 7 PRINT"PLOT OF SIN AND TAN FUNCTIONS"

 9 %I=2*PI/64

 10 %V=0

 12 FOR Z=0 TO 64

 15 %V=%V+%I

 20 PLOT13,Z,(22+%(22*SIN%V))

 25 PLOT13,Z,(22+TAN%V)

 30 NEXT

 100 END

Program size: 206 bytes

The following program plots a cycloid curve:

 1 REM Cycloid

 10 %Z=60

 20 CLEAR2

 30 FORQ=0TO359

 40 %S=RAD Q

 50 %R=%Z*SIN(%S*2)

 60 PLOT13,%(%R*SIN%S+64.5),%(%R*COS%S+48.5)

 70 NEXT

 80 END

Program size: 142 bytes

22.1.7 Three-Dimensional Plotting

The following program plots a perspective view of a saddle curve, with

any desired viewing point. The program is a floating-point version of

the program in Section 11.5.2.

 1 REM Saddle Curve

 100 FINPUT"CHOOSE VIEW POSITION"'"X="%L,"Y="%M,"Z="%N

 110 FINPUT"LOOKING TOWARDS"'"X="%A,"Y="%B,"Z="%C

 115 %L=%L-%A;%M=%M-%B;%N=%N-%C

 120 W=4;CLEAR4

 150 %S=%L*%L+%M*%M;%R=SQR%S

 160 %T=%S+%N*%N;%Q=SQR%T

 200 FORX=-10TO10

 210 Y=-10;GOS.c;GOS.m

 220 FORY=-9TO10;GOS.c;GOS.p;N.;N.

 230 FORY=-10TO10

 240 X=-10;GOS.c;GOS.m

 250 FORX=-9TO10;GOS.c;GOS.p;N.;N.

 260 END

 400pW=5

 410m%U=%X-%A;%V=%Y-%B;%W=%Z-%C

 420 %O=(%T-%X*%L-%Y*%M-%Z*%N)*%R

167

 425 FIF %O<0.1 W=4

 430 G=%(400*(%Y*%L-%X*%M)*%Q/%O)+128

 440 H=%(500*(%Z*%S-%N*(%X*%L+%Y*%M))/%O)+96

 460 PLOTW,G,H;W=4;R.

 600c%Y=Y;%X=X

 610 %Z=.05*(%Y*%Y-%X*%X);R.

Description of Program:

100-110 Input view position and shifted origin.

115 Shift view position for new origin.

120 Clear screen and get ready to move.

150-160 Set up constants for plot projection.

200-250 Scan X,Y plane.

400 p: Entry for drawing.

410 m: Entry for moving; also shift coordinates for new origin.

420 Calculate how far away X,Y,Z is from eye.

425 Avoid plotting too close.

430-440 Project image onto plane.

460 Move or draw and return.

600 c: Define function to be plotted.

Variables:

G,H -- Plot position on screen

W -- 4 for move, 5 for draw.

X,Y -- Used to scan X,Y plane.

%A,%B,%C -- Position centred on screen.

%L,%M,%N -- View position.

%O -- Distance of point from eye.

%Q,%R,%S,%T -- Constants for projection.

%U,%V,SW -- 3D coordinates referred to new origin.

%X,%Y,%Z -- 3D coordinates of point being plotted

Program size: 594 bytes

22.2 Colour Graphics Extension -- COLOUR

The extension ROM also contains routines for plotting in the colour

graphics modes. The following colour graphics modes are available:

 Mode: Resolution: Memory:

 X: Y:

 la 64 64 1 K

 2a 128 64 2 K

 3a 128 96 3 K

 4a 128 192 6 K

The graphics modes are obtained by specifying the CLEAR statement

followed by the mode number (without the 'a'), and the COLOUR

statement to determine which colour is to be plotted. The parameter to

the COLOUR statement determines the colour as follows; on a black and

white television or monitor the colours will be displayed as shades of

grey:

 Value: Colour: Grey scale:

 0 Green Grey

 1 Yellow White

 2 Blue Black

 3 Red Black

COLOUR 0 corresponds to the background colour.

 When a colour has been specified, all subsequent DRAW statements

will draw lines in that colour. The PLOT statement will 'set' lines

168

and points in that colour, will always 'clear' to the background

colour, and will always 'invert' to a different colour, irrespective

of the current COLOUR.

22.2.1 Random Coloured Lines

The following simple program illustrates the use of the COLOUR command

by drawing coloured lines between randomly-chosen points on the

screen.

 10 REM Random Coloured Lines

 20 CLEAR 4

 30 DO COLOUR RND

 40 DRAW(ABSRND%128),(ABSRND%192)

 50 UNTIL 0

22.3 Memory Expansion

The ATOM's memory can be expanded, on the same board, in units of 1K

bytes (1024 bytes) up to a maximum on-board memory capacity of 12K

bytes. Refer to the Technical Manual for details of how to insert the

extra memory devices. The unexpanded ATOM contains 1K of Block 0

memory, from #0000 to #0400, and 1K of VDU and text-space memory,

occupying between #8000 and #8400. The lower half is used by the VDU

and graphics mode 0, and the upper half forms the BASIC text-space

starting at $8200 and giving 512 free bytes for programs. The three

different areas of RAM that can be fitted on the main circuit board

are referred to as follows:

 Addresses: Area:

 #0000-#0400 Block zero RAM

 #2800-#3C00 Lover text space

 #8000-#9800 Graphics space/Upper text space

The following staqes in expansion are recommended:

22.3.1. Lower Text Space

Extra memory can be added starting at #2800 in the lower text space.

If memory is present in this text space BASIC will automatically be

initialised using this region as its text space. The text space starts

at #2900 to allow space between #2800 and #2900 for the floating-point

variables, but if the floating-point scientific package is not being

used the extra memory between #2800 and #2900 can be used for the text

space by typing:

 ?18=#28

 NEW

 A total of 5K of memory can be added in the extra text space.

There are two advantages in using the lower text space for programs:

1. Whenever the graphics memory is accessed noise will be generated on

the screen. Although this noise is slight under most circumstances, it

can become annoying when running machine-code programs assembled in

the upper text area, which is shared with the graphics area. Moving to

the lower text area will eliminate this noise.

2. When the upper text area is used it is only possible to use the

lower graphics modes. The lower text area permits all graphics modes

to be used.

169

22.3.2 Graphics Space

Memory can be added in the graphics area from #8400 up to #9800,

providing a total of 6K of graphics memory. This will make the higher

graphics modes available, or can be used for programs in the graphics

space.

22.4 Versatile Interface Adapter

A Versatile Interface Adapter, or VIA, can be added to the ATOM to

provide two eight-bit parallel I/O ports, together with four control

lines, a pair of interval timers for providing real time interrupts,

and a serial to parallel or parallel to serial shift register. Both

eight-bit ports and the control lines are connected to side B of the

Acorn Bus connector.

 Each of the 16 lines can be individually programmed to act as

either an input or an output. The two additional control lines per

port can be used to control handshaking of data via the port, and to

provide interrupts. Several of the lines can be controlled directly

from the interval timers for generating programmable frequency square

waves or for counting externally generated pulses. Only the most basic

use of the VIA will be explained here; for more of its functions

consult the VIA data sheet (available from Acorn Computers). The VIA

registers occur in the following memory addresses:

 Register: Address: Name:

 Data Register B #B800 DB

 Data Register A #B801 DA

 Data Direction Register B #B802 DDRB

 Data Direction Register A #B803 DDRA

 Timer 1 low counter, latch #B804 T1CL

 Timer 1 high counter #B805 T1CH

 Timer 1 low latch #B806 T1LL

 Timer 1 high latch #B807 T1LH

 Timer 2 low counter, latch #B808 T2CL

 Timer 2 high counter #B809 T2CH

 Shift Register #B80A SR

 Auxiliary Control Register #B80B ACR

 Peripheral Control Register #B80C PCR

 Interrupt Flag Register #B80D IFR

 Interrupt Enable Register #B80E IER

 Data Register A #B80F DA

On BREAK all registers of the VIA are reset to 0 (except Tl, T2 and

SR). This places all peripheral lines in the input state, disables the

timers, shift register, etc. and disables interrupts.

22.4.1 Printer Interface

Port A has a high current output buffer leading to a 26-way printer

connector to produce a Centronics-type parallel interface, capable of

driving most parallel-interface printers with the software already in

the operating system. Printer output is enabled by printing a CTRL-B

character, and disabled by printing a CTRL-C character; see Section

18.1.3.

22.4.2 Parallel Input/Output

To use the ports in a simple I/O mode with no handshake, the Data

Direction Register associated with each I/O register must be

programmed. A byte is written to each of the DDR's to specify which

lines are to be inputs and outputs. A zero in a DDR bit causes the

170

corresponding bit in the I/O register to act as an input, while a one

causes the line to act as an output. Writing to the data register (DA

or DB) will affect only the bits which have been programmed as

outputs, while reading from the data register will produce a byte

composed of the current status of both input and output lines.

 In order to use the printer port for ordinary I/0, the printer

software driver should be removed from the output stream by setting

the vector WRCVEC (address #208) to WRCVEC+3; e.g.:

 !#208=!#208+3

22.4.3 Writing to a Port

The following program illustrates how to write to one of the VIA's

output ports from a BASIC program:

 10 !#208=!#208+3

 20 ?#B80C=0

 30 ?#B802=#FF

 40 INPUT J

 50 ?#B800=J

 60 GOTO 40

Description of Program:

10 Remove printer drive from port B.

20 Remove all handshaking.

30 Program all lines as outputs.

50 Output byte.

22.4.4 Timing to 1 Microsecond

The following program demonstrates how the VIA's timer 2 can be used

to measure the execution-time of different BASIC statements to the

nearest microsecond. The same method could be used to time events

signalled by an input to one of the ports:

 10 REM Microsecond Timer

 20 B=#B808

 30 !B=65535

 40 X=Y

 50 B?3=32; Q=!B&#FFFF

 60 PRINT 65535-Q-1755 "MICROSECONDS"'

 70 END

Description of Program:

20 Point to timer 2 in VIA.

30 Set timer to maximum count.

40 Line to be timed; if absent, time should be 0.

50 Turn off timer; read current count.

60 Print time, allowing for time taken to read count.

171

23 Mnemonic Assembler
The ATOM mnemonic assembler is a full 6502 assembler; by virtue of its

close relationship with the BASIC interpreter the mnemonic assembler

provides many facilities found only on assemblers for much larger

computers, including conditional assembly and macros.

23.1 Location Counter – P

The assembler uses the BASlC variable P as a location counter to

specify the next free address of the program being assembled. Before

running the assembler P should be set to the address of a free area of

memory. This will normally be the free space above the program, and

may be conveniently done with the statement:

 DIM P(-1)

which sets P to the address of the first free location in memory after

the program, effectively reserving zero bytes for it. Note that P

should be the last variable dimensioned.

 The location counter may also appear in the operand field of

instructions. For example:

 LDX @0

 DEX

 BNE P-1

 RTS

will cause a branch back to the DEX instruction. The program gives a

1279-cycle delay.

23.2 Assembler Delimiters '[' and ']'.

All assembler statements are enclosed inside square brackets '[' and

']'. When RUN is typed each assembler statement is assembled, the

assembled code is inserted directly in memory at the address specified

by P, the value of P is incremented by the number of bytes in the

instruction, and a line of the assembler listing is printed out. A

typical line of the listing might be:

 120 2A31 6D 34 12 :LL1 ADC #1234

Note that '#' denotes a hexadecimal number.

23.3 Labels

Any of the array variables AA-ZZ may be used as labels in the

assembler. The label is specified by preceding the array element by a

 mnemonic statement

 assembler label

 instruction data/address

 instruction op code

 location counter

statement line number.

172

colon ':'. Note that the brackets enclosing the array subscript may be

omitted. The labels must be declared in a DIM statement.

 The effect of a label is to assign the value of the location

counter, P, at that point to the label variable. The label can then be

used as an argument in instructions. For example the following program

will assemble a branch back to the DEX instruction::

 10 DIM ZZ(2),P(-1)

 20[

 30 LDX @0

 40:ZZ1 DEX

 50 BNE ZZ1

 60 RTS

 70]

 80 END

23.4 Comments

Assembler instructions may be followed by a comment, separated from

the instruction by a space:

 101 LDA @7 bell character

Alternatively a statement may start with a '\' backslash, in which

case the remainder of the statement is ignored:

 112 \ routine to multiply two bytes

23.5 Backward References

When an assembler program is assembled, by typing RUN, backward

references are resolved automatically the first time the assembler is

RUN, because the associated labels receive their values before their

value is needed by the instruction.

23.6 Forward References

In a forward reference the label appears as the argument to an

instruction before its value is known. Therefore two passes of the

assembler are required; one to assign the correct value to the label,

and the second to use that value to generate the correct instruction

codes.

 On the first pass through the assembler branches containing

forward references will give the warning message:

OUT OF RANGE:

indicating that a second pass is needed. The second byte of the branch

will be set to zero.

23.7 Two-Pass Assembly

A two-pass assembly can be achieved simply by typing RUN twice before

executing the machine code program. Alternatively it is possible to

make the two-pass assembly occur automatically by incorporating the

statements to be assembled within a FOR...NEXT loop. The following

program assembles instructions to perform a two-byte increment:

 10 REM Two-Pass Assembly

 20 DIM M(3),JJ(2)

 30 FOR N=1 TO 2

 40 PRINT '"PASS "N

 50 DIM P(-1)

 55[

 60:JJ0 INC M

173

 70 BNE JJ1

 80 INC M+1

 90:JJ1 RTS

 100]

 110 NEXT N

 120 INPUT L

 130 !M=L

 140 LINK JJ0

 150 P. &!M

 160 END

Note that the statement DIM P(-1) is enclosed within the loop so that

P is reset to the correct value at the start of each pass.

 The listing produced by this program is as follows; note that the

first pass is unable to resolve the reference to JJ1 in the

instruction of line 70:

PASS 1

 55 29DE

 60 29DE EE CE 29 :JJ0 INC M

OUT OF RANGE:

 70 29E1 D0 00 BNE JJ1

 80 29E3 EE CF 29 INC M+1

 90 29E6 60 :JJ1 RTS

PASS 2

 55 29DE

 60 29DE EE CE 29 :JJ0 INC M

 70 29E1 D0 03 BNE JJ1

 80 29E3 EE CF 29 INC M+1

 90 29E6 60 :JJ1 RTS

23.8 Suppression of Assembly Listing

The assembly listing may be suppressed by disabling the output stream

with a NAK character, and enabling it again with an ACK at the end of

the assembly. The codes for NAK and ACK are 21 and 6 respectively. The

following program assembles instructions to print an "X" using a call

to the operating-system write-character routine, OSWRCH at #FFF4:

 10 REM Turn off Assembly Listing

 20 DIM P(-1)

 30 PRINT $21; REM TURN OFF

 40[LDA @#58; JSR #FFF4; RTS;]

 50 PRINT $6 ; REM TURN ON

 60 LINK TOP

 70 END

23.9 Executing Programs

The LINK statement should be used to transfer control from a BASIC

program to a machine-code program. The operation of the LINK statement

is as follows:

1. The low-order bytes of the BASIC variables A, X, and Y are

transferred to the A, X, and Y registers respectively.

2. Control is transferred to the address given after the LINK

statement.

 The argument to the LINK statement will normally either be TOP,

when no arrays have been declared in the space after the program, or a

174

label corresponding to the entry-point in the assembler program (which

need not be the first instruction in the program). For examples see

the example programs in this chapter, and in Chapter 17.

23.10 Breakpoints

During debugging of a machine-code program it may be convenient to

discover whether sections of the program are being executed. A

convenient way to do this is to insert breakpoints in the program. The

BRK instruction (op-code 000) is used as a breakpoint, and execution

of this instruction will return control to the system, with the

message:

ERROR XX LINE LL

where XX is two greater than the lower byte of the program counter, in

decimal, where the BRK occurred, and the line number is the last BASIC

line executed before the BRK occurred. Any number of BRK instructions

may be inserted, and the value of the program counter in the ERROR

message will indicate which one caused the break.

 To provide more information on each BRK, such as the contents of

all the processor's registers, the break vector can be altered to

indirect control to a user routine, as shown in the following section.

23.10.1 Breakpoint Routine

The BRK instruction can be used to show which parts of a machine-code

routine are being executed. By adding a small assembler program it is

possible to keep a record of the register contents when the BRK

occurred, and, if required, print these out.

 The memory locations #202 and #203 contain the address to which

control is transferred on a BRK instruction. This address can be

redefined to point to a routine which will save the register contents

in a vector K. The registers are saved as follows:

 K:0 1 2 3 4 5 6

After the registers have been saved in the vector K, the routine jumps

to the standard BRK handler, the address previously in locations #202

and #203:

 10 REM Print Registers on BRK

 30 DIM K(6),AA(1),A(8),P(-1)

 35 B=?#202+256*?#203

 40 ?16=A;?17=A&#FFFF/256;$A="GOTO150"

 45[

 50:AA0 STA K+2; STX K+3

 60 PLA; STA K+6; PLA; STA K

 80 PLA; STA K+1

 90 STY K+4; TSX; STX K+5

 100 JMP B

 110]

 120 REM INSTALL BRK ROUTINE

 130 ?#202=AA0; ?#203=AA0&#FFFF/256

 135 GOTO 200

 140 REM PRINT REGISTERS

 150 @=5

 160 PRINT" PC A X Y S P"'

 170 PRINT&!K&#FFFF-2;FORN=2TO6

PCL PCH A X S Y P

175

 175 @=3

 180 PRINT&K?N;N.

 190 PRINT'; END

 200 REM DEMONSTRATE USE

 210[

 220:AA1 LDA @#12; LDX @#34

 230 LDY @#56; BRK

 240]

 250 REM EXECUTE TEST PROGRAM

 260 LINK AA1

Description of Program:

30 Declare vectors and array

35 Set B to BRK handler address

40 Point error line handler to "GOTO 150"

50-100 Assemble code to save registers in vector K

130 Point BRK handler to register-save routine.

150-190 Print out vector K, with heading.

220-240 Assemble test program to give a BRK

260 Execute test program.

Variables:

$A – String to contain BASIC line.

AA(0..1) – Labels for assembler routines.

AA0 – Entry point to routine to save registers in vector K.

AA1 – Entry point to test program.

B – Address of BRK routine.

K?0..6 – Vector to hold registers on BRK.

If this program is compiled, the following will be printed out after

the assembler listing:

 PC A X Y S P

2B60 12 34 56 FD 35

23.11 Conditional Assembly

The simplest facility is conditional assembly; the assembler source

text can contain tests, and assemble different statements depending on

the outcome of these tests. This is especially useful where slightly

different versions of a program are needed for many different

purposes. Rather than creating a different source file for each

different version, a single variable can determine the changes using

conditional assembly. For example, two printers are driven from a

parallel port. They differ as follows:

1. The first printer needs a 12 microsecond strobe, and true data.

2. The second printer needs an 8 microsecond strobe and inverted data.

The variable V is used to denote the version number (1 or 2). H

contains the address of the 8-bit output port, and the top bit of

location H+1 is the strobe bit; D is the address of the data to be

output.

 10 DIM P(-1)

 20 H=#B800; D=#80

 300[LDA D;]

 310 IF V=2 [EOR #FF invert;]

 320[STA H to port

 330 LDA @#80

 340 STA H+1

 360 NOP strobe delay;]

176

 370 IF V=1 [NOP; NOP extra delay;]

 380[LDA @0

 390 STA H+1

 400]

 410 END

If this segment of the program is first executed with V=1 the

assembled code is as required for printer 1:

>V=1;RUN

 300 29BB A5 80 LDA D

 320 29BD 8D 00 B8 STA H to port

 330 29C0 A9 80 LDA @#80

 340 29C2 8D 01 B8 STA H+1

 360 29C5 EA NOP strobe delay

 370 29C6 EA NOP

 370 29C7 EA NOP extra delay

 380 29C8 A9 00 LDA @0

 390 29CA 8D 01 B8 STA H+1

Extra NOP instructions have been inserted to give the required strobe

delay. If now the program is executed with V=2 the code generated is

suitable for printer 2:

>V=2;RUN

 300 29BB A5 80 LDA D

 310 29BD 45 FF EOR #FF invert

 320 29BF SD 00 BS STA H to port

 330 29C2 A9 80 LDA @#80

 340 29C4 8D 01 BS STA H+1

 360 29C7 EA NOP strobe delay

 380 29C8 A9 00 LDA @0

 390 29CA 8D 01 B8 STA H+1

An instruction to invert the data has been added before writing it to

the port.

 Conditional assembly is also useful for the insertion of extra

instructions to print out intermediate values during debugging; these

statements will be removed when the proqram is finally assembled. To

do this a logical variable, D in the following example, is given the

value 1 (true) during debugging and the value 0 (false) otherwise. If

D=1 a routine to print the value of the aecumulator in hex is

assembled, and calls to this routine are inserted at two relevant

points in the test program:

 10 REM Print Hex Digits

 20 DIM GG(3),P(-1)

 30 IF D=0 GOTO m

 50[

 55 \ print hex digit

 60:GG1 AND @#F

 70 CMP @#A; BCC P+4

 80 ADC @6; ADC @#30

 90 JMP #FFF4

 95 \ print A in hex

 100:GG2 PHA; PHA; LSRA; LSRA

 110 LSRA; LSRA; JSR GG1

 120 PLA; JSR GG1; PLA; RTS

 130]

 140mREM main program

177

 150[

 170:GG0 CLC; ADC @#40;]

 190 IF D [JSR GG2;]

 200[

 210 BEQ GG3; SBC @#10;]

 220 IF D [JSR GG2;]

 230[

 240:GG3 RTS;]

 250 END

For debugging purposes this program is assembled by typing:

>D=1

>RUN

>RUN

The program can then be executed for various values of A by typing:

 A=#12; LINK GG0

The final version of the program is assembled, without the debugging

aids, by typing:

>D=0

>RUN

>RUN

23.12 Macros

Macros permit a name to be associated with a number of assembler

instructions. This name can then be used as an abbreviation for those

instructions; whenever the macro is called, the effect is as if the

corresponding lines of assembler had been inserted at that point.

 In their simplest form macros just save typing. For example, the

sequence:

 LSR A; LSR A; LSR A; LSR A

occurs frequently in assembler programs (to shift the upper nibble of

the accumulator into the lower nibble), but it is not worth making the

instructions into a subroutine. A macro, with the name s in the

following example, can be set up as follows:

 1000s[LSR A; LSR A; LSR A; LSR A;]

 1010 RETURN

Then the above four instructions can be replaced by the following call

to the macro s:

GOSUB s

23.12.1 Macro Parameters

The great power of macros lies in the ability to pass parameters to

them so that the assembler lines they generate will be determined by

the values of the parameters.

 The simplest type of parameter would simply be an address; for

example, the macro r below will rotate right any location, zero page

or absolute, whose address is passed over in L:

 2000r[ROR L: ROR L; ROR L; ROR L:]

 2010 RETURN

A typical call in a proqram might be:

 L=#80; GOSUB r

178

 The following program illustrates the use of two macros. Macro i

increments a 16-bit number in locations J and J+1. Macro c performs an

unsigned compare between two 16-bit numbers in J,J+1 and K,K+1. The

program uses these two macros to move a block of memory from one

starting address to a lower starting address.

 10 REM Block Move

 20 DIM LL(2),P(100)

 30 F=#80; L=#82; T=#84

 40[:LL0 LDY @0

 45:LL1 LDA (F),Y; STA (T),Y;]

 50 J=T; GOSUB i

 60 J=F; GOSUB i

 70 K=L; GOSUB c

 80[BNE LL1; RTS;]

 90

 100 REM TRY IT OUT

 110 REM F=first address

 112 REM L=last address

 114 REM T=address moved to (T<F)

 120 !F=#500;!L=#800;!T=#400

 130 LINK LL0

 140 END

 8000

 8100 REM MACRO - INC J,J+1

 8105i[INC J; BNE P+4+(J>254)&1

 8110 INC J+1;]

 8120 RETURN

 8130

 8140 REM MACRO - CMP J,J+1 WITH K,K+1

 8145c[LDA J+1; CMP K+1

 8150 BNE P+6+(J>255)&1+(K>255)&1

 8160 LDA J; CMP K;]

 8170 RETURN

 Note that both macros are designed to work whether J and K are

absolute addresses or zero-page addresses; to avoid the need for

labels in these macros they test for the size of the address, and

generate the correct argument for the branch instruction. The

expression:

(J>255)&1

has the value 1 if J is greater than 255, and the value 0 if J is 255

or less.

23.12.2 In-Line Assembly

In critical sections of programs, where speed is important, it may be

necessary to code repetitative calculations by actually repeating the

instructions as many times as necessary, rather than using a loop,

thereby avoiding the overhead associated with the loop calculations.

The following macro compiles a routine to multiply a 7-bit number in

the A register by a fractional constant between 0/256 and 255/256. The

numerator of the constant is passed to the macro in C:

 1 REM Fractional Multiplication

 5 J=#80; DIM P(-1)

 10 C=#AA

 20 GOSUBm

 30 [STA J;RTS;]

179

 40 INPUT A

 50 LINK TOP

 60 P.&A,&?J

 70 END

 2000mREM macro - multiply by constant

 2010 REM A = A * C/256

 2020 REM uses J

 2030 B=#80

 2040 [STA J;LDA @0;]

 2050 DO [LSR J;]

 2060 IF C&B<>0 [CLC;ADC J;]

 2070 C=(C*2)&#FF; UNTIL C=0

 2080 RETURN

The macro is tested with C=#AA. In this case the code produced will

be:

 2040 2A42 85 80 STA J

 2040 2A44 A9 00 LDA 00

 2050 2A46 46 80 LSR J

 2060 2A48 18 CLC

 2060 2A49 65 80 ADC J

 2070 2A4B 46 80 LSR J

 2070 2A4D 46 80 LSR J

 2060 2A4F 18 CLC

 2060 2A50 65 80 ADC J

 2070 2A52 46 80 LSR J

 2070 2A54 46 80 LSR J

 2060 2A56 18 CLC

 2060 2A57 65 80 ADC J

 2070 2A59 46 80 LSR J

 2070 2A5B 46 80 LSR J

 2060 2A5D 18 CLC

 2060 2A5E 65 80 ADC J

 2080 2A60 85 80 STA J

 2080 2A62 60 RTS

180

181

24 Assembler Mnemonics
The following section lists all the instruction mnemonics in

alphabetical order. Each instruction is accompanied by a description

of the instruction, a symbolic representation of the action performed

by the instruction, a diagram showing the status-register flags

affected by the instruction, and a list of the permitted addressing

modes for the instruction.

 The following symbols are used in this section:

 Symbol: Definition:

 + Addition

 - Subtraction

 & Logical AND

 \ Logical OR

 : Logical Exclusive-OR

 ! Push onto hardware stack

 ^ Pull from hardware stack

 = Assignment

 M Memory location

 (PC+1) Contents of location after op-code

 @ Immediate addressing mode

 ~ No change to flag

 % Change to flag

 1 Set

 0 Cleared

 A Accumulator

 X X Index Register

 Y Y Index Register

 PC Program Counter

 PCH Low byte of Program Counter

 PCL High byte of Program Counter

ADC Add memory to accumulator with carry ADC

A,C=A+M+C N Z C I D V

 % % % ~ ~ %

 Addressing Assembler Format Bytes Cycles

Immediate ADC @ Oper 2 2

Zero Page ADC Oper 2 3

Zero Page,X ... ADC Oper,X 2 4

Absolute ADC Oper 3 4

Absolute,X ADC Oper,X 3 4*

Absolute,Y ADC Oper,Y 3 4*

(Indirect,X) .. ADC (Oper,X) 2 6

(Indirect),Y .. ADC (Oper),Y 2 5*

* Add 1 if page boundary crossed.

182

AND AND memory with accumulator AND

A=A&M N Z C I D V

 % % ~ ~ ~ ~

 Addressing Assembler Format Bytes Cycles

Immediate AND @ Oper 2 2

Zero Page AND Oper 2 3

Zero Page,X ... AND Oper,X 2 4

Absolute AND Oper 3 4

Absolute,X AND Oper,X 3 4*

Absolute,Y AND Oper,Y 3 4*

(Indirect,X) .. AND (Oper,X) 2 6

(Indirect),Y .. AND (Oper),Y 2 5*

* Add 1 if page boundary crossed.

ASL Arithmetic shift left one bit (memory or accumulator) ASL

 N Z C I D V

 % % % ~ ~ ~

 Addressing Assembler Format Bytes Cycles

Accumulator ... ASL A 1 2

Zero Page ASL Oper 2 5

Zero Page,X ... ASL Oper,X 2 6

Absolute ASL Oper 3 6

Absolute,X ASL Oper,X 3 7

BCC Branch if Carry Clear BCC

Branch if C=0 N Z C I D V

 ~ ~ ~ ~ ~ ~

 Addressing Assembler Format Bytes Cycles

Relative BCC Oper 2 3*

* Add 1 if branch is to different page

BCS Branch if Carry Set BCS

Branch if C=1 N Z C I D V

 ~ ~ ~ ~ ~ ~

 Addressing Assembler Format Bytes Cycles

Relative BCS Oper 2 3*

* Add 1 if branch is to different page

BEQ Branch if Carry Set BEQ

Branch if Z=1 N Z C I D V

 ~ ~ ~ ~ ~ ~

 Addressing Assembler Format Bytes Cycles

Relative BEQ Oper 2 3*

* Add 1 if branch is to different page

7 6 5 4 3 2 1 0 0 C

183

BIT Test bits in memory with accumulator BIT

A&M, N=M7, V=M6 N Z C I D V

 M
7
% % ~ ~M

6

Bit 6 and 7 are transferred to the status register. If the result of

A&M is zero then Z=1, otherwise Z=0.

 Addressing Assembler Format Bytes Cycles

Zero Page BIT Oper 2 3

Absolute BIT Oper 3 4

BMI Branch if result Minus BMI

Branch if N=1 N Z C I D V

 ~ ~ ~ ~ ~ ~

 Addressing Assembler Format Bytes Cycles

Relative BMI Oper 2 3*

* Add 1 if branch is to different page

BNE Branch if result Not Equal to zero BNE

Branch if Z=0 N Z C I D V

 ~ ~ ~ ~ ~ ~

 Addressing Assembler Format Bytes Cycles

Relative BNE Oper 2 3*

* Add 1 if branch is to different page

BPL Branch if result Plus BPL

Branch if N=0 N Z C I D V

 ~ ~ ~ ~ ~ ~

 Addressing Assembler Format Bytes Cycles

Relative BEQ Oper 2 3*

* Add 1 if branch is to different page

BRK Force Break BRK

Forced interrupt; PC+2 ! P ! N Z C I D V

 % % % ~ ~ ~

 Addressing Assembler Format Bytes Cycles

Implied BRK Oper 1 7

A BRK command cannot be masked by setting I.

BCC Branch if Carry Clear BCC

Branch if C=0 N Z C I D V

 ~ ~ ~ ~ ~ ~

 Addressing Assembler Format Bytes Cycles

Relative BCC Oper 2 3*

* Add 1 if branch is to different page

BVC Branch if Overflow Clear BVC

Branch if V=0 N Z C I D V

 ~ ~ ~ ~ ~ ~

 Addressing Assembler Format Bytes Cycles

Relative BVC Oper 2 3*

* Add 1 if branch is to different page

184

BVS Branch if Overflow Set BVS

Branch if Z=1 N Z C I D V

 ~ ~ ~ ~ ~ ~

 Addressing Assembler Format Bytes Cycles

Relative BVS Oper 2 3*

* Add 1 if branch is to different page

CLC Clear Carry flag CLC

C=0 N Z C I D V

 % % 0 ~ ~ ~

 Addressing Assembler Format Bytes Cycles

Implied CLC 1 2

CLD Clear Decimal mode CLD

D=0 N Z C I D V

 % % ~ ~ 0 ~

 Addressing Assembler Format Bytes Cycles

Implied CLC 1 2

CLI Clear Interrupt disable bit CLI

I=0 N Z C I D V

 % % ~ 0 ~ ~

 Addressing Assembler Format Bytes Cycles

Implied CLI 1 2

CLV Clear Overflow flag CLD

V=0 N Z C I D V

 % % ~ ~ ~ 0

 Addressing Assembler Format Bytes Cycles

Implied CLV 1 2

CMP Compare memory and accumulator CMP

A-M N Z C I D V

 % % % ~ ~ ~

 Addressing Assembler Format Bytes Cycles

Immediate CMP @ Oper 2 2

Zero Page CMP Oper 2 3

Zero Page,X ... CMP Oper,X 2 4

Absolute CMP Oper 3 4

Absolute,X CMP Oper,X 3 4*

Absolute,Y CMP Oper,Y 3 4*

(Indirect,X) .. CMP (Oper,X) 2 6

(Indirect),Y .. CMP (Oper),Y 2 5*

* Add 1 if page boundary crossed.

CPX Compare memory and index register X CPX

X-M N Z C I D V

 % % % ~ ~ ~

 Addressing Assembler Format Bytes Cycles

Immediate CPX @ Oper 2 2

Zero Page CPX Oper 2 3

Absolute CPX Oper 3 4

185

CPY Compare memory and index register Y CPY

X-M N Z C I D V

 % % % ~ ~ ~

 Addressing Assembler Format Bytes Cycles

Immediate CPY @ Oper 2 2

Zero Page CPY Oper 2 3

Absolute CPY Oper 3 4

DEC Decrement memory by one DEC

M=M-1 N Z C I D V

 % % ~ ~ ~ ~

 Addressing Assembler Format Bytes Cycles

Zero Page CMP Oper 2 5

Zero Page,X ... CMP Oper,X 2 6

Absolute CMP Oper 3 6

Absolute,X CMP Oper,X 3 7

DEX Decrement index register X by one DEX

X=X-1 N Z C I D V

 % % ~ ~ ~ ~

 Addressing Assembler Format Bytes Cycles

Implied DEX 1 2

DEY Decrement index register Y by one DEY

Y=Y-1 N Z C I D V

 % % ~ ~ ~ ~

 Addressing Assembler Format Bytes Cycles

Implied CLI 1 2

EOR Exclusive-OR memory with accumulator EOR

A=A:M N Z C I D V

 % % ~ ~ ~ ~

 Addressing Assembler Format Bytes Cycles

Immediate EOR @ Oper 2 2

Zero Page EOR Oper 2 3

Zero Page,X ... EOR Oper,X 2 4

Absolute EOR Oper 3 4

Absolute,X EOR Oper,X 3 4*

Absolute,Y EOR Oper,Y 3 4*

(Indirect,X) .. EOR (Oper,X) 2 6

(Indirect),Y .. EOR (Oper),Y 2 5*

* Add 1 if page boundary crossed.

INC Increment memory by one INC

M=M+1 N Z C I D V

 % % ~ ~ ~ ~

 Addressing Assembler Format Bytes Cycles

Zero Page INC Oper 2 5

Zero Page,X ... INC Oper,X 2 6

Absolute INC Oper 3 6

Absolute,X INC Oper,X 3 7

186

INX Increment index register X by one INX

X=X+1 N Z C I D V

 % % ~ ~ ~ ~

 Addressing Assembler Format Bytes Cycles

Implied INX 1 2

INY Increment index register Y by one INY

X=X+1 N Z C I D V

 % % ~ ~ ~ ~

 Addressing Assembler Format Bytes Cycles

Implied INY 1 2

JMP Jump to new location JMP

PCL=(PC+1), PCH=(PC+2) N Z C I D V

 ~ ~ ~ ~ ~ ~

 Addressing Assembler Format Bytes Cycles

Absolute JMP Oper 3 3

Indirect JMP (Oper) 3 5

JSR Jump to Subroutine saving return address JSR

PC+2 !, PCL=(PC+1), PCH=(PC+2) N Z C I D V

 ~ ~ ~ ~ ~ ~

 Addressing Assembler Format Bytes Cycles

Absolute JSR Oper 3 6

LDA Load accumulator with memory LDA

A=M N Z C I D V

 % % ~ ~ ~ ~

 Addressing Assembler Format Bytes Cycles

Immediate LDA @ Oper 2 2

Zero Page LDA Oper 2 3

Zero Page,X ... LDA Oper,X 2 4

Absolute LDA Oper 3 4

Absolute,X LDA Oper,X 3 4*

Absolute,Y LDA Oper,Y 3 4*

(Indirect,X) .. LDA (Oper,X) 2 6

(Indirect),Y .. LDA (Oper),Y 2 5*

* Add 1 if page boundary crossed.

LDX Load index register X with memory LDX

X=M N Z C I D V

 % % ~ ~ ~ ~

 Addressing Assembler Format Bytes Cycles

Immediate LDX @ Oper 2 2

Zero Page LDX Oper 2 3

Zero Page,Y ... LDX Oper,Y 2 4

Absolute LDX Oper 3 4

Absolute,Y LDX Oper,Y 3 4*

* Add 1 if page boundary crossed.

187

LDY Load index register Y with memory LDY

Y=M N Z C I D V

 % % ~ ~ ~ ~

 Addressing Assembler Format Bytes Cycles

Immediate LDY @ Oper 2 2

Zero Page LDY Oper 2 3

Zero Page,X ... LDY Oper,X 2 4

Absolute LDY Oper 3 4

Absolute,X LDY Oper,X 3 4*

* Add 1 if page boundary crossed.

LSR Logical shift right one bit (memory or accumulator) LSR

 N Z C I D V

 % % % ~ ~ ~

 Addressing Assembler Format Bytes Cycles

Accumulator ... LSR A 1 2

Zero Page LSR Oper 2 5

Zero Page,X ... LSR Oper,X 2 6

Absolute LSR Oper 3 6

Absolute,X LSR Oper,X 3 7

NOP No Operation NOP

 N Z C I D V

 ~ ~ ~ ~ ~ ~

 Addressing Assembler Format Bytes Cycles

Implied NOP 1 2

ORA Load accumulator with memory ORA

A=A\M N Z C I D V

 % % ~ ~ ~ ~

 Addressing Assembler Format Bytes Cycles

Immediate ORA @ Oper 2 2

Zero Page ORA Oper 2 3

Zero Page,X ... ORA Oper,X 2 4

Absolute ORA Oper 3 4

Absolute,X ORA Oper,X 3 4*

Absolute,Y ORA Oper,Y 3 4*

(Indirect,X) .. ORA (Oper,X) 2 6

(Indirect),Y .. ORA (Oper),Y 2 5*

* Add 1 if page boundary crossed.

PHA Push Accumulator to stack PHA

A ! N Z C I D V

 ~ ~ ~ ~ ~ ~

 Addressing Assembler Format Bytes Cycles

Implied PHA 1 3

PHP Push Processor status to stack PHP

P ! N Z C I D V

 ~ ~ ~ ~ ~ ~

 Addressing Assembler Format Bytes Cycles

Implied PH 1 3

7 6 5 4 3 2 1 0 C 0

188

PLA Pull Accumulator from stack PLA

A ^ N Z C I D V

 % % ~ ~ ~ ~

 Addressing Assembler Format Bytes Cycles

Implied PH 1 4

PLP Pull Processor status from stack PLP

P ^ N Z C I D V

 from stack

 Addressing Assembler Format Bytes Cycles

Implied PH 1 4

ROL Rotate Left one bit (memory or accumulator) ROL

 N Z C I D V

 % % % ~ ~ ~

 Addressing Assembler Format Bytes Cycles

Accumulator ... ROL A 1 2

Zero Page ROL Oper 2 5

Zero Page,X ... ROL Oper,X 2 6

Absolute ROL Oper 3 6

Absolute,X ROL Oper,X 3 7

ROR Rotate right one bit (memory or accumulator) ROR

 N Z C I D V

 % % % ~ ~ ~

 Addressing Assembler Format Bytes Cycles

Accumulator ... ROR A 1 2

Zero Page ROR Oper 2 5

Zero Page,X ... ROR Oper,X 2 6

Absolute ROR Oper 3 6

Absolute,X ROR Oper,X 3 7

RTI Return from Interrupt RTI

P^ PC^ N Z C I D V

 From stack

 Addressing Assembler Format Bytes Cycles

Implied RTI 1 6

RTS Return from Subroutine RTS

P^ PC^ N Z C I D V

 ~ ~ ~ ~ ~ ~

 Addressing Assembler Format Bytes Cycles

Implied RTS 1 6

7 6 5 4 3 2 1 0 C

7 6 5 4 3 2 1 0 C

189

SBC Subtract memory from accumulator with carry SBC

A,C=A-M-(C-1) N Z C I D V

 % % % ~ ~ %

 Addressing Assembler Format Bytes Cycles

Immediate SBC @ Oper 2 2

Zero Page SBC Oper 2 3

Zero Page,X ... SBC Oper,X 2 4

Absolute SBC Oper 3 4

Absolute,X SBC Oper,X 3 4*

Absolute,Y SBC Oper,Y 3 4*

(Indirect,X) .. SBC (Oper,X) 2 6

(Indirect),Y .. SBC (Oper),Y 2 5*

* Add 1 if page boundary crossed.

SEC Set Carry flag SEC

C=1 N Z C I D V

 % % 1 ~ ~ ~

 Addressing Assembler Format Bytes Cycles

Implied CLC 1 2

SED Set Decimal mode SED

D=1 N Z C I D V

 % % ~ ~ 1 ~

 Addressing Assembler Format Bytes Cycles

Implied CLC 1 2

SEI Set Interrupt disable bit SEI

I=1 N Z C I D V

 % % ~ 1 ~ ~

 Addressing Assembler Format Bytes Cycles

Implied CLI 1 2

STA Store accumulator in memory STA

M=A N Z C I D V

 ~ ~ ~ ~ ~ ~

 Addressing Assembler Format Bytes Cycles

Zero Page STA Oper 2 3

Zero Page,X ... STA Oper,X 2 4

Absolute STA Oper 3 4

Absolute,X STA Oper,X 3 5

Absolute,Y STA Oper,Y 3 5

(Indirect,X) .. STA (Oper,X) 2 6

(Indirect),Y .. STA (Oper),Y 2 6

* Add 1 if page boundary crossed.

STX Store index register X in memory STX

M=X N Z C I D V

 ~ ~ ~ ~ ~ ~

 Addressing Assembler Format Bytes Cycles

Zero Page STX Oper 2 3

Zero Page,Y ... STX Oper,Y 2 4

Absolute STX Oper 3 4

190

STY Store index register Y in memory STY

M=Y N Z C I D V

 ~ ~ ~ ~ ~ ~

 Addressing Assembler Format Bytes Cycles

Zero Page STY Oper 2 3

Zero Page,X ... STY Oper,X 2 4

Absolute STY Oper 3 4

TAX Transfer Accumulator to index register X TAX

X=A N Z C I D V

 % % ~ ~ ~ ~

 Addressing Assembler Format Bytes Cycles

Implied TAX 1 2

TAY Transfer Accumulator to index register Y TAY

Y=A N Z C I D V

 % % ~ ~ ~ ~

 Addressing Assembler Format Bytes Cycles

Implied TAY 1 2

TSX Transfer Stack pointer to index register X TSX

X=S N Z C I D V

 % % ~ ~ ~ ~

 Addressing Assembler Format Bytes Cycles

Implied TSX 1 2

TXA Transfer index register X to Accumulator TXA

A=X N Z C I D V

 % % ~ ~ ~ ~

 Addressing Assembler Format Bytes Cycles

Implied TXA 1 2

TXS Transfer index register X to stack pointer TXS

S=X N Z C I D V

 % % ~ ~ ~ ~

 Addressing Assembler Format Bytes Cycles

Implied TXS 1 2

TYA Transfer index register Y to Accumulator TYA

A=Y N Z C I D V

 % % ~ ~ ~ ~

 Addressing Assembler Format Bytes Cycles

Implied TYA 1 2

191

25
25.1 Input/Output Routines

The ATOM operating system contains several routines which can be

called by user programs to provide input and output facilities. The

routines are defined so that they are compatible with the other Acorn

operating systems; in particular, if the ATOM is expanded to include a

Disk Operating System the same routines will automatically function

with the disk.

OSCLI Command line interpreter

This subroutine interprets a string of characters at address #0100 and

terminated by carriage return as an operating system command. Detected

errors are met with a BRK. All processor registers are used, and the

decimal-mode flag is set to binary on exit.

OSWRCH Write character

This subroutine sends the byte in the accumulator to the output

channel. Control characters are normally recognised as detailed in

Section 18.1.3. All registers are preserved.

OSCRLF Carriage return -- line feed

This subroutine generates a line feed followed by a carriage return

using OSWRCH. On exit A will contain #0D, N and Z will be 0, and all

other registers are preserved.

OSECHO Read character with echo

This subroutine reads a byte using OSRDCH and then writes it out using

OSWRCH. The routine converts carriage returns to a line feed followed

by a carriage return. On exit A will contain the byte read, N, Z, and

C are undefined, and all other registers are preserved.

OSRDCH Read character

This subroutine reads a byte from the input channel and returns it in

A. The state of N, Z, and C is undefined; all other reqisters are

preserved.

OSLOAD Load file

This subroutine loads a complete file into a specified area of memory.

On entry X must point to the following data in zero page:

X+0 address of string of characters, terminated by #0D, which is the

file name.

X+2 Address in memory of the first byte of the destination.

X+4 Flag byte: if bit 7 = 0 use the file's start address.

All processor registers are used. A break will occur if the file

cannot be found. In interrupt or DMA driven systems a wait until

completion should be performed if the carry flag was set on entry.

Operating System
Routines and Addresses

192

OSSAVE Save file

This subroutine saves all of an area of memory to a specified file. On

entry X must point to the following data in zero page:

X+0 Address of string of characters, terminated by #0D, which is the

file name.

X+2 Address for data to be reloaded to.

X+4 Execution address if data is to be executed

X+6 Start address of data in memory

X+8 End address + 1 of data in memory

The data is copied by the operating system without being altered. All

registers are used. In interrupt or DMA driven operating systems a

wait until completion should be performed if the carry flag was set on

entry. A break will occur if no storage space large enough can be

found.

OSBPUT Put byte

This subroutine outputs the byte in the accumulator to a sequential

write file. Registers X and Y are saved. In the ATOM operatinq system

interrupts are disabled during OSBPUT but interrupt status is restored

on exit. In the Disk Operating System the file's sequential file

pointer will be incremented after the byte has been saved.

OSBGET Get byte

The subroutine returns, in A, the next byte from a sequential read

file. Registers X and Y are retained. In the ATOM operating system

interrupts are disabled during OSBGET but interrupt status is restored

on exit. In the Disk Operating System the file's sequential file

pointer will be incremented after the byte has been read.

OSFIND Find file

This subroutine returns, in A, a 'handle' for a file. The X register

points to zero page locations containing the address of the first

character of the file name; the file name is terminated by a #0D byte.

The 'handle' is zero if the file does not exist; otherwise it is a

byte uniquely specifying the file. If the file is to be used for

sequential input the carry should be set, or if for sequential output

the carry should be clear. In the ATOM operating system the file

handle is set to 13, and the message "PLAY TAPE" or "RECORD TAPE" is

produced. In the Disk Operating Systam the file's sequential pointer

is set to zero.

OSSHUT Shut file

This subroutine removes a reference to a file whose handle is in the Y

register. If a handle of zero is supplied, all files are shut. In the

ATOM operating system the call does nothing.

The following subroutines are not used in the cassette system, and

cause an error if called:

OSRDAR Read file's arguments

OSSTAR Store file's arguments

25.2 Operating System Calls

The following table gives the addresses of all the operating system

calls:

193

 Address: Subroutine: Instruction:

 #FFCB OSSHUT JMP (SHTVEC)

 #FFCE OSFIND JMP (FNDVEC)

 #FFD1 OSBPUT JMP (BPTVEC)

 #FFD4 OSBGET JMP (BGTVEC)

 #FFD7 OSSTAR JMP (STRVEC)

 #FFDA OSRDAR JMP (RDRVEC)

 #FFDD OSSAVE JMP (SAVVEC)

 #FFED OSLOAD JMP (LODVEC)

 #FFE3 OSRDCH JMP (RDCVEC)

 #FFE6 OSECHO JSR OSRDCH

 #FFE9 OSASCI CMP @#0D

 #FFEB BNE OSWRCH

 #FFED OSCRLF LDA @#0A

 #FFEF JSR OSWRCH

 #FFF2 LDA @#0D

 #FFF4 OSWRCH JMP (WRCVEC)

 #FFF7 OSCLI JMP (COMVEC)

The operating system calls are all indirected via addresses held in

RAM, and these addresses may be changed to the addresses of

user-supplied routines. The addresses are initialised on reset as

follows:

 Address: Subroutine: Function:

 #0200 NMIVEC NMI service routine

 #0202 BRKVEC BRK service routine

 #0204 IRQVEC IRQ service routine

 #0206 COMVEC Command line interpreter

 #0208 WRCVEC Write character

 #020A RDCVEC Read character

 #020C LODVEC Load file

 #020E SAVVEC Save file

 #0210 RDRVEC Error

 #0212 STRVEC Error

 #0214 BGTVEC Get byte from tape

 #0216 BPTVEC Put byte to tape

 #0218 FNDVEC Print message

 #021A SHTVEC Dummy

A call to one of the routines OSRDAR or OSSTAR will cause the message:

COM?

to be output, followed by a BRK.

25.3 Interrupts

The following action is taken on interrupts:

NMI PHA

 JMP (NMIVEC)

IRQ/BRQ STA #FF

 PLA

 PHA

 AND @#10 which interrupt was it

 BNE BRK

 LDA #FF

 PHA

 JMP (IRQVEC)

BRK LDA #FF

194

 PLP

 PHP

 JMP (BRKVEC)

Note that the accumulator is pushed before the jump occurs.

25.4 Block Zero RAM Locations

Hexadecimal: Decimal: Function:

 #0 0 Error number

 #1, #2 1, 2 BASIC line number.

 #8 - #C 8 - 12 Random number seed

 #10, #11 16, 17 Pointer to BASIC error handler

 #12 18 Text-space pointer

 #00 - #6F 0 - 111 BASIC zero-page workspace

 #70 - #7F 112 - 127 Floating-point workspace

 #80 - #AF 128 - 175 Free

 #B0 - #FF 176 - 255 Cassette system workspace

 #FE 254 Character not sent to printer

 #100 - #13F 256 - 319 Input line buffer

 #140 - #17F 320 - 383 String processing & INPUT statement buffer

 #180 - #1FF 384 - 511 Stack

 #200 - #21B 512 - 539 Operating system vectors

 #21C - #23F 540 - 575 Free

 #240 - #3FF 576 - 1023 BASIC workspace

 #3FE, #3FF 1022, 1023 Address of point-plotting routine

25.5 Input/Output Port Allocations

The 8255 Programmable Peripheral Interface Adapter contains three

8-bit ports, and all but one of these lines is used by the ATOM.

Port A - #B000

 Output bits: Function:

 0 - 3 Keyboard row

 4 - 7 Graphics mode

Port B - #B001

 Input bits: Function:

 0 - 5 Keyboard column

 6 CTRL key (low when pressed)

 7 SHIFT keys (low when pressed)

Port C - #B002

 Output bits: Function:

 0 Tape output

 1 Enable 2.4 kHz to cassette output

 2 Loudspeaker

 3 Not used

 Input bits: Function:

 4 2.4 kHz input

 5 Cassette input

 6 REPT key (low when pressed)

 7 60 Hz sync signal (low during flyback)

The port C output lines, bits 0 to 3, may be used for user

applications when the cassette interface is not being used.

195

25.6 Memory Map

The following diagram shows how the ATOM's address space is allocated.

Sections shown shaded are present in the minimal-system ATOM. The map

includes the addresses of devices on the Acorn cards, which may be

fitted inside the ATOM case.

Assembler

Cassette Operating

System

Optional

Disk-Operating System

Optional

Extension ROM

ATOM BASIC

Interpreter

Optional

VIA I/O Device for

Printer Interface

PPIA I/O Device

Optional

Utility ROM

#FFFF

#F000

#E000

#D000

#B000

#B800

#C000

#A000

196

Graphics Mode 4

Graphics Mode 3

Graphics Mode 2

Off-Board

Extension ROM

Graphics Mode 1

Extension Text

Space RAM

#A000

#9000

#8C00

#8200

#3000

#2900

#3C00

#8000

Graphics Mode 0

Floating-Point

Variables

Sequential File

Buffers

Catalogue Buffer

#9800

#8400

#8600

#2800

#2200

#2000

197

Peripherals

Space

Optional FDC

Block Zero RAM

#2000

#0A80

#0800

#0000

#1000

#0A00

#0900

#0400

VDU CRT Controller

Teletect VDU RAM

198

199

26 Syntax Definition
This syntax definition is written in B.N.F., or Backus-Naur Form, with

some additions. In the places where a proper definition in B.N.F.

would be far too long, a description has been used. The rules are:

Things in triangular <> brackets are defined things, "syntactic

entities", everything else is itself

The ::= symbol is read as "is defined".

The | sign is read as OR: one of the alternatives must be true.

Concatenation of things is read as "followed by".

The ^ sign is read as "any number of".

The {} brackets allow concatenations to be grouped together.

26.1 BASIC Syntax Definition

26.1.1 Basic Symbols

! " # $ % & ' () * + , - . / O 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C

D E F G H I J K L M N O P Q R S T U V W X Y Z a b c d e f g h i j k l

m n o p q r s t u v w x y z [\ <> <= >= @@ AA BB CC CH DD DO EE FF GG

HH II IF JJ KK LL MM NN 00 OR PP QQ RR SS TO TT UU VV WW XX YY ZZ ABS

AND DIM END EXT FIN FOR GET LEN LET NEW OLD PTR PUT REM RND RUN TOP

BGET BPUT DRAW FOUT GOTO LINK LIST LOAD MOVE NEXT PLOT SAVE SGET SHUT

SPUT STEP THEN WAIT CLEAR COUNT GOSUB INPUT PRINT UNTIL RETURN

 No multi-character basic symbols may include blanks; otherwise

blanks may be used freely to improve the readability of the program.

The character '.' can be used to provide a shorter representation of

all multi-character basic symbols

<asciic>::={ascii characters excluding carriage return}

<digit>::=0|1|2|3|4|5|6|7|8|9

<hex digit>::=<digit>|A|B|C|D|E|F

<positive number>::=<digit><digit>^

 such that <positive number> is less than 2147483648

<hex number>::=<hex digit><hex digit>^

<integer size field>::=@

<p-variable>::=<integer size field>|A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q

 |R|S|T|U|V|W|X|Y|Z

<variable>::=<p-variable>{character which is not <p-variable> or .}

<array name>::=@@|AA|BB|CC|DD|EE|FF|GG|HH|II|JJ|KK|LL|MM|NN|OO|PP|QQ

 |RR|SS|TT|UU|VV|WW|XX|YY|ZZ

200

<label>::=a|b|c|d|e|f|q|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z

<conjunction>::=AND|OR

<relation operation>::= < | > | <= | >= | = | <>

<expression operator>::=+|-|\|:

<term operator>::=*|/|%|&|!|?

<factor>::=+<unary plus>|-<unary plus>|<unary plus>

<unary plus>::=<variable>|<positive number>|#<hex number>|

 (<testable expression>)|!<factor>|?<factor>)TOP|COUNT

 |RND|ABS<factor>|LEN<factor>|CH<string right>

 |PTR<factor>|EXT<factor>|GET<factor>|BGET<factor>|

 FIN<string right>|FOUT<string right>|

 <array name><factor>

<term>::=<factor>{<term operation><factor>}^

<expression>::=<term>{<expression operator><term>}^

<relnl expression>::=<expression>|<expression><relation operation>

 <exression>|$<expression>=<string right>

<testable expression>::=<relnl expression>{<conjunction>

 <relnl expression>}^

<delimit quote>::="{any ascii character not a "}

<string right>::=<expression>|$<expression>|"<asciic>^<delimit quote>

<sd>::=<statement delimiter>::={carriage return}|;

<working let>::={{{<variable>|!<factor>|?<factor>|<variable>!<factor>|

 <variable>?<factor>}=<expression>}|$<expression>=

 <string right>}<sd>

<let statement>::=LET<working let><sd>|<working let><sd>

<vector statement>::=<array name><factor>=<expression>

<printable string>::={'|"<asciic>^<delimit quote>}^

<input section>::=<printable string>{<variable>|$<expression>|{null}}

<input statement>::=INPUT<input section>{,<input section>}^<sd>

<return statement>::=RETURN<sd>

<new command>::=NEW<sd>

<old statement>::=OLD<sd>

<link statement>::=LINK<factor><sd>

<OS statement>::=*<asciic>^

201

<plot statement>::=PLOT<factor>,<factor>,<factor><sd>

<draw statement>::=DRAW<factor>,<factor><sd>

<move statement>::=MOVE<factor>,<factor><sd>

<clear statement>::=CLEAR<factor><sd>

<wait statement>::=WAIT<sd>

<go entity>::=<label>|<factor>

<goto statement>:: GOTO<go entity><sd>

<gosub statement>:: GOSUB<go entity><sd>

<end statement>::=END<sd>

<enter assembler statement>::=[

<do statement>::=DO

<until statement>::=UNTIL<testable expression><sd>

<next statement>::=NEXT<sd>|NEXT<variable><sd>

<half for>::=FOR<variable>=<expression>TO<expression>

<for statement>::=<half for><sd>|<half for)<STEP<expression><sd>

<dim section>::=<variable)<factor>|<array name><factor>

<dim statement>::=DIM<dim section>{,<dim section>}^<sd>

<save statement>::=SAVE<string right><sd>

<load command>::=LOAD<string right><sd>

<run statement>::=RUN<sd>

<list command>::=LIST<sd>|LIST<positive number><sd>|

 LIST,<positive number><sd>|LIST<positive number>,<sd>|

 LIST<positive number>,<positive number><sd>

<if statement>::=IF<testable expression>{THEN<statement>|<statement>}

<print comma>::={nothing, if possible}|,

<print statement>::=PRINT{<printable string>{<expression>|

 $<expression>|{nothing}}<print comma>}^<sd>

<enter line command>::=<positive number><asciic>"(carriage return}

<put statement>::=PUT<factor>,<expression><sd>

<bput statement>::=BPUT<factor>,<expression><sd>

<sput statement>::=SPUT<factor>,<string right><sd>

<sget statement>::=SGET<factor>,<expression><sd>

202

<ptr statement>::=ptr<factor>=<expression><sd>

<null statement>::=<sd>

26.2 Assembler Syntax Definition

This uses the same syntax as Section 26.1, and refers to some of the

syntactic entities given there. Basic symbols may not be abbreviated;

spaces may be used freely to improve readability.

26.2.1 Basic Symbols

() , : @ A X Y \] ADC AND ASL BCC BCS BEQ BIT BMI BNE BPL BRK BVC

BVS CLC CLD CLI CLV CMP CPX CPY DEC DEX DEY EOR INC INX INY JMP JSR

LDA LDX LDY LSR NOP ORA PHA PHP PLA PLP ROL ROR RTI RTS SBC SEC SED

SEI STA STX STY TAX TAY TSX TXS TXA TXS TYA

<set label statement>::=<two chars>:<label name><assembler statement>

<comment statement>::=<two chars>\<comment field>

<back to basic>::=]

<empty statement>::=<two chars><sd>

<two chars>::=<asciic>|<asciic><asciic>|{no character at all}

<comment field>::={ascii until <sd>}

<immed>::=@<expression>

<indexX>::=<expression>,X

<indexY>::=<expression>,Y

<group1>::=<indexX>|<indexY>|(<indexX>)|(<expression>),Y|<expression>

<branch>::={BCC|BCS|BEQ|BMI|BNE|BPL|BVC|BVS}<expression>

<memory to A>::=ADC|AND|CMP|EOR|LDA|ORA|SBC{<group1>(<immed>}

<A to memory>::=STA<group1>

<single byte A>::={ASL|LSR|ROL|ROR}A

<single byte>::=<single byte A>|BRK|CLC|CLD|CLI|CLV|DEX|DEY|INX|INY

 |NOP|PHA|PHP|PLA|PLP|RTI|RTS|TAX|TAY|TSX|TXA|TXS|TYA

<read modify write>::={ASL|DEC|INC|LSR|ROL|ROR}{<indexX>|<expression>}

<bit>::=BIT<expression>

<cp>::={CPX|CPY}{<immed>(<expression>}

<jmp>::=JMP{<expression>|(<expression>)}

<jsr>::=JSR<expression>

<ldx>::=LDX{<immmed>|<indexY>|<expression>}

203

<ldy>::=LDY{<immmed>|<indexX>|<expression>}

<stx>::=STX{<indexY|<expression>}

<sty>::=STY{<indexX>|<expression>}

<assembler statement>::={<branch>|<memory to A>|<A to memory>

 |<single byte>|<read modify write>|<bit>|<cp>|<jmp>|<jsr>

 |<ldx>|<ldy>|<stx>|<sty>|<comment field>

204

205

27 Error Codes
The following list of errors includes BASIC errors, COS errors, and

errors generated by the extension ROM. Note that it is possible to

obtain errors not on this list by executing a BRK in a machine-code

program.

2 Too many GOSUBs

The largest permitted depth of subroutine nesting is 14. This error

means that more than 14 GOSUB statements have been executed without

matching RETURN statements. Example:

 10 GOSUB 10

 20 END

6 SUM Checksum error

When loading a named file from tape, each block is followed by a

checksum byte; if the checksum does not agree with this byte, this

error is given. The cause of checksum errors is usually a damaged

tape, or incorrect volume on playback. The remaining blocks of a

damaged tape can be retrieved using FLOAD.

18 Too many DO statements

The largest permitted number of nested DO...UNTIL loops is 11. This

limit has been exceeded.

29 Unknown or missing function

The statement contains a sequence of characters which are not the name

of a function. Example:

 10 J=RAN+10 (where RND was intended).

 20 FPRINT $A (string variables not permitted in FPRINT)

30 Array too large in DIM statement

The DIM statement checks that there is valid merrory at the last

element of each array in the DIM statement. This error implies that

there is no RAM at the end of the array being dimensioned.

31 RETURN without GOSUB

A RETURN was found in the main program. RETURN is only meaningful in a

subroutine.

39 Attempt to use variable in LIST

The LIST command may only be used with constants as its arguments.

Example:

 LIST A,B

206

48 COM? Command error

The command following the '*' was not a legal COS command. Example:

 *MEM (command does not exist)

69 Illegal FDIM statement

Only the floating-point array variables %AA to %ZZ may be dimensioned

in an FDIM statement. Example:

 10 FDIM %A(2)

Attempt to use FDIM in direct mode.

76 Assembler label error

The characters following the ':' character are not a legal label.

Legal labels are two letters followed by a number optionally in

brackets. Example:

 10:LOOP JMP LOOP

91 No hexadecimal number after

The characters immediately following the '#' symbol must be legal

hexadecimal characters 0-9 or A-F. Spaces are not permitted. Example:

 10 PRINT #J

94 Unknown command, invalid statement terminator; missing END

The statement has not been recognised as a legal BASIC statement. The

error may also be caused by an illegal character after a valid

statement, or by an attempt to execute past the end of the program.

Example:

 10 LIST (LIST is not allowed in a program)

 20 s A=B (no space permitted between label and line number)

An array appears in an INPUT statement; only simple variables are

permitted. Example:

 25 INPUT AA(2)

95 Floating-point item missing or malformed

An unexpected character was encountered during the interpretation of a

floating-point statement. Example:

 10 FUNTIL 0 (argument must be a relational expression)

 20 FIF A PRINT "OK" (logical variables not allowed)

109 Number too large

Attempt to enter a number which is too large to be represented in

BASIC. Example:

 20 J=9999999999

Error also occurs if the largest negative number is entered:

 30 J=-2147483648

even though this number can be represented internally. To input this

number, use the hexadecimal form #80000000.

111 Missing variable in FOR; too many FOR statements

The control variable in a FOR...NEXT loop must be one of the simple

variables A to Z. Example:

207

 35 FOR CC(1)=1 TO 10

The maximum permitted number of nested FOR...NEXT loops is 11; this

number has been exceeded.

118 NAME Name error

The filename specified in a LOAD, SAVE, *LOAD, *SAVE, or *FLOAD

command was not a legal COS filename. Example:

 SAVE "THIS FILENAME IS TOO LONG"

123 Illegal argument to floating-point function

Examples:

 12 A=SQR(-1) (square root of a negative number)

 24 B=ASN(2) (arcsine of number outside range -1 to 1)

127 Line number not found in GOTO or GOSUB

The line number specified in a GOTO or GOSUB was not found. Example:

 10 GOTO 6

 15 N=6; GOTO N (where there is no line 6)

128 Argument to SIN, COS or TAN too large

The largest angle that may be specified in the SIN, COS or TAN

functions is about 8.3E6.

129 Division by zero, protected RAM in graphics mode

A number was divided by zero. Example:

 10 J=J/(A-B) (where A and B were equal)

A CLEAR command specified a graphics mode that would have destroyed

BASIC's text space. Example:

 10 ?18=#90 ;REM Move text space

 20 CLEAR 4

134 Array subscript out of range

An array element was specified with a negative subscript, or has not

been dimensioned before use. Example:

 10 DIM AA(4)

 20 AA(-2)=7

135 SYN? Syntax error

A COS command was recognised, but was followed by illegal parameters.

Example:

 *SAVE "FRED" (start and end addresses omitted)

149 Floating-point array subscript out of range

A floating-point array element was specified with a negative

subscript. Example:

 10 %AA(-2)=0

152 GOSUB without RETURN; FOR without NEXT

The GOSUB statement, when used in direct mode, must be followed by a

semicolon. Example:

208

 GOSUB 10

The FOR statement was used in direct mode without a NEXT statement.

156 Assembler error: illegal type

The argument specified for the operation is illegal. Example:

 30 LDA @300 (constant greater than 8 bits)

 50 STA (J,Y) (not a legal addressing mode)

 70 BIT @23 (immediate addressing not available with BIT)

This error is also generated if a JMP or JSR is assembled with a zero-

page address. This may occur, by chance, on the first pass of a

forward-reference JMP or JSR; in this case the value of the label

should be initialised to P before assembling. Example:

 40 JMP #34 (jumps into page zero are not permitted)

157 Label not found

A label, a-z, was specified in a GOTO or GOSUB, but no statement

starting with that label was found. Example:

 40 GOTO s

159 Unmatched quotes in PRINT or INPUT

Strings in PRlNT statements, or entered in INPUT statements, should

have an even number of '"' quotation marks. Example:

 PRINT "THIS IS A QUOTE:""

165 Loading interrupted

The CTRL key will escape from a load-from-tape operation, with this

error message being produced.

169 Floating-point result too large

The result of a floating-point calculation was larger than about

1.7E38. Example:

 20 FPRINT TAN(PI/2)

174 Significant item missing or malformed

An unexpected character was encountered during the interpretation of a

statement. Example:

 10 G0TO 20 (O mistyped as zero; should be GOTO)

 20 FOR J TO 4 (expected '=' after J)

 30 FOR J=1 STEP 1 TO 4 (order should be TO ... STEP)

 40 LET AA(1)=2 (LET is illegal with arrays)

191 LOG or power of zero or a negative number

The argument to the floating-point function LOG, or the operator must

be greater than zero. Examples:

 10 %A=-1^2

 30 %B=LOG(0)

198 UNTIL with no DO

An UNTIL statement was encountered without a DO being active. Example:

 20 IF A=1 DO A=A+1

 30 UNTIL A=3 (if A<>1 the DO is not executed)

209

200 Unmatched quotes in string

Strings appearing in a program should have an even number of quotation

marks.

208 Unrecognised mnemonic in assembler

The mnemonic is not a legal 6502 assembler operation. Example:

 20 ADD @20 (only ADC instruction available)

 30 .BYTE (assembler directives are not available)

216 Illegal DIM statement

The list of variables in the DIM statement contained an illegal entry.

Example:

 20 DIM A(2,3) (only one-dimensional arrays allowed)

 30 DIM AA(-2) (negative array size)

Attempt to use DIM in direct mode.

230 NEXT without matching FOR

If a control variable is specified in a NEXT statement then the

variable must match the control variable in the corresponding FOR

statement. Example:

 50 FOR N=1 TO 10

 20 FOR J=1 TO 10

 30 PRINT "*"

 40 NEXT N

 50 NEXT J

A NEXT statement was encountered without any FOR statement being

active.

238 Argument to EXP too large

The calculation of the EXP function gave a result that was too large.

Example:

 10 FPRINT EXP(100)

248 Not enough room to insert line

The line just entered has used up all the available memory. More

memory can be released by shortening all the command names if this has

not already been done.

210

211

Index

abbreviating programs 73

ABS function 24, 143, 163

absolute addressing 118

absolute,X addressing 119

absolute,Y addressing 119

accounting 13

accumulator (A) 98

 A register 122

accuracy loss of 13

ACK code 131

acknowledgements 1

ACS function 163

actions in flowcharts 21

ADC instruction 98, 181

add (+) operator 158

adding two-byte numbers in

 assembler 101

address memory 96

addressing modes 118

 modes permitted 181

addressing modes:

 absolute 118

 absolute,X 119

 absolute,Y 119

 immediate 103, 118

 indexed 117, 119

 indirect 120

 post-indexed indirect 121

 pre-indexed indirect 121

 zero-page 119

 zero,X 120

 zero,Y 120

advanced graphics 79

algorithm Euclid's 35

AND (&) operator 15, 158

 connective 30, 143

 instruction 113, 182

Animals program 70

animated graphics 85

APPEND equivalent 142

appending text 142

apple tart recipe 20

Arbitrary Precision Powers

 program 55

arbitrary-precision arithmetic

 47, 55

arrays AA to ZZ 45

 assigning to 46

 dimensioning a5

 floating-point 161

 in BASIC 45

 multi-dimensional 50

 of strings 62, 63

 subscript checking for 50

ASCII code for characters 59, 131

ASL instruction 115, 182

ASN function 163

assembler 99

 compared with BASIC 95

 delimiters ([and]) 171

 formats 181

 listing 100, 171

 mnemonics 181

 program 99

 programming 95

 syntax definition 202

assembly conditional 175

 in-line 178

 listing suppressing 173

 two-pass 172

assigning to arrays 46

assignment (=) operator 12

 string 58

asterisk (*) in COS commands 139

at (0) symbol 103, 118, 156

ATN function 163

backspace 132

backward references 172

baffled what to do if 91

base sixteen 96

 ten 96

BASIC calculating in 11

 characters and operators 155

 compared with assembler 95

 language 11

BASIC program writing a 23

BASIC statements, functions, and

 commands 143

 syntax definition 199

BCC instruction 106, 182

BCS instruction 106, 182

BELL code 132

BEQ instruction 106, 182

BGET function 68, 144

binary conversion to 112

 digits 111

 notation 111

bistables 111

bit high-order 112

BIT instruction 183

bit least-significant 112

 low-order 112

 most-significant 112

bits 111

bleep 6, 132

Bleep program 114

bleep routine 125

212

Block Move program 178

block zero RAM 168

 RAM locations 194

blocks file 10

BMI instruction 183

BNE instruction 106, 183

bounds of array or vector 92

BPL instruction 183

BPUT statement 67, 144

brackets 156

 in BASIC programs 74

branches conditional 106

break flag 122

BREAK key 6

BRK instruction 174, 183

BS code 132

Bulls & Cows program 127

BVC instruction 183

BVS instruction 184

byte 98

 indirection (?) operator 53,

 158

byte vectors 53

 dimensioning 53

bytes 112

 for program free 24

calculating in BASIC 11

calculations fixed-point 13

 floating-point 161

 with money 13

Calculator program 137

call by reference using vectors

 54

calls operating-system 192

CAN code 132

cancel 132, 155

carry flag 101, 108, 122

cassette database on 70

 input from 68

 interface setting up 8

 operating system 139

 output to 67

 saving data on 68

cassette-interface signals 194

CAT command 9, 139

central processing unit 98

CH function 59, 97, 144

changing memory locations 15, 97

 text spaces 135

character codes 134

 extraction 59

 return 59

character set 134

characters ASCII code for 59, 131

 internal representation 97

 inverted 131

 printing special 64

Chequebook-Balancing program 39

circle of random hex characters

 84

CLC instruction 98, 184

CLD instruction 184

clear screen 6

CLEAR statement 28, 79, 144, 167

CLI instruction 184

clock plot 87

Clock program 85

CLV instruction 184

CMP instruction 109, 184

co-routines 42

codes control 65

 cursor-movement 65

 error 205

 screen control 65

Coleridge 7

colour graphics 88, 167

COLOUR statement 167

comma (,) separator 156

 in PRINT statement 12, 75

command abbreviations 73

commands 7

commands:

 LIST 7, 149

 LOAD 9, 135, 139, 149

 NEW 7, 149

 OLD 7

comments in assembler 172

 in BASIC 24

compare in assembler 109

 macro 178

concatenation of strings 61

conditional assembly 175

 branches 106

conditions in BASIC 28

conjunctions AND and OR 30

connecting up 3

connections to ATOM 2

connectives:

 AND 30, 143

 OR 150

 STEP 34, 153

 THEN 30, 74, 153

 TO 153

contents memory 96

control codes 65

control codes:

 ACK 131

 BELL 132

 BS 132

 CAN 132

 CR 132

 ESC 132

 ETX 131

 FF 132

 HT 132

 LF 132

 NAK 132

 RS 132

 SI 132

 SO 132

 STX 131

control variable in assembler 109

 in NEXT statement 75

conversion Arabic to Roman

 numerals 123

213

 decimal to hexadecimal 96

 hexadecimal to decimal 96

 number-to-string 163

 string-to-number 165

 temperature 23

 to binary 112

coordinates graphics 27

COPY key 133

COS 139

COS commands:

 CAT 9, 139

 FLOAD 141

 LOAD 139, 140

 MON 141

 NOMON 141

 RUN 141

 SAVE 139, 140

COS errors 142

 function 163

COS messages disable 141

 enable 141

COUNT function 145

counting in assembler 109

 in flowcharts 19

CPU 98

CPX instruction 109, 184

CPY instruction 109, 185

CR code 132

CRC Signature program 93

CTRL (control) key 6, 194

 key 140

Cubic Curve program 32

cursor 3

 home 132

 turn on/off 16

cursor-movement codes 65

curve Sierpinski 81

Curve Stitching in a Square

 program 34

curve stitching in 4 colours 88

curve three-dimensional 84

Cycloid program 166

DATA equivalent 63

data on cassette saving 68

Data to Cassette program 68

data types of 67

database on cassette 70

Day of Week program 62

debugging in assembler 176

DEC instruction 185

decimal mode flag 122

 to hexadecimal conversion 96

decisions in flowcharts 18

decoding 60

DEG function 164

delay random 38

DELETE key 6

deleting lines 7

delimiter statement 14

demonstration programs 4

DEX instruction 108, 185

DEY instruction 108, 185

Dice Tossing program 27

Digital Clock program 37

 Waveform Processing program 48

DIM in assembler 99, 105

 statement 45, 57, 145

dimensioning arrays 45

 byte vectors 53

 strings 57

disable COS messages 141

divide (/) operator 11, 158

DO statement 145

DO...UNTIL loop 34

double quote (") delimiter 155

DRAW statement 28, 80, 145

drawing lines 28

ear 113

editing screen 132

 text 7

eight queens problem 44

Eight Queens program 44

enable COS messages 141

Encoder/Decoder program 60

encoding 60

END statement 145

EOR instruction 113, 185

equal (=) operator 29, 58, 158

equality string 58

equation root of 41

error codes 205

 handler 137

ERROR message 8, 174

errors

 COS 142

 floating-point 205

 logical 91

 NAME 10

 SUM 10

 syntax 91

 tape 10

 trapping 137

ESC code 132

 key 7, 24, 106

escape 132, 155

ETX code 131

Euclid's algorithm 35

examining memory locations 97

examples graphics 81

exclusive-OR (:) operator 15, 158

execute file load and 141

executing machine-code 173

 stored text 23

execution speed maximising 75

expansion memory 168

exponent 162

expression 143

EXT function 145

extension floating-point ROM 161

extraction character 59

factor 143

false logical value 31

Farenheit to Celsius program 23

214

faster FOR...NEXT loops 76

faults hardware 92

 RAM memory 92

 ROM memory 92

FDIM statement 162

FF code 132

FGET function 164

FIF statement 162

file blocks 10

 handle 67

files named 139

 text 9

 unnamed 139

filter low-pass 49

FIN function 68, 146

find input 68

 output 68

finish loading 141

FINPUT statement 162

First Twelve Powers of Two

 program 31

fixed-point calculations 13

flags status 122

flags:

 break 122

 carry 101, 108, 122

 decimal mode 122

 interrupt disable 122

 negative 122

 overflow 122

 zero 106, 108, 122

flip/flops 111

FLOAD command 141

floating-point arrays 161

 calculations 161

 errors 205

 extension 161

floating-point functions:

 ABS 163

 ACS 163

 ASN 163

 ATN 163

 CDS 163

 DEG 164

 EXP 164

 FGET 164

 FLT 164

 HTN 164

 LOG 164

 PI 164

 RAD 164

 SGN 164

 SIN 164

 SQR 165

 TAN 165

 VAL 165

floating-point operators:

 indirection (!) 165

 integer (%) 165

 power (^) 165

floating-point program examples

 166

 representation 162

floating-point statements:

 FDIM 162

 FIF 162

 FINPUT 162

 FPRINT 163

 FPUT 163

 FUNTIL 163

 STR 163

floating-point variables 165

flowchart Guess a Number 30

 puff pastry 20

 sponge cake 18

 symbols 21

flowcharts 17

 actions in 21

 counting in 19

 decisions in 18

FLT function 164

FOR statement 33, 146

FOR...NEXT loop 33

 graph plotting using 34

 step size in 34

FOR...NEXT loops faster 76

format for graphics screeri 27

formfeed 132

forward references 107, 172

FOUT function 68, 146

FPRINT statement 163

FPUT statement 163

Fractional Multiplication program

 178

free bytes for program 24

function abbreviations 73

functions string 58

 trigonometrical 163

functions:

 ABS 24, 143

 BGET 68, 144

 CH 59, 97, 144

 COUNT 145

 EXT 145

 FIN 68, 146

 FOUT 68, 146

 GET 68, 147

 LEN 59, 148

 PTR 151

 RND 24, 152

FUNTIL statement 163

GCD algorithm 35

generating tone 25

GET function 68, 147

golden ratio 41

GOSUB statement 39, 135, 147

 to labels 41

GOTO multi-way switch using 26

 statement 25, 135, 147,

 with label 25

graph plotting using FOR...NEXT

 loop 34

graphics advanced 79

 animated 85

 colour 88

215

 coordinates 27

 examples 81

 low-resolution 27

 modes 79

 origin 28

 screen format for 27

graphics space 168, 169

graphics speed of 85

 symbols 134

graphics symbols pr inting 65

graphics testing points in 87

greater-than (>) operator 29, 158

 or equal (>=) operator 158

greater-than or equal

 operator 29

Greatest Common Divisor program

 35

Guess a Number flowchart 30

 program 29

hardware faults 92

Harpsichord program 124

hash (#) symbol 96

hexadecimal (&) operator 14, 96,

 158

 (#) operator 14, 96, 157

 characters plotting 84

 notation 14, 96

 printing in 14

 to decimal conversion 96

high-fidelity equipment testing

 116

high-order bit 112

histogram plot 69

Histogram program 46

home cursor 132

horizontal tab 132

HT code 132

HTN function 164

IF statement 148

IF...THEN statement 28

immediate addressing 103, 118

in-line assembly 178

INC instruction 185

increment macro 178

index registers 107, 122

 routine 125

Index Routine program 118

index X register 107, 122

 Y register 107, 122

indexed addressing 117, 119

indirect addressing 120

 jump 120

indirection (!) operator 165

input from cassette 68

INPUT statement 23, 58, 14B

input string 58

input/output parallel 169

 ports 194

 routines 191

inserting lines 7

instruction mnemonics 98, 181

instructions:

 ADC 98, 181

 AND 113, 182

 ASL 115, 182

 BCC 106, 182

 BCS 106, 182

 BEQ 106, 182

 BIT 183

 BNI 183

 BNE 106, 183

 BPL 183

 BRK 174, 183

 BVC 183

 BVS 184

 CLC 98, 184

 CLD 184

 CLI 184

 CLV 184

 CMP 109, 184

 CPX 109, 184

 CPY 109, 185

 DEC 185

 DEX 108, 185

 DEY 10S, 185

 EOR 113, 185

 INC 185

 INX 108, 186

 INY 108, 186

 JMP 105, 186

 JSR 102, 186

 LDA 98, 186

 LDX 107, 186

 LDY 107, 187

 LSR 115, 187

 NOP 187

 ORA 113, 187

 PHA 187

 PHP 187

 PLA 188

 PLP 188

 ROL 116, 188

 RTI 188

 RTS 188

 SBC 102, 189

 SEC 102, 189

 SED 189

 SEI 189

 STA 98, 189

 STX 107, 189

 STY 107, 190

 TAX 109, 190

 TAY 109, 190

 TSX 190

 TXA 110, 190

 TXS 190

 TYA 110, 190

integer (%) operator 165

interface printer 169

interrupt disable flag 122

 vectors 193

interrupts 193

introduction 1

Invert String program 59

216

inverted characters 5, 131

 letters 25

INX instruction 108, 186

INY instruction 108, 186

iteration in BASIC 31

iterative loop in assembler 108

JNP instruction 105, 186

JSB instruction 102, 186

jump indirect 120

jumps in assembler 105

keyboard 2, 5, 131

keys:

 BREAK 6

 COPY 133

 CTRL 140

 CTRL (control) 6, 194

 DELETE 6

 ESC 7, 24, 106

 LOCK 5, 131

 REPT (repeat) 6, 194

 RETURN 6

 screen editing 133

 SHIFT 5, 131, 140, 194

labels a to z 25, 156

 GOSUB to 41

 in assembler 105, 171

language BASIC 11

LDA instruction 98, 186

LDX instruction 107, 186

LDY instruction 107, 187

learning program 70

least-significant bit 112

left-string extraction 61

LEN function 59, 148

length of a string 59

less-than (<) operator 29, 158

 or equal (<=) operator 158

less-than or equal (<=) operator

 29

LET statement 74, 148

letters lower-case 5

LF code 132

line numbers 6

Linear Interpolation program 41

linefeed 132

lines deleting 7

 drawing 28

 inserting 7

 multi-statement 14, 75

LINK statement 100, 149, 173

LIST command 7, 149

listing assembler 100, 171

load and execute file 141

LOAD command 9, 135, 139, 140,

 149

loading finish 141

location counter (P) 92, 171

locations memory 95

LOCK key 5, 131

LOG function 164

logical errors 91

 operations 15, 112

logical value false 31

 true 31

logical variables 31

loop DO...UNTIL 34

 FOR...NEXT 33

loops in assembler 108

 in BASIC 33

 mis-nested 36

 nested 36

loss of accuracy 13

loudspeaker 114

low-order bit 112

low-pass filter 49

low-resolution graphics 27

lower text space 168

lower-case letters 5

LSR instruction 115, 187

machine-code executing 173

 in BASIC 123

 program 100

macro compare 178

 increment 178

 parameters 177

macros in assembler 177

manipulations string 59

mantissa 162

map memory 195

Mastermind game 126

matrices representation of 51

 using vectors of vectors 56

maximising execution speed 75

memory address 96

 expansion 168

 faults RAM 92

 faults ROM 92

 locations 95

memory locations changing 15, 97

 examining 97

 peeking 15

 poking 15

memory map 195

 screen 15

Memory Test program 92

memory testing 92

messages:

 ERROR 8, 174

 OUT OF RANGE 107

 PLAY TAPE 9, 68, 140

 RECORD TAPE 9, 68, 141

 REWIND TAPE 10, 140

mid-string extraction 61

mis-nested loops 36

mnemonic assembler 171

mnemonics 181

 instruction 98

modes addressing 118

 graphics 79

MON command 141

money calculations with 13

most-significant bit 112

217

MOVE statement 28, 80, 149

multi-dimensional arrays 50

multi-statement lines 14, 75

multi-way switch using GOTO 26

multiply (*) operator 11, 158

music 113, 124

 random 115

mystery quotation 60

NAK code 132

NAME error 10

named files 139

negative flag 122

nested loops 36

NEW command 7, 149

new line (') 156

 printing 14

NEXT statement 33, 149

 statement control variable in

 75

noise generation 116

 on screen 168

noise-free plotting 154

NOMON command 141

NOP instruction 187

not equal (<>) operator 29, 158

notation binary 111

 hexadecimal 96

number-to-string conversion 163

numbers random 24

numeric data reading 64

 field width 156

OLD command 7

 statement 150

ON ERROR GOTO equivalent 137

op code 98

operating system 131

operating-system calls 192

 routines 191

 vectors 193

operation code 98

operations logical 15, 112

operators:

 add (+) 158

 AND (&) 15, 158

 assignment (=) 12

 byte indirection (?) 53, 158

 divide (/) 11, 158

 equal (=) 29, 58, 158

 exclusive-OR (:) 15, 158

 greater-than (>) 29, 158

 greater-than or equal (>=) 158

 greater-than or equal (>=) 29

 hexadecimal (&) 14, 96, 158

 hexadecimal (#) 14, 96, 157

 less-than (<) 29, 158

 less-than or equal (<=) 158

 less-than or equal (<=) 29

 multiply (*) 11, 158

 not equal (<>) 29, 158

 OR \ 15, 158

 pling (!) 156

 query (?) 15, 53, 97

 remainder (%) 11, 158

 string ($) 57, 157

 subtract (-) 11, 158

 word indirection (!) 53, 156

OR \ operator 15, 158

 connective 150

ORA instruction 113, 187

origin graphics 28

OSRDCH routine 102, 191

OSWRCH routine 102, 191

OUT OF RANGE message 107

output to cassette 67

overflow flag 122

page mode on/off 132

parallel input/output 169

parameters macro 177

PEEK statement equivalent 15

peeking memory locations 15

permitted addressing modes 181

permutation routine 52

perspective plottinq 83

PHA instruction 187

phi 41

PHP instruction 187

PI function 164

pixels 27, 79, 134

PIA instruction 188

PLAY TAPE message 9, 68, 140

pling (!) operator 156

plot clock 87

 histoqram 69

Plot Histogram from Cassette

 program 69

PLOT statement 79, 150

Plotting Hex Characters program

 84

plotting hexadecimal characters

 84

 in l3ASIC 87

 noise-free 154

 perspective 83

 points 28

 three-dimensional 83, 166

PLP instruction 188

point-plotting routine 88

points plotting 28

POKE statement equivalent 15

poking memory locations 15

 to screen 16

port writing to 170

ports input/output 194

post-indexed indirect addressing

 121

power (^) operator 165

Powers of Numbers program 36

 of Two program 31, 48

pre-indexed indirect addressing

 121

prime Numbers program 54

print Hex Digits program 176

 Inverted String program 117

218

 Registers on BRK program 174

PRINT statement 11, 150

 statement comma in 12, 75

 statement quotes in 12

print-field size (@) 13

printer end 131

 interface 169

 start 131

printing a character in assembler

 102

 graphics symbols 65

 in hexadecimal 14

 new line 14

 special characters 64

 str ing s 12, 58

 the alphabet in assembler 110

prize 60

problem eight queens 44

processor 6520 98

program assembler 99

 counter PC register 122

 machine-code 100

 planning a 17

programming service 93

programs abbreviating 73

programs:

 Animals 70

 Arbitrary Precision Powers 55

 Bleep 114

 Block Move 178

 Bulls & Cows 127

 Calculator 137

 Chequebook-Balancing 39

 Clock 85

 CRC Signature 93

 Cubic Curve 32

 Curve Stitching in a Square 34

 Cycloid 166

 Data to Cassette 68

 Day of Week 62

 Dice Tossing 27

 Digital Clock 37

 Digital Waveform Processing 48

 Eight Queens 44

 Encoder/Decoder 60

 Farenheit to Celsius 23

 First Twelve Powers of Two 31

 Fractional Multiplication 178

 Greatest Common Divisor 35

 Guess a Number 29

 Harpsichord 124

 Histogram 46

 Index Routine 118

 Invert String 59

 Linear Interpolation 41

 Memory Test 92

 Plot Histogram from Cassette 69

 Plotting Hex Characters 84

 Powers of Numbers 36

 Powers of Two 31, 48

 Prime Numbers 54

 Pr int Hex Dig its 176

 Print Inverted String 117

 Print Registers on BRK 174

 Random Coloured Lines 168

 Random Noise 116

 Random Rectangles 80

 Random Walk 65

 Reaction Timer 37

 Renumber 136

 Replace 123

 Roman Numerals 123

 Rotating Rectangle 28

 Saddle Curve 166

 Sierpinski Curve 81

 Simultaneous Equations 51

 Sine and Tangent 166

 Sorting 47

 Square Root 35

 Three-Dimensional Plotting 83

 Tower of Hanoi 42

 322 Hz 26

 4-Colour Plot 88

prompt 3

pseudo-random sequence 116

PTR function 151

puff pastry recipe 19

PUT statement 67, 151

query (?) operator 15, 53, 97

quotation mystery 60

quoted strings 57

quotes in PRINT statement 12

RAD function 164

RAM block zero 168

 memory faults 92

Random Coloured Lines program 168

random delay 38

 music 115

Random Noise program 116

random number seed 152

 numbers 24

Random Rectangles program 80

 walk program 65

Reaction Timer program 37

READ equivalent 63

reading and writing data from

 BASIC 67

 and writing speed of 70

 numeric data 64

 text 63

recipe analogy 17

 apple tart 20

 puff pastry 19

 sponge cake 17

recipes subroutines in 20

RECORD TAPE message 9, 68, 141

recursion in BASIC 42

recursive subroutine calls 42

references backward 172

 forward 172

registers index 107

registers:

 accumulator A 122

 index X 107, 122

219

 index Y 107, 122

 program counter PC 122

 stack pointer SP 122

 status S 122

relational expression 143

 operators 29

REM statement 24, 152

remainder (%) operator 11, 158

Renumber program 136

renumbering programs 136

 using screen memory 136

Replace program 123

representation of matrices 51

REPT (repeat) key 6, 194

reset 6

return 132, 155

 character 59

RETURN key 6

 statement 39, 152

REWIND TAPE message 10, 140

right-string extraction 61

RND function 24, 152

ROL instruction 116, 188

ROM extension 161

 memory faults 92

Roman Numerals program 123

root of equation 41

ROR instruction 116, 188

rotate instructions 115

Rotating Rectangle program 28

rounding 13

routines in different text spaces

 135

 input/output 191

 operating-system 191

routines:

 OSRDCH 102, 191

 OSWRCH 102, 191

RS code 132

RTI instruction 188

RTS instruction 188

RUN command 141

 statement 23, 135, 152

Saddle Curve program 166

SAVE command 139, 140

 statement 9, 135, 139, 152

saving data on cassette 68

 programs or text on tape 8

SBC instruction 102, 189

screen clear 6

 control codes 65

 editing 132

 editing keys 133

 end 132

 format for graphics 27

 mapping 134

 memory 15

 memory renumbering using 136

 noise on 168

 poking to 16

 scrolling 6

 start 131

scrolling screen 6

SEC instruction 102, 189

SED instruction 189

seed random number 152

SEI instruction 189

separator space as 155

service programming 93

SGET statement 68, 152

SGN function 164

Shell sort 47

shift instructions 115

SHIFT key 5, 131, 140, 194

SHUT statement 152

SI code 132

Sierpinski Curve program 81

signal sync 194

signals cassette-interface 194

Simultaneous Equations program 51

simultaneous equations solving 51

SIN function 164

Sine and Tangent program 166

SO code 132

solving simultaneous equations 51

sort Shell 47

Sorting program 47

space as separator 155

spaces in BASIC programs 74

special characters printing 64

speed of graphics 85

 of reading and writing 70

sponge cake flowchart 18

 recipe 17

SPUT statement 67, 153

SQR function 165

Square Root program 35

STA instruction 98, 189

stack pointer SP register 122

statement abbreviations 73

 delimiter 14

 terminator (;) 156

statements:

 BPUT 67, 144

 CLEAR 28, 79, 144, 167

 COLOUR 167

 DIM 45, 57, 145

 DO 145

 DRAW 28, 80, 145

 END 145

 FOR 33, 146

 GOSUB 39, 135, 147

 GOTO 25, 135, 147

 IF 148

 IF...THEN 2S

 INPUT 23, 58, 148

 LET 74, 148

 LINK 100, 149, 173

 MOVE 28, 80, 149

 NEXT 33, 149

 QlD 150

 PLOT 79, 150

 PRINT 11, 150

 PUT 67, 151

 REM 24, 152

220

 RETURN 39, 152

 RUN 23, 135, 152

 SAVE 9, 135, 139, 152

 SGET 68, 152

 SeUT 152

 SPUT 67, 153

 UNTIL 153

 WAIT 37, 153

status flags 122

 S reg ister 122

status-reg ister flags 181

STEP connective 34, 153

step size in FOR...NEXT loop 34

stopping a BASIC program 24

stored text executing 23

storing text 6

STR statement 163

string ($) operator 57, 157

 assignment 58

 equality 58

 functions 58

 input 58

 length of a 59

 manipulations 59

string right 143

string variables 57

string-to-number conversion 165

strings arrays of 62, 63

 concatenation of 61

 dimensioning 57

 in BASIC 57

 printing 12, 58

 quoted 57

STX code 131

 instruction 107, 189

STY instruction 107, 190

subroutines in BASIC 39

 in recipes 20

 uses of 40

subscript checking for arrays 50

substrings 61

subtract (-) operator 11, 158

subtraction in assembler 102

successive approximation 35

SUM error 10

suppressing assembly listing 173

switch using GOTO multi-way 26

switches in BASIC 26

symbols flowchart 21

sync signal 194

syntax definition 199

 errors 91

TAB equivalent 145

TAN function 165

tape errors 10

 saving programs or text on 8

TAX instruction 109, 190

TAY instruction 109, 190

teletype mode l31

temperature conversion 23

testable expression 143

testing high-fidelity equipment

 116

 memory 92

 points in graphics 87

text editing 7

 files 9

text space lower 168

 upper 168

text spaces changing 135

 routines in different 135

text storing 6

text-space pointer 135

three-dimensional curve 84

 plotting 83, 166

Three-Dimensional Plotting

 program 83

timing BASIC lines 170

 in BASIC 37

TO connective 153

tone generating 25

TOP function 24, 153

Tower of Hanoi program 42

trapping errors 137

trigonometrical functions 163

true logical value 31

TSX instruction 190

turn on/off cursor 16

two-pass assembly 172

TXA instruction 110, 190

TXS instruction 190

TYA instruction 110, 190

typewriter mode 131

unitialised variables 91

unnamed files 139

UNTIL statement 153

upper text space 168

VAL function 165

variables A to Z 12

 floating-point 165

 logical 31

 string 57

 unitialised 91

VDU 133

vectors call by reference using

 54

 in BASIC 45

 interrupt 193

 of vectors 56

 operating-system 193

versatile interface adapter 169

vertical tab 132

VIA 169

 timers 170

visual display unit 133

VT code 132

WAIT statement 37, 153

what to do if baffled 91

word indirection (!) operator 53,

 156

word vectors 53

writing a BASIC program 23

221

 to port 170

zero flag 106, 108, 122

zero-page addressing 119

zero,X addressing 120

zero,Y addressing 120

322 Hz program 26

4-Colour Plot program 88

6520 processor 98

SECOND EDITION
COPYRIGHT ACORN COMPUTER LTD 1980 ©

223

PRINTING GROUP·CAMBRIDGE AND ST.IVES

