

SPLITTING THE ATOM

A MANUAL FOR INFORMED USERS

BY

J. R. STEVENSON and J. C. ROCKETT

TABLE OF CONTENTS

CHAPTER TITLE PAGE
1 OPERATION OF THE WORKSPACE AND OTHER STACKS 3
2 STRUCTURE OF THE ATOM INTERPRETER 5
3 RAM USAGE BY THE OPERATING SYSTEM 7
4 M/C ROUTINES AT C000 AND F000-A DESCRIPTION 12
5 A DISASSEMBLY OF C000 AND FO000 26
6 WORKING EXAMPLES USING THE ROM ROUTINES 41
7 TAPE FILES, CRC, AND PRINTER USAGE 45
8 THE MEMORY-MAPPED VDU 51
q THE PREVENTION OF COPYING 59
APPENDICES

Al SPECIFICATIONS OF THE DISATOM SUPER ROM 67
A2 A WORKING PROGRAM FOR MEMORY DISPLAY/EDIT 70
A3 6502 ASSEMBLER/OP CODES 71
A4 . ATOM ASCII AND CONTROL CODES 73

INDEX TO ROUTINES 76

CHAPTER 1
OPERATION OF THE WORKSPACE AND OTHER STACKS

I. The Workspace Stack

A four byte wide workspace stack is used by the ATOM to perform
arithmetic functions and temporary storage of data being manipulated.
This stack is best explained by comparison with the 6502 machine code
stack, as the principle is very similar.

The page zero locations 16 through 51 inclusive are reserved for the
workspace stack, but since the information being stored is up to four
bytes wide (that is, a BASIC integer range of about + 2*¥1049) this area
is split up into four parts:

el [1 [T23] LsSB—

3T 11 1 133 4 Byte wide
Bal 1 1 1 142) value

31 1 [I151] msB-

= The workspace stack pointer

Just as the 6502 uses a stack from IFF thru 180 and points to the next
free location in it by the stack pointer register S , the workspace
stack also requires a pointer, and this is kept in location 4, as shown
above.

In the case of the 6502 stack, the pushing and pulling of the numbers on
the stack automatically changes S, the stack pointer, so that it points
to the next free location. With the workspace stack the equivalent
operation must be done by the software, by incrementing or
decrementing the contents of 4 as needed.

Many references are made in this book to routines which read or write
values to the workspace stack, and may be used fairly freely by those
writing machine code routines. One example is given below. It is
extracted from the ATOMROM at C99D, and is part of a routine to copy a
random number in location 8 thru B to the workspace stack.

C99D LDY @ 8
LDX #4
LDA #0001,Y
STA #25,X
LDA #0002,Y
STA #34,X
LDA #0003,Y
STA #43,X
LDA #0000,Y
STA #16,X
INX
STX HU

-4

Note how the X register is loaded from location 4 and then used as an
offset topoint at the current workspace stack values 16,X; 25,X; etc. .
Note also that having pushed this data on the workspace stack, the w/s
stack pointer is incremented by INX ; STX #4 . This is directly
equivalent to the machine code instruction PHA (push value on stack and
change stack pointer S) except that the routine achieves this on a &
Byte wide basis.

Machine code writers invoking existing ROM routines such as this
should pay careful attention to the w/s stack pointer at 4, and always
ensure that it stays inside the limits 0 thru E .

II. The FOR/NEXT Stacks

240} 1 | 124A) Variable
1=A,2=B, etc.

{24Bf 255] LSBA

256 260] STEP size

261 26B Stack

26C 276)MSB-

277 281] LSBA

282 28CJ| Terminal Value

28D 297 Stack

298 2A2 | MSB-

2A3 2AD|LSB NEXT return

2AE 2B8 JMSB Address, i.e.
where FOR was

1 5] FOR/NEXT stack pointer

Each new FOR command increments the FOR/NEXT stack pointer to point at
the data relevant to this loop, viz. , the location of the FOR, the
terminal value, the STEP size,and the variable used.

A similar map can be drawn for DO/UNTIL and GOSUB/RETURN loops, though
there are obvious differences. See Chapter 3 - RAM usage.

CHAPTER 2
THE STRUCTURE OF THE INTERPRETER

C000
BASIC

BASIC

F000 BASIC
F000 COS

D000
BASIC FLOATING POINT ROM

A000
BASIC UTILITY ROM

Programs are stored in memory as a series of strings, which in the
expanded ATOM are normally begun at #2900. Address 2900 contains an 0D
which means "start of program. Each line of the program consists of a
two byte line number (stored as hex), followed by the actual ASCII code
for what ever you typed in. At the end of each line is an 0D, and the end
of program is marked by an FF (thus a program always ends in OD FF). A
program consisting only of 20 PRINT"HELLO";END would look like
this if we did an ASCII Dump starting at 2900:

ODJOOJ14JPIRJIINJTI"|H]JEJLIL]JO]"|;]EJN}DJOD}FF

P. &TOP would give 2915, since this is the next memory location after
the FF at the end of the program.

Strings being interpreted, either in direct mode or as a
programbeing run, are first checked by the C000 BASIC interpreter. If
they are valid, amatch with the word in the string is found in the ROM,
and the appropriate routines are called for execution of the word.

If the C000 interpreter can't find amatch for the string, then
it passes control over to the F000 Basic interpreter. Again, valid
matches are sought, and executed if one is found.

If the F000 interpreter can't resolve the string, then
normally this would mean that an erroneous string is present, and an
ERROR routine is called. However, before giving up all hope, a simple
test is made which looks for the signature of aROMat D000 (the FLT. PT.
ROM), and if the ROMis present, then the string is passed over to it for
interpretation.

By this means the ATOM can work with or without the FLT. PT. ROM
installed, and when one is plugged in, the machine is able to detect
that it is there.

-6-

Similarly, the FLT.PT. ROM contains a test that examines the
UTILITY socket at A00OO, by testing the location A0OOO and A0OOIl for 40
and BF respectively. If these are present, then interpretation is
passed to the A000 ROM.

The COS commands are independent of the BASIC interpreter, and
have their own interpreter at F8F0, accessed automatically by the
leading asterisk (*) of all COS commands. The COS command interpreter
is indirected by (OSCLI), which, since it is in RAM, allows user
intervention, and so the possibility of adding extra words without the
addition of aROM. An illustration of this is given later by the HEX DUMP
program.

Assume the following string is being interpreted: .

[PIRJIINIT [A]; [P|RJIJNIT[B] OD]

and that we are in the direct mode, so that this has been typed into the
machine from the keyboard. The string is held in the direct mode input
buffer at 100 onward. The keying of the carriage return (<CR>) puts an
0D at the end of the string as shown, and passes control over to the
interpreter.

The interpreter uses a vector at 5,6 to point to the
location of the string under scrutiny and so this vector is set to 100
fromthe direct mode, and awordmatch is sought. The interpreter works
its way along the word by incrementing Y , so that (5),Y points to the
character within the word being matched. Once the machine has resolved
the entire command (PRINT in the case above) the vector (5) is
consolidated by adding the Y register to it. ThenY is set to zero, so
that in our case (5),Y is pointing at A in the PRINT A command. The
interpreter goes on to find out what needs printing, but before
execution checks that there is no rubbish behind the letter A, then
executes the appropriate routines. Having executed the PRINT A, the
vector at (5),Y is now pointing at the statement separator
(semicolon), and the machine skips past this to execute the next
command. .

By this means the (5),Y pointer can range throughout the whole
of the memory area. All the machine's BASIC interpreters use this
vector, and before the value of Y has been spoiled by execution calls,
its value is stored in ?3

ADDRESS

00
01-02

03
04
05,06
07
08-0C
0D, OE
OF
10,11
12
13
14
15
16-24
25-33
34-42
43-51

23,24
32,33

52-6F
70-7F
80-AF
BO-FF
C9
DD

DE,DF

EO
El
E6
E7
EA
FE

100-13F
140-17F
180-1FF
200,201
202,203
204,205
206,207
208,209
20A, 20B
20C, 20D
20E, 20F
210,211
212,213
214,215
216,217
218,219

LSB

MSB

|

RAM USED BY THE OPERATING SYSTEM

CHAPTER 3

FUNCTION
Error number in BASIC
Line number in BASIC, 0 means Direct Mode

(as MSB,LSB in Binary, not BCD)

BASIC text pointer offset

Workspace Stack pointer

BASIC text pointer:(5),3 points at character
COUNT value

Random Number seed

TOP : points at top of BASIC text area
Hexadecimal printer flag (positive=hex)
Pointer to BASIC error handler

BASIC text area MSB (page), normally #29
DO/UNTIL stack pointer

GOSUB/RETURN stack pointer

FOR/NEXT stack pointer

Integer Workspace stack

DIM (free space) pointer
DATA pointer for DISATOM

Arithmetic Workspace

Floating Point Workspace (free if FP unused)
FREE

COS workspace

Title string of file to load from tape

*FLOAD flag. Set if bit 7=1

Cursor position pointer (start of line)
Horizontal cursor position O0-1F

Cursor Mask, usually #80

Page mode flag:neg.=OFF,else No. lines left

Lock key flag. O=inactive, #60=1lock on
noramlly 0. If not, then *NOMON engaged
Character NOT sent thru VIA to printer

Direct Mode input buffer
BASIC input buffer and String operation area
Microprocessor Stack

NMIVEC -

BRKVEC C9oD8

IRQVEC A000 y just RTI
COMVEC F8EF

WRCVEC FE>52

RDCVEC FE94

LODVEC F96E

SAVVEC FAE5

RDRVEC C2AC y just BRK
STRVEC C2AC y just BRK
BGTVEC FBEE

BPTVEC FC7C

FNDVEC FC38

21A,21B
21C-23F
240-24A
24B-255
256-260
261-26B
26C-276
277-281
282-28C
28D-297
298-2A2
2A3-2AD
2AE-2B8
2B9-2C3
2C4-2CE
2CF-2DC
2DD-2EA
2EB-305
306-320
321-33B
33C-356
357-371
372-38C
38D-3C0
3C1-3C4
3C5-3C9
3CA-3FC
3FD

3FE-3FF

2800- 2887

LSBW

MSB-
LSB-

mse

LSB]
MSB
LSB]
MSB
LSB]
MSB
LSB]
MSB

LSB
MSB:l

-8-
SHTVEC C278 , RTS(unless DOS present)

FREE
Pointer to variable stack,FOR/NEXT,1=A,2=B,etc.

FOR/NEXT step size stack

FOR/NEXT terminal value stack

FOR/NEXT return address stack
DO/UNTIL return address stack
GOSUB/RETURN return address stack
Array pointer stack 2EB,306= @@
2EC,307=AA etc.
Simple Integer Variable stack

321,33C,357,372 =4

322,33D,358,373 = A

etc.

Label address stack 38D,38E= [@);38F,390=[A] etc
Last plotted point (for line drawing)
Used by FPUT and FGET
FREE unless DOS used

Used by colour point plot .
Point plot vector

Floating point variables %@ to %Z .Each is 5
bytes wide, so 135 bytes used.

-9.
THE SIMPLE INTEGER VARIABLE STACK

Variable LSB ' MSB
@ 321 33C 357 372
A 322 33D 358 373
B 323 33E 359 374
C 324 33F 35A 375
D 325 340 358 376
E 326 341 35C 377
F 327 342 35D . 378
G 328 343 35E 379
H 329 344 35F 37A
I 32A 345 360 37B
J 32B 346 361 37C
K 32C 347 362 37D
L 32D 348 363 37E
M 32E 349 364 "~ 37F
N 32F 34A 365 380
o 330 34B 366 381
P 331 34C ‘367 382
Q 332 34D 368 383
R 333 34E 369 384
S 334 34F 36A 385
T 335 350 36B 386
u 336 351 36C 387
\% 337 352 36D 388
W 338 353 36E 389
X 339 354 36F 38A
Y 33A 355 370 38B
Z 33B 356 371 38C

-10-

THE ARRAY POINTER STACK

ARRAY POINTER LSB MSB
@@ 2EB 306
AA 2EC 307
BB 2ED 308
cC 2EE 309
DD 2EF . 30A
EE 2F0 30B
FF 2F1 30C
GG 2F2 20D
HH 2F3 30E
11 2F 4 30F
33 2F 5 310
KK 2F6 311
LL 2F7 312
MM 2F8 313
NN 2F9 314
00 2FA 315
PP 2FB 316
X 2FC 317
RR 2FD 318
SS 2FE 319
TT 2FF 31A
uu 300 31B
Vv 301 31C
W 302 31D
XX 303 31E
YY 304 31F

2z 305 320

-11-

THE LABEL ADDRESS STACK

MSB

Address

LSB

Label

w o N F*F W o £ O W O N ¥ VW 00 < O W O N I O 00 <L w o
N AN &N N 6O & 6O & 6 € € € < € € € <€ Mmoo Mmoo M @ M o QO
(o2 W o A WY . o WY - A W | WY o 2 WY - o WY > o WY o o NN o o WY o o WY o A WY A VR . S U 5 A M .0 W o 0 WY o o WY . o WY o WY o WY o o W o o WY o A WRRNNE & WA Y
A L —~ @« »n N O m O W — & NN o m A L —~ ®a »n N o0 M A L
@ 00 & & O O &N O O O & « <« <« m

P32 S 22 W 2 WY o WY o WY~ ST - WY . WY . WY W O A N2 WY o M M M M ') % w m w m m m

HEQEHEHEUEEHREEERRER R RHEERRHE KRR

Co000

Cc22C

C279

C2AD

C2B2

C31B
C325
C334
C33F

C3B2
C3C8

CHAPTER 4
ADDRESSES OF ROUTINES

to C22B : All this is Data for the Interpreter. The interpreter

to

looks in this area for amatch for the first letter of the word
it is looking at. It then jumps in the table to an area
containing all words beginning with that first letter, and
looks at the second letter. It thus performs a Tree Search of
the BASIC words stored in this area.

C278 : A Subroutine, the Function Interpreter. This area
evaluates the Value of any arbitrarily complex function
pointed to by (5),Y ,finds its value, then stores the results
on the workspace stack (SEE C3C8).

to C2AC : Looks up the "meaning" of commands. If there is nomatch

inthe Tree Table at C000 it hands over to those kept at F000, if
not there then D000, if not there then A00OO, and if not there
thenerror. The tree search is veryquick and it seems that this
is the original ACORN Interpreter. The later additions at F000
and elsewhere are total linear searches and slower.

Executes the command NEW .This is available to you, but
exits back to direct mode. Enter routine at C2B2.

to C31A : Execution of the <BREAK> key comes to here from about

to

to

to

FF94. It puts ODFF into 2900,2901,sets @=8, then hands over to
the CDOF Keyboard Input routines. This routine is entered at
C2CF after a command execution, and at the end of a BASIC
program.Ilt carries on thus:

C2D5-set vector at (5) to =100

C2DC-set line number =0

C2EO-set BRK vector to C9D8

C2EA-set error pointer to C9E7

C2F2-set stack pointer to FF

C2F5-zero the temporary X and Y stores

C2FB-set nesting level of all GOSUB, FOR, DO loops to O.
C30l-set all labels to 0

C309-asks"is this a line number";C313-YES;C316-NO .

This area can be entered anywhere if there is a command in the
Input buffer.

C333 : Executes the command THEN.
C333 : Executes the command LET.

C33E : Executes the command PRINT.

to C3B1 : PRINT in Hexadecimal .Entry at C349 prints the workspace

to

to

stack in HEX. See example, CHAPTER 6.
C3C7 : Executes the command LINK.

C3E4 : A Subroutine to evaluate an arbitrarily complex
function pointed at by (5),Y and store the computed value on
the workspace stack. On return the current value of the
workspace stack pointer is where the answer is stored. The
value is also copied to 52,53,54,55. On return the (5),Y
pointer has been consolidated, i.e. (5),0 points at the last
character in the string interpreted.

~13-

3

C3E5 to C3ED : Deal with assignments such as "X=..." .
C3EE to C405 : Deal with the command ! (quad-POKE).
C406 to C40D : Deal with the command ? (POKE).

C40F to C423 : Executes the cassette operating commands starting with
*, The routine strips off the * and copies the remainder of the
(5),Ystring, up toa<CR>, into thedirect mode input buffer at
100. A subroutine is then called which passes interpretation
over to COS by JSR FFF7 (indirected by (OSCLI)).

C424 toC433 : Checks tosee if FloatingPointROMis in. The lowest two
bytes of the FP ROM are a signature (AA 55), and this routine
tests for these values at D000 and D001, then returns with the
carry clear if theROMis not there. The routine is called from
C550, where the machine is deciding whether to pass a string it
can't understand to the interpreter contained in the floating
point ROM, or to give up and signal an error.

C434 to C464 : The Interpreter "Pre-Test" subroutine whoseeffect is to
take the character pointed to by 5,Y (where Y=7?3) and if this
character is an alphabetic it converts it to the number 1-26,
thenplaces it at 16 ,X (where X=?4), then ?4 is incremented. If
the next character is non-alphabetic the carry is cleared
beforereturn (eg the command P.), but if the next character is.
alphabetic (eg the command LINK) then the carry flag is set
before return. This routine therefore enables the machine to
rapidly execute abbreviated commands, since it need not read
the entire command.

C465 to C4DD : Avaluable Subroutine toread adecimal string. It reads a
string pointed to by (5),Y (where Y=?3) as ASCII decimal
characters, and converts the decimal numeric value toabinary
value, then stores it in the 16,X workspace stack (where
X=?4). 74 is incrememted so the workspace stack can continue.
If the first non-space character is not a number, then BRK is
executed. Spoils A,X, and Y registers.

C4E4 to C50B : A Subroutine used as the interpreters post-test. It
checks that (5),Y (where Y=?3) is pointing at a carriage
return or a semi-colon, or spaces leading thereto. If not,
then executes BRK.

C4F6- consolidates (5) by (5)=(5)+Y and Y=1 .
C504-checks tosee if the ESCkey is depressed. If not thenRTS,
otherwise it jumps to direct mode and executes the escape

code.

C50C to C546 : A Subroutine which copies a new line number to 1,2 and
checks if the line is labelled. If there is a label this routine
passes the current text-positionpointer at (5),Y to the label
store (LSB 38D,X MSB 38E,X).

C54A to C565 : Executionof astatement pointedat by 5,Y. It also checks
for the Floating Point ROM, and if it is there this routine
jumps indirectly to (D002). If not then it jumps to default
handling. C55B is the best place to return to BASIC after am/c
routine, whether in direct or program mode.

-14-

C566 toC574 : Executes the IF command. C566 callsC70C, whichis a truth

test that puts a zero on the workspace stack (at 16,X where
X=?4) if false.

C575 to C588 : Executes the REM command by incrementing (5),Y until a

C589

C608
C62E

Cé661
Ceé689
C70C

C714
C722
C731
C79D

c7B7
C7D3
C7EF
c80B
c87B

to

to

to

to

to

to

<CR> is encountered.

C607 : A Subroutine which prints the lowest level of the
workspace stack (ie 16,25,34,43) as asigned decimal number in
field size @ . A,X,Y are spoiled.

C62D : Data tables for the above routine.

C660 : A Subroutine which uses the vector at (58) to search
through a BASIC program looking for a line number match, or for
a line number greater then that recently inputted. The
inputted line number is assumed to be on the 16,X workspace
stack one level down fromthe workspacestack pointer(?4). The
routine returns with (58),Y pointing at the character
immediately after the matching line number, and the carry is
clear. If thecarry is set, thenno line number match was found.

C688 : A Subroutine called by the C80B multiply routine.

C6D9 : A Subroutine as Cé661.

to C713 : A Subroutine which is the truth test used by the IF and

UNTIL commands. It evaluates anarbitrarily complex statement
or equation [pointed at by (5),(?3)] and places zero on the
workspace stack at 16,X if false.

C721 : The logical AND truth test (you use C70C).

to C72B : The logical OR truth test (you use C70C).

to C79C : String comparison test use by the above truth test

toC7B6 : deals with adding together two adjacent 4-byte numbers on

the workspace stack, viz.:

14 14 15
23 = 23 + 24
32 32 33

41 ,X 41 ,X 42 ,X

to C7D2 : As above, but subtraction.

to C7ED : As above, but bitwise logical OR.

to C80A : As above, but EOR.

to C87A : Deals with multiplication.

to C89B : Similar to C79D, but bitwise AND based on 16,X.

C8BC toC8DB : As for C3C8, but increments w/s pointer, and does not copy

the result to 52,53,etc.

-15-

'C8BC toC8DB : ASubroutine which deals with the minus sign. Entering at
C8C4 negates the current slot on the workspace stack cf:

15 15

24 =0- 24
33 33

52 ,X 42,X

C8DC to C8F7 : ASubroutine todeal withvariable assignments. Entering
at C8E3 will copy any simple variable pointed at by Y (Y=1 is
A,Y=2 is Betc.) to the current slot on the workspace stack (as
given by ?4).See eg program at back. This is the opposite of
CAZ2F.

C8F8 to C901 : Deals with numeric assignments.

C902 toC909 : Executes the ABS function. This can be used by pointing at
the item you want ABSed with 5,Y. The result is placed on the
workspace stack.

C90A to C943 : Deals with the # sign (HEX number sign).
C944 to C94B : Deals with ((leftbracket).

C94C to C95E : Deals with ? as a PEEK function.

C95F to C972 : Deals with ! as a quad-PEEK function.

C973 toC985 : ASubroutine that reads TOP value at vector (D,E) onto the
current workspace stack, and increments the workspace stack

pointer.

C97A to C985 : A Subroutine which reads the current COUNT value (?7) to
the current slot of the workspace stack.

C986 to C9BC : A Subroutine to execute RND. It generates a new random
number at 8 to C, copies it to the current slot of the
workspace stack, and increments the workspace stack pointer
(?4), which you MUST reset.This can be used by you to generate
random numbers in amachine code program (see example ,CHAPTER
6).

C9BD to C9D1 : Executes the LEN function.
C9D2 to C9D7 : Deals with the CH operator.

C9D8 to C9E6 : BRK handler. When the 6502 executes a BRK instruction it
is directed here through the vector in 202,203, normally set
by the operating system immediately before executing a Direct
Mode command. Its effect is to point the BASIC interpreter
text pointer at the vector 10,11, normally C9E7. Exits to
direct mode.

-16-

C9E7 to CA23 : BASIC error handler. This is the BASIC statement executed ~
whenever a BRK command is executed, normally meaning an error
of some type. It says:

@ =1;P.$687'"ERROR "?0;

@ =8;IF ?1§?2 P." LINE"! 1 & #FFFF;P.';E.
It uses ?0 as the error number and ! 1 & #FFFF as the line
number. If the line number is zero this is inferred as adirect
mode error, and no line number displayed. Usable by pointing
5,Y at C9E7, then IMP C55B.

CA24 to CA2B : Routine which calls the floating point ROMinstallation
check at C424 and either Breaks if not installed, or jumps
indirect (D004) if ROM is there.

CA2F to CA4B : A Subroutine, which copies the last value on the
workspace stack to the integer variable pointed at by the Y

DT register (Y=1 for A,Y=2 for B, etc.). The workspace stack
Sty pointer (?4) is decremented TWICE. This is the opposite of
Cc8DC.

CA4C to CA4E : Subroutine, which increments the value of COUNT
(location 7) and then prints the contents of the accumulator
as an ASCII character.

CA51 to CACC : Execute LIST. The value of the X register must be 0 on
entry, and the routine exits to direct mode.

CACD to CB56 : Execute NEXT. CADO checks the value of the FOR/NEXT stack
p01nter(?15) and causes BRK if 0, since this must mean no

FOR/NEXT has been set.
CAE5- adds the STEP size to the variable.
CBl16- checks if the control variable value has reached the

final value.
CB45- moves the text pointer back to the statement after the

corresponding FOR statement.

CB57 to CB80 : Execute FOR. CB5F sets the control variable equal to its

first value.
CB65- checks that the FOR/NEXT stack pointer has not exceeded

the allowable range.
- CB6C- saves a default STEP value of 1

CB8] to CBAl : Execute TO. CB89 saves the terminal value of the FOR
control variable.

CBA2 to CBDl : Execute STEP. CBAA saves the STEP size.
CBC3- saves the FOR/NEXT return address, and increments the
FOR/NEXT stack pointer at 15.

CBD2 to CBEB : Execute "GOSUB". CBD& tests the GOSUB stack pointer value
(14) and yields an error if too many.
CBDE- saves the RETURN address, and increments the GOSUB stack
pointer.

CBEC to CCO4 : Executes RETURN. CBEF tests the GOSUB stack pointer (14),
and if 0 gives the RETURN WITHOUT GOSUB error.
CBF5- pulls the return address from the data stack into the
text pointer at 5.

-17-
CCO05 to CCIC : Executes GOTO.

CCIF to CC80 : Subroutine, called by GOTO and GOSUB. It searches for an
inputted line number or matching label. A successful search
results in the line number being copied to locationl,2. 1f the
label address is already known this is copied to 58,59.
Otherwise the label is searched for and then stored in the
label store as well as being copied to 58,59.

CC81 to CCD!l : Execute INPUT. CC8E is the entry point for a numeric
variable INPUT, and CCB6 for a string variable. Both entries
call the BASIC input routine at CD09 (q.v.); the inputted data
is then copied or read from the string input buffer at 140
onwards (see e.g. prog. at back).

CCD2 to CCEF : Execute UNTIL. CCD2 calls the routine at C70C (the truth
tester).
CCD5- checks for a zero value of the DO/UNTIL stack pointer at
13 .If zero, this is an UNTIL with no DO error.
CCE5- pulls the corresponding return address from data.

CCFO0 to CD08 : Execute DO. CCFO checks the value of the DO/UNTIL stack
pointer at 13 for range, and causes an error if out of range
(too many DO/UNTIL loops).
CCFA- saves the DO/UNTIL return address.

CD09 to CD58 : A very useful Subroutine, to execute inputs. Entry at
CDO09 prints a '?' on the screen and thenwaits for keypresses.
Entries are stored in the string input buffer at 140 onwards,
and full editing is allowed. The routine returns when <CR> key
is pressed, with theY register pointing at the last character
inputted. Entry at CDOBprints the contents of the accumulator
as an ASCII character (normally the > prompt sign), and then
stores keypresses in the Direct Mode input buffer at 100
onwards. The value of COUNT (?7) is set toO onreturn (seee.g.
program at back).

CD98 to CDBB : Execute END. This effectively sets TOP (?0D) and jumps to
direct mode.
CD9B- set TOP=?12 (start of text area).
CDA5- using TOP as a vector ,find a carriage return followed by
a negative number, indicating end of program.

CDBC to CDC8 : A Subroutine called by END which executes:
TOP=TOP+Y register;Y register=1

CDC9 to CE82 : Routine to enter a BASIC program line into the text area.
On entry 16 and 25 contain the line number being entered.
CE3E- A RAM test to see if there is enough to enter it.

CE83 to CE92 : Continuation of the RUN command (see F141). It sets the
text pointer at 5 equal to start of text (normally 2900) and
then jumps to the interpreter at C55B .

CE93 to CEAO : A Subroutine called by the "?" command at C406.

CEAl to CEAD : A Subroutine which executes:
(58)=(58)+Y register; Y register=1

-18-

CEBIl to CEB5 : A Subroutine that checks for a dollar sign or quotes at
the location pointed to by 5,(?3). If true, it returns with
5,(?3) pointed to the character after, if false, BRK.

CEBF to CEEC : A Subroutine. It copies a string in quotes pointed at by
(5),Y into the string input buffer at 140 onwards. The
quotation signs are removed. Enter at CEC2.

CEED to CEF9 : Execute LOAD command. CEF4 calls the 'Load a File'
routine at FFEO. All this is well documented in the ATOM
manual .

CEFA to CF09 : ASubroutinecalled by LOAD and SAVE. It reads the program
title into the string input buffer at 140, sets the vector (54)
equal to the start of the BASIC text area (normally 2900), and
then returns.

CFOA to CF27 : Execute SAVE command.
CFOA- calls above subroutine to set (54)=start of text.
CFOD- sets (58)=start of text.
CFll- sets (5A)=TOP
CF19- sets (56)=RUN address of C2B2.
CF22- calls 'Save a File' routine at FFDD.

CF28 to CF5A : Various uninteresting subroutines used by GET and PUT-
see routines that follow.

CF5B to CF65 : A Subroutine to execute BGET. It reads a value from
tape/disc to the workspace stack LSB and sets the other bytes
to zero.

CF66 to CF7A : A Subroutine to execute the GET command. It reads four
bytes from tape/disc to the workspace stack.

CF8F to CF94 : Execute BPUT command.

CF95 to CFB3 : A Subroutine to execute PUT.

CFA6 to CFB3 : A Subroutine to execute FIN.

CFA7 to CFB3 : A Subroutine to execute FOUT.
CFC5 to CFE2 : Execute SPUT command.

CFE3 to CFFF : execute SGET command.

The above GET and PUT routines use 5,Y to point at the data after the
command.

-19-
F000 ROUTINES

F000 to F02D : Command wbrd table and action addresses. Includes
PLOT,MOVE,DRAW,CLEAR,DIM,OLD,WAIT, and [

FO2E to FO4A : An array pre-test, looks for two consecutive characters
being the same, thus identifying an array.

FO04B to FO82 : Interpreter for the above command words. Jumps to the
appropriate action addresses.

F08B to FOAD : A Subroutine called by FO2E to pull the array start
address from the table of array addresses (as LSB= 2EB,Y and
MSB=306,Y) and places it on the workspace stack.

FOAE to F140 : Executes DIM command as follows :
FOAE- Causes error 216 if in direct mode.
FOB9- Simple string dimension:set simple variable values
(lower 2 bytes) to next free RAM space, and points DIM vector
at(23)to the next available space.
FOD7- set up array dimensions. Sets the appropriate array
variable pointer (see F08B), and points DIM vector to next
available space.
F119- check that DIM vector has not exeeded avialable RAM, and
cause error 30 if it has.
Fl31- take action on additional items separated by commas in
the same DIM statement.

Fl#ltoFl#B Executes the RUN command. Sets DIMvector at (23) equal to
TOP, then jumps to CE83. This is the correct GO address for
BASIC programs that use a DIMstatement. CE86 may also be used
if there are no DIM commands.

F14C to F154 : Executes the WAIT command (uses FE66).
F155 to F290 : Assembler data and look-up tables.

F291 to F29B : A Subroutine to fetch the next non-space character in the
BASIC statement being interpreted. It uses 5,(?3) as a
pointer, and returns with ?3 pointing at the first non-space
character.

F2Al to F375 : Executes the "[" command (start assembler).
F2A3- deals with "]"
F32E- deal with assembler labels.
F360- deal with assembler REMs (/).
F36B- deal with statement separator (;).

F376 toF37D : ASubroutine toprint the contents of the accumulator as
two hex characters followed by a space. Used by the assembler
listing display.

F37E to F38D : Byte-printing routine called by F376 above.

F38E to

F531 to

F542 to

Fé644 to

-20-

F530 : Various routines used by the assembler.

F399- separate labels, separaters(;), and REMs (/).

F3F2- separate immediate(@), indirect (()), and accumulator
mnemonics. ‘

F454- act on immediate mode (@).

F462- act on indirect mode (()).

F49B- act on accumulator commands (e.g. ROL A).

F511- print "Out of Range".

F514- the string "Out of Range"

F541 : Carries out the OLD command.Exits to END at CD9B.

Fé64l : Carries out MOVE,DRAW,and PLOT commands.
F542- entry point for MOVE. :
F546- entry point for DRAW.

F54E- entry point for PLOT.

F67A : Subroutines used by MOVE,DRAW, and PLOT.

F668- decrement the vector (5A),X

F671- increment the vector (5A),X .

F678- point plot subroutine (JMP(3FE)). 3FE/3FF depends on
the mode set by the CLEAR command (see below).

F67B to F6CE : Carries out the CLEAR command. This sets up the word at

F6C2 to

F6CF to

F6E2 to

F7C9 to

B00O for the CRT controller, and places the appropriate point
plot routine address in 3FE/3FF.

F6CF : Carries out CLEAR 0 .

F6El : Graphics mode control data, including appropriate
clear mode and point plot routine addresses, and CRT
controller words for BO000 (port control from PIA).

F7C8 : Point PLOT subroutines use by MOVE,DRAW,PLOT.

It requires the XCo-ordinate in 5A,5B ; the Y Co-ordinate in
5C,5D ; 5E=0 clears point, 5E=1 sets the point and 5E=2 inverts
the point. Entry points are:

MODE ADDRESS
0 F6E2
1 F73B
2 F754
3 F76D
4 F7AA

F7D0 : Data used by point plot routines at F6E2 et.al.

F7D1 to F7EB : A Subroutine that is very useful for printing from your

own machine code program. When this routine is called, all
bytes after the call are considered to be ASCII code, which is
outputted to the screen. The routine will terminate back to
your m/c programwhen it encounters a negative number (NOP is a
good one).See example of use in CHAPTER 6.

-21-

F7EC to F817 : Subroutines to print the hex value of
words (4 bytes), vectors (2 bytes) and single bytes.
On return X is spoiled, but A and Y preserved.
F7EE-print in hex a word in order X+1,X,X+3,X+2.
F7Fl-print in hex a vector (X+1,X).
F7FA-print byte in accumulator plus a space.
F802-print in hex the byte in the accumulator.

F818 to F84E : A Subroutine (use by *LOAD,*SAVE etc.), which copies a
string enclosed inquotes in the 100 input buffer to the string
area starting at 140. Y should point to the beginning of the
input string. X,Y, and the accumlulator are spoiled.

F86C to F874 : Print "NAME" then BRK.

F875 to F87D : ASubroutine to fetch the next non-space character from
the direct mode input buffer at 100,Y . On return, Y points to
the character fetched.

F87E to F892 : A Subroutine which converts the value in the
accumulator from a valid ASCII hexadecimal character to its
hexadecimal value. If the contents of the accumulator was not
a valid ASCII hex character the routine returns with the
accumulator unchanged, and the carry flag set’. Otherwise, the
accumulator contains the true hex value and the carry flag is
clear.

F893 to F8BD : A Subroutine which reads the ASCII hexadecimal value in
the direct mode input buffer at 100,Y as a vector (two bytes or
4 characters) to the location pointed to by X on entry to the
routine. e.g. :
Y=position of the lst character in the buffer,lets
say it points at the A of Al47.
X= #80
After JSR F893, then 80,81=Al47. If the first
character in the buffer was invalid, then the zero
flag is set on return.

FE8BE to F8ED : Table of *COS reserved words and their action
addresses.These are: CAT,LOAD,SAVE,RUN,MON,NOMON,FLOAD,

and DOS.

F8EF to F925 : *COS interpreter subroutine called by OSCLI. It looks
for a match between a word in the direct mode input buffer at
100,Y and the reserved words starting at F8BE. It jumps to
the correct action address if a match is found.

F926 to F92E : Default routine for unknown *COS command, which prints
"COM" and then ERROR 48.

F955 to F96D : Executes the *FLOAD and *LOAD commands.
F955=*FLOAD , and F958=*%LOAD. The routine exits via (20C) ,
the LODVEC, which is normally set to F96E.

-22-

F96E to F9Al : ASubroutine which loads a file. This isnormally called
by JSR FFEO (OSLOAD-pointed to by [20C]). X must point at
zero page vectors as follows: O,X | ,X=file name string ; 2,X
3,X=first data to be put here ; if bit 7 of 4,Xis 0 the file's
own start address is used.

F99A- print a series of spaces by INYuntil Y=0F, soup to 15 spaces can
be printed (note-it's easier to use CA46 and monitor ?7).

F9A2 to FAO7 : A Subroutine called by the F96E routine.

FAO08 to FA18 : A Subroutine which increments a vector (2 bytes) in page
zero pointed at by X (X,X+1),and each time does a CMP with the
vector pointed at by X+2,X+3. It returns with the zero flag set
if the vectors are equal,otherwise clear.

FA19 to FAIF : Executes the *MON and *NOMON commands.
FA19=*NOMON, and FAlA=*MON

FA20 to FA29 : Executes the *RUN command.
FA2A to FA64 : Executes the *CAT command.

FA65 to FA6A : ASubroutine that calls the routine at F893. If the data
read by F893 was invalid then this routine prints "MON?"
followed by a break.

FA76 to FA85 : A Subroutine to check that there is no rubbish after a
valid * command. Only a carriage return or spaces leading to a
carriage return are allowed. Otherwise it prints "MON?"
followed by a break.

FA86 to FABA : Saves an unnamed file. Called by FAES.
FABB to FAE4 : Executes the *SAVE command. This routine calls the
operating systemsave-file routine poxnted at by (20E), which

normally contains FAES.

FAE5 to FB3A : Save file routine normally called by OSSAVE routines.
Enter with X pointing at a table of addresses in page zero as

follows:
0,X 1,X file name string
2,X 3,X reload address
4,X 5,X execution address
6,X 7,X first byte to be saved
8§,X 9,X last byte+l to be saved

FB3B to FB89 : Routines called by the save-file routine which commit
' the file to tape. Useful parts are

FB7D- wait 2 seconds.

FB8l- wait 0.5 seconds.

FB83- wait X/60 seconds.

FB8C- wait 0.1 seconds.

X=0 on return from these routines.

-23-

FBEE to FC2A : A Subroutine to get a byte .from tape. This routine is

indirected by (214), normally called by JSROSBGET (FFD4), and
is designed to act at 300 baud. The routine reads individual
bytes from the tape and is called by the LOAD routines, and by
BGET, SGET, etc.. The byte fetched is passed back in the
accumulator, the: X and Y registers are preserved. The
accumulator value is also added to the check sum kept in
location hex DC.

FC38 to FC7B : A Subroutine used by COS commands to write PLAY ,RECORD,

FC7C to

or REWIND TAPE, then wait for a key to be pressed before
returning. Entry at FC38 with C=1 gives "RECORD TAPE", while
C=0 gives "PLAY TAPE".Entry at FC40 gives "REWIND TAPE".
FC4F- message PLAY TAPE.

FC58- message RECORD TAPE.

FC63- message REWIND TAPE.

FCéD- message TAPE.

FC76- wait for keypress.

FCBC : A Subroutine to put a byte to tape. This routine is
indirected via (216), normally called by JSR OSBPUT (FFD!) ,
and operates at 300 baud.The routine is called by the SAVE and
BPUT commands, and passes the value of the accumulator to
tape. The X and Y registers are preserved. The accumulator is
also added to the checksum total, kept in hex DC.

FC88- synchronise to 2.4 KHz edge

~ FC92- output a logical 1.

FC9C- output a logical 0.

FCD8 to FCE9 : ASubroQt.ine used by OSBPUT to synchronise the bits being

output to 2.4 KHz. reference oscillator. Entry at FCD8 waits
for the first occurence of a high-to-lowtransitiononbit 7 of
port C of the PIA (the 2.4 KHz reference). Entry at FCDA with
the X register set to a.number-0 to.7F counts that number of 2.4
KHz. trans1t10nsbeforereturnlng This can be used for timing
since X=1 gives c. 400 microseconds, X=2 c. 800 usecs. , etc..

FCEA to FE51 : ACollection of subroutines associated with the print

channnel OSWRCH, including execution of the control codes 0
thru IF. Useful ones are given below.

FDOB- <CTRL> F (screen off).

FDI11- <CTRL> U (screen on).

FDIA- <CTRL> G (bell).

FDIC- short bell.

FD40- move cursor to start of line without deletion.
FD44- invert character at current cursor position.

FD50- delete a character.

FD5C- backspace.

FD62- linefeed. _ S

FD65- Invert character under the cursor. If the screen has
previously been turned off(i.e. 2E0<0) then a CLEAR SCREEN is
executed.)

FD69- <CTRL> L (Clear ,Home Up Left)

FD7D- <CTRL> 4 (Home Up Left)

FD87- cursor up.

FD8D- <CTRL> N (Page Mode On).

FD92- <CTRL> O (Page Mode Off).

-24-

FDEC- Scroll-Screen Check, looks to see if the next character would
cause a scroll, checks the page mode counter (?E6), and
executes a scroll or waits for a keypress. ‘

FEO8- Scroll the Screen. Entry at FEOAwith Y=40 will scroll
all but the top line of the screen. Y=60 leaves the top two
lines alone, etc.. .

FE22- delete all current line

FE24- blank Y+l characters in current line.

FE26- fill Y+1 characters from current line onward with the
character in the accummulator.

FE35- Check Next Cursor Position, called by Backspace and
Delete to see if the cursor is at the beglnnlng of aline or Home
position.

FE52 to FE65 : Routine to prlnt a character This is indirected by
(208), called by the OSWRCH at FFF4.
FE52- Pass character to VIA printer, and execute.
FE55- Print character on screen or execute any recognisible
control codes. X and Y registers preserved.

FE66 to FE70 : ASubroutine to synchronise toCRTField Flyback, used to
write on the screen without generating noise. Can be used as a
timer.

FE66- wait until the start of the next field flyback, even if
already in flyback.

FE6B- return immediately if already in flyback, else wait
until the next flyback. A,X,Y all preserved.

FE71 to FE93 : The Keyscan Subroutine called by OSRDCH (see below).
Does not examine <CTRL>, <SHIFT>, <RPT>, or <BREAK>. It
returns with the carry flag set if no key was pressed. If a key
was pressed when this routine was called, the carry flag is
cleared and the Y register holds the key pressed as its ASCII
value minus hex 20.

FE94 to FECA : OSRDCH Subroutine. This routine waits for a key to be
pressed and then returns with its ASCII value in the
accumulator. Cursor and some other control codes are executed

BEFORE returning.
FECB to FEFA : Data and Look-up tables for executing control codes.

FEFB to FF3E : A Subroutine called by OSWRCH to pass the value of the
accumulator to the printer using the VIA. <CTRL> B andC enable
or disable this routine respectively.

FF10- waits for handshake signal. (SEE Chapter 7).

FF3F to FF99 : RESET - the machine comes here after hitting <BREAK> or at
switch-on, by picking up the reset address at FFFC (common to
all 6502 microprocesssors)

FF3F- initialise page 2 vectors (204 and up).

FF4A- set stack pointer to FF.

FF53- set all array pointers to FFFF.

FF69- print message 'ACORN ATOM'

FF7C- test for RAM at 2900, and set text pointer to default
values if appropriate. \

FF9A to FFBl : Data used by the RESET routine to initialise page two
vectors.

-25-

FFB2 to FFBD : IRQ handler. Determines the kind of IRQ (true interupt or
BRK), and executes it.

FFCO to FFCé : Executes BRK.
FFC7 to FFCA : Executes non-maskable interupt (NMI).

FFCB to FFF9 : Jump tables for major operating system routines.
ADDRESS JUMP(x) CODE NORMAL VALUE
FFCB 021A OSSHUT C278 :
FFCE 0218 OSFIND FC38
FFD1 0216 OSBPUT FC7C
FFD4 0214 OSBGET FBEE
FFD7 0212 RDRVEC C2AC (BRK)
FFDA 0210 STRVEC C2CA -"-

FFDD 020E OSSAVE FAE>5 '

FFEO 020C OSLOAD F96E

FFE3 020A OSRDCH FE94 o
FFEé6 OSECHO FE94 THEN FE52

FFE9 OSASCI 0D CAUSES CR,LF
FFED OSCRLF CAUSES CR,LF
FFF 4 0208 OSWRCH FE52

FFF7 OSCL1 F8EF

FFFA NMI FFC7

FFFC RESET FF3F

FFFE ' IRQ/BRK FFB2

c22C
C22F
C231
C233
C235
C236
c237
C239
C23B
C23D
C23F
C241
C242
C245
C247
C249
C24B
C24E
C24F
C259
C251
C254
C256
C258
C25A
c25C
C25E
C260
C262
C264
C265
C268
C26A
C26B
Cc26D
C26F
Cc271
C274
C276
C278
C279
C27B
C27D
C27E
C27F
c281
'C283
C285
c288
c28A
c28cC
c28D
C290
C292
C294
C296
C299
C29B

JSR
STY

#CF3E
#0F

LDX@#ED

LDY
DEY
INY

#03

LDA(#05),Y
CMP@#20

BEQ
STY
STA
INX
LDA
BMI
CMP
BNE
LDA
TAX
INX
INY
LDA
BMI

#C236
#5E
#52

#BFFF,X
#C26B
#52
#C241
#COEE,X

#BFFF,X
#C26B

CMP (#05) ,Y

BEQ

#C24F

LDA(#05),Y
CMP@#2E ..

BEQ
LDY
BPL
INX
LDA
BPL
INY

#C264
#5E
#C24B

#BFFF,X
#C264

CMP@#FE

BCS
STA
LDA
BCC
LDX
RTS

#C2AA
#53
#COEE,X
#C29F
#04

LDX@#0QE

LDY
DEY
INY

#03

LDA(#05),Y
CMPe#20

BEQ
CMP
BEQ
STA
INX
LDA
BMI
CMP
BNE
LDA
STA
LDA

#C27E
#C1DD, X
#C296
#52

#C1DD,X
#C2A8
#52
#C28C
#C212,X
#53
#C1F8,X

CHAPTER 5

DISASSEMBLY OF C@0@0

C29B
C29E
C29F
Cc2al
C2A3
C2A5
C2A8
C2AA
C2AC
C2AD
C2B0
C2B2
C2B4
C2B6
C2B8
C2BA
C2BC
C2BE
C2Co

cac2

c2cC4
C2C5
cac7
c2cs
caca
cacc
C2CF
C2D1
C2D2
C2D5
C2D7
C2D9
C2DA
c2DC
C2DE
C2EQ
C2E2
C2E5
C2E7
C2EA
C2EC
C2EE
C2F9
C2F2
C2F4
C2F5
C2F7
C2F9
C2FB
C2FD
C2FF
C301
C303
C306
Cc387
C309
Cc3acC
C30E

LDA
INY
STA #52
STY #03
LDX #04
JMP (#00
CMP@#FE
BEQ #C2
BRK

JSR #C4
BNE #C2
LDA@G#29
STA #12
LDAR#0@D
LDY #12
STY #0E
LDY@#00
STY #0D

STA(#0D) ,Y

LDA@#FF
INY

STA(#0D) ,Y

INY

STY #0D
LDAG#08
STA #03
LDA@#3E
CLD

JSR #CD
LDX@#01
STX #06
DEX
STX
STX #01
STX #02
LDA@#DS8
STA #02
LDA@#C9
STA #02
LDAQ#E7
STA #10
LDA@#C9
STA #11
LDX@#FF
TXS

LDA@#00
STA #04
STA #03
STA #15
STA #13
STA #14
LDX@#34

#05

STA #038C,X

DEX
BNE
JSR
BCS
JSR

#C3
#C4
#C3
#C4

#C1F8,X

52)
76
E4

B6
.)

21
o>

gF

a2

g3

.4

g3
34
2F
6A

C30E
C311
C313
C316
C318
C31B
C31E
C320
C322
C325
C328
C32A
c32C
C32F
C331
C334
C335
C337
C33A
C33C
C33F
C342
C345
C347
C349
C34B
C34D
C34F
C352
C353
C355
C357
C358
C359
C35A
C35B
C35C
C35D
C35F
C360
C361
C363
C365
C368
C36A
C36D
C36F
Cc372
C374
C377
C37A
Cc37¢C

-C37D

C37F
c381
C383
C385
C387

AND F000

JSR #C46A
BCC #C316
JMP #CDC9
LDX@#7D .}
JMP #C233
JSR #C434
BCS #C32F

LDX@#7F

JMP #C233
JSR #C434
BCS #C32F

LDX@#10

JMP #C27B

LDX@#14

JMP #C27B

SEC
ROR #0@F

JSR #C372

LDX@#2E

JMP #C233
JSR #C78B
JSR #C3CB

LDA #0F

BMI #C36A

LDX@#00
STX #27
LDY@#00

LDA #0052,Y

PHA

AND@#0OF
STA
PLA
LSR A
LSR A
LSR A
LSR A
INX
STA
INX
INY
CrY@#04
BCC
JSR
BMI
JSR
BMI
JSR
LDX@#18

JMP #C27B
JSR #CA4C
LDA(#05),Y

INY
CMP@#0D

BEQ #C39D

STY #03
CMP@#22

BNE #C377
LDA(#05),Y

#45,X

#45,X

#C34F
#C5C8
#C337
#C589
#C337
#CD54

c387
C389
C38B
C38D
C38E
C3990
C393
C396
C398
C39A
Cc39C
C39E
C3AP
C3A2
C3A4
C3A7
C3A8
C3AA
C3AC
C3AF
C3B2
C3B5
C3B8
C3BB
C3BE
C3C1
C3C4
C3C5
C3C8
C3CB
C3CD
C3CE
C3D#@
C3D2
C3D5
C3D7
C3DA
C3DC
C3DF
C3El
C3E4
C3ES5
C3ES8
C3EB
C3EE
C3F1
C3F4
C3F6
C3F7
C3F9
C3FA
C3FC
C3FE
C3FF
C491
C403
C496
Cc499

LDA(#05),Y
cMpe#22 "

BNE
INY
BCS
JSR
JSR
ORA
ORA
BEQ

#C372

#C377
#C78B
#C3CB
#54
#53
#C3AA

LDY@#00
LDA(#52),Y
CMP@#@D

BEQ
JSR
INY
BNE
LDA
JSR
JMP
JSR
JSR
LDA
LDX
LDY
JSR
CLD
JMP
JSR

LDY@#52

DEX
STX
LDA
STA
LDA
STA
LDA
STA
LDA
STA
RTS
JSR
JSR
JMP
JSR
JSR
LDA
INY

#C337
#CA4C

#C39E
#52

#CA4C
#C337
#C3C8
#CAE4
#0322
#0339
#033A
#C2A5

#C55B
#C8BC
R

#04
#16,X
$#0000,Y
#25,X
#0001,Y
#34,X
#0002,Y
#43,X
#0003,Y

#C4E1
#CA2F
#C55B
#C8BC
#CE93
#26,X

STA(#52),Y

INY
LDA

#35,X

STA(#52),Y

INY
LDA

#44,X

STA(#52),Y

JMP

#C55B

JSR #C8BC

JSR

#CE93

- 27 -

C409 JSR #CE93 C478 LDA(#05),Y C4E1 JSR #C78B C54E BNE #C55B

C49C JMP #C55B C47A SEC -C4E4 LDY #03 C55@0 JSR #C424
C40QF LDX@#00 C47B SBC@#30 .0 C4E6 DEY C553 BCC #C558
C411 LDA(#05),¥ C47D BMI #C4D3 C4E7 INY C555 JMP (#D@@2)
C413 STA #90100,X C47F CMPE#0A C4E8 LDA(#05),Y C558 JSR #C4E4
C416 STY #@3 C481 BCS #C4D3 C4EA CMPQR#20 C55B LDYQ@#0@
C418 INY C483 LDX #53 C4EC BEQ #CA4E7 C55D LDA(#05),Y
C419 INX C485 PHA CAEE CMP@#3B .; C55F CMP@#3B .;
C41A CMPR#0D C486 LDA #55 C4F@ BEQ #C4F6 C561 BNE #C57D
C41C BNE #C411 C488 PHA C4F2 CMPQ#@D C563 JMP #C31B
C41E JSR #FFF7 C489 LDA #54 C4F4 BNE #C55C C566 JSR #C74C
C421 JMP #C558 C48B PHA C4F6 CLC C569 DEX
C424 LDA #D000 C48C LDA #52 C4F7 TYA C56A STX #04
C427 CMPE@#AA C48E ASL A C4F8 ADC #05 C56C LDA #16,X
C429 BNE #C463 C48F ROL #53 C4FA STA #05 C56E BEQ #C575
C42B LSR A C491 ROL #54 C4FC BCC #C500 C570 LDX@#20
C42C CMP #D@o1 C493 ROL #55 CAFE INC #06 C572 JMP #C233
C42F BNE #C463 C495 BMI #C46B C500 LDYE@#01 C575 LDA@#OD-
C431 LDY #5E C497 ASL A C502 STY #03 C577 DEY
C433 RTS C498 ROL #53 C504 LDA #B@g1 C578 INY
C434 LDY #03 C49A ROL #54 C5@7 ANDR#20 C579 CMP(#@5).,Y
C436 BPL #C43B C49C ROL #55 C509 BEQ #C547 C57B BNE #C578
C438 INY C49E BMI #C46B C50B RTS C57D LDA #06
C439 STY #03 C4AQ ADC #52 C50C JSR #C4E4 C57F CMP@#01
C43B LDA(#05),Y C4A2 STA #52 C50F DEY C581 BEQ #C547
C43D CMP@#20 C4A4 TXA C510 LDA(#05).1Y C583 JSR #C51C
- C43F BEQ #C438 C4A5 ADC #53 C512 CMPQ@#3B .; C586 JMP #C31B
C441 CMP@#5B . [C4A7 STA #53 C514 BEQ #C50¢B C589 LDA #43
C443 BCS #C463 C4A9 PLA C516 LDA #@6 C58B STA #27
C445 SBC@#3F .? C4AA ADC #54 C518 CMPE#01 C58D BPL #C593
C447 BCC #C464 C4AC STA #54 C51A BEQ #C596 C58F INX
C449 LDX #04 C4AE PLA C51C INY C590¢ JSR #C8C4
C44B STA #16,X C4AF ADC #55 C51D LDA(#85),Y C593 LDX@#09
C44D INY C4B1 ASL #52 C51F BMI #C55C C595 LDAR#00
C44FE LDA(#05),Y C4B3 ROL #53 C521 STA #0902 C597 STA #45,X
C450 CMPR#2E .. C4B5 ROL #54 C523 INY C599 SEC
C452 BEQ #C463 C4B7 ROL A C524 LDA(#05).,Y C59A LDA #16
C454 CMP@#5B .| C4B8 BMI #C46B C526 STA #01 C59C SBC #C608,X
C456 BCS #C45C C4BA STA #55 C528 INY C59F PHA
C458 CMP@#40 .@ C4BC PLA C529 LDA(#05) £ C5AQ LDA #25
C45A BCS #C463 C4BD ADC #52 C52B DEY C5A2 SBC #C610,X
C45C INX C4BF STA #52 C52C CMP@#61 .a C5A5 PHA
C45D STX #04 C4C1 BCC #CA4CF C52E BCC #C4F7 C5A6 LDA #34
C45F SEC C4C3 INC #53 C530 SBCE#61 .a C5A8 SBC #C61A,X
C460 STY #03 C4C5 BNE #CACF C532 CMPR#1B C5AB TAY
C462 RTS C4C7 INC #54 C534 BCS #C4F+6 C5AC LDA #43
C463 CLC C4C9 BNE #CA4CF C536 INY C5AE SBC #C624,X
C464 RTS C4CB INC #55 C537 ASL A C5B1 BCC #C5C1
C465 JSR #C434 C4CD BMI #C46B C538 TAX C5B3 STA #43
C468 BCS #C425 CACF LDXQ@#FF C539 JSR #CA4F6 C5BS5 STY #34
C46A LDXQ#00 C4D1 BNE #C477 C53C LDA #85 C5B7 PLA
C46C LDY #03 C4D3 TXA C53E STA #038D,X C5B8 STA #25
C46E STX #52 C4D4 BEQ #C463 C541 LDA #06 C5BA PLA
C470 STX #53 C4D6 SEC C543 STA #@38E,X C5BB STA #16
C472 STX #54 C4D7 STY #03 C546 RTS C5BD INC #45,X
C474 STX #55 C4D9 LDY@#52 .R C547 JMP #C2CF C5BF BNE #C599
C476 DEY C4DB JMP #C99F C54A DEY C5C1 PLA
C477 INY CADE JSR #C279 C54B JSR #CA4F6 C5C2 PLA

C478 LDA(#05),Y C4E1 JSR #C78B C54E BNE #C55B C5C3 DEX

C5C4
C5C6
C5C8
C5C9
C5CB
C5CD
C5CF
C5D1
C5D3
C5D5
C5D7
C5D8
C5DB
C5DD
C5DF
C5El
C5E3
C5ES
C5E6
C5ES8
C5EB
C5EC
C5EE
C5F9
C5F2
C5F4
C5F7
C5F9
C5FB
CS5FD
C5FF
Cea1l
Ced4
C605
Ce@7

- data

C62E
C630
C632
C634
C636
C638
C63A
C63B
C63D
C63E
C640
C642
C645
Ce647
C648
C64A
ce64cC
C64E
C650
C652
C654
C656
C658

BPL #C595
LDX@#0A
DEX
BEQ
LDA
BEQ
STX
BIT
BPL
INC
SEC
LDA #0321
BEQ #C5DF
SBC@#01
SBC #52
BEQ #C5EE
BCC #C5EE
TAY
LDAG#20
JSR #CA4C
DEY
BNE
BIT #27
BPL #C5F7
LDA@#2D .-
JSR #CA4C
LDA #45,X
CMP@#0A
BCC #CSFF
ADC@#06
ADC@#30 .0
JSR #CA4C
DEX
BPL
RTS

#C5CF
#45,X
#C5C8
#52
#27
#C5D7
#52

#C5E6

#C5F7

DEC #04
LDX #04
LDY@#00
STY #58
LDA #12
STA #59
DEY
LDA@#@D
INY

CMP (#58) ,Y
BNE #C63D
JSR #CEAl
LDA(#58),Y
INY

CMP #25,X
BCC #C63B
BNE #C660
LDA(#58),Y
CMP #16,X
BCC #C63B
BNE #C660
STA #01
LDA #25,X

C658
C65A
C65C
C65F
C660
C661
C664
C666
C668
C66A
C66D
C66F
C672
C674
C676
C679
C67B
C67E
Cc680
C682
C684
C686
c688
C689
ce68C
C68E
C691
C693
C695
C696
C698
C69A
C69C
C69E
C6AQ
C6A2
Cé6A4
C6Ab6
C6A8
C6AA
C6AC
C6AE
C6Bg
C6B2
Cé6B3
C6B5
C6B7
ceB8
C6BA
C6BC
C6BD
C6BF
Cé6C1
CeC2
Ce6C4
CeCo6
Ce6Cs8
cecCa
ceéecCC

- 28 -

LDA
STA
JSR
CLC
RTS
JSR
LDA
EOR
STA #52
JSR #C905
LDY@#53 .S
JSR #C3CD
LDA #42,X
STA #43,X
JSR #C9o07

#25,X
#02
#CEAl

#C8BC
#42,X
#41,X

LDY@#57 .W

JSR #C3CD
LDY@#00

STY #5B

STY #5C

STY #5D

STY #5E

RTS
JSR
LDA
JSR #C705
BEQ #C67F
LDY@#20

DEY
BEQ
ASL
ROL
ROL
ROL
BPL
ROL
ROL
ROL
ROL
ROL
ROL
ROL
ROL
SEC
LDA
SBC
PHA’
LDA
SBC
PHA
LDA
SBC
TAX
LDA
SBC
BCC
STA
STX
PLA

#C661
#54

#C6D9
#57
#58
#59
#5A
#C695
#57
#58
#59
#5A
#5B
#5C
#5D
#5E

#5B
#53

#5C
#54

#5D
#55

#5E
#56
#C6D4
#5E
#5D

cé6cCC
CéCD
C6CF
CéD@
Cé6D2
Cé6D4
C6D5
C6D6
C6D7
Cé6D9
C6DA
CéDD
C6DE
C6E®D
C6E2
C6E4
C6E6
C6ES8
C6EA
C6EC
C6EE
C6EF
Cé6F1
C6F3
C6F5
C6F7
C6F9
C6FB
C6FD
C6FF
C701
C783
C705
c707
C709
C70B
Cc7eC
C70F
C711
C714
C717
C719
C71B
C71D
C71F
C722
C725
C727

'C729

c72C
C72E
C731
C734

"C737

C739
C73B
C73D
C73F
C741

PLA

STA #5C
PLA

STA #5B
BCS #C6D6
PLA
PLA
DEY
BNE
RTS
JSR
DEX
STX #04
LDA #42,X
EORGE#80
STA #52
LDA #43,X
EOR@#80
STA #54
LDYG#00
SEC
LDA
SBC
STA
LDA
SBC
STA
LDA
SBC
STA
LDA
SBC
ORA
ORA
ORA
RTS
JSR #C72C
LDX@#43 .C
JMP #C233
JSR #C72C
LDA #14,X
AND #15,X
STA #14,X
DEC #04
JMP #C70F
JSR #C72C
LDA #14,X
ORA #15,X
JMP #C71B

#C6A2

#C78B

#15,X
#16,X
#53
$#24,X
#25,X
#55
#33,X
#34,X
#56
#52
#54
#53
#55
#56

LDX@#46 .F

JMP
JSR
JSR
LDA
STA
LDA #24,X
STA #55
LDY@#FF
INY

#C233
#C78B
#CEAE
#15,X
#54

C741
C742
C744
C746
C748
C74A
Cc74cC
C74D
C74F
C751
C753
C756
C758
C75B
C75E
C760
C761
C763
C764
C767
C769
C76B
C76D
C770
C772
C774
c777
C779
C77B
C77E
c780
C782
C785
c787
C789
C78B
C78E
C791
C793
C795
C797
C79A
C79D
C79E
C7Aa0
C7A2
C7A4
C7A6
C7A8
C7AA
C7AC
C7AE
C7B9
C7B2
C7B4
Cc7B7
C7BA
C7BC
C7BE

INY
LDA(#54),Y
CMP (#52),Y
BNE #C74F
EOR@#0D
BNE #C741
TAY

BEQ #C760
LDY@#020Q
BEQ #C761
JSR #C78B
LDX@#00
JMP #C233
JSR #C6DA
BNE #C761
INY
STY
RTS
JSR
BEQ
BCC
BCS
JSR
BNE
BEQ
JSR
BCC
BCS
JSR
BCS
BCC
JSR
BEQ
BCS
BCC
JSR
JMP

#15,X

#C6DA
#C760
#C760
#C761
#C6DA
$C760
#C761
#C6DA
#C760
#C761
$C6DA
#C760
#C761
#C6DA
#C761
$#C760
#C761
#C80B
$#C795
STA #41,X
DEC #04

LDX@#00

JMP #C27B
JSR #C80B
CLC
LDA
ADC
STA
LDA
ADC
STA
LDA
ADC
STA
LDA
ADC
JMp
JSR
LDA
SBC
STA

#14,X
$#15,X
#14,X
#23'X
$#24,X
#23,){
$#32,X%
$#33,X
#32,X
$#41,X
#42,X
#C791
#C80B
#14,X
#15,X
#14,X

- 29 -

C7C@0 LDA #23,X C839 ASL #53 C8Bg JMP #C953 C928 BCS #CO93E
C7C2 sBC #24,X C83B ROL #54 - C8B3 JSR #C8A2 C92A ASL A
C7C4 STA #23,X C83D ROL #55 C8B6 JSR #C962 C92B ASL A
C7C6 LDA #32,X C83F ROL #56 C8B9 JMP #C8QE C92C ASL A
C7C8 SBC #33,X C841 LDA #57 C8BC LDX@#04 C92D ASL A
C7CA STA #32,X C843 ORA #58 C8BE JMP #C233 C92E LDX@#03
C7CC LDA #41,X C845 ORA #59 C8C1 JSR #C8DC C939 ASL A
C7CE SBC #42,X C847 ORA #5A C8C4 SEC C931 ROL #52
C7D@ JMP #C791 C849 BNE #C816 C8CS5 LDAR#00 C933 ROL #53
C7D3 JSR #C80B C84B STY #5B C8C7 TAY C935 ROL #54
C7D6 LDA #14,X C84D LDA #52 C8C8 SBC #15,X C937 ROL #55
C7D8 ORA #15,X C84F PHP C8CA STA #15,X C939 DEX

C7DA STA #14,X C850 LDYE#5B . [C8CC TYA C93A BPL #C930
C7DC LDA #23,X C852 JSR #C99F C8CD SBC #24,X C93C BMI #C915
C7DE ORA #24,X C855 PLP C8CF STA #24,X C93E TXA

C7E@ STA #23,X C856 BPL #C85B C8D1 TYA C93F BPL #C959
C7E2 LDA #32,X C858 JSR #C8C4 C8D2 SBC #33,X C941 JMP #C4D6
C7E4 ORA #33,X C85B JMP #C8QE C8D4 STA #33,X C944 JSR #C7aC
C7E6 STA #32,X C85E JSR #C689 C8D6 TYA C947 LDX@#@C
C7E8 LDA #41,X C861 ROL #57 C8D7 SBC #42,X C949 JMP #C27B
C7EA ORA #42,X C863 ROL #58 C8D9 STA #42,X Cc94C JSR #C8BC
C7EC JMP #C791 C865 ROL #59 C8DB RTS C94F LDY #15,X
C7FEF JSR #C80B C867 ROL #5A C8DC JSR #C434 C951 LDA #24,X
C7F2 LDA #14,X C869 BIT #52 C8DF BCC #C8F8 C953 STA #53
C7F4 EOR #15,X C86B PHP C8El LDY #15,X C955 STY #52
~C7F6 STA #14,X C86C LDYR#57 .W C8E3 LDA #¢321,Y C957 DEX

C7F8 LDA #23,X C86E BNE #C852 C8E6 STA #15,X C958 LDY@#00
C7FA EOR #24,X C870 JSR #C689 C8E8 LDA #0#357,Y C95A LDA(#52),Y
C7FC STA #23,X C873 LDX #04 C8EB STA #33,X C95C JMpP #C97C
C7FE LDA #32,X C875 LDA #44,X C8ED LDA #M33C,Y COS5F JSR #C94C
C80@ EOR #33,X C877 PHP C8F@ STA #24,X C962 LDY@#01

C8¢2 STA #32,X Cc878 JMP #C850 C8F2 LD~ §#0372,Y €964 LDA(#52),Y
C804 LDA #41,X C87B JSR #C8BC C8F5 STA #42,X C966 STA #24,X

C806 EOR #42,X C87E DEX C8F7 RTS C968 INY

C808 JMP #C791 C87F STX #04 C8F8 JSR #C46A C969 LDA(#52),Y
C80B JSR #C8BC C881 LDA #15,X C8FB BCS #C8F7 C96B STA #33,X
C8Q0E LDXQ#05 C883 AND #16,X C8FD LDXQ#087 C96D INY

C81p¢ JmP #C27B c885 STA #15,X C8FF JMP #C233 C96E LDA(#52),Y
C813 JSR #C661 C887 LDA #24,X C902 JSR #C8BC C970 STA #42,X
C816 LSR #5A C889 AND #25,X C9095 LDA #42,X C972 RTS

Cg818 ROR #59 C88B STA #24,X C9097 BMI #C8C4 C973 LDY@#0D
C81A ROR #58 C88D LDA #33,X C999 RTS C975 JSR #C9Al
C81C ROR #57 C88F AND #34,X C90A LDXQ#00 C978 BEQ #C981
C81E BCC #C839 C891 STA #33,X C98C STX #52 C97A LDA #07
c820 CLC C893 LDA #42,X C90E STX #53 C97C JSR #CO9E3
C821 TYA C895 AND #43,X C919 STX #54 C97F STA #24,X
C822 ADC #53 C897 STA #42,X C912 STX #55 C981 STA #33,X
C824 TAY C899 JMP #C8QE C914 DEY C983 STA #42,X
C825 LDA #5C C89C JSR #C8A2 C915 INY C985 RTS

C827 ADC #54 C89F JMP #CB80E C916 LDA(#05),Y C986 LDYE@#20
C829 STA #5C C8A2 JSR #C8BC C918 CMPE#30 .0 C988 LDA #0A
C82B LDA #5D cg8as5 CLC C91A BCC #C93E C98A LSR A
C82D ADC #55 C8A6 LDA #15,X C91C CMP@#3A .: C98B LSR A
C82F STA #5D C8A8 ADC #14,X C91E BCC #C92A C98C LSR A
C831 LDA #5E C8AA TAY C92¢ sBC@#37 .7 C98D EOR #@C
C833 ADC #56 C8AB LDA #24,X C922 CMPR#0QA C98F ROR A
C835 AND@#7F C8AD ADC #23,X C924 BCC #C93E C990 ROL #¢n8
C837 STA #5E C8AF DEX C926 CMP@#10 C992 ROL #09

C832 ASL #53 C8BY JMP #C953 C928 BCS #C93E C994 ROL #0@A

- 3¢ -

C996 ROL #@B CA4C INC #07 CACD JSR #C434 CB52 DEC #15
C998 ROL #@C CA4E JMP (#0208) CAD@ LDY #15 CB54 JMP #C558
C99A DEY CAS1 LDA@#00 CAD2 BEQ #CAE4 CB57 JSR #C434
C99B BNE #C988 CA53 JSR #C97C CAD4 BCC #CAES CB5A BCC #CB6D
C99D LDYQ@#08 CAS6 LDA@#FF CAD6 DEC #04 CB5C JSR #C279
C99F LDX #@4 CA58 JSR #C97C CAD8 LDA #15,X CBS5F JSR #CA2C
C9A1 LDA #0001,Y CAS5SB STA #04 CADA CMP #0@23F,Y CB62 TYA
C9A4 STA #25,X CASD LDY@#7F CADD BEQ #CAES CB63 LDY #15
Cc9a6 LDA #¢0@02,Y CASF STY #26 CADF DEY CB65 CPYQ#0B
C9A9 STA #34,X CA61 JSR #C465 CAE@ STY #15 CB67 BCS #CB6D
C9AB LDA #0003,Y CA64 BCC #CABS CAE2 BNE #CADA CB69 STA #0240,Y
CO9AE STA #43,X CA66 JSR #C231 CAE4 BRK CB6C LDA@#00
c9B@ LDA #000@,Y CA69 BCS #CAC3 CAES5 LDX #023F,Y CB6E STA #026C,Y
Cor3 STA #16,X CA6B JSR #C465 CAE8 CLC CB71 STA #0261,Y
C9B5 INX CAGE LDX@#(1 CAE9 LDA #@321,X CB74 STA #0256,Y
C9B6 STX #04 CA7@ STX #04 CAEC ADC #024A,Y CB77 LDAQ#01
C9B8 LDY #@A3 CA72 ISR #C4E4 CAEF STA #0321,X CB79 STA #024B,Y
C9BA LDAQ#00 CA75 JSR #C62E CAF2 STA #52 CB7C LDX@#16
C9BC RTS CA78 BCC #CAAA CAF4 LDA #@33C,X CB7E JMP #C233
C9BD JSR #C8BC CA7A DEY CAF7 ADC #@255,Y CB81 JSR #C78B
CoC@® JSR #C3CB CA7B BCS #CA9E CAFA STA #@33C,X CB84 LDY #15
C9C3 LDYE@#¢0O CA7D LDAG#05 CAFD STA #53 CB86 DEX
C9C5 LDAQ#@D CA7F STA #0321 CAFF LDA #@357,X CB87 STX #04
C9C7 CMP (#52),Y CA82 JSR #C589 CB@2 ADC #0260,Y CB89 LDA #16,X
C9C9 BEQ #CO9CE CA85 LDAQ#08 CB@5 STA #@357,X CB8B STA #0277,Y
C9CB INY CA87 STA #0321 CB@g8 STA #54 Cz8E LDA #25,X
C9CC BNE #C9C7 CA8A LDY #0@3 CB@A LDA #0¢372,X CB9(STA #0282,Y
C9CE TYA CA8C LDA(#58),Y CB@D ADC #@26B,Y CB93 LDA #34,X
C9CF JMP #C97C CA8E CMP@#0D CBl@ STA #@¢372,X CB95 STA #028D,Y
C9D2 JSR #CEB1 CA9¢9 BEQ #CA98 CB13 TAX CB98 LDA #43,X
C9D5 JMP #C958 CA92 JSR #CA4C CB14 LDA #52 CB9A STA #0298,Y
C9D8 PLA CA95 INY CB16 SEC CBO9D LDX@#1A
C9D9 PLA CA96 BNE #CA8C CB17 SBC #@276,Y CBY9F JMP #C233
C9DA STA #00 CA98 JSR #CD54 CB1A STA #52 CBA2 JSR #C7¢B
C9DC LDA #10 CA9B JSR #CEAl CB1C LDA #53 CBAS5 LDY #15
C9DE STA #05 CA9E LDA(#58),Y CB1lE SBC #0¢281,Y CBA7 DEX
C9EQ® LDA #11 CAAQ STA #25 CB21 STA #53 CBA8 STX #04
C9E2 STA #06 CAA2 INY CB23 LDA #54 CBAA LDA #16,X
C9E4 JMP #C2F2 CAA3 LDA(#58),Y CB25 SBC #@28C,Y CBAC STA #024B,Y
- data - CAAS5 STA #16 CB28 STA #54 CBAF LDA #25,X
CA24 JSR #C424 CAA7 INY CB2A TXA CBBE1l STA ##0256,Y
CA27 BCC #CA1lB CAA8 STY #03 CB2B SBC #0297,Y CBB4 LDA #34,X
CA29 JMP (#D004) CAAA LDA #16 CB2E ORA #52 CBB6 STA #0261,Y
CA2C JSR #C78B CAAC CLC CB3@ ORA #53 CBB9 LDA #43,X
CA2F LDX #04 CAAD SBC #17 CB32 ORA #54 CBBB STA #026C,Y
CA31 DEX CAAF LDA #25 CB34 BEQ #CB45 CBBE JSR #C5aC
CA32 DEX CABl1 SBC #26 CB36 TXA CBC1 LDY #15
CA33 STX #04 CAB3 BCC #CA7D CB37 EOR #@026B,Y CBC3 LDA #@5
CA35 LDY #16,X CABS5 JMP #C2CF CB3A EOR #0297,Y CBC5 STA #@2A3,Y
CA37 LDA #17,X CAB8 JSR #C231 CB3D BPL #CB43 CBC8 LDA #06
CA39 STA #0321,Y CABB INC #04 CB3F BCS #CB45 CBCA STA #02AE,Y

CA3C LDA #26,X CABD JSR #C465 CB41 BCC #CB52 CBCD INC #15
CA3E STA #033C,Y CAC@ JMP #CA6E CB43 BCS #CB52 CBCF JMP #C31B

CA41 LDA #35,X CAC3 LDA #16 CB45 LDA #@2A2,Y CBD2 JSR #CCI1F
CA43 STA #0357,Y CACS5 LDY #25 CB48 STA #@5 CBD5 JSR #C5aC
CA46 LDA #44,X CAC7 STA #17 - CB4A LDA #02AD,Y CBD8 LDY #14
CA48 STA #0372,Y CAC9 STY #26 CB4D STA #06 CBDA CPYQ#QE
CA4B RTS CACB BCS #CAGE CB4F JMP #CBFF CBDC BCS #CCg#@

CA4C INC #@7 CACD JSR #C434 CB52 DEC #15 CBDE LDA #05

- 31 -

CBE@ STA #02CF,Y CC59 LDA(#58),Y CCD@ BNE #CCC5 CD4E JSR #FFF4

CBE3 LDA #06 CC5B STA #01 CCD2 JSR #C78C CD51 JMP #CD1F
CBE5 STA #02DD,Y CC5D INY CCD5 LDY #13 CD54 JSR #FFED
CBE8 INC #14 CCS5E LDA(#58),Y CCD7 BEQ #CCC4 CD57 LDAR#00
CBEA BCC #CC@B CC60 DEY CCD9 DEX CD59 STA #07
CBEC JSR #C4E4 CC61 CMP #57 CCDA STX #04 CD5B RTS

CBEF LDY #14 CC63 BEQ #CC6B CCDC LDA #16,X CD5C JSR #C78B
CBF1 BEQ #CC1D CC65 JSR #CEAl CCDE BEQ #CCES5 CD5F JSR #CEAE
CBF3 DEC #14 CC68 JMP #CC4A CCE@ DEC #13 CD62 LDY@#54 .T
CBF5 LDA #02CE,Y CC6B JSR #CEA2 CCE2 JMP #C558 CD64 JSR #C3CD
CBF8 STA #@5 CC6E LDA #58 CCE5 LDA #02B8,Y CD67 LDY@#FF
CBFA LDA #02DC,Y CC70 STA #@38D,X CCE8 STA #05 CD69 INY

CBFD STA #06 CC73 LDA #59 CCEA LDA #@2C3,Y CD6A LDA(#52),Y
CBFF JSR #C500 CC75 STA #@38E,X CCED JMP #CBFD CD6C STA(#54),Y
CCp2 JMP #C31B CC78 RTS CCFQP LDX #13 CD6E CMP@#0D
CCP5 JSR #CC1F CC79 JSR #C8BC CCF2 CPX@#0B CD70 BNE #CD69
CCP8 JSR #C4E4 CC7C LDAQ#00 CCF4 BCS #CD1g CD72 JMP #C558
CCyB LDA #57 CC7E STA #57 CCF6 DEY CD75 JSR #CD81
CC@D BNE #CC1l4 CC8@ RTS CCF7 JSR #CA4F6 CD78 JMP #C3F1
CC@F JSR #C62E CC81 JSR #C372 CCFA LDA #05 CD7B JSR #CD81
CC12 BCS #CC7D CC84 JSR #C434 CCFC STA #02B9,X CD7E JMP #C409
CCl4 LDY #58 CC87 BCS #CCS8E CCFF LDA #06 CD81 JSR #C8E1l
CCl1l6 LDA #59 CC89 LDX@#2B .+ CD@1 STA #@2C4,X CD84 JSR #C8BC
CC18 STY #05 CC8B JMP #C233 CD@g4 INC #13 CD87 DEX

CC1lA JMP #CBFD CC8E JSR #CD@9 CD@6 JMP #C31B Ccp88 CLC

CC1D BRK CC91 LDA #@5 CD@9 LDA@#3F .? CD89 LDA #16,X
CClE INY CC93 PHA CD@¢B LDY@#40 .@ CD8B ADC #15,X
CClF LDA(#05),Y CC94 LDA #06 CD@D BNE #CD11 CD8D STA #15,X
CC21 CMp@#20 CC96 PHA CD@F LDYC#07 CD8F LDA #25,X
CC23 BEQ #CC1E CC97 LDA #03 CD1l1 JSR #CA4C CD91 ADC #24,X
CC25 CMP@#61 .a CC99 PHA CD14 STY #52 CD93 STA #24,X
CC27 BCC #CC79 CC9A LDYR#00 CDl6 LDY #52 CD95 STX #04
CC29 STA #57 CC9C STY #03 CD18 JSR #FFE6 CD97 RTS

CC2B SBC@#61 .a CC9E INY CD1B CMP@#7F CD98 JSR #C4E4
CC2D CMPQ@#1B CCOF STY #06 CD1D BNE #CD26 CD9B LDA #12
CC2F BCS #CC79 CCAl LDY@#40 .@ CD1F DEY CD9D STA #0AE
CC31 ASL A CCA3 STY #@5 CD2¢ CPY #52 CD9F LDY@#0¢
CC32 TAX CCA5 JSR #CA2C CD22 BPL #CD18 CDAl STY #@D
CC33 LDA #038D,X CCA8 PLA CD24 BMI #CD16 CDA3 DEY

CC36 STA #58 CCA9 STA #03 CD26 CMPQR#18 CDA4 INY

CC38 JSR #CA4F6 CCAB PLA CD28 BNE #CD30 CDAS5 LDA(#0D),Y
CC3B LDA #@38E,X CCAC STA #06 CD2A JSR #CD54 CDA7 CMP@#0D
CC3E STA #59 CCAE PLA CD2D JMP #CD16 CDA9 BNE #CDA4
CC40 ORA #58 CCAF STA #05 CD39 CMP@#1B CDAB JSR #CDBC
CC42 BNE #CC78 CCB1 LDx€#2C ., CD32 BNE #CD37 CDAE LDA(#0D),Y
CC44 TAY . CCB3 JMP #C233 CD34 JMP #C2CF CDB@ BMI #CDB5S
CC45 LDA #12 CCB6 JSR #C78B CD37 STA #0100,Y CDB2 INY

CC47 STA #59 CCB9 LDY@#54 .T CD3A CMP@#@D CDB3 BNE #CDA4
CC49 DEY CCBB JSR #C3CD CD3C BEQ #CD57 CDB5 INY

CC4A LDA@#@D CCBE JSR #CD@9 CD3E INY CDB6 JSR #CDBC
CC4C INY CCC1l LDXE#40 .@ CD3F TYA CDB9 JMP #C2CF
CC4D CMP (#58),Y CCC3 LDYR#00 CDh49 SEC CDBC CLC

CC4F BNE #CC4C CCC5 LDA #0100,X CD4l1 SBC #52 CDBD TYA

CC51 INY CCC8 STA(#54),Y CD43 CMp@e#40 .@ CDBE ADC #0D
CC52 LDA(#58),Y CCCA CMP@#0D CD45 BCC #CD18 CDC@ STA #0D
CC54 BMI #CC9B CCCC BEQ #CC81 CD47 JSR #FFE3 CDC2 BCC #CDC6
CC56 STA #02 CCCE INX CD4A CMPQR#7F CDC4 INC #0E
CC58 INY CCCF INY CD4C BNE #CD47 CDC6 LDY@#01

CC59 LDA(#58).,Y CCD@ BNE #CCC5 CD4E JSR #FFF4 CDC8 RTS

CDC9
CDCB
CDCE
CDD¢
CDD2
CDhD4
CDD6
CDD8
CDDA
CDDC
CDDE
CDE®
CDE2
CDE4
CDEG6
CDE7
CDE9
CDEB
CDEC
CDED
CDEF
CDF1
CDF3
CDF5
CDF7
CDF9
CDFB
CDFD
CDFF
CEQQ
CE@2
CEP4
CE@6
CE@8
CEQ9
CE@B
CE@D
CEQF
CE1l1l
CE1l3
CE15
CE18
CE1A
CE1C
CE1D
CE1F
CE21
CE23
CE24
CE26
CE28
CE29
CE2A
CE2C
CE2E
CE30
CE32
CE35

CE37

STY #56
JSR #C62E
BCS #CE18
LDA #58
STA #52
SBCE#01
STA #58
STA #0D
LDA #59
STA #53
SBC@#00
STA #0E
STA #59
LDA@#@D
INY

CMP (#52) ,Y
BNE #CDE6
CLC

TYA

ADC #52
STA #52
BCC #CDF5
INC #53
LDY@#00
LDA(#52),Y
STA(#0D) ,Y
CMP@#@D
BEQ #CE@8
INY
BNE
INC
INC
BNE
INY
BNE

#CDF7
#53
#0E
#CDF7

#CEQF
INC #53
INC #0E
LDA(#52),Y
STA(#0D),Y
BPL #CDFF
JSR #CDBD
LDY@#01
STY #57
DEY
LDA@#0D

CMP (#56) ,Y

BEQ #CES849
INY

CMP (#56) ,Y
BNE #CE23
INY
INY
LDA
STA
LDA
STA
JSR
STA
LDA

#0D
#54
#0E
#55
#CDBD
#52
#0E

CE37
CE39
CE3B
CE3C
CE3E
CE40
CE42
CE44
CEA45
CE47
CE49
CE4B
CE4D
CE4F
CES5#@
CE52
CE54
CES56
CE57
CES8
CE5A
CESC
CES5E
CESF
CE61
CE62
CE64
CE66
CE68
CE6A
CE6C
CE6D
CE6F
CE71
CE72
CE75
CE77
CE78
CE7A
CE7C
CE7E
CE80
CES83
CE86
CES88
CE8A
CESC
CE8SE
CE9#0
CE93
CE96
CE97
CE9A
CEQC
CE9E
CEAQ
CEAl
CEA2
CEA3

- 32 -

LDA #0E
STA #53
DEY
LDA@#55 .U
STA(#0D),Y
CMP (#0D) ,Y
BNE #CDF6
ASL A
STA(#0D),Y
CMP (#0D) , Y
BNE #CDF6
LDA(#54),Y
STA(#52),Y
TYA
BNE
DEC
DEC
DEY
TYA
ADC
LDX
BCC
INX
CMP
TXA
SBC #59
BCS #CE4B
LDY@#01
LDA #25
STA(#58),Y
INY

LDA #16
STA(#58),Y
SEC

JSR #CEA2
LDY@#FF
INY
LDA(#56) ,Y
STA(#58),Y
CMP@#0D
BNE #CE77
JMP #C2CF
JSR #C4E4
LDYR#00
STY #@5
STY #03
LDA #12
STA #06
JMP #C55B
JSR #C4DE
DEX

JSR #C3CB
LDY@#00
LDA #17,X
STA(#52),Y
RTS

CLC

TYA

ADC #58

#CES6
#55
#53

#54
#55
#CESF

#58

CEA3
CEAS
CEA7
CEA9
CEAB
CEAE
CEB1
CEB3
CEB6
CEB9
CEBC
CEBE
CEBF
CEC2
CEC4
CECS5
CEC7
CEC9
CECB
CECD
CED@
CED1
CED2
CED4
CED6
CEDS8
CEDA
CEDC
CEDE
CEE1l
CEE3
CEES
CEE7
CEE9
CEEA
CEEB
CEED
CEFg
CEF1
CEF3
CEF4
CEF7
CEFA
CEFD
CFoa
CFo1l
CFo3
CF@5
CF@7
CF@9
CFoA
CFoD
CFOF
CF1l1
CF13
CF15
CF17
CF19
CF1B

ADC
STA
BCC
INC

#58
#58
#CEAB
#59
JMP #C500
JSR #C279
LDX@#26 .&
JMP #C233
JSR #C78B
JSR #C3CB
LDY #a3
RTS
JSR
STY
DEY
LDX@#00
LDA (#05) ,Y
CMPE@#0D
BEQ #CEC6

#C4F6
#53

STA #0140,X

INX

INY
CMP@#22 ."
BNE #CEC7
LDA(#05) ,Y
cmp@#22 ."
BEQ #CEEA
LDA@#0D

STA #@13F,X

STY #03

LDA@#40 .@
STA #52

LDX #04

RTS
INY
BCS
JSR
DEY
STY
SEC
JSR
JMP
JSR
JSR
DEY
STY
LDA #12

STA #55

LDX@#52 .R
RTS
JSR
STY
STA
LDA
STA

#CEC7
#CEFA

#56

#FFEQ
#CD9B
#CEB1
#C4E4

#54

#CEFA
#58
#59
#0D
#5A
LDA #0E
STA #5B
LDA@#B2
STA #56

CF1B
CF1D
CF1F
CF21
CF22
CF25
CF28
CF29
CF2B
CF2cC
CF2D
CF30
CF32
CF33
CF36
CF38
CF3BE
CF3D
CF3E
CF41
CF43
CF44
CF46
CF47
CF4A
CF4D
CF50
CF53
CF55
CF58
CF5B
CF5E
CF60
CFé63
CF66
CF69
CFé6B
CF6E
CF70
CF73
CF75
CF78
CF7A
CF7B
CF7E
CF81
CF84
CF87
CF8A
CF8C
CF8F
CF92
CF95
CF98
CF9A
CFo9C
CFIF
CFAQ
CFA2

STA #56
LDA@#C2
STA #57
CLC
JSR
JMP
SEC
LDAC#00
ROL A

PHA
JSR #CF3E
LDX@#52 .R
PLA

JSR #FFDA
LDY@#52 .R
JSR #C99F
STA #42,X
RTS
JSR
LDY
DEX
STX
RTS
JSR
JSR

#FFDD
#C558B

#C8BC
#15,X

#04

#C8BC
#C4DE
JSR #C3CB
JSR #CF41
LDX@#52 .R
JSR #FFD7
JMP #C55B
JSR #CF3E
STY #52
JSR #FFD4
JMP #C97C
JSR #CF5B
LDY #52
JSR #FFD4
STA #24,X
JSR #FFD4
STA #33,X
JSR $#FFD4
STA #42,X
RTS
JSR
JSR
JSR
JSR

#C8BC
#C231
#C4E1
#C3CB
JSR #CF41
LDA #52
JMP (#0216)
JSR #CF7B
JMP #C55B
JSR #CF7B
LDXe#01
LDA #52,X
JSR #FFD1
INX
cpxe#04
BCC #CF9A

CFA4
CFA6
CFA7
CFAS8
CFAB
CFAD
CFAE
CFB1
CFB3
CFB6
CFB9
CFBC
CFBF
CFC2
CFCS
CFC8
CFCB
CFCE
CFCF
CFD1
CFD3
CFDS
CFD6
CFD9
CFDA
CFDC
CFDE
CFE@
CFE1l
CFE3
CFE6
CFE9
CFEC
CFEE
CFF@
CFF2
CFF5S
CFF7
CFF9
CFFA
CFFC
CFFE

BCS
SEC
PHP
JSR #CEB1
LDX@#52 .R
PLP
JSR
LDX
JMP
JSR
JSR
JSR
JSR
JMP
JSR
JSR
JSR
DEY
LDA(#52) ,Y
STY #55
LDY #@F
PHA

JSR #FFD1
PLA
CMP@#0D
BEQ #CFC2
LDY #55
INY
BNE
JSR

#CF92

#FFCE
#04
#C97C
#C8BC
#C4E4
#CF41
$FFCB
#C55B
#C22C
#CEB1
#C4E4.

#$CFCF
#C22C
JSR #C4El
JSR #C3CB
LDY@#00
STY #55
LDY #0F
JSR #FFD4
LDY #55
STA(#52),Y
INY
CMP@#0D
BNE #CFEE
BEQ #CFC2

FO2E
Fo30
F@32
F@34
Fp36
Fp38
Fo3A
FO3B
F@3D
F@3F
Fo42
F@45
Fo48
Fo4B
Fo4D
FO4F

LDY #5E
LDA (#05),Y
CMP@#40 .@
BCC #F048
CMPE@#5B . [
BCS #Fp48
INY

CMP (#05) ,Y
BNE #F048
JSR #F@8B
JSR #C94F
JMP #C962
JMP #CA24
LDX@#FF
LDY #5E
DEC #5E

FO4F
F@51
F@53
F@55
F@57
F@59
F@5B
F@5C
FOSE
Fo60
FB62
F@63
Fo64
Fo67
Fo69
F@6B
Fo6D
FO6E
Fo71
F@73
F@75
F@77
FO7A
F@7C
FO7E
Fo80
Fp82
Fo85
Fp88
F@8B
Fp8C
FO8E
F@9o
F@91
F@94
F@95
Fo96
Fpo8
F@99
Fo9B
FpocC
FO9E
FOOF
FOA2
FoA4
FOAG
FOA9
FOAB
FOAD
FOAE
FoBO
FoB2
F@B4
F@B7
FoB9
F@BC
F@BD
FOBE
FacCo

- 33 -

DEC #5E
LDA(#05) ,Y
CMpe#40 .@
BCC #Fo60
CcMPe#5B . [
BCS #F060
INY

CMP (#05),Y
BEQ #F@85
LDY #5E
INX
INY
LDA
BMI #F@75
CMP (#05) ,Y
BEQ #F062
INX
LDA
BPL
BNE
STA
LDA
STA
STY
LDX #04
INC #5E
JMP (#0052)
JSR #F@8B
JMP #C3F1
INY

STY #03
SBCe#40 .@
PHA
JSR
PLA
TAY
LDA #15,X
ASL A

ROL #24,X
ASL A

ROL #24,X
CLC
ADC
STA
LDA
ADC
STA
BCS
RTS
LDA
ORA
BEQ
JSR
BCC
JSR
DEX
DEX
STX
LDY

#FO6D
#F060
#53

#52
#03

#C8BC

#15,X
#24,X

#24,X
#F084

#01
$02
#FOD6
#C434
#FOD7
#C8BC

#04
#16,X

#F000,X

#EFFF,X

#F001,X

#02EB,Y

#0306,Y

FocCeo
FoC2
FoC3
F@BC5
Focs
FOCA
FgccC
FOCE
F@D1
F@D3
FoD6
F@D7
F@D9
FoDB
F@DD
FODF
FOE1l
FOE3
FOE4
FOEG6
FOES8
FOEA
FOEB
F@EC
FOEE
FOF1
FOF2
FOF3
FOFS
FOF8
FOFA
F@FD
FOFE
F100
Flo92
F103
F105
Fl107
F108
F109
F10B
FloC
F10E
F10F
F1l11
F113
F115
F117
F119
F11B
F11D
F11F
F121
F123
F125
F126
F128
F12A
F12C

LDY
SEC
LDA
STA
ADC
STA
LDA
STA
ADC
JMP
BRK
LDY #03
LDA(#05),Y
CMPQR#40 .@
BCC #F@D6
CMPE#5B .[
BCS #F0D6
INY

CMP (#05) ,Y
BNE #F@D6
SBCe#40 .@
PHA
INY
STY
JSR
PLA
TAY
LDA
STA
LDA
STA
DEX
STX
LDY
INY
BNE
INC
TYA
ASL A

ROL #25,X
ASL A

ROL #25,X
CLC
ADC
STA
LDA
ADC
BCS #F@D6
STA #24
LDY@#00
LDA@#AA
STA(#23),Y
CMP(#23),Y
BNE #F11C
LSR A
STA(#23),Y
CMP(#23),Y
BNE #F11C
JSR #C434

$#16,X
#23
#17,)(
#23
#24

#26,X
#F119

#03
#C8BC

#23
#24
#04

#16,X

$F107
#25,X

#23
#23
#25,X
#24

#0321,Y

#033C,Y

#02EB,Y

#0306,Y

F12C
F12F
F131
F133
F135
F137
F139
F13B
F13E
F141
F143
F145
F147
F149
Fl14C
F14F
F152

JSR #C434
BCS #FQD6
LDY #03
LDA(#05) ,Y
cMmpe#2Cc .,
BNE #F13E
INC #03
JMP #FOAE
JMP #C558
LDA #0D
STA #23
LDA #0E
STA #24
JMP #CE83
JSR #C4E4
JSR #FE66
JMP #C55B

- data -

F291
F293
F295
F297
F299
F29B
F29C
F29E
F2Al
F2A3
F2A5
F2A7
F2AA
F2AC
F2AF
F2B1
F2B3
F2B4
F2B6
F2B7
F2BA
F2BB
F2BD
F2BF
F2Cl
F2C3
F2C6
F2C8
F2CA
F2CC
F2CE
F2D1
F2D4
F2D5
F2D8
F2D9
F2DC
F2DD
F2EQ
F2E2
F2E4

LDY #03
LDA(#05),Y
INC #03
CMP@#20
BEQ #F291
RTS

INC #03
JMP #C31B
LDA(#05) ,Y
CMPE@#5D .]
BEQ #F29C
JSR #C4F6
DEC #03
JSR #F38E
DEC #@3
LDA #52
PHA
LDA
PHA
LDA
PHA
LDAR#00
STA #34
STA #43
LDA@#05
STA #0321
LDA #01
STA #16
LDA #02
STA #25
JSR #C589
JSR #F379
PLA
STA
PLA
JSR
PLA
JSR #F376
LDY@#00
CPY #00
BEQ #F2EF

#53

#0321

#0321

#F37E

- 34 -

F2E6 LDA #0066,Y F363 CMP@#3B .; F3CF LDY #F194,X F448 BEQ #F49B

F2E9 JSR #F376 F365 BEQ #F36B F3D2 CPY #6A F44A LDXQ#05
F2EC INY F367 CMP@#0D F3D4 BNE #F3CB F44C LDA #25
F2ED BNE #F2E2 F369 BNE #F360 F3D6 LDA #F210,X F44E BEQ #F49B
F2EF CPY@#03 F36B LDA #0331 F3D9 STA #66 F450 LDX@#@C
F2F1 BEQ #F2FF F36E STA #52 F3DB LDY #F250,X F452 BNE #F49B
F2F3 JSR #F379 F370 LDA #@34C F3DE STY #0@F F454 JSR #C78B
F2F6 JSR #CAA4C F373 STA #53 F3E@® ROR #64 F457 LDA #0F
F2F9 JSR #CA4C F375 RTS F3E2 ROR #65 F459 LDX@#06
F2FC INY F376 JSR #F37E F3E4 DEY F45B CMPR#01
F2FD BNE #F2EF F379 LDA@#20 F3E5 BNE #F3E@ F45D BEQ #F49B
F2FF LDY@#00 F37B JMP #CA4C F3E7 LDY #0F F45F INX

F301 LDA(#05),Y F37E LDX@#FF F3E9 CPY@#0D F460 BNE #F49B
F303 CMP@#3B .; F380 PHA F3EB BNE #F3F2 F462 JSR #C78B
F305 BEQ #F311 F381 LSR A F3ED LDX@#00 F465 JSR #F291
F397 CMPE#@D F382 LSR A F3EF JMP #F49B F468 CMPR#29 .)
F309 BEQ #F311 F383 LSR A F3F2 JSR #F291 F46A BEQ #F482
F3¢B JSR #CA4C F384 LSR A F3F5 CMPR#4p .@ F46C CMPE#2C .,
F30E INY F385 JSR #C5F9 F3F7 BEQ #F454 F46E BNE #F49A
F3@F BNE #F301 F388 PLA F3F9 CMP@#28 . (F470 JSR #F291
F311 JSR #CD54 F389 AND@#OF F3FB BEQ #F462 F473 CMP@#58 .X
F314 JSR #C4E4 F38B JMP #CSF9 F3FD LDX@#01 F475 BNE #F49A
F317 DEY F38E LDX@#@0 F3FF CMP@#41 .A F477 JSR #F291
F318 LDA(#05),Y F390 STX #00 F4¢1 BEQ #F3EF F47A CMPE#29 .)
F31A INY F392 STX #64 F403 DEC #03 F47C BNE #F49A
F31B CMP@#3B .; F394 STX #65 F405 JSR #C78B F47E LDX@#0B
F31D BEQ #F32B F396 JSR #F291 F408 JSR #F291 F480 BNE #F49B
F31F LDA #06 F399 CMP@#3A .: F49B CMP@#2C ., F482 LDX@#0D
F321 CMPe#@1l F39B BEQ #F32E F40D BNE #F440 F484 LDA #0F
F323 BNE #F328 F39D CMPR#3B .; F49F JSR #F291 F486 CMPR#@B
F325 JMP #C2CF F39F BEQ #F36B F412 LDY #25 F488 BEQ #F49B
F328 JSR #C51D F3A1 CMPR#@D F414 BEQ #F42B F48A LDXQ#0A
F32B JMP #F2Al F3A3 BEQ #F36B F416 LDX@#09 F48C JSR #F291
F32E JSR #F291 F3A5 CMP@#5C .\ F418 CMP@#58 .X F48F CMP@#2C .,
F331 STA #66 F3A7 BEQ #F360 F41A BEQ #F49B F491 BNE #F49A
F333 JSR #F291 F3A9 LDY@#05 F41C DEX F493 JSR #F291
F336 CMP #66 F3AB SEC F41D CMPR#59 .Y F496 CMP@#59 .Y
F338 BNE #F34A F3AC ADCE@#00 F41F BNE #F49A F498 BEQ #F49B
F33A CMP@#40 .@ F3AE ASL A F42)1 LDA #0F F49A BRK

F33C BCC #F34A F3AF ASL A F423 CMPR#09 F49B JSR #F360
F33E CMP@#5B . [F3B@ ASL A F425 BNE #F49B F49E LDA #F1D5,X
F340 BCS #F34A F3B1 ASL A F427 LDX@#OE F4A1 BEQ #F4A7
F342 SEC F3B2 ROL #6A F429 BNE #F49B F4A3 AND #64
F343 JSR #F@8E F3B4 ROL #69 FA42B LDX@#04 F4AS5 BNE #F4AE
F346 JSR #C3CB F3B6 DEY F42D CMP@#58 .X F4A7 LDA #FlE4,X
F349 LDY@#00 F3B7 BNE #F3Bl F42F BEQ #F49B FAAA AND #65
F34B LDA #0331 F3B9 INX F431 CMP@#59 .Y F4AC BEQ #F49A
F34E STA(#52),Y F3BA CPX@#03 F433 BNE #F49A F4AE CLC

F350 LDA #@34C F3BC BNE #F396 F435 DEX F4AF LDA #F1F3,X
F353 INY F3BE ASL #6A F436 LDY #0F F4B2 ADC #66
F354 STA(#52),Y F3C@ ROL #69 F438 CPY@#03 F4B4 STA #66
F356 LDA@#00 F3C2 LDXe#40 .@ F43A BCS #F49B F4B6 LDA #F202,X
F358 INY F3C4 LDA #69 F43C LDXQ#08 F4B9 LDXE@#00
F359 STA(#52),Y F3C6 CMP #F154,X F43E BNE #F49B F4BB STX #04
F35B INY F3C9 BEQ #F3CF F44¢9 DEC #03 F4BD LDY #16
F35C STA(#52),Y F3CB DEX F442 LDX@#02 F4BF STY #67
F35E BNE #F396 F3CC BNE #F3C6 F444 LDY #0F F4Cl LDY #25
F360 JSR #F291 F3CE BRK F446 CPY@#0C F4C3 STY #68

F363 CMP@#3B .; F3CF LDY #F194,X F448 BEQ #F49B F4C5 CMP@#0OF

s

F4C7
F4C9
F4CB
F4CC
F4CD
F4CF
F4D1
F4D3
F4D5
F4D7
F4D9
F4DC
F4DE
F4DF
F4E2
F4E4
F4E7
F4E9
F4EB
F4EC
F4EE
F4F0

'F4F1
F4F3
F4F6

F4F8
F4FA
F4FD
F4FF
F500
F502
F504
F506
F507
F509
F50B
F50D
F50F
F511

- data

-F523
F525
F527
F528
F52A
F52C
F52D
F52F
F531
F534
F535
F537
F539
F53B
F53C
F53D
F53F
F542
F544

"SBC

BEQ #F4EC
AND@#OF
TAY

INY

STY #00
cpye#o2
BNE #F4D7
LDY #68
BNE #F49A
LDY@#00

LDA #0066,Y

STA(#52),Y
INY
INC
BNE
INC
cpy
BNE
RTS
LDA@#02
STA #00
SEC
LDA

#0331
#F4E7
#034C
#00

#F4D9

#67
#0331
#67
#68
#034C
#68

STA
LDA
SBC
STA
SEC
LDA #67
SBC@#@2
STA #67
TAY

LDA #68
SBC@#00
BEQ #F52C
CMPR@#FF
BEQ #F527
JSR #F7D1
#67
#F4D7

STY
BMI
TYA
BMI
BPL
TYA
BPL
BMI
JSR
DEY
STY
LDA
STA
TYA
INY
STA(#52),Y
JMP #CD9B
LDX@#@5
BNE #F548

#F4D7
#F511

#F4D7
#F511
#C4E4

#52
#12
#53

F544
F546
F548
F54A
F54C
F54E
F551
F554
F557
F55A
F55D
F560
F562
F564
F566
F568
F56A
F56C
F56E
F570
F572
F574
F576
F579
F57B
F57C
FS57E
F580
F582
F584
F586
F587
F589
F58B
F58D
F58F
F591
F593
F594
F595
F597
F599
F59B
F59E
F59F
F5A1
F5A3
F5A5
F5A7
F5A9
F5AB
F5AD
F5AF
F5B2
F5BS
F5B7
F5B8
F5BA
F5BC

- 35 -

BNE - $F548
LDXe#ecC
STX #16
INC #04
BNE #F554
JSR #C8BC
JSR #C231
JSR #C8BC
JSR #C231
JSR #C8BC
JSR #C4E4
LDA #15,X
STA #5C
LDA #24,X
STA #5D
LDA #14,X
STA #5A
LDA #23,X
STA #5B
LDX@#00
STX #04
LDXe#03

LDA #03Cl1,X

STA #52,X
DEX

BPL #F576
LDA #16
ANDE#04
BNE #F597
LDX@#02
CLC
LDA
ADC
STA
LDA
ADC
STA
DEX
DEX
BPL #F586
LDX@#03
LDA #5A,X

#5A,X
$#52,X
#5A,X
#5B,X
#53,X
#5B,X

STA #03Cl,X

DEX

BPL #F599
LDA #16
ANDR#03
BEQ #F5B2
STA #5E
LDA #16
AND@#08
BEQ #F5B5
JSR #F678
JMP #C55B
LDXe#02
SEC

LDA #5A,X
SBC #52,X
LDY #52,X

F5BC
F5BE
F5C@
F5C2
F5C4
F5C6
F5C8
F5CA
F5CC
F5CE
F5D@
F5D2
F5D3
F5D5
F5D7
F5D9
F5DB
F5DD
F5DE
F5DF
F5E1
F5E3
F5ES
F5E7
F5E9
F5EB
F5ED
FSEF
F5F1
F5F3
FSF5
F5F6
F5F7
F5F9
FS5FB
FS5FE
F600
F603
F605
F607
F60A
F60C
F60F
F612
F614
F616
F619
F61C
F61E
F61F
F621
F623
F624
F626
F629
F62B
F62E
F630
F632

LDY
STY
STA
LDY
LDA
SBC
STY
STA

#52,X
#5A,X
#52,X
#53,X
#5B,X
#53,X
#5B,X
#53,X
STA #56,X
BPL #F5DD
LDAR#00
SEC

SBC #52,X
STA #52,X
LDAR#00
SBC #53,X
STA #53,X
DEX
DEX
BPL
LDA
CMP
LDA
SBC #53
BCC #F61C
LDA@#00
SBC #54
STA #57
LDAG#00
SBC #55
SEC

ROR A

STA #59
ROR #57
JSR
LDA
CMP
BNE
LDA
CMP
BNE
JMP
JSR
LDA
BMI
JSR

#FSB7
#54
#52
#55

#5C
#03C3
#F60F
#5D
#03C4
#F60F
#C55B
#F655
#59
#FSFB
#F644
JMP #FS5FB
LDA #53
LSR A

STA #59
LDA #52
ROR A

STA #57
JSR #F678
LDA #5A
CMP #03C1
BNE #F637
LDA #5B
CMP #03C2

#F678 .

F632
F635
F637
F63A
F63C
F63E
F641
F644
F645
F647
F649
F64B
F64D
F64F
F651
F653
F655
F656
F658
F65A
F65C
F65E
F660
F662
F664
F666
F668
F66A
F66C
F66E
F670
F671
F673
F675
F677
F678
F67B
F67E
F680
F682
F684
F686
F688
F68A
F68C
F68E
F690
F692
F693
F696
F698
F69A
F69C
F69E
F69F
F6A0Q
F6A2
F6A3
F6AS

CMP
BEQ
JSR
LDA
BPL
JSR
JMP
SEC
LDA
SBC
STA
LDA
SBC #55
STA #59
LDX@#00
BEQ #F664
CLC
LDA
ADC
STA
LDA #59
ADC #53
STA #59
LDX@#02
LDA #56,X
BPL #F671
LDA #5A,X
BNE #F66E
DEC #5B,X
DEC #5A,X
RTS
INC
BNE
INC
RTS
JMP (#03FE)
JSR #C3C8
LDY@#00
LDA #52
BEQ #F6C2
CMP@#05
BCC #F68A
LDAG#04
LDXe#80
STX #54
STY #53
STA #52
TAX
LDA
LDX
BPL
CMP
BCS
TAX
TYA
STA(#53),Y
DEY

BNE #F6AQ
INC #54

#03C2
#F60C
#F644
#59

#F626
$F655
#F626

#57
#54
#57
#59

#57
#52
#57

#5A,X
#F670
#5B,X

#12
#F69E
#12
$F67F

#F6CE, X

F6A7
F6A9
F6AB
F6AD
F6B@
F6B3
F6B6
F6B9
F6BC
F6BF
F6C2
F6C4
F6C7
F6CA
F6CB
F6CD

CPX
BNE
LDY
LDA
STA
LDA
STA
LDA
STA #B000
JMP #C558
LDAQ#40 .@
STA
STA
DEY
BNE
BEQ

#54
#F6AQ
#52
#03FF

#03FE

#F6C4
#F6AB

- data -

F6E2
F6E4
F6E6
F6ES8
F6EA
F6EC
F6EE
F6EF
F6F1
F6F3
F6F4
F6F6
F6F8
F6FA
F6FC
F6FD
F6FE
F700
F702
F704
F706
F707
F708
F709
F70A
F70B
F70C
F70E
F710
F712
F714
F716
F718
F719
F71B
F71C
F71D
F720
F722
F724
F725

F727

LDA
ORA

#5B
#5D
BNE #F73A
LDA #5A
CMPE#40 .@
BCS #F73A
LSR A

STA #SF
LDA@#2F ./
SEC

SBC #5C
CMP@#30 .9
BCS #F73A
LDX@#FF
SEC

INX
SBC@#03
BCS #F6FD
ADCR#03
STA #61
TXA
ASL
ASL
ASL
ASL
ASL
ORA #5F
STA #SF
LDA@#80
ADCE@#00
STA #60
LDA #5A
LSR A
LDA #61
ROL A
TAY
LDA
LDY@#00
LDX #5E
DEX

BEQ #F736

DEX

>y >

#F6D8,Y
#F6D3,Y

#F6DD,Y

#8000,Y
#8100,Y

$F7CB,Y

F727
F728
F72A
F72C
F72E
F730
F731
F733
F735
F736
F738
F73A
F73B
F73D
F73F
F741
F743
F745
F746
F747
F748
F74A
F74C
F74D
F74F
F751
F753
F754
F756
F758
F75A
F75C
F75E
F75F
F760
F761
F763
F765
F766
F768
F76A
F76C
F76D
F76F
F771
F773
F775
F777
F778
F779
F77A
F77C
F77E
F77F
F781
F783
F785
F787
F789

- 36 -

DEX
BEQ #F731
EORE@#FF
AND(#5F) ,Y
STA(#5F),Y
RTS
EOR(#5F) ,Y
STA(#5F) ,Y
RTS

ORA (#5F) ,Y
STA(#5F) ,Y
RTS
LDA
ORA
BNE

#5B
#5D
#F73A
LDA #5A
BMI #F73A
LSR A

LSR A

LSR A

STA #5F
LDA@E3F .?
SEC

SBC #5C
CMP@#40 .@
BCC #F785
RTS
LDA
ORA
BNE
LDA #5A
BMI #F73A
LSR A

LSR A

LSR A

STA #5F
LDA@#5F .
SEC

SBC #5C
CMPR#60 .
BCC $F785
RTS
LDA
ORA
BNE

#5B
#5D
#F73A

#5B
#5D
#F73A
LDA #5A
BMI #F73A
LSR A

LSR A

LSR A

STA #5F
LDA@#BF
SEC

SBC #5C
CMPE#Co
BCS #F73A
LDY@#00
STY #60
ASL A

F789
F78A
F78C
F78D
F78F
F790
F792
F793
F795
F797
F799
F79B
F79D
F79F
F7A1
F7A3
F7A4
F7A7
F7AA
F7AC
F7AE
F7B@
F7B2
F7B3
F7B4
F7BS
F7B7
F7B9
F7BA
F7BC
F7BE
F7C0
F7C2
F7C4
F7C5
F7C7

- data

F7D1
F7D2
F7D4
F7D5
F7D7
F7D9
F7DB
F7DD
F7DF
F7E1
F7E3
F7E6
F7E9
F7EC
F7EE
F7F1
F7F3
F7F6
F7F7
F7F8
F7FA
F7FD

ASL A

ROL #60
ASL A

ROL #60
ASL A

ROL #60
ASL A

ROL #60
ADC #5F
STA #5F
LDA #60
ADC@#80
STA #60
LDA #5A
ANDE@#07
TAY
LDA
JMP
LDA
ORA

#F720
#5B
#5D
BNE #F76C-
LDA #5A
LSR A

LSR A

LSR A

STA #5F
LDAE@#BF
SEC

SBC #5C
CMP@#C@
BCS #F76C
LDY@#00
STY #60
ASL A

ROL #60
BPL #F789

PLA
STA
PLA
STA #E9
LDY@#00
INC #E8
BNE #F7DF
INC #E9
LDA(#E8),Y
BMI #F7E9
JSR #FFF4
JMP #F7D7
JMP (#00E8)
LDX@#D4
JSR #F7F1
LDA #01,X
JSR #F802
INX

INX

LDA #FE,X
JSR #F802
LDAQ# 20

#E8

#F7C9,Y

F7FD
F7FF
F802
F803
F804
F805
F806
F867
F80A
F8@B
F80D
F8OF
F811
F813
F815
Fg818
F81B
F81D
F81F
Fg821
F822
Fg824
F827
Fg828
F82B
F82D -
F82F
Fg832
F833
F835
F837
F838
F83B
F83D
F83F
Fg841
F844
F846
F848
F84A
F84C
F84E
F84F
F851
F853
F856
F857
F858
F85A
F85C
F85E
F860
F861
F863
F865
F867
F869
F86B
F86C

LDA@#20
JMP #FFF4
PHA

LSR A

LSR A

LSR A

LSR A

JSR #F8@B
PLA
AND@#@F
CMP@#0A
BCC #F813
ADC@#06
ADCR#30 .0
JMP #FFF4
JSR #F876
LDX@#00
CMp@#22 ."
BEQ #F827
INX
BNE
JMP
INY
LDA $#01060,Y
CMP@#0D
BEQ #FS824 .
STA #0140,X
INX
CMP@§#22 . "
BNE #F827
INY

LDA ¥0100,Y
CMP@#22 ."
BEQ #F827
LDA@#@D
STA #013F,X
LDAQR#40 .@
STA #C9
LDAR#0O1
STA #CA
LDX@#C9
RTS
LDY@#00
LDA #00,X
STA #00C9,Y
INX

INY
CPYR#0A
BCC #F851
LDY@#FF
LDA@#GD
INY
CPYQG#OQE
BCS #F86C
CMP (#C9),Y
BNE #F860
CPYQ@#0A0
RTS

JSR #F7D1

#F83F
#FA7TD

F86C

JSR #F7D1

- data -

F873
F874
F875
F876
F879
F87B
F87D
F87E
F880
F882
F884
F886
Fg888
F88A
F88C
F88E
F890
F891
F892
F893
F895
F897
F899
F89B
F89E
F8Al
F8A4
F8A6
F8A7
F8AS8
F8A9
F8AA
F8AC
FB8AE
F8AF
F8B1
F8B3
F8B4
F8B6
F8B8
F8B9
F8BB
F8BD

NOP
BRK
INY

LDA #0100,Y

CMP@#20
BEQ #F875
RTS
CMP@#30 .0
BCC #F891
CMP@#3A .:
BCC #F88E
SBCQ@#07
BCC #F891
CMP@#40 .@
BCS #F890
AND@#0OF
RTS

SEC

RTS
LDAQR#00
STA #00,X
STA #01,X
STA #02,X
JSR #F876
LDA
JSR #F87E
BCS #F8BB
ASL A

ASL A

ASL A

ASL A

STY #02,X
LDY@#04
ASL A

ROL #0@¢,X
ROL #01,X
DEY
BNE
LDY
INY
BNE
LDA
RTS

#F8AE
#02,X

#F89E
#02,X

- data -

FBEF
F8F1
F8F2
F8F4
F8F6
F8F9
F8FA
F8FB
F8FC
F8FF
F901
Fo04
F906

LDX@#FF
CLD
LDY@#00
STY #DD
JSR #F876
DEY
INY
INX
LDA
BMI
CMP
BEQ #F8FA
DEX

#F919

#0100,Y

#F8BE, X

$#0100,Y

F906
F907
F9@8
Fo@B
F90D
FOQE
FO1ll1
F913
F915
F91l6
F917
F919
F91B
FOlE
F920
F921
F923
F926

- 37 -

DEX
INX

LDA #F8BE,X

BPL #F9@7
INX

LDA #0160,Y

CMP@#2E ..
BNE #F8F2
INY
DEX
BCS
STA
LDA
STA
CLC
LDX@e#00

JMP (#00C9)
JSR #F7D1

$F8FC
#CA

#C9

- data -

F92D
F92E
F92F
F932
F934
F936
F939
F93B
FO3E
Fo40
F942
F944
F946
F948
F94B
F94D
F94E
F950
F951
F953
F954
F955
F956
F958
F95B
F95D
F960
F962
F964
F966
F969
F96B
FO96E
F96F
F970
F973
F974
F977
F978
F97A

NOP

BRK

JSR #FBS8E
BVC #F92E
BEQ #F92F
JSR #FC2B
LDY@#00
JSR #FFD4
STA(#CB) ,Y
INC #CB
BNE #F946
INC #CC
LDX@#D4
JSR #FAQS8
BNE #F93B
SEC

ROR #DD
CLC

ROR #DD
PLP

RTS

SEC

ROR #DD
JSR #F818
LDX@#CB
JSR #F893
BEQ #F966
LDA@#FF
STA #CD
JSR #FA76
LDX@#C9
JMP (#020C)
PHP

SEI

JSR #F84F
PHP

JSR #FC3E
PLP

BEQ #F92F
LDAR#0G0

#F8BF,X

F97A
F97C
FO97E
Fo80
F983
F985
F987
F989
Fo98B
F98C
F98E
F991
F992
F995
F997
F999
FO9A
F99D
FOOF
F9Al
F9A2
F9A4
FO9A6
FOA9
FO9AB
F9AD
F9B@
F9B1
F9B4
F9B5S
F9B7
F9B9
F9BB
F9BD
FOBF
FoC2
FO9C5
F9C7
F9C9
FoCB
FI9CD
FOCF
FI9D1
FID3
FI9D5
FoD8
FODB
F9DD
FO9DE
F9EQ
FOE3
F9ES
FOE7
F9ES8
F9E9
F9EC
FOEE
FOFQ
FOF2

LDA@#00
STA #D0
STA #D1
JSR #F9A2
BCC #F94E
INC #D0
INC #CC
BNE #F980
CLC
BCC
JSR
INY
LDA
CMP@#0D
BNE #F98E
INY

JSR #F7FD
CPY@#0OE
BCC #F999
RTS
LDAG#00
STA #DC
JSR #FB8E
BVC #F9A3
BNE #F9A2
JSR #FBC9
PHP
JSR
PLP
BEQ #F9C7
LDA #DB
AND@ #20
ORA #EA
BNE #F9A2
JSR #F992
JSR #FFED
BNE #F9A2
LDX@#02
LDA #DD
BMI #F9OEQ
LDA #CF,X
CMP #D8,X
BCS #F9DB
LDAR#05
JSR #FC40
JSR #FC3E
BNE #F9A2
DEX
BNE
JSR
BIT
BVC
DEY
INY
JSR #FFD4
STA(#CB) ,Y
CPY #DS8
BNE #FOES8
LDA #DC

#F94E
#FFF4

#FBE2

#FOCD
#FC2B
#DB

#FOF2

#00ED,Y

FOF2
F9F4
FOF6
FOF9
FI9FB
FOFD

LDA
STA
JSR
CMP
BEQ
JSR

#DC
#CE
$FFD4
#CE
#FAQS
#F7D1

- data -

FAQ3
FAQ4
FAQS
FAQ7
FAQ8
FAQA
FAQC
FAQE
FAlQ
FAl12
FAl4
FAl6
FA18
FA19
FA1A
FA1D
FAlF
FA20
FA23
FA25
FA27
FA2A
FA2B
FA2E
FA31
FA34
FA36
FA37
FA38
FA3A
FA3C
FA3F
FA42
FA44
FA47
FA4A
FA4D
FA50
FAS52
FAS54
FAS55
FAS58
FASA
FASD
FAG60Q
FA62
FA65
FA68
FAG6A
FA6B
FA6D
FA70

NOP
BRK
ROL
RTS
INC
BNE
INC
LDA
CMP
BNE
LDA
CMP
RTS
DEX
JSR
STX
RTS
JSR

#DB

#00,X
#FAQGE
#01,X
#00,X
#02,X
#FA18
$#01,X
#03,X

$#FA76
#EA

#F958
BIT #DD
BVS #FA73
JMP (#00D6)
PHP

JSR #FA76
JSR #FC3E
JSR #FB8E
BVS #FA38
PLP

RTS

BEQ #FA44
LDY@#00
JSR #F999
JSR #F7EC
BNE #FASD
JSR #FBCO
JSR #FBE2
JSR #F992
JSR #F7EC
ROL #DB
BPL #FA5D
INX
JSR
LDA
JSR
JSR
BNE
JMP
JSR
BEQ
RTS
LDX@#CB
JSR #FA65
JSR #FA76

#F7F1
#FD, X
#F802
#FFED
$#FA31
#FFED
#F893
#FA7D

FA73 JMP (#0@CB)
FA76 JSR #F876
FA79 CMPQR#0D
FA7B BEQ #FAlF
FA7D JSR #F7D1
- data -
FA84 NOP
FA85 BRK
FA86 SEC
FA87 LDA
FA89 SBC
FA8B PHA
FA8C LDA
FABE SBC
FA90 TAY
FA91 PLA
FA92 CLC
FA93 ADC
FA95 STA
FA97 TYA
FA98 ADC #CC
FA9A STA #CE
FA9C LDYR#04
FA9E
FAAl
FAA4
FAAS
FAA7
FAAQ
FAAC
FAAE
FAB@
FAB2
FAB4
FAB7
FAB9
FABA
FABB
FABE
FACQ
FAC3
FACS
FACS8
FACA
FACD
FACE
FAD@
FAD2
FAD3
FADS
FAD7
FAD9
FADB
FADD
FAEQ
- FAE2
FAES
FAE6

FAE7

#D1
#CF

#D2
#D0

#CB
#CD

JSR #FFD1
DEY

BNE #FA9E
LDA (#CF) ,Y
JSR #FFD1
INC #CF
BNE #FAB2
INC #D@
LDX@#CB
JSR #FA08
BNE #FAA7
PLP

RTS

JSR #F818
LDX@#CB
JSR #FA65
LDX@#Dl1
JSR #FA65
LDX@#CD
JSR #F893
PHP
LDA
LDX
PLP
BNE
STA
STX
STA
STX #D#O
JSR #FA76
LDX@#C9
JMP (#020E)
PHP

SEI

JSR #F84F

#CB
#CC

#FADS
#CD
#CE
#CF

LDA #00CA,Y

FAE7
FAEA
FAEB
FAED
FAFQ
FAF2
FAF5
FAF6
FAF8
FAFA
FAFC
FAFE
FAFF
FB@1
FB@3
FB@5
FB@7
FB@9
FB@B
FB@D
FBOE
FB1@
FB11
FB13
FB15
FB17
FB19
FB1B
FB1D
FB1lE
FB20
FB21
FB23
FB24
FB26
FB28
FB29
FB2B
FB2C
FB2F
FB31
FB33
FB35
FB37
FB39
FB3A
FB3B
FB3D
FB40
FB42
FB44
FB46
FB49
FB4A
FB4C
FB4E
FB51
FB52
FB54

- 38 -

JSR #F84F
PHP
LDA@#06
JSR #FC40
LDX@#a7
JSR #FB7A
PLP

BEQ #FA86
LDXe#04
LDA #CE,X
STA #D2,X
DEX
BNE
STX
STX
LDA
BNE
DEC
DEC
CLC
ROR
SEC
LDX@#FF
LDA #D5S
SBC #D3
STA #CF
LDA #D6
SBC #D4
PHP
ROR
PLP
BCC
CLC
BEQ
STX
SEC
ROR
INX
JSR
INC
INC
INC
ROL
BCS
PLP
RTS
LDXe#07
JSR #FB7A
STX #DC
LDY@#04
LDA@#2A .*
JSR #FFD1
DEY

BNE #FB44
LDA(#C9),Y
JSR #FFD1
INY
CMP@#0D
BNE #FB4C

#FAFA
#D0
#D1
#D5
#FBOB
#D6
#D5

#D2

#D2
#FB29

#FB29
#CF

#D2

#FB3B
#D0
#D4
#CC
#D2
#FBOE

FB54
FB56
FB58
FBSB
FBS5E
FBSF
FB61
FB64
FB66
FB68
FB69
FB6A
FB6C
FB6F
FB71
FB73
FB75
FB78
FB7A
FB7D
FB7F
FB81
FB83
FB86
FB87
FB89
FB8A
FB8C
FB8E
FBI1
FB93
FB95S
FB97
FB99
FB9B
FB9D
FBA®
FBA2
FBA4
FBA7
FBAS
FBAB
FBAD
FBAF
FBB1
FBB3
FBB4
FBB6
FBB7
FBBA
FBBB
FBBD
FBBF
FBC2
FBC4
FBC5
FBC7
FBCS8
FBC9

BNE #FB4C
LDY@#08

LDA #00CA,Y
JSR #FFD1
DEY
BNE
JSR
BIT
BVC
DEY
INY
LDA(#D3),Y
JSR #FFD1
CPY #CF

BNE #FB69
LDA #DC
JSR #FFD1
LDX@#04

STX #B0@2
LDX@#78 .x
BNE #FB83°
LDX@#1E
JSR #FE66
DEX

BNE #FB83
RTS

LDXQ@#06

BNE #FB83
BIT #Bogl
BPL #FB8E
BVC #FBS8E
LDY@#00

STA #C3
LDAG#10

STA #C2

BIT #B@gl
BPL #FBB1
BVC #FBB1l
JSR #FCBD
BCS #FB95
DEC #C3

BNE #FB9D
DEC #C2

BNE #FB9D
BVS #FBB4
RTS

LDY@#04

PHP

JSR #FBE4
PLP

LDY@#0@4
LDA@#2A .*
CMP #00D3,Y
BNE #FBC7
DEY

BNE #FBBF
RTS

INY

JSR #FFD4

#FB58
#FB81
#D2

#FB73

FBC9
FBCC
FBCF
FBD1
FBD3
FBD5S
FBD6
FBDS8
FBDB
FBDD
FBDF
FBE1l
FBE2
FBE4
FBE7
FBEA
FBEB
FBED
FBEE
FBF@
FBF2
FBF3
FBF4
FBF6
FBF8
FBFB
FBFD
FBFF
FCo1
FC@3
FC@5
FC@7
FC@A
FC@D
FC@F
FC11
FC12
FC14
FC16
FC18
FC1lA
FC1C
FClE
FC1F
FC21
FC23
FC24
FC25
FC27
FC29
FC2A
FC2B
FC2D
FC2F
FC31
FC33
FC35
FC37
FC38

JSR #FFD4
STA #00ED,Y
CMP@#0D

BNE #FBCS8
LDY@#FF

INY
LDA(#C9),Y
CMP #0GQED,Y
BNE #FBC7
CMP@#0D

BNE #FBDS
RTS

LDY@#08

JSR #FFD4
STA #00D3,Y
DEY
BNE
RTS
STX
STY
PHP
SEI
LDAG#78 .X
STA #C@O
JSR #FCBD
BCC #FBF4
INC #C0
BPL #FBF8
LDA@#53 .S
STA #C4
LDXG#00
LDY #B@@2
JSR #FCCD
BEQ #FCOF
BEQ #FC1l2
INX

DEC #C4
BNE #FC@A
CpPX@#0C
ROR #C@
BCC #FCo1
LDA #Co
PLP
LDY
LDX
PHA
CLC
ADC
STA
PLA
RTS
LDA
BMI
LDA
STA
LDA
STA
RTS
BCS

#FBE4

#EC
#C3

#C3
#EC

#DC
#DC

#CD
#FC37
#D4
#CB
#D5
#CC

$FC3E

- 39 -

FC3A LDAR#06 FCBF LDY #B@@2 FD2F BMI #FD33 = FDAE LDY #E@
FC3C BNE #FC49 FCC2 INX FD31 EOR@#60 . FDB@ JSR #FE6B
FC3E LDA@#04 FCC3 BEQ #FCCC FD33 JSR #FE6B FDB3 LDA(#DE),Y
FC409 LDXe#087 FCC5 JSR #FCCD FD36 STA(#DE),Y FDBS5 EOR #E1l
FC42 STX #Bo0@2 FCC8 BEQ #FCC2 FD38 INY FDB7 BMI #FDBB
FC45 BIT #EA FCCA CPX@#08 FD39 CPY@#20 FDB9 EOR@#60 .~
FC47 BNE #FC76 FCCC RTS FD3B BCC #FD42 FDBB SBC@#20
FC49 CMP@#05 FCCD STY #C5 FD3D JSR #FDEC FDBD JMP #FDE9
FC4B BEQ #FC63 FCCF LDA #B@@2 FD4@¢ LDYR#00 FDC@ LDA@#SF .
FC4D BCS #FC58 FCD2 TAY FD42 STY #E@ FDC2 EOR@#20
FC4F JSR #F7D1 FCD3 EOR #C5 FD44 PHA FDC4 BNE #FDE9
- data - FCDS AND@#20 FD45 JSR #FE6B FDC6 EOR #E7
FC56 BNE #FC6D FCD7 RTS FD48 LDA(#DE),Y FDC8 BIT #B@0@1
FC58 JSR #F7D1 FCD8 LDXe#00 FD4A EOR #E1 FDCB BMI #FDCF
- data - FCDA LDAC#10 FD4C STA(#DE),Y FDCD EOR@#60 .°
FC61 BNE #FC6D FCDC BIT #B@@2 FD4E PLA FDCF JMP #FDDF
FC63 JSR #F7D1 FCDF BEQ #FCDC FD4F RTS FDD2 ADC@#39 .9
- data - ' FCEl BIT #B@g@2 FD50 JSR #FE35 FDD4 BCC #FDC8
FC6C NOP FCE4 BNE #FCEl FD53 LDAR#20 FDD6 EOR@#10
FC6D JSR #F7D1 FCE6 DEX FD55 JSR #FE6B FDD8 BIT #B@0@1
- data - FCE7 BPL #FCDC FD58 STA(#DE),Y FDDB BMI #FDDF
FC75 NOP FCE9 RTS FDSA BPL #FD42 FDDD EOR@#10
FC76 JSR #FFE3 FCEA CMP@#06 ' FD5C JSR #FE35 FDDF CLC
FC79 JMP #FFED FCEC BEQ #FD@B FDSF JMP #FD42 FDE@ ADC@#20
FC7C STX #EC FCEE CMP@#15 FD62 JSR #FDEC FDE2 BIT #B@@1
FC7E STY #C3 FCF@ BEQ #FD11 FD65 LDY #EO FDES5 BVS #FDE9
FC80 PHP FCF2 LDY #E@ FD67 BPL #FD42 FDE7 AND@#1F
FC81 SEI FCF4 BMI #FD19 . FD69 LDY@#80 FDE9 JMP #FE60
FC82 PHA FCF6 CMP@#1B FD6B STY #E1 FDEC LDA #DE
FC83 JSR #FC23 FCF8 BEQ #FD@#B FD6D LDY@#00 FDEE LDY #DF
FC86 STA #C¢ FCFA CMP@#@7 FD6F STY #B00@ FDF@ CPY@#81
FC88 JSR #FCD8 FCFC BEQ #FD1A FD72 LDA@#20 FDF2 BCC #FE2C
FC8B LDA@#0A FCFE JSR #FD44 FD74 STA #8000,Y FDF4 CMP@H#ED
FC8D STA #C1 FDO@1 LDX@#0A FD77 STA #8100,Y FDF6 BCC #FE2C
FC8F CLC FD@3 JSR #FECS FD7A INY FDF8 LDY #E6
FC9@ BCC #FC9C FD@6 BNE #FD29 FD7B BNE #FD74 FDFA BMI #FE@8
FC92 LDX@#07 FD@8 JMPp #FEB7 , FD7D LDAQ@#80 FDFC DEY
FC94 STX #B@082 FD@PB CLC FD7F LDY@#00 FDFD BNE #FEQ6
FC97 JSR #FCDA FDOC LDX@#00 FD81 STA #DF FDFF JSR #FE71
FC9A BMI #FCAF FDPE STX #B00@@ FD83 STY #DE FE@2 BCS #FDFF
FC9C LDY@#04 FD11 LDX@#02 FD85 BEQ #FD42 FE@4 LDY@#10
FC9E LDAR#04 FD13 PHP FD87 JSR #FE3A FE@6 STY #E6
FCAQ STA #B@g@2 FD14 ASL #DE,X FD8A JMP #FD42 FE@8 LDY@#20
FCA3 JSR #FCDS8 FD16 PLP FD8D CLC FEGA JSR #FE66
FCA6 INC #B@@2 FD17 ROR #DE,X FD8E LDAG#10 FE@GD LDA #8000,Y
FCA9 JSR #FCDS8 FD19 RTS FD9@ STA #E6 FE10 STA #7FEQ,Y
FCAC DEY FD1A LDA@#05 FD92 LDX@#08 FE13 INY
FCAD BNE #FC9E FD1C TAY FD94 JSR #FD13 FE14 BNE #FE@D
FCAF SEC FD1D STA #B@@3 FD97 JMP #FD44 FE16 JSR #FE6B
FCB@ ROR #C@ FD2@ DEX FD9A LDA #E7 FE19 LDA #8100,Y
FCB2 DEC #Cl FD21 BNE #FD20 FD9C EORE#60 . FE1C STA #80E0,Y
FCB4 BNE #FC90 FD23 EORE#01 FDY9E STA #E7 FE1F INY
FCB6 LDY #C3 FD25 INY FDAQ® BCS #FDAB FE20 BNE #FE19
FCB8 LDX #EC FD26 BPL #FD1D FDA2 ANDE@#05 FE22 LDY@#1F
FCBA PLA FD28 RTS FDA4 ROL #Bgal FE24 LDA@#20
FCBB PLP FD29 CMPE#20 FDA7 ROL A FE26 STA(#DE),Y
FCBC RTS FD2B BCC #FD44 FDA8 JSR #FCEA FE28 DEY
FCBD LDX@#00 FD2D ADC@#1F FDAB JMP #FE9A FE29 BPL #FE26

FCBF LDY #B@@2 FD2F BMI #FD33 FDAE LDY #E@ FE2B RTS

FE2C
FE2E
FE30
FE32
FE34
FE35
FE36
FE38
FE3A
FE3C
FE3E
FE40
FE42
FE44
FE45
FE46
FE49
FE4B
FE4D
FE4F
FES51
FE52
FESS5
FES56
FES57
FE58
FES5A
FESC
FESF
FE60
FE62
FE64
FE65
FE66
FE69
FE6B
FE6E
FE70
FE71
FE73
FE74
FE76
FE78
FE7B
FE7D
FE80
FE81
FE82

ADCe#20
STA #DE
BNE #FE34
INC #DF
RTS

DEY

BPL #FES1
LDY@#1F
LDA #DE
BNE #FE49
LDX #DF
CPX@#80
BNE #FE49
PLA

PLA

JMP #FD65
SBC@#20
STA #DE
BCS #FES1
DEC #DF
RTS
JSR
PHP
PHA
CLD
STY
STX
JSR
PLA
LDX
LDY
PLP
RTS
BIT
BPL
BIT
BMI
RTS
LDY@#3B .;
CLC
LDAG#20
LDX@#0A
BIT #B@0ol
BEQ #FE85
INC #B@g@@o
DEY
DEX
BNE

#FEFB

#E5
#E4
#FCEA

#E4
#ES5

#B0B2
#FE66
#BOO2
#FEG6B

#FE78

FE82
FE84
FE85
FE86
FE87
FE8A
FE8C
FE8F
FE90
FE91
FE93
FE94
FE95
FE96
FE98
FE9A
FE9D
FE9F
FEA?2
FEA4
FEA7
FEAA
FEAC
FEAF
FEB1
FEB2
FEB4
FEB7
FEBA
FEBC
FEBE
FECO
FEC1
FEC4
FECS5
FEC8
FECA

- 49 -

BNE #FE78
LSR A

PHP

PHA

LDA #B0@0
AND@#F0
STA #B000O
PLA
PLP
BNE
RTS
PHP
CLD
STX
STY
BIT
BVC
JSR
BCC
JSR
JSR
BCS
JSR
BCS
TYA
LDX@#17
JSR #FEC5

#FE76

$E4
$ES

$B002
}FEA4
$FE71
$FE9A
#FB8A
$FE71
$FEA7
$FE71
$FEA7

LDA #FEE3,X

STA #E2
LDAR#FD
STA #E3
TYA

JMP (#00E2)
DEX

CMP $#FECB,X

BCC #FEC4
RTS

- data -

FEFB
FEFC
FEFE
FF@0
FFo2
FF@4
FF@6
FFo8
FF@B
FF@D

PHA
CMP@#0@2
BEQ #FF27
CMP@#03
BEQ #FF38
CMP #FE
BEQ #FF36
LDA #B8#C
ANDR#QE
BEQ #FF36

FF@D
FFOF
FF10
FF13
FF15
FF18
FF19
FF1C
FF1E
FF20
FF23
FF25
FF27
FF29
FF2C
FF2F
FF31
FF33
FF36
FF37
FF38
FF3B
FF3D
FF3F
FF41
FF44
FF47
FF48
FF4A
FF4B
FF4C
FF4D
FF4F
FF51
FF53
FF55
FF58
FF59
FF5B
FF5D
FF5F
FF61
FF64
FF66
FF69

BEQ #FF36
PLA
BIT
BMI
STA
PHA
LDA #B8#C
AND@#FO
ORAR#OC
STA #B8@C
ORA@#02
BNE #FF33
LDA@R#TF
STA #B803
LDA #B8@C
AND@#F@
ORAQ@#0QE
STA #B8@C
PLA

RTS .
LDA #B8@C
ANDR#FQ
BCS #FF33
LDX@#17

#B801
#FF10
#B8@1

LDA #FF9A,X
STA #0204,X

DEX

BPL #FF41
TXS

TXA

INX

STX #EA
STX #E1
STX #E7
LDX@#33 .3

STA #02EB,X

DEX

BPL #FF55
LDAG#OBA
STA #FE
LDAG#8A
STA #B@03
LDA@#087
STA #B@@2
JSR #F7D1

- data -

FF7C
FF7E

LDA@#82
STA #12

FF7E
FF80
FF81
FF83
FF86
FF89
FF8B
FF8C
FF8F
FF92
FF94
FF97

STA #12
CLI
LDA@R#55 .U
STA #2901
CMP #2901
BNE #FF97
ASL A

STA #2901
CMP #2901
BNE #FF97
JMP #C2B2
JMP #C2B6

- data -

FFB2
FFB4
FFBS
FFB6
FFB8
FFBA
FFBC
FFBD
FFC@
FFC2
FFC3
FFC4
FFC7
FFC8
FFCB
FFCE
FFD1
FFD4
FFD7
FFDA
FFDD
FFEQ
FFE3
FFE6
FFE9
FFEB
FFED
FFEF
FFF2
FFF4
FFF7
FFFA
FFFB
FFFC
FFFD

STA
PLA
PHA
AND@#10
BNE #FFC0
LDA #FF
PHA

JMP (#0204)
LDA #FF
PLP

PHP

JMP (#0202)
PHA

JMP (#0200)
JMP (#021A)
JMP (#0218)
JMP (#0216)
JMP (#0214)
JMP (#0212)
JMP (#0210)
JMP (#020E)
JMP (#020C)
JMP (#020A)
JSR #FFE3
CMPR#0D
BNE #FFF4
LDAR#0A
JSR #FFF4
LDA@#0D
JMP (#0208)
JMP (#0206)

#FF

CHAPTER 6
WORKING EXAMPLES USING THE ROM ROUTINES

For normal interpreting use there are six major subroutines that are

most useful

A= WN —

. C8BC - Read (5),Y to the workspace stack.
C231 - Expect and skip past a "," sign.
C589 - Print the w/s stack in decimal.
C349 - Print the w/s stack in hex.

CDO09/F - input with editing to an input buffer.
F7D1 - machine code version of PRINT"....."

.o

Further, the best way to end any m/c code routine is JMP #C55B, rather
than using RTS. The examples below use these and other routines to

illustrate
1) To print

100
110
120
130
140
150

160
170
180

2)To copy a

100
110
120
130
140

3)To print

100
110
120
130
140
150

4)For those
screen.
10
20
30
40
50

60
70

how they can be incorporated into you own systems.

out messages on the screen

DIM P-1
M=P

[;ISR #F7Dl;] CALL IN-LINE PRINTER

SP="THIS IS A MESSAGE"

P=P+LEN P

[; NOP TERMINATE PRINTER WITH A NEGATIVE
CHARACTER SUCH AS "NOP"

JSR #FFED EXECUTE CR+LF

RTS ; 1]

DO;LINK M; UNTIL 0 TEST IT OUT

value on the w/s stack to an integer variable.

DIM P-1;M=P;[

LDY@ CH"N"-40 COPIES W/S STACK VALUE IN

LDX@ #FF #16,25,34,43 TO INTEGER
ISR #CA37 ;] ~ VARIABLE N
?16=9 ; LINK M ; PRINT N ; E.

’

out the value of one of the integer variables.

DIM P-1;M=P;[

LDY@ CH"N"-40 FETCH VARIABLE N TO THE
LDX@ 1

JSR #¥CE83 WORKSPACE STACK.

JSR #C589 ; 1]

PRINT W/S STACK AS DECIMAL
LET N=20;LINK M;E. /

with DISATOM, using to pass on a number that fills the

DIM JJ1;330=-1;331=-1

FOR X=0 TO 1 TWO PASSES

P= #3B00 ASSEMBLE AT 3B0O
[START ASSEMBLING

JSR #C8BC READ VALUE AFTER [X]TO W/S STACK
ISR #CHEY CHECK FOR RUBBISH,<CR> OR ; OK
LDA @ 0 ; STA & RESET W/S STACK POINTER

-continued-

-42-

80 LDA 416 ; LDX @ O PUT VALUE INTO ALL SCREEN RAM
90:330

100 STA #8000,X

110 STA #8100,X

120 INX ; BNE 3130

130 JMP #C55B ;] BACK TO INTERPRETER

140 NEXT ; END

N.B.- The command must be spaced away from the line number if it is
the first command in a line, or the interpreter will mistake it for a
label. All{XJroutines must end in IJMP C55B.

A BASIC program to use the above m/c code is:

10 ! #180= #3B00
20 F. A=0 TO 255

30 [X] A

40 F.1=1 TO 60;WAIT;N.
50 N.A

50 E.

5. To INPUT numbers into your routines.

100 DIM P-1;M=P;[

110 JSR #CDO09 INPUT WITH EDITING TO #140 BUFFER
120 LDY@ | ; STY 6 120-140,POINT (5),3 AT 2140

130 DEY ; STY 3

140 LDA@ #40; STA 5

150 JSR #C8BC READ #140 BUFFER TO W/S STACK
160 ISR #C589 PRINT W/S AS DECIMAL IN FIELD @
170 RTS ;]

180 LINK M ; E. TEST IT

NOTE: This input allows decimal or § prefixed hexadecimal.
Repeated calls to C8BC should be prefixed with LDA@ 0;STA%4 to
reset the w/s stack. Unless (5),3 is PUSHed before entry to
this routine, then PULLed at the end, it will exit to direct
mode .

6. To INPUT Hex numbers into your routines.

100 DIM P-1; M=P ; [

110 LDA@ CH"#" PROMPT WITH CHARACTER ¢
120 ISR #CDOF INPUT WITH EDIT TO #100 BUFFER
130 LDY@ 9 RESET Y

140 LDX@ #80 READ #100 BUFFER AS HEX, STORE TO
150 JSR #F893 VECTOR X POINTS AT- HERE 480

160 JSR #F7F1 PRINT VECTOR X POINTS AT AS HEX
170 RTS ;]

180 LINK M ; E. TEST IT

NOTE: F893 stores the 100 buffer as a two-byte vector inPageO,
which is pointed at by X on entry to the routine. The
accumulator is stored in the third byte, so P.! #80 gives a
strange result.

“43-
7. Hex Printer

100 DIM P-1;M=P;[

110 JSR #CD09 INPUT WITH EDIT TO #140 ? PROMPT
120 LDY@ 0 ;STY 3 SET UP VECTOR (5),Y WHERE

130 INY ; STY 6 Y=73

140 LDA@ #40 ; STA 5 TO POINT AT #140

150 JSR #C8BC READ (5),Y TO W/S STACK

160 ISR #C349 PRINT W/S STACK IN HEX

170 RTS ;]

180 LINK M; E. TEST IT

8. Inverting the screen.

10 DIM JJ2;F.1=0TO2;3J2=-1;N.;F.X=0TOl;P= #2800;(
20:JJ0 LDY@ 0; ISR #FEé66 SYNC TO TV FLYBACK
30:33J1 LDA #8000,Y

40 EOR@ #80 ; STA #8000,Y DO TOP OF SCREEN
50 INY ; BNE JJl '

60 ISR #FE6B CHECK STILL IN FLYBACK OR WAIT
70:332 LDA #8100,Y

80 EOR@ #80 ; STA #8100,Y DO LOWER SCREEN

90 INY ; BNE JJ2

100 RTS ;]

110 NEXT X

120 DO; LINK JJO TEST IT

130 F.X=1TO30;WAIT;N.

140 UNTIL 0

9.Unsigned Multiply : Executes (R)=(M)*Acc

10 R= #80 2-BYTE RESULT

20 M= #82 2-BYTE MULTIPLIER
30 DIM JJ2;F.1=0TO2;3J1=-1;N.;F.X=0TOl;P= #2800;
40:330 PHA

50 LDA@ 0;STA R;STA R+l

60 PLA ; LDX@ 8

70:331 CLC

80 ROL R ; ROL R+l

90 ASL A ; BCC 332

100 PHA ; CLC

110 LDA R ; ADC M ; STA R

120 LDA R+1; ADC M+l ; STA R+l

130 PLA

140:332 DEX ; BNE JJ1

150 RTS ; 1]

160 NEXT X

170 | M= #100;A= #B TEST IT

180 LINK JJ0
190 PRINT &(! R&#FFFF);E.

4y

10. Unsigned divide : executes (D)=(D)/V

10 D= ¥80 2-BYTE DIVIDEND
20 V= #82 1-BYTE DIVISOR
30 R= #83 I -BYTE REMAINDER

40 DIM JJ5;F.1=0TO5;331=-1;N.;F.X=0TOL;P= #2800;(
50:330 LDA2 0; STA R .
60 LDX@ #11; BNE JJ2

70:331 SEC

80 LDA R ; SBC V ; BPL JJ3

90:33J2 CLC ; BCC JJ4

100:333 STA R ; SEC

110:334 ROL D ; ROL D+l

120 DEX ; BEQ JJ5

130 ROL R ; IMP 131

140:335 RTS ;1]

150 NEXT X |

160 ! D= #400 ; ?V=p2l TEST IT

170 LINK JJO

180 PRINT &(! D&#FFFF) , 7R

190 END

1. Cyclic Redundancy Check'(CRC). Has many uses, but for example, if
the CRC is known for a Program, it should give the same result again
after reloading from tape. See Chapter 7 for application.

100 DIM JJ34;P.$521

110 F.1=0TO4;JJ1=¢FFFF;N.

120 F.I1=1TO2;DIMP-1;M=P; [

130 JSR #F7D1;] .

140 $P="START ADDR ";P=P+LENP;(
150 NOP ;

160 LDA@ CH"#";JSR #CDOF

170 LDY@ O;LDXQ@ #90;JISR #F893
180 JSR #F7Dl1;]

190 SP=" END ADDR ";P=P+LENP;[
200 NOP

210 LDA@ CH"#" ;ISR #CDOF

220 LDY@ O;LDX@ #92;JSR #F893
230 LDY@ 0;STY #A0;STY #Al
240:331 ISR 332

250 LDX@ #90;JSR ¥FAOQ8

260 BNE J3J1

270 ISR 132

280 JSR #F7D1;]

290 SP="SIGNATURE IS ";P=P+LENP;[
300 NOP

310 LDX@ #A0;JSR #F7F1;JSR #FFED
320 IJMP #C55B

330:3J2 LDXQ 8;CLC

340 LDA(#90),Y

350:333 LSR A;ROL #AO;ROL #Al;BCC 134

360 PHA

370 LDA #AO0;EOR@ #2D;STA #AO
380 PLA

390:334 DEX;BNE 3133

400 RTS

410];P.S6;P."M/C CODE IS AT "M;LINK M;E.

CHAPTER 7
TAPE FILES, CRC , AND PRINTER USAGE

THE TAPE:

The ATOM normally stores information to tape at 300 BAUD. Some chips
on the market, such as DISATOM, allow 1200 BAUD, but in all cases the
format of the files are the same. It is useful to study this format in
case there is some corruption of the tape that prevents loading. The
bulk of the information can often be recovered.

There are three types of SAVE command used in the ATOM 1)XSAVE named
file 2)SAVE named file 3)¥SAVE unnamed file. The ATOM manual gives
details of how these are used. In the first two cases the block header
format is identical. Thediagrambelowrepresents the individual bytes
on the tape header for afile called ADVENTURE whichwill begin at 2900,
finish at 3BFF, and have a GO (kRUN) address of 3B50.This file has been
%SAVED as a named file using %SAVE"ADVENTURE"2900 3C00 3B50.

[[% [*% [*x [A] Db] v]E] ~N] T] 0] RrR] E]

0D E3 | 00 00 FF 38 | s0 | 20 | o0 |

As can be seen, the operating systemalways places four stars in front
of the file name. if any of these stars are corrupted the file cannot be
loaded. The title of the file can be up to 13 characters (bytes) long,
and so the actual length of the header is variable depending on the size
of the title. It can be as short as 14 bytes, or as long as 26. The title
is always terminated by OD (Carriage Return). It is possible to get up
to some real tricks with the title (see PROGRAM PROTECTION).

The next byte is the Header Checksum, to insure that the header itself
has not been corrupted.

The next two bytes are the Block Number, which is givenduring a «CAT.
The first block ina file is always numbered zero (By the way- you can
abbreviate #CAT as simply ¥. and it works fine).

The next byte on the header holds the number of bytes in this block of
information (excluding the header itself and the checksum). Normally
this is FF, since the block contains a full page of memory. However, it
may be less than FF if either 1)you save a very short program, or 2) it is
the last block in a file that does not finish at the end of a page.

The next twobytes are the GO address. I f youwere to RUN the program,
the operating system would automatically jump to this address and
begin executing the machine code that should be there. In our example
the address is 3B50.

The final two bytes of the header is the location where this block
will be placed. For BASIC programs this is normally 2900 for the first
block, filling up from there. Of course you may change this in either
the SAVE or LOAD commands. Since our example block is FF bytes long, it
will be loaded into the memory beginning at 2900 and finishing at 29FF.

-46-

The last byte of any block is the CHECKSUM, which includes the header
and the programproper, but not the checksumitself.As the tape is read
in the operating systemexecutes ?DC=?DC + X, where X is the byte being
read. It then compares ?DC with the checksum at the end, and gives SUM
ERROR 6 if they do not match. Since this is not a true Cyclic Redundancy
Check, it is possible to get no SUM error if there are errors which
exactly cancel out, and the programwill be loaded but will be corrupt.

I[f we had saved this file using the BASIC command SAVE"ADVENTURE" the
header would be of exactly the same format, but BASICwould fill in the
missing details of the title before actually saving it. Thus it would
find the value of TOP, and would save to tape all memory from (? #12),
which contains a pointer to the bottomof the program, to TOP. It would
use C2B2 as the GO address, which when executed just places you in
Command Mode. This would be catatrophic for our example, since it
contains machine code AFTER the BASIC part of the program, and is
designed to have this accomplished starting at 3B50. This is quite a
common fault when people copy programs. If there is any machine code
that is not within the BASIC program, or written by it in the course of
execution, then it is not saved, and the copied program will fail.

The Unnamed file is the fastest way to save memory, but does not have
any checksums, and the header is extremely brief. Since the memory is
not divided up into blocks, the information is as one continuous
stream, and the header is needed only once. If our example were saved
thus: ¥SAVE 2900 3C00 , the header would be

3C 00 29 00 and that's all.

If atape is corrupted, it is possible towritemachine code routines
that bring the entire contents of the tape, including the Header and
Checksum, into memory (or use the TAPEXXXX function on DISATOM). It is
stored ina temporary area, such as 8200. The memory at that area is then
inspected, and the block of FF bytes of actual programis then COPYied
to its corect address, say at 2900. Let us assume we captured the
corrupt first block of our example above at 8200. Since the actual
program begins at 8217 we would then type COPY #8216, (#8216+ #FF),

#2900 . This would put the first block in its rightful place, but has
left behind the tape header and checksum. It does not of course insure
that there is no corruption in the program itself.

CRC FOR THE ATOM

CRC is short for 'Cyclic Redundancy Check'. There is no real need to
understand the mathematical theory of why it works, but it is useful to
see how its works, andwe'll deal with this later. It can be especially
important to ATOM owners, since we have no CRC on the tape input
routine, and it is thus possible to load aprograminwithout getting an
error message, but in fact there is an (undetected) error. This is
because the tape header stores a checksum that is just the sum (modulo
256) of all the bytes in that block, and so it is possible to get two (or
more) errors that exactly cancel each other by giving the same sum as
the correct version. There are really two check bytes, one for the tape
header itself, and one for the block of information.

Most machines use a true CRC check, and so the chances of getting an
undetected error are very much smaller (indeed almost 0) than for a
simple sum check. Further, since the check is in

-47-

ROM as part of the operating system, it is never lost on power-down. The
best that ATOMusers can do is to 'hide' aCRC in an area of RAM that is
not normally used, but of course this will have tobe reloaded each time
the machine is powered up.

What is the advantage of this CRC? Well, just this-most programs are
resident from address #2900 to #3BFF in the expanded ATOM, and once a
program is SAVEd to tape there is no way to load it back and run it
without destroying the original (assuming the program uses the
graphics area). Therefore, if there was an error on the taped version,
you have lost the original by over-writing it. Now if you had , say, a
BBC machine you could have sent your programto tape then LOAD it back
into a ROM area. Of course the programwill not actually be remembered
by the computer as youcan'twrite to the ROM. However, the point is that
as the program is read from tape it is checked with CRC. If we get no
errors we can thus be assured that it was saved correctly. If we do get
an error, we still have the original in RAM, and so can save it again.

Using the CRC programbelow, it is also possible to do this with the
ATOM, but is slightly more laborious. The procedure is this:

i. Load in the CRC program to an out-of-the-way area.
ii. Write or load a program into the normal text area.
iii. Save your main program to tape.

iv. ¥LOAD your program back, starting at #8200.

v. Run a CRC on both versions of the program.

[f CRCgives the same result, you can be assured that the programs are
identical, and so you have correctly saved it.

But what if they are not- identical? This is harder to work out. Here
are the possible reasons:

l. The program was correctly saved to tape, but there was an
error in reloading (recorder volume wrong etc.)

2. The program was correctly saved to tape and correctly
loaded back, but there is a fault in RAM (rare).

3. The programwas not correctly saved to tape (usually a fault
of the tape material or recorder).

You must now go through various diagnostic procedures to find out
just what the problem is. This is the rub. CRC is excellent at telling
you that things are not right, but tells you nothing about where the
error is. You can of course be lucky and have an error where it doesn't
make any difference anyway (such as in aREMstatement)! One of the few
things that can be done withCRC is todivide the programin half and use
CRC on each half, then repeat thisuntil theerror is located (abinary
search method).

HOW CRC WORKS i

Imagine any area of memory as a long tape, onwhichis printedaseries
of 0's and 1's . These numbers are organised intoblocks of 8. Each 0 or |
is called a bit, and each block of eight bits is called a byte. Now
imagine that you had this tape in front of you, and that you had a square
of card with a 'window' cut in it , so that you could view 16 bits (2
bytes) at a time:

-48-

WINDOW
START Y . END
[fio0110101}00100111k10100101k10111000%10101001%11010010%1001001
A
MOVES —»-

Start moving the window to the right. Each time a | appears off the
left side of the window, EOR the right side 8 bits with #2D. When the
window bumps up against the end, the number left in it is the
'signature' of that area of memory. In practice, we will use locations
#A0,Al as the window, and the accumulatcr is used to put the next 8 bits
of memory into the window. Doing it in this way, the memory itself is not

disturbed.

$10110101400100111%10100101%10111000%10101001%11010010%1001001%!

e

Accum.

|

Al A0

Locations #90,91 will be used to 'point' at the area of memory under
scrutiny, and #92,93 to hold the address of the END.

LOCATING THE CRC PROGRAM

So far as we know, the memory area from #3CA to #3FC is free, and so is
the area from #21C to #23F. It is possible to just squeeze a CRC program
into these areas by putting the input and control part at #3CA, and the
main subroutine at #21C. We have tested these areas out, and so far
neither the operating system nor application programs have 'stomped'

on them.

THE SOURCE PROGRAM

This program uses ROM calls that are described in 'Splitting the
ATOM', and sets up the DISATOM command to point at it.

-4q -

Code Remark

10 DIM J34;pP.812,821;! #180= #3CA Set up labels,screen off,
Point DISATOM

20 F.I=0 TO 4;331=-1;N. Clear labels

30 F.I1=1 TO 2;P= #3CA;I Two passes,put this at
#3CA, START assembler

40 LDA®CH"S";JSR #CDOF Prompt S,in. start adrs

50 LDY@ O;LDX@ #90;JISR #F843 Store it at #90,91

60 LDACCH"E'";JSR #CDOF Prompt E,in. END adrs

70 LDY@ O0;LDX@ #92;JSR #F893 Store it at #92,93

80 LDY@ 0;STY #AO0;STY #Al Wipe the window

90:3J1 ISR 332 Control area, moves the

100 LDX@ #90;ISR FFA08 window from start to end

110 BNE 331

120 JSR 332 We've hit the end,so

130 LDX@ #A0;JSR ¢F7F1 Print window

140 IJMP #C55B;] Back to BASIC

150 P= #21C;[Assemble at #2I1C

160:33J2 LDX@ 8&;CLC Set up for 8 Bits

170 LDA(#90),Y . Get a byte from memory
180:333 LSR A;ROL #AO0;ROL #Al;BCC JJ4 Push it into the window

190 PHA ‘ If a1l fell off, do this:
200 LDA #AO0;EOR@ #2D;STA A0 EOR the piece of window
210 PLA

220:3JJ4 DEX;BNE JJ3 Next bit

230 RTS Back to control area

240];N.;P.$6"ASSEMBLEY COMPLETE";E. Screen on, end assembly.

Since this source code is in BASIC you can SAVE it in the usual way as
"CRCSOURCE" after having RUN it. The machine code is now at #3CA and
#21C, so you have a choice of either Saving #2IC to #3FF as one big
block (most of which isn't wanted), or alternatively save the two areas
#21C to #23F and #3CA to #3FF as separate blocks. Only shutting off the
machine will remove the machine code, so you are safe after hitting
<BREAK> .

USING THE PROGRAM

If you have a DISATOM ROM fitted, you need only type after

running the source code. When reloading the m/c code, type
I #180= #3CA

and this will point DISATOM's .Eﬂ at the routine again. For those
without the chip, type LINK #3CA each time you want CRC. The letter S
(meaning Start) should appear on the screen. Type in the four figure HEX
address where you want CRC to begin, then hit <KRETURN>. CAUTION!-there
was not enough room for input error checks, so that while you are
allowed to edit your input before hitting <RETURN>, you cannot do so
afterwards. An E (for END) now appears on the screen. Type in the four
figure HEX address of the last byte you want checked, and hit <RETURN>.
Within a few seconds the four figure HEX 'Signature' of that ara of
memory appears on the screen. From your ATOM manual page 93, you will
see that a BASIC program of this type takes many minutes, so we have a
big time saving in addition to everythng else. Try these tests on your
resident ROMs to confirm correct function of the program:

-50-

ROM Name Start End Signature
Integer BASIC C000 CFFF D67D
Integer BASIC F000 FFFF E386
Floating BASIC D000 DFFF AAAL

If you have a COPY function such as the one in DISATOM, you can also
use CRC to test RAM. Do this by COPYing one area of RAM to another, then
checking both areas with CRC, which should give the same signature. As
already mentioned, you can dump a program to tape thenkXLOAD it to #8200
and use the CRC to confirm correct saving. With this confirmation
ability, we have taken to writing down the CRC signature next to the
title of the program, and SAVEd our programs as UNnamed files. This
gives a great reduction in of loading time. Further, if you have a 1200
Baud SAVE/LOAD facility such as in DISATOM, you can use unnamed 1200
files. It is nowpossible to load inabig games programextending from
#2800 to #3BFF in just 40 seconds and be assured of a correct load!

THE PRINTER:

The ATOM is initialised such that line feed characters (0A) are not
sent to the parallel printer port used for operation of a Centronics-
type printer. It assumes that theprinter has been configured togive an
auto-line feed on receiving a carriage return (0D).

Where this is inconvenient, the ATOM can be made to pass the line feed
character by setting ?FE=FF . The address location FE normally
contains the character which will NOT be sent to the printer, and
setting it to FF will ensure all ASCII codes and characters are

transmitted.

You can check whether the printer is connected or not by testingbit?7
of B800 (handshake signal). You can then avoid locking up the machine,
by executing $2 only after a positive handshake test.

CHAPTER 8
THE MEMORY MAPPED V.D.U.

This sectionis intended for reference, and shows how the V.D.U. screen
is memory mapped in each display mode. At the end of the chapter a map
for each display mode can be found.

I. TEXT MODE / GRAPHICS MODE 0

In this mode the VDUdisplay is mapped from 512 memory locations (0.5K)
in the format 32 across and 16 down.

8000 801F

16 rows

=48 pixels

81E0 81FF

&——— 32 columns— 3
=64 pixels

In text mode this allows 32 columns by 16 rows of text characters to be
printed. Ingraphicsmode it allows 64 columns by 48 rows of pixels to be
individually accessed. Each memory location, or graphics cell, is
divided into 6 pixels corresponding to the 6 lower bits of the number

stored in that location.

When the bit is SET (=1) the pixel is white (or grey). When the bit is
CLEAR(=0) the pixel is black.If the last bit(bit 7) of the number is
set, the graphics are changed from white to grey.

F__.__..--___-BIT 7——-——_10=full tone
5 14 l=half tone
2 12 716]5|413]2|1]0
1 10
Organisation of A BIT 66— |0=text
Graphics cell l=graphics

E.g.:

::-’ ojtf1fr|rfr|ryjo = 37E

GRAPHICS MODES

In the true graphics modes 1 to 4 the screen is bit-mapped. The VDU
memory maps show the screendivided incells, eachabyte (8 bits) wide.
Each bit may be either set or clear.

-52-

GRAPHICS MODE 1

In this mode the display is mapped from 1024 bytes (1K) in the format 16
cells across and 64 cells down.

8000 800F

0

64 Rows of Cells
(64 Pixels)

83F0 83FF V¥

<«— 16 columns of cells (128 pixels)

Each graphics cell has eight pixels which correspond to the eight bits
in a byte (labeled 0-7).

71615|14)131211}]0 Bit label number

One graphics cell

When the bit is set the pixel is white, and when the bit is clear the
pixel is black. Thus:

Cell Shade Binary HEX
1000 0000 80
1100 0000 Co
1110 0000 EOQ
1111 0000 FO
1111 1000 F8
1111 1100 FC
1111 1110 "FE
111 rrrt FF

GRAPHICS MODE 2

The display is mapped from 1536 bytes (1.5K), with 16 cells across and
96 cells down:

8000 800F
A

6 Rows of Cells
(6 Pixels)

85F0 85FF v

«16 Columns of Cells(128 Pixels)—o>

The arrangement of the graphics cell is the same as for Mode 1.

-53-

GRAPHICS MODE 3

The display is mapped from 3072 bytes (3K). The format is 16 cells

across, and 192 cells down.

8000

800F

8BFO0

<16 Columns of Cells(128 Pixels) —s

8BFF

A

Y

192 Rows of Cells
(192 Pixels)

The arrangement of the graphics cell is the same as for Mode 1I.

GRAPHICS MODE 4

The display is mapped from 6144 bytes (6K). The format is 32 cells

across and 192 cells down.

8000

?7E0

«32 Columns of Cells(256 Pixels) —y

801F

97FF

A

Y

192 Rows of Cells
(192 Pixels)

The arrangement of the graphics cell is the same as for Mode 1.

- 54—

TEXT/MODE O

8000

8020
8040

8060
8080

80A0

80CO

80EO
8100
8120
8140

8160

8180

81A0
81CO
81EO0

MEMORY MAPPED V.D.U.

TEXT MODE/GRAPHICS MODE 0

801F
803F
805F
807F
809F
80BF
80DF
80FF
811F

813F
815F

817F
819F
81BF

81DF
81FF

8000

8100

8200

8300

83F0

Q 1 2 3 - D __E
I 800F
TN I} 8OFF
T 81FF
I sorp
111 [III83FF

MEMORY MAPPED VDU

GRAPHICS MODE 1

I HIOW

Qg

=56~

MODE 2

8000

8100

8200

8300

8400

8500

85F0

MEMORY MAPPED V.D.U.

GRAPHICS MODE 2

800F

80FF

81FF

82FF

83FF

84FF

85FF

8000

8100

8200

8300

8400

8500

8600

8700

8800

8900

8A00

8B0OO
8BFO

MEMORY MAPPED V.D.U.

GRAPHICS MODE 3

800F
80FF

81FF

82FF

83FF

84FF

85FF

86FF

87FF

88FF

89FF

8AFF

8BFF

¢ HAOKR

-58-

MODE 4

8000

8200

8400

8600

8800

8A00

8C00

8E00

9000

9200

9400

9600
97EO

13
12 14

15

16

17

18

19

B 1D IF
1A IC_1E

MEMORY MAPPED V.D.U.

GRAPHICS MODE 4

801F
81FF

83FF

85FF

87FF

89FF

8BFF

8DFF

8FFF

91FF

93FF

95FF

97FF

CHAPTER 9 .
METHODS FOR PREVENTION OF COPYING

Programs saved on tape by ATOM can be protected from copying by several
general methods: I)Prevent the Program frombeing LISTed , II) when the
program runs it alters some part of the machine's cassette operating
system (COS) , III) load the main program by usinga 'preloader' program
involving some machine code. Several techniques for each of these
methods are given below.

Of course, there is no way to totally protect a program other than by
using a mathematical 'trap door' function, and these are unsuitable
for small machines. Thus any program can be copied if a pirate has the
right hardware and software , plus the skill, for the job. As with most
things this is a two-edged sword, since the techniques for preventing
copying are the same as for pirating.

In general, a machine-oriented chip su-ch as DISATOM will allow any of
the protection techniques given to be overcome by a skilled user. If you
do not have one in your machine, see the HEX DUMP program in this book,
which allows you to directly inspect and modify memory. Although this
is more awkward than using a ROM, it's better than no tools at all.

The examples and techniques below are in order of increasing
complexity. In all cases the following symbols will be used, and
virtually ALL NUMBERS WILL BE HEX ! ! !

SR 4 push this key, such as <space> or <CR> or <CTRL-C>.

an actual byte in memory, as a HEX number;
e.g. [0D] or [03 CD 9F] .

[XX]

A)Using the REM statement
1) Start the program with:
10REM<CTRL-L> <CTRL-C> <CTRL-U> <CR>

This clears the screen, turns off the printer, and turns off the VDU
screen. As you type <CTRL-U> the screen is disabled, but carry on typing
the line, then type <CTRL-F> <ESC> and the screen is re~enabled. Now any
attempt to LIST will send the control characters behind the REM to the
print stream, and they will take effect. However, a RUN is still OK,
since BASIC disregards anything after the REM. It is easier to insert
the control codes directly into memory using the DISATOM, but this
should all be done after the program is completely perfected. For
example, type in

10REM<space> <space> <space> CAN'T <space> <CR>
Then type [A] 2900<CR> <REPT> <ESC> .
This will give an ASCII DUMP of memory at 2900 as follows:

(5] 2900 OD 00 OA .R .E .M 20 20
(A] 2908 20 .C .A .N .' .T 20 OD

-60-

Move the cursor up to the A 2900 and <copy> the line over to the first 20.
Change this and the next 20 to 0C 03, then hit <CR> and <ESC>. In the same
way edit the final 20 (before the 0D) to 15 (see the appendix on the
DISATOM toolkit for further details on its use). After editing, an
ASCII DUMP gives: '

[A] 2900 OD 00 OA .R .E .M 0OC 03
(A] 2908 20 .C .A .N .' .T 15 OD

Now any attempt to LIST will clear the screen, the word CAN'T will
appear in the upper left corner, and the printer and screen will be
turned off.

Unfortunately, since this must be physically the first line in the
program, a pirate can overcome it by simply typing

0 <CR> L. <CR>

and if this has no effect he recovers the screen with
<CTRL-F> <CR> followed by
1 <CR> L. <CR> and so on.

This has the effect of eventually removing the BASIC line with the
offending REM statement in it. Alternatively, if the pirate has
DISATOM, he may do an ASCII DUMP and replace the 0C,03 and 15 with 20's .

2) A Rem statement can be used after a genuine BASIC statement . The
REM is followed by four backspaces [08], and then some apparently
legitimate BASIC statement such as X=3*A, then a [15] (screen
off).The line is best set up by typing out

10DIM XX(12);REM <3 spaces> X=3*A <space> <CR>

The first three spaces [20] are then replaced by [08] (backspace), and
the final [20] by [15] (screen off). When a list is attempted, the
following appears on the screen:

10DIM XX (12);X=3*A (screen fails)

The dimensioning of the array is genuine, but the second statement is a
fake. The purpose of all this is to convince the user that the entire
line is real, and leave him baffled as to why the screen failed. It can
of course be overcome by an ASCII dump, which would reveal the REM, and
it can then be removed. However, if someone attempts to delete the
entire line (as in the last example) the entire program fails. You can
see that there are several possible twists in this technique.

A slight sophistication is to have another REM as the last line of the
program that reads

10000REMI[061
Now when a LIST is called this results in

>LIST
10DIM XX (12);X=3*A
>

-61-

and the program appears to have only one line. The technique can again
be defeated by an ASCII or HEX dump that reveals either the first or last

REM.
3) Machine Code in a REM statement

Quite a lot of machine code can be put in a disguised REM statement. As
with the previous example, the first part of the line is valid BASIC,
but buried in the REM is some machine code to be accessed by a later part
of the program. Thus

40X=6;?18=41;REM[7F 7F 7F 15 < m/c code here > 06 0D] -
1! M/C CODE MUST NOT CONTAIN OD !!

The first two instructions are valid and appear on LISTing. The REM
causes three backspacing deletes and turns off the screen so your
machine code is not seen, then turns it on again at the end. The line can
be placed anywhere in the program, but the deeper in the better, since
this decreases the likelyhood that someone will stumble on it with an
ASCII dump. The m/c code can be anything at all, but for example, it
might alter the SAVVEC of the COS system to dlsable the tape saving
function. There are two disadvantages to this method i. you must
exactly determine the entry point for the hidden machine code (then set
P equal to that address and have it assemled there), and ii. you must
eventually LINK to that address. Someone seeing a LINK into the BASIC
text area will of course be suspicious, and in any event all LINKS can be
found with a DISATOM using FIND"LINK" and FIND"LI." . It is possible to
access this code via another, less suspicious m/c code routine. Using
this method without the camouflage is a good way to save short machine
code routines within BASIC itself, instead of having to assemble it
each time, or using *SAVE to ensure machine code outside BASIC text is
also saved. To prevent someone hitting <break> and then copying, site
the BASIC program to start at 2800 , and then having a hidden REM that
contains NOP;RTS ([EA 60]) such that the NOP is at 2900 and the RTS at
2901. On one occasion in the program proper, LINK to 2900. If a pirate
breaks from the program and then copies it, the 2900,2901 machine code
is lost, and the program will crash. An even more effective way is to
have 28FF= JMP 28XX , and somewhere in the 2800's is another REM
containing an RTS. Hitting <break> distorts the JMP location and the
programcrashes. Indirect jumps can also be used, via an address stored
here. Once the program is running, it is easy to prevent the <ESC> key
operatlng by 1ntercept1ng the code from the keyboard and changing it.
This is done by :

LDA@ 0 ; STA #B00O ENABLE the keyboard

JSR #FE9%4 GET a key in accumulator
CMP@ #D IF a <CR> jump to DISABLE

BEQ P+8

cMmp@ 32

BCS P+4 IF >= <space> jump to DISABLE
LDA@ 32 CHANGE code to a <space>

PHA

LDA@ 10;STA #B000 DISABLE keyboard again

PLA

RTS

-62- -

Finally, spanner the vector at 20A,20B to point at this routine. The
routine also prevents entry of any other control codes, some of which .
re-enable the <ESC> key.Remember to set B000=10 as the first part of
your BASIC program. This can be beaten by causing an error, which will
return the user to the direct mode. To be safe you should therefore
alter the BRK vector at 202,203.

4) The Long Line

The BASIC interpreter is perfectly happy to work on a line which is

(almost) infinitely long, with the statements being separated by semi-

colons. The practical consequences of this'are that i)the LIST

command will turn'back on itself (recycle from the start) if the line is

greater than 258 bytes (two of these are the line number), and ii) If

this is the first line in the program then BASIC is unable to add any new
lines or delete any old ones, since it cannot find the end of the first

line. If the first line consists of something likeP. ;P. ;P. ; etc. etc.

for the whole of page 29, then the rest of the program cannot be LISTed

and the program cannot be edited, nor do the commands OLD or END work,

since the real size of the program is now unknown to the operating

system. The real program can be terminated with LINK #C2B2, which-
accomplishes a NEW, or a GOTO X , where X is a real line number or label

in the program, if you wish to repeat the program. Below is a procedure

for setting up such a method, and it is given so that those without

DISATOM can also do it, given some extra work. Make sure that your

program is perfect BEFORE you protect it, and note that you have 258

bytes less space for your real program.

1) DIRECT COMMAND:
F.I= #2900T0 #2A04S 4; | I= #3B202E50;N..
2)DIRECT COMMAND: - . o

218= 422 . S
NEW . S e

Now write and'coinplétely débug your program as normal,
but THE FIRST LINE MUST BE 1REM <3 spaces> <CR> .,

3)When your program is perfect give DIRECT COMMANDS: .

?218= #29 ‘ '
! #2900= #5000000D
1 #2904= #3B20202E

! #2A00= #3B202ES50
! #2A04= #20202350

*SAVE the program in the usual way, remembering that the total program
does start at 2900.

B. Disabling the SAVE

This can be done by spannering the SAVVEC at 20E,20F to point at a
different location. However, this is easy to spot. A much more subtle
method is to point the SAVVEC to a machine code routine that displays
the "RECORD TAPE", then waits an appropriate amount of time, say 2
minutes. Of course nothing meaningful goes to the tape, but the pirate
won't know this. Some examples, which will easily fit in a hidden REM
are given below.

a) JSR #FC40 print 'RECORD TAPE' and wait for key
b) LDY@ 05 '
JSR #FB7D each Y is worth 2 seconds, so this
DEY section delays 10 seconds
BNE P-4 ‘
RTS TOTAL=11 BYTES.

Another possibility is

JSR #FC40 as before
JSR #FAFS8 put a small amount of garbage on tape
then use part (b) from above.

C)Using Preloaders

This technique involves using one programto call another from tape. At
the same time the first program should be accessable only via machine
codes routes, should alter such things as the SAVVEC, and then destroy

itself.

Both the *SAVE and *LOAD commands can be carried out from in program,
and the usual prompts 'PLAY TAPE etc' avoided. This is done by changing
the SAVVEC and/or LODVEC to point at your short routine (given below).
Assume here that your saving routine will be at 8350, and loading
routine at 8300 :

Vector Changes Your Program

*LOAD 20c= 00 PHP; JMP #F97A
20D= #83

* SAVE 20E= #50 PHP; JMP #FAF8
20F= #83

A BASIC programat 8000 (on the screen) can be used to perform the actual
*LOAD of the main program. Programs on screen are convenient because
P.$12,<BRK>,etc. erases them. They are best saved to tape by using yet
another BASIC utility program, say at 8500, which i)uses the
DISATOM"COPY"command to place the program on the screen, and then ii)
*SAVE the screen to tape. The BASIC program on the screen should not be a
runnable program, but should containmissing parts ,deliberate errors
and misinformation. These will be corrected by an m/c program located
at 8200

-64-

Finally, the main program should have some title which turns off the
screen (to prevent *CAT), and should also make reference to some part of
the m/c code preloader at 8200, so that it will not run unless the m/c
code has run first. In summary, what we find is this:

ADDRESS PROGRAM TYPE

2900 and up Main Program

8000 Preloader, BASIC part

8200 Preloader,m/c code ONE PROGRAM
8300 *LLOAD spannering program

8350 *SAVE spannering program

8500 BASIC utility program to save on tape the

main and preloader programs.
Given below are examples of each program.

PROGRAM TYPE:Main program LOCATION: 2900 and up
PROGRAM TITLE: "[15 O3]MAIN"

10 ! #80= #C98046AD;! #84= #ADOFD04D;! #88= #0DC98000
| #8C= #£15AD08DO

20 1 #90= #D000C902;! #94= #B24C6001;? #98= #C2
30 LI. #80

40 CLEAR 2 ; P.$12

50 REST OF PROGRAM FROM HERE ON

Lines 10 and 20 write a m/c code, and 30 LINKs to it. The purpose is to
ensure that the m/c preloader program has already been run. The code
reads as:

80= LDA 8046 ; CMP@ 4D ; BNE 96
LDA 8000 ; CMP@ OD ; BNE 96
LDA 0215 ; CMP@ 00 ; BNE 96
RTS

96= JMP C2B2
Finally, line 30 erases the entire preloader program.

PROGRAM TYPE: Preloader,BASIC part LOCATION: 8000
PROGRAM TITLE: "LOAD" 8000 8255 8200

NOTE: i) Deliberate errors are underlined, ii)you MUST fill in the
values for the TOP vector of your main program at 13,14 in line 30 of
this program (given here as XX XX).

[0D FF 00] ! #80=4#03902000;! #84= #4C8LFF8D
| #88= HFBEE;! #214= #FC7C0080

20 *LOAD"<3 spaces>AIN"
30 ?18=41;?13=XX;?14=XX;LI. #FE86

-65 -

This program should originally be written with the first line numbered
as,say, line 5. You will later change this with DISATOM so that the area
of memory storing this line number will read [OD FF 00], where it used to
read [0OD 00 05]. This is of course creating an error, but the m/c code
part of the preloader will correct this to [0D 00 00], which BASIC
interprets as the start of the program, line 0 . The effect of the line
when it runs is to set up m/c code at #80, and then spanner the tape
byte-getting routine to point at it. This causes the bytes loading from
tape to be appear in the lower right of the screen, thus visually
confirming further LOADs, and then passes the byte to the correct
location. Line 20 LOADs the main program into 2900. The title starts
out as "<3 spaces>AIN". The m/c code preloader will change the 3 spaces
so the titlereads "[15 03]MAIN". The title is therefore actually "TURN
OFF SCREEN, TURN OFF PRINTER,MAIN", and so it cannot be *CATed, nor can
the title or the rest of the program be LISTed once it is altered to its
final form. Line 30 changes the BASIC text pointer to 2900,sets the
value of TOP for the main program (you MUST provide this), then starts
the main program at 2900. NOTE-if the main program contains DIM
statements, youmust first set the DIM POINTER (at #23 , 24) to the value
of top, somewhere in the main program before the DIM statement.

The previous BASIC program has several deliberate errors to hinder
copying and relocation. Here is a summary.

ERROR BYTE AT BECOMES COMMENT

FF 8001 00 BECOMES LINE NUMBER 0

30 800F 43 ALTERS M/C CODE

30 8010 39 from 00 to C9

20 8044 15 CONVERTS PROGRAM LOAD TITLE
20 8045 03 to

20 8046 4D "[15 O03]MAIN"

46 806C 43 ALTERS LINK from FE86 to CES86

PROGRAM TYPE: Preloader, m/c code part LOCATION: 8200
PROGRAM TITLE:same as BASIC part, all saved as one program.

LOCATION SOURCE OBJECT REM

8200 LDA@ 08 A9 08 WRITE M/C CODE
STA #8300 AD 00 83 TO ENABLE
LDARQ #4C A9 4C *LLOAD BY BASIC
STA #8301 AD 01 83 PRELOADER.
LDA@ #7A A9 7A
STA #8302 AD 02 83
LDA@ #F9 A9 F9
STA #8303 AD 03 83

8214 Lpa@ 00 A9 00 FIX DELIBERATE
STA #8001 AD 01 80 ERRORS IN BASIC
LDA@ #43 A9 43 PRELOADER
STA #800F AD OF 80
LDA@ #39 A9 39
STA #8010 AD 10 80
LDA@ #15 A9 15
STA #8044 AD 44 80
LDA@ #03 A9 03

STA #8045 AD 45 80

-66-

LDAQ #4D A9 4D
STA #8046 AD 46 80
LDA@ #43 A9 43
STA #806A AD 6A 80

8237 | LDAR 00 A9 00 SPANNER LODVEC
STA #020C AD 0C 02 TO POINT AT
LDA@ #83 A9 83 OUR PROGRAM AT 83
STA #020D AD 0D 02

8241 LDA@ #40 A9 40 SPANNER SAVVEC
STA #020E AD OE 02 TO PRINT MESSAGE
LDA@ #FC A9 FC THEN FAIL

, STA #020F AD OF 02

8248 o LDA@ #80 A9 80 SPANNER TEXT
STA #12 85 12 POINTER AND JUMP
JMP #CE86 4C 86 CE TO BASIC

LAST BYTE AT 8251.

How to construct the entire preloader program:
i)Use the DIRECT COMMANDS

F.I= #8200 TO #8600; 2I=32;N.

?218= #82

NEW
ii)Type in the BASIC part of the preloader, as mentioned above,
including the errors. Start with line 5. When finished, type NEW, then
alter the program title in line 20 using either HEX DUMP or a DISATOM
ASCII dump.

iii)Use the DIRECT COMMANDS

?218= #85

NEW
iv)Construct the SOURCE code given for the m/c code part of the
preloader here at #8500, with P= #8400.

Needless to say, a program combining ALL the techniques listed here
will be a truly formidable program to pirate.

APPENDIX 1

SPECIFICAIIONS FOR THE DISATOH SUPER ROM AF OF 0§ (H1

TS SCERT b g IESTRTRERCES £ TG SR Fian imoeaw W I LAY |
The DISATOM is contalned in a 4K ROM that? is- f1tted in theutility
socket (address A000). It contains two major areas: Machine Level w1th
Memory Handlihg, and Additons to BASIC{ It is'peérmanently resident?’
doesnot reqhiire a LINK command, ‘and doestiot ‘use any addresses’{such as
zZero page) you are likely to use. Most words may-be-abbreviated, and
used in BASIC programs.

i 2 srdimow cgpd oo
BUGE f g o e T on bam

I. Addxt:mris ’to the BAS%IC» Language L M

i
i

bl ; o bhoa wdif g > Ll ‘
AULD XX where XX isa hex number Thls allows recovery of text from any

text space you wish (Celtic OLD).
It executes ? #12— XX then OLD (See!command PAGE XX).

AUTO X,Y (or A. X, Y) : produces automatilc line numbering for writing
programs, -beginning at X “in steps of Y. Default is 100,10.
RETURN or ESC ex1ts.

COPY X, Y Z : coples everythlng from X toY 1nclus ive to the new location
- starting at Z. It takes account of direction so the copy won't
overwrite the source. COPY uses ‘the same syntax as PLOT, so
X,Y,Z2 may be numbers, variables, or arbitrarily complex
functions. -enclosed* in *brackets. AVOID addresses that
encompass 0000 . or. FFFF! ‘ '

CURSOR X,Y : places the ‘cursor: where you wish. X is horizontal, Y is
vertical, and defédults are the current position, but either X
or Y MUST be givern. THhus CURSOR ‘X' will ‘operate’as a’screen
TAB(X) 0,01is top left of screen. Does not operate aftera NAK

Sel s FERYAS I TTFERS A F <t ile wan CZis i aa WWdl ST

DELETE X, Y deletes all BASIC llnes fromX to %uieflus r@éa IfX and Y are

not spe01f1ed DELETE will not operate.

Fagmsmon adt fdei corenos D s “nordonud 1o barmyos LI L : SO
DUMR:mprintsoutaldssimpl¥ ' BASICvdr iables whlch h&ve currently been
used, and their values. SOV TR

DIRjiwdireetary,Stocdist .alrﬂ:;rthew.;&mnoﬁifoms “o0f 'DISATOM; " :
([==lygrieh) ohee? anll 3o Yodmu¥=Y | o3y GUAH= [e@drc i
ERUN : runs a program:withXeriror:gheck. fif bneiis PodAdintha&oline is
displayed with the cursor over the probaﬁl’é\ﬂeﬁrﬁoﬁ*"f

EXEC$X : where X is a string variable, results in the str1ng being
executed as a funct'toWw)Se ifor example : :
10 $A="y=3*2+20/10" PONE enoldtennG o
20 EXECSA Jugro Istica=g
results in Y being set equal to 8. Any arbitriarily complex
“‘*ﬁmnctqontbcvcnmmandfnﬂiaikowmbfdthhex&hﬁﬁ@@»»ﬂﬁf 3
/3;»'::2 syt ededoband o gl et T L edadeb o o
FIND .A.T.O. M : returns hex address of all loedtians Cdnbarﬁing the
ASCII code for ATOM.

io Jo9t1e ordd asd oidT .2dipib xor owli ois EX covodw o X HDC

FIND[LDA@ 0;STA #80] : returns hex address of a&1l-‘locations
containing machlne code A9 00 85 80. v
Lceud duod3iw onngs dyco tw o oot lde tae ooy paldna
FIND"PRINT X" dlsplays all BASIC lines containing the words PRINT X.

'H

els
Lo

FECRR EERUEI HEACM I A [ASE S L A

o]

FIND 20 30 7F : returns hex address of gll locations containing machine
code sequence 20 30 7F.

HEADER X : where X=0 thru 6, causes X lines at the top of the screen to
NOT scroll, so anything there can be used as a header. LOW or
HEADER 0 cancels.

HELP : makes anything coming in from tape visible via the cursor. If the
tape is faulty and a SUM ERROR occurs,an automatic ¥FLOAD is
executed, so you can rewind a bit and continue loading any
number of times. Syntax is:

HELP"filename". NOTE-cannot be used to relocate!

HIGH : causes all cassette tape read or write operations to be performed
at 1200 BAUD, and made visible in the cursor. The cursor symbol
is forbidden in tape filenames. LOW returns rates to normal.

INKEY X,T : where X is a variable, captures the key pushed in the
variable. T is the time allowed to push the key, in units of 50
msec. (default 0, max 128). If no key was pushed in the time
allowed the variable will contain an FF (255).

[f] : as for HIGH, but for this ONE TIME ONLY. E.g.[f|*LOAD"TEST"
or [}]LoAD"MYTAPE" or [}]*SAVE 2900 3C00.

LOW : causes all casssette tapereador yrite operatijions to be performed
at 300 BAUD (normal ATOM speed).This also returns all
vectors in page 2 to normal values.

NUKE : the really thorough NEW. It punches FF into all ram memory up to
A000, then BREAKS.

ON ERROR <any valid command or function> : yill gccomplish the command
or function (this is usuglly a GOTO) when an error occurs
instead of BREAKING.

OUT X,Y : causes output from the tape socket in RS232 format, with
handshake. X=BAUD rate , Y=Number of line feeds (default=1l)

per emitted line feed. Values of X are:

1=2400 BAUD

2=1200

4=600

8=300 etc. Default=1200 BAUD

Pin Connections are:

6=serial ouput

2 =earth

4=handshake,which MUST have a 1K resistor to the printer's 5V
handshake, If there is no handshake then connect this pin to5V
via a 1K resistor. .

PAGE XX : where XX are two hex digits. This has the effect of
? #12=XX
NEW
This enables you to establish a new text space without fuss.

-69-

PULL N or U or R : ATOM allows only a certain number of nests for

FOR. .NEXT, DO..UNTIL, and GOSUB..RETURN loops. PULL allows
you to leave loops at any time by pulling the NEXT or UNTIL or
RETURN from the memory.

READ-DATA-RESTORE : This combination is used as in standard BASIC

REN X,Y

However, this version is much more powerful. RESTORE can be
used to l)restore to the beginning of data 2)restore toa line
number 3)restore to a label 4)restore to the line number
arrived at by soluton of an equation 5)restore to the next
highest line number if the solution does not point at a line
number . The DATA list can contain strings (in quotes),decimal

-and/or hex numerics, variables, or arbitrarily complex

functions. The READ statement will accept ANYTHING that can be
placed on the left of an equals sign! (e.g. READ SA+LENA). You
can READ into bytes,words,arrays,variables, etc. . E.qg.:

5 C=15;DIM XX(1),Y(15),S(4)

10 [X] DATA "help",10,32,C+7

15 RESTORE 10 (or RESTORE C*2/3 or RESTORE[:]or RESTORE)
20 READ $S;READ XX(1);READ Y(C);READ Z;END

Results in $S="help",XX(1)=10,Y(15)=32,2=22 .

ALWAYS RESTORE before attempting the first READ in the program
(to set the data pointer).

: Renumbers all BASIC lines to start at X and increments at Y
(Default is 100,10), and then lists results,.

TAPE XXXX : where XXXX is a hex address. This captures anything on tape,

including the header, and places it direct into memory
starting at XXXX. Especially useful to recover badly damaged
tapes. ‘

TONE X,$Y : to create music and sounds. X is the duration in 50 msec

units (NO defaults, max=127), and $Y the note. There are 6
octaves numbered 0-5, + means sharp, and - means flat. "R"

‘means rest.The minumum note is "0C" and the max is "5D". For

example TONE 5,"2C+" will give 250msec of the third ocatave C
sharp. Both durations and strings can be read from data
statements.All tones are automatically outputed through the
tape socket for you to record.

ZERO : sets all simple BASIC variables to zero.

-70-

II. Machine Level Functions

[Oxxxx :

[Exxxx

(1]

Akxxx

EDITING

[Mxxxx A

[X]: runs

disassembles starting at location hex xxxx,and waits for the
REPEAT key. Otherwise @cxxx,yyyy doesn't wait. This will
appear on the screen as:

ADDRESS OBJECT CODE SOURCE CODE ASCII Equivilent
The # is not needed, and all xx's need not be used. For
example, [080 disassembles at hex 80. REPEAT key continues,
and ESC gets out of the mode.To Edit, see instructions below.

Hex dump of memory starting at hex xxxx. This may be used to edit
the memory as given below. Pushing REPEAT will continue the
dump, and ESC exits the mode. [Hkxxx,yyyy will dump without
waiting for the REPEAT key.

ASCII dump of memory starting at hex xxxx. The contents of
memory are displayed on the screen as their ASCII equivilents.
These may also be edited as given below.If no ASCII equivilent
the hex is shown. @xxxx,yyyy will dump without waiting.

MEMORY USING THE ABOVE FUNCTIONS:

All the above modes will display memory contents as either a
two-digit hex number (one byte), or its ASCII equivilent, in
which case it will appear with a full stop in front (e.g. 41
will appear as .A in an ASCII Dump). To change the memory
contents, hit ESC, and the prompt > will return. Move the
cursor over the line you want to edit, then COPY to the point on
the line where you want to make the change. You may then type in
EITHER the ASCII equivilent withadot in front OR the twodigit
hex number, and this may be done as many times as you wish along
the line. At the end of the line hit RETURN and ESC. DO NOT edit
more thanone line at a time without hitting RETURN and ESC. You
need not go to the end of the line before hitting RETURN-the
rest of the line will copy automatically.This method of
editing is used in all three of the above modes.

X Y Sp S : Machine code TRACE Function, where xxxx is the hex
address of a machine code program. A,X,Y,Sp,S can be set
before entry.A=Accumulator;X, Y=X and Y stack Sp=stack
pointer (always FF), S=status register. Default is all zeros
except Sp=FF. Type in the command and hit <CR>, then <SHIFT>
executes the next instruction ,but JSR without displaying the
subroutine, while <REPT> shows the actions in the subroutine
(! these may be tortuous !).The top of the screen displays the
contents of all the registers and all the flags, plus the ASCII
equivilent of Accumulator contents.

the machine code routine pointed to by location hex 180. On its
own this has the effect of LINK (?2180,181) or JMP (180). Your
m/c code routine MUST end in JMP #C55B. However, the real
strength is_that it is possible to put various parameters
after the , and then capture them using the 5,Y pointer.
This function then becomes an invaluable development tool for
machine code routines.

APPENDIX 2
HEX DUMP AND MODIFY

Below is the source code to enable a HEX DUMP of memory contents, and
modification if this is required. This is one of the features found in a
DISATOM ROM . Remember that the m/c code must be resident for it to work,
sodon't overwrite it once it has been assembled. LINK to the first code
to activate (here #2800).

40 V= #70;K= #72;T= #75

50 DIM JJ5;F.I=0T05;JJ(I)=-1;N.
60 PRINT $21

70 FOR X=0 TO 1

80 P= #2800

901[

100 LDA @ JJ0/256 400 PLA

110 STA #207 410 TAY

120 LDA @ JJ0%256 420 BNEJJ2
130 STA #206 430:JJ3

140 RTS 440 LDX @ V
150:3J0 450 JSR #I7D1
160 LDY @ O 4601

170 STY T 470 $p=" **".pP=pP+LEN(P)
180 JSR #F876 480](

190 CMP @ CH"*" 490 NOP

200 BEQ JJ1 500 JSR #F7F1
210 JMP #F8EF 510:JJ4
220:J71 520 LDA(V),Y
230 LDA @ 11 530 JSR #F7FA
240 JSR #FFF4 540 INY

250 LDX @ V 550 CPY @ 8
260 INY 560 BNE JJ4
270 JSR #F893 570 TYA

280 LDX @ K 580 CLC
290:JJ72 590 ADC V

300 JSR #F876 600 STA V

310 CMP @#0D 610 BCC JJ5
320 BEQ JJ3 " 620 INC V+1
330 JSR #F893 630:J3J5

340 TYA 640 BIT #B002
350 PHA 650 BVC JJ3
360 LDA K 660 JSR #C504
370 LDY T 670 BNE JJ5
380 STA(V),Y 6801

390 INC T 690 NEXT X;PRINTS$6;END

TO OPERATE: type **XXXX. This gives a hex dump of memory
starting at hex xxxx. This may be used to edit the memory as given below.
Pushing <REPEAT> will continue the dump, and <ESC> exits the mode.

EDITING MEMORY: This programdisplays memory contents as a two-
digit hex number (one byte). To change the memory contents, hit ESC, and
the prompt > will return. Move the cursor over the line you want to edit,
then COPY to the point on the line where you want to make the change. You
may then type in the two digit hex number, and this may be done as many
times as you wish along the line. At the end of the 1line hit <RETURN> and
<ESC>. DO NOT edit more than one line at a time without hitting <RETURN>
and <ESC>. You need not go to the end of the line before hitting RETURN-
the rest of the line will copy automatically.

72~

¢9 - BRX

Pl - ORA ~ (Indirect,X)
$2 - Future Expansion
#3 - Future Expansion
@94 = Future Exponelon
P35 = ORA = Zero Page
96 = ASL - Zero Page
@7 = Future Expansion
§8 - PHP

$#9 = ORA - Immediate
$A - ASL - Accumulator
@8 = Future Expansion
@C - Future Expansion
#D - ORA = Absolute
PE « ASL = Absolute
$F = Future Expansion
19 - BPL ’

11 = ORA = (Indirect),Y

'12 = Future Expansion
13 = Fyture Expansion
14 - i’utuu Expansion
15 = ORA = Zero Page,X
16 - ASL - Zero Page,X
17 = Future Expansion
18 - CLC

19 - OBA -~ Absolute,Y
A ~ Future Expansion
1B = Future Expansion
1C - Future Expansion
1D = ORA = Absolute,X
1E = ASL - Absolute,X
1F « Future Expansion

20 - JSR

21 = AND = (Indirect,X)
22
23 - Future Expansion
24 - BIT - Zero Page

25 = AND - Zero Page

26 = ROL - Zero Page

27 - Future Expansion
28 - PLP

29 - AND - Immediate

2A ~ ROL = Accumulator
28 - Future Expansion
2C = BIT - Absolute

2D - AND - Absolute

2E - ROL =~ Absolute

2F - Future Expansion
3 - M

31 - AND - (Indirect),Y
32 - Future Expansion
33 - Future Expansion
34 - Future Expansion
35 = AND - Zero Page,X
36 - ROL = Zero Page,X
37 - Future Expansion
38 - SEC

39 - AND - Absolute,Y

]

Future Expansion

'3A - Future Expansion

3B = Future Expanaion
.3C - Future Expansion
3D « AND ~ Absolute,X
3E - ROL =~ Absolute,X
‘3P - Future Expansion

4D -

6502 OP CODES (for

disassembly)

49 - RTI

41 - EOR - (Indirect,X)
42 - Future Expansion
43 - Future Expansion
44 - Future Expansion
4S - EOR =~ Zero Page
46 - LSR - Zero Page

- 47 = Puture Expansion '

48 = PHA

49 -~ EOR ~ Iumediate
&A = LSR ~ Accumulator
4B - Future Expansion
4C - MP - Absolute
EOR - Absolute
4E = LSR =~ Absolute ,

- ‘4F = Future Expansion

5% - BVC

51 - EOR = (Indirect),Y
$2 - Future Expansion
53 - Future Expansion
54 = Future Expansion
55 = EOR - Zero Pagé,X

56 - LSR = Zero Page,X

57 - Future Expansion
58 - CLI

$9 -~ EOR = Absolute,Y
SA = Future Expaosion
5B - i’utuxe Expansion

SC ~ Future Expansion

"SD - EOR - Absolute,X
SE - LSR - Absolute,X ~

SF = Future Expansion

9
61
62
63
64
65
66
67
68
69
6A

3
6

6D
6E
6F
79
n
72
3
74
75
76
n”
78

79
T A

78
7c
rb]

7

IF

RIS *

ADC = (Indirect,X)
Future Expansion
Future Expansion
Future Expansion
ADC = Zero Page
ROR = Zero' Page
Future Expansion
PLA :
ADC ~ Iomcdiate
ROR = Accumulator
Future Expansion
MP - lndirect
ADC = Absolute
ROR = Absolute
Future Expansion ~
BVS

ADC = (Indirect),¥
Future Expansion
Future Expansion
Future Expansion’
ADC - Zero Page,X
ROR = Zero Page,X
Future Expansion
SEL

ADC = Absolute,Y
Future Expansion
Future Expansion
Future Expansion
ADC ~ Absolute,X
ROR = Absolute,X
Future Expansion

82
83
84
85
86
87
88

8

- Future Expansicn
= STA = (Ind{rect,X)
- Future Expansion
- Future Expansion
= STY ~ Zero Page

= STA = Zero Page

- SIX - Zero Page

= Future Expansion
- DEY

- Future Expansion
- TXA

- Future Expansion
- STY - Absolute

= STA = Absolute

= STX = Absolute

= Future Expansion
- BCC

= STA = (Indireet),Y
«~ Future Expansion

"~ Future Expansion

« STY = Zero Page,X
- STA < 2cro Page,X
- STX < Zero Page,Y

"« Future Expansion

- TYA

- STA = Absolute,¥Y
- TXS

- Future Expansion
-« Future Expsnsion
=~ STA = Absolute,X
- Future Expansion
= Future Expansion

A¢ - LDY = Immediate
Al = LDA - (Indirect,X)
AZ = LDX - Immed{ate
A) - Future Expansion
A4 = LDY - Zero Page
AS - LDA - Zero Page
A6 = LDX = Zero Page
Al - Future Expansion
AB = TAY
A9 - LDA - Immediate
AA - TAX

- Future Expansion

= LDA - Absolute

= LDX - Absolute
AF - Future Expansion
30 - BCS
Bl - LDA - (Indirect),Y
B2 - Puture Expansion
B3 - Future Expension
D4 = LUY - Zero Page,X
BS = LDA = Zero Poge,X
LDX - Zero Page,Y
Future Expansion
88 - CLV
B9 ~ LDA = Absolute,Y
BA - TSX
BB - Future Expansion
B3C - LDY - Absolute,X
BD - LDA =~ Absolute,X
BE = LDX = Absolute,Y
BF = Future Exparsion

AB
.AC = LDY - Absolute
AD
AE

C§ - CPY = Immediate

Cl - CMP - (Indirect,X)
C2 - FPuture Expansion
C3 = Future Expansion
Cé = CPY - Zero Page
CS = CMP - Zero Page
€6 = DEC - Zero Page
C7 - Future Expansioa
C8 - INY

C9 - CMP - Immediate
CA - DEX

CB - Future Expansion
CC = CPY = Adsolute

CD = CMP - Absolute

CE - DEC = Absoluts

CF - Future Expansian
D¢ - BNE

D1l = CMP = (Indirect),Y
D2 = Future Expansion
D3 = Future Expansion
D4 - Future Expansion
DS = CMP - Zero Page,X
D6 - DEC - Zero Page,X
D7 - Future Expansion
D8 - CLD

D9 - CMP - Absolute,Y
DA « Future Expansion
DB ~ Future Expansion
D¢ ~ Future Expansion
DD = CMP - Absolute,X
DE - DEC - Adbsolute,X
DF - Future Expansion

29 - CPX = Immecdiate
El ~ SBC - (Indirect,X)
E2 - Future t%pansion
€3 - Future Expansicn
E4 = CPX = Zero Page
ES = SBC.~ Zero Page
E6 -~ INC - Zero Page
E7 - Future Expansion
E8 - INX

E9 - SB3C - Immediate
EA - NOP

EB = Future Expansion
EC = CPX - Absoclute
ED - SBC - Absolute
EZ - INC - Absolute
EF - Future Expansion
F9 - BEQ

Fl - SBC - (Indirect),Y
F2 - Future Expension
F3 = Future Expansion
F&4 = Future txymoion
FS = SBC = Zero Page,X
F6 = INC = 2cro l’fnxe.x
F1 = Future Expansion
F8 - SED)

F9 = SBC = Absolute,Y
FA = Future Expansion
FB = Future Expansion
FC = Future Expansion
FD. = SBC = Absolute,X
FE = INC = Absolute,X

" F¥ « Future Expansion

iD

I om0 v) g | repetetepey |

| g | Ve | |

Yt

ADD WITH CARRY
ZERO=65
ABS =4D
IMM =69

LOGICAL AND
ZERO=25
ABS =2D
IMM =29

ARITHMETIC SHIFT LEFT
ZERO=06
ABS =0E

6302 ASSEMBLER AND MACHINE CODE

ZyX=7%5
ABS) X=7D ABS, Y=79
PRE, X=61 POST» Y=71

Z,X=3% °
ABS) X=3D ABS, Y=39
PRE» X=21 POST, Y=31
ABS, X=1E ACCUM =0A
ZERO) X=16

BRANCH ON CARRY CLEAR =90

BRANCH ON CARRY SET =BO

BRANCH ON RESULT ZERO =FO‘
BRANCH ON OVERFLOW CLEAR =50
BITS 6+7 TO STAT REG(IF A+M=0 THEN Z=0,0THERWISE Z=1)

ABS=2C

2ERO=24

BRANCH ON RESULT MINUS=30
PRANCH ON RESULT NOT EQUAL ZERO =DO
BRANCH ON RESULT PLUS =10

BREAK =00

BRANCH ON OVERFLOW CLEAR =50

BRANCH ON OVERFLOW SET
CLEAR CARRY FLAG =18
CLEAR DECIMAL MODE =D8

=70

CLEAR INTERUPT DISABLE BIT=58

CLE&AR OVERFLOW FLAG =B8

COMFARE WITH ACCUMULATOR

ZERO=C3 2.X =DS

ABS =CD ABS, X=DD ABS,»Y=09

IMM =C9 PRE, X=C1 POST, Y=D1
COMPARE WITH INDEX

ZERO=E4 ARS =EC IMM=EO
COMPARE WITH INDEX Y

ZERO=C4 ABS =CC ImM=CO
DECREMENT BY ONE

ZERO=C6 Z, X=Dbé ABS=CE
DECREMENT X REGISTER BY ONE =CA
DECREMENT Y RECISTER BY ONE =88
EXCLUSIVE OR WITH ACCUM

ZERO=45 ZyX =55

ABS =4D ABS) X=5D ABS, Y=5%

IMM =49 ° PRE,» X=41 POST) Y=NONE
INCREMENT BY ONE

LERO=E6 Z)X=F5

ABE =EE ABS, X=FE

INCREMENT X REGISTER BY ONE =E8
- INCREMENT Y REGISTER BY ONE =C8

JUMP TO NEW LOCATION
ABRS =4C

- JUMP TO SUBROUTINE =26

INDIRECT=4C

LDA

LDX
LDY
LSR

NOF
ORA

PHA

Dbty | pmpedet | Sbpugutnd |

[o o B]

PHP -
PLA -

PLP
ROL

ROR

RTI

SBC

SEC
SED
SEl
STA

STX
STY

TAX
TAY
TSX
TXA
TXS
TYA

LOAD ACCUMULATOR

ZERO=AS ’ -

ABS =AD ABS» X=BD

IMM =A9 PRE» X=A1
LOAD REGISTER X

ZERD=A6 MM =A2

ABS =AE Z,Y=Bé
LOAD REGISTER Y

ZERO=A4 IMM=A0

ABS =AC ~ZsX=B4
LOGICAL SHIFT RIGHT

ZIZRO=46 ABS: X=5E

ABS =4E ZsX=56

NO OPERATION =EA
LOGICAL OR WITH ACCUMULATOR

ZERO=035
ABS =0D ABS, X=1D
IMM =09 PRE, X=01

PUSH ACCUM TO STACK =48

PUSH PROCESSOR STATUS ON STACK =08

PULL ACCUM FROM STACK =68

PULL PROCESSOR STATUS FROM STACK =28

ROTATE LEFT ONE BIT

ZERO=25 ABS» X=3E

ARS =2E Z,X=36
ROTATE RIGHT ONE BIT

ZERD=66 ABS, X=7E

ARS =b&E ZyX=76

RETURN FROM - INTERUPT =40
RETURN FROM SUBROUTINE =60
SUBTRACT WITH CARRY

ZERD=ES
ABRS =ED ABS) X=FD
MM =EQ PRE» X=E1

SET CARRY FLAG =38

SET DECIMAL MODE FLAG =F8

SET INTERUPT DIASARLE BIT =78
STORE ACCUMULATOR

ZERO=83

“ABS =8D AES, X=9D

Z:X =95 PRE, X=81
STORE X REGISTER

ZERO=85% ABS=8E
STORE Y REGISTER

ZERD=84 ARS =8C

TRANSFER ACCUM TO REGISTER X =AA
TRANSFER ACCUM TO REGISTER Y =AB8

TRANSFER STACK FOINTER TO REGISTER X

TRAMSFER REGISTER X TO ACCUM =8A

TRANSFER REGISTER X TO STACK FOINTER

TRANSFER REGISTER Y TO ACCUM =98

=BA

=9A

Zs X =BS
ABS, Y=B?
POST, Y=£1

ABS,Y=BZ

ABS, X=BC

ACCUM=5A

Z,X =18
ABS) Yal®

POST»Y=11

ACCUM=2A

ACCUM=5A

Z,X =FS
ABS,Y=F?
POST,Y=F1

ABS»Y
FOST,Y=91

Z,Y=96

Z,X =94

IMM =IMMEDIATE ENTRY
PRE=INDIRECT PRE-INDEXED

ABS=ARSOLUTE ADDRESS(4 BYTE)

ONE PAGE =256 BYTES (00 TO FF)

+X or ,Y=INDEXED BY X or Y

POST=INDIRECT POST-INDEXED

Z or ZERO=ZERO PAGE ADDRESS (2 BYTE)

APPENDIX 4
ASCII AND CONTROL CODES

All 128 ASCII codes are available from the ATOM, but only 127
direct from the keyboard. the "back arrow" (#5F) can only be
gotten from program.

DECIMAL HEX <CTRL> + KEY CALL ATOM ACTION
2 2 B STX START PRINTER
3 3 C ETX END PRINTER
6 6 F ACK START VDU
7 7 G BELL BEEP SPEAKER
8 8 H BS BACKSPACE~-NO ERASE
9 9 I HT FORWARD SPACE
10 A J LF LINE FEED
11 B K vT UP ONE LINE
12 C L FF CLEAR VDU+HOME UP
13 D M CR CARRIAGE RETURN
14 E N SO PAGE MODE ON
15 F 0 SI PAGE MODE OFF
21 15 U NAK SCREEN OFF
24 18 X CAN ERASE CURRENT LINE
27 1B [ESC ESCAPE FROM BASIC
Hit twice, set VDU to character mode
30 1E | RS HOME UP LEFT.
DECIMAL HEX CHARACTER
32 20 <SPACE>
33 21 !
34 22 "
35 23 #
36 24 $
37 25 %
38 26 &
39 27 !
40 28 (
41 29)
42 2A *
43 2B +
44 2C ’
45 2D -
46 2E .
47 2F /
48 30 0
49 31 1
50 32 2
51 33 3
52 34 4
53 35 5
54 36 6
55 37 7
56 38 8
57 39 9
58 3A :

-74-

DECIMAL | HEX CHARACTER

59 3B ;
60 3C <
61 3D =
62 3E >
63 3F ?
64 40 @
65 41 A
66 42 B
67 43 C
68 44 D
69 45 E
70 46 F
71 47 G
72 48 H
73 49 I
74 4A J
75 4B K
76 4C L
77 4D M
78 4E N
79 4F 0
80 50 P
81 51 Q
82 52 R
83 53 S
84 54 T
85 55 U

86 56 \Y
87 57 W
88 58 X
89 59 Y
90 5A Z
91 5B [
92 5C \
93 5D 1
94 58 4
95 5F -

DECIMAL | HEX <SHIFT> + KEY | ASCII CHAR | DISPLAYED AS
96 60 @ \ [€]
97 61 A a
98 62 B b 5:3
99 63 C o
100 64 D d D
101 65 E e E]
102 66 F f ®]
103 67 G g [e]]
104 68 H h
105 69 I i
106 6A J j (A
107 6B K k x
108 6C L 1 19

-75-

DECIMAL | HEX <SHIFT> + KEY | ASCII CHAR | DISPLAYED AS
109 6D M m ™
110 6E N n
111 6F 0 o [0]]
112 70 P p 3
113 71 0 q
114 72 R r 023
115 73 S s]
116 74 T t M
117 75 U u @
118 76 v v
119 77 W W
120 78 X X xi
121 79 Y y]
122 7A Z VA WA
123 7B [{ %
124 7C \ i
125 7D] 3
126 7E f ~
127 7F BACKSPACE WITH DELETE

INDEX T O ROUTINES
(*) Represents a usable routine, (!*!) Recommended routine.

ABS C902 (*)

ADDITION C79D

ALPHANUMERIC CONVERSION C434 (*)
AND C87B

ARRAY PRE-TEST FO02E,F04B

ARRAY ADDRESSES F(08B

ASCII CHARACTERS F87E

ASSEMBLER FI55, F2Al,F38E
ASSIGNMENTS,NUMERIC C8F8,C8DC(*),CA2F(*)
ASSIGNMENTS C3E5,C8DC(*)

BGET CF5B(*)

BPUT CF8F

BRACKETS C944

BREAK C2B2(*)

BREAK KEY FF3F(¥*)

BRK C9D8,FFC0

CARRIAGE RETURN C4E4(*)

CH (ASCII) C9D2

CLEAR F67B

COMMAND MEANINGS C279

COMPARE VECTOR FA08(*)

CONTROL CODES FCEA(*)

COS COMMANDS ,EXECUTION C40F

COS INTERPRETER F8FO0(*)

COS MESSAGES FC38(¥*)

COS WORDS F8BE

COUNT C97A(*),CA4C(*),SEE 'RAM' 7
DATA C000,C608,F000,F155,F7C9,F8BE,FECB,FF9A et. al.
DECIMAL STRING C465(*)

DECREMENT VECTOR F668 (*)

DIM FOAE,F141(*), SEE 'RAM' 23,24
DO CCF0,SEE RAM 13

DOLLAR CEBI1 (¥*)

DRAW SEE 'PLOT'

END CD98 (*)

EOR C7EF

ERROR HANDLING C9E7(*),SEE 'RAM' 0 + 10,11
ERROR-COS F926 (*)

ESC KEY C504(*)

EVALUATE A FUNCTION C3C8(*),C8BC(*)
FETCH KEYPRESS - SEE 'GET'

FETCH NEXT CHAR F291(¥*),F875(*)
FIELD FLYBACK FE66 (*)

FIN CFAG6(%*)

FOR CB57, SEE 'RAM' 15

FOUT CFA7(*)

FUNCTION INTERPRETER C22C,C3C8(*),C8BC(¥*)
GET CFé66(*),FE94(*) ,FE71(*)

GOSUB CBD2,SEE 'RAM' 14

GOTO CCO05

GRAPHICS F6CF

HEX SIGN (#)C90A

IF C566

INCREMENT VECTOR F671(*),FA08(*)
INTERPRET A STATEMENT (!*!)C55B

-77-

INPUT BUFFER-SEE 'STRING INPUT BUFFER'

INPUT CDO9(!*!),CC81

INTEGER VARIABLES CA2F(*),C8D7(*),CA37(*)

IRQ FFB2

KEYPRESS SEE 'GET'

LABEL CC1F,C54A(*), SEE 'RAM'38D - 3C0

LEN C9BD(*)

LET C31B

LINE ENTRY CDC9

LINE NUMBER CCLlF(*),C54A(*)

LINE NUMBER SEARCH C62E(*)

LINK C3B2

LOAD CEED(*)

LOAD FILE F96E,FFEO(*)

MINUS C8C1(*)

MOVE-SEE 'PLOT'

MULTIPLICATION C813,C661,C689

NAME F86C

NEGATION C8Cl (*)

NEW C2AD(*)

NEXT CACD

NMI FFC7

NUMERIC ASSIGNMENTS SEE'ASSIGNMENTS'

OLD F531

OPERATING SYSTEM VECTORS FFCB AND ONWARD

OR C7D3

PLING C3EE,C9F5

PLOT F542 AND ONWARD

POINT PLOTS F6E2(*)

PRINT ACCUM. CA4C

PRINT CHAR FE52

PRINT COMMAND C334

PRINT F3FE

PRINT ROUTINES C33F,W/S STACK=C589(*),ACC AS ASCII CA4C(*),ACC AS
HEX =F376(*),F37E,IN-LINE ASCII F7D1(!*!),NUMBERS
F7EC(!*!), CHARACTERS FE52(*),W/S STACK AS HEX
C349(*),SEE 'RAM' F

PRINTER SEE CHAPTER 7

PUT CF95 (*)

QUESTION MARK C406,C94C

QUOTES CEB1,CEBF (*)

RAM CHECK F119

RANDOM NUMBER C986(!*!), SEE 'EXAMPLES',SEE 'RAM' 8 TO C

READ NUMERIC C465(*),F893

REM C575

RESET FF3F(*)

RETURN CBEC,C4E4(*),C55B(!*!)

ROM CHECK CA24(*),C54A,CA24

RUBBISH CHECKS C4E4,FA65(*),FA76 (*)

RUN F141(*),CE83(*)

SAVE CFOA(*),FA86,FABB,FAE5,SEE 'O/S VECTORS'

SEMI-COLON C4E4(*)

SGET CFE3

SPUT CFC5

STEP CBA2 _

STRING COPY CEBF(*),F818(*)

STRING INPUT BUFFER CEBF(*),CEFA(*),F818(*),F875(*),F893 (%)

-78-

SUBTRACTION C7B7

SYNCHRONISE AT 2.4 KHZ FCD8(*)

TAPE FBEE(*),FC7C(*)

TAPE FILES SEE CHAPTER 7

TAPE TITLE CEFA,SEE CHAPTER 7

TEXT AREA SEE 'RAM' 12,CE83(*),Fl41(*), SEE APPENDX 1'AULD''PAGE'

TEXT POINTER AND OFFSET SEE 'RAM' 5,6 AND 0

TIMING-SEE 'WAIT'

TITLE CEFA(*)

TO CBS81

TOP C973(*),CD98(*),SEE 'RAM' D,E

TRUTH TEST C70C(*),C714,C722,C731

UNTIL CCD2, SEE 'DO'

VARIABLES SEE 'INTEGER VARIABLES'

VECTOR COMPARE FAQ8(*)

VECTOR DECREMENT F668(*), INCREMENT F671(*),FA08(*)

VECTORS-OPERATING FFCB AND ONWARDS

WAIT F14C,FB3B(!*!),FE66(*),FCD8(*)

WORKSPACE STACK CA2F(*),C589(*),CA37(*),SEE CHAPS 3+6,SEE 'RAM' 4
AND 16 TO 51

