PERSONAL COMPUTER
USER'S MANUAL

SPECTRAVIDEO

SPECTRAVIDEO'S
USER'S MANUAL STATEMENT

This equipment generates and uses radio frequency energy and if not
installed and used properly, thatis, in strict accordance with the
manufacturer’s instructions, may cause interference to radio and
television reception. It has been type tested and found to comply with the
limits for a Class B computing device in accordance with the
specifications in Subpart J of Part 15 of FCC Rules, which are designed to
provide reasonable protection against such interference in a residential
installation. However, there is no guarantee that interference will not
occur in a particular installation. If this equipment does cause interference
to radio or television reception, which can be determined by turning
equipment off and on, the user is encouraged to try to correct the
interference by one or more of the following measures:

B Reorient the receiving antenna

B Relocate the computer with respect to the receiver

B Move the computer away from the receiver

B Plug the computer into a different outlet so that computer and receiver
are on different branch circuits.

If necessary, the user should consult the dealer or an experienced
‘radio/television technician for additional suggestions. The user may find
the following booklet prepared by the Federal Communications
Commission helpful:

"How to Identify and Resolve Radio-TV Interference Problems’’ This
booklet is available from the U.S. Government Printing Office,
Washington, DC 20402, Stock No. 004-000-00345-4.

WARNING:

This equipment has been certified to comply with the limits for a class B
computing device, pursuant to Subpart J of Part 15 of FCC Rules. Only
peripherals, (computer input/output devices, terminals, printers, etc.)
certified to comply with the Class B limits may be attached to this
computer. Operation with non-certified peripherals is likely to result in
interference to radio and TV reception.

CREDITS:

Written by Steve Levenson
Steven Ting
Tim Yandell
Harry Fox
Paul Hodara
Nick Moscovitz
Mervin Fong

Designed by Nick Moscovitz
Rina S. Moscovitz
Mervin Fong

Published by
SPECTRAVIDEO INTERNATIONAL LTD.
SV Extended Basic is a trademark of Spectravideo International Ltd.

First Printing 1983
Printed in Hong Kong
Copyright ‘< 1983 by Spectravideo international Ltd. All rights reserved

Every effort has been made to supply complete and accurate information in this manual. Spectravideo International Ltd.

reserves the right to change Technical Specifications and Characteristics at any time without notice.

No part of this publication may be stored in a retrieval system, transmitted, or reproduced in any way, including but not
limited to photocopy, photograph, magnetic or other record, without the prior agreement and written permission from
Spectravideo International Ltd.

Price: US $13.95

sm-328 -2

TABLE OF
CONTENTS

INTRODUCTION i e 5
e - = . = .
SYSTEMIOVERVIEW 9

B Super SV Extended BASIC 10

B Expandability 11

B SV-328 PeripheralMap, 12

B Unpacking ..., o 13

B System Installation 14

B Portsand Sockets 0 15

B Connection to Monitoror TV 16

B Power Supply and Cable Connections. 18

B TumingOnthePower.......................... 20

B PowerOnSelf-Test..........cocvvivivininns 21

B Program Cartridge Port 21
B
THEKEYBOARDot 25

B KeyboardLayoutcciiiiviinnn, 29

B FunctionKeys i 30

B NumericKeypadccoiiviiiinn... 32

B CursorControlKeysc..cvvviiiinn... 34

B Program ControlKeys 34

B MiscellanecusKeysc.ooviiiiiiii 35
B
EASYEDITINGco0n 39

B “Screen” Editor 39

B “Insert” Modeo 41

. - - - @ - = @ |
A BASICINTRODUCTION....................... 45

' B Whatis programming?o, 46
B One word beforewebegin 47

- @ @ @ - @ |
WRITE YOUR FIRSTPROGRAM 51

B Gettingstartedc i 51

B Gridand Coordinates.cvuvnn.. 52

B OLIST . 54

B SCREEN e 56

BPSET.............. e e 57

B let'saddsomeCOLOR.......................0 58

B Border, Foreground and Background 60

B GOTO ... 61

BLET ... 69

Bl QuickDraw ...t 70
B FOR/NEXT ...t 70
B Time Saving Hints PO 72
Bl END .o e 73

BREM ... 82

DECISION MAKING 87
B GettingSmart e 87
B IF/THEN e 87
B StringVariable o 88
B Another Challenging Program 89
B MoreDecisionsiiiiiiiin 91
B Printitthewayyouwantc.cvvevnvunn. 93
BlTab. 93
SOME RANDOM THOUGHTS 97
B RND,INTand —TIME i, 98
B JumpingAroundo i 99
B GOSUB/RETURN ...t 100
B The Computerasa Calculator 102
B Arithmetic Operationsou0. 103
B Processing Information 104
B READ/DATA 105
Bl CLEAR 108
B "OUT OF DATA” MeSSage.vvvvvreneeninn.. 108
B RESTORE.ttt e 108
B Another TimeSavercovuun.. 109
BAUTO ... 109
ARRAYS - AWAY OF ORGANIZING

MANY CONTAINERSit 113
BIDIM....o 114
B Working with a larger Set of Containers 115
ONTHEEND OF ALONGSTRING............... 121
B string” e 121
B LEFTS, RIGHTS, MID$o 122

BLEN......... o 123

APPENDICES

Appendix A
Appendix B
Appsndix C

Appendix D
Appendix E
Appendix F

Appandix G
Appendix H

Appendix 1

Glossary

ADVANCED GRAPHICS AND SOUND

PROGRAMMING 127
PART ONE - ADVANCED GRAPHICS 128
B CIRCLE. ... e 128
B PAINT .. 128
B LINEand BOXDrawing........coovviiveneao.. 133
Bl BOX(B) ottt 134
B BOXFILL(BF) ...t 134
B DRAW .. 136
B SCALE 137
LOCATE ..o e 138
B BLANKMOVE i 138
B SPRITES ..o e 139
PART TWO - SOUND PROGRAMMING 145
B PLAY 146
B “O”"(OCTAVE), 146
B UT"(TEMPO). ... 147
B "L"(LENGTH) ... 147
B "S"{SHAPE) 148
B"M7(TONE).........co 148
B "R"(REST) . 148
B "V'(VOLUME) i 148
B Using3 Channelsof SOUND 149

ASCll Character Codes.covvivieiinnnn... 151
Mathematical Functions 154
Error Codes and Error Messages 165
DISKErmors ..o 159
SV BASICReservedWords.oovvvvennnn.. 161
I/0 Pinouts & Memory Maps...................... 162
Notes on High Resolution
and Low Resolution Screens 166
Trouble ShootingChart 167
Programmable Sound Generator (PSG) 168
Introduction to BASIC programming 174
.. 184

Welcome to the world of tomorrow. You
have just made a purchase that will reward you
for a long time to come. The SV-328 Personal
Computer that you have purchased will open
the doors to the future both today and in the
future. The SPECTRAVIDEO family of
personal computers contain features that will
allow you to take advantage of all current
computing technology and will also allow you
to expand your horizons as new technology
evolves.

The SV-328 is the tool that will allow you to
deal with the computer revolution of the 1980's
and this is the manual for the operation of this
tool.

Again, welcome to tomorrow. Make it what
you want it to be with your SV-328. Just keep
one thought in mind as you progress on your
journey: A Computer is only as smart as you
make it. Without you, it's only a rather
complex bunch of wires, chips, metal and
plastic. You are the most important
component of your new computer system.!”

;
i
|
\
i
|
i
;

The terms in the following system overview
might not be familiar to those of you who are
just beginning to learn about computers. But
don’t worry. This manual was written
especially for first time computer users to
teach them the powerful BASIC language that
is built into the SV-328. The overview is
intended to give the beginner as well as the
experienced user an appreciation of the power
and beauty of the SV-328: the first affordable
and expandable personal computer.

Your §V-328 computer contains 3 powerful
processors that allow you to display exciting
pictures, play music or sound effects and
control a program all at the same time!

A Z80A 8-bit Microprocessor controls all the
system components. It is responsible for
storing, retrieving, and executing programs. A
video display processor (VDP) serves to
generate all necessary video, control, and
synchronization signals. The VDP is capable
of displaying 16 colors in high resolution mode. It
also supports manipulations of 32 sprites
{shapes) and a 40 column text mode. In
addition, there is a programmable sound
generator (PSG) which can produce songs or
a wide variety of complex sounds.

The BASIC language is stored in the 32K
bytes of Read Only Memory (ROM). Your
instructions (or “programs’’ in computerese)
to command the computer are stored in one

10

REMEMBER:

- . g]

¥

64K bytes of Random Access Memory (RAM).
The remaining 16K is strictly for use by the
VDP to store information with which it creates
colorful graphic displays.

The powerful SV Extended BASIC language
written by Microsoft® is an extension of the
same BASIC language that is available on
computers costing three times as much as the
Sv-328.

If you are new to programming, you will find
SV BASIC to be a versatile, easy to learn and
easy to use language. Experienced
programmers will appreciate its powerful
features and the flexibility it permits when
writing, editing, debugging, and running
programs.

The SV BASIC has the following powerful
built-in features:

(a) Screen editor.

(b} Full graphic and sound manipulation.

(c) New SPRITE commands.

(d} Default double precision math package for
business application programs.

(e} Special machine interrupt handling
commands for real time BASIC
programming.

(f) Special function keys often used
_.commands (user programmable).

(g) True upper and lower case display and
printing.

(h) Bank program switching: A BASIC
command not currently found on any
comparably priced computer. It allows you
to run two programs at the same time
when the original memory expansion bank
is installed. (64K memory expansion cartridge
is required)

The secret to mastering the Spectravideo
SV-328's power is to take your time reading

this book and trying out all the exercises on
your computer. Like driving a car, you must
learn by doing. By correcting your mistakes
and learning not to feel bad about them, you
will succeed and grow with the Spectravideo’s
line of expandable and affordable computer
products.

If you need greater computing power, you can
easily add more peripherals through the SV
expansion interface, a 7 slot super expander
unit. This expander unit connects directly to
the rear of the basic unit. It is capable

of supporting a wide variety of peripheral
devices as shown on the following page.

fl

"

THE SV-328SYSTEM

PERIPHERAL MAP

The SV-328 computer, RF modulator, direct
monitor cable, Power Supply and Switch Box
are all securely packed in a foam cushioned
carton. Please note: Save all packaging
materials in case you must ship the unit for
maintenance or repairs.

MOHITOR CATLE

Y, 8, A, MARYET ONLY

Check the contents of your SV-328 package.
You should find the following items:

. SVI-328 Computer

. Monitor Cable {not included in Valuepak)
RF modulator

Shielded video cable

Switch box

Power supply

This instruction manual

Warranty registration card

Quick reference guide

POND AN -

If any items are missing, please check with
your dealer immediately.

To connect the system, you will need two (2)
110V electrical outlets for your SV-328
Computer and monitor, or television set |
Choose a comfortable position for operation,
away from any source of extreme heat
{sunlight, heaters, etc).

Study the photos below carefully:

This port connects your TV or monitor to the
SV-328

Connects the SV-328 to the data cassette
recorder.

Connects the 7-slot Super Expander to the
Sv-328

Joystick/ Graphics Tablet/ Power Power supply
Paddle 1/0 port switch socket

16

CONNECTION TO
A MONITOR

Connects the power supply unit to the SV-328
The other end of the supply unit is connected
to an electrical wall outlet.

Turns on the power to the SV-328

These ports connect optional joystick,

-1/ graphic tablet or paddle to the SV-328

The video cable that is included in the SV-328
computer system consists of a standard b pin
DIN plug on one end and 2 RCA phono plugs
for video and audio output on the other end.

. Connect the 5 pin DINplug into the RF port

on the rear of the SV-328.

. Connect the RCA plug marked "“video'’ to the

video port and the RCA plug marked “’Audio”’
to the audio port on the rear of the monitor.

NOTE: Some monitors require an inexpensive
adapter to add to the RCA plugs before
connecting them to the monitor. That is
available from your local electronics dealer.
WE recommend the Radio Shack RCA Mini-
Adapter (Model # 274-330)

1. Connect one end of the shielded video
cable to the RF modulator.

RF Modaulator Switc

2. Attach the end of the 5-pin DIN connector
to the back of the SV-328 Video Port

3. Connect the other end of the shielded video
cable to the TV switch box.

CD;!Puren .
;chPUTER

)’m
Ve

®
47

SOMECT 10 dry g,

POWER SUPPLY
AND CABLE
CONNECTIONS.

1.

4. Disconnect the VHF TV antenna and
reconnect it to the switch box’s connector
marked TV. If your TV antenna uses a 75
ohm cable (round) then you will need a 75
ohm to 300 ohm adapter (not supplied)
to attach the 75 ohm cable to the
switchbox.

@

5. Select channel 3 on your television set.

Before connecting the power supply, please
check and be sure the power switch on the
right side of the unit is OFF. Connect the two
cords coming from the power supply as
shown.

2. Connect the power supply to the SV-328.

3. Connect the other end of the power supply to

any wall outlet.

BACK OF

YOUR MONITOR

PROPER CONNECTION OF THE SV-328 TO THE TV.

POWER
SUPPLY
BOX

MONITOR
CABLE

[=—= = ===\ \ \ \ TO WALL
, —— SOCKET

After you have connected the SV-328 to your
power supply, first turn on your TV then turn
the SV-328 power switch to the “ON"
position. You should see the SPECTRAVIDEQO
Logo displayed on the screen.

THE SPECTRAVIDEO LOGO WILL APPEAR,
CHANGING COLORS THREE TIMES.

The POWER ON indicator will light up.

The SV-328 has a built-in diagnostic check
that will automatically check the function of
the system and will signal a successful test
with one beep. (In the event that you do not
hear a beep, first check to be sure the Volume
control of your television set has been turned
up to an audible level.)

If the system still does not start up properly,
refer to the trouble shooting chart. (Appendix G)

PROGRAM CARTRIDGE PORT

The SV-328 Program Cartridge Port is located
conveniently on the top right hand corner. To
insert a Spectravideo game cartridge, frist

be sure the power switch is in the OFF position.

Programming is generally done by sending
instructions to the computer through the
keyboard. Your instructions and the
computer’s responses are visible on a TV
screen, which is connected to the keyboard.
The computer’s keyboard should look
somewhat familiar to you because it
resembles that of a typewriter. However, the
keyboard contains additional keys that are
necessary to effectively communicate with the
computer.

Turn on your computer (remember, the
ON/OFF switch is located on the right side of
the computer). You are off to a good start if
the screen looks like this when you turn the
computer on,

If you do not see the Spectravideo logo on the
screen immediately after turning on the

e e
R R e T e T e A T T T

25

26

power, turn to the troubleshooting chart in
Appendix G for assistance.

After several seconds you will see the
following information appear on the screen.

The word ““OK"’ is the message to you from
the computer that it is ready to accept your
commands. The white square underneath the
word “OK"’ is called the “‘cursor.’ Its position
on the screen informs you of the location of
the next letter you type. Let’s start typing and
get acquainted with the SV-328 and its special
features that aid you in working with the
computer.

Begin by pressing the following keys:

PRINT

The cursor moves one position to the right
every time you press a key.

Now find the key . {on the lower left
side of the keyboard), and while holding it
down, press the double quotation mark, n
key. This should cause the quotation marks to
appear as on a typewriter.

Type the following message:

” LONG LIVE THE SV-328"

Now make another double quotation mark at
the end of the message by pressing {
The screen should now look like this:

If you ever make a mistake while typing - for
example, you accidentally type the single quote
mark instead of the double quotation mark -

all you need to do is press the backspace key,
and retype by pressing the PElIEE | and while
holding it down, press the double quotation
mark, 2 Key. The backspace key permits

easy retyping by erasing the character
immediately to the left of the cursor.

Now press the EENE:E key and look at the
screen. It will look like this:

28

When you press the HENIEE key while in
immediate mode, you are telling the computer
that you have finished working and that you
want the computer to begin working. The
SV-328 will politely respond and “PRINT"
your message on the screen. When it has
finished obeying your instructions, it will
display the OK message to inform you that it
is ready for more instructions.

If you wish to type using upper case letters,
you should press the key while
pressing a letter key. Should you desire to
type using only upper case letters for an
extended period of time, you should press
the key, located on the lower
left side of the keyboard.

The key toggles betwsen the
upper and lower case letters. When you wish
to return to lower case letters, press the

TN Lyl le.@ key a second time to unlock it.

Now it's your turn to enter other messages in
immediate mode. Don't forget to press the
key when you have placed the
closing double quotation mark at the end of
each message. If a message is longer than a
single screen line, the computer will
automatically advance to the next screen line,
thus alleviating the need for a return key as on
a typewriter (more on this last point later).

If you misspell a word that is a BASIC
command, such as PRINT, the following
message will appear on the screen:

The SYNTAX ERROR message tells you that
you spelled an instruction incorrectly. Don't
worry, the computer is very forgiving and
patient. We will explain how to correct his
mistake in the next chapter.

You can clear the entire screen at once by
pressing the [EEIEIGE. key, located on the
right side of the top row of keys. The
abbreviation “CLS" stands for ClearScreen.

When you have finished practising entering
messages for the computer to print, please
continue reading.

So far we have introduced you to the
following keys: letter and number keys, the
backspace key, the key, and the
key. These keys are highlighted
below

The SV-328 has many convenient features

that are operated by certain keys. You will find
these special keys to be both helpful and time
saving. The remainder of this chapter will
describe these keys, most of which will be new
and some of which will be a review.

Look at the top row of keys on the keyboard,
the ones highlighted below.

30

These keys are called ““function’” keys and
each one is marked with the letter ““F.’ They
are a labor-saving device because they allow
you to instruct the computer to perform a
frequently used function by pressing only one
key instead of having to type many keys.

Here is a list of each key, the function it
performs and a brief description of the
function. Most of these functions will be
explained in more detail in the coming
chapters. Consult the SV Reference Guide for
additional information.

KEY PRE-DEFINED FUNCTION

F1 color

F2 auto

F3 goto

F4 list

F5 run

F6 color 15,4,5
F7 cload”

F8 cont

F9 list.

F10 Lrun

Function keys F1 through Fb are operated by
pressing the appropriate key. Function keys
F6 through F10 are operated by pressing the

Sillas [key and holding it down while
simultaneously pressing the appropriate key.

The COLOR command is used to change the
text, background and border colors on your
TV or monitor.

The AUTO command is used to make the
computer generate program line numbers
automatically. This command is used very
often, since all programming statements must
be preceded by line numbers.

GOTO is a command which provides you with
the ability to execute your program from any
place (line number) you desire.

This command instructs your SV-328 to print
all of your immediately preceding program
statements on the screen. LIST is probably
the most often used computer command.

RUN tells the computer to take the program
you have written and perform the commands
you have indicated.

This tells the computer to print white letters
on a blue background with a blue border.
These colors are the colors of the screen
when you turn the computer on.

CLOAD instructs the computer to input (load)
data from a cassette recorder (which can be
easily connected to your SV-328).

This command is used to tell the computer to
“continue’’ program execution after the last
executed line.

With this LIST. (with a period next to it) only
the last line you were working on (whether
programming, editing, etc.) will be displayed
on the screen.

This command is similar to the standard RUN
command. However this command also clears
the screen before it “’runs’’ your program.

32

On the bottom of your TV screen, the SV-328
lists the function that each key performs.

The SV-328 will normally display the function
of keys F1 through F5, and whenever you
press the [EIIER key it displays the function
of keys F6 through F10.

Any of these pre-defined functions can be
quickly changed for your own convenience to
a function that you frequently use. See the
SV Basic Reference Guide for further details.

The numeric and cursor control keypad
containes keys that are primarily used for
simple numeric entry, word processing and
cursor . control. The following are the
commands that are accessed by this keypad.

The numeric keys {1-9) are the same as the keys
on the top of the regular keyboard. These are
used when performing rapid entry of numeric
data. This keypad also contains the
mathematical functions keys (+, —, 3¢, /)
which can be used to enter formulas and to
perform quick calculations.

The SELECT and PRINT keys are also included
on this keypad to allow the advantage of using
these functions that are often available in word
processing and data entry software packages.
These keys have no function in BASIC
programming and are only accessed from
programs such as those mentioned above.

Arvow
Kays
{Cursor
Cotrol}

CONTROL

34

The arrow keys (up, down, left & right)
control the movement of the cursor on the
display screen. By pressing a combination of
the up and left arrow keys, you will cause the
cursor to move towards the upper left corner
of the display screen. Other combinations will
work in the same fashion giving you 8
directions of cursor movement using these
keys.

The following are the program control keys
used to control the operation of computer
programs.

The {Bie]Z | key. Press this key to pause the
computer after you have instructed it to RUN
or to perform a function (which makes it begin
working on your program). Press the
key a second time to instruct the computer to
resume working on your program or a
function.

The CONTROL key. This key is used in
conjunction with the STOP key. In effect, this
tells the computer to stop what it’s doing and
turn control back over to you {so that you can
issue further instructions). Press the
key while simultaneously pressing the
key.

MISCELLANEOUS
KEYS

i key. Press this key at the end of
each instruction you type. By pressing this
key you are telling the computer to enter the
instruction you just typed into its work space.
As we previously mentioned, the EZRILE
key is not used to advance the cursor to the
next screen line and therefore should not be
confused with the return key on a typewriter.
In the event that an instruction contains more
characters than can fit on a single screen line,
the computer will automatically advance the
cursor to the next screen line. For example:

This long instruction cannot possibly fit onto a
single screen line which has room for only 40
characters. Whenever this happens, the
computer will automatically advance you to
the next line. In the above example, the

Vi8] key should only be pressed after you
have typed the closing double quotation
marks that follow the word PROGRAM.

The EIEIEE key — pressing this key
will toggle the display characters from lower

case to upper case or upper case to lower
case.

The EEGIWE key — pressing this key will
clear the screen and move the cursor to the
upper lefthand corner of the screen. When

36

pressed together with the EEliag] key, it will
move the cursor to the upper lefthand position
(Home) but will not clear the screen,

NS key — this key is used
when you WISh to insert characters within a
line. Just move the cursor to the location
where you wish to insert, then press this key
and the text you type will be inserted.

. £l key — press this key to
delete the character under the cursor.

This key is often used in software application
programs. Its usual function is to interrupt the
operation of a program or to continue
operation following an interrupt.(Escape)

= This key is not used in BASIC. It is often used

in a word processor or similar application

= program to space forward 5 spaces to begin a

paragraph.

This key backs up the cursor one space. It

| deletes the character immediately to the left of

the cursor prior to the key press.

You will soon have the opportunity to use the
LSS and [EEEEYE keys.

ThelfTaga T and the iy keys are
used to select the graphic symbols that
correspond to the keys which are displayed on
the following chart. If you press the[IZz ;5
key and hold it down while simultaneously
pressing one of the letter keys, the graphic
symbol above and to the left of the
corresponding key on the following chart will
be displayed. The corresponding symbol on
the right side of the letter key can be displayed
likey and the

by pressing the[;{{di1s
corresponding letter.

LHVHO SOIHdVHD QdVOdAIM IHL

EEH—HHHN

36A

368

Now that you have learned how to hook up
your computer and are familiar with the
keyboard, you can proceed further in the
manual. However, if you are anxious to begin
using your computer, please turn to Appendix
1 for some simple demonstrations.

After completing these exercises, return to
chapter 3 to continue.

il

EASY EDITING

€

The BASIC Screen Editor lets you change a
line anywhere on the screen. You can change
only one line at a time. The Screen Editor can
be used after an OK prompt appears and
before a RUN command is issued. By using
the Cursor Control Keys and the editing keys,

you can move quickly around the screen,
making corrections where necessary.

Here is an example to show you how to use

the Screen Editor. A more detailed description

of the Screen Editor’s syntax can be found in
the SV Basic Reference Guide.

Let’s enter the following program.

10 REM SCREEN EDITOR DOMO
20 PRINT “DEMONSTRATION OF”
30 END

Note: Remember that a program line must
always begin with a line number. If you make
a mistake, just press AN and retype the
line.

ll

39

40

After you have finished, press the
key then type LIST or [ZJand press
. ! You shouid see:

Now correct the word DOMO in line 10. First
use the cursor Key's UP direction key to move
to line 10 and then the RIGHT direction key to
move the cursor to the top of the letter "'O’’ of
“DOMO"

Press the letter “E”’ to change the word to
“DEMO;’ then press BN . The line will be
stored now as:

10 REMVi SCREEN EDITOR DEMO
L =

You have just replaced the character ‘O’ with
the character “E!" To verify this, press

ESEE. [vist), EELEE. You should

see!

The next step is to insert the two words
SCREEN EDITOR into line 20. We do this by
moving the cursor with the cursor control to
the second quote of Line 20.

Now press the , key and the
cursor will become half as tall as before. This
means you are in the “INSERT" mode. Type
SCREEN EDITOR, bring the cursor back to
the beginning of line 20, and press EIEYIE:E .

41

42

You have just inserted the words “SCREEN
EDITOR' Follow the steps you used to verify
line 10 and you will see:

Besides using the Screen Editor, you can also
change a line by entering a new one with the
same line number. BASIC will automatically
replace that line.

l!

4

> To be able to control a computer, you must
be able to communicate your instructions in a
language that the computer understands. The
SV-328, like most personal computers,
understands a language called BASIC
{Beginner’'s All Purpose Symbolic Instruction
Code). This language, which is built right into
the SV-328, is a set of English words with
which you can instruct the computer to
perform certain functions.

This manual differs in many ways from other
manuals written to teach BASIC. One of the
major differences is that most of the
information presented in this tutorial has
already been used successfully to teach
BASIC in the classroom.

This guide begins by describing those BASIC
commands which allow you to design simple
pictures and see them displayed on the TV
screen. Our reason for introducing you to
BASIC through graphics is simple. Learning
BASIC is like learning a foreign language. If
we can relate the new words of BASIC to the
knowledge that you already possess about
drawing, you can move smoothly into the
computer age and have fun at the same time.

In the next few chapters we will explain
several commands which allow you to create
pictures. But there is much more to learn
about the SV-328’s graphic capabilities. It will
be explained in greater depth in the latter

45

vy

W

46

chapters of this manual and on the
BASIC tutorial cassette tape.

Programming is the act of writing the
instructions and information that must be
given to the computer in order for it to
perform a task. Programs differ from one
another in that the instructions and
information necessary for managing a
household’s checkbook, for example, are
different from the instructions and information
needed to control a video game.

Programs written in one computer language
will not contain the instructions and structure
that a program in another computer language
possesses. That is why professional
programmers generally must specialize in one
or two languages. It is the rare individual who
is even aware of all the different computer
languages that have been developed in the
past twenty years.

There are two different ways to type a BASIC
instruction into your computer: In ‘’program’
mode or in “immediate’” mode.

As its name implies, you are in “program’’
mode when you write a program. A BASIC
program is a set of instructions typed one
instruction after the other with a line number
beginning each instruction line. For example:

Line numbers are generally in intervals of ten
to allow for easy reference when corrections
are required or when additional lines need to
be inserted. The computer executes your
program after you type the word RUN.

The second way of instructing the computer is
called “immediate’” mode, because after each
instruction is typed and the EEXIIEz] key is
pressed, the computer will immediately
respond. Do not precede the single line of
instructions with a line number when you are

in “immediate’’ mode.

For most of the time spent with this tutorial,
you will be in program mode. If you are
serious about programming, then you will
continue to write programs and very
infrequently be in the immediate mode. The
immediate mode is generally reserved for
housekeeping details like saving programs on
a cassette tape or disk, requesting a catalog of
your programs stored on a disk and loading
information from a cassette or disk into the
computer.

We realize that these words and concepts are
new for many of you, but don’t worry. These
ideas will become clearer as you continue
reading.

The model that we are about to present is
critical to your fully understanding how a
computer works and what it does with the
program you type in.

Your interaction with the computer is similar
to the following scenario.

If you were interested in buying a car you
would probably call a car dealer for a price on
a particular model. You might ask the
salesman for a price on a Cadillac with power
windows, power steering, leather seats, deep
pile carpeting, and tinted windows.

The salesman will then proceed to

check his price lists, write the numbers down
on a worksheet, add the numbers together
and quote you the total price.

Procedures to get information about a car.

ASK
SALESMAN

I

SALESMAN
CHECKS PRICE

il

SALESMAN
RESPONSE

By the same token, when you work with a
computer, the computer is the salesman. You
tell the computer exactly what you want just
as you tell the salesman and in both cases you
get an answer. Similarly, in both instances
you do not see the many calculations that
both the salesman and the computer perform
before informing you of their answer. The
instructions you give to the salesman or to the
computer is the ‘INPUT’ they need to act on.

The calculations done on the salesman'’s
worksheet are analogous to the work
performed in the computer’s erasable memory
(called RAM), and the answer you get is
called, the ‘OUTPUT".

By reading and practising the new language
you have started to learn, you will be entering
the ever expanding computer world. BASIC is
only the beginning.

ENJOY.

GETTING STARTED

The easiest way to draw pictures on the
computer is similar to the way one plays the
game Battleship.™

The goal of Battleship is to try to guess the
positions of your opponent’s ships. The game
board for Battleship looks like this:

1 2 3 45 67 8 910

« = T O "m0 O @D

Figure 1 Battleship Game Board

FIGURE 1 shows how your opponent has his
board set up. One of his ships is at positions
H-2, H-3, H-4, and H-5. His other ship is at
positions C-7 and D-7.

51

"GRID” and
“"COORDINATES”

You must seek out his ships by calling the
names of positions on the board. In this
example, if you were to call H-2 he would
reply that you hit his ship, but if you said, H-1,
he would have told you that you missed.

The important lesson to learn here is the way
you give names to each of the positions on
the board. In essence, each position on the
Battleship game board is a point on a graph.

To draw on the SV-328 you must also give a
name to each box of the grid that is shown in
Figure 2.

10 20 30 40 50 60
0123456788 1234567889 123456788 123456789 123456788 1234567839 12,

52

Figure 2

Each box has a name. The name is composed
of two numbers: the number at the top of a
column, and the number at the side
designating each row. The first number is the
horizontal location and the second number is
the vertical location. These two numbers are
called: the coordinate numbers of a point.

e R o e
.

Understanding how to name boxes is very
important for creating simple pictures. It is
especially important because we are going to
introduce you to many more BASIC
instructions through which pictures can be
created. Spend a moment on the following
exercise before proceeding to the next
section.

In FIGURE 3, several boxes are darkened. This
signifies that they have been lit. Do you know
the names of these boxes? Write them down
on a piece of paper.

0 20 30 40 50 60
0123456789 123456789 123456789 123456789 123456789 123456789 1

Figure 3

Your answers should have been
A:(20,10).
B: (20,20)
C:(20,30)
D: (20,40)

Now we will use these names in a program
which will light the boxes in FIGURE 3. Type
on the keyboard exactly what is listed below.

Don't forget to press at the end of
each line. We will not always remind you from
this point on. Pressing after each
instruction should become second nature to
you by the time you finish this book.

10 SCREEN 2
20 PSET (70,50)
30 PSET (66,54)
40 PSET (74,54)
50 PSET (62,58)
60 PSET (78,58)
70 PSET (66,62)
80 PSET (74,62)
90 PSET (70,66)
100 END

After you have checked to make certain that
your program matches our program, type
RUN.

What's the matter? Did the picture flash by
too quickly? Don’t worry we expected that
little problem to occur. Do the following:

1. Type LIST

Your program is displayed again on the
screen. As its name implies, LIST will list your
whole program from beginning line number to
the last number you used. If you typed LIST
when you were in immediate mode and not
using the line numbers, you would not see a
program listed.

2. Type in the following new line.

95 GOTO 9%

3. Type LIST

Notice that line 95 was inserted between lines
90 and 100 automatically by the computer.
Remember what we had said earlier in this
guide about line numbers and why we usually
use numbers with an interval of ten between
them. The insertion of additional lines is a
natural occurance when you write programs.

4. Type RUN

The computer not only draws the shape we
want, but it also keeps the picture on the
screen forever and does not allow you to type
in anything at the keyboard. Try typing. The
characters you type don’t appear on the TV.
Why? Because the machine is still RUNning
your program and will continue to do so until
you press the - keys
simultaneously. Let’s look at the program
again.

10 SCREEN 2
20 PSET {70,50)
30 PSET (66,54)
40 PSET (74,54)
50 PSET (62,58)
60 PSET (78,58)
70 PSET (66,62)
80 PSET {74,62)
90 PSET (70,66)
95 GOTO 96
100 END

Before we added line 95, the picture appeared
momentarily and then disappeared because
the program did exactly what it was supposed
to do {very quickly) and then disappeared. By
adding Line 95, we told the computer to stay
right where it is. To stop the program, press

the EELE — [S1a] keys simultaneously.

The - key combination breaks
the computer out of its continuous loop, and

will stop the computer from whatever
program happens to be RUNning.

- = = =

65

SCHEEN

b6

e
m

You will see whatever you type appear on the
TV. Remember to press EIEE after you
finish each line.

10 SCREEN 2
20 PSET (10,20)
30 PSET (20,20)
40 PSET (30,20)
50 PSET (40,20)
60 GOTO 60

70 END

Line 10 tells the computer that you are going to
draw a picture on SCREEN 2.

There are 3 screens:

SCREEN O - Is the screen the computer
displays when you turn it on. - This screen
allows you to communicate with your
computer and tell him what to do for you: type
in your commands in the immediate mode, or
type in your programs.

This screen allows you to enter 24 lines of text
with a maximum of 40 characters on each line
before the display starts to ““scroll’” or move
up.

SCREEN 1 - Is the High Resolution graphics
screen which you use to draw High Resolution
graphics.

SCREEN 2 - Is the Low Resolution graphics
screen which you use for drawing Low
Resolution graphics.

{More about High and Low Resolution you will
find in Appendix F)

Whenever you CTRL-STOP a RUNning
program which uses SCREEN 1 or SCREEN 2,
the computer will automatically return to
SCREEN 0 prompting you by displaying the
“OK" message and the cursor. This will allow
you to review (LIST) your program and make
your modifications.

“—

DIAMOND

Figure 4

Line 20 introduces the PSET instruction.
PSET tells the computer to turn on the box
that is named (10,20). Remember, the first
number in parentheses refers to the column
and the second number refers to the row of

the box.

Lines 30-50 continue to turn on the boxes we
see darkened in FIGURE 3. Line 60 will soon
be explained.

Now type RUN EETEE and your picture will
be displayed. When you flmsh viewing your

work, press the ST0
simultaneously to stop the program

What you typed into the computer was your
first program. Giving several instructions to
the computer at once is generally more
efficient than giving the computer one
instruction at a time in immediate mode.
(Remember that in immediate mode the
computer executes the command you type
immediately after you press the
key.) If we didn’t use line numbers to signify
that we were writing a program but rather told
the computer to turn on one box at a time, it
would be like going to a supermarket ten
times in one day and each time buying only
one item. That would be a terrible waste of
gas and time.

After all this talk, it is time for you to practise
what we have been preaching.

Type NEW

NEW tells the computer to forget about the
program you had previously typed

Try to write a program that draws the shape in
FIGURE 4.

LET'S ADD SOME
COLOR

68

[P e e i e s e e e |
L ———]

Each of the boxes you light up can be in one
of 16 colors. Here is a list of the 16 colors the
computer uses and the corresponding number
for each color.

COLOR # COLOR
0 TRANSPARENT
1 BLACK
2 MEDIUM GREEN
3 LIGHT GREEN
4 DARK BLUE
5 LIGHT BLUE
6 DARK RED
7 CYAN
8 MEDIUM RED
9 LIGHT RED
10 DARK YELLOW
1 LIGHT YELLOW
12 DARK GREEN
13 MAGENTA
14 GRAY
WHITE

Before describing how to add colors to your
drawings we will first demonstrate your
computer’s vivid colors.

Press the key to clear the screen and
type the following:

COLORA4, 15

[Note that function key #1 (&) can generate
the word “Color" for youl]

then press The colors of the
background and text are now reversed. The
numbers 4 and 15 represent two of the 16
colors listed above.

Let’s experiment with the COLOR command.
Begin by typing:

COLOR 4,4

l

The text disappeared and the only thing you
see is the blue background. Now type your
name. You should hear the clicking sound but
no characters are displayed on the screen.
Here is why:

The first number following the COLOR
command is the color you are instructing the
computer to use for the display of text while
the second number is the color the computer
will use for the background. Since you
instructed the computer to use the same blue
color {4) for both the text and the background
the text seemed to disappear. In other words,
what you type is printed on the screen, you
just can't see it! In order to return to “visible”
text you need to type a new COLOR
command, but it would not be easy without
seeing the cursor or what you typed.

Now you could appreciate the usefulness of
function key #6.

First make sure that the cursor (which you
cannot see) is positioned at the beginning of a
’clean’’ new line. You do this simply by
pressing

You will still not see anything changed, but
you will hear a beep. Since the last thing you
typed was your name, by pressing the EENIEGH
key you caused the computer to generate a
“SYNTAX ERROR'* message which is always
accompanied by a short “warning”’ beep.
(This, of course, wouldn’t happen if your name
is an actual word in the BASIC language).

Now, press the ElilIag [key and while holding it
down press function key # {[f3). The display
returns to normal and you should see now all
the words you previously typed plus the “OK"”
and “SYNTAX ERROR’ messages.

Take a look at the last color command on the
screen: '

COLOR,15,4,6

this is the command you gave the computer by
using F6. (Note that you didn't have to

"“ENTER" this command, since F6 “ENTERS"
automatically.) You see that there is a third
number added to the color command. We
already know that the first number {15) is the
text color, and that the second number { 4) is
the background color. The third number (5) is
the color the computer uses for the border of
the screen. The border is usually not displayed
in the text mode (screen0). That's why the
need to specify a border color exists mostly
when you are using SCREEN 1 or SCREEN 2.

JRDER We may think of the screen’s display as of

ACKGROUMD three layers, one on top of the other. At the
bottom there is the Border, above it there is

GROUND the Background (which in the text mode, or
SCREEN 0, covers the Border totally; and in
the graphic screen (1 or 2} “‘grows down'’ in
size and "‘exposes’’ the Border at the top and
bottom of the screen.)

Above the Background comes the Foreground
which might be described as a clear acetate
layer that ““carries” all the images that appear
on the screen: on SCREEN 0 it's the text, and
on SCREEN 1 or 2 it's the graphic image.

If you understood this concept you should feel
comfortable with the following format
description: the format of the COLOR
command is

COLOR., <foreground color #>
,< background color # >,
< border color # >

Now, experiment with the numbers to get
familiar with all the colors.

0.K. Let's get back to the PSET command

PSET (10,20), 3 (ENIET

Now change the color,

PSET (10,20}, 8

80

II

The PSET command only scratches the
surface of the almost unlimited graphic
capabilities of the SV-328. The majority of
commands to create exciting pictures on your
computer will be described after we have
introduced you to the BASIC language.

Before we end this chapter, type in this
popular little program that uses the GOTO
command in a way that is easily understood.

First type NEW

and then

10 PRINT “I LOVE MY SV 328

now type RUN

Press the [EiIE] -I9elE | key combination to
stop the runaway program. Do you
understand why the machine printed “‘l love
my SV-328 computer” again and again?
Here's why.

Line 10 telis the computer to PRINT the
message between the parentheses on the
screen. And Line 20 tells the computer to go
back to line 10 and print the message again.
After it is printed a second time, the computer
reaches line 20 again and is sent back again to
line 10 and then again and again. . .to infinity.
Now try inserting other messages in between
the parentheses in line 10. The quickest way
to change line 10 is as follows:

62

First type LIST

to see your program. (Don’t forget to press

Next rpe

10 PRINT

Now add any message you want, such as
your name, and put a closing quotation mark
at the end of your message. After you have
flnlshed retyping line 10 and pressed

HiE8 , the change has been entered in the
computer’s memory.

Now type RUN

and the revised message should appear on the
screen. We will have more to say about the
PRINT command in a later chapter.

We suggest that you read appendix F now for
some clarification on High and Low
Resolution and then continue reading this
tutorial in order, even though the material on
BASIC, and contain much valuable
information to help you utilize the exceptional
graphic and sound features of the SV-328.

GO!

DING T

3 THR
HROU!

LOOPS

in SV-BASIC there is
a nice shortout that
saves you from
always having to
type out the word
command PRINT -
just typeina

question mark {7}-it

serves the very same
purpose!

Pyt

After using the PSET command in the
previous chapter, you probably thought: there
has to be a way to turn on the lights of
particular boxes that is quicker than having to
name each box individually. Well there is! But
before we show it to you, first type in the
following program:

10 CLS

20 PRINT “TELL ME A NUMBER"
30 INPUT Y

40 SCREEN 2

50 PSET (30,Y)

60 PSET (45,Y)

70 PSET (60,Y)

80 PSET (75,Y)

80 GOTO 90

Now type RUN

Your program should have disappeared and
the message ““TELL ME A NUMBER" should
suddenly appear on a cleared screen. The
screen was cleared thanks to the CLS
command which stands for ““ClearScreen”,
which is on line 10.

The message is output to the screen by the
PRINT command in line 20, and the cursor
should appear just after a question mark.

The question mark was put there by the
command INPUT. INPUT tells the computer

“CONTAINERS"”
and “VARIABLES"

Thetypeofa
variable container
discussed in this
chapter is a numeric
container. This s
used for the storage
of numeric values
only. Non-numeric
{or Alpha-numeric)
variables will be
discussed in
chapter 8,

66

e e e e e s e |

to wait and not go on to the next instruction
of the program until you type something in at
the keyboard. Whatever you type in is stored
in a ““container” in the computer’s erasable
memory.

The more technically oriented of our readers
will recognize that the container we are
referring to is a variable . The following
explanation about the way a computer uses
containers to store information is meant for
those readers who aren’t comfortable with the
term “'variable!’

Before we continue with the description of
containers, let’s first observe a container in
action. First type in a number between 0-191
and press EENIERA . (If you press a number
greater than 191, an error message will
appear.)

If you typed in a number between 0-191 and
pressed ,a line should have been
drawn on the screen. The location of that line
depends on the number you typed in. Here is
why.

The number you typed is stored in a container
called “Y", as designated in line 30. Think of
"Y' as a cup, and the number you typed as a
mark on a piece of paper that is placed in the
cup. When the computer reaches line 50 and
it is time to turn on the box that is specified by
the name (30,Y), the computer looks in the
cup marked “Y" and substitutes the number
you typed in for the letter Y wherever *'Y"’
appears. So if you had typed in 27, the
number 27 would be stored in the container
“Y". When the computer reaches line 50 it
will light up box {30, 27); at line 60 box
(45,27); at line 70 box (60,27); and finally at
line 80, box (75,27) .

ﬂ

CONTAINERS IN It would be very difficult to store and retrieve

THE COMIPUTER'S information if we did not have a clear way of

MEMORY referring to the information we use. Thus we
have chosen the term ““container’’ to
designate a particular location in the
computer’s erasable memory where
information is stored. The letter “'Y"' is only
one of many possible symbols we can use to
““name’’ the containers.

A container’s name can be thought of as the
number part of the address of your home. If a
friend mails a letter to you and the envelope
bears only the name of the street you live on
but not the specific number of your house, it
is quite possible that your mail will be placed
in the wrong box. Similarly, if we feed into the
computer information that is not ’correctly
addressed”’, we will have a hard time finding
the information we need later on. Our ability
to communicate with the computer will then
be severely limited.

ONE LAST The SV-328, like most personal computers,
WORD ABOUT uses two different sets of containers. One set
CONTAINERS of containers holds only numbers, the second

set holds both numbers and words.

A container whose name begins with the
letters A-Z holds only numbers but when a
dollar sign, “$", is placed after the letters it
can hold both numbers and words. A
container name can be up to 2 characters in
length-it can’t be a word of BASIC Language-
for example, SV, DL, HF, L1, etc, are legal
containers names. Type:

10 CLS

20 PRINT “WHATEVER YOU TYPE IN
WHEN THE QUESTION MARK
APPEARS AFTER YOU TYPE RUN, |
WILL REPEAT”

30 INPUT A$

40 PRINT A3

50 END

- Wy}

CONTAINER
STORAGE AND
RECALL

68

Type RUN

Then type a number in response to the dollar

sign, and watch the computer echo whatever
you typed (remember to press EENIEE when
you finish your input).

Then type RUN

again and this time type in a word or two in
response to the question mark {and press
ZENTER B

What happens when you mix both nhumbers
and words in the same container? Is the
mixture accepted? Try it by RUNning the
program again.

You may store a maximum of 2565 characters
(letters) in any one container. Likewise, you
can type a maximum of 255 characters on any
one line of your BASIC program. Experiment
to see what happens when you try typing
more than 255 characters. RUN the program
again, and this time type more than 265
characters after the question mark and then
press HEAE] . You should see that the extra
characters were ignored.

There are various commands that tell the
computer what information to put into a
specific container. We have already seen that
INPUT puts the information that you type into
a container. Here is another way. Type,

10 CLS

20 LETA =10
30LETB = 20
WLETC=A+B
50 PRINT C

60 END

Now type RUN

The number 30 should have been printed out
on the screen. This program illustrates how
one assigns information to containers. The
command LET prefaces the name of the
container you wish to use and the container is
placed on the left side of the equal (=) sign.
The information you wish to place into the
container is written on the right side of the
equal (=) sign. After the number 10 has been
placed in “A’’ and the number 20 has been
placed in “’B’’, the computer adds the
numbers together and places the sum into
container “C"'. Thus the computer’s answer is
found in container “C" and the contents of
container “C'’ are printed on the screen.

You do not have to use the command LET to
assign information to a container. The
following program does exactly the same
thing:

10 CLS

20A =10
30B =20
40C=A+8B
50 PRINT C
60 END

The use of LET generally helps to improve the
readability of your program. This is helpful
when someone else looks at it, or when you
look at it after not reading it for a long period
of time.

Now we'll show you another way to use
containers. . .one that aliows you to draw
quickly.

QUICK DRAW

FORINEXT

70

... o0 a0)
L= ——— ..

The following techniques will not only help
you to draw quickly —they will also prove to
be invaluable in almost any program you
write. Type and RUN the following program:

10 CLS

20 FOR X =0TO 64
30 PRINT X

40 NEXT X

50 END

Surprised at the result? You really should not
be. This program uses the same kind of loop
and container that we have been discussing.

After line 10 ciears the screen, line 20 instructs
the computer to place all the numbers
between 0 and 64 into the “X’’ container one
at a time. The obedient computer begins by
putting a 0 in the X'’ container. The
instruction to PRINT X on line 30 forces the
computer to look up the number stored in the
X" container and display it on the TV. Then
on line 40 the computer is instructed to take
the next number after 0 and piace that in the
X" container. since a container can hold only
one item at a time, the 0 is erased from the
X" location in the computer’s erasable
memory and the number 1 is now piaced in
the “X" container. Then the computer is sent
back to line 20 to begin the process again.

Since the number 1 is one of the numbers
designated to be placed in “X"’, the computer
proceeds to line 30 where it finds the number
1 stored in X", and proceeds to PRINT the
number 1 on the screen. Line 40 causes the
number 1 to be erased from “X", places the
number 2 in the container and returns the
computer to line 20 where the same events
occur. This loop continues until the number
64 has been placed in “X"" and has been
displayed on the screen. Since 65 is not one

- > = =

of the designated numbers on line 20, the
computer sees the END command on line 50
and stops.

The FOR-NEXT commands are always a
pair. Never use one without the other. The
FOR-NEXT loop is fundamentally different
from the loop we can create with the GOTO
command. As your programming skills
develop, you will learn when the use of each
is appropriate.

Do you think you can change one line of the
program which printed out the numbers
between 0-64 to draw a straight line across
the whole screen? Before you read how it's
done, try it yourself. Hint: One line has to be
changed and two lines added.

10 SCREEN 2

20 FOR X=0TO 255
30 PSET (X,25)

40 NEXT X

50 END

Type RUN and watch how effortlessly the
computer draws that line!

The computer is told on line 30 to put all the
numbers between 0-255 into X'’ container
one at a time. A 0 is placed in X" in line 30.
And when the instruction to turn on the box
named (X,25) is given in line 40, the computer
checks to see what number is stored in X"’
and substitutes the 0 for the container name
in the name of the box, so the first box lit is
box (0,25).

NEXT X on line 50 places the number 1in
%", Since 1 is a designated number, the

= W

SOME TIME
SAVING HINTS

72

second box the computer lights up is box
{1,25}. The number one stored in X" is
substituted for the X" in line 40, This loop
continues until all 255 boxes in row 25 have
been lit.

Now try changing the loop program which
drew a harizontal line on row 25 to one that
will draw a vertical line at column 30 from the
top of the screen. Your program should ook
like this:

10 CLS

20 SCREEN 2

30 FORD = 0TO 191
40 PSET (30,D)

50 NEXT D

60 END

Notice that this time we told you to use a
different container name. “D"’ is the
designated container that will hold all the
numbers between 0-191. This looping
program works exactly like the program,
above, that draws the horizontal line.

We have spent much time explaining to you
how containers work in a non-technical way.
This was important because the more you
know about how the computer works and the
precise cause-and-effect of every command in
BASIC, the better use you can make of the
SV-328's features.

We have seen how loops can save you time.
Another little time saving tip is this. You need
not always place the END command at the
end of every BASIC program. Although it is
good practice to do so, you will quickly learn
where END is necessary.

END

10 CLS
20 PRINT “I LOVE MY SV-328"
30 GOTO 20

The END command is not needed at the end of
this program because the way the program is
structured the computer will never pass line 30.
It will be caught in a continuous loop until you
press the (&1} i

Similarly, you need not always precede your
program with

10 CLS

You should decide when you have to work
with a clear screen and when you don’t.

When using the SCREEN command you do
not need to use the CLS command because
the SCREEN command automatically clears
the screen.

PRESET

Now that you know how to use containers to
draw a line, let’s add one line to the program
you did in the previous chapter. This addition
will cause a dot to move across the screen.

10 SCREEN 2

20 FOR X = 0TO 256
30 PSET (X,25), 11

40 PRESET (X,25)

50 NEXT X

RUN

Was that a bit too quick for you? Before we
show you how to slow the bouncing ball
down, let's review this program to learn how
we create the illusion of motion.

The new command PRESET, on line 40, acts
just the opposite of PSET. PSET turns boxes
on and PRESET turns boxes off. In our
program above, PRESET turns off the very
same box that PSET turned on. In line 30 we
told PSET with what color to light the boxes.
In line 40 we don’t have to tell PRESET a color
number. PRESET merely turns the box off to
the background color of the screen.

How can we slow our bouncing ball down?
Well, it makes sense to somehow slow down
the computer so it will be delayed between
line 30 and line 40, because the slower the

=y

78

boxes get turned off, the longer they will stay
on and the easier it will be for an observer to
follow the path of the ball. We will add what
is known in computer jargon as a time delay
between line 30 and line 40.

Add the following lines:

35FORT =0 TO 50
37 NEXTT

Now type LIST

and your program should look like this:

10 SCREEN 2
20 FOR X = 0 TO 256
30 PSET (X,25), 11

35 FORT = 0TO 50
37 NEXT T

40 PRESET (X,25)

50 NEXT X

Now type RUN. ..

Your program should now be considerably
easier on your eyes because the dot will move
more slowly across the screen. Lines 35 and
37 should look familiar to you. They are an
example of your typical FOR-NEXT loop, with
an important difference.

In the previous chapter we stuck a command
(such as PSET or PRINT) between the FOR X
and the NEXT X commands. In the bouncing
ball program we did no such thing. Rather, by
placing the FOR T and the NEXT T
commands on consecutive lines, we caused
the computer to wait a certain amount of time
before proceeding to line 40. Lines 35 and 37

WALKING
BACKWARDS

STEP

caused the computer to stop and count from
0 to 50. The computer merely placed the
numbers between 0 and 50 into the container
called “T" one after the other, and that took
up time. Hence, this use of the FOR-NEXT
loop is called a “time delay”’.

To speed up the moving dot, simply change

the last number you want to be placed in the
"T" container to a number less than 50. For

example,

3BFORT =0TO 25
37NEXTT

To slow down the bouncing ball, simply
increase the last number to be placed inthe T
container to a number greater than 50. For
example,

35FORT = 0TO 100
37NEXTT

Now that you have mastered how to make the
ball move forward, form left to right, it is-time
to make the ball move backwards, from right
to left. Add the following lines to the
bouncing ball program:

60 FOR Q = 256 TO 0 STEP-1
70 PSET (Q,25), 11

80FORF =0TO 10

90 NEXT F

100 PRESET (Q,25)

110 NEXT Q

The new addition to the revised bouncing ball
program is the line 60. You are probably
wondering where the STEP — 1 came from.
Here's why.

80

The instruction

FORX = 0TO 256

means that the computer is instructed to place
all the numbers between 0 and 256 into the
X' container one at a time., The “‘one at a
time"’ instruction need not be written
explicitly.

FOR Q = 0 TO 256 is equivalent to FOR
0O =0TO 256 STEP 1

Which means move from 0 to the next
number, one at a time. When you do not
specify how many numbers to STEP to, the
computer automatically assumes you mean to
advance by one number at a time. We could
just as easily have instructed the computer to
jump from 0 to 2 with the instruction,

FORQ = 0 TO 256 STEP 2

Therefore, line 60, FORQ = 256 TO 0
STEP—1

is interpreted by the computer to mean placing
all the numbers between 256 and 0 into
container “Q’ one number at a time in
descending order. That is how we get the ball
to move backwards.

By deleting just one line you can see a
drastically different result. The present
program bounces the ball back and forth
across the screen. Try it. Delete line 100 by
typing.

100 ENTER
Now type LIST

to prove to yourself that line 100 was erased,
type,

RUN
- |

When you deleted line 100, the boxes that are
lit up by line 70 are no longer turned off. Now
change the program by adding one line which
will make it get stuck in a continuous loop.
Try it before you read on.

You should have added,
120 GOTO 20

This addition tells the computer to return to
line 20 and start drawing the ball and the line
again. It looks a little like a yo-yo.

Using all the material you have learned up to
CHALLENGING this point, try writing a program that will
create a picture in which a ball tumbles down
a staircase. This program is tricky, but
remember we have placed it here to really
challenge you. It should be easier to tackle if
you first instruct the computer to draw a
staircase and then concentrate on making a
ball move down the stairs. The finished
product should resemble the picture in
FIGURE 5.

s . .
- = - - o
. e e
. T e - .. . N
o o e - g e e o
- . - - =

-

4 - .
- . -

.
G

-

.

. . - - -

e L oot e o

- - . -
Hm .

-

i = ey
- = o . - = - o 0
- = - %, = G e s a0y
... . . N, . e . . .
- , .

. -

.. e -
.. . .
e R N - . -
e - N . __

.
-
-
- o

.

.

.

-

.

' - -
. N L o L

T

‘
.
L

.

o

.
i

o
L

-
.

.

- = ..
. .

. . .

-

- >
.

«:
i
o

;Q»
.
.

.
2
i

o
.
12‘

.

o

- . . i <

o
2
.
o

%
o

—
. s -
. . - . - o o - - .

. - - .
. = = -

- - ~ -
0 . . - - -
- . - e T o
~ - - .
. -

. . - ,. - -
- . - - - = . -
- . . u‘*ﬁ:ﬁg‘*ﬁf‘,{/&(- e =

.

. - -

(”
N
o

i S cas - o

-
o

-
- = v -
o - e - - e
- - . - =
- . . - -

P L

FIGURE 5
e 81

REM

82

Our program to accomplish this task is listed
below.

5 REM THIS SECTION OF THE
PROGRAM DRAWS A
STAIRCASE

10 SCREEN 2

20FOR X = 0TO 191

30 PSET (X,Y), 6

Y =Y +1

50 NEXT X

65 REM THIS SECTION OF THE
PROGRAM DRAWS THE BALL
TUMBLING DOWN THE STAIRS

60Y =0

70 FOR X = 4TO 191

80 PSET (X,Y), 15

100 FORT = 0TO 100
105 NEXT T

110 PRESET (X,Y)
120 =Y + 1

125 NEXT X

135 CLS

140Y =0

150 GOTO 20

The above program does exactly what we had
set out to do. The only new command
introduced here is REM. REM is the
abbreviated form of REMARK. When REM
appears at the beginning of a program line, (in
this program, lines 5 and 55), the computer
understands that it should ignore whatever
follows the REM command on the same line.
REM statements are comments which are
used to increase the readability of a program.

Lines 40 and 120 use containers in a way that
is familiar to people who remember basic
algebra. The instruction Y = Y + 1" tells
the computer to add 1 to the number that is

stored in the "Y'’ container and then place the
new number back in the 'Y’ container.

If you were not able to complete the staircase
program, do not be discouraged. As
mentioned at the beginning of this guide, we
differ from other tutorial texts in many ways.
In addition to offering in-depth, non-technical
explanations of the BASIC commands we also
supply you with challenging exercises.

I

83

GETTING SMART

IFTHEN

Up until now we have been introducing you to
the BASIC language through graphics. Now
we will begin to explore many other BASIC
commands in different settings.

In order to program the computer to make
decisions, we use the instruction known as
the IF-THEN statement. (Note: this is the first
time we have used the word ‘‘program’’ as a
verb. Previously we used the word as a noun,
but the verb for creating a program is
programming and we will start using this
official term.) Let’s see how it works. Enter
{this is the verb we will now be using
alternatively for the word “‘type’’) the
following program:

10 CLS

20 PRINT “TRY TO GUESS THE
NUMBER THAT | AM THINKING
OF. I'LL GIVE YOU A HINT.IT IS
BETWEEN 0 AND 100"

30 A=50

40 INPUT X

50 IF X = A THEN GOTO 100

60 PRINT “SORRY, YOU DID NOT
GUESS IT. TRY AGAINY

70 GOTO 40

100 PRINT “GREAT GUESS.YOU ARE
CORRECT, THE NUMBER | WAS
THINKING OF 1S 50

—

87

o
k-

YA

88

=
ot

=4

RING

e o
L]

Now RUN the program. The INPUT command
in line 40 will cause a question mark to appear
on the screen. Enter your guess after the
question mark. Line 50 of the program
compares your guess that is stored in
container “X'" with the number that is stored
in container “A”’. If you guessed the number
50 then the computer will jump to line 100. If
you did not guess the number 50, and
container X’ holds any other number, the
computer automatically continues to line 60.
There, it informs you of the result and sends
you back to line 40 which places another
question mark on the screen and waits
patiently for your next guess, If you entered
50 as your guess, then the test on line 50
sends you to line 100 which prints out the
appropriate message. Let’s take a closer look
at the IF-THEN statement. Like the
FOR-NEXT loop, the IF-THEN command is
used very frequently.

The IF-THEN statement performs a test. In
our example the command meant: if X = A
was true then the computer must jump to line
100. If the test proved to be false (the number
stored in X"’ did not equal the nhumber stored
in “A"), then no action was to be taken (e.g.
do not jump to line 100). Instead the computer
just continues with the next line in order.

In chapter 6 we mentioned that your computer
uses 2 different types of containers: One kind
stores only numbers and is called a “’“Numeric
Variable;’ while the other store both letters
{words) and/or numbers as long as they are
placed between double quotation marks. This
variable is called a “*String Variable'’ (Because
a word is a group of characters that are strung
together).

To differentiate between the two types of

variables a Dollar sign ($) is placed after the
hame you choose for the variable.

L - = @]

Example: A$ = “VARIABLE"”
B$ = “2 Variables”
C$ = "“1234"

We will now challenge you to write a program
that requires the use of a String Variable.

Listed below is the English description of a
program that you should try writing and
running. The three steps below describe the
three major components of this program. The
first two steps can each be translated into one
line of BASIC commands that the computer
understands. Step 3 will require several lines
of BASIC commands to ensure that the
computer does what is described. The
program you write should behave as described
in the three steps.

STEP 1: The computer asks you (by
displaying the message on the TV) whether it
should list all the numbers between 0 and 100
for you on the screen.

STEP 2: The computer waits for your answer
and stores it in the type of container that
holds words.

STEP 3: The computer checks your response.
'If you type in the word "YES" it will proceed
to print the numbers between 0 and 100 and if
you type ‘NO’’ the computer will say
“GOODBYE" to you rather than print the
numbers.

Try writing and running this program.
Remember that very few people ever get a
program written 100% correct the first
time. Part of the beauty of programming is
that it continually allows you to learn from
your mistakes. We provided several hints in
the description of the three steps. Read the
description carefully before you begin. Good

Q0

-
luck. Just in case you get stuck, we wrote our

program to meet the requirements of Steps
1-3.

5 CLS

10 PRINT”DOYOUWANTMETOLIST
ALL THE NUMBERS BETWEEN 0
AND 100? TELL ME YES OR NO*’

20 INPUT A$

30 IF A$ = “NO” THEN GOTO 100

40 FORI1 =0TO 100

50 PRINTI

60 NEXTI

70 END

100 PRINT “GOODBYE"

We wrote END on line 70 so that if you type
“YES" and the computer lists all the numbers
between 0 and 100, it will not continue onto
line 100 “goodbye.’ The END serves as a
barrier to stop the computer from continuing
to line 100.

What happens if you enter a word other than
“yes” or “no’ in response to the computer’s
question?

Type RUN and find out.

If you just tried this experiment you should
have found out that the computer lists all the
numbers from 0-100 anyway, because as it
stands now the program only checks for the
presence of the word ““no’’ in the A$
container. If any other word is in there, the
computer still continues to line 40. Try to
repair this program. Here is what we suggest.

II

MORE
DECISIONS

35 IFA$ = “YES” THEN GOTO 40

37 PRINT “YOU DID NOT TELL ME
YES OR NO, TRY AGAINY

38 GOTO 20

If you type LIST, your revised program should
resemble ours.

5 CLS

10 PRINT”DOYOU WANT ME TO LIST
ALL THE NUMBERS BETWEEN 0
AND 100? TELL ME YES OR NO”

20 INPUT A$

30 IF A$ = “NO"” THEN GOTO 100

35 IF A$ = “YES” THEN GOTO 40

37 PRINT “YOU DID NOT TELL ME
YES OR NO, TRY AGAIN'

38 GOTO 20

40 FOR1 = 0TO 100

50 PRINT |

60 NEXT I

70 END

100 PRINT “"GOODBYE"

Now, if you type in any words other than
“ves'' or "'no’’, the computer will tell you that
what you typed is not what it expected and
will let you keep on trying until you type either
“yes'’ or “‘no”’.

Your computer is capable of making other
kinds of decisions, beyond simple IF-THEN
tests. Here is another one. Enter the following
program:

ll

o1

10 CLS

20 REM THIS PROGRAM WILL
GATHER INFORMATION ABOUT
FAMILIES

30 PRINT “DO YOU HAVE A
BROTHER? TYPE YES OR NO’’

40 INPUT A$

50 PRINT”DOYOU HAVE A

60 INPUT B$

70 IF A$ = “YES"” AND B$ = ""YES"
THEN PRINT “THEN THERE ARE
AT LEAST THREE CHILDREN IN
YOUR FAMILY

80 IFAS$ = “YES” OR B$ = “YES”
THEN PRINT “THERE ARE AT
LEAST TWO CHILDREN IN YOUR
FAMILY”

90 IFA$<>'YES” AND B$ = “YES”
THEN PRINT “AREN'T YOU
LUCKYTHATYOU DO NOT HAVE
ANY BROTHERS"”

100 IF A$ = “YES" AND B$< >""YES"
THEN PRINT “AREN'T YOU
LUCKYTHAT YOU DO NOT HAVE
ANY SISTERS;’

110 1IF A$ < >"YES"” AND B$ < > ""YES"
THEN PRINT “YOU ARE AN ONLY

CHILD"”
120 END

Now RUN

and answer the questions. If you typed the
program in Capital Letters make sure that
when you respond to the question mark sign
you type the words “YES' or “NQ"’ in captial
letters. If you typed the program in Lower
case your “yes’’ or 'no’’ response should also
be typed in Lower case letters. Then RUN the
program and again type in different responses
to see the resulits.

The program is very straightforward. The new
commands AND, OR, < > (Not equal) are
used in BASIC the same way they are used in
everyday speech.

We can have the PRINT command place
information on different parts of the screen by
adding a comma or semicolon to the word
PRINT. Enter the following program.

T0 FOR1 = 0TO 100
20 PRINT “HELLO”
30 NEXT I

Type RUN. You should recognize this form of
the PRINT statement. This is what we
introduced to you a few chapters ago. Now
change line 20 to read

10 FORI = 0TO 100
20 PRINT “HELLO",
30 NEXT |

Now type RU'N again and compare the results
you get with those of the previous program.

Now change line 20 again as follows;

10 FORI1 = 0TO 100
20 PRINT “HELLO";
30 NEXT |

There are three very distinct ways that output
can be displayed. Later on, we will apply
these different PRINT styles in our programs.

As we said, the screen can display 40 lines of
text at a time before it must “move up'’ to
make room for new lines of text. By using the
TAB command, you can tell the computer

= K

94

|- assn s s s B B R |

where (which line) you want the information
to be put. Enter the following lines in
immediate mode (without a line number).

PRINT TAB (20); “"HELLO”

and now enter,

PRINT TAB (30); “GOODBYE"

TAB starts the printing of the message at the
column of text specified in the parentheses.
The left most column of the text screen is (0),
and the right most column is (39).

Random numbers
are important in
compuier programs
gspecially in game or
guiz programs, as
well as some
mathematic and
scientific
applications.

Many games that people play involve an
element of chance, from board games like
monopoly to the game of craps played in
casinos. The excitement and the high risk
involved in these games occurs by rolling dice
and getting a random, or unexpected
number.

it is very easy for us to roll the dice and
receive a random number. A random number
is one that occurs as if you placed your hand
in a barrel full of numbers and picked one out.
Unless you were a prophet, you wouldn't
know what num. ar to expect, and would be
surprised at the result.

While it is easy for us to roll random numbers
with dice, it is not so easy for your computer
to simulate dice and pick a truly random
number. Many microcomputers don’t even
afford you the opportunity to easily spin a
truly random number. When you tell these
other machines to pick a random number they
will produce a fake random number. Their
numbers are not truly random because each
time they start picking a number they always
begin with the same number. it's as if the
barrel that they picked from only had one
number in it.

However, your SV-328 can pick truly random
numbers. To do so, always insert the
following line at the beginning of a program
that calls for random numbers.

RND, INT
and-TIME

o8

5N = RND (- TIME)

The new commands that are introduced are
INT, RND and - TIME.

To pick a truly random number the SV-328
takes a look at its internal clock, which
measures the passage of time in
microseconds. Each time that the computer
receives the instruction —TIME, it looks at its
internal clock and uses the time on the clock
as the truly random number form which to
pick more random numbers. Since time never
stands still, each time the computer checks its
clock it will report a truly random number.

Type the following short program to see how
to use line 5 in a program and what the INT
and RND instructions do.

10 REM THIS PROGRAM PICKS
A RANDOM NUMBER

20 N = RND (- TIME)

30 X = INT (RND (1) * 10)

40 PRINT X

The new line here is line 30. The first
instruction that the computer responds to on
this line is RND (1). The number one in
parentheses is called a dummy variable
{container). Any number could have been
used in the parentheses. In each case the
computer picks a truly random number that is
between zero and one, for example, .2345.
The next instruction that the computer
performs on line 30 is multiplying the decimal
number (.2345) by 10. In our example this
would give us 2.345. Since we want a whole
number (one that doesn’t have any numbers
to the right of the decimal point) we then use
the INT instruction to chop off the numbers to

JUMPING
ARCUND

the right of the decimal point leaving us with
X =2

We can now present the program that
simulates the spinning of dice to achieve truly
random numbers.

10 REMTHIS PROGRAM SIMULATES
THE ROLLING OF DICE
20 N = RND (- TIME)

30X = INT (RND (1) *6 + 1)
4Y = INT(RND(1)*6 + 1)
BOR = X+Y
60 PRINT R

Lines 30 and 40 pick the random numbers.
Let’'s take an example. If the instruction RND
{1} picks the number .9678, we then multiply
this number by 6 and get 5.8068. The
computer then adds 1 to 5.8068 and gets
6.8068. Finally it takes the INT of 6.8068
which is 6. So X" dice spun a 6. The
computer then repeats this process to get the
number of the 'Y’ dice and then adds the
"X'"and “Y" die together and places the total
in container “’R’’ which is then printed. In all
honesty, the explanation of random numbers
is a little complicated and we suggest that you
review the material a second time if you are
not quite sure how the RND function works.

The command GOTO was shown to cause the
computer to jump from one line to another.
Right now we will show you another way of
jumping around in your program and then
explain the difference between these two
methods.

Enter the folewing program:

GOsuB/
RETURN

100

10 REM THIS PROGRAM
CONVERTS YEARS TO MONTHS

20 CLS

30 PRINT "HOW MANY YEARS OLD
ARE YOU?”

40 INPUT N

50 GOSUB 200

60 PRINT “HOW MANY YEARS OLD
IS YOUR FATHER?”

70 INPUTN

80 GOSUB 200

80 PRINT “HOW MANY YEARS OLD
IS YOUR MOTHER?”

100 INPUT N

110 GOSUB 200

120 END

200 PRINT N; “YEARS IS EQUAL TO!;
N *12; “MONTHS"

210 RETURN

RUN the program and answer the questions,
Do you understand how this program works?
Let's review it.

After asking you the question on line 30 and
accepting your answer on line 40, the
computer encounters GOSUB 200, which
means GOSUBroutine 200. A subroutine is a
section of a program, either one line or several
lines, that is referred to frequently by the main
part of the program. Therefore, it is called a
SUBroutine, since it is subordinate, or
secondary, to the bulk of the program.

When the computer sees GOSUB 200 on line
50, the computer jumps to line 200. When the
computer completes the conversion of years
to months on line 200 and prints it on the
screen, the program continues to line 210.
There, the command RETURN sends the
computer back to the line that follows the one
which contained the GOSUB 200. In our

= - - = = = . -

program above, that would RETURN the
computer to line 60.

The same thing happens when GOSUB 200 is
encountered on line 80 and line 110. That is,
the computer RETURNSs to line 90 and 120
respectively.

What is the difference between the GOTO
command and the GOSUB-RETURN
command? If we had used the command
GOTO 200 instead of GOSUB 200, then line
210 would have had to say GOTO 60 to have
the computer continue from where it stopped
when it jumped to 200. But line 210 would
have also had to say GOTO 90 and GOTO 120
if we had used GOTO 200 on lines 80 and 110.
But the computer could not have understood
a line 210 that would have said,

210 GOTO 60, GOTO 80, GOTO 120

This problem stems from the fact that when
the computer listens to a GOTO command it
does not remember the line that it stopped at
before it jumped to the specified GOTO line
number. On the other hand, the beauty of the
GOSUB-RETURN command is that it
remembers precisely the point from which it
jumped. When it is finished with the
subroutine and sees the command RETURN,
it knows exactly where to return to without
being told again.

The next program employs another command

that is a variation of the GOSUB-RETURN
statement. Enter,

e 101

THE COMIPUTER
AE A
CALCULATOR

102

10 REM THIS PROGRAM
DEMONSTRATES A SIMPLE
TELEPHONE BOOK HELPER

20 CLS

30 PRINT “IF YOU WANT TO FIND A
PHONE NUMBER QUICKLY, JUST
PICK ONE OF THE CHOICES
BELOW AND | WILL DO THE
REST"

40 PRINT ““1. DOCTOR"”

50 PRINT 2. POLICE"”

60 PRINT 3. SPECTRAVIDEO”

70 INPUTN

80 ON N GOSUB 100, 200, 300

80 GOTO 10

100 PRINT“THE DOCTOR’S NUMBER
IS 5655-1234"

110 RETURN

200 PRINT “THE POLICE'S NUMBER
IS 555-1245"

210 RETURN

300 PRINT “SPECTRAVIDEO’S
NUMBER IS 555-1256"

310 RETURN

RUN the program and try it out. The variation
of GOSUB-RETURN is on line 80. The
command ON N GOSUB 100, 200, 300 means
that if “N"" (the container that is holding the
number you have chosen) is the number 1,
then the computer will jump to the subroutine
on line 100. If “N"" is holding the number 2,
then the program jumps to the subroutine on
line 200, and if “N"" is holding the number 3, it
jumps to the subroutine on line 300.

You can make the computer function as a
calculator.

For addition enter
PRINT 6 + 3

P —————
e P e e e e

OPERATIONS

and the computer will output
9

For subtraction enter
PRINT6 — 3

and the computer will output
3

For multiplication enter
PRINT 6*3

and the computer will output
18

For division enter
PRINT 6/3

and the computer will output
2

if you forget to use the word PRINT when you
use the computer as a calculator, the
computer will not output the answer. The
computer will have calculated the answer and
placed it into a container in its memory
automatically, but it will not inform you of its
answer.

Most of you probably remember the basic
rules of arithmetic from your elementary
school days, so we will not dwell upon these
types of calculations any further.

The following table lists the order of
precedence for the mathematical and logical
commands that your computer will calculate.
That means that if any of these signs or words
are used in your programs, the order listed
here is the order in which they will be
executed (figured out).

)

.NOT - (for negative rules)
* /

> < = >= (K= <>

N o RN
+

PROCESSING
INFORMATION

104

%
e |

If there is more than one operation listed on
any line of BASIC commands, and these
operations are both listed on the same level in
the above table, then the operation closer to
the left side of the screen will be performed
first. For example, if you entered

PRINT3 + 2 - 1

the computer will output,

4

because it first added 3 + 2 and then didbs — 1,
Similarly, if you entered,

PRINT3 — 2 + 1

the computer will output,

2

because it first performed 3 — 2 and then did
T+ 1

At the beginning of this tutorial we described
a computer program as a set of instructions
that processed (acted on) information. The
information the program needs to begin
processing is called the input to the program
and the result of the processing is called the
output.

The following program demonstrates how to
tell the computer the information you want it
to process. Most of the commands in BASIC,
like PRINT, FOR-NEXT, IF-THEN, PSET, etc.
tell the computer what to do with information.
We have already shown you some words that
tell the computer what information to work
on—commands like INPUT and LET X = 20.
Now we will introduce you to a new set of
words, READ and DATA, which as the names -
imply, tell the computer that what follows is
the information to process.

Enter the following program.

READI
DATA

5CLS

10 REM THE FOLLOWING PROGRAM
WILL READ AND PRINT THE
NAMES OF THE FIRST FIVE
MONTHS OF THE YEAR.

20FORX =1T05

30 READ F$

40 PRINT F$

50 NEXT X

60 DATA JANUARY, FEBRUARY,
MARCH, APRIL, MAY

Type RUN.

Your program should have output the names
of the first five months of the year. Now let's
take a closer look and see how the program
works.

Line 20 prepares a loop that will do something
5 times. That something is told to the
computer in line 30, where we instruct the
computer to READ some information and
place it in container F$. When the computer
comes across the READ command, it
immediately searches the whole program for
the first line that begins with the command
DATA. Since DATA appears on line 60, the
computer READs the first word, ““January;’
and places it in container F$. Then the
program continues to line 40 and PRINTs the
word in F$ (January). NEXT X on line 50
sends the computer back to line 20 to begin
this process of READing and PRINTing again.

The second time around, the computer looks
again for the DATA statement that tells the
computer that on this line it will find the
information it needs to READ. So the
computer goes to the information listed on the
DATA line after the place where it previously
stopped and stores in F$. When the computer

-~}

106

puts the word ‘“February’’ into container F$, it
first erases the word “January;” which was
previously stored in F$). So when the
instruction PRINT F$ is encountered on line
40, the only word in F$ is ‘‘February’’ and so it
is PRINTed on the TV.

The Line that begins with the command
DATA and contains the information we want
the computer to READ, can be placed
anywhere in the program. The READ
command searches the whole program,
starting at the beginning, for the first line in
which the command DATA appears.
Therefore, our READ/DATA program could
have been written in the following way:

5 CLS

10 REM THE FOLLOWING PROGRAM
WILL READ AND PRINT THE
NAMES OF THE FIRST FIVE
MONTHS OF THE YEAR.

15 DATA JANUARY, FEBRUARY,
MARCH, APRIL, MAY

20 FORX = 1TO5

30 READ F$

40 PRINT F$

50 NEXT X

OR

2 DATA JANUARY, FEBRUARY
MARCH, APRIL, MAY
5CLS
10 REM THE FOLLOWING PROGRAM
WILL READ AND PRINT THE
NAMES OF THE FIRST FIVE
MONTHS OF THE YEAR.
20FORX =1TO5b
30 READ F$
40 PRINT F$
50 NEXT X

The information that is placed on the DATA
line is separated by commas. The words or
numbers between commas are treated as one
piece of information. Enter and RUN the
following program to see what we mean.

10 CLS

20 REM THIS PROGRAM READS
AND PRINTS OUT THE NAMES
OF FIVE STATES

3FORX =1TO5

40 READ F$

50 PRINT F$

60 NEXT X

70 DATA NEW YORK, NEW JERSEY,
NORTH DAKOTA, NEW
HAMPSHIRE, NEW MEXICO.

How does the following program, which reads
and prints the name of 5 states, differ from
the program that did the same thing above?

10 CLS

20FORX =1TO5

30 READ F$: READ G$

40 PRINT F$, G$

50 NEXT X

60 DATA NEW, YORK, NEW, JERSEY,
NORTH, DAKOTA, NEW,
HAMPSHIRE, NEW, MEXICO

You should be able to tell the difference from
just comparing the two programs without
even having to enter the second version and
running it.

The first program, which read and printed the
names of 5 states, did so by reading each set
of two words into one container, F$. In the

second program, the name of each state was

e — ¥y

"OUT OF
DATA”
message

CLEAR

108

broken into two parts. The first half of the
name was stored in container F$ and the
second half of the name was stored in
container G$.

Enter the above revised program into the two
containers F$ and G$, if you have not yet
done so. RUN the program. Now add line 70:
70 GOTO 20 and RUN the program again. Did
you get OUT OF DATA message? That error
message resulted form the fact that you tried
to READ information again but since the -
computer finished READing the list after you
ran the program the first time, the computer
did not find any more information on the
DATA line after the name NEW MEXICO.

The way to fix that problem is-to tell the
computer to return to the beginning of the
DATA before it is time to read the names
again. The command you use to do this is
RESTORE. Here is how the repaired program
looks.

10 CLS

20 CLEAR 500

30FORX =1T0b

40 READ F$: READ G$

50 PRINT F$, G$

60 NEXT X

70 RESTORE

80 GOTO 30

90 DATA NEW,YORK, NEW, JERSEY,
NORTH, DAKOTA, NEW,
HAMPSHIRE, NEW, MEXICO

Here is how this program works. We have
added another command called CLEAR on
line 10. Whenever you use a READ-DATA
command you should also use CLEAR, which
CLEARs away a lot of room (i.e., 500 spaces)
in the computer’s memory. Then you can

RESTORE

ANOTHER TiME
SAVER

work with the containers that store words
without running out of space, because the
containers that store words and text generally
take up much more room than the containers
that store only numbers.

Then on line 70, the RESTORE command
instructs the computer to return to the
beginning of the list of information on the
DATA line before the GOTO 30 command on
line 80 sends the computer back to the
beginning of the loop on line 30. The program
should print out the names of the states
without receiving an OUT OF DATA message.

Our programs are beginning to get larger.
That is we are writing more lines of
instructions in each program. Some people
like to tell the computer to automatically write
the line number for each line of the program.
This is accomplished by typing:

AUTO

In immediate mode, the computer will
respond with the number 10 and it will wait
for you to begin typing on line 10. When you
have finished line 10 and pressed EINEE
the computer will automatically print line 20
and wait for you to continue.

You can make the computer start the
automatic line numbers from a number other
than 10, and it can increase the number for
the next line by more than or less than 10. In
other words, the AUTO command can be told
what line number to start with and how much
the increase should be for each subsequent
line.

For example;

AUTO 20, 40

This will start the first line number at 20 and
cause the second line number to be 60 and
the third line number to be 100.

... = Ky

110

As with all the commands we have introduced
to you in this tutorial guide, it is necessary for
you to read the material in other parts of this
manual to get a full understanding of each
BASIC command. And don't forget that the
cassette tape “Introduction to BASIC" is an
excellent way to interact with your computer
as you improve your programming skills.

1\

YS -
\NiZI
CONTAI

f

We hope that you are beginning to feel
comfortable with the concept of containers
and how your computer uses them to store
and manipulate information. Previously, we
have always used a container as an individual
unit. That is, we have thought of each
container as a distinct unit. “A”’, ‘B, “C$",
and "“D$"’" are examples of individual
containers into which we put numbers and
words. However, we did not have the need to
group several individual containers into one
set.

There are times when it is necessary to
arrange a series of containers into a larger
unit. If you wanted to keep track of b test
scores for each of the 25 students in your
class, it would make sense to organize the
containers that hold the scores into a larger
unit. Then you work with 25 sets of
containers, rather than with 125 individual
containers. (Each set would be a table with 5
lines of information.) Here is an example of
what the table for a student named John
might look like.

JOHN

(1) 75
(2) 82
(3) 94
(4) 68
(5) 100

Thus if we had before us 25 different tables
representing the scores of all 25 students, we

114

could then refer to John's first test score as
John {1), his second test score as John (2)
etc.

The following program demonstrates how we
can instruct the computer to group John’s 5
test scores into a table.

10 REM THIS PROGRAM
ORGANIZES THE JOHN’'S TEST
SCORES INTO A TABLE

20 CLS

30 DIM J (5)

40 FORX =1TO5

50 READ J (X}

60 NEXT X

70 PRINT “WHICH TEST GRADE DO
YOU WANT?”

80 INPUTZ

80 PRINT J(2)

100 DATA 75, 98, 94, 68, 100

Enter this program and RUN it. This is how it
works.

Line 30 DIMensions a block of five containers
for the set of containers called ““J’’. That
means the computer is instructed to set aside
enough room to store 5 numbers in 5 different
containers. ““J" is the name for this group of
containers. On line 50 the computer READs in
one test score at a time from the data line and
places it into one container.

When the program reaches line 70, it has
already placed all b test grades into 5 different
containers. This information is organized in
the computer in a way that is similar to the
table of John's test scores. So when we
INPUT the test score that we want in line 80,
the computer is told on line 90 to print that
particular line of the table.

WORKING WITH A
LARGER SET OF
CONTAINERS

Oh, we almost forgot to tell you: The official
computer term for the set of containers that
we just worked with is an “array.’

Itis a little trickier to work with a large set of
containers that can store two items each than
it is to work with the simple container we
demonstrated above. If you wished to store
the scores of b students for one test, you
would need to have one set of containers that
stores their names, and one that stores their
respective grades. The table that represents
this information looks like this:

FIGURE 7

The program that will READ and PRINT out a
table just like the one in FIGURE 7 is listed
below. Enter the program, RUN it and try to
understand it before reading our explanation.

115

116

10 REM THIS PROGRAM
ORGANIZES NAMES AND
SCORES FOR ONE TEST
CLS
DIM V3 (5,2)

FORN =1TO6

FORS =1T02

READ V$ (N,S)

NEXT S: NEXT N

REM THIS SECTION PRINTS OUT
THE TABLE

PRINT “NAME", “GRADE",:
PRINT

100 FORN = 1TO5

110 PRINT V$ (N,1), V$ (N,2)

120 NEXT N '

130 DATA JOHN, 75, BOB, 88,

JOAN, 71, HARRY, 96, LYNDA, 98

83388888

8

Don't get discouraged. This is the most
difficult program you will see in this tutorial!
Let's take a closer look at it.

- Line 30 DIMensions, or sets aside b containers

that will store the number corresponding to
the student’s names listed in FIGURE 7, and
the 2 test scores that correspond to each
name or number.

Lines 100-120 PRINT the table on the TV
screen in the same form as appears in
Figure 7.

The computerese term for this extended
container is a “double array;” which is a
fancy way of describing a two-column table.

Is there another way that we could have
written this program? Yes, there is. Generally,
almost all programs can be written in more
than one way. Different people plan and
program according to their own styles. Of
course there are important differences among

the various styles. You will learn to discern
which option to choose as your knowledge
increases with practice.

Here is another way you could have written
the program that reads and prints the table in
FIGURE 7. This time we use two separate sets
of containers: One to store the names, and
one to store the grades. Each one uses a one-
column array, not the double column array
that we just used.

10 CLS

20 DIM As (5), B (5)

30 FORI =1T05

40 READ As (1), B ()

50 NEXTI

60 PRINT“NAME; “GRADE": PRINT

70 FORK =1TOb

80 PRINT As (K), B (K)

80 NEXTK

100 DATA JOHN, 75, BOB, 81, JOAN,
65, HARRY, 96, LINDA, 98

RUN the revised program to make sure that it
does what it is supposed to.

e T)

17

“STRING”

INPUT

@E%@ %%?”

Congratulations! You have made it this far
and we trust you are doing well. We will now
cover what is known in computerese as
"String Manipulations:’ A string is a group of
characters that usually is just a word.
Accordingly, a word is considered to be a
string of characters that can easily be changed
and rearranged.

Enter the following program.

10 CLEAR 200

20 INPUT “TYPE IN A SENTENCE
THAT IS NO MORE THAN 10
WORDS LONG? ;S$

30 PRINT “THIS IS THE NUMBER of
CHARACTERS IN THE SENTENCE
THAT YOU JUST TYPED

40 PRINT LEN (S$)

Now RUN the program. As its name implies,
the LEN command calculates the number of
characters in a string of characters. In this
example, the whole sentence was stored in
container S$.

We hope you have noticed that line 20 looks a
bit unusual. This is because we used the
INPUT command to print the message on the
screen without the help of the PRINT
command, and placed the container name at
the end of the line. This line is a very good

121

LEFTS
RIGHTS
Mios

122

example of a short cut in programming that
combines several commands on one line.

The following commands manipulate
character strings in various ways; RIGHTS,
LEFT$ and MiD$. The programs below will
introduce these commands and their use to
you.

10 INPUT”TYPE A WORD THAT IS AT
LEAST 6 LETTERS LONG"; W$

20 PRINT “THE FIRST LETTER IS:";
LEFT$ (W$,1)

30 PRINT “THE LAST TWO LETTERS
ARE:"”; RIGHT$ (W$,2)

40 GOTO 10

The LEFT$ (W$,1) command on line 20 told
the computer to print the first character to the
left of the string of characters stored in
container W$. If we had written LEFT$ (W$,3)
then the computer would have printed the 3
characters closest to the left.

Similarly, the instruction RIGHTS {W$,2) on
line 30 causes the computer to print the 2
characters to the right, or the end of the string
of characters to the right, or the end of the

string of characters that is stored in container
Ws,

The MID$ is more powerful than the LEFT$
and RIGHT$ commands. Enter and run the
following program.

10 W$ = “SPECTRAVIDEO”
20 PRINT MID$ (W$,4,3)

This MID$ command on line 20 started at the
fourth gharacter from the left of the word
Spectravideo (which was stored in container

LEN

WS$), and counted the next three characters
and printed out these characters, i.e., CTR.

But the MID$ command can also serve a very
useful function.

If you wanted to search through a sentence
for a specific word, you could use MID$. It is
demonstrated in the following program. Enter
and run the program.

10 CLEAR 500

20 INPUTTYPE A SENTENCE THAT
IS NO MORE THAN 10 WORDS
LONG"”; S$

30 INPUT “TYPE A WORD THAT
APPEARS IN THE SENTENCE
YOU ENTERED:"; W$

40 X = LEN (W$)

50 FORT = 1TO LEN (S$)

60 IF MIDs$ (S$,T.X) = W$ THEN
GOTO 100

70 NEXTT

80 PRINT “THE WORD YOU
SEARCHED FOR IS NOT IN THE
SENTENCE"

90 END

100 PRINT W$ “APPEARS IN THE
SENTENCE AT CHARACTER
NUMBER:” T

In this program, MID$ is used to test various
sized groups of characters to see if they are
identical to the word we are searching for.
The program calculated the LENgth of W$,
and placed the number of characters in W$
into the container called “X"* (line 40). Then
the computer starts at the left position of the
characters in W$ and counts the number of
characters stored in ““X". If a match is found,
you are told that the word has been found in
your sentence.

123

The material in this chapter will demonstrate
the advanced graphics and sound capability
that is built into the SV-328 which separate it
from its competition. This power is not
available and accessable from BASIC in any
other personal computer.

This chapter is separated into two parts. The
first part expands on the introduction to
graphics that you have received earlier. The second
part explains the simple approach to sound
programming using the PLAY ccmmand. A
more complicated approach to sound
programming is possible using the SOUND
command which is explained in Appendix H.

.. @ @ @ Wy

PAINT

128

PART ONE -

%%‘é 7 T e

3?@

To begin exploring the graphics capability of
the SV-328, type in the following lines,
pressing ENTER after each is completed:

10 SCREEN 1

20 CIRCLE (128,80),60,11
30 PAINT (128,80),11

40 GOTO 30

Now, RUN the program and you will see the
yellow circle appear on the screen and then it
will be filled in by the SV-328's yellow
paintbrush. To understand how this happens,
let's look at each line individually.

10 SCREEN 1

This line causes the computer to display its
graphics screen

20 CIRCLE (128,80),60,11

Here, you are telling the computer to draw a
circle around a center point that is 128 columns
from the left side of the screen, 80 rows down
from the top of the screen, with a radius
{distance from the center of the circle) of 60
points and using the yellow (the number 11)
outline.

30 PAINT (128,80),11

This line introduces you to the PAINT
command. This command tells the computer
to use its “‘paint brush'’ to fill certain areas. In
line 30 the computer is instructed to fill the
circle you have just outlined in line 20. In order
to paint (fill) an object you must give the

computer the coordinates numbers (in
parentheses) which designate any point inside
the object {As we just did-giving the
coordinates of the center point of our circle). If
you had used coordinates which designate a
point outside the object, the computer would
have painted the whole background but not fill
the object itself.

However, the fill color MUST be the same
as the outline color in our case the number 11
is the same yellow color used for the circle
outline from line 20. The PAINT “‘recognizes”’
outlines of objects as borders only if their color
matches the PAINT color. A different PAINT
color will “ignore’ the outlines and will paint
{fill) the whole screen-covering the object.

40 GOTO 30

The last line of this program causes the
computer to repeat line 30 so the circle will not
disappear. To stop the program press the
CTRL-STOP key combination.

You can experiment with the numbers in this
program to vary the location, size or color of
the circle being painted.

You can create a vast array of different sized
circles and geometric shapes by adding a few
more instructions to the CIRCLE command.
We will give you another example of using the
circle command and for additional hints, you
should refer to the BASIC Reference Guide.

Change the program to read:

10 SCREEN1
20 CIRCLE (128,96),80,1,3.14,6.28
30 GOTO 30

RUNning the program will give you the
following result:

130

J!

N

You should see the bottom half of the circle.
Should you change line 20 to be:

20 CIRCLE (128,96), 80,13,6.28,3.14

2

you will see that the top half of the circle is
drawn. Another way of constructing a whole
circle is with the following changes in line 20:

R e e e S e

20 CIRCLE (128,96), 80,13,0,6.28

Those of you who remember your geometry
will recall that 3.14 is pi and 6.28 is 2pi
(approximate). The two pi numbers which
follow the color number (#13} on line 20 tell
the computer where you would like the
computer to begin and end the circle (how
much of the circle you want drawn).

Those of you who are not adept at using
variants of pi can just overlook this business
and consult the BASIC Reference Guide when
you are ready to learn it.

You can also specify the kind of shape drawn.
For example, you can draw an ellipse (a
distorted circle for those of you unfamiliar
with geometry) with the following added
feature on line 20,

20 CIRCLE (128,96), 80, 13,,,1/4

How did we get an ellipse? Well, the three
commas after the number 13 are necessary to

131

132

inform the computer that we will not be
specifying the starting and ending points of
the shape and are therefore leaving them
blank. The computer knows what to do when
we leave it blank. It assumes that we want the
whole shape drawn. The 1/4 at the end of line
20 tells the computer the height /width ratio
that we want.

Generally, the width of the circle is the same
as the radius you specify. However, if the ratio
number at the end of the CIRCLE command
line is less than one (1), the circle will be wider
than it is high, as in the example above where
the ratio is ''1/4". If the ratio is greater than
one (1), the circle will be higher than it is
wide, as in the following example:

20 CIRCLE (128,96), 80,13,,,2

For further information on the CIRCLE
command, consult the BASIC Reference
Guide.

LINE & BOX DRAWING

Now that you have seen what your SV-328 can
do with circles and its paintbrush, we’ll take a
look at lines and boxes. The computer has the
same simple method for drawing them as it
does for circles. First, type NEW to clear the
memory of the program we were using before.
Now, enter the following

10 SCREEN 1
20 LINE (50,40) - (200,150),14
30 GOTO 30

When you run this program, you wiill see that a
line has been drawn from high on the left side
fo the screen to a low point on the right side of
the screen. The line that causes this to happen
is line 30:

30 LINE (50,40) — (200,150),14

This line tells the computer to draw a line from
a position 50 points from the left margin on the
screen and 40 points down from the top over
to a position that is 200 points from the left
margin and 150 points down from the top. The
number 14 designates the color of the line to
be white.

e 133

- = - e

BOX
(8)

134

e
S

By simply adding the letter B following a
comma to the end of line 30 you will convert
this line into a Box.

30 LINE (50,40) - (200,150),14,B

RUNning the program now, wili show a box
(outlined rectangle) on the screen. The “B” tells
the computer to draw the box at the same
coordinates as the line.

To tell the computer to use the paintbrush
{fill the box) simply add the letter ‘“F"’
immediately to the right of the “B’’ in line 30:

30 LINE (50,40) — (200,150),14,BF

Now, you will see that the program draws the
same box and paints the inside with the same
color as the outline.

As an interesting summary of the graphics

commands you have learned so far RUN the
following program: ’

h

|

10 COLOR, 1,9

20 SCREEN 1

30 CIRCLE (126,110),60,9,,,1.3

40 CIRCLE (110,96),10,2

50 PAINT (110,96),2

60 CIRCLE (142,96),10,2

70 PAINT (142,96),2

80 LINE (100,125) — (105,136),14

80 LINE (152,135) — (147,136),14
100 LINE (105,135) — (147,135),14
110 CIRCLE (74,110),25,11,,.5
120 CIRCLE (178,110),25,11...5
130 Y=85:R=50:C=1
140 FORQ=1TO 10
150Y=Y-5:R=R-4:C=C+1
160 CIRCLE (126,Y),R,C,,,.2
170 NEXT Q
180 FOR T=1TO 500 :NEXTT
180 N = RND (- TIME)
200FORT=1TO 30
210 X=X +10:Y =100
220 C=INT (RND(1)*15) +1
230 LINE (X,Y) - (X +35, Y +35),C,BF
240 LINE (X,Y) — (X +35,Y +35),1,BF
250 NEXTT
260 GOTO 260

This program demonstrates all the concepts
introduced thus far. We will now continue with
some more graphics commands.

136

s

The DRAW command is actually the door to
an actual mini-language within BASIC called
““Graphic Macro Language (GML)"' start by
clearing the computer’s memory.

{type: NEW then press ENITER) ~ \
Then type the following lines: |

10 SCREEN 1

20 PSET (50,60), 1

30 DRAW D50 R50 U50 L50"
40 GOTO 40

Line 20 positions your graphic cursor at the
X,Y coordinates (50,60), and designates the
color to be Black (,1)

Line 30 starts the line drawing at the point
specified in the PSET command. It then
moves relative to the point, according to the
distance and directional commands specified
in the DRAW statement.

Example: DRAW “"USQR50"

is: Draw fifty units UP then
fifty units to the RIGHT.

The guotation marks around the instructions
are in quotes because the DRAW command
acts on a character string. Remember, a
character string is a variable (container) that
holds characters. Therefore, we could have
written the DRAW example used above in the
following manner.

30 T$ = “UB0R50D50L50"
40 DRAW T$
50 GOTO 50

This second way of DRAWing first defines the
object we wish to DRAW, and then places it
in T$ and then DRAWSs T$.

Please note you can draw diagonally using

= diagonally up & right

= diagonally down & right
diagonally down & left
diagonally up & left

E
E
G
H

i

u
[

-
&
v
=

Now we will look at several other additional
graphic commands you can use to create
exciting screen displays. They are SCALE,
LOCATE and BLANK MOVE.

Type in and RUN the following program:

10 COLOR , 1.1

20 SCREEN1: X = 14:Y = 120:
CO=2:2=1

30 PSET (X,Y)

40 A$="5=2;C=CO;F15R50E15
U45H15L.30H15U20E10R20F10
R10U12H15L30G20D35F25R25
F10D18G10L35H10L10D 1480

50 DRAW A$

60X =X+16:Y=Y +8:
CO=CO0+1:2=2+1

701FZ > 10 THEN 20

80 GOTO 30

In this example, the variable A$ contains the
statement S = Z which sets the command

e 1 3/

SCALE equal to Z. As the program
continues, Z is raised by 1 each time line 60 is
reached. This causes the scale to be raised by 1.

LOCATE Now add lines 21 - 23 so that the program
looks like this:
10 COLOR, 1,1
20 SCREEN1: X =14:Y =120:
CO=2:2=1

21 REM “LOCATE"” IS USED TO

POSITION TEXT

22 LOCATE 10, 170 : PRINT

“THIS IS AN"

23 LOCATE 10,180 : PRINT
"EXAMPLE OF LOCATE"”

30 PSET (X,Y)

40 A$="S=2;C=CO;F15R50

E15U45H15U20E10R20E10R20F1

0 R10U12H15L.30G20D35F25R25

F10D18G10L35H10L10D14S0"

50 DRAW A$

OX=X+16:Y=Y + 8:

CO=CO+1:Z2=2 +1

701F2'> 10 THEN 20

80 GOTO 30

BLANK MOVE Now, type NEW and enter the following
program:

10 DRAW A$

20 SCREEN 1

30 A% =""BM30,156C9F15R 50

E15U45H15L30H15U20E10R20

F1I0R10U12H15L.30G20D35F25

R25F10D18G10L35H10L10D14"

40 DRAW A$

50 PAINT (42,154),9

60 LINE (150,171) - (210,171),2

70 LINE (210,171) = (230,34),2

80 LINE (230,34) = (210,34),2

80 LINE (210,34) - (190,151),2
100 LINE (190,151) =(170,151),2
110 LINE (170,151) - (150,34),2
120 LINE (150,34) - (130,34),2
130 LINE (130,34) - (150,171).2
140 PAINT (165,165),2
150 GOTO 150

138 =

SPRITES

In this example, line 30 contains the statement
BM30,156. This is the command that causes
the cursor to begin drawing at those specified
Xand Y coordinates. Without using this
command, all draw statements will begin
executing at the upper left corner of the
screen.

Now that we have learned how to deal with
the simpler shapes, we will examine the more
complex type of graphics generation called
SPRITE generation. The best way to
understand a sprite is to imagine it as a magic
genie you can create and easily control.

Unlike the graphic commands we

have encountered up till now-which can only
create one type of an object, like a line or
circle —the manipulation of sprites is a lot
more flexible.

In order to see a sprite on the screen you must
do the following:

STEP 1: Pick one genie ‘“to talk to'’ (There are
32 different genies available to do your
bidding).

STEP 2: You must tell the genie ““what you
want it to wear’’ (In other words, what shape
you want it to assume).

STEP 3: You must tell it what color to make
the shape that it will wear.

STEP 4: You must tell it where to appear on
the screen.

The importance of this genie metaphor cannot
be overstated. Whenever you do not get the
results you expected when commanding a
genie it is probably because you did not
provide all four pieces of information
necessary to make the genie appear.

We will now demonstrate how to instruct a
genie. Enter the following program and RUN
it.

139

140

10
20
30
40
50
60
70

100 DATA 00011000
110 DATA 00111100
120 DATA 01111110
130 DATA 01111110
140 DATA 01111110
150 DATA 01111110
160 DATA 00111100
170 DATA 00011000

SCREEN 1

FORT =1TO8

READ A$
§$=8$%+CHR$(VAL("&B" + A$))
NEXTT

SPRITES (1) = S$

PUT SPRITE 0, (128,96).8, 1:
GOTO 70

You should see a red ball appear at the center
of the screen. This ball is the Sprite that we
created in the above program. Here is how it

works.

Lines 100-170: These lines design the clothes
that the genie will wear (or in straighter
language, they contain the design of the
sprite’s shape). Each line of the data

L - - - @

R e e e
e]

statement has eight characters on it. They
represent the size of the sprite. The zeros are
to make the display transparent at that point
of the shape while the ones are the points of
the display that are lit.

If we took a grid 8 by 8 boxes, the shape
would look like this:

Lines 20-50: These lines complete the design
of the shape of the clothes. They setup a
loop that will read the set data lines, convert
them into binary strings, append each one to
the one that follows and then store this one
shape unit in S$.

Line 60: This line picks the sprite that we will
command (#1) and tells it to carry the shape
contained in S$.

Line 70: This line tells the sprite what color to
make the shape, and where to appear on the
screen. This line:

70 PUT SPRITE 0, (128,96), 8,1

is read like this {It's a long sentence, but you'll
be able to follow it):

142

PUT the SPRITE that is specified at the end of
line, which is #1, on plane (surface) 0, at
position (128,96) which is the center of the
screen, using color #8. The sprite to use is #1.

{Note: In the command, PUT SPRITE
(sprite plane), (X,Y), (Color #), (Sprite
pattern #) the use of different plane numbers
allows the user to place more than one sprite
on the screen at once.)

The way we create sprites is very logical . If
you are familiar with any other computer’s
BASIC, you will immediately notice how
much easier the sprite manipulation is on the
SV-328. That's because other systems force
you to go PEEKING and POKING around in
their computer's memory,

Sprites are not limited to only 8 by 8 pixels.
Sprites can also be placed within a 16 by 16
box.

When SCREEN sizes 0 to 1 are selected
{screen 1,1), the sprite size is limited to 8 by 8;
however, if sprite size 2 is selected, then the
use of a 16 by 16 box is allowed. But, the
computer fills the 16 by 16 box differently than
it fills the 8 by 8 box. The following program
should illustrate how this works:

10 screen 1,2
20 for x = 1 to 32
30 read a$
40 restore
50 s$ = s$ + chr$ (val{"&b’+ a$))
60 sprite$ (0) = s$
70 put sprite 0, (128,96), 1,0
80 next x
90 goto 90
100 data 11111111

Notice that the computer first fills a box 8 by
16, and then fills another 8 by 16 box
alongside this one to make 16 by 16.

Therefore, when making a 16 by 16 sprite,
careful manipulation of data statements (32 of.
them) is required.

This program demonstrates the use of the
joystick to move sprites. When run, a small
spaceship-like sprite will appear. This sprite
can be moved anywhere within the confines
of the screen and will also fire a bullet when
the trigger is pressed.

10 Color 15,1, 1
20 Screen 1,2
30 Rem This section reads in the sprites
OForT=1t8
50 Read A$
60 S$ = S$ + CHR$ (VAL ("&b” + AS$))
70 Next T
80 SPRITE $ (1) = S$
9O ForT =118
100 Read B$
110 U$ = U$ + CHR$ (VAL("&b"” + B$))
120 Next T
130 SPRITE $(2) = U$
140 Rem This section sets the initial
location of the Sprite
150X = 128:Y = 96
160 Put SPRITE 1, (X,Y}, 9,1
170 D = STICK (0)
180 F = STICK (0)
190 Rem This section takes the given
joystick information and uses it
to make the sprite move.
200 If F<>0 then GOSUB 460
206D = 1thenX =X :Y =Y -1
201fD =2thenX =X+ 11 Y
2301fD =3thenX =X+ 1:Y
20 I1f D = 4thenX =X + 11 Y + 1
250I1fD =5thenX =X Y =Y+1

=Y -1
=Y
=Y

2601f D = 6then X = X-1: Y =Y + 1
2701fD =7thenX =X -1t Y =Y
2101fD = 8thenX =X - 1: Y =Y - 1

290 GOTO 160

300 DATA 00111100
310 DATA 01000010
v 320 DATA 10000001 v

s | ()3

144

4 330 DATA 111N

340 DATA 01000010

350 DATA 10000001

360 DATA 10000001

370 DATA 10000001

380 DATA 00010000

390 DATA 00101000

400 DATA 00101000

410 DATA 00111000

420 DATA 00000000

430 DATA 00000000

440 DATA 00000000

450 DATA 00000000

460 Fori = Y — 3to — 20 step — 2
470 Put Sprite0, (X,1),9,2
480 Next |

490 Return

If you have understood all of the previous
graphics examples and concepts, you should
be well on your way to creating exciting
graphics to enhance the programs you create
using your SV-328.

That ends our introduction to extended
BASIC graphics. Now it is time to move on to

the extraordinary sound capabilites of the
SVv-328,

!

TWO -

There is also a very powerful music synthesizer
built-in to the SV-328 that is easily used by
simple BASIC commands to produce music. In
addition to the power of this synthesizer, it is
most important to realize that it can do its work
independently of the main microprocessor.
What this means is that you can program the
synthesizer to do one thing while the screen,
printer, modem or other peripheral is doing
something else.

The following figure represents the available
musical scale that can be accessed by the
SV-328's synthesizer.

05

1

1
(9]
-4

EENRRERER RN

A § =Bb EER—
G #=Ab Em—|
F # =Gb mmm—

n\u

D¥ = E pamm—
C¥ =DP

03

JJJJJmIJJJw‘? ommormoomT

PLAY

"o (OCTAVE)

146

The command that opens the door to this
synthesizer is the BASIC keyword PLAY. For
example, Typing the BASIC statement:

PLAY “CDE"

followed by pressing the ERITER key, will
produce musical tones from your SV-328
through the speaker on your television or
monitor. You could achieve the same results
by writing a BASIC program with the following
lines:

10 PLAY “CDE"”
20 GOTO 10

There are numerous other things that can be
done with sound using the synthesizer in your
SV-328. We will look at the simple ones in this
section and progress to the more complex
ones in later pages. We will continue 1o work
with the BASIC program listed above and
make changes in it as we go along.

First, change line 10 to read:

70 PLAY “01CDE"

Now, when you run the program, you will hear
that the sounds produced are at a very low
pitch when compared with the first ones you
made. This is because you have set the
OCTAVE by adding the ““01’" before the
“CDE’" This is the command that allows you to
access 8 octaves with the synthesizer. Now
add this line:

11 PLAY “04CDE"”

When the program is run, you will hear three
low notes followed by three higher notes. The
octaves you can access using the ‘0"’
command can range from 1 (lowest) to 8
{highest).

T TEMIPO

“L{LENGTH)

Now, change line 10 to read:

10 PLAY “T3201CDE”

The program will now play the same note you
heard before but at a much slower rate. What
you did by typing the ““T32"" before the
"“01CDE" was to set the TEMIPO or speed of
the music. The values for “T’’ can range from
32 (slowest) to 255 (fastest).

You will also notice that the notes in line 11
also play at the slower pace. This is because
the synthesizer will play at whatever tempo
you set until you tell it to play at a different
tempo. To see this in action, change line 11 to
read: '

11 PLAY “T25504CDE"

Now, as you can hear, the notes from line 11
play at a much faster pace than those in line
10.

You can also control the length of each note
individually. To see this, change line 10 to"
read:

10 PLAY “T25501CDL1E"”

This change the “’E"" note to a much longer
duration than “C’" or ““D’* and also causes the
notes in line 11 to play for a longer time. This
length command can be placed in front of any
note to control the length of the note. The
lengths of the notes can be varied from 1
{longest) to 255 (shortest).

Two other BASIC commands that can be
applied to sound are the ““S’ command and
the “M" command. These two commands
determine the tonal qualities of the note being
played. These are more commonly referred to
as the “ENVELOPE" characteristics of a note.
Everything that creates a sound has unique
characteristics.

For example: the same note played on a piano
and a trumpet may be at the same pitch but
will have two distinctly different sounds. These

147

8" (SHAPE)

“M"” (TONE)

"R IREST)

“Y (VOLUME)

148

two commands allow you to shape the notes
you are creating in the same way.

The 8" command controls the shape of the
note. As an illustration of this, change line 10
to read:

10 PLAY “S104CDE"”

and eliminate line 11

Now, run the program to see the differences in
the sounds you hear. These shape commands
can be considered the voices of the
synthesizer. There are 14 of them built%in to
the SV-328. This means that the numbers used
to set the S’ command can range from 1 to
14.

The “M’ command controls the tone period or
to be more specific, the amount of time that
you will hear each note based on its tonal
qualities. To see how this works, change line
10 to read:

10 PLAY “S10M500004CDE"

As you will hear, this changes the sound
dramatically. The values used to set “M’’ can
range from 1 to 65535.

You can also insert pauses between notes by
using the “R” command. Change line 10 to
read:

10 PLAY “04CR1DR10E"”

This causes the '’C”’ note to play and then
silence is heard for a while then the “D’" note
plays, then a shorter period of silence, then the
"E" note followed immediately by the *'C"’
note again.

The final command we will examine in this
section is the V" command. This command is
used to set the volume of the sound being
produced. Change line 10 to read:

USING

10 PLAY “04V5CV10DV15E"

You will now hear that each note gets louder
than the one before it. You can set the volume
form 0 to 15.

So far, we have only used one note at a time
to demonstrate the use of the synthesizer. -
However, the SV-328 has three separate
channels of sound that can be programmed
individually to play together to create chords.
Change line 10 to read:

10 PLAY “01CDE”, “03EFC", “06GAB"

What you hear now is three notes being played
in combination to create a chord. You can also
have each channel play something entirely
different from the others to create a melody
and harmony part in the music you create.

There are also other ways of addressing the
sound and music generation capabilities of the
SV-328 and they will be covered in the
appendix, which is called “USING THE
PROGRAMMABLE SOUND GENERATOR

= |l

ASCII CHARACTER CODES

ASCHl

CoONOOOTE:EWN—

WWNNNDNNNDN NN == e 22—
—aocoooxlc:mbwkg—\ocooo\lcombww—\o

32

DEFINITION
[CONTROL]I +A
[CONTROLI+B
[CONTROL]+C
[CONTROLI+D
[CONTROLI+E
[CONTROLI +F
[CONTROL]+G
[CONTROL]I+H
[CONTROL] +1
[CONTROL]I+J
[CONTROLI+K
[CONTROLI+L
[CONTROLI+ M
[CONTROLI+N
[CONTROLI+O
[CONTROL] +P
[CONTROLI+Q
[CONTROL]+R
[CONTROL]+$S
[CONTROLI+T
[CONTROLI+U
[CONTROLI+V
[CONTROL] +W
[CONTROL] +X
[CONTROL]+Y
[CONTROL]+Z
ESCAPE

CURSOR RIGHT
CURSOR LEFT

CURSOR UP

CURSOR DOWN

ASCH

33
34
35
36
37
38
39

41

42

45

47

51
52

55

57

59
60
61
62
63

DEFINITION

OCONITORWN = O ™~-"

@~ Vil

152 =

65
66
67

70
71
72
73
74
75
76
77
78
79
80
81
82

85
86
87

90
9
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

ATTTTDTAQ o 00 O'm/]>'—-‘/f—-N.<XE<C_|m;Uo-Uozgr-xL—Im‘nmUOUJ}>

108
109
110
M
112
113
114
115
116
17
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
160

QV"/\N*<><§<C""(Dﬂ.Q'UODB_

ASCII

161
162
163
164
165
166
157
168
169

>
©
HEROUBSODDUODOBEBEdANENEB

189
190 N
191 Q
192
193 &

DEFINITION ASCH DEFINITION

194 K] [RIGHT] +1

195 4 [RIGHT] +J

196 7] [RIGHT] +K

197 O [RIGHT] +L

& [RIGHT] +M
199 @ [RIGHT]+N
200 O3 [RIGHT]+O
201 @ [RIGHT]+P
202 &1 [RIGHT]I+Q

[LEFT]I+A 203 kd [RIGHT]I+R

[LEFT]+B 204 [RIGHTI+S

[LEFT]+C 205 Bl [RIGHT]I+T

[LEFT]I+D 206 (4 [RIGHTI+U

[LEFT]+E 207 @ [RIGHTI +V

[LEFT]+F 208 ¥ [RIGHT] +W

[LEFTI+G 209 B [RIGHT] + X

[LEFT]+H 210 & [RIGHTI+Y

[LEFT]+1 211 O [RIGHT] +Z

[LEFT)+J 212 =

[LEFTI+K 213 ¢

[LEFT]+ L 214 ¢

[LEFT]+M 215 ¢

[LEFT]+N

[LEFTI+ 0O

[LEFT]I+P

[LEFT]+Q

[LEFT]I+R

[LEFT]+S

[LEFTI+T

[LEFT]I+ U

[LEFT]+V

[LEFT1+W

[LEFT]+ X

[LEFT]I+Y

[LEFT]+2Z

[RIGHTT+ A

[RIGHT]+B

[RIGHT]+C

[RIGHT]+D

[RIGHT]+E

[RIGHT]+F

1+G
1+H

[RIGHT
[RIGHT

5163

Derived Functions

MATHEMATICAL FUNCTIONS

Functions that are not available in Microsoft BASIC can be derived by
using the following formulae:

Function Microsoft BASIC Equivalent
SECANT = 1/COS(X)
COSECANT = 1/SIN(X)
COTANGENT = 1/TAN(X)
INVERSE SINE = ATN (X/SQR({—-X*X + 1))

INVERSE COSINE
INVERSE SECANT

INVERSE COSECANT

INVERSE COTANGENT
HYPERBOLIC SINE
HYPERBOLIC COSINE
HYPERBOLIC TANGENT
HYPERBOLIC SECANT

HYPERBOLIC COSECANT =

HYPERBOLIC
COTANGENT

INVERSE HYPERBOLIC
SINE

INVERSE HYPERBOLIC
COSINE

INVERSE HYPERBOLIC

TANGENT

INVERSE HYPERBOLIC
SECANT

INVERSE HYPERBOLIC
COSECANT

INVERSE HYPERBOLIC

COTANGENT ,
-

It

—ATN (X/SQR{~X*X + 1)) + 1.6708
ANT (X/SQR X*X — 1))

+ SGN (SGN(X) —1)*1.5708

ATN (X/SQR (X*X — 1))

+(SGN(X) — 1)*1.5708

ATN(X) + 1.5708

(EXP(X) —EXP (—X}))/2

(EXP(X) + EXP(—X))/2

(EXP{ —X)/EXP(X) + EXP(—X))*2 + 1
2/{EXP(X) + EXP (—X))

2/{EXP(X} — EXP{ —X))

EXP(— X}/ {EXP{X) —EXP{ —X}}*2 +1
LOG(X + SQR(X*X + 1))

LOG(X + SQR(X*X —1))

LOG ((1 + X)/(1 — X))/2

LOG ({SQR(—X*X + 1) + 1)/X)

LOG ({SGN {(X)*SQR (X*X + 1} + 1)/X)

LOG ((X + N/(X — 1))/2 ’

ERROR CODES AND ERROR
MESSAGES

Code Number Message
NF 1 NEXT without FOR

A variable in a NEXT statement does not
correspond to any previously executed,
unmatched FOR statement variable.

SN 2 Syntax error

A line is encountered that contains some
incorrect sequence of characters (such as
unmatched parentheses, misspelled
commands or statements, incorrect
punctuation, etc.). Microsoft BASIC
automatically enters edit mode at the line that
caused the error.

RG 3 Return without GOSUB
A RETURN statement is encountered for
which there is no previous, unmatched
GOSUB statement.

oD 4 Out of data
A READ statement is executed when there are
no DATA statements with unread data

remaining in the program.

FC 5 lllegal function call

A parameter that is out of range is passed to a
math or string function. An FC error may also
occur as the result of;

& 1065

Code

e |

Number Message

1. A negative or unreasonably large subscript.
2. A negative or zero argument with LOG.
3. A negative argument to SQR.

4. A negative mantissa with a noninteger
exponent.

5. A call to a USR function for which the
starting address has not yet been given.

6. An improper argument to MID$, LEFTS$,
RIGHT$, INP, OUT, WAIT, PEEK, POKE,
TAB, SPC, STRING$, SPACES$, INSTR, or
ON...GOTO.

Math Overflow

The result of a calculation is too large to be
represented in Microsoft BASIC number
format. If underflow occurs, the result is zero
and execution continues without an error.
Out of memory

A program is too large, or has too many FOR
loops or GOSUBSs, too many variables, or
expressions that are too complicated.
Undefined line -

A nonexistent line is referenced in a GOTO,
GOSUB, IF...THEN. . .ELSE, or DELETE
statement

Subscript out of range

An array element is referenced either with a
subscript that is outside the dimensions of the

array or with the wrong number of subscripts.

Redimensioned array

Code

™

08

LS

8T

Rumber

11

12

13

14

15

16

Message

Two DIM statements are given for the same
array; or, a DIM statement is given for an
array after the default dimension of 10 has
been established for that array.

Divison by zero

A division by zero is encountered in an
expression; or, the operation of involution
results in zero being raised to a negative
power. Machine infinity with the sign of the
numerator is supplied as the result of the
division, or positive machine infinity is
supplied as the resuit of the involution, and
execution continues.

lllegal direct

A statement that is illegal in direct mode is
entered as a direct mode command.

Type mismatch

A string variable name is assigned a numeric
value or vice versa; a function that expects a
numeric argument is given a string argument
or vice versa.

Out of string space

String variables have caused BASIC to exceed
the amount of free memory remaining.
Microsoft BASIC will allocate string space
dynamically, until it runs out of memory.

String constant too long

An attempt is made to create a string more
than 255 characters long.

String formula too complex

A string expression is too long or too
complex. The expression should be broken
into smaller expressions.

157

158

Code

CHN

UF

Number

17

18

19

21

Message

Can't continue

An attempt is made to continue a program
that:

1. Has halted due to an error.

2. Has been modified during a break in
execution.

3. Does not exist.
Function not defined.

A USR function is called before the function
definition (DEF statement) is given.

Extended Disk Basic and Disk Basic Versions
only.

No RESUME

An error trapping routine is entered but
contains no RESUME statement.

RESUME without error
A RESUME statement is encountered before
an error trapping routine is entered.

Unprintable error -

An error message is not available for the error
condition which exists. This is usually caused
by an ERROR with an undefined error code.

Missing operand
An expression contains an operator with no
operand following it.

Line buffer overflow
An attempt is made to input a line that has
too many characters.

FOR without NEXT
A FOR was encountered without a matching
NEXT.

WHILE without WEND
A WHILE statement does not have a
matching WEND.,

WEND without WHILE
A WEND was encountered without a
matching WHILE.

DISK ERRORS

RNumber

50

51

52

Message
Field overflow

A FIELD statement is attempting to allocate
more bytes than were specified for the record
length of a random file.

Internal error

An internal malfunction has occurred in Disk
BASIC. Report to Microsoft the conditions
under which the message appeared.

Bad file number

A statement of command references a file
with a file number that is not OPEN or is out
of the range of file numbers specified at
initialization.

File not found
A LOAD, KILL or OPEN statement references
a file that does not exist on the current disk.

File already open

A sequential output mode OPEN is issued for
a file that is already open; or a KILL is given
for a file that is open.

== 159

57

61

Disk I/0 error

An 1/0 error occurred on a disk 1/0 operation.
It is a fatal error, i.e., the operating system
cannot recover from the error.

File already exists

The filename specified in a NAME statement
is identical to a filename already in use on the
disk.

Disk full
All disk storage space is in use.

Input past end

An INPUT statement is executed after all the
data in the file has been INPUT, or for a null
{empty) file. To avoid this error, use the EQF
function to detect the end of file.

Bad record number

In a PUT or GET statement, the record
number is either greater than the maximum
allowed (32767) or equal to zero.

Bad file name

An illegal form is used for the filename with
LOAD, SAVE, KILL or OPEN (e.g., a filename
with too many characters).

Direct statement in file

A direct statement is encountered while
LOADing an ASCll-format file. The LOAD is
terminated.

Too many files

An attempt is made to create a new file {using
SAVE or OPEN) when all 255 directory entries
are full.

SV BASIC RESERVED WORDS

BASIC statements and function names are reserved. That is, the key
words cannot be used in variable names. This appendix lists all of the

SV BASIC language words that are reserved. If you attempt to use any of
the words listed below as the name of the variable, an error is indicated
by the computer.

ABS
AND
APPEND
ASC
ATN
ATTRS
AUTO
BEEP
BINS
BLOAD
BSAVE
CALL
cDBL
CHAIN
CHR$
CINT
CIRCLE
CLEAR
CLICK
CLOAD
CLOK
CLOSE
CLS
COLOR
COMMON
CONT
COPY
cos
CSAVE
CSNG
CSRLIN
Ccvi

DEFDBL
DEFFN
DEFINT

DEFSNG
DEF STR
DEFUSR
DELETE
DIM
DRAW
DSKI$
DSKO$
ELSE
END
EOF
EQV
ERASE
ERL
ERR
ERROR
EXP
FIELD
FILES
FIX
FOR
FPOS
FRE
GET
GosuB
GOTO
HEX$
IF
INKEY$
INP
INPUT
INPUT$
INSTR
INT

LEFT$
LEN

LET
LFILES
LINE
LINE INPUT
LIST
LLIST
LOAD
LOC
LOCATE
LOF
LOG
LPOS
LSET
MAXFILES
MERGE
MID$
MKI$
MKS$
MOD
MON
MOTOR
MOUNT
NAME
NEW
NEXT
NOT
OCT$
OFF

ON

ON STRIG
OPEN
OR

INTERVAL OUT
OUTPUT
PAD

KEY
KILL

PAINT
PDL
PEEK
PLAY
POINT
POKE
POS
PRESET
PRINT
PRINT USING
PSET
READ
REM
RENUM
RESTORE
RESUME
RETURN
RIGHTS
RND
RSET
RUN
SAVE
SCREEN
SET
SGN
SIN
SOUND
SPACES$
SPC
SPRITE
SPRITE$
SQR
STEP
STICK
STOP
STRIG
STR$

STRING$
SWAP
TAB
TAN
THEN
TIME

TO
TROFF
TRON
USR
VAL
VARPTR
VPEEK
VPOKE
WAIT
WIDTH
XOR

8 161

/0 PINOUTS & MEMORY MAPS

BANK O

ROM

(BASIC)

IFFFH
4000H

ROM

{BASIC)

TFFFH
B000H

RAMO

(ONBOARD)

OR
{EXPANSION)

BFFEH

C0o0H

RAMY

(ONBOARD)

FFEFH

10

ROM
DISABLE
T0

RAM
DISABLE

162

ROM2
ENABLE

ROMI
ENABLE

PAGE 21 PAGE 31
BANK 1 ENABLE BANK2 ENABLE BANKA
(FORCARTRIDGE)
1
N ROMO 2 RAM = RAM
(GAMES)
P
> +
Bios
EN EN N
ROM1 RAM L2 AAM
(GAMES)
-
PAGE 22 PAGE 32
ENABLE ENABLE
EN EN
':D—- ROM2 RAM RAM
{GAMES)
N
osl ROM3 RAM LA
{GAMES)
ToROM 0 ROM
. DISABLE DISABLE
O RAM T0RAM
DISABLE DISABLE

* §V-318/328 EXPANDER BUS SIGNAL DESCRIPTION *

PIN: NAME: T/O:

1

9-24

25

26

27

28

29
163A

+5V O
CNTRL2 I
+12v O
12V 0
CNTRL1 I
WAIT 1
RST 1
CPUCLK O
A15-A0

RFSH O
EXCSR I
[Y3] o}
EXCSW 1
WR 0

DESCRIPTION:

+ 5V power supply, 300mA current is available
for all peripheral cards.

Spectravideo game adapter for Coleco™
games. CONTROL signal (normally held HIGH
by a 3.3K ohm resistor).

This signal, when the game adapter is in use,
controls the data transfer between the CPU and
the adapter during the external |/C addressing.

+ 12V power supply. Maximum current is
100mA for all peripheral cards.

-12V power supply. Maximun current is 50mA
for all peripheral cards.

Spectravideo game adaptor for Coleco™ games
CONTROL signal (normally held HIGH by 1K
ohm resistor). This signal, when pulled LOW
(i.e. when the adaptor is in use), disables all
internal (i.e. SV-318/328) 1/0O address decoding,
and inverses A15.

Indicates to zZBOA CPU that the addressed
memory or |/O devices are not ready for data
transfer.

When this signal is pulled LOW the CPU begins
a RESET cycle. During this RESET cycle, the
address and data bus enter a high impedance
state and the control signals enter the inactive
state.

Buffered system clock of frequency 3.58 MHz.

Buffered ADDRESS BUS. This is a 16-bit
address bus providing addresses for memory
data exchange and 1/O device data exchange.

Buffered REFRESH signal for the dynamic RAM
expanders only. This signal indicates that the
lower 7 bits of the address bus contain a
refresh address for the dynamic RAM.

This is the external CPU-from-VDP READ select
signal, and is used by Spectravideo game
adaptor for Coleco™ games only.

Buffered MACHNINE ONE CYCLE signal. This
signal indicates that OP code fetch cycle is the
current machine cycle.

This is the external CPU-to-VDP WRITE select
signal, and is used by Spectravideo game
adaptor for Coleco™ games only .

Buffered WRITE signal. This signal indicates

30 MREQ
31 IORQ
32 RD
33-40 DO-D7
41 CSOUNDI
42 INT
43 RAMDI
44 ROMDI
45 BK32
46 BK31
47 BK22
48 BK21
49-50GND

that the CPU data bus holds valid data for
storage in the addressed memory or I/O device.

Buffered MEMORY REQUEST signal. This
signal indicates when the address bus is
holding a valid memory address.

Buffered INPUT/OUTPUT REQUEST signal. This
signal indicates the lower 8 bits of the address
bus are holding a valid I/O device address, and
is at HIGH state (i.e. inactive) during the
INTERRUPT cycle.

Buffered READ signal. This signal indicates
that the Z80A CPU is wanting to read data from
memory or an /O device.

Buffered bidirectional DATA bus. This is an
8-bit bidirectional data bus for data exchange
between memory and I/O devices.

AUDIO input signal from the Spectravideo
game adaptor for Coleco™ games.

Generated by /O devices to request interrupt to
ZBOA CPU.

Pulling this signal LOW disables the SV-318/328
user RAM. This line is held high by a 1K ohm
resistor to + 5V.

Pulling this signal LOW disables the SV-318/328
BASIC ROM on board.

Buffered MEMORY BANK CONTROL signal.
Pulling this signal LOW enables the bank 32
portion of the memory (32K, Addr. —
8000H-FFFFH), and disables the user RAM on
board through the RAMDIS signal.

Buffered MEMORY BANK CONTROL signal.
Pulling this signal LOW enables the bank 31
portion of the memory (32K, Addr. —
0000H-7FFFH), and disables the BASIC ROM on
board through the ROMDIS signal.

Buffered MEMORY BANK CONTROL signal.
Pulling this signal LOW enables the bank 22
portion of the memory (32K, Addr.—
8000H-FFFFH), and disables the user RAM on
board through the RAMDIS signal.

Buffered MEMORY BANK CONTROL signal.
Pulling this signal LOW enables the bank 21
portion of the memory (32K, Addr.—
0000H-7FFFH) which is the lower portion of
SV-328 user addressable memory, and disables
the BASIC ROM on board.

System electrical ground.

63B

P1 EXPANSION BUS

PIN NAME PIN NAME
1 +5V 2 CNTRL2
3 +12 4 -12v
5 CNTRL1 6 WAIT
7 RST 8 CPU CLK
9 A1b 10 Al4
11 A13 12 A12
13 Al 14 A10
15 A9 16 A8
17 A7 18 A6
19 AB 20 A4
21 A3 22 A2
23 A1 24 AO
25 RFSH 26 EXCSR
27 M1 28 EXCSW
29 WR 30 MREQ
31 IORQ 32 RD
33 DO 34 D1
35 D2 36 .D3
37 D4 38 Db
39 D6 40 D7
41 CSOUND | 42 INT
43 RAMDIS 44 ROMDIS
45 BK32 46 BK31
47 BK22 48 BK21
49 GND 50 GND
P2 CASSETTE
PIN NAME
1 12v
2 CASR
3 CASW
4 AUDIO
5 GND
6 ME
7 READY

R e D e T

- - -’

164 &

SK1 KEYBOARD

SK2 GAME
CARTRIDGE

PIN NAME
1 CAPS
2 5V
3 OUTPUT 10
4 OUTPUT 2
b OUTPUT 3
6 OUTPUT 4
7 OUTPUT 9
8 OUTPUT 5
9 OUTPUT 8
10 OUTPUT 6
1 OUTPUT 7
12 OUTPUT 1
13 OUTPUT O
14 INPUT 2
15 INPUT 1
16 INPUT O
17 INPUT 3
18 INPUT 4
19 INPUT 5
20 INPUT 6
21 INPUT 7
22 POWER
23 GND
PIN NAME PIN NAME
1 +5V 2 + 5V
3 A7 4 A12
5 A6 6 A13
7 Ab 8 A8
9 Ad 10 A9
1 A3 12 Al
13 A10 14 A2
156 A0 16 Al
17 Do 18 D7
19 D1 20 D6
21 D2 22 D5
23 D3 24 D4
25 CCs3 26 CCs4
27 Ccs1 28 CCs2
29 GND 30 GND

SK3 JOYSTICK 1

3
z

NAME

OO NOOT B WN -

FORWARD/SCK
BACKWARD/SI
LEFT/CS
RIGHT/SENCTR
SENSE
TRIGGER

+5V

GND

EOC

SK4 JOYSTICK 2

SK5 VIDEO &
AUDIO

3
2

NAME

O©CONOOOILE WN =

FORWARD/SCK
BACKWARDY/SI
LEFT/CS
RIGHT/SENCTR
SENSE

TRIGGER

+6V

GND

EOC

NAME

+5V

GND

AUDIO
MONITOR VIDEO
RF VIDEO

165

IX F
NOTES ON HIGH
RESOLUTION

AND LOW RESOLUTION
SCREENS

The 64 x 48 grid you see in figure 2-3 in
Chapter 5 can be treated as a separate screen.
The 64 by 48 grid is called a “low resolution
graphics screen’” and the 256 by 192 is called
a "high resolution graphic, screen!’ Every 4
boxes of the 256 by 192 grid is treated as one
unit on the 64 x 48 grid. The box numbers in
Figure 2 in Chapter 5 should be multiplied by 4

" to appear in the proper places on the screens.
This will maintain compatibility between the
low resolution and high resolution screen.

0 1 2 3

Each of the four boxes is treated as an
individual point on a high resolution screen.

The screen 2 command draws on the low
resolution screen, and the screen 1 command
draws on the high resolution screen. Thus if

you PSET one of these four boxes, on a high
resolution screen, only that one will be lit up.
But on a low resolution screen, if you turn on
any one of these boxes all of them will be lit.

166

TROUBLE
SHOOTING

CHART

SYMPTOM POSSIBLE CAUSE REMEDY
NO POWER Power Switch Turn on power switch
not turned ON. on the righthand side
of the machine

Power cable not Be sure the power cable

connected is connected to the
computer and the wall
sockets.

Blown fuse in the Return the system to an

computer authorized dealer for
replacement.

NO SOUND OR Wrong TV channel Select channel 3 or 4
PICTURE

Wrong TV hook up Hook up the computer
to the “VHF" antenna
terminals.

Loose video cable Be sure all video
cables are securely
fastened.

NO SOUND TV volume too low Adjust the volume
control of TV.
NO COLOR Adjust TV color

level and fine tune
the TV.

OPERATIONS

Tone generator control
Noise generator control
Mixer control

Amplitude control

Envelope generator
control

168

USING THE
PROGRAMMABLE
SOUND
GENERATOR (PSG)

Other than the PLAY statement which allows
you to create musical notes, you can use the
SOUND statement to directly cotrol the
various capabilities of the Programmable

Sound Generator which we will refer to as the
PSG.

A PSG SOUND statement take the form of:

SOUND < REGISTER OF PSG > (valué)

Where < register of PSG >is one of the 13
available registers the PSG uses, and

< value > is a number between 1 to 255, The
function of creating a specific sound or sound
effect logically follows the control sequence
listed below:

REGISTERS FUNCTION

RO - R5 Program tone periods.

R6 Program noise period.

R7 Enable tone and or noise on
selected channels

R8-R10 Select “fixed” or “‘envelope

variable'’ amplitudes.
R11-R13 Program envelope period
and select envelope pattern.

The PSG has 3 tone channels A,B and C. The
frequency for each channel is obtained by
counting down the input clock by 16 times the
value of the frequency wanted.

For example:

“

ANMPLITUDE

Desired value = 3579545/

(16 * freguency)

Low register = <Desired value >

AND 255

High register = < Desired value> /256

The high and low registers correspond to the
register pair used by each control.

Channel Register
A 1,0
B 3,2
C 5,4

Program exampiles follow:

10 Input “Enter frequency’;A

20 F = 3579545/ (16 * A)

30H = F/ 256

40L = Fand 255

50 SOUND O,L

60 SOUND 1,H

70 SOUND 8,15: PRINT” Volume
control of channel A"’

80 SOUND 7,254 : PRINT”" Binary
11111110 to enable channel A

S0 END

In the previous example program, you should
notice we used register § to enable to
volume of channel A. The PSG has three
separate register to control the amplitude
of the different channels.

Channel Register
A 8
B 9
C 10

Each channel can have a volume form 9 to 15
with 15 being the loudest.

For example:
> M

10 SOUND 0, 100

20 SOUND 1,0

30 SOUND 7,254 : REM TURN
ON CHANNEL A (MIXER)

40FORI = 1B TOOSTEP -1

50 SOUND 8,1

60 FOR J = 1TO 200 : NEXT J :
REM DELAY

70 NEXT |

You will hear a high pitched sound fading
away, because we changed the volume of
channel A from 15 through 0.

The Amplitude control register can also be
used to direct the envelope period of each
channel, by setting the Amplitude channel to a
value of 16, the amplitude of the
corresponding channel would be controlled by
reg 11,12, and 13. For more information on
this, refer to Envelope Period Control
Registers.

The MIXER register, register number 7,

controls the three Noise / Tone channels. The
Mixers, as previously described, combine the
noise and tone frequencies for each of the

three channels. The determination of

combining neither, either or both noise and

tone frequencies on each channel is made by

the state of Bit0 — Bit 5 of reg. # 7. Bit6 and 7
are for 1/0 ports connected through the PSG,
and these are ignored by BASIC.

B7 ! B6|B5 B4 | B3| B2 | B1 | BO

Not used| Rioise channel | Sound channel

11717717 ¢c B| A|C| B | A

Bits logical value
1 if channel is disabled
0 if channel is enabled

For example:

170

SHAPE
REGISTE

cor,

SOUND 7,&B11111110

will turn on tone channel A.

SOUND 7, &B11110110

will enable both noise and tone channel A.

The generation of fairly complex envelope
patterns can be accomplished two different
ways in BASIC. First, itis possible to vary the
frequency of the envelope using register 11
and 12 as a 16 bit register; and second, the
relative shape and cycle of the envelope can be
varied by using register 13.

For example:

<Desired envelope freq> = 3479545/
(256*frea)

Program example:

10 SOUND 0,100
20 SOUND 1,0 : REM Tone channel A
30 SOUND 7,&b11111110 :
REM Enable A
40 SOUND 8,16 : REM Value of i6 to
enable E/P reg.
50 SOUND 13,14 : REM Shape select
60S = .5: REM .5 HERTZ
70 CLOK = 3579545
80 L = CLOK/ (256*S) AND 255
90 H = CLOK/ (256%S) /256
100 SOUND 11,L
110 SOUND 12,H
120 END

NOTE: REG 13 is the shape register described
in the next chapter.

You can select 9 different shapes for the
envelope period output, by programming the
shape register #13.

—171

172

Selected value
0,1,2,39
4,5,6,7

2]
¥
m
©
®

HEET

= one cycle

For example:

SOUND 13,14

will create a tone modulating up and down
according to the envelope period set in
registers 11 and 12, when the enable bit 4 of
register 8 (SOUND 8,16) is set.

PSG BLOCK DIAGRAM

NOISE

REGISTER BT (87 | 86 | 85 | B4 | B3 | 82 | 81 | BO
RO . 8-BIT Fine Tune A
R1 Channel A Tone Period //////////]//////[{ ZBIT Coarso Tune A
R2 . 8-BIT Fine Tune B
3 Channel B Tone Period I///////////////// 2BIT Comsa Turc B
R4 X 8BIT Fine Tune C
RE_| Chennel € Tone Pered e Coaro Tune e
R6 | Noise Period 11/11]11TTT) 6 BT Period Control
R7 INJOUT Noise Tone

Enable B A C B a
R8 [Channel A Amplitude M L3 12 L1 Lo
R9 | Channel B Amplituds M L3 L2 L1 Lo
R10 | Channel C Amplitude M L3 12 L1 LO
R11 iod 8 BIT Fine Tune E
R12 Envelope Perio 8 BIT Coarse Tune E
R13 | Envelope Shape/Cycle

CONT.[ATT. | ALT. JHOLD

REGISTERED ARRAY
(14 READ/WRITE
CONTROL REGISTERS

= —— WK

GENERATOR S)
T
TONE
GENERATOR MIXERS &
3
@3
EEmm—
\\ N J’
\ D
AMPLITUDE \ /A
CONTROL \ CONVERTERS
A} (3)
AN
<
B3 |2 e JE0
ENVELOPE
GENERATOR ANALOG
J CHANNEL ¢
ANALOG
J CHANNEL g
ANALOG
CHANNEL A

174

INTRODUCTION TO
BASIC PROGRAMMING

(BASIC GRAPHICS and
BASIC SOUND)

In learning to use your SV-328 computer, you
use many different commands and
programming techniques. However, if you are
like most people, you would like to be able to
do something NOW to see your computer in
action. To help you do this, we will guide you
through some very simple examples to prepare
you for the things you will be exposed to later
in the user’s manual.

We are going to assume that you have read
the systems overview and set-up procedures in
your SV-328 owner’s manual, and have set up
your computer properly. First, turn the
television or monitor on and then turn on your
SV-328. Watch and you will see that the
SPECTRAVIDEO logo appears on the screen,
changing colors 3 times. The screen then
clears and displays the amount of memory
available. When the square cursor appears
below this information, it is your indication that
the SV-328 is waiting for your instructions.

The first command that we will explore is one
that controls the color of the screen and the
characters that appear on it.

This command allows you to vary the colors of
the display in any manner you choose. You
can choose from 16 colors, denoted by the
numbers 0 to 156. As an example, type in the
following line:

COLORG, 1

Now press the ENTER key. When you do this,
you will see that the screen will change from its
normal colors of blue background with white
letters to a black screen with orange letters.
You can explore the various colors that are
available by varying the numbers you type
after the “COLOR" command. When you have
completed this exploration, turn the computer
off and then back on. This will clear all the
memory and return the system to its original or
"default’’ condition. There are other ways of
accomplishing this, by the way, and they are
explained in greater depth in the user’s

manual.

Now, let's program a line in to the computer
that will cause it to print your name on the top
of the screen. Type in the following line:

10 CLS

Now, type RUN and press the ENTER key.
You will see that the screen has cleared and
that the word "“OK’" is printed on line 1 with
the cursor (white square) below. The
command “CLS"" (Clear Screen) is the
command that clears the screen anytime the
computer finds it in a program.

Now, type this line:

20 PRINT “SPECTRAVIDEO”

Type RUN and press ENTER again, and you
will see that the word “SPECTRAVIDEO" now
appears on the top line of the screen with the
word "*OK’* and the cursor below. What you
have just done is to write a two-line program!

175

176

Now, we will edit that program. First, type
LIST and press the ENTER key. This will cause
the program that you just wrote to be
displayed on the screen. Now, using the
joystick cursor control, move the cursor so that
it is placed on the “S" of “SPECTRAVIDEQO!’
Press the INS/PASTE key on the keyboard and
you will see that the cursor is now only half as
tall as it was. This indicates that it is in the
“INSERT" mode. To begin this edit, simply
type in your name. The line should now look
like this:

20 PRINT “YOUR NAMESPECTRAVIDEO”

“The half-height cursor should still be located
over the “S"" in “SPECTRAVIDEQ:' Now,
press the DEL/CUT key once and you will
see that the "’S” has disappeared and that the
cursor is now located over the P!’ You have
deleted the ‘S’ Do the same thing for all of
the letters remaining until you get to the
quotation mark. When the cursor is located
over this mark, press the ENTER key.

Your edit is now completed. If you have
followed all of the above steps, listing the
program should cause the screen display to
look like this:

10 CLS
20 PRINT “YOUR NAME"

"“RUN"" the program and you will see that your
name is now at the top of the screen.
Congratulations! You have created and edited
a program using the built-in editor of your
Sv-328,

f

BASIC GRAPHICS

Another area that will allow you to quickly
explore the power in your SV-328 is that of
graphics. To see this in action, type in the
following lines, pressing ENTER after each is
completed:

10 CLS

20 SCREEN 1

30 CIRCLE (128,80), 60, 11
40 PAINT (128,80), 11

50 GOTO 40

Now, type RUN and you will see a yellow circle
appear on the screen and then it will be filled in
by the SV-328's yeilow paint brush. To
understand how this happens, let’s look at
each line individually.

10 CLS

As explained above, this line clears the screen.
It is a good idea to place this line near the
beginning of any program, so that you begin
with a clean screen.

20 SCREEN 1

This line causes the computer to display its
graphics screen (#1). You always have a
choice of three screens using BASIC and the
screen you were using in the first example was
screen 0. This is the default screen or the
screen that is always displayed when the
computer is turned on (which is why you didn’t
have to add a line to the first program to use
this screen).

30 CIRCLE (128,80}, 60, 11

Here, you are telling the computer to draw a
circle at a point that is 128 points from the left
side of the screen, 80 points down from the
top of the screen, with a radius (distance from
the center of the circle) of 60 points and with a
yellow (the number 11) border.

40 PAINT (128,80}, 11

177

LINE &
BOX
DRAWING

178

This is the line that tells the SV-328 to use its
paintbrush to fill in the citcle you have just
outlined in line 30. You must use the same
coordinates (128,80) and the same color (11)
as used in the previous line.

50 GOTO 40

The last line in the program causes the
program to repeat line 40 until you stop the
program by pressing the CTRL and STOP keys
at the same time. You will also notice that
when you do this, the screen clears and the
cursor moves to the top left hand corner. This
is because the display has returned to the
default or #0 screen referred to above. You
can experiment with the numbers in this
program to vary the location, size or color of
the circle being painted.

The first number following the “CIRCLE"
command (the X axis) may range from 0 to 255
and the second number (the Y axis) may range
from 0 to 191.

Now that you have seen what your SV-328 can
do with circles and its paintbrush, we'll take a
look at lines and boxes. The computer has the
same simple method for drawing them as it
does for circles. First, type NEW to clear the
memory of the program we were using before.
Now, enter the following lines:

10 CLS

20 SCREEN 1

30 LINE (50,40) — (200,150)
40 GOTO 40

When you run this program, you will see that a
line has been drawn from high on the left side
of the screen to a low point on the right side of
the screen. The line that causes this to happen
is line 30:

30 LINE (50,40) - {200,150)
This line tells the computer to draw a line from

a position 50 points from the left margin of the
screen and 40 points down from the top over

to a position that is 200 points from the left
margin and 150 points down from the top.

Now, you can simply convert this same line
into a box command by changing the line to
read as follows:

30 LINE (50,40) — (200,150), 10,B

By running the program now, you will see a
box on the screen. By adding the 10 following
the parentheses, you defined the color of the
box border and the 'B"’ tells the computer to
draw a box at the same coordinates as the line.
To tell the computer to use the paintbrush,
change the line to read:

30 LINE (50,40) — (200,150), 10,BF
Now you will see that the program draws the

same box and paints the inside with the same
color as the border.

T

"PLAYT

THE “O”
(OCTAVE)
COMMARND

180

BASIC MUSIC

There is also a very powerful music synthesizer
built into the SV-328 that can be easily used,
through simple BASIC commands, to produce
music. The key to this synthesizer is the
BASIC statement:

PLAY “ABC”

followed by pressing the enter key. This will
produce musical tones from your SV-328
through the speaker on your television or
monitor. You could acheive the same results
by writing a BASIC program with the following
lines:

10 PLAY “ABC”
20 GOTO 10

There are numerous other things that can be
done with sound using the synthesizer in your
SV-328. We will look at the simple ones in this
section and progress to the more complex
ones in later pages. We will continue to work
with the BASIC program listed above, and
make changes in it as we go along.

First, change line 10 to read:

10 PLAY “01ABC”

Now, when you run the program, you will
hear that the sounds produced are at a
very low pitch when compared with the
first ones you made. This is because you
have set the OCTAVE by adding the 01"’
before the “ABC:’ This is the command
that allows you to access 8 octaves with
the synthesizer. Now add this line:

11 PLAY “04ABC”
When the program is run, you will hear

three low notes followed by three higher
notes. The octaves you can access using

(TEMPO)
COMMAND

Qgﬂ%@ ﬁﬁ%ﬁ#’#
{(LENGTH)
COMIMAND

“\?%ﬂ%@ ﬁf%%giﬁ‘
(SHAPE] &
“M” (TONE)
COMIMANDS

Prr e e e e e e e s e]
S

the “o”" command can range from 0
(lowest) to 7 (highest).

Now, change line 10 toread: -
10 PLAY “T3201ABC"”

The program will now play the same note you
heard before but at a much slower rate. What
you did by typing the “T32"” before the

61 ABC"’ was to set the TEMPO or speed of
the music. The values for ““T"' can range from
32 {slowest) to 255 (fastest).

You will also notice that the notes in line 11
also play at the slower pace. This is because
the synthesizer will play at whatever tempo
you set until you tell it to play ata different
tempo. To see this in action, change line 11 to
read:

11 PLAY “T25504ABC"

Now, as you can hear, the notes from line 11
play at a much faster pace than those in line
10.

You can also control the
length of each note individually. To see this,
change line 10 to read:

10 PLAY “T25501ABL1C"

This changes the “’C"’ note to a much longer
duration than “A” or "'B’’ and also causes the
notes in line 11 to play for a longer time. This
length command can be placed in front of any
note to control the length of the note. The
lengths of the notes can be varied from 1
(longest) to 255 (shortest).

Two other BASIC commands that can be
applied to sounds are the "S" command and
the ‘M’ command. These two commands
determine the tonal qualities of the note being
played. As an example of this, the same note
played on a piano and a trumpet may be at the
same pitch but will have two distinctly different

#

181

?HE ié’ﬁi?
(REST)
COMIMARND

182

e =
e ————————

sounds. These two commands allow you to
shape the notes you are creating in the same
way.

The S’ command controls the shape of the
note. As an illustration of this, change line 10
to read:

10 PLAY “S104ABC”

and eliminate line 11 by typing 11 and pressing
ENTER

Now, run the program to see the differences in
the sounds you hear. These shape commands

* can be considered the voices of the

synthesizer. There are 14 of them built into the
S5V-328. This means that the number used to
set the “S" command can range from 1 to 14.

The “M" command controls the tone period or
to be more specific, the amount of time that
you will hear each note based on its tonal
qualities. To see how this works, change line
10 to read:

10 PLAY “S10M500004ABC"’
As you will hear, this changes the sound
dramatically. The values used to set “M’’ can

range from 1 to 65535.

You can also insert pauses between notes by

.using the “R" command. Change line 10 to

read:
10 PLAY “o4AR1 BR10C"”

This causes the A" note to play, followed by
a brief period of silence. Then the “‘B" note
plays, then a shorter period of silence, then the
"“C" note followed immediately by the “A"
note again.

«g%&g% ﬁe‘%ﬁf»‘
{(VOLUME)
CONMIMAND

USING 3
CHANNELS
OF SOUND

The final command we will examine in this
section is the V"’ command. This command
is used to set the volume of the sound being
produced. Change line 10 to read;

10 PLAY “04V5AV10BV15C”

You will now hear that each note gets louder
than'the one before it. You can set the volume
from 0 to 15.

So far, we have only used one note at a time to
demonstrate the use of the synthesizer.
However, the SV-328 has three separate
channels of sound that can be programmed
individually to play together to create chords.
Change line 10 to read:

10 PLAY “01ABC", “03CDE", "06FAG"

What you hear now is three notes being played
in combination to create a chord. You can also
have each channel play something entirely
different from the others to create melody and
harmony parts in the music you create.

There are also other ways of addressing the
sound and music generation capabilities of the
SV-328 which will be covered in greater depth
in the user’s manual.

These are just a few of the exciting things that
your SV-328 Computer System can do for you.
To begin exploring your machine in greater
depth, read each chapter in the owner’s
manual and follow the examples. Have Fun
and Good Luck!!!

183

Although most of the words that appear in the glossary were not used
in this manual, we have included them for your future reference:

Access time

accumulator

address

ALU

alphanumeric

architecture

array

ASCII

assembler

The time between the instant that an address
is sent to a memory location and the instant
data returns.

One of several registers which temporarily
store, or “accumulate’ the results of various
operations.

The digital number used by the CPU to
specify a location in memory.

Arithmetic Logic Unit. The part of a CPU that
adds, subtracts, shifts, ANDs, ORs, and
performs other computational and logical
operations.

A device or a system that includes both
alphabetical and numerical characters.

The organizational structure of a computer
system.

A list of values stored in a series of memory
locations.

American Standard Code for Information
Interchange. Consists of 128 letters, numbers,
punctuation marks, and special symbols each
of which consists of a binary pattern that uses
eight digits.

A software program which converts symbolic
or mnemonic language into machine
language.

1%%

e -]

BASIC

baud

binary

bit

Boolean Logic

bootstrap

branch

byte

clock

Beginners All-Purpose Symbolic Instruction
Code. A high level programming language
designed for the beginning programmer.

A unit by which signal speeds are measured.’
In microprocessing, the baud rate refers to the
number of bits per second.

A number system that has 2 as its base, and
that uses only the digits 0 and 1. Used by
digital computers to perform the tasks in data
processing.

Binary digit. Single element of a binary
number with a value of either O or 1.

Mathematical logic processes based on a
system of algebra developed in the early
nineteenth century by English mathematician
George Boole.

A technique or device for loading the first
instructions or words of a routine into
memory. These instructions are used then to
bring in the rest of the routine.

A way of rerouting a program so that it
branches to another set of instructions to
perform another task.

An error or defect in the hardware or software
of the computer, causing a malfunction.

A set of wires or conductors arranged in
parallel, used to transmit data, signals, or
power between parts of a computer system.

A group of eight bits, operated upon as a unit.
A device or circuit that sends out timing

pulses to synchronize the action of the
processor.

186

coBOL

command

compiler

controller

CcPU

cursor

COmmon Business Orfiented Language. A
high level language used in many business
applications.

An instruction to the computer that causes
something to happen.

A program to convert a high level language
into assembly or machine language
{understood by the computer).

An interface which allows the control of an
1/0 device by the central processing unit.

Central Processing Unit. The part of the
computer that ocntrols all execution of
instructions and arithmetic operations.

Cathode Ray Tube. The display on which
information is shown after program execution.

A symbol displayed on the screen indicating
where the next character is to be displayed.

Essentially, information that is input to the
computer.

An electrical path along which information
passes.

To delete any errors in a program.

Direct Memory Access. The accessing of
memory without intervention of the central
processing unit.

A plate resembling a record album with a
magnetic surface used to store data or
programs. Also known as “‘floppy disk’’

Disk Operating System. The program used for
implementation of a disk drive.

The transfer of information from one piece of
equipment to another.

_
ket ———————— - - |

editor A program used for the creating and/or
altering of text in another program.

execute The final step in running a program. An
execution will perform the operation specified
in the program.

expression A particular grouping of numbers, letters, or
variables that comprise a single quantity.

fetch Refers to the reading out of an
instruction/data from an addressed memory
location.

file A collection of organized records that are

usually on one particular subject.

firmware The'programs that are built into the ROM of a
microcomputer.

floppy disk drive A peripheral device used to store data from
and input data to the computer. It is also
known as an input/output device.

flowchart = A diagram used in the development of a
computer program. A flowchart shows the
sequence of steps to take.

format The way in which characters, fields, page
' numbers, lines, and punctuation marks are
arranged on a single sheet of paper.

FORTRAN FORmuja TRANslation. A high level language
using algebraic notation.

gate An electrical signal circuit, with two (or more)
inputs one and output, that behaves as a
switch to create a particular state (either a
binary one or zero).

hardware The physical components that make up a

particular computer system. Includes all the
peripheral devices.

= .. Ky

188

hexadecimal

high level language

1/0 devices

instruction

instruction set

interface

interpreter

keyboard

kilobyte or K"

library

load

location

logic

A numbering system used in computers. Uses
the digits 0-9 and the letters A-F.

A programming language that is easier to
understand and more convenient for the
programmer. BASIC, FORTRAN, PASCAL
and PL-1 are some examples of high level
languages.

Input/Qutput devices. These would include
the disk drive, data cassette, keyboard,
printer, TV monitor, etc.

A command telling the computer to perform a
specific task.

These are the set of instructions built into the
firmware of the microcomputer, This
instruction set is used by the programmer.

This is the way in which peripheral devices are ~
linked to the mainframe console of the
microcomputer.

A program that converts one instruction at a
time into machine language understood by the

computer.

This is the console of the computer in which
data is input to the Central Processing Unit.

Equivalent to 1024 bytes.

A collection of files or records that a person
cah access easily.

To enter a program into a computer'’s
memory.

The portion in memory in which a data word
or an instruction is stored.

A particular way-of reasoning using thought
processes.

.. . = =]

loop

LSl

machine language

memory

menu

microprocessor

mnhemonics

modem

octal

on-line

A series of instructions that allow the
programmer to repeat a particular sequence of
events in a program.

Large Scale Integration. An integrated circuit
that has thousands of components packed in
one chip.

This is the language of the computer that is
the lowest level the computer itself can accept
as a program. This language is used with
either binary, octal, or hexadecimal number
systems.

The part of the computer that stores data and
instructions. Each instruction uses a particular
address which tells the CPU where to fetch
from.

This is a list much like the one in your local
restaurant, except this type of menu lists what
the computer is ready to do for you.

This is also known as the Central Processing
Unit. It is comprised of one or more LS|
circuits that control all the processes of the
computer,

These are abbreviated terms for instructions,
used so that the programmer can easily
remember them,

MOdulater DEModulator. This is a device used
to convert data to signals that can be
transmitted over telephone lines and then
back to data again at the receiving end.

A numbering system used in computers
employing the digits 0-7.

Whenever a peripheral device is interacting
with its host computer, it is said to be “on
line!’ For example, a printer is said to be “on-
line” when it is doing a computer printout.

- .. W

operating system

output

page

peripheral

pixel

pointer

program

program counter

prompt

RAM

The “"OS’” of a computer system is the
program that directs such things as
input/output, memory allocation, interrupt
processing, and controls the overall operation
of the computer.

When data is said to be “output” it usually
refers to the printout from a printer. Output
may also be programs or data saved on a
floppy diskette.

A grouping of memory locations by higher
order address bits. In an 8-bit microprocessor
{the one in the SV-318), 256 bytes may -
comprise a page.

Any device external from the host computer
but used in conjuction with the computer to
perform operations such as printouts, data
storage and retrieval, CRT displays,
telecommunications, graphics, etc.

The measurement of one dot on the display
screen. The number and arrangement of
pixels is what determines screen resolution.

This is the register in the CPU that contains
the memory address.

The sequence of instructions that tell the
computer what task to perform.

This is the register in the CPU that specifies
the address of the next instruction to be
executed.

This is the symbol on the screen which shows
the user that the computer is ready to accept
input from the keyboard.

Random Access Memory. This is the portion
of memory that can be written into and read
from. When the computer’s power is turned
off, anything written will be lost.

ke |

register

ROM

routine

software

source program

sprite

subroutine

syntax

terminal

time sharing

truth table

utility program

A circuit used to store or manipulate bits or
bytes of data in the Central Processing Unit.

Read Only Memory. This is the part of
memory that may only be read from. It is said
to be “nonvolatile;’ meaning that when power
is turned off the ROM retains its information.

A specific program designed to do a particular
function.

Software pertains to the programs that are
input to the computer by the user.

A program written in a language that is easily
understood.

This is a shape designed by the programmer
when using a computer’s graphic capabilities.

A routine in a program may be used over
again to perform a specific function.

The rules governing a sentence command
line. If the command line is not in proper
syntax, a ‘'syntax error’’ will occur.

An input/output device usually consisting of a
keyboard, CRT and printer used as a work
station.

The process of {more than one user) sharing
the use of a CPU via time robin.

A truth table shows the different values that
an AND, OR, NAND, NOR, or other logic
gate will have, according to two select inputs.

This is a program that helps the user perform
various specific utility functions, such as a
debug program to find mistakes in programs.

191

variable A variable is any number or set of numbers,
assigned a particular value, that is to be
operated upon in a program.

volatile storage The type of storage which, when power is
removed, the program or data in memory is
lost. RAM is said to be volatile.

windows Several smaller screens displayed on one CRT
screen at the same time.

.

SVI-300 SERIES COMPUTER QUICK REF

SPECIAL CHARACTERS

{ A means [CTRLD
AB Move cursor to start of previous
word

break

truncate line (clear tex\ from
current cursor position to end of
logical ling)

move cursor (o start of next word
baep

backspace, deleting character on
the left of cursor

1ab {B spaces)

cursor home

clear screen

carrlage return, anters current line
move cursor to end of line
toggles insertireplace mode

clear logical line

cursor right

cursor left

cursor up

cursor down

>>
mo

g zoM

S>> >
—~cmzzrx—

A [SHIFTHS)
A

A < stop> hall program execution

<CLR/HM> same as A L, shift to home cursor

< dei > Shift same as A H, use
as s to delete chasacter at cursor

<ins> same as A R

<atop> toggles pause or resume program
execution

&B prafix for binary constamt

&H prefix for hexidecimal constant

&0 prelix for octal constant

H seperale statements lyped on the
same ling

? same as PRINT
‘ sama as REM but use more

memory

. denote’CURRENT LINE for
RENUM, DELETE, LIST, LLIST,
RUN commands

PROGRAMMABLE FUNCTION KEYS

Key number Initial definltion
<Fi> calor

<F2> auto <or>
<F3> golo

<F4> hst

<F5> un <or>
<F8> color 15, 4,4 <cr>
<F7> switch

<F8> com <cr>
<F9> list

<F10> ALrun <cr>

Joystick Cursor Control Pad
control cursor movement in eight directions

VARIABLE TYPE DECLARATION
CHARAGTERS

Variable Range No. of Byte
§$ String 0..255 characlers 3+ #of

. characters
% Integer —~32768..32767 2
S g
Double 16.8 digit floating 8
pregision point
FORMAT NOTATION

the format of a or

is given, the 18llowing rules apply:

1. Items in capital must be input as shown.

llems in fower case letters enciosed In brackel

(< >)are to be supplied by the user,

{tems in square brackets ([]) are optional.

Al punctuation except angle brackels and

square brackets (i.e., commas, parantheses,

semicelons, hypens, equal signs) must be

incid where shown.

items followed by an ellipse {...) may be

rapeated any numbers of time (up to the

length of line).

“string™ means a string expression.

“exp"” means a numeric expression either

constant or a variable.

“var” means any vaiable.

*line" and “line number" both means line
ber.

“f" 15 a file number or exprassion that

evaluates 1o a fite number,

11. "n'' means an inlegar,

12, “x”, *y" denoles X, Y co-ordinate of the
screen.

BABIC COMMAND

n~

=

o

Ne

bad ol

1

e

Command Funcilon
AUTO[<line > |[, < inc=]
genecate line numbers automatically

BLOAD “fifename" |, < load address > |
ioad a machine language program into
memory

BSAVE “fllename”, starl addr, end addr [,
exacullon adr|
Save a seclion of memory to “filename™

CLEAR([{ < oxp 1>][, < exp2>]
exp 1 sets the amount of string space,
exp 2 sets the end of memory

CLOAD <“floname" >
toads the file from casselle

COLOA[<exp1>]l <exp2>)
exp 1, a color number for tex! display,
exp 2 the background color.

CONT
cominua program execution

CSAVE <“filsname” >
save current pregram to cassette

DELETE < stariline> [~ < endline>]
delete program lnes

Command Function

KEY LIST
list alt the programmable tunction key's
contents.

LIST[< Hine> [—{ < Wine> [}
1ist program lings on the screen

LLIST
same as list, except to the printer

LOAD < ‘filename™ >
load an ASCII file

MAXFILES = <oaxp>
Sel the maximum number of liles BASIC
can open during axecution

MERGE <'filename”>
mergs a ASCIl program into memory,
current program's identical line numbers
wlll be replaced.

MOTOR {ON] [OFF)
turn cassette motor on or off

NEW
delele current program and variables
from memory

RENUM [[< newline >][, < oldine> } |, < inc>
n
renumber program lines
RUN | < linenumber > |
7un a program from (linenumber} default
Is first line
SAVE <“filename”>

save the program in memory with name
*filename” as an ASCI! file

SOUND [ON] {OFF]
turn sound of the cassette audio on or
off

SWITCH

switch into ancther bank

Command

SWITCH STOP
swilch in1o another bank and force a
CTRL-STOP

Functlon

TRON
turn on trace for program execution

TROFF
turn trace off

WIDTH (39} [40)
set the display line width

BASIC STATEMENTS
Statement Funclion
BEEP

make a beep sound

CLICK [ON] {OFF}
turn on or off key click sound

DEF FN x {(< aig >)]
define an arithmelic or string function

DEF USR < n> = « addr>
define the entry address for the nth
magchine language routing

DEF < varlype > { < exp> [{— < exp > L]
deline range of variable begin wilh latter
exp to delauit their type notation
where “lype” is INT, DBL, SNG or STR

DIM < varn) > (, < var(n) > [}
n can be any imeger, this allocale n
number of elements for array variables
and specity their maximum subscript
vatues

ERENCE CARD

END
terminale program execultion, ciose alt
files and return 1o command teval
Statemonts Function

ERASE <var> { <var> .|
release space which was used by the
array name “var"

ERROR < n >
generate error of code n

FOR <varlable > = < 6xp 1> to <exp2>
[STEP < exp3 >)
use with NEXT statement 1o repeat a
sequence ol program lings, variable is
tirst set to value of exp 1 then added
with exp 3 unlil the value of exp 2 is
reached

GOSUB <lingnumber >
call a subrouline in BASIC, see RETURN

GOTO <linenumber >
branch to specitied #inenumber

IF < axp> THEN < statement> [: <
siatement > [....]] ELSE slatemenl [: slatement
[}
1 exp Is not O, the THEN clause is
execuled olherwise the ELSE clause line
statement Is execuled

IF < exp > GOTO < line > {ELSE « stalement>
| < slatement> [.,..J
i exp is not 0 then the GOTO clause Is
execuied. Otherwise the ELSE clause or
next statement s executed

{LET] <var> = < axp>
assign a value to a variable
Statemenls Function
MIDS(<sting oxp> < n>[< m>] =<
string exp 2>
to replace a portion of siring exp } with
string exp 2 slarting in string exp 1 nth
character wilh m number of character

NEXT < var> [< var > [..)}
deleimits the end of a FOR loop

ON exp GOSUB < llne> [, < line > [,.]]
1he subroutine that will jump to depend
upon the value of the exp. and the
starting address of the subroulines are
indicated by the lingnumbers in the
GOSUB clause. in the example 1 musi
be between 1and 3

ON exp GOTO < lne > [, < line > [..]
same as ON exp GOSUB, see GOTO and
GOSUB

OUT < port>, < byle >
puts byte spacified to output prot
specified

POKE < address™> , <byle >
puls byte specified into memory
location specified. USE WITH EXTREME
CAUTION as random poking can cause
the system to CRASH!

REM {any text]
the line following the REM wili not ba
execuled, allow user to put comments in
program
Slatements Function_
RESYORE [< tingnumber> |
resot DATA poinler so that the previous
used DATA statement can be re-read

RETURN | < tinanumber >)
return subroutine to statement following
last GOSUB executed

STOP
stop the program exution, print BREAK
message, and return to commant leve!

SWAP < var>, < var>
exchanges value of two variablas

WAIT < part> , < mask » [, < select > |
suspends program excution read input a
port until {input bit XOR select AND with
mask) returns non-zero "

SOUND <expt>, <exp2>
put value exp 2 inlo sound generalor reg
number exp 1

SWITCH
function to return a o If in BANK o
allfin BANK 2

GRAPHIOC STATEMENT AND
COMMAND

Statemants Function
cLs
clear graphic sceen

CIRCLE{ < xcenter > , < ycenter >}, < radius >
{, < color ¥ [, < starl >, <end> [<aspect

ratio >)}
)} draws an elipse with a center.and
radius as indicated by the first of its
argumenis, the color defauit is
foreground color, start and end is — 2P|
to 2P, the ratio is for Herizontal and
Vertical ratio of the elipse

COLOR [< toreground >), [< background > }(
< border> §
sel the color tor the 11st of arguments

DRAW < string > or < string ver >
use to draw figure on the scresn
according 1o ihe graphic macro
language

GETJ{ < x1, y1>) —(< x2,y2 >)] < afrayname>
to read points trom the graphic screen
or from defined are of the graphic
screen. Array musi be dimensioned
large enough to hold the data
Statemenls Function
LINEY < x1,y1>)] —{ < x2,y2 >) [{ <color >
1< bl > Ji
draws straight line connecting the two
coordinate specified or if b {f] is present
draws or fill rectangle

LOGATE <expi> , < oxp 2>
position the graphic cursor 1o the
starting coordinate pointed to by axp
and exp 2, can used for LINE, POINT,
PRINT

PAINT <oxp 1, exp 2> , paint color
Hill 10 an arbitrary graphics ligure of the
specified fill color Note: The color
employed 1o paint an object should be
the same ona as the border color,
atherwise, unexpected result ocours

POINT { <expi>,< 8Xp2 5>}
read the color of a pixel in the graphic
mades
Stalements Functlon
PSET{<exp1>, < exp2>)[<color>]
1o draw a dol al the assigned position
on the screen using the foreground
color or {color) if specified

PRESET (< exp 1>, < exp 2> }[, < color > |
same as PSET excepl draw in
background zolor if (color) not specifled

PUT (< expi>, <exp2>), < arrayname> [<

operalion>]
output graphic patterns in the array to
assigned position on the screen,
operation can be: PSET output pattern
as Is PRESET reverse pattern
foregroundibackground color AND
combine graphic pattera color with
screan pattern OR graphic pattern
overlapping the screen daa.
XOR perform XOR with screen data, If
the matching pixel from the array and
the screen are the same then that pixel
will be displayed in background color
else it will be displayed in the
{oreground colour.

PUT SPRITE < sprite planst > ,{ <X, ¥,>) |,<
color> 1], < n>
set up sprite attribute, when a field is
omitled, the current value is used, see
SPRITES.
Slatements Function
SCREEN < exp1> , < exp2 >
use exp 1 to select graphic modo. 1 =
high res. 2 — low res. exp 2 1s to selecl
1he size of sprile (if used) see GRAPHIC
CHART

SPRITES{ < n >) = < string exp>
to deline o pattern as sprite, the number
ol string character depends on the
sprile size, n must be less than 256
when size of sprite is 0 or 1 (8 bytes),
tess than 64 when size of spriteis 2or 3
(32 bytes)

SPRITES{< n >)
tunction to return either a B byte
character string or 32 byle character
string of the sprite number n depend on
the size of sprile selected

VPEEK (< viam addr >)
return byte value trom tocatlon In video
ram

VPOKE < viam sddr > , < byte>
put a byte into video ram address

GRAPHIC MACRD LANGUAGE (GML)

U<ns> move up

0 <no» move DOWN

L <ns> move LEFT

R <n> move RIGHT

E <n> move diagenally up and right

F <no> move diagonally gown and right

G <n» move diagonally down and right

H <n»> move diagonally up and left

<n> denotes the distance to move times

the scating factor.

5 <n> set scaling factor <n >
The scaling factor multiplied with
the distances given inthe U, D, L, R,
E,F. G, H and ¥ command.

B Move bul don't plot

N Move but return to original position.

A <n> Set the angle, < n
= C; O degree
= 1, 90 degrees
= 2180 degrees
= 3, 270 degrees

C <n> Set color number,

X <string> Execule string, must be terminated

Y a

INTERRUPT CONTROL COMMAND
AND GTATEMENT

Statement Function

ON ERROR GOSUB linenumber
Defines the ine number of the
subroutine to execule when an error has
been detected

ON INTERVAL = < oxp> GOSUB linenumber
Sets the line number 10 exectue at avery
other machine interrupt cycle (60 per
second) specilied by < exp>

ONKEY {{ < n> | GOSUB [< lino >][, < fine > |
Specily the line number corresponding
to the [line] offset n in the statement to
exscule when ever a function key
number n has been depressed

ON STOP GOSUB < linenumber >
Define jump address when a CTRL-STOP
key is pressed

ON SPRITE GOSUB < linenumber >
Deline jump address when sprites
colhision occurs

Stataments Function

ON STRIG GOSUB < linenumber>
Deline the starting line of the subroutine
employed when any of the Joystick
button n = {O) — SPACE BAR,
(1) —~ JOYSTICK 1, {2) — JOYSTICK 2 or
< space bar > 1s depressed
All the ON < Interrupt type >
GOSUB statement acls much like a
GOSUB statement except the execution
of these statement are interrupt driven

INTERVAL ONIOFF/STOP
To enable, disable, or terminate the
BASIC timer interrupt trapping

KEY {n} ON/OFFISTOP
To enabie, disable, or terminate
interupts cause by a function key

STOP ONIOFFISTOR
To enable, disable, or lerminale CTRL-
STOP trapping

STRING ON/OFF/STOP
To enable, disabie, or terminate Joystick
button or space bar trapping

SPRITE ONIOFFISTOP
' To enabie, disable, of terminate the
Interrupt generated when two or more
sprites collide

SOUND COMMAND AND
STATEMENTS

Slstemont Function

SOUND <psgreg> , < byl >
put byte into the psg register, range
from 0 to 13

PSG / register Function
1 Tone of channel A
4 3 Tong of channal B
5 Tone of channel G
Noise gensrator
MIXER
Format:

BT B§ B5 B4 B3 B2 81 BO
NOT USED | NOISE ENABLE | TONE ENABLE
CBA C B A

a Amplliiude control of channel A bit 0-3,

fixed amplilude control fevel bit 4,
AMPLITUDE MODE.

] Amplltude control of channe! B
10 Amplitude contro! of channel C
14,12 Envelop period contro! range 0..65535 EP
1 1789772.6 x fsec /1536
Envelope cycle/shape contro!
13 SHAPE:
0—3.94—7,15
8 10
1" 12
14

13

PLAY slring exp
to play metody indicated by a character
string which syntax is described in the
Muslc Macro Language

A—G[#lt+][]len >M < exp>
Play the note, A “#" or "+ " means
sharp, and “—" means tlal Set the
tangth of each note, n maybe ranged
from 1 to 64
Set the tone period to exp, =exp=> is
the period of occurance set by the Sn
command, this command Is disabled
the V command is used

Statemenls Funcilon
N <n > Play nole n, n (0-84) range in 7 octives,
n 0 means rest

O < n> Oclave — sel the octare of the notes lo
be played. Default is 4

R <n> Restn period range 1 — 64. Rest Is the
same as Ln

§ <n> Set the shape of noise output, n can be
0 ~ 15, refer 1o charl below

T <n> Tempo — sets the number of L4's in a
second. n range Is 32 to 255, Dafault Is
120

V <n> Volumn — sets the volumn of the tone
generated. n is In the range of : : - Dol or
period, After each note causes lhe note
1o play 3/2 times the period determined
by L tfength) times T (tempo). Multiple
dots may appear after the nole

X Execute substring
GPERATORS

Symbot Function

= Assignment or equallty test

- Negation or subtraction

+ Addition or string concatenation

. Multiplication

i Division {fioating point result)

t Exponantiation

\ Integer division (integer result)

MOD Integer moduius (integer result)

NOT One’s complement {integer)

AND Bitwise AND (integer)

OR Bitwise OR (ineger)

XOR Bitwise exclusive OR (integer)

EQv Bitwise equivalence (integer)

Bitwise implication {integer)
<., Relational tests (result Is TRUE = - 1

, of FALSE = 0)

Funcllon Aclion |

ABS (exp) Absolule value of expression

ATN {exp} Arctangent of the expresslon (in
radtans)

COBL (exp} Conver! the expresslon o a double
preclsion number

CINT (exp) Convert the expression o an integer

COS (exp} Cosine of the expression {in radians)

CSNG (exp) Convert the expression to a single
precision number

EXP {exp) Raises the constant e to the power of
exprasslon

FIX (exp} Returns truncated Inleger of
expression

FRE {exp) Gives memory free space nol used by
BASIC

INT {exp} Evaluates the expression tor \he
larges! Integer calcutated
LOG (eyp) Gives the natural logarithm of the
expresslon
RND [{exp)l Generates a random number.
Expression;
<0 sead newsequence
= G return previous random number
=0 or ommitled, return new
random number

Function Aclion

SGN (oxp) tif expresslon > = 0 if axpression
= 1 — 1 if expression 0

SIN (axp} Sine of the expression {In radlans)

SQR {exp) Square root of expression

TAN (exp) Tangent of the expresalon {in radians)

STHING FUNCTIONS
Function Aclion
ASC (string)

Retutns the ASCH value of the first
character of string

CHRS {oxp)
Relurns a one-charecler string whose
character has the ASCH code of exp

FRE {siring)
Returns remalning memory free space

HEXS$ {oxp}
Converts a number Lo a hexadecimal
string

INKEYS$
Raturns all the one-character string read
from terminal or nuil string If no
character pending at terminal.

INPUTS {length, [1#] m]
Returns a string of length characters
read from console or from a flle.
Characters are not echoad.

INSTR foxp), string 1, strng 2}
Returns the first position of the first
occurrence of siring 2 in string 1
slarting at posllion exp

LEFTS (slring, length}
Returns leftmost length characters of
the string expression :

Functlen Acllon
LEN (string)
Returns the length of a string

MID$ (string, slart [, length}t
Returns characters from the middie of
the string starting at the posllion
speclfied to the end of the string or for
length characters

OCT$ {exp)
Converls a number to an octal string

RIGHTS (s\rlng, Tongth)
Raturns rightmost length characters of
the string expression

SPACES (exp)
Returns a string of exp spaces

STRS$ (exp)
Converts a numeric exprossion to a
string

STRINGS (leagth, string)
teturns a string fength long contalning
first character of string

STRINGS (lenglh, exp}
Returns a strlng lengih tong containing
characters with numeric value exp

VAL {string)
Converls the string rapresentation of a
number to its numerle value

O AMD SPECGIAL FUNCTIONS

Function Action
CVI {siring)
Converls a 2-character

CVS (string)
Integer (CVY), Converts a 4-character

CVD (string)
String 1o a single preclsion number
{CVS). Converts an 8-character string
to a double precision number (CVD).

ERL

Error line number
ERR

Error code number
INP {port)

Inputs a byte from an input port
LPOS (n}

Returns carriage position of tine

printer {n is dummy argument)
MKIS (value)

Converts an integer to a 2:character
MKSS$ (value]

)
String (MKI$). Converts a single

MDKS (value)
Preclsion value to a 4-characier siring
{MKS$). Converis a double precision
value to an 8-character siring (MKDS$).
PEEK (oxp)
Reads a byte trom memory tocation
specified by expression

POS (n}
Returns carriage poslition of terminal (n
ts dummy argumont)

SPC {exp)
Used In PRINT statements to print
spaces

TAB (exp)
Used in PRINT statements to tab
carrlage to specifled posilion

i
]

USR [n} (arg)
Calls the user's machine language
subroutine with the specified argument.
See DEF USR.

VARPTR (ver}
Relurns address of variabte in memory
or zero f variable has not been assigned
a vaius

ATN (exp)
PRINT US
PECEH

O FORMAY FIELD

NUMERIC

Possible Flold
Spaciller Dights Characlers Dalinition
L} 1 1 Numeric fletd

. 0 1 Decimal point

+ 0 1 Print leading
o tralling
sign. Positive
numbers will
have "+,
negative
numbers witt
have ="

Trailing sign.
Printg "—" {t
negative,
otherwlse
blank.

. 2 2 Leading
asterisk

58 1 2 Floaling
dollar sign. §
is placed In
frant of the
leading digit.

Asterisk and
floating dollar
slgn,

Use comma
avery three
dtgits (ieft of
decimal poelnt
only}

it 0 4 Exponentlal
formal,
Number Is
allgned so
teading digit
is non-zero.

underscore ¢ 1 Next
character
literad

STRING

1 Single
characisr

| <spaces > [24+
Rumber of
spaces
character
fleld

& Variable
length fisld

INPUTIOUTRUT STATEMENTS
StalemeniSyntax/Function
CLOSE

CLOSE [(#} [[#] [..]} Closes files, (no
argument, all open files are closed.

DATA DATA list of constants Lists data to be
used in a READ slatement.

SPECTRAVIDEO INTERNATIONAL LTD.

SV1-328MK{-UM-1 PRINTED IN HONG KONG

