
OSBORNE
®

US~RGUID~
Second Edition

BY THOM HOGAN

OSBORNE
CP/M®

USER GUIDE
Second Edition

OSBORNE
CP/M®

USER GUIDE

Second Edition

By Thom Hogan

Osborne/ McGraw-Hill
Berkeley, California

Published by
Osborne! McGraw-Hill
630 Bancroft Way
Berkeley, California 94710
U.S.A.

For information on translations and book distributors outside of the U.S.A.,
please write to Osborne/ McGraw-Hill at the above address.

OSBORNE CP(M® USER GUIDE, SECOND EDITION

Copyright © 1982 by McGraw-Hill, Inc. All rights reserved. Printed in the United States of America.
Except as permitted under the Copyright Act of 1976, no part of this publication may be reproduced
or distributed in any form or by any means, or stored in a data base or retrieval system, without the
prior written permission of the publisher.

1234567890 DODO 8765432

ISBN 0-931988-82-9

Cover design and art by Timothy Sullivan

Text design by KL T van Genderen

Photos by Harvey Schwartz

The italicized names are trademarks of the following companies (with registered
trademar ks denoted by ®):

App/e® Apple Computer, Inc.

CBM, PET® Commodore Business Machines Inc.

CP/ M®, CPj NET®, CPj M-80, CPj M-86, MPj M II Digital Research Corp., Inc.

IBM® IBM

Smartmodem D.C. Hayes Corp.

Softcard Microsoft Inc.

The Source (Servicemark) Source Telecomputing Corporation

WordStar MicroPro International Corporation

Z80® Zilog, Inc.

This book is dedicated to Lore Harp, Carole Ely, Steve Jobs, Steven Wozniak,
Gary Kildall, and Seymour Rubenstein, who gave me the tools to write it.

Contents

1
2
3
4
5
6
7
8
A
B
C
o
E
F
G
H

Introduction xi
CP / M and Operating Systems
CP / M Built-in Commands 23
CP / M Transient Commands 51
Assembly Language Utilities 99
Transient Programs and CP / M 133
MP/M, CP/NET, and CP/M Derivatives
Technical Aspects of CP / M 181
The Systems Approach 217
CP/M Command Summary 231
ASCII Character Codes 245
Comparisons of CP / M-80 and CP / M-86
CP / M Prompts 253
Diskette Selections 255
Annotated Bibliography 259
CP / M Sources 267
Manufacturers'Index 269

Glossary 273
Index 281

159

249

Introduction

Your computer is not a single unit but an interrelated system of devices and
programs. You must direct these components to carry out any program you wish to
run. CP / M-80 and CP / M-86 are operating systems which do much of this job for
you. CP / M-80 or CP / M-86 directs the activities of your computer's components
and manages files which contain computer instructions or data.

Although CP / M-80 and CP / M-86 are complex computer programs, you can
learn to use them without any prior computer experience. This book introduces the
novice user to the microcomputer system and examines CP / M's function within
that system.

Chapter I provides the basic, practical information you need to get started.
Chapters 2 and 3 detail the CP / M-80 and CP / M-86 commands. This is information
you will use every day, and we recommend that you study the examples carefully.
The beginning three chapters of this book provide a solid foundation for
understanding what CP / M is and how to use it.

Chapter 6 explains the functions of two CP/M relatives-MP / M and
CP / NET -and examines the commands unique to those operating systems. The
major differences between Cromemco's COOS and Digital Research's CP / M-80
are highlighted to enable Cromemco operators to use this book.

Chapters 4 and 7 are written for assembly language programmers who wish to
modify CP / M-80 or CP / M-86 or use them for program development. This
information is not essential to most CP / M users, but it is provided here to give a
more complete discussion of CP / M. We hope that the more courageous readers will
be stimulated to make full use of CP / M utilities described in these chapters.

A final section, Chapter 8, distills the author's experience with CP / M-80 and
offers a number of helpful hints.

Xl

CP/M USER GUIDE

An annotated bibliography provides directions for additional reading, and
several appendices offer practical consumer information about CP/M-compatible
programs, languages, and products.

Some special introductory comments regarding this revised edition of the
Osborne CP/ M® User Guide are in order.

The primary concerns in rewriting, restructuring, and adding to the text of this
second edition were to make the book more accurate and more complete. Since the
book was originally written, CP / M-86, MP / M-86, and MP / M II have been
introduced and a third revision of CP / M-80 has been designed (CP / M 3.0). And, as
happens with many works, the author had second thoughts about how to make
some sections more understandable. The CP/M-86 commands and information
have been integrated into the text in a manner that allows owners of either
CP / M -80 or CP / M -86 to make equal use of this book.

A lot of effort has been expended to make this revision the most complete and
accurate manual forCP / M users. If you have a working computer system, read this
book while seated in front of your computer. Try the commands and examples
presented here; do not just read about them. You will be comfortable with CP / M
much sooner than you expected.

One last comment: the terms CP/M, CP/M-80, and CP/M-86 are used in this
book to mean specific (and different) versions of the operating system. Whenever
we refer to CP / M, we are writing about all versions of CP / M. Whenever we refer to
CP / M -80 or CP / M -86, we are referring to specific versions of the operating system.

Books, like computer programs, are never completely free of errors. The author
and publisher invite your comments and criticisms.

CP / M is a registered trademark of Digital Research. MP / M, MAC, SID, and
DESPOOL are trademarks of Digital Research.

This book is the work of the author and the publisher; it has not been reviewed,
authorized, or endorsed by Digital Research.

xii

CHAPTER

1 CP/M and
Operating Systems

CP / M is a disk operating system for microcomputers produced by a company
named Digital Research. CP / M stands for "Control Program/ Monitor." Versions
of CP / M are available for a wide variety of microcomputers from a number of
different sources. CP / M -80 can be used on almost any microcomputer which uses
the 8080 or Z80 central processor unit and has 8-inch or 5y..-inch floppy disk drives.
CP / M -86 can be used with almost any microcomputer which uses the 8086 or 8088
central processor unit and has floppy disk drives.

History of CP/M

CP / M was developed in 1973 by Dr. Gary Kildall, who was, at that time, a
software consultant for Intel. The earliest version was written for Kildall's own
experimental system, which included one of the first 8-inch disk drives built by
Shugart Associates-a shopworn drive that had been used for equipment life tests
before being passed on to Kildall.

Kildall showed his earliest versions of CP / M to Intel, but that company declined
to market or further develop the project. This was not surprising, because in 1973
and 1974 microcomputers were a rarity, and those that had them were not exactly
sure what they wanted to do with them.

By 1975 quite a few small companies were marketing microcomputers to curious
hobbyists. When most of these companies developed computers that incorporated
disk drives, they usually also built their own operating systems. Had these
pioneers-Altair, Polymorphic, and Processor Technology, for example-been
able to get their products to consumers quickly, CP/M might not have become the
"quasi-standard" operating system it is today.

CP / M USER GUIDE

Instead, several small microcomputer manufacturers decided to eliminate costly
research and development and adopted Kildall's CP / M operating system for their
products. Most notable among these smaller companies were Tarbell Electronics
and Digital Microsystems. These two firms were among the first to ship working
disk systems. Because these firms manufactured "add-on" components-ones
which could be used on virtually any system-owners of Altairs, Vectors, Polys,
and other systems did not have to wait for the manufacturer of their computers to
produce drives. In addition, IMSAI, another microcomputer pioneer, had been
shipping disk systems without any software to run them, yet they promised to ship
an operating system as soon as it was ready. This operating system turned out to be
IMDOS, which was really a disguised version of CP / M.

Another important element in CP / M history is the enthusiasm of its first users.
These true hobbyists tackled normally insurmountable problems in their pursuit of
new knowledge and experience. Theoretically, CP / M-80 could link any 8080- or
Z80-based microcomputer with any disk system, and a group of hobbyists with
"mix and match" systems emerged to test Kildall's product. These hobbyists devel­
oped a number of refinements and, more important, a strong and visible users'
group.

The support of a strong users' group cannot be underestimated. During the infant
years of the microcomputer industry, accurate product information was not readily
available. Manufacturers often released products with incomplete documentation;
computer stores were still relatively unknown; and in some cases, users' groups were
more stable than the companies that developed the product the users' group was
formed to support.

After manufacturers began delivering reliable disk drives, software developers
launched the next vital phase of CP / M's evolution. The key to making software
development financially feasible is to write programs that run on as many different
microcomputers as possible. CP / M-80 was one of the few operating systems that
could run on just about any 8080- or Z80-based microcomputer, and it was not
restricted to only one type of disk drive.

Fortunately for CP / M's development, the first programs that became available
were development tools-programs that help programmers generate other pro­
grams. Among the development tools that helped establish CP / M as the leading
operating system for microcomputers were CBASIC (and its predecessor,
EBASIC), Microsoft BASIC, and several special assembly language programs.
These tools, in turn, were used to write application programs, such as general
ledgers, database and inventory programs, and word processing programs.

The popularity of the CP / M operating system became part of an escalating
pattern: CP / M spawned programming languages and development tools, which in
turn gave birth to application programs. These CP/ M-dependent application pro­
grams increased CP / M sales, which again led to an increased number of develop­
ment tools being introduced. This upward spiral of sales leading to more tools
leading to more application programs leading to more sales has continued unabated
for several years now, and shows no signs of stopping.

2

CP/M AND OPERATING SYSTEMS

In fact, 1981 was an important year for CP/M. With the introduction of new
microcomputers with CP/M operating systems as a standard or as an option by
computer giants like IBM, Hewlett-Packard, and Xerox, the number of users of
CP / M passed the quarter-million mark during the year. It is estimated that over 300
computer manufacturers now offer CP/M-80 or CP/M-86 with their equipment,
and owners of microcomputers which do not have an 8080, 8086, 8088, or Z80
central processor are now able to make use ofCP / M with the recent introduction of
the Microsoft SoftCard for the Apple and the announcement of an add-on process­
ing board for the Commodore CBM and PET line of computers.

From CP / M's modest beginnings, it has become the most widely used operating
system for microcomputers (and possibly for all computers if the number of
installations are counted instead of the number of users). Many changes have been
made to Kildall's original operating system, but despite its simplicity, there is much
to learn about CP / M.

CP/M Manuals

Now you come into the picture. You probably purchased this book because you
need CP / M to run an application program. The program may be a simple word
processing program or a sophisticated accounting system, but both require an
understanding of CP / M.

Digital Research's manuals for CP / M were not written for you; they were written
for professional programmers. This book attempts to bridge the gap between
Digital Research's manuals and your knowledge of computers.

The CP / M manuals you have will depend upon your version of CP / M and where
you got it. Digital Research is constantly upgrading CP / M, so new versions are
released from time to time. The most recently released CP / M-80 is version 2.2.
Before version 2.2, version 1.4 was commonly distributed. In addition, IBM and
others are now distributing a special version of CP / M named CP / M-86 (because it
was designed for the 8086 central processor instead of the 8080 or Z80).

If you purchased a CP / M-80 version 2.0 or newer (a higher number), you should
have the following manuals:

An Introduction to CP/ M Features and Facilities

CP/ M 2.0 User's Guide
ED: A Context Editor for the CP/ M Disk System

CP/ M Assembler (ASM)
CP/ M Dynamic Debugging Tool (DDT)

CP/ M 2.0 Alteration Guide

CP/ M 2.0 Interface Guide

Users of CP/M-80 version 1.4 or earlier will be missing the CP/M 2.0 User's
Guide, the CP/ M 2.0 Alteration Guide, and the CP/ M 2.0 Interface Guide and will
instead have an Alteration Guide and Interface Guide for version 1.4.

CHAPTER I; 3

CP/M USER GUIDE

Some computer manufacturers, like Microsoft, CompuPro, and Morrow
Designs, now reprint and bind these seven manuals into one. Others, like Osborne
Computer Corporation and Xerox, do not use Digital Research manuals but
instead rely upon manuals they have written specifically for their computers.

CP / M-86 owners receive four manuals: CP/ M-86 Operating System User's
Guide, CP/ M-86 Operating System Programmer's Guide, CP/ M-86 Operating
System Guide, and The CP / M-86 Operating System Command Summary. Owners
of the IBM Personal Computer receive a specially produced manual set that
incorporates the aforementioned manuals.

However, you probably found whatever manuals you received with your copy of
CP / M confusing or problematic, and thus you have purchased this book to help
sort out the information you need to use CP / M. This book explains the first five of
the CP / M-80 2.2 manuals and the CP/ M-86 System Guide in detail, and it also
summarizes the information in the remaining manuals.

The Function of CP/M
Within a Microcomputer System

Before going any further, it is important to understand the functions served by
CP / M within a microcomputer system. If you know what is going on and why, you
are less likely to make mistakes.

We will describe the function of CP/M (or any operating system) within a
computer system. This description assumes an elementary understanding of micro­
computers and how they function.·

A microcomputer system is illustrated in Figure 1-1. The system illustrated is
typical of configurations that you may encounter. It includes the microcomputer, a
terminal that combines keyboard and video display, a pair of disk drives, and a
printer.

You could make numerous changes to this system. Instead of the single, inte­
grated terminal you could have a separate display and keyboard. The keyboard
could be part of the microcomputer with the display as a separate unit, or the
keyboard, display, and microcomputer could be packaged together.

Small systems may use cassette tape and cassette tape drives instead of floppy
diskettes and floppy disk drives. In the early days microcomputer systems used
paper tape to store information and read it back and required a paper tape reader
and a paper tape punch. The use of cassettes and paper tape with CP / M is
uncommon because disks are faster and more reliable.

Microcomputers spend a lot of time transferring information between the
microprocessor and various other components of the system. Microcomputers
must also control the operations of these other components. Microcomputers

* If you need more information about microcomputer systems, see An Introduction to Microcomputers:
Volume O-Jhe Beginner's Book, 3rd. ed., by Adam Osborne and Dave Bunnell. Berkeley: Osborne/
McGraw-Hill, 1982.

4

CP / M AND OPERATING SYSTEMS

...
~"';';':':':':':~" ;';aMI\lli ., '!!I""" •.

FIGURE 1-1. A complete microcomputer system

perform these operations by executing programs that are referred to collectively as
an operating system. CP / M is such an operating system. By using appropriate
CP / M commands you can transfer data from a diskette to the microcomputer,
print data at a printer, or perform any operation which the microcomputer system is
physically capable of handling.

In order to perform these microcomputer system functions for a wide variety of
different configurations, CP/M (and most other operating systems) ignores the
physical units that comprise the microcomputer system and deals instead with
logical units. In other words, rather than addressing a printer, the operating system
assumes a listing device is present. Likewise, rather than reading directly from a
paper tape reader, the operating system assumes the input comes from a reader
device.

The manufacturer of your microcomputer system usually ensures that the sys­
tem's actual physical units connect properly to the logical units CP / M uses. If you
put together a system by "mixing and matching" components from several manu­
facturers, you may have to make some changes to CP / M yourself. These program
modifications are invisible if made correctly, but if the proper changes are not made,
CP / M may work incorrectly, if at all.

As an operator of a microcomputer system you may occasionally be concerned
with physical and logical units. For example, you may have the option of sending
output to a printer or a display. Likewise, you may have the option of typing input
at a keyboard or receiving input over a telephone line from a remote terminal. You
can make such physical unit choices easily by using the appropriate CP / M com­
mands we describe later in this book. For the moment, you only need to understand
the general function of CP/M. You do not need to understand the operating
system's specific activities in order to use CP / M.

An operating system such as CP / M is itself a computer program which must be
executed by a microcomputer. Because it is a program, CP / M must be written in a
programming language. The programming language that a microcomputer under-

CHAPTER 1/ 5

CP/ M USER GUIDE

stands is determined by the microprocessor (sometimes called a central processing
unit or CPU) that the microcomputer contains.

A microprocessor is a very small and unassuming device; Figure 1-2 illustrates a
microprocessor. The microprocessor is a microcomputer's most important com­
ponent; it actually translates the instructions which constitute a program and causes
the action associated with the instruction. Some microprocessors can execute
CP / M, but others cannot.

CP / M was initially written for the 8080A microprocessor manufactured by Intel.
Since the 8085 and Z80 microprocessors also execute 8080A instructions, CP / M-80
will run on microcomputers containing either of these two microprocessors. In
addition, in early 1981 Digital Research introduced CP / M-86 for the 8086 and 8088
microprocessors.

In order to distinguish between the 8080 and the 8086 versions of CP / M, we use
the same nomenclature that Digital Research uses: CP / M-80 refers to the current
version of CP / M for 8080, 8085, and Z80 microprocessors; CP / M -86 refers to the
current version of CP / M for the 8086 and 8088 microprocessors.

Some Useful Terms

In order to be as precise and clear as possible throughout this book, we present
here a short glossary of the more common computer terminology that we will use.
Specifically, we want to make sure that you understand the "units" of information
we will be talking about. When one talks about language, one uses the terms words,

z
o
;:::
0(
a:
o c..
a:
o
u
..J

"' f-
15
u.
o
>­
en

"' f-a:
::l
o
U

~ o
:c _____ -'--____ --1 c..

FIGURE 1-2. A microprocessor chip

6

CP/M AND OPERATING SYSTEMS

sentences, phrases, and paragraphs. Similarly, when one talks about computers,
one talks about bits, bytes, sectors, and tracks.

If you are already familiar with computers and the difference between bytes and
bits, you might wish to skip ahead to the next section. Newcomers to computing
should study the following information carefully. As with most disl-iplines, comput­
ing has a vocabulary all its own.

BIT
A bit is the smallest piece of information a computer can maintain. All of a
computer's data is stored internally as a series of I 's and O's. A single bit is a
single I or O. You will encounter this term later in this book when the
technical details of CP / M are discussed.

BYTE
The storage capacity of a microcomputer's memory, or its disks, is always
described as some number of bytes. A byte is a memory unit capable of
storing a single character. For example, the letter "A" or the digit "I" could
be stored in one byte of memory. Numbers without decimal points (termed
"integers") are usually stored in two consecutive bytes of memory, while
numbers with decimal points (termed "floating point" numbers) are stored
in four or more consecutive bytes of memory per number.

Memory size is usually expressed, not as thousands of bytes, but as some
number of"K" bytes. I K equals 1024. All computers are binary machines;
in other words, they count in twos. You will get the number 1024 if you
double 2 to give 4, then double 4 to give 8, and keep on doubling in this
fashion ten times.

A byte consists of eight consecutive bits. Since a bit can only contain a 1
or a 0 value, a little binary arithmetic will soon show you that a byte has 256
possible values. In most microcomputers, each possible byte value is
assigned to one symbol, letter, or digit. A "1 ", for instance, is stored by the
computer as a byte value of 49, while an "A" is stored by the computer as a
byte value of 65. The "code" which determines which value is assigned to
which letter, digit, or symbol is called the ASCII code (ASCII stands for
American Standard Code for Information Interchange).

TRACK
When information is stored on a cassette tape, it is stored as a single track
of data down the length of the tape. When information is stored on a
diskette, the surface of the diskette is considered to be a series of concentric
circles, called "tracks." The outermost circle is referred to as track 0, while
on standard 8-inch CP / M disk systems, the innermost concentric track is
called track 76.

SECTOR
Each concentric track of information on a diskette is further subdivided
into units called "sectors." On standard 8-inch CP / M disk systems each
sector stores 128 bytes (characters) of information, and there are 26 sectors

CHAPTER 1/ 7

CP/M USER GUIDE

on each track. The smallest unit of information that CP / M manipulates on
a diskette's surface is one sector. Manipulations of a single byte at a time
are done in the computer's memory and not directly on the diskette.

Figure 1-3 illustrates the concept of sectors and tracks.

Types of CP/M

CP / M may be a "quasi-standard" operating system in the microcomputing field
at present, but all CP / Ms are not equal. CP/M -80 and CP/M -86 vary with the
input and output (I/O) instructions to each machine and may vary in other ways as
well.

In addition, computer technology is not standing still. The machine you now own
does far more far faster than the vacuum tube computers ofthe 1950s. The recent
introduction of hard and fixed disk drives may become one of the most significant
developments. These new disk units can store far more information than the current
diskette technology. While drives which use floppy diskettes may store up to 2
megabytes (2,048,000 characters of information), hard or fixed disks may store up
to 300 megabytes.

8

Sector within
a single track

Track

39 to 77 tracks
(normally)

.....
/ - - - // " - - _..... ,

/ '" - -- "
I I I //" ""',' \ \ \

I II \\ \
1I11 \\\\

"'" 11111
111\ 1//"
,\\\\ II1I

II I
\ \ " ,,// I I I

~
" .:::: =: = ::: -:.. //

..... - - - " / , _--",

5 to 27 sectors
each track

- - -

FIGURE 1-3. A diskette's recorded surface

CP / M AND OPERATING SYSTEMS

Since CP / M -80 was designed originally for floppy diskette systems, it requires
changes to use hard disk units. This is the primary difference between versions 1.4
and 2.2 of CP / M-80 (see Appendix C for a complete list of differences between
versions).

The different types of CP / M -80 and CP/M -86 also reflect the large number of
manufacturers using CP/M. Each may add utility programs or refinements to
CP / M to improve performance on a particular machine.

CP/M Compatibility

Unfortunately, not all CP / Ms are compatible, and even the degree of compat-
ibility can vary. The primary ways CP / M varies are

Version number (1.3,1.4,2.0,2.1, or 2.2)

Location of CP / M within memory (64K CP / M, 48K CP / M)
Type of diskettes used (single density, double density, 5Y4-inch, 8-inch)
Logical layout on the diskette (the way information is stored on the diskette,
usually differences in the number of sectors and/ or tracks used)
Vendor (normally a combination of the four preceding variations)
Processor type (CP / M-80 versus CP / M-86).

To list every different type of CP / M would be futile; the list would be out of date
by the time you read this book. But despite the possibilities for variation, CP / M still
remains more machine-independent than most operating systems. By linking com­
puters using two disparate versions of CP/M, program interchanges or data
transfers can usually be accomplished.

CP/M Version Numbers
As stated earlier, there are several versions of CP / M. In general, this book is

applicable to CP / M-80 version 2.2, but owners of earlier or subsequent versions
will find this book useful as well.

CP / M-80 versions are identified by one number to the left of the decimal point,
which refers to the overall version number, and one number to the right of the
decimal point, which refers to a revision within a version.

A second number to the right of the decimal point, as in 1.42, identifies subtle or
machine-dependent modifications. If your version of CP / M -80 is not l.4x or 2.2x
(where "x" represents any machine-dependent number), ask your supplier for a
newer release. Versions of CP / M-80 include

1.3 The original version of CP / M-80

1.4 A more error-free version of CP / M -80 release I

2.0 The original release version of CP / M-80 release 2

2.1 A field update of version 2.0

2.2 The current revision of CP / M-80 version 2.

If you are using version 1.3 or 2.0 of CP / M-80, you should immediately see about

CHAPTER 1/ 9

CP / M USER GUIDE

getting your version updated because significant problems may result from using it.
Version numbers can vary from vendor to vendor. Some CP / M-80 vendors

released several different CP / M -80 revisions as version 1.4, while others indicated
their own updates by numbers 1.41 and 1.42. In general, only the first two numbers
in a version number indicate changes to CP / M-80 by Digital Research.

Digital Research CP/M Products

Since Digital Research wrote CP / M and supports it, we will compare other
products with theirs. Currently, Digital Research supports the following CP / M
products:

10

Single Density 8-inch Diskettes.
This diskette uses a predefined (IBM 3740) format for storing information.
CP / M-80 was originally designed for this format. Versions 1.4 and 2.2 are
available and differ primarily in the number of disk drives and capacities
each can address. As supplied by Digital Research, CP / M-80 comes ready
to use on an Intel MDS development system microcomputer; if you own
any other microcomputer you will have to make modifications to portions
of CP / M-80 in order to get it to work properly.

Double Density 8-inch Diskettes.
More information can be stored on this diskette than on a single density
8-inch.

CAUTION: Most double density implementations of CP! M-80 are not directly
compatible; a diskette created on one manufacturer's drive usually cannot be
inserted and directly read by another manufacturer's drives. As with single
density, Digital Research's implementation is based upon IBM specifications;
however, unlike single density, very few microcomputer manufacturers support
the double density standard.

In addition, Digital Research supports the following operating systems:

MP/M.
A multiuser form of CP/M. Instead of supporting just one terminal,
MP / M is capable of supporting several. See Chapter 6 for more informa­
tion about MP / M. The current version supplied by Digital Research is
known as MP / M II.

CP/NET.
A multicomputer form of CP / M which allows one computer to use the
resources of another (printers, disk drives, and so on). In order to use
CP/NET, at least one of the computers must be equipped with MP / M, and
all others must use CP / M. Again, see Chapter 6 for more details on this
operating system.

CP/M-86.
A special implementation of CP / M for computers that utilize the Intel
8086 or 8088 microprocessors. In addition to supplying a single density

CP/M AND OPERATING SYSTEMS

8-inch version of CP I M-86, Digital Research also supports a version on
5Y4-inch diskettes for the IBM Personal Computer system.

Concurrent CP/M-86

Like CP / M -86, Concurrent CP/M -86 is designed to be used with computers
which utilize 8088 or 8086 central processing units. The "concurrency" indicated by
the title refers to the fact that multiple processes may be performed by a single user
on a Concurrent CP / M-86 system. Digital Research supplies Concurrent CP / M -86
for IBM Displaywriter and personal computer systems.

NOTE: Digital Research provides a ready-to-run CP/M implementation for
specific equipment only. For microcomputer systems that Digital Research does
not support, special instructions for the terminal, modem, printer, and disk
drives are necessary. Only a skilled assembly language programmer should buy
CP! M directly from Digital Research. Consultants can be hired to install CP 1M
if ready-made implementation is not available for your hardware.

Lifeboat Associates CP/M-80 Products

In addition to selling Digital Research CP / M products, Lifeboat Associates has
altered the part of CP / M -80 that contains instructions to the disk drives and other
devices (the BIOS section, described in Chapter 7). Lifeboat Associates' CP / M-80
products are available for the Radio Shack TRS-80, Micropolis, North Star,
Polymorphic, Altair, Zenith/ Heathkit, and a number of other systems.

While written programs using Lifeboat Associates CP / M-80 products are almost
universally compatible with other CP / M -80s, the physical program storage media
are not. Thus, the end result may disappoint you. Since the physical media, the
diskettes, may differ from one machine to the next, copying programs or data from
one microcomputer to another can be difficult. On the other hand, if both systems
have modems, you could send programs via phone lines to a different system.

The importance of having equipment capable of reading and writing information
in the IBM 3740 8-inch single density diskette format cannot be underestimated. At
present, this is the only physical means of interchanging information between
computers. Short of having 8-inch single density disk drives, your computer system
should have some means of communicating with other equipment. Normally a
"modem port," or perhaps merely an extra "serial port" will enable you to link your
computer to another.

Because Lifeboat Associates is only a distributor of CP / M-80, their products are
released after Digital Research updates. For instance, Lifeboat Associates released
products for disk drives other than standard 8-inch floppies one year after Digital
Research first introduced CP / M-80 version 2.2.

Furthermore, all diskette systems do not universally use all CP / M-80 utility
programs. For example, formatting a diskette-the process of labeling or identify­
ing the sections of a previously unused diskette so that the operating system
recognizes where data lies-is not provided for under Lifeboat's North Star single
density CP / M-80.

CHAPTER II II

CP/M USER GUIDE

Manufacturers' CP/M Products

Many microcomputer manufacturers provide CP / M-80 or CP / M-86 as a stan­
dard operating system on the computers they sell. Such manufacturers include
Altos, CompuPro, Digital Microsystems, Dynabyte, Exidy, IMS International,
Micromation, Morrow Designs, North Star, Onyx, Osborne, and Vector Graphic.

Manufacturers' CP / M-80 products differ slightly from Lifeboat Associates'
CP / M-80 products-manufacturers all reconfigure portions of CP/M for their
own equipment. Some, however, add subtle traps for the unwary. These traps are
often labeled "features." For example, Vector Graphic CP / M-80 version 2.2
includes some complicated checking for the computer model in use. They also
added a routine to check for the depression of certain keys. In the Vector Graphic
product, these additional routines make some otherwise standard CP / M-80-
compatible programs incompatible with their implementation of CP / M-80.

At least one manufacturer has also made modifications to the internal structure
of CP / M-80 to make it work faster. While this is certainly a benefit, it reduces its
compatibility with systems that use a standard version of CP / M-80.

Yet other manufacturers, like TEl, have produced operating systems for their
own equipment which work similarly to CP/M. Again, there may be significant
advantages to using such operating systems, but they are simply not CP / M, and
users of these "look-alikes" should be aware of this.

With the advent of CP/M-86, some manufacturers, notably CompuPro and
IBM, have begun providing CP / M-86 as an operating system with their com­
puters. While data on CP / M-86 storage diskettes may be compatible with data on
CP / M -80 storage diskettes, programs are not compatible between the two versions,
at least not without some conversion.

Yet another type of hybrid of the Digital Research CP/M operating system
appeared in early 1982. CompuPro and G & G Engineering introduced a CP/M­
MP / M version of the operating system-one that is able to run programs created
under both of the original versions (CP / M-80 or MP / M II). Digital Equipment
Corporation (DEC) went one step further with the introduction of their Rainbow
100 system, which features both Z80 and 8088 central processing units. The DEC
CP / M can execute programs and commands for both CP / M -80 and CP / M -86.

Needless to say, if you receive any non-standard CP/M operating system, you
should read the manual that accompanies it to see how it differs from the versions of
CP / M described here.

CP/M Look<lllkes

In addition to computer manufacturers who have produced CP / M look-alikes, a
number of software firms have also done the same. Like CP / M, most of these
look-alike products can be used on a wide range of microcomputers. Some, how­
ever, are more restrictive than CP / M-80 and require that the microprocessor be a
Z80. TP / M from Computer Design Labs is one such product.

12

CP/M AND OPERATING SYSTEMS

Other popular CP/M-80 look-alikes are SOOS from SO Systems, developed
originally for the SO computer and then marketed separately; 1/ OS (also offered
under the name TSAI OS) from InfoSoft; and TurboOos, a special look-alike which
emphasizes speed of memory-to-disk transfers. In addition, COOS, the Cromemco
Disk Operating System, claims compatibility with CP I M-80 version 1.3. The
MUL TIl OS, also from InfoSoft, is an MP / M look-alike.

For the most part, these look-alikes will run standard CP I M-80 software. For
those of you who might have purchased a CP / M-80 substitute, Chapter 6 is devoted
to these look-alikes.

There is now even a CP I M-86 "work-alike," known variously as 86-00S,
Microsoft ~OS, and IBM ~OS. Originally designed to allow Seattle Computer
Products' system users to quickly convert existing CP IM-80 programs to the 8086
environment, 86-00S is similar to CP / M-86. 86-00S is briefly covered in Chapter 6.

Diskettes

Throughout this book we will be referring to "floppy diskettes" and "disk drives."
A floppy diskette is the flimsy removable media used by a disk drive, which is the
mechanical portion. Disk drives which utilize polished metal "platters" instead of
removable floppy diskettes will be referred to in this book as "hard disk drives"
(because the media is hard). For the sake of conciseness, we will refer to floppy
diskettes as "diskettes," disk drives as "drives," and hard disk drives as "hard disks."

The backbone of any disk operating system is, of course, the diskette itself. It may
be difficult to comprehend that 150 single-spaced typed pages (the equivalent of 30
hours of typing) can be stored on one flimsy magnetic diskette. Unfortunately, we
can easily forget to take the proper steps to protect the information stored on the
diskette. Before discussing detailed information about CP I M, we will pause for a
quick course on types, care, and usage of diskettes.

Comparing DlskeHes

Walk into a computer store, ask for a diskette, and the salesperson will ask you
what kind you need. For an idea of the possibilities, consider the following features:

8-inch versus 5!,4-inch diskettes
Single-sided versus double-sided diskettes
Single-density versus double-density diskettes
Soft-sectored versus hard-sectored diskettes
10-sector versus 16-sector hard-sectored diskettes
Write-protect notch versus no write-protect notch.

This is a confusing array of choices, and there are as many brands as there are
types. We could not possibly list all ofthe combinations. In fact, diskette manufac­
turers publish long lists of compatible diskettes, computers, and disk drives. Check
with any reputable computer store to learn which diskettes to use with your
microcomputer. Better still, check with the vendor who sold you the computer.

CHAPTER 1/ 13

CP I M USER GUIDE

A brief summary of the more popular types of diskettes and micro com puters is
provided in Appendix E.

Describing Diskettes

Diskettes, as we mentioned previously, are flimsy, and that is why they are
sometimes called floppies. If you have an extra diskette around, go get it right now,
as we are about to take a "diskette tour."

You notice first that the diskette is accompanied by a heavy paper envelope. This
envelope protects about two-thirds of the diskette from such data killers as dirt,
liquids, and thumbprints. Since it is a very thin envelope, it provides limited
protection-so be careful. Many diskette manufacturers print handling tips on the
back of this envelope. Read any information printed on your diskette; someday it
may mean the difference between retyping for hours or spending a relaxing evening
at home.

Carefully pull the diskette out of the envelope (it slides right out). If it looks like
you must cut something open to get inside, you are mistaking the diskette "sleeve"
for the envelope. The diskette has a square vinyl sleeve which protects a thin circular
disk. The sleeve has a circular hole in the center (as does the disk surface inside), and
there is an oblong cutout at one edge of the sleeve (see Figure 1-4). Also, there is a
smaller hole just to one side of the central hole.

14

These parts are identified as follows:

Centering Hole.
The disk drive mechanism locks onto this hole to spin the diskette inside the
sleeve.

Indexing Hole.
The disk drive looks here to find the starting sector (and in the case of

Write-enable notch
(5\4-inch)

User's label

Diskette
manufacturer's

label

Centering cutout

~~------.

FIGURE 1-4. A typical diskette

Indexing hole

Write-protect notch
(8-inch)

Recording surface
(media)

Alignment notches

Access hole in sleeve
(Allows head to
contact media)

CP/M AND OPERATING SYSTEMS

hard-sectored diskettes, each individual sector) for each track on the
diskette. Imagine a line drawn across the diskette surface at this point; the
drive waits for this starting line, then counts characters of information
from there.

Access Hole.
The head of the disk drive comes in contact with the magnetic surface
through this cutout. The head moves back and forth in this opening, from
track to track. Note that there are access holes on each side of the diskette.

Notch.
This is a write-protect notch. Writing on the diskette means adding infor­
mation to the diskette. A point of confusion arises here: on 8-inch diskettes,
if the write-protect notch is covered up, you can write on the diskette, and if
the notch is left uncovered, you cannot write on the diskette. On Sl4-inch
diskettes the opposite is true. If the notch is uncovered on the smaller
diskettes you can write on the diskette; if the notch is covered, the diskette is
protected against writing. (You might want to circle the appropriate sec­
tion of this paragraph for future reference.)

To compound the problem further, the 8-inch diskette write-protect
notch is located near the access hole while the Sl4-inch diskettes have their
write-protect notch on the side of the diskette (see Figure 1-4).

As if this were not enough, some manufacturers buy diskettes which have
no write-protect notch at all. Software vendors who sell programs on
Sl4-inch media usually buy such diskettes so that you can never make any
changes to the original diskette you receive.

Handling Dlske"es
N ow that you are familiar with the parts of the diskette, it is time to learn how to

handle it.
First, the don'ts.
Never touch the diskette surface. You may handle the vinyl sleeve when neces­

sary, but do not touch the actual magnetic surface ofthe diskette. No matter how
clean your hands are, even a slight residue might prohibit your computer from
reading some data.

Keep diskettes away from magnets. Silly instruction, you say? You think there are
no magnets where you work? Think again. If your computer has a video terminal
(one with a display tube), you have a magnet. Strong electrical fields can also act as
magnets. The speakers in any sound system almost certainly contain magnets.
Actually, the magnetic field most appliances generate is not enough to erase the
information on your diskettes except through direct contact. Even so, it is a good
idea to keep your diskettes at least a foot away from anything magnetic. Also,
contrary to popular belief, it is best to store magnetic media in a metal box, not a
plastic one. Plastic does not intercept stray magnetic fields, while metal does.

Do not bend your diskettes. The information on a diskette is packed into a very

CHAPTER 1/ 15

CP I M USER GUIDE

small area. Think about it for a moment: 2,000,000 characters (on some diskettes) in
an area of two surfaces eight inches in diameter. Any crease in the diskette can make
the read head of the disk drive lose contact with the disk surface, and a lot of
information could be lost in that crease.

Do not keep diskettes in a dirty environment. If you allow computer users to eat,
drink, or smoke while they use the computer, you ,are asking for trouble. Film­
makers routinely use cola to erase noises from magnetic sound tracks. If you should
accidentally spill a cola drink on your diskette, you would probably destroy all its
information.

Never leave a diskette in the computer when you power down. Remove the
diskettes before you turn off the computer and/ or the disk drives. Likewise, turn the
power on before inserting the diskettes. Most of the time, if you do not follow this
advice, nothing will happen. However, a "spike" of power could reach the magnetic
head of the disk drive and write spurious information. This can prove disastrous.

Do not let your diskettes get too full. Many programs use a diskette to temporar­
ily store data or to generate data. If this temporary or new data does not fit, you
could lose it.

Two factors limit diskette capacity: the number of files and the number of
characters. In some implementations CP/M allows as few as 32 files, while some
versions of CP / M-80 version 2.2 allow as many as 8192 files to be present on a hard
disk. Most versions of CP / M-80 will allow 64 or 128 files to be stored on a floppy
diskette and 256, 512, or 1024 files to be stored on a hard disk.

The number of characters on a diskette is determined by the drive and ranges
between 80,000 and two million characters for floppy diskettes. Hard disk drives
can generally store a minimum of five million characters and range in size to 30 or
more megabytes of storage.

Now for some do's.
Always insert diskettes slowly and carefully. Many of the 5Y1-inch disk drives

have a very small tolerance for alignment between the diskette and the magnetic
head which reads and writes information. In particular, Micropolis drives can be
made to miscenter a hastily entered diskette because the drives actually move the
diskette before it it positioned for reading. Diskettes are fragile; they should be
handled slowly and deliberately. Saving one second by rushing to get the diskette
into the drive may waste hours when you must reenter the lost information.

Label all your diskettes. Nothing is more frustrating than having fifty identical
diskettes and not knowing their contents. Diskettes, especially if you follow the
backup recommendations given later in this chapter, have a tendency to mUltiply
like rabbits. Consider this book. The text barely fits onto one high-capacity
diskette. However, copies of the last three revisions, plus backups, are stored. In
addition, the text editor program occupies most of another diskette. Add the
programming diskettes, another set of diskettes to keep important records and data,
plus a few for games and recreational purposes, and you can imagine the stack of
paper envelopes you might accumulate.

So take heed. Label your diskettes. Develop procedures to distinguish older

16

CP/M AND OPERATING SYSTEMS

versions or copies of your data from the current (or "use") ones. The label should
contain your name and the date, the name and version number of the operating
system, and some description of the diskette's contents.

Keep backup and rarely used diskettes away from the computer. Limit those
diskettes you keep at the computer to those you constantly use. Since you will
generate a number of diskettes, why complicate locating the diskette you need?

Make sure your diskettes are stored correctly. Just like phonograph records,
diskettes will be damaged if stored for long periods of time in other than a
horizontal or perfectly vertical manner. If diskettes are allowed to slant diagonally,
gravity will in time subtly bend the diskette. While diskettes do not warp like
records, when that bend gets to a certain point it will crease the diskette. If you store
diskettes horizontally, do not pile large numbers of diskettes one on top of another.
Diskette manufacturers recommend that you stack diskettes no more than ten deep.

Maintain your equipment. Disk drives are not as difficult to maintain as cars;
they do not require oil changes every 10,000 miles. Actually, diskette equipment can
be overmaintained. Constant adjustment of the mechanism may erode the toler­
ances built into the drives. Constant cleaning of the magnetic heads may be more
abusive to the heads than normal wear. Use a cleaning diskette (available from
diskette suppliers) once every three months or whenever you suspect disk drive
errors. The latest disk drives need maintenance only once a year, and in the case of
the newer Winchester technology hard disk drives, there is nothing to adjust-the
unit is a sealed mechanism.

Buy quality diskettes. Mail-order bargains for diskettes are priced below what
most dealers pay. At that price the diskettes have not been verified or checked for
their ability to store and retrieve data. You can hear the difference in quality
between diskettes; a poor quality diskette will make raspy rubbing noises. You do
not keep your personal and business records on napkins and paper towels, so do not
entrust your valuable information to their computer equivalents.

Inserting and Removing Dlske"es
Consult the manual of your microcomputer to learn how the diskette goes into

the drive. For horizontally mounted drives, hold the diskette (remember not to
touch the magnetic surface) so it is also on a horizontal plane. The label side should
be up. Insert the end with the head access hole (the oblong one) into the drive first
(see Figure 1-5). The writing on the label usually faces away from you as you insert
the diskette. Examples of computers for which the above process is correct are the
Apple, IBM, and Osborne computers.

There are exceptions even to this simple process. Altos, for instance, mounts their
disk drives upside down in the chassis for ease of maintenance. The label side of the
diskette therefore faces down when you insert a diskette into an Altos system.

Vertically mounted drives are a bit more difficult to describe because they may be
mounted so that the label either goes in on the left-hand or right-hand side as you
insert a diskette. If you do insert a diskette upside down, there is a possibility that
you may cause damage to the diskette; if you are in doubt about the process of

CHAPTER 1/ 17

CP/ M USER GUIDE

N
fo-

" «
~
:c
u
'" >-
'" >
" «
:c
>­
'"
~
o
:c

~--~ .. ~
FIGURE 1-5. Inserting a diskette in a horizontally mounted drive

inserting a diskette, make sure to consult the manual for your microcomputer.
Almost all disk drives tell the user when the drive is using a diskette (a process

oftentimes called "accessing" a diskette). A small red light, the disk activity light,
comes on each time a diskette is accessed. Do not put a diskette into or take a
diskette from a drive when the disk activity light is on unless the manual for your
computer says you can do so. On many systems, taking a diskette out while the
activity light is on may cause information to be written randomly across the diskette
surface. You stand more of a chance of damaging the integrity of the data on a
diskette if you remove it from the drive with the disk activity light on when the
computer is trying to write information onto the diskette (as opposed to merely
reading from it).

Rational handling of diskettes is applied common sense. Although diskettes are
new to the computer novice, there is no excuse for ignoring the implications of
misuse. CP/M can only be as good as the environment you create for it. Properly
maintain the equipment and carefully handle your data on the diskettes.

Starting Up CP/M

When any version ofCP / M is loaded into your computer, several things happen.
A cold start loader moves into your computer memory from the diskette . This
loader varies from machine to machine and may differ between CP / M versions, but

18

CP/M AND OPERATING SYSTEMS

its function is always to load CP/M. The cold start loader is a distinct program
stored with CP / M on the diskette.

Why load something into your computer in order to load something else? The
reasons are complex (and are discussed in Chapter 7), but primarily it facilitates
machine independence, which means that completely different computers can use
the same disk drives and the same copy of CP / M.

After the cold start loader brings in CP / M, a number of things happen. In order,
they are

CP / M is loaded into your computer's memory

Control of the computer is passed to CP / M
CP / M performs various initialization operations
CP / M places a "sign-on" message on your screen

The prompt A> appears on your screen

Finally, CP / M waits for you to type a command.

At this point, your display looks something like the following:

Sign-on
message

Command
prompt

Cursor
position

As you can see, CP / M does nothing particularly mysterious when you start your
computer. The whirring and clacking you hear from the computer's disk drives
indicate everything is working properly, and the information needed to get CP / M
running is being transferred from diskette into memory.

Next, consider the physical process you undertake to initialize CP/M. Since
every computer system is different, we will talk in general terms. If you are not sure
of the correct procedure, read the manuals that accompanied your computer.

Some peripheral devices must first be turned on. If you have a hard disk drive,
turn it on first, as some hard disk drives take several minutes to "get up to speed"
before they can be used.

If you have floppy disk drives, do not insert any diskette yet (unless your
computer manuals tell you to do so). If you insert the diskettes and then turn the
computer on or off, a small transient voltage may be applied to the disk drive head
and accidentally erase or change information on the diskette.

Turn the computer on. In some cases, the computer immediately attempts to load
programs from the diskette when you turn the power on. Do not insert a diskette
into a drive while the drive is attempting to access a diskette.

CHAPTER 1/ 19

CP I M USER GUIDE

Most manufacturers use a special routine to get things started. When you "power
on" such machines, they display a message on the screen and wait for your instruc­
tion. Some wait for you to press the RETURN key several times to determine the
speed at which the keyboard sends characters. Usually the instruction is a single
letter (like "B," which stands for "boot''). On these systems, you turn on the power,
place your diskette in the first drive, and press the "B" key or the instruction your
system requires.

Here is a summary of the start-up steps we have discussed.

l. Switch on peripherals' power

2. Insert diskette (some systems)
3. Power on computer
4. Insert diskette (remaining systems)
5. Press the CARRIAGE RETURN key (some systems)

6. Type start instruction (some systems-usually "B")
7. Wait for CP / M to "sign on."

Many newer computer systems automatically look for a CP/M diskette when
first turned on. For these systems, the normal start-up process is abbreviated as
follows:

I. Switch on peripherals' power

2. Insert diskette
3. Turn on computer
4. Wait for CP / M to "sign on."

See your computer manual for more specific start-up procedures.

Day-to-Day Routines

There are some day-to-day operating routines you need to know.

RESET the Computer:
Pressing the PaniC Buffon

There are a number of "fatal" errors that can endanger the data on your diskettes.
Fatal errors (errors from which there is no recovery) are guaranteed if you turn off
the power or press the RESET button while the disk drives are writing information on
the diskette. Unfortunately, there is no steadfast rule that says you should avoid
turning off the power or pressing RESET. You may resort to pressing the RESET

button to stop an "endless loop" of continuously executed instructions. Thoroughly
tested programs rarely get stuck in such a loop, but newly developed programs can,
and often do.

If one of these endless loops includes an instruction to write information onto the
diskette, the diskette activity light could come on and stay on. After a few minutes of

20

CP / M AND OPERATING SYSTEMS

waiting for something to happen, you may panic. Be certain the computer is in an
endless loop before proceeding. Good computer programs will give periodic mes­
sages like

I'M WORKING ...

or

THIS MAY TAKE A WHILE ...

While these messages are not exactly foolproof, they are somewhat reassuring
when the diskette activity light comes on and stays on.

If you are entirely convinced that your computer is in an endless loop, press the
RESET button on the computer. Almost all computers have one, but some ofthem
are hidden on the back. Pressing the RESET button on most computers has the same
effect as turning the power off and then on. However, the power is not interrupted to
any component. Some computers even retain the program or data that was in
memory at the time RESET was pressed, but this is not usually true.

If your manuals are not clear about what to do after pressing RESET, call your
computer store before doing anything else. If important data still remains in the
computer and you want to preserve it, reloading CP / M-80 or another program will
probably destroy it. Reloading CP / M-86 mayor may not destroy the program,
depending upon your computer. Even so, it is best to assume the worst and not
automatically assume that you can recover information in memory. Instead, be
pleasantly surprised if you manage to recover information from memory after
pressing RESET. The chance of doing so may be slim, but remember, it is the only
chance you will get. Do not do anything else after pressing RESET until you are sure
that the information in memory is not recoverable.

Backup the Diskettes
Almost every implementation of CP / M has a copy program (see Chapter 5).

Before ending a session at the computer, make copies of any diskettes you have
changed or updated. This process is called "backup."

Here are our suggestions on backing up diskettes.

1. Label all diskettes. Distinguish the original diskette from the copy. One
way is the father-son method. The original diskette is labeled "father," and
the copy is labeled "son." If you maintain an extra copy of the diskette for
archival purposes, this is the "grandfather" (original), and the "father" and
"son" diskettes are subsequent copies. This may not be the best way to
maintain copies, because it is far too easy to slip into the habit of making
infrequent backups.

A far better method is the rotating backup procedure. You have one data
diskette for each day you use the computer (for example, Monday through
Friday). At the end of Monday's processing, you copy the Monday diskette
onto the Tuesday diskette. At the end of Tuesday's processing, you copy
the information onto Wednesday's diskette. Using this method (assuming

CHAPTER 1/ 21

CP/M USER GUIDE

that you labeled each diskette carefully), you know immediately if you are
using the right diskette, and there is a natural backup sequence.

2. Diskettes are not permanent. No diskette will last forever. The reason for
this is simple: there is a great deal of physical contact between the diskette
surface and the inside of its sleeve. Also, a poorly aligned drive will create
excessive head wear.

Estimates of the life of a diskette have an extraordinary range. One
manufacturer claims its diskettes will endure a year of continuous use. In
any case, do not expect diskettes to last forever. If you use the rotating
backup procedure, retire diskettes sometime after six or twelve months of
use. This is a conservative practice since each diskette has been used only 27
to 54 days. But considering the price of a diskette against the cost of
reentering data, it seems a wise practice.

3. Never use programs on their original diskettes. When you receive a new
program (or CP I M update) on diskette, make a copy of it, label the
original "master," and safely store this master diskette. Using an original
diskette is foolhardy. Someday your computer may sit idle while you wait
for a replacement diskette. Most software vendors provide an update only
on return of the original diskette, so be sure to store it in a safe place.

Shutting Off the System

Earlier you learned how to turn on your computer system. The procedure for
shutting off the computer system is not the reverse of the power on procedure.

First, use a normal exit from any program you might be running. This step is
extremely important because many programs do not correctly finish writing infor­
mation to the diskette until you tell the program that you are done.

Second, remove any diskettes from their drives. Then turn the power off on the
disk drives, terminal, printer, and any other peripherals. Turn power off at the
microcomputer last. If you have hard disk drives on your system, turn offthe power
to those drives before turning off the microcomputer's power. Failure to do so may
result in loss of information on the hard disk. If your manual tells you to do the
opposite, of course you should follow its instructions.

22

CHAPTER

2 CP/M Built-in
Commands

We descri bed how to start up CP / M in Chapter 1. Now it is time to make CP / M
work for you. This chapter investigates the built-in commands in CP / M-80 and
CP/M-86.

COMMANDS ARE INSTRUCTIONS

Commands are instructions to CP / M. When CP / M is ready to receive a com­
mand, it displays its prompt (usually A». To get CP / M to perform a command,
type the command and then press the CARRIAGE RETURN key.

All versions of CP / M have two types of commands: built-in commands and
so-called transient commands.

The distinction is a subtle one. The short programs which carry out built-in
commands are always present in memory with CP / M. The programs which carry
out transient commands are not automatically loaded into memory when CP / M is
started up. A transient command causes CP / M to get a program from the diskette,
load it into computer memory, and execute the program. The program, called a
transient program, would not otherwise be present in memory.

To make things a little clearer, we will distinguish between built-in commands
and transient commands as follows:

A built-in command is immediately executed by CP / M without consulting
further instructions on diskette.

A transient command requires a set of instructions stored on diskette to be
brought into memory before each use. It is important to note that CP / M
executes all commands. Both built-in and transient command programs are
invoked by typing a command such as LOAD or DIR in response to the
CP / M prompt.

23

CP! M USER GUIDE

Commands Operate on Disk Flies

CP / M commands access and manipulate information stored on diskettes in files.
Afile is any information stored as a single entity with a unique name. The length of a
file may vary from no characters to the maximum capacity of the diskette. The
following are some examples of file length:

A single program
All of the data used by a program

An entire mailing list
A single list

A large group of standard form letters
A chapter of this book
The entire contents of this book.

No rule determines the information you may store in a file. You define a file's
contents when you create the file.

All files consist ofJields: single words, numbers, or any other convenient small
unit of information. You can also divide files into records to represent another
division of information larger than fields.

How files are divided into records and fields again depends on how you create the
file. To illustrate records and fields, consider a mailing list file. All the names and
addresses may constitute a single file, but each name and address could be desig­
nated a single record, while the name and each line of the address might each
become a single field.

FILE: [============I,AME m,D ADDRESS FI LE============]

RECORDS: [--name/address/clty--] [--name/address/clty--]

FIELDS: [na,-,-,e] [add,-ess] [c 1 t,,j] [name] [adclr-e:==:] [c 1 t"l]

BUILT-IN COMMANDS SUMMARY

Only six built-in commands are recognized by CP/M -80 version 1.4 and seven
are recognized by CP/M -80 version 2.2. CP/M -86 also recognizes six built-in
commands.

CP/M-SO CP/M-SO CP/M-S6
Version 1.4 Version 2.2

DIR DIR DIR
TYPE TYPE TYPE
ERA ERA ERA
REN REN REN
SAVE SAVE
d: d: d:

USER USER

24

CP / M BUILT-IN COMMANDS

In addition to the basic built-in commands there are several immediately inter­
preted line editing commands. They are

AC AE AH AJ AM Ap AR AS AU AX

We will describe each of these commands in detail later in this chapter, but as you
can see, you need to learn only a few built-in commands.

Entering the Commands

Before we tell you what each command does, you need to know the conventions
we use to denote commands and keystrokes.

Press means to press a single key

Type means to press a sequence of keys

<cr> means to press CARRIAGE RETURN (or ENTER on some machines)

A X means to enter the control character X

Underlines are used to distinguish user input from computer output (when
necessary); anything you type is underlined in the examples we provide.

Note that the CARRIAGE RETURN key will be represented by the symbol <cr>. A
typical example of command entry would be

01R <cr>

This means type the letters "D," "I," and "R," and then press the CARRIAGE

RETURN key. The CARRIAGE RETURN key can be labeled RETURN, CARR RET, CR,

ENTER, or other abbreviations.
Control characters are subject to special interpretation by a computer. Just as

you hold down the SHIFT key to type a capital letter on a typewriter, you hold down
the CONTROL key to type a CONTROL letter (or CONTROL character, in computer
jargon). This is illustrated in Figure 2-1. Therefore, Il. C means press and hold down
the CONTROL key, type a letter "C," then release the CONTROL key.

The CONTROL key is often abbreviated as CTRL or CTL or sometimes ALT; it is
almost always found in the lower left-hand corner of the keyboard near the
left-hand SHIFT key.

Your console displays both what you type and the computer's response. This
book uses the following convention to differentiate between output from the
computer and data typed at the keyboard: operator input is underlined, while all
computer-generated characters are not underlined.

Here is an example:

A>D1R B:<cr>

A: STAT COM 1 MBAS 1C4 COM 1 BACKUP COM 1 MBASIC5 COM

A: CBAS2 C0I11 CRUN2 COM 1 >:REF C0I11 PIP COM

A>MBAS1C5 <cr>

CHAPTER 2/ 25

Holding the CONTROL key while pressing the "W"
key sends a A W character to the computer

FIGURE 2-1. Typing a CONTROL character

Microsoft BASIC version 5.3

copyright 1977,1978,1979,1980

b'd Mic r osoft, Inc.

14,568 bytes free

Ok

CP/M USER GUIDE

In this example, the computer places the prompt, A>, on the screen (or printer).
You type DIR <cr>. The computer replies with a listing of eight file names and
another A>' Then you type MBASICS <cr>, and a five-line message indicates
Microsoft BASIC has been loaded and is ready to use.

The space character, which is typed by pressing the SPACE BAR, is frequently
required in commands. Even though it appears to be "nothing" or "blank space"
when typed on a typewriter, within a computer system the space character is just as
important as any other character. In fact, early versions of CP / M-80 are quite
finicky about spaces, although this is less true of version 2.2. Generally, when the
examples in this book show a space, you should press the SPACE BAR, and where no
spaces are shown, do not press the SPACE BAR.

Upper-case and lower-case letters are used in command line and other user-input
examples to differentiate the fixed and variable portions of the input. You must type
the upper-case portion exactly as it appears; this unvarying part of your input is
usually the command name. In place of the lower-case portions, you must substitute
information of your choosing; this is the variable part of your input. For example,
one form of the directory command is

26

CP/M BUILT-IN COMMANDS

DIP *. typ <cr>

You must type the "D IR" portion of the above command, but you must replace
the "typ" portion with a file type of your choosing when you type the command.
Here are some specific examples that would be acceptable forms of the above
command.

DIf;" *.A5M <cr>
DIP *.8A5 <cr>
DIP *.COM <u>

CP/M FILE CONVENTIONS

Each CP / M-80 or CP / M-86 file is identified by afile name and afile type. These
identifiers are discussed in detail below.

File Names

Each CP/M -80 or CP / M -86 file has a unique name consisting of one to eight
characters. Normally, only upper-case letters are used for file names, although it is
possible-using Microsoft BASIC, for instance-to create a file with a lower-case
name, or even with no name at all.

Both CP / M-80 and CP / M-86 automatically convert characters you type in a
command line (following the A» from lower-case to upper-case and will not accept
a blank file name in a command line. Several characters may not be used in a file
name. These characters are

< > :=?[]() or <TAB>

Since CP / M uses each of the above characters in special ways, they are invalid as
file name characters.

Nor may you use CONTROL characters (or any other characters that do not appear
on your screen) in a file name. Here are some samples of valid CP / M file names.

FILENAME
IS-FILE
OH!
87654321
A+B+C This combination is not recommended because the

plus sign can be misinterpreted in some instances.

The following are all invalid CP/M file names:

ISFILENAME
IS,FILE
<FILE>
IS)FILE
FILE"'C
WORD.

Too many characters
Contains illegal character
Contains illegal characters
Contains illegal character
Contains control character
Contains illegal character

CHAPTER 2/ 27

CP/M USER GUIDE

When selecting a name for a file, it is best to pick a name which is meaningful and
obvious. A file containing the instructions for your payroll program might be called
PAYROLL, for instance. Naming your payroll program PR102 might make per­
fectly good sense to you, but it is more likely you will forget what is in a file so named
faster than you will forget what is in a file called PAYROLL.

A common practice we suggest you avoid is shortening the file name to save
entering extra keystrokes. Naming your payroll program "P" just to save typing six
letters may seem like a good idea at first, but imagine looking at the contents listing
of a diskette and seeing nothing but one-letter file names. If you have a lot offiles, it
may take you longer to figure out what files are on the diskette than it does to type
the extra six letters in PAYROLL.

File Types

It is also a good idea to identify files in a manner that lets you know what a file is
going to be used for, since different types of information are handled in different
ways. For example, certain program file operations could destroy the contents of a
data file, were it accessed by mistake.

To keep such disasters from happening, CP / M-80 and CP / M-86 rely upon a file
type to express the file function. The file type follows the file name and consists of up
to three characters chosen from the list of valid file name characters. The type is
separated from the file name by a period; that is why a period cannot be imbedded
within a file name. When CP / M sees a period in the file identification, it assumes
what follows is the file type.

The following is a comprehensive listing of the file types commonly used by
CP / M and MP / M users:

28

.ASC File containing ASCII text

.ASM Assembly language source program file (CP/M-80)

.A86 Assembly language source program file (CP / M-86)

.BAK Backup file

.BAS BASIC source program file

.BRS Banked-resident system process (MP / M)

.C C source program file

.CAL SuperCalc data file

.CMD Directly executable transient program (CP / M-86)

.COB

.COM

.DAT

.DOC

.FOR

.HEX

COBOL source program file

Directly executable transient program (CP / M-80)
Data file
Document file (text file)

FOR TRAN source program file

Intel HEX format object code file (CP / M-80)

CP/M BUILT-I]\; COMMANDS

.H86

.INT

.IRL

.LIB

.LST

.MAC

.OBJ

.OVR

.PAS

.PCO

.PLI

.PRL

.PRN

.REL

.RSP

.SRC

.SPR

.SUB

.SYM

.SYS

.TEX

.TXT

.$$$

HEX format object code file (CP / M-86)
BASIC intermediate code program file (CBASIC)

Indexed library file
Library file

Assembly language print listing file (CP I M-86)
Macro assembly language source program file

Machine code (object code) file
Overlay file (MicroPro, Sorcim use this)
Pascal source program file

Pascal run-time program file (Sorcim Pascali M)
PLI I source program file
Page-relocatable file (MP 1M)
Assembly language print listing file
Relocatable machine code (object code) file
Resident-system process file (MP / M)
Source file (used by CPI M Users' Group)

System process file (MP 1M)
Command file for SUBMIT program
Symbol table file (CP / M-86 and others)

System file for CP/M-86 and MP/M
Document file (TEX file)

Document file (text file)
Temporary file, or improperly saved, unusable file

While there are other types in use, this list represents about 95% of those you will
encounter. As you can see, some types help to identify particular programs. In
addition, they aid in selecting files to use or to print.

You can also invent your own file types. For example, you might use the version
number of a program during the development stages. If you were working on a
BASIC program called THEBEST, your list of files on a disk might look like the
following:

THEBEST.OO I
THEBEST.002

THEBEST.003
THEBEST.004

THEBEST.BAS

THEBEST.BAS represents the finished product, and each of the other types
represents the program at a different stage of development.

File types can be one, two, or three characters in length, or non-existent. That is,

CHAPTER 2/ 29

CP I M USER GUIDE

the file type may sometimes-but not always, depending upon the program you are
using-be omitted when you name a file.

While CP / M-80 and CP / M-86, for the most part, ignore the file type, many
programs demand specific file types. For example, the CBASIC compiler requires
source program files to have the type ".BAS", while a CBASIC compiled program
needs the type ".INT". But these types are meaningful to the CBASIC program
only; CP/M-80 and CP/M-86 know nothing about the CBASIC program needs,
nor do they take such needs into account in any way.

In early Digital Research documentation (and for that matter, the first revision of
this book), you will often find file types described as file extensions. This nomencla­
ture derives from the fact that the three-letter file type was originally considered an
extension of the file name. The word "type," in context, is more meaningful than
"extension," so we will use file type exclusively in this book. If you are reading other
documentation which describes "CP / M extensions," simply substitute "types" for
the word "extensions."

Combining File Name and File Type

Sometimes in a command you can specify a file by typing just the file name (the
eight-character label). Other times you must type both the file name and the file
type. The file name and file type are always separated by a period; valid examples of
the combined file name and type are

WATNO~IM'I . LUV
ROBOT.1
MICRO.SFT
THX1138. PII(
I(INGAND. E'lE

Notice that neither are eight characters required in the file name, nor are three
characters required in the file type. A file name must have at least one character,
although files need not have a type. In other words, you may have file names of one
to eight characters in length, and file types of zero to three characters. Both
CP / M-80 and CP / M-86 ignore any characters after the eighth one in a file name
and the third one in a file type; thus, if you type

CPMUSERGUIDE.BOOK

when requested for a file name and type, CP / M-80 and CP / M-86 interpret that as

CPMUSERG.BOO

In short, CP / M lops off any character after the eighth one in the name and the
third one in the type.

Now for a caveat: computer language is not standardized enough for universal
definitions. For some programmers "file name" represents the entire combination
of file name, period, and file type. Terms like "file reference," "file extension,"
"primary name," and "secondary name" are often used to refer to the various parts

30

CP/M BUILT-IN COMMANDS

and combinations of the file identification. In this book, file name describes the
label (one to eight characters in length) used to refer to the file, andfile type refers to
the function of the file. In examples where you are to fill in a specific file identifica­
tion, we will use the form

TYPE filename_typ <cr>

which would mean to enter the command TYPE, a SPACE, the file name, a period,
the file type, and then CARRIAGE RETURN. Remember, words in upper-case letters
indicate information that must be typed exactly as depicted, while lower-case letters
indicate places where you must substitute your data of the type indicated.

Disk Drive Identifiers

CP / M refers to available disk drives with the letters "A," "B," "C," "D," and so
on. The first, or primary, drive of your system is the "A" drive. Other drives follow
in alphabetical order (the second drive is the "B" drive). The only exception occurs
when hard disk and floppy disk drives are intermixed on a computer system. Some
manufacturers use later letters ("M," "N," "0," or "P") to indicate the hard disk
drives and early letters (" A," "B," "C," "D, ") to indicate floppy drives. Check your
manuals if your system uses mixed drives.

Since file names also consist ofletters, CP / M-80 and CP / M-86 must distinguish
between when the letter "A" refers to a drive and when it is part of a command or a
file name. To denote a disk drive, enter a colon (:) after the drive letter; for example,

A:

In this book and in all CP / M manuals, A:, B:, C:, and so forth always pertain to
disk drives. When we provide examples in this book which require you to enter a
disk drive identifier, we will do so as follows:

TYPE d:filename_typ <cr>

This will indicate you are to enter the command TYPE, a SPACE, a valid disk drive
identifier, a colon, a file name, a period, a file type, and then a CARRIAGE RETURN.

If you have used other disk operating systems, you may have trouble with the disk
drive indentifiers; many operating systems use numbers instead ofletters to identify
drives. Since most manufacturers do not label the disk drives, it makes sense for you
to place a label on each drive in your system with its proper CP / M identifier.

When you start CP / M-80 or CP / M-86 you will almost always use the "A" drive.
Unless you specify another drive, the "A" drive will be the default-or currently
logged drive-for all commands and programs you invoke. This means that to use
the "A" (default) drive, you need not type its identifier.

Wildcard References

Sometimes you may not know the name or type of a file you wish to use, or you
may wish to specify more than one file at a time. Digital Research has provided for
such occurrences with a set of wildcard references, sometimes called ambiguous file
references. The asterisk (*), when used in a name or type, replaces the entire

CHAPTER 2/ 31

CP / M USER GUIDE

remaining portion of a file name or file type or both. The question mark (?), when
used in a name or type, replaces a single character within the name or type.

In Digital Research manuals, ambiguous file references are abbreviated afn (for
ambiguous file name), while the complete file name will be referred to as the ufn
(for unambiguous file name).

Many CP I M commands require you to enter unambiguous file references in the
command line (the complete file name). This means that you must precisely specify
the complete file name and file type to invoke the command properly.

The asterisk can represent the entire set of characters on either side of the period
in a complete file name. For instance, all of the following are valid ambiguous file
specifications in CP 1M -80 and CP 1M -86:

*.BA5

THEBE5T.*

All files with type of BAS

.

All files with the name of THEBEST
All files

N ow wait a minute, you ask, what good is that? Consider the directory command.
To learn the names of all the BASIC programs on drive "A," type the following
command line:

DIR *.BA5 <cr> DIR stands for directory

The computer displays all files with the type "BAS." To erase all BASIC source
program files on the diskette in drive "A," type

ERA *.BA5 <cr> ERA stands for erase

You may have already guessed that we can use the question mark like the asterisk.
For instance, if PROGRAMI.ASM is the only file with the type "ASM," the
following commands will be treated identically by CP 1M:

ERA *.A5~1 <cr>

ERA PROGRAM1.A5M<cr>

ERA ?????'i?l.A51'1 <cO

Erase all files with type ASM
Erase specific file PROGRAM I.ASM
Erase all files with type ASM and last letter of file
name of I

Notice how seven question marks precede the "1" in the last example. This is
because the question marks are considered to occupy one character position only,
not several. Typing ?l.ASM and ???????I.ASM is not the same thing to CP 1M.

Most CP / M systems have two or more drives. Remember that CP / M identifies a
disk drive with a letter followed by a colon. The command

DIR B:*-* <Ct·>

displays all files on drive "B." (The prompt A> indicates drive "A" is the default
drive. If we did not type B: in front of the above command, all files on drive "A"
would be displayed by default.)

32

CP/M BUILT-IN COMMANDS

BUILT-IN COMMANDS

Built-in commands were briefly mentioned earlier in this chapter. In the follow­
ing section each built-in command is described in detail. Differences between usage
with CP / M-80 version 1.4, CP / M-80 version 2.2, and CP / M-86 will be explicitly
described.

DIR-Dlsplay the File Directory

The DIR command displays a directory of files ona diskette. Several forms of the
command are allowed. All file names can be displayed, diskette directories may be
searched using the wildcard characters to select a group of similarly named files, or
the user may specifically search for a single file.

Early versions of CP / M-80 (versions 1.3 and 1.4) provide directories in a single
column with one file name and type on each line preceded by the drive specification,
as in the following example:

A>DIR B:<cr>

B : DOCUMENT MAR

B : DOCUMENT APR

B : DOCUMENT JUN

A>

Version 2.2 of CP / M-80 and CP / M-86 display directories with as many as four
files on a line, each separated with a vertical line as follows:

A>DIR B:<cr>

B: DOCU~1ENT MAR I DIJCU~1E~1T APR I DOCUMENT JUN I [IOCUMENT .JUL

B:DOCUMENT AUGI DOCUMENT SEP

A>

Some CP / M-80 version 2.2 directories display only two columns because of
reduced screen width (notably, the Osborne 1).

The following are the valid forms of the directory command:

DIR d:<cr>
Displays the directory of all files present on the drive specified (d:). The
drive specification may be omitted, in which case the default drive is used
for the search.

DIR d:filename.typ <cr>
Displays the directory of all files present on the drive specified (d:) that
match the file name and type specified. You may use the wildcard specifiers
"*" and "?" to search for groups of files.

The following are sample uses of the CP / M DIR command and the resulting
directories:

CHAPTER 2/ 33

R>DIR B:*.BRS<rr>

B:FRESHWTR.BRS

B:SRLTWTR.BRS

R>

CP! M USER GUIDE

The above example shows a directory in CP / M-80 version 1.4 format. The
command used is DIR B:*.BAS (display a directory of all files with the type of
"BAS" that are on drive "B").

R>DIR FI7'!.*<cr>

R:FISH TRT I FISH

R:FISH EEE I FILE

R>

BRSI FISH

BRS

CRP I FISH

The above example shows a directory in CP / M-80 version 2.2 format. The
command used is DIR FI??* (display all files whose names start with "FI" and have
any file type, all on the default drive).

Error Messages

You can make several different errors in using the D IR command. The primary
error messages CP / M might display are

NO FILE, NOT FOUND, or FILE NOT FOUND
The diskette does not contain the file(s) you specified. Make sure that you
typed the command correctly; if you did type the command correctly, then
the file(s) does not exist.

BOOS ERR ON d:
(Where d: is the drive identifier.)

CP / M could not find a diskette in the selected drive, the diskette is
improperly formatted, the power to the drives is off, or the drive door has
not been closed. Check to make sure that a diskette is properly inserted into
the drive. If the above message is followed by a BAD SECTOR message, in
all probability you either have a bad diskette or you inserted the diskette
upside down.

DIT?
Any error message ending in a question mark indicates that CP / M could
not find the command you typed. In this particular instance, you typed
DIT instead of DIR. Check carefully for typing errors when you see an
error message ending with a question mark.

ERA-Erase a File (CP/M-80 and CP/M-86)

ERAQ- Erase a File with Query (MP/M)

ERA stands for erase. To use the command, you must specify the file or files to be
erased immediately after typing the command. Since it is extremely rare to remove
all files from a diskette, CP / M-80 and CP / M-86 will check with you to make sure if

34

CP/M BUILT-IN COMMANDS

you requested erasing all files from a diskette (this is not true of CP / M-80 version
1.3).

It is a good habit to develop to check the directory before invoking the erase
command. First, verify that the file or files you wish to remove from the diskette
actually exist by using the DIR command. Next, use the ERA command to actually
perform the erasure. Last, use DIR again to make sure that CP I M correctly erased
the selected file(s). If you do not use this procedure, you will never have any
verification of when and what CP I M erases.

Users of MP I M can use a special version of the ERA command, ERAQ, to force
MP / M to query before each file erasure. While ERA is also available under MP 1M,
if you use this CP I M cousin you should get into the habit of using ERAQ instead.

One form of the ERA command is allowed in CP/M; it is

ERA d:filename.typ <cr>
Erases all files which match the file name and type specified on the diskette
specified (d:). The wildcard characters "." and "?" may be used to specify
more than one file at a time.

In addition to the above form, MP I M users may also use the following form:

ERAQ d:filename.typ <cr>
Erases all files which match the file name and type specified on the diskette
specified (d:), but erases each file only after a user confirmation is entered.

Here are some examples of use of the ERA command.

R>OIR C:<cr>

c: QURLIH CTL I ~lIND CTL I WEIGHT CTL I THOUGHT CTL

R>ERR C:QURLITY.CTL<cr>

R>DIR C:<cr>

C: MIND CTL I WEIGHT CTL I THOUGHT CTL

In the above example we first ask for a directory of files on drive "c." Four files
are listed. We then ask CP! M to erase the file named QUALITY.CTL on drive "c. "
No message is presented (other than the A» to confirm this action, so we ask for
another directory to confirm the deletion.

A>DIR B:*.BRS<cr>

B: NOW BASi THEN BRS I AL~IRYS BRS

A>ERR B:*.BRS<cr>

R>DIR B:*.BRS<cr>

NDT FOUND

R>

In this example we find three files on the diskette in drive "B" with the type of
"BAS,"and then we ask CP! M to erase all files on drive "B"with the type of "BAS."
Another directory command confirms that no files with the type of "BAS" are left
on drive "B."

CHAPTER 2/ 35

B>DIR <Ct'>

B: SOHO NY I CHELSEA NY I UPPREAST NY I UPPRWEST NY

B>ERA *.*<cr>

ALL FILES (Y/N) ?Y <cr>

B>DIR <cr>

NO FILE

B>

CP/M USER GUIDE

The above example demonstrates what happens when you ask CP I M-80 or
CP 1M -86 to erase all files from a diskette. Note the message ALL FILES (Y IN)?
and the user response that follows it. If you reply with anything other than an "N" to
the query, no files are erased from the diskette. In this case, we replied with a "Y"to
tell CP I M to proceed.

The following example is applicable to MP I M only:

AO>ERAQ SNWAKEEN.*<cr>

A: SI'IWAI<EEN VL Y?.:.L

A: SI\IWAI<EEN RVR? Jl

A: SNl<IAI<EEN CTY? Jl

AO>DIR SNWAKEEN.*<cr>

A: SNWAI<EEt~ RVR I SNWAKEEN Cry

AO>

Notice that in this MP I M example we have used the ERAQ (erase with query)
option. Each file whose name and type match the one we specified is presented one
at a time for our consideration. We decided to erase the first one, but not the next
two that were presented us. A directory command confirms our actions.

The error messages which you might encounter using the ERA command are
basically the same as those described with the directory command. They are

36

NO FILE, NOT FOUND, or FILE NOT FOUND
CP I M or MP I M could not find the file name and type you specified. If you
type ERA KNOW instead of ERA NOW, for instance, this message might
appear. But if you did have a file named KNOW, it would be erased. Do not
count on this error message to catch your typing mistakes.

BDOS ERR ON d:
(Where d: is the drive identifier.)

CP I M could not find a diskette in the drive you specified, the drive door
is open, no diskette has been inserted or one has been inserted improperly,
or the power to the drive has not been turned on.

ERAQ?
Again, any error message ending in a question mark indicates that CP 1M
was unable to find the command you typed. If this particular error message
appears, either you attempted to use an MP I M command with CP I M-80
or CP I M-86, or if you are using MP I M, the file ERAQ.PRL is not on the
default disk drive.

CP / M BUILT-IN COMMANDS

REN-Rename a File

Files may be given new names with the REN, or rename, command. You must
explicitly state the old name of the file and its new name; you cannot use the
wildcard identifiers "." and "?" to rename a group of files at once.

Almost universally, whenever the computer deciphers an equivalence statement,
as in the rename command, the new formation or result is to the left of an equal sign,
and the old formation or result appears to the right. This can be expressed as
follows:

NEW= OLD

A disk drive specifier can be included with either one or both file names when you
use the rename command. If it is included with one name, it applies to both. If it is
included with both file names, the same drive specifier must be used with both. If the
disk drive specifier is omitted, the default disk drive is used.

Here is the one form of the REN command.

REN d:newfilename.typ =d:oldfilename.typ<cr>

The rename command finds the file of name and type matching "oldfilename.typ"
on the drive specified (d:), then gives it the new name and type matching
"newfilename. typ."

Here is an example of the use of the REN command.

A>O I R<c r->

R: HOLDEN ONE I PHOEBE TWO I 19EIGHTI' FOR

A>REN NOVEL.ONE=HOLOEN.ONECcr)

R>OIR <cl'>

R: NOVEL ONE I PHOEBE TWO I 19EIGHT'r FOR

A>

In this example we ask to change the file named HOLDEN.ONE to a file named
NOVEL.ONE.

The rename command has several error messages associated with it; they are

FILENAME?
You incorrectly used an ambiguous file reference in the rename command
line. For instance, if you type REN TALL.CAR=SHORT???CAR, the
error message SHORT???CAR? appears.

NO FILE
The file you specified does not exist. Check your typing.

FILE EXISTS
The new name you specified is the name of a file which already exists. You
cannot use the REN command to rename a file to a name and type that
already exist on a diskette; CP / M-80 and CP / M-86 consider this to be an
error. If you wish to replace an existing file with a newer version of the
same file, either rename or erase the existing file first, or use the PIP utility
described in Chapter 3.

CHAPTER 2/ 37

CP/M USER GUIDE

BOOS ERR ON d:
(Where d: is the disk identifier.)

CP / M could not find the diskette or activate the disk drive you specified.
Check to make sure the diskette is inserted properly and that the disk drive is
powered on with the door correctly closed.

SAVE-Sove Memory Contents in a Disk File

One crude method of saving memory contents in CPI M-80 is the SAVE com­
mand. This command is not applicable to CP I M-86.

SA VE places the contents of what is known as the Transient Program Area into a
file on diskette, using a name and type you choose. You must tell CP I M-80 how
many pages (256-character blocks) of memory you wish saved and the name and
type of the file you wish that information stored in. Select the file name carefully.
SA VE erases any existing file of the same name before creating the new one.

You will rarely use the SAVE command if you only use CP / M-80 to run
ready-made or canned business application programs. On the other hand, assembly
language programmers will use this command frequently. For continuity's sake, the
SA VE command is presented at this point in the book; if you are not familiar with
assembly language, or you want more background before tackling with the particu­
lars of SAVE, you should read Chapter 4 before proceeding with the rest of this
description. Since DDT, the debugger utility program, is normally used in conjunc­
tion with the SAVE command, we have used DDT in our example. DDT is also
examined in Chapter 4, Assembly Language Utilities.

The one form allowed for the SAVE command is

SAVE ## d:filename.typ <cr>
Where ## is the number of 256-character blocks of memory you wish to
store on diskette.

In order to perform a SAVE. you must know the number of "pages of memory" to
be saved. A page of memory is a block consisting of 256 characters. The first page
saved always begins at memory location 0100 hexadecimal. The number of pages to
be saved must be expressed as a decimal number.

Beginners often encounter problems with the "page of memory" concept and do
not understand how 256 decimal is equivalent to 0 100 hexadecimal. The number
conversion between decimal and hexadecimal is not an easy one for anyone with
"math anxiety."

The hexadecimal numbering system (usually abbreviated as "hex") is equivalent
to base 16. In other words, the one's place can have 16 digits, as opposed to the ten
digits in base 10. In base 10 we count

38

o 1 2 3 4 5 6 7 8 9

In base 16 (hex math) we count

0123456789ABCDEF

CP / M BUILT-IN COMMANDS

The letter" A" represents our normal number 1 0, "B" represents 11, and so on. In
everyday math we would interpret III to mean

1 in the l's place = I
I in the lO's place = 10

1 in the 1000s place = 100

for a total of I I 1

In hex math III means

I in the I's place = 1
1 in the sixteen's place = 16

I in the 256's place = 256

for a total of 273 (in base 10)

But, you may ask, what does this have to do with the SAVE command?
Remember that 0 100 hex equals one page of memory (256 decimal). Does 0200

hex equal two pages of memory? Yes. Since we are only concerned about the
number of pages of memory to save, we can forget about the last two digits in
converting computer memory addresses into the necessary information to fill out
the SAVE command.

Let's calculate the number of pages of memory if we wish to save information
which resides between 0100 hex and 2785 hex in our computer.

I. First, forget the first address, 0100; the SAVE command always starts at
this address .•

2. Next, drop the last two digits from the higher address. In our example 2785
thus becomes 27.

3. Convert the remaining number to decimal. For our example

7 in the I's place = 7
2 in the 16's place = ..l£

for a total of 39 (in decimal)

4. Step 3 always gives the correct result except for one special case. If the last
two digits of the higher address in step 2 were 00 hex, you would subtract I
from the result in step 3. For example, if the higher address were 2700 hex
instead of 2785 hex, the correct result would be 39 minus I, or 38 decimal
pages to SAVE.

Now that you know how to perform number conversions from hexadecimal to
decimal, let's look at an example of SAVE's use.

A>DDT CURSEAND.HEX<cr)
DDT VERS 2.2
NEXT PC
1100 0100

CHAPTER 2/ 39

CP/M USER GUIDE

In this part of the example we use DDT (discussed in Chapter 4) to load a file
named CURSEAND. HEX into memory. As you will eventually learn, the numbers
under "NEXT" and "PC" are significant: the first indicates one more than the last
memory address used by the file, while the second indicates the starting address of
the file. If we use the rules given above for converting these numbers into the
number of pages of information to save, we come up with the answer 16. (We
arrived at the answer because 1 in the 1 's place equals I, plus 1 in the 16's place
equals 17, subtracting 1 because the last two digits of the higher address are 00 hex.)

Therefore, we would use the following SAVE command:
A>SAVE 15 CURSEAND. COM(c r>

A>

Error Messages
FILENAME?

You failed to specify the number of pages to save, used a wildcard
identifier, or misspelled the word SAVE. Check your typing for accuracy
before going on. Unfortunately, due to a quirk in the way some CP / M-80
systems use memory during the SAVE process, you cannot assume that the
data you wished to save is still valid. In short, you must first reload the
memory with the information you wish to save before reattempting the
command.

NO SPACE or DISK FULL
Too many files are already on the diskette, or no room is left on the diskette
to save all the information you specified. Either erase unnecessary files
on the diskette before proceeding, or use a different diskette.

TYPE-Display a File
Containing ASCII-Coded Information

If you have a file which consists of printable characters (that is, data, as opposed
to computer instructions), you may ask CP / M to display the file's contents on your
console display by using the TYPE command.

TYPE usually works for files with types of "BAS," "ASM," "BAK," "DAT,"
"HEX," "DOC," "TXT," or any other file which contains ASCII text or data.
ASCII is a character recognition and storage scheme for computers; each character
has a unique representation that can be saved or used by the computer.

You could also use a text editor or word processing program to look at the
contents of a file, but not everyone using CP / M has such a program available. If
you merely want to take a peek at your program or data, why go to the trouble of
using the text editor? The TYPE command is built into all versions of CP / M and is
always available.

There is only one form of the TYPE command.

TYPE d:filename.typ <cr>
Displays the contents of the file specified.

40

CP / M BUILT-IN COMMANDS

An example of a use of TYPE would be the following:

A>TYPE D_PDS<cr>

Had Dick Seeker been present, and had he been able to see

inside the NASCDM Cray-1 computer, he would halJe seen a

string of bits spelling out his name, computer style_ But

the Na tional Secur i ty Computer Center was 1500 mi les away;

in fact, Dick wasn't elJen aware of its existence.

In the above example, the user asked to see a text display of the file O.POS, and
the computer complied. If this had been a long file-longer than the console display
could show at one time-a "S could have been typed to "pause" the display
temporarily. To terminate a text display of a file, press any key, or enter a "c.

MP / M users may use an optional two-digit number (as shown in the following
example) with the TYPE command to specify how many lines of text to show on the
console at one time.

TYPE d:filename.typ P## <cr>
The number signs (##) represent the number of lines to display at a time.

When the MP / M form of the TYPE command is used as described above, the
computer displays the specified number of lines following the "P" in the command
and then waits for the user to press the CARRIAGE RETURN key. In this fashion, an
MP / M user may display a text file without worrying about text running off the
screen before it can be examined (the normal specification would be "P23" for
24-line terminals).

Error Messages
FILENAME?

This error message appears when the file you named does not exist or you
misspell the TYPE command. Check your work and try again.

BDOS ERR ON d:
(Where d: is the disk identifier.)

CP / M could not find the diskette or disk drive you specified.
Meaningless display (sometimes accompanied by a bell)

You tried to use TYPE with a file which does not contain ASCII text or
which includes machine language code with the text. If you accidentally
displayed a file with machine language code in it, restart CP / M to make sure
that you did not also accidentally change the contents of your computer's
memory.

USER-Change the Currently
Logged User Number

CP/M-80 version 2.2, CP/M-86, and MP/M all include a special command
named USER. This command allows you to specify a number between 0 and 15,

CHAPTER 2/ 41

CP/M USER GUIDE

inclusive, which is to be kept with any files you create.
When you cold start CPj M-80 or CPj M-86, user number 0 is assumed; when you

cold start MP j M, the user number is initialized to the console number. Your disk
operations will reference files in user area 0 only (or another number if you are using
a different console number in MP j M). In other words, if you save a new file called
JUNK.AGN after a cold start, it will always appear in directories assigned to user
area O. Type USER 2 <cr> before you save the file, and it will appear only in the
user area 2 directory.

"User areas" are imaginary. Every file on a diskette has a user number associated
with it, stored on the diskette as an additional piece of information about that file.
Thus, it is not necessary to set aside room on the diskette for each user area.

The USER command is of minimal value in running canned programs. However,
when several users share disk drives, as in MP j M, one user can save files in user area
I and another in user area 2, and both could share files in user area O.

The only form of the USER command allowed is

USER ##<cr>
Where ## is a number between 0 and 15, inclusive.

When you utilize different user areas the ERA command functions differently.
For example, ERA •.• <cr> only erases all files in the currently chosen user
number. There is no way to erase all files on the diskette with a single command,
unless they are all in the same user area.

Almost without exception, any diskette you receive from software vendors will
have all files in user area O.

Error Messages

? or #?
You forgot to specify a number or specified a number greater than 15, or
you misspelled the command name USER. Check your work and try again.

FILENAME? or NO FILE
These messages may appear if you change user areas and attempt to access
programs or data not in the current user area.

d:-Change Default Disk Drive

On a CP j M system with two or more drives, change the currently active (default)
drive by typing the letter representing the drive being logged into, followed by a
colon and a CARRIAGE RETURN.

42

B:<cr>

C:<cr>

L:<cr>

To revert to drive "A," type

A:<cr>

CP/M BUILT-IN COMMANDS

When you change the default drive, CP / M changes its prompt letter. Following
B:<cr>, CP/M-80 and CP/M-86 return with a prompt of B>; MP/M would
return with the prompt #B>, where the number sign represents the user area.

When selecting a file on the default drive, you do not have to type the drive letter
with the file name, but in any reference to files on drives other than the default, you
must specify the desired drive.

Error Messages
BDOS ERR ON d: SELECT

The above error message will appear if you attempt to change to a drive
which does not exist or which CP / M cannot find (perhaps because the
power is off or the door left open).

LINE EDITING COMMANDS

Line editing commands let you correct typing errors while entering command
lines and give you some control over the console display (output). The line editing
commands are grouped by function in Table 2-1.

The CONTROL-P and CONTROL-S commands are useful at any time, as is usually
the CONTROL-H command. The other line editing commands must normally be
typed within a CP / M command line, that is, after the CP / M prompt appears and
before you press the CARRIAGE RETURN key to process the command.

The line editing commands can often be used when typing input requested by
transient programs. Their usefulness in this case will depend on the program.

CONTROL-C- Restart CP/M-80

A warm start restores CP/M-80's internal information to a predefined state
without destroying programs or data stored in memory. A cold start starts a system
from scratch, destroying programs which were in memory before the cold start.

A cold start is often called a cold boot, and a warm start is often called a warm
boot. In CP / M-80, the warm start command has two primary uses. They are

To "log in" a diskette when you insert a different diskette into one or more
drives

To interrupt the current transient program and return to the CP / M-80
command level.

You can create problems if you do not "close a file" (tell CP / M -80 that you are
through with a file) at the proper time. You can avoid such problems by always
allowing a program to end normally (if there is an option in the program to QUIT,
use it rather than pressing RESET or" C).

If you change diskettes without telling CP/M -80 or CP/M -86, strange things
happen. Always press CONTROL-C after you insert a different diskette into a disk
drive when you are using CP / M-80, unless the diskette is specifically requested by

CHAPTER 2/ 43

CP/M USER GUIDE

the program. In this latter instance, you have to assume that the programmer knew
that you were changing diskettes and that he or she included instructions to inform
CP / M-80 of the requested change.

CP / M-86 works a little differently than CP / M-80 when a CONTROL-C is typed.
CP / M-86 allows multiple programs to reside in memory. CP / M-86 keeps track of
the order in which programs are started. Each time you type a CONTROL-C in
CP / M-86, the program last invoked is stopped. When all programs have been
stopped, a CONTROL-C restarts CP / M-86, much as CONTROL-C restarts CP / M-80.
It is important to note, however, that diskettes cannot be changed in CP / M-86
unless a program requests such a change or you type a CONTROL-C with no program
running.

MP / M also works differently. CONTROL-C in MP / M only stops execution of the
current program. Because multiple users may be logged onto a computer with
MP / M, a special command is necessary to reset specific diskettes, that is, to restart
one user, not all users. This command is DSKRESET.

DSI(RESET <cr>
DSI(RESET d: <cr>
DSI(RESET d:, d: <cr>

Resets all diskettes
Resets disk drive d:
Resets mUltiple drives (each separated by a comma)

Disk resets may be denied if other users are using the same diskette. In such a case
you will see a message indicating which console and program are using that diskette.
DSKRESET should be executed before removing a diskette from a drive, otherwise
you may invalidate another user's data.

Error Messages

44

BDOS ERR ON d: R/O
(Where d: is the drive identifier.)

CP / M can usually detect a switched diskette. When it does, it sets the
read-only attribute for that diskette. If any program subsequently tries to
write information onto that diskette, this error message appears. The only
way to recover from this error and not destroy information on your
diskette is to type CONTROL-C (with no program running if you are using
CP/M-86).

The experienced user notices that the error message received when
CP / M detects a switch in diskettes mentions the diskette is "read-only."
This error message implies that you can switch diskettes at any time as long
as you only read from the diskette. If you use your system like most users,
however, it is rare for a diskette to be read from, but not written to. Thus,
this is a potentially dangerous suggestion.

CP/M BUILT-IN COMMANDS

TABLE 2-1. Line-Editing Commands Grouped by Function

Function

Terminate command line

Cancel command line

Cancel one character
of command line

Display control

Printer control

Restart CP / M-80
Terminate function CP! M-86

CONTr~OL-E-Contlnue Typing
On Next Line

Commands

CARRIAGE RETURN (<cr>)
LINE FEED (< If>)
CONTROL-J
CO"TROL-M

CONTROL-U
CONTROL-X

BACKSPACE (<bs>)
DELETE ()
RUBOUT (<rub>)
CONTROL-H

CONTROL-E
CONTROL-R
CONTROL-S

CONTROL-P

CONTROL-C

l

I

To continue typing a long command on the next line of the console display, type
CONTROL-E. This moves the cursor to the beginning of the next line. When you
ultimately press the CARRIAGE RETURN key, the entire command line is used, even
though it may appear as several lines on the display. The CONTROL-E character itself
is not considered part of the resulting command line.

CONTROL-H or BACKSPACE-Delete
Last Character

Version 2.2 of CP 1M -80 and CP 1M -86 allow you to use CONTROL-H or BACK­

S PACE to correct simple typing errors before pressing the CARRIAGE RETURN key.

CHAPTER 2/ 45

CP / M USER GUIDE

If your keyboard has a key labeled "BACKSPACE" or "BS" you can use it; in any
case, you can type CONTROL-H. The two are just different names for the same
function.

CONTROL-H is similar to RUBOUT or DELETE; it differs in that it erases the
unwanted character from the screen, while RUBOUT or DELETE leaves the unwanted
character on the screen and repeats it.

CONTROL-H or BACKSPACE is intended for video displays rather than printers.
But CP / M-80 or CP / M-86 will still respond correctly to CONTROL-H even if you are
using a printer; the printer may respond strangely, however.

DELETE or RUBOUT-Cancel One
Character and Echo II

The DELETE key cancels the last uncanceled character in the command line and
echoes (repeats) it. Press the key marked "DELETE," "DEL," "R UBOUT," or "RUB" to
do this.

Versions 1.3 and 1.4 of CP / M-80 usually lack the true BACKSPACING DELETE as
we described in the section on CONTROL-H. Instead, these versions almost always
perform the DELETE function which echoes, or repeats, each deleted character. Type
BLA and then DELETE or RUBOUT; you will see either

BLAA Deleted characters are echoed

or

BL Deleted characters are erased (rubbed out)

Echoed characters may seem a little strange to computing newcomers. When
CP / M -80 was first designed, the primary console device on most microcomputers
was a Teletype or similar printer. These printers cannot backspace. In order to show
a character was erased, Digital Research used echoing in the earliest versions of
CP/M-80.

Times have changed, and today most computers use high-speed video display
consoles. Such consoles have the ability to backspace and erase characters. Digital
Research will provide a patch to any user of CP / M -80 version 1.3 or 1.4 who wants
true backspacing deletions.

CONTROL-J and CONTROL-M-LINE FEED
and CARRIAGE RETURN

If you are using CP / M-80 version 2.2 or CP / M-86, you can substitute CONTROL-J
or the LINE FEED key (if your keyboard has one) for the CARRIAGE RETURN key. If
your keyboard has a LINE FEED key, it might be marked "LF."

Typing CONTROL-M is exactly the same as pressing the CARRIAGE RETURN key
when typing CP/M-80 and CP/M-86 commands.

46

CP/M BUILT.IN COMMANDS

CONTROL-P-Assignlng Output
To the Printer

To turn on the printer, type a CONTROL·P. If your version of CP/M has been
configured for a printer, all output going to the console display is now also sent to
the printer.

CONTROL·P works like a push-on, push-off switch: type it once to turn the printer
on, type it a second time to turn it off.

Remember, when you use CONTROL·P to turn the printer on, the printer mimics
the screen. Unless someone added a printer interface to your version of CP / M, you
will most likely have to tolerate the following minor inconveniences:

1. Your printer will not paginate; it simply types line after line, oblivious to
the end of the page.

2. Any control code imbedded in the text (a clear screen command, for
example) may adversely affect the printer. Many computers use the ASCII
FORM FEED character to clear the screen; thus, every time your screen
clears, the printer may skip to the next page.

3. Unless you have a high-speed printer, output to your console display slows
down. Every time the computer wants to send a character and finds the
printer busy, it waits to send that character.

Some programs disable the printer automatically, whether or not you have
selected it. These programs, such as WordStar, have other commands for sending
information to the printer.

Likewise, if you purchased your programs as complete, prewritten (canned)
packages, they may turn the printer on and off as necessary. Do not type a
CONTROL·P before executing such a program unless directed by the manual; let the
computer do this work whenever possible.

Error Messages

If you type a CONTROL·P and double characters appear on your screen but none
appear on your printer, contact the firm that sold you the system.

A>DIR'P<cr->

AA: : 55TTUUTTTTEERR •• TTXXTT II RREEPPEEAATT •• DDOOCC

AA»

Repeating characters indicate that CP/M has not been told where to send
characters destined for the list device (usually the printer). Instructions must be
added to the BIOS section of CP / M to get information to the printer properly.

Another problem that can occur is that, immediately after typing a CONTROL·P,
the system "locks up," in other words, stops accepting characters from you. If this
happens, it usually means that the printer is either not connected properly (check to
see if it is unplugged) or not turned on.

CHAPTER 2/ 47

CONTROL-R-Repeat Current
Command Line

CP I M USER GUIDE

If you are a bad typist and have an early CP / M-80 system that echoes deleted
characters, you might find that the command

OIR B:BASIC 777 .*

looks more like:

OIBBR BAA:BASIXXC7777?*

If you have to read command lines like that, you may come to hate your
computer. CONTROL-R comes to the rescue. Type a CONTROL-R to display a new,
correct line below the original command line. This new line deletes all the characters
that were echoed instead of being erased. Here is an example.

DIBBR BAA:BASIXXC??7??*-R
DIR B:BASIC??7.*

The CONTROL-R command does not work with CP/M-80 version 1.3. Users of
CP I M-80 version 2.2 and CP / M-86 will probably not find the CONTROL-R com­
mand useful.

CONTROL-S- Pause the Display

CP I M-80 and CP / M-86 can pause the console display. Like a freeze frame in
film, everything stops until you tell it to begin again. Pause the screen by typing a
CONTROL-So Another CONTROL-S resumes the output to your display (actually,
typing any character except CONTROL-C will resume the output to the display).
CONTROL-S really pauses the computer, and as a result the display pauses.

However, this is not the best possible answer to handling overflow on the screen.
Generally, you are surprised by the overflow, or respond too slowly to pause the
frame exactly where you want. "Good" programs use formatted screen output and
never attempt to put more information on the screen than it can handle. "Good"
programs also include an automatic stop at the end of each screen of information
and wait for you to press the CARRIAGE RETURN (or some other key) before
resuming output. In short, if you find yourself using the CONTROL-S key while
executing a program, you might consider other programs with better human
interfacing, or ask your vendor to modify your program.

CONTROL-U/ CONTROL-X - Cancel
Current Command

If you start typing gibberish, do not worry, it happens to all of us. Perhaps you
typed

01 RG A: THOMI(JLSIC SAB = SLI UF

48

CP/M BUILT-IN COMMANDS

That does not make any sense whatsoever. Instead of using the BACKSPACE or
DELETE key to get back to the first mistake, it may be easier to start over by typing
CONTROL-U. CP/M will ignore what you have already typed and move to the
beginning of the next line. CP / M places a number sign (#) at the end of the canceled
line.

With version J.3 of CP / M-80, use CONTROL-U. With all other versions of CP / M,
use CONTROL-X if you want to erase the canceled line or CONTROL-S if you want to
keep the canceled line on the screen.

CHAPTER 2/ 49

CHAPTER

3 CP/M Transient
Commands

In the last chapter we introduced CP/M's built-in commands. CP / M-80 and
CP / M-86 also allow you to expand the basic set of commands by having any
number of additional programs that act like commands. This chapter describes
some of these additional programs, specifically those normally supplied with
CP/M-80 and CP/M-86.

WHAT A PROGRAM IS

You will recall from Chapter 2 that built-in commands are those words which
CP / M can interpret using only the instructions already present in memory, while
transient commands (usually referred to as programs) are invoked by typing a
phrase that acts like a command and tells CP / M to get further instructions from the
diskette.

How does CP / M know what other instructions are available on the diskette?
If you type something in response to the CP / M-80 command prompt and

CP / M-80 does not recognize it as a command, the diskette directory is searched for
a file with the ".COM" file type that matches the first word you typed. Suppose you
type

BUY <cr>

After realizing that BUY is not a built-in command, CP / M-80 looks for a file
entitled BUY.COM on the current disk drive. If there is no such file, CP/M-80
issues the error message BUY? If such a file does exist, CP / M-80 loads the contents
of that file into memory and transfers control to the first instruction in it.

51

CP! M USER GUIDE

CP / M-86 performs almost exactly as CP / M-80-the only difference is that
CP / M-86 uses the ".CMD" file type. In the above example, CP / M-86 would look
for the file named BUY.CMD. There is a valid reason for the difference in file types
between CP / M-80 and CP I M-86. Since both versions of CP / M use the same
diskette storage method, it is possible-and in some cases, advisable-to store both
CP I M-86 and CP I M-80 programs on the same diskette. Since the 8086 chip that
CP I M-86 is written for cannot use programs written for the 8080 family that
CP / M-80 supports, to avoid confusion Digital Research modified the file type of
command files when they designed CP / M-86.

You should immediately recognize the value of the transient command facility in
CP I M. If the file that matched your "command" contained instructions for the
computer, it would seemjust like you had typed a valid CP / M command (although
it might take a bit more time to execute since the diskette must be accessed before
the program starts working).

What is this program that acts like a command? For the time being we will define
a program in the context of CP / M as follows: a program is a set of instructions
stored on diskette ina file with the ".COM"type for CP / M-80 and the ".CMD"type
for CP / M-86. It is invoked by typing its file name. This program is often called a
transient program or transient command.

This means that once a program is loaded from the diskette into the memory of
your computer, the computer temporarily ignores CP / M and obeys the instructions
in the program. A hypothetical DISPLAY. COM (or .CMD) program might
instruct the computer to take the following steps:

1. Ask you for the name of the file you wish to display
2. Go to the diskette and find the file you requested
3. Read a character from the file
4. Display the character on the console display
5. If there were more characters left, go back to Step 3
6. Return to CP / M.

Invoking a Program

The command line is all that you type after the CP / M prompt (A », up to but
not inc1udingthe CARRIAGE RETURN. CP / M allows a command line to be up to 127
bytes long; you could type 127 characters for a single command. Does it strike you
as strange that the file name is, at most, eight characters long, but CP / M would
accept 119 more?

Just as some commands can have extra refinements added by typing further
information, so too can programs be invoked with additional information. With
DIR *.BAS, for instance, the command is DIR, but B:*.BAS refines the command.
Because of the lack of a better name, or even an established standard, we call this
additional information parameters. There can be more than one parameter in a
command line.

52

CP / M TRANSIENT COM MANOS

Let us briefly review. A generalization of the command line format looks like as
follows:

AI> COMM1AND PARA1ETERS<LCAI~::AGE RETURN ends command

L-------Additional refinements, if desired
L..-------------Command to be executed

'------------------Cp / M prompt

Likewise, we can generalize the way a transient command, or program, is invoked
as follows:

A> FILENAME PARAMETERS <cr>

1 1 ~CARRIAGE RETURN ends command
_ line
L-------Additional refinements, if desired

L..-------------".COM" or ".CMD"file to be loaded
and executed

L..---------------CP/ M prompt

Now, what are the parameters we give the program? There is no simple answer;
some programs use no additional parameters, some have optional parameters, and
some require parameters. The number of parameters passed to the program may be
as few as one or as many as the command line can hold.

This chapter describes a number of transient commands that you might use with
CP / M. The term "transient" conveys the notion that the commands (programs,
actually) are not permanently stored in memory but are kept on a diskette. We will
use the term "transient command"to conform with the Digital Research description
of the programs it supplies with CP / M-80 and CP / M-86.

Before moving on, we need to redefine one term we have been using throughout
the first portion of this book.

There is a trend to include faster and larger capacity disk drives in microcomputer
systems. These newer drives are thick, rigid, metal platters. They do not have the
thin, flexible plastic surface of the diskette. These newer disk drives are called hard
disks, rigid disks, Winchester disks (a nickname give'n to them after IBM introduced
the model 3030 hard disk), or just disks. So far in this book, we used the term
"diskette" exclusively. Since CP / M-80 version 2.2 and CP / M-86 were designed to
accommodate hard disks, we will change our terminology slightly. Throughout the
rest of this book, the term "disk" will be used frequently and is meant to include both
floppy diskettes and hard disks. References to "diskettes" earlier in this book are
generally applicable to hard disks also.

You now have all the information you need to proceed. While we have exhausted
the list of commands that CP / M recognizes, we have barely hinted at the number of
programs that may be loaded and executed as transient commands. In the
remainder of this chapter, we will deal with some important transient commands

CHAPTER 3/ 53

CP / M USER GUIDE

that Digital Research provides with CP I M-80 and CP I M-86. Chapter4 deals with
the remaining Digital Research programs that may be important to you.

FORMAT FOR TRANSIENT
PROGRAM DESCRIPTIONS

Just as we used a structured format to describe each command introduced in
Chapter 2, we will structure transient programs in this chapter as follows:

· Program name
Brief description ofthe program and what it does, followed by the uses for
the command.

· Command line summary
command line format...

command line format...

· Purpose of the command line

. .. description

... description

· Example of use of the command with computer display

· Inputs other than command line.
NOTE: We have used examples from a variety of CP/M implementations
although we have restricted the examples to common ones. Your version of
CP / M may not display messages or information exactly as we show it here, but
this is nothing to worry about. However, if the information you receive is so
radically different that it does not seem to be related to our discussion, or if you
receive apparently meaningless or unusual messages that do not match our
examples, consult with your dealer to try to resolve the discrepancy before
proceeding.

At the end of this chapter you will also find a section which describes most of the
CP I M error messages you might receive while trying any of the commands intro­
duced in this chapter.

HOUSEKEEPING UTILITIES

For computer users, housekeeping refers to the maintenance of the environment
in which a computer program and its data operate. A well maintained environment
ensures proper storage and retrieval of information; we place information so we can
easily find it later. Consider a file cabinet. In this cabinet we arrange files for easy
access. But what happens when the file cabinet becomes full? If we are in a hurry, do
we still maintain everything in the proper order? How do we retrieve an item which
temporarily resides on our desk? The answers to these questions involve any routine

S4

CP I M TRANSIENT COMMANDS

housekeeping we undertake to maintain the integrity of the information kept in the
cabinet.

Now consider the disk used to store information (and instructions) as an elec­
tronic file cabinet. Just like a regular file cabinet, this electronic one can become full,
get out of order, or lack information that is stored elsewhere.

Clearly, we need a few housekeeping routines to maintain that electronic cabinet,
our disks. These routines must perform the following housekeeping tasks:

Ascertain the current status of a disk
. Rearrange the information on the disk
. Expand the filing capabilities.

But you may remember we already have some commands that perform these
tasks. Thus, we could categorize the commands in Chapter 2 by function as shown
in the following table:

Use
Command

Status Rearranging Expansion

DIR x

ERA x

REN x

SAVE x x

TYPE x

USER x

However, these commands are not sufficient to alter a disk or to do major
reordering. For instance, while you can see which files are on the diskette, the
built-in CP I M commands cannot determine the size of those files.

Fortunately, Digital Research provides a number of housekeeping utilities to
help you keep your diskettes in order. These housekeeping utilities include the
following transient programs:

Program CP/M-SO CP/M-S6

STAT STAT. COM STAT.CMD

PIP PIP.COM PIP.CMD

ED ED.COM ED.CMD

DUMP DUMP.COM DUMP.CMD

SYSGEN SYSGEN. COM LDCOPY.CMD

MOVCPM MOVCPM.COM n/a

As with the built-in commands, the transient housekeeping commands can be
categorized by function.

CHAPTER 3/ 55

CP/M USER GUIDE

Use
Command

Status Rearranging Expansion

STAT x x x

PIP x x

ED x x

DUMP x

SYSGEN x x

LDCOPY x x

MOVCPM x x

SYSGEN, LDCOPY, and MOVCPM are described in Chapter 5. STAT, PIP,
ED, and DUMP are described in this chapter.

The description of ST AT is divided into two sections because of the two distinct
uses of this program.

The Statistics on Files section tells how STAT is used in the housekeeping offiles.
The Statistics on Devices section tells how STAT is used in the housekeeping of
devices. Devices were introduced in Chapter I and are further explained in the
second STAT section.

As with STAT, PIP coverage is divided into separate sections. These three
sections reflect the natural differences in the data sources and destinations that can
be connected by using PIP.

STAT -STATISTICS ON FILES

STAT, short for STATISTICS, provides information about a file or a group of
files on a disk. Uses of S TAT relating to devices other than the disk drive are
described following this section on files.

ST A T commands either provide information on the size and attributes of a file or
files on a disk, or change the attributes of a file or files on a disk. The command line
parameters specify which files are to be included. File size refers to the amount of
space (in bytes) occupied by a file. Free space refers to the amount of unused space
(in bytes) still available on a disk for storage of files. File or disk attributes are a
specific set of characteristics we can assign to a file or a diskette.

Introduction to STAT
And Its Terminology

The size of a file or the amount of storage that is unused on a disk is always
reported by STAT in bytes. As we discussed in Chapter I, a byte is a memory unit
capable of storing a single character. Also recall that I K byte equals 1024 bytes, a
quantity which is universally, but incorrectly, called a kilobyte.

56

CP; M TRANSIENT COM MANDS

If STAT tells us we have 34K of space remaining on our disk, we can store an
additional 34,816 (1024 times 34) bytes of information on that disk.

Experience is the best guide for interpreting what STAT tells you about your files.
If you use ST AT often and compare its reports, you will develop a sense of what 34K
represents. As a reference, 34K bytes is equivalent to 10 pages of single-spaced,
typewritten material (assuming 65 characters per line and 54 lines per page).

Users of CP / M-80 version 2.2 and CP I M-86 may assign two pairs of file
attributes: RIO or R/W, and OIR or SYS.

R/O Read-only file.
You may not update an RIO file or erase it by using the ERA command.
You may not write to or enter information on an RIO file. RIO status
protects against accidental erasures of valuable files.

R/ W Read/ Write file.
You may update or erase an RI W file; it is not protected unless the diskette
is write-protected. This is the normal attribute of a file and is the default
attribute (you do not have to set it explicitly).

SYS Systemfile.
A SYS file does not appear in the display of a disk directory. You may
retrieve information from a SYS file, store new information in it, erase it,
or use it in any other normal manner, but it will not appear in any directory.
However, it will appear when you use STAT to review the status of files.
SYS files are available to all user areas in CP I M-80 version 2.2, but only
SYS files in user area 0 will be available to other user areas in later
CP 1M -80 versions.

DIR Directory file.
A OIR file appears in all directory displays for the current user area. This is
the normal attribute given to a file.

The members of each pair of attributes are mutually exclusive; files cannot be
both R/W and RIO, nor can they be both SYS and DIR.

If you try to save information on a R! 0 disk or write on an RIO file, the error
message BOOS ERR ON d: RIO will appear (where d: is the drive identifier). Even
if a disk is not write-protected, it still appears as an RIO type using STAT. This
means that you exchanged diskettes without telling CP I M, but CP j M recognized
the swap. To restore the new diskette to Rj W status, simply type a CONTROL-Co

If a diskette is protected with the write-protect notch covered, it still appears as
RI W in the STAT report because CP I M has no way of detecting the physical status
of the write-protect notch until you actually attempt to write on the diskette.

You use the information STAT gives you on file size, file attributes, and disk
space to perform the following functions:

Examine how much space is left on a diskette

Examine how much space is occupied by a group of files

Examine how much space is occupied by a single file

CHAPTER 3/ 57

Assign RIO or R/W attributes to a group of files

Assign RIO or R/W attributes to a single file
Assign DIR or SYS attributes to a group of files

Assign DIR or SYS attributes to a single file.

CP i M USER GUIDE

To determine which ST AT command line to enter for each of the uses listed
above, read the next few pages carefully. Examine each command line, its purpose,
and the computer display results. Try these examples at your computer. Try to
generate the error messages. Consider how you might use the information dis­
played, given the uses of ST AT we have just listed.

Using STAT on Flies

STAT <cr >
Display the attribute and the amount offree space left on the disks accessed since

the last cold or warm start.

Examples

A>STAT<cr>

A: R/W, SPACE: 21<

A>STAT<cr>

A: R/W, SPACE: 21<

B: R/[I, SPACE: 1201<

A>

Command line
ST A T's report

Command line
STAT's report

(CP I M-80 version 1.3 only reports the status of the currently logged disk drive.)
Note that in the above examples the write-protection status of the disk is reported first, then the

amount of free space remaining is reported.

Special Input

None

STATd: <cr >

58

Display the amount of free space available on the disk in drive d:.

Example

A>STAT B:<ct">

BYTES REMAINING [IN

B: 1701<

A>

Command line

ST A T's report

You ask for the statistics on the second drive, drive B:.

Special Input

None

CP/M TRANSIENT COMMANDS

STAT d:fllename.typ <cr >
Display the amount of space occupied by the file(s) filename.typ on drive d:. The

file name and extension may contain the CP/M ambiguous characters (* and ?).
The drive identifier is optional; if omitted, the current drive is assumed.

Examples

A>STAT JOAN.ARC<cr>

RECS 8YTS EX ACC

5 21< 1 R/~j

A)STAT 8:JOAN.APC<cr>

D:FILENAME.T'lP

A:JOAN.ARC

RECS 8\'TES EX ACC D:FILENAME. riP

10 41(1 R/W 8:JOAN.ARC

A>STAT *.COP1<u>

PECS 8YTES EX ACC D:FILENAME.TYP

4 21(1 R/W A:DUMP.COM

48 61< 1 R/~~ A: JED. COM)

56 81< 1 R/O A:PIP.Cot1

24 41< 1 R/W A:STAT.COM

10 21< 1 P/W A:SUBrlIT .COM

8\'TES REMAINHIG Dt,j A: 2181<

A>STAT 8:EXAMPLE.?X?(cr)

RECS 8'r'TES EX ACC D:FILENAME.TYP

48

24

A)

61<

41<

Special Input

None

1 WW 8: EXAf'IPLE. TXT

1 R/ W 8: EXAMF'LE. En

In the above examples some new terminology was introduced in the headings
ST AT printed out.

RECS
The number of 128-byte records used by the file. CP I M stores information in I 28-byte units.

BYTES
The length ofthe file in bytes. 2K represents 2048 characters of information; a kilobyte is 1024
bytes since computers use the binary numbering system.

CHAPTER 31 59

CP/M USER GUIDE

EX
The number of physical extents occupied by the file. Extents are another part of the way
CP! M maintains files, but most users can ignore this.

ACC
The file access attribute, Rj W or R! O. CP / M -80 versions 1.4 and earlier did not include this
function.

D:FILENAME.TYP
The heading for the drive and file name column on the display. The heading is absent for
CP! M-80 version 2.2 and newer.

A:(ED.COM)
Parentheses surrounding a file indicate that the SYS file attribute has been set. The SYS file
attribute is only available on CP j M-80 version 2.2 and newer.

STAT d:fllename.typ $atr <cr >
Assign the attribute atr (which can be Rj 0, Rj W, DIR, or SYS and must be

preceded by a dollar sign) to the file(s) filename.typ on drive d:. Filename.typ may
use the wildcard specifiers, * and ? The d: is optional; if omitted, the current logged
drive is assumed.

Examples

A>STAT BROTHER. AND $R/O<cr>

8f;'OTHER. AND SET TO R/O

A>

A>STAT 8:BROTHER.AND $SYS<cr>

B: BROTHER. AND SET TO S'i~3

A>

A>STAT *.* $R/W<cr>

8ROTHER. AND SET TO R/W

SISTER. TOO SET TO R/vJ

A>

Special Input

None

STAT -STATISTIC ON DEVICES

ST AT also provides information about CP j M's physical and logical devices. In
Chapter I we briefly introduced physical units as the devices you may choose to
make up your microcomputer system. A logical device denotes a general function of
your microcomputer, while a physical device is the specific piece of equipment you
choose to perform that function. CP j M requires us to select a physical device to
perform the function of each logical device. We convey our choices to the computer
by using the STAT (on devices) command.

There are four logical devices in CP j M.

60

CP / M TRANSJE;';T COMMANDS

CON:
Enter commands and display information; operator console function

RDR:
Receive information; paper tape reader function

PUN:
Send information; paper tape punch function

LST:
List (print) information; list function.

There are 12 physical devices possible.

TTY:
Slow console display (teletypewriter)

CRT:
Fast console display (cathode ray tube)

BAT:
Batch processor

UCI:
User defined console

PTR:
Paper tape reader

PTP:
Paper tape punch

URI:
User reader # 1

UR2:
User reader #2

UPI:
User punch #1

UP2:
User punch #2

LPT:
Line printer

UL1:
User list device

NOTE: The colon in each of the logical and physical device names is required in all references to
these devices. In other words, RDR: is the proper device name for the logical reader device.

Sixteen physical-to-logical device assignments are possible.

Logical

CON: May be performed by
RDR: May be performed by

Physical

TTY:, CRT:, BAT:, or UCI:
TTY:, PTR:, URI:, or UR2:

CHAPTER 3/ 61

CP / M USER GUIDE

PUN: May be performed by TTY:, PTP:, UP!:, or UP2:
LST: May be performed by TTY:, CRT:, LPT:, or ULl:

Your microcomputer might be programmed for physical devices other than the
default TTY:. This programming was most likely done by the vendor who sold you
your CP / M. If you have two printers, one might be programmed to be the LPT:
device and the other as the ULl: device. Once made, such arrangements are
generally constant; they reflect the distinct programming required to connect each
device to the microcomputer. In our example, both LPT: and ULI: are physical
devices that can perform the function of the logical device LST:.

Unfortunately, most computer manufacturers have not followed the original
recommendations of Digital Research in assigning physical devices, and Digital
Research has steadfastly maintained the original device names, despite major
changes in the technology of terminals, modems, and printers. Here is the normal,
and confusing, setup of a typical microcomputer.

Logical Physical Actual Device
CON: TTY: High-speed video terminal
RDR: PTR: Modem receive line
PUN: PTP: Modem send line
LST: LPT: Printer

Notice that the information in this table does not match the descriptions we gave
for each device above (for example, TTY: is supposed to be a slow console device,
not a high-speed video terminal). Paper tape readers and punch devices are not
widely used anymore, and the abbreviations PUN:, RDR:, PTR:, and PTP: reflect
an earlier time when paper tape was commonly used. Do not be disturbed if your
device assignments do not exactly match the CP/M definitions.

When your computer is first started, the default values of the device assignments
are made. These default assignments vary from system to system and are pro­
grammed into your CP/M by your vendor. The default values should be the
assignments you most often use. A cold start changes the device assignments to their
default value, but a warm start does not affect the assignments in any way.

We use STAT on devices

To learn the current device assignments
To learn the possible device assignments
To assign physical devices to logical devices.

A few STAT on devices command lines request information on the disk drives.
Specifically, we use these special command lines

62

To learn the current status of a drive
To learn the current status of user areas on the disk

To protect a disk from accidental "writes."

CP / M TRANSIENT COMMANDS

To determine which STAT on devices command line to enter for each of the uses
listed above, read the following pages carefully. Examine each command line, its
purpose, and the computer display results. Consider how you might use the infor­
mation displayed, given the uses of STAT on devices we have just listed.

STAT DEV: <cr >
Display the current device assignments.

Example

A>STAT DEV:<cr>

CON: ISCRT:

RDR: IS UR1:

PUN: IS UP2:

LST: I~3 ULl:

A>

Notice that the left-hand entry reflects the logical device; the right-hand
entry is the current physical device assigned to it.

Special Input

None

STAT VAL: <cr >
Display the possible assignments of physical-to-Iogical devices and an abbrevi-

ated ST AT command line summary.

Example

A>STAT VAL:<cr>

TEMP R/O DISI<: D: = R/O

SET INDICATOR: D:FILENAME. TYP $R/O $R/W $SYS $DIR

D I SI(STATUS : DSI<: D: DSI< :

USER STATUS : USR:

IOBYTE ASSIGN:

CON: = TTY:CRT:BAT:UC1:

RDR: = TTY:PTR:UR1:UR2:

PUN: = TTY:PTP:UP1:UP2:

LST: = TTY:CRT:LPT:UL1:

NOTE: Only the last four lines appear if you are using CP / M -80 version 1.4 or version 1.3.

The first several lines STAT presents tell you the possible STAT device com­
commands. They are

STAT D: = R/O

STAT D:FILENAME. TYP R $ATR

To make a temporary receive-only disk
To set an attribute

CHAPTER 3/ 63

STAT D: D'31<:

STAT D: U:=:;P:

Special Input

None

CP/M USER GUIDE

To see the statistics on a disk drive
To see the statistics on user area use

STAT log: = phy: <cr >
Assign the physical device specified to the logical device specified.

Example

A>STAT CON:=CPT:,LST:=UL1:(u>

A>

Notice that several device settings can be made by separating each with a
comma. In addition, note that CP/M does not issue any message to inform
you that the assignment has been made. If your system no longer works after
you make a new device assignment, it is possible you have assigned the console
function to a non-existent device.

Special Input

None

STAT USR: <cr >
Display the current user number and list all user numbers for which there are files.

Example

A>'3TAT U:3P :(CI'>

ACTI \/E USEP: 0

ACTI\/E FILES: 0 13

A>

The above message indicates that you are currently in user area 0, but you
have files on your disk in areas 0, I, and 3. This function is not available on
CP / M -80 version I. 3 or 1.4.

Special Input

None

STAT d:DSK: <cr >
Display information on how data is stored on the disk in drive d:.

64

Example

A>STAT B:D':;I<:(cl->

B: DPI\/E CHAPAc:TEPISTICS

41)'35: 128 B",'TE PECOPD CAPACIT'i

512: I(ILOB~'TE DPI\/E CAPACITY

CP / M TRANSIENT COM MANOS

A>

128: 32 B'lTE DIRECTOR'" EI,nRIE'3

128: CHECI(ED DIRECTORY ENTRIES

128: RECORDS/EXTENT

16: RECORDS/BLOCK

58: SECTORS/TRACK

2: RESEP\/ED TRACI(S

The d: (drive identifier) is optional; if omitted, information is displayed for all
disks accessed since the last cold or warm start.

The most relevant information in the display is "KILOBYTE DRIVE CAPAC­
ITY," which is the amount of free space on an empty disk, and "32 BYTE DIREC­
TO R Y ENTRIES," which is the maximum number of files you can store on the disk
(this number will be reduced if you have any files which are larger than one extent).

The information in the ST AT d:DSK: display will not change unless you modify
CP / M. This static information reflects design decisions about how to arrange data
on the disks.

The following definitions explain each of the STAT entries presented to you on
the CRT:

128 BYTE RECORD CAPACITY
The maximum number of 128-byte records you may store on the disk.

KILOBYTE DRIVE CAPACITY
The maximum number of Kbytes you may store on the disk.

32 BYTE DIRECTORY ENTRIES
The maximum number of files you may store on the disk.

CHECKED DIRECTORY ENTRIES
Usually the same as "32 BYTE DIRECTORY ENTRIES" for drives with
removable media (diskettes); usually "0" for drives with non-removable media
(sealed hard disks).

RECORDS/EXTENT
The maximum number of records per directory entry.

RECORDS/BLOCK
The minimum amount of disk space which may be allocated to a file.

SECTORS/TRACK
The number of sectors into which a track is divided (see Chapter 1).

RESERVED TRACKS
The number of disk tracks not available for storage of files.

Special Input

None

CHAPTER 3/ 65

CP/M USER GUIDE

STAT d: = RIO <cr >
Assign a temporary write-protect (read-only) status to the disk in drive d:.

Example

A>STAT B:=R/O<cr>
A>SAVE 2 B:JUNK.FIL
B[l05 ERR ON B: R/O

In the above example we first set drive B: to read-only status using ST AT. Note
that STAT does not provide any confirmation of our request. Next, we attemp­
ted to save a new file on the disk and received a BDOS ERR message indicating
that CP / M considers the disk to be write-protected. A warm or cold start cancels
the temporary R/O status.

Special Input

Any subsequent warm or cold start cancels the temporary R/O status.

PIP-COPYING INFORMATION

PIP, Peripheral Interchange Program, copies information from one place to
another. The names of the files you wish to copy can be ambiguous, and a number of
optional parameters are available for use. PIP can also copy information from and
to devices.

PIP is invoked in one of two ways. If you want to perform only one operation
with PIP and it will not be necessary to swap the diskette in A: use the following:

A>PIP pipcommandline<cr>

If you have several operations to perform, use the following second method to
invoke PIP:

A>PIP<cr)
*pipcommandllne<cr>

*pipcommandllne<cr>
*'C
A>

CP / M command line
PIP command line

Any number of PIP commands

PIP command line
1\ C returns you to CP/M

No matter which method you use, there is no significant difference in the manner
in which PIP performs the operation requested by pipcommandline. A minor
difference is explained under the "Q" parameter later in this PIP section. Another
minor difference is in PIP's response to errors. If the first invocation method is used,
errors cause a return to CP / M. If the second method is used, errors cause a return to
the PIP prompt.

66

CP! M TRANSIENT COMMANDS

The PIP command line ("pipcommandline" in our examples) usually takes the
following form:

destination = source [parameters]

where "destination" is the name of the new file, "source" is the name of the old file,
and "parameters" are the optional parameters you select for the copying process.

If there is already a file with the same name as your destination file, the existing
file is erased after successful completion of the copy. The previous contents of the
destination file are lost.

PIP command lines and special parameters specify the transfer made between
two files or two groups offiles. In every instance, the original file remains intact; we
can duplicate an entire disk or only a portion of a file without changing the original.
We can specify that certain characteristics of the new file be changed from the
original, without changing the original. The following are some uses of PIP (files):

Copy a file from one disk to another

Create an identical file with a different name

Copy several files from one disk to another

Copy all files from one disk to another

Create one file from the concatenation of several others

Copy a portion of a file

Copy from a system file

Copy onto a R/O file

Display the contents of the copied file in progress.

PIP also copies data from a file to a device, from a device to a file, or between
devices; you simply substitute a device name for a file name in either the destination
or source position, or both.

When you read from or write to a device instead of a disk file, make sure you can
terminate the copying process. Some devices do not emit an end-of-file marker C" Z)
as CP/M does at the end of every disk file. The following are some uses of PIP
(devices):

Send the contents of a file to a device, such as a printer

Pass the data from a device, such as a paper tape reader or modem, into a file

Send data from one device to another

Print the contents of a file, formatting it for a special printer or paper size

Display on the console selected data arriving at an input device

Convert upper-case letters to lower-case ones, or vice versa

Save in a file all the data arriving at an input device.

PIP has five "special" device names in addition to the ones mentioned in the
section on STAT.

CHAPTER 3/ 67

CP / M USER GUIDE

NUL:
A source device which sends 40 nulls ("do-nothing" characters, for example,
00 hex) to the destination specified.

EOF:
A source device which sends an end-of-file marker C' Z, or 1 A hex) to the
destination.

OUT:
A user-created custom destination device. PIP must be modified to include
this device.

INP:
A user-created custom source device. PIP must be modified to include this
device.

PRN:
A special form of the LST: device which expands tabs, numbers lines, and
paginates the copy (the same as LST: [NPTS]).

As with the devices discussed earlier, these device names are used as sources and
destinations in the command line.

Examine the following pages. Each PIP command line parameter and option is
illustrated with an explanation of the computer display. Explore the possible
combination of PIP command lines, parameters, and options and the resulting
variations on the uses we have listed.

PIP<cr>

Load PIP into memory.

Example

A>PIP<cr>

*

Command line

PIP prompt

When you see the PIP prompt (*) you may enter a valid PIP command line, or
press CARRIAGE RETURN or "C to return to CP/M.

Special Input

A CARRIAGE RETURN or "C cancels PIP and returns you to CP/M.

PIP d:new.typ=d:old.typ[p] <cr>

Copy the file old.typ on the drive specified to the file new.typ on the drive
specified using parameters ([p]).

68

Examples

B>PIP LETTER2.DOC=LETTER1.DOC<cr>
B>

Simple use of the PIP command to copy a file into a new file with a new name.

CP! M TRANSIENT COMMANDS

B>PIP R:LETTER2.DOC=B:LETTER1.DOC<cr>
B>

An example of using PIP to copy between disks A: and B:.

B>PIP LETTER2.DOC=LETTER1.DOC[V]<cr>
B)

An example of the use of a parameter, in this case, the "V" (for Verify)
parameter.

R>PIP B:=R:DOCUMENT.LET[V]<cr)
A)

R>PIP B:DOCUMENT.LET=A:[V]<cr>
A>

Two examples of using shorthand methods of specifying a file name when
the same name will be used on both drives. Either side of the equal sign may be
abbreviated to just the drive identifier.

A>PIP B:=R:*.*[Vj<cr>

COPVING-
DOC.ClNE
DOC.TWCI
LET. CINE
A)

An example which uses both the abbreviation (B:=) method just shown
plus the use of ambiguous file references (A:*.*). When ambiguous file
references are used, PIP reports the names of the files which match your
request as it copies them.

Special Input

None

PIP d:new.typ=d:old1.fll[p].d:old2.fll[p] <cr >
Create a new file on the drive specified, the new file consisting of both files

old l.typ and old2.typ. In other words, a comma on the PIP command line indicates
concatenation.

Example

R>PIP B:DOC=A:JUNE[V],A:JULY<cr>
A>

This example would combine the data in JUNE and JUL Y (in that order) into
a new file named DOC.

CHAPTER 3/ 69

Special Input

None

CP/M USER GUIDE

PIP dev:=d:fllename.typ[p] <cr>
Send the contents of a file on the drive specified to a device.

Example

8>PIP LST:=8:LAFFERTY.RT<cr>

8>

The above example would send a copy of the file LAFFERTY.RTto the LST:
device.

NOTE: You may not use ambiguous file references to send a series of files to the
LST: device.

Acceptable destination devices are
CON: PUN: LST: Logical

TTY: PTP: LPT: CRT: Physical
UPi: UP2: ULi: UL2:

OUT: PR~I: Special

Special Input

You may stop the PIP to a device process by pressing any key while the
copying is in progress.

PIP d:fllename.typ=dev:[p] <cr>
Copy input from a device to the file name specified.

Example

8>PIP 8: DOCUMENT. MAY=COI'1: <u>
I AM NOW TYPING FP0i1 CONSOLE. 'z
8>

The above example creates a file from information typed at the console
device (up to and including the terminating" Z).

Acceptable source devices are

CON: RDP: Logical

T1'I: PTR: CRT: UPi: Physical
UP2: UCi:

~IUL: EOF: I NP : Special

Special Input

Both a CARRIAGE RETURN (" M) and a LINE FEED (" J) must be at the end of each
line. "Z terminates the transfer and signifies the end the file.

70

CP / M TRANSIENT COM MANDS

PIP destlnatlondev:=sourcedev:[p] <cr>

Copy data from one device to another.

Example

A>PIP CON :=PTR: [U 1 <cr>

THIS IS A PAPER TAF'E READING DATA

INTD THE SYSTEM, WHICH DISPLA\'S IT

ON THE DE::,TINATION DEVICE, THE CONSOLE.

A>

In the above example, we asked that the data being read from the paper tape
reader be copied to the console display. In addition, we specified the optional
parameter of converting information to all upper-case characters ([U]).

PIP Parameters

This section describes each of PIP's optional parameters. You probably will only
use one ortwo of these parameters frequently, and you may never use some of them.
You may combine two or more parameters between the bracket characters (for
example, [BEU]).

[B]

Block transfer parameter. The [B] parameter designates the "block mode
transfer." In block mode, PIP transfers information from the source to a buffer
until the ASCII character DC3 (53 hex, or" S, sometimes called XOFF or reader
off) is received. Once this character is received, PIP takes the information it has
received so far and sends it to the destination device specified. Then PIP returns to
the source for more data. We use [B] for those source devices that transfer data
continuously and would otherwise fill up PIP's buffer area (where it stores informa­
tion before processing to the specified file or device) ifthe buffer were not periodi­
cally purged. For normal file-to-file operations, [B] is not necessary.

The [B] parameter is normally used to read a paper tape into a file. Whatever the
source device, it must send the DC3 character often enough to avoid filling the
buffer and then waiting for PIP to empty the buffer.

The [B] parameter is not used on CP / M -86 system.

[0#]

Delete all characters after the #th column. The [D#] parameter tells PIP to delete
any character received that extends past a column number. This number must be
specified immediately following the "D," as in [D20], for example. This type of
transfer will work only for line-oriented data (data that contains periodic CARRIAGE

RETURN characters). After each CARRIAGE RETURN is detected, PIP counts and
processes characters up to and including the column number specified and then
ignores all remaining characters sent until the next CARRIAGE RETURN is received.

CHAPTER 3/ 71

CP! M USER GUIDE

(NOTE: Line feed characters are interpreted the same as CARRIAGE RETURN for
this operation.)

The [D#] parameter is primarily used to send wide-lined output to a device that
handles only narrow lines (like a printer or CRT terminal). For file-to-file transfers,
this option is rarely used.

The value "#" is a decimal integer in the range I through 255, inclusive. Input lines
longer than 255 characters are not truncated properly by the [D#] option.

[E]
Echo the copying to the console as it is performed. The characters sent to the

destination device are echoed to the console display during the copying process.
This is a handy method of reviewing exactly what is being copied.

[F]
Filter form feeds from the original file. The [F] option "filters" form feed

characters (OC hex) from the data flow; PIP ignores the ASCII-defined character
for form feeds and copies without it. Form feeds are often embedded in files to
correctly paginate the printed output. You may wish to eliminate form feeds to
conserve paper, to display a file on your console screen, or to use a printer that
improperly interprets the form feed character.

The ASCII form feed character is called "FF" and is equivalent to hexadecimal
OC and CONTROL-L.

The form feed character controls the layout or positioning of information in
printing or display devices. Thus, a printer would normally respond to this charac­
ter not by printing it but by advancing the paper to the top of the next form or page.

Use [F] if your printer does not respond properly to form feed characters or if you
are sending a file to a device other than a printer. See also the [p#] parameter.

[G#]

Direct PIP to copy files from other user areas. The [G#] option allows PIP to
copy files from another user area to the current one. A decimal number (between 0
and 15, inclusive) represents the source user area and should immediately follow the
"G" in the command line. This option is helpful in setting up a user area with files
that may be needed later. The [G#] parameter is not available in CP / M-80 version
1.3 or 1.4.

[H]
Check data transfer for proper Intel hexformat. The [H] parameter specifies that

the data to be transferred be in the special Intel hex format rather than in the normal
ASCII or binary formats. The Intel format is usually used with paper tape punch
and reader devices. Most users do not utilize this option.

When PIP detects errors in the hex format, a prompt will be displayed asking
what corrective action is to be taken. See also the [I] parameter.

72

CP / M TRANSIENT COMMANDS

[I]

Ignore any null records in Intel hexformat transfers. The [I] option also applies
to Intel hex format records (see [H]). The [I] parameter tells the PIP program to
ignore any data that appears in a null record ("00:" in Intel format). Again, this
option is rarely of use to end users, as it applies primarily to paper tape reader and
punch devices.

If the [I] option is specified, then the [H] option is automatically set by PIP. Thus,
the PIP command line of

PUN:=PROGRAM.HEX[I]

is equivalent to

PUN:=PROGRAM.HEX[HI]

[L]

Convert upper-case letters to lower-case. The [L] option allows you to change the
letters "A" through "Z" to their lower-case equivalents during the copying process.

Be extremely careful in using this option. It should never be used with files which
contain instructions to the computer. If you use it on a program file, you may
change important instructions which PIP recognizes as upper-case letters only.

[N]

Add line numbers to each line during the data transfer. The [N] option adds a line
number to each line of data transferred. Each time a CARRIAGE RETURN (or LINE

FEED) is detected by PIP, the line number counter is incremented. [N] is of
particular use when transferring a file to the printer. If a "2" is appended to the [N]
option ([N2]), leading zeroes are added and the number is printed in a six-character
field followed by a three-character blank buffer. Here is the difference between files
transferred using each of these options.

[0]

Original File Using [N]
Now is the I: Now is the
time for all 2: time for all
good persons 3: good persons
to come to
the aid of
their party.

4: to come to
5: the aid of
6: their party.

File Using [N2]
00000 I N ow is the
000002 time for all
000003 good persons
000004 to come to
000005 the aid of
000006 their party.

Transfer object co de files, or other non-ASCIIfiles. Use the [0] parameter when
copying from non-ASCII files (such as program, object code, or binary data files) or
from devices sending non-ASCII data.

Specifying the [0] parameter is not necessary when copying from files with the
".COM" type, because PIP assumes that ".COM" files are non-ASCII (non-text)
files.

CHAPTER 3/ 73

CP/M USER GUIDE

Use of [0] tells PIP to treat CONTROL-Z (lA hex) like any other character it
receives from a source device or file; PIP would otherwise interpret CONTROL-Z as
signaling the end of the transfer from that source.

The following paragraphs contain more detailed information about ASCII files,
non-ASCII files, and end-of-file markers. Read on if you are interested in these
details.

PIP assumes that a CONTROL-Z character received from an ASCII source (device
or file) is an end-of-file marker or data terminator which signals that all the data has
been transferred.

PIP sends a CONTROL-Z character to an ASCII destination (file or device) to
indicate that all the data has been sent.

The difference in handling non-ASCII data is necessary because CP/M uses
different methods for marking (and detecting) the end of ASCII and non-ASCII
files.

CP / M marks the end of an ASCII file by placing a CONTROL-Z character in the
file after the last data character. If the file contains an exact multiple of 128
characters, in which case adding the CONTROL-Z would waste 127 characters, CP / M
does not do so. Use ofthe CONTROL-Z character as the end-of-file marker is possible
because CONTROL-Z is seldom used as data in ASCII files.

In a non-ASCII file, however, CONTROL-Z is just as likely to occur as any other
character. Therefore, it cannot be used as the end-of-file marker. CP/M uses a
different method to mark the end of a non-ASCII file. CP / M assumes it has reached
the end of the file when it has read the last record (basic unit of disk space) allocated
to the file. The disk directory entry for each file contains a list of the disk records
allocated to that file. This method relies on the size of the file, rather than its
content, to locate the end of the file.

[P#]

Issue aformfeed after the#th line. Use the [P#] parameter when the destination is
the LST: device and the current LST: device (usually a printer) does not print the
source data in the following format:

1. A blank top margin
2. A blank bottom margin

3. Top and bottom margins totaling six lines

4. Text completely filling the space between top and bottom margins.

Deviation from these conditions usually occurs when the current LST: device

1. Does not understand the form feed character (see [F]),

2. Does not insert top and bottom margins, or
3. Is printing on a different length page than that assumed by the source

data.

The [p#] option tells PIP you want it to insert a form feed after each number of
lines of data. Enter the desired number of lines in place of "#" in the PIP command

74

CP / M TRANSIENT COMMANDS

line parameter [p#]. The character "#" represents a decimal number in the range I
through 255, inclusive. If you do not enter a number or if the number is I, PIP
assumes you want a page eject after each 60 lines.

If [F] is also present in the parameter field, all form feeds detected during the
transfer will be removed and PIP will then insert new form feeds as specified by
[p#]. In other words, [F] and [p#] used together will override the pagination implied
by the presence of form feed characters in the source data.

A printer that understands the form feed character responds to it by immediately
advancing the paper to the top of the next page, whether or not the current page is
full. Printers which do not understand the form feed character may perform
erratically.

See the section on the PIP PRN: device.

[Qstrlng"Z]
Copy a portion of the file up to the string listed. Use of the [Q] parameter allows

you to give PIP a set of characters to look for and terminate the copying of data
when they are encountered. Select the terminating string of characters carefully;
they must be unique to ensure you are copying the exact portion of the file desired.
"Q" marks the beginning of the string, and "Z marks the end of the string:
[Qstring" Z].

The string following the "Q" parameter is converted to upper-case if the com­
mand line is typed after the CP / M prompt (A». If the command is typed after the
PIP prompt (*), then the automatic conversion does not occur. To include lower­
case letters in the string, your command line must follow the PIP prompt. See also
the [S] parameter.

[R]

Allow PIP to copy a systemfile. Only by appending the command line with [R]
can we copy system files. The system file attribute, if present, is copied. This
parameter does not apply to CP I M-80 versions 1.3 and 1.4.

[Sstrlng"Z]
Copy the portion of data beginning with string. Just like the [Q] option, the [S]

option specifies that you wish to copy only a portion of a file using PIP, beginning at
the point where PIP detects the string of characters specified immediately following
the .oS," where "string" is the sequence of characters to search for and" Z is a
CONTROL-Z used to terminate the string. Both the [S] and [Q] options may be
present on the same command line.

See the important explanation of automatic lower-case to upper-case conversion
under the [Q] option.

[T#]

Set tab stops every #th column. The [T#] parameter tells PIP to expand any TAB

character (09 hex or CONTROL-I) it detects to the number of spaces necessary to

CHAPTER 3/ 75

CP / M USER GUIDE

reach the next tab stop. This is useful because some editor programs do not save
TABS as spaces, but as TAB characters, and not all printers or terminals are set up to
detect TAB characters and expand them to the number of spaces they represent. Use
[T#] to change the standard tabbing from eight characters (or whatever number
your console or printer defaults to) to a number you define.

[U]

Translate lower-case characters to upper-case. The [U] option allows you to
change the letters "A" through "Z" to their upper-case equivalents during the
copying process.

[V]

Verify the copy is correct by comparing the memory buffer with the newly created
filers). The destination must be a disk file; if it is not, [V] is ignored. After the transfer
is complete, the destination is reread and compared to the data in PIP's memory
buffer. This means that the [V] parameter will catch errors in writing the file but not
in reading it.

When concatenating several sources, the [V] parameter must follow the first
source name; only one [V] is necessary.

NOTE: Gary Kildall, creator of CP / M, never uses the [V] parameter, and
members of the Digital Research staff indicate that in four years they have yet
to see a verify error that is not accompanied by a BOOS ERR ON d: BAD
SECTOR error. Therefore, it is doubtful whether the [V] parameter will prove
effective in catching otherwise unseen errors.

[W]

Allow PIP to copy into afile with the Rj 0 attribute. Since [W] permits you to
write to a R/O file, verifying this attribute is not required before proceeding.

If you attempt to write to a R/O file without using the [W] attribute, you would
receive the message

DESTINATIml FILE IS WO, DELETE lo,'/flj?

The [W] parameter is not available in CP/M-80 versions 1.3 and 1.4.

[Z]
Zero the parity bit during the transfer. Use the [Z] parameter to set the unused

eighth bit of a character to zero when receiving ASCII characters from a device.
Each ASCII character uses seven of the eight bits which are processed by the

computer. The eighth bit is sometimes called the parity bit. To avoid mysterious
problems when processing ASCII data, it is usually wise to set the unused bit to
zero.

Use of the [Z] parameter with files created by WordStar results in all "soft spaces"
and "soft carriage returns" (spaces and carriage returns inserted by WordStar to
format text) being converted to real spaces and returns. Depending upon your use,

76

CP / M TRA'iSIENT COMMANDS

using [Z] on a W ordStar-created file can either have beneficial or detrimental
effects.

Special PIP Devices

EOF:

Send an end-of-file marker to the destination device. When copying between two
ASCII -type disk files, an end -of-file marker is automatically sent to the destination
device. In some special instances, EOF: can be used to terminate the transfer. When
sending files between two computers it is often necessary to terminate the transfer
by sending the EOF: device character.

NUL:

Send 40 null (do-nothing) characters to the destination device. NUL: was origi­
nally used to terminate punched output with a blank section of paper tape; it
provided a header or trailer to the actual information, which was useful for
threading the tape. NUL: will produce a four-inch length of blank paper tape.

The ASCII null character is called "Null" and is equivalent to 00 hex, or
CONTROL-@.

PRN:

Send data to LST: device with special instructions. The PRN: device specifies
additional instructions to the LST: device. It can contain instructions that expand
tabs, number lines, or paginate the copy.

Tab stops are assumed at every eighth column. Every time a TAB character is
detected, PIP inserts spaces instead. All lines are numbered (beginning at 1 and
continuous throughout the transfer), and page ejects are sent to the printer every 60
lines (giving you a margin of three lines at the top and bottom of a normal II-inch
piece of paper). PRN: is used for program development and for listing the contents
of an ASCII -type file; the line numbers provide recognizable reference points within
the file.

PRN: is equivalent to [NPT8].

INP: and OUT:

Special device drivers for PIP. The device INP: retrieves information from a
special user-created PIP input source. OUT: sends information to a special user­
created output destination.

You can add special input and output routines (in machine language) to PIP.
Hexadecimal locations 103, 104, and 105 are reserved for ajump instruction to your
special input routine. PIP calls location 103 hex to input a character and, upon
return, expects to find the character in location 109 hex. Hexadecimal locations
106, 107, and 108 are reserved for the jump to your special output routine. PIP loads
Register C with the character to transmit and then calls location 106 hex. In

CHAPTER 3/ 77

CP/M USER GUIDE

addition, the area from lOA to I FF hex is free for you to insert your routines. It is
rare for a user to use this option.

ED-CONTEXT EDITOR

ED is a program with a number of built-in commands used to edit text files.
You may have wondered how you put something new onto a disk. The answer is

that you use an editor. CP / M includes an editor which you will find saved in the file
ED.COM.

The editor is a program that takes characters from the keyboard and puts them in
a disk file. Since you might make entry errors or wish to make changes, the editor
also includes a number of built-in commands that display, modify, delete, and add
to the information you have typed.

The CP / M editor (called Context Editor by Digital Research) is both character­
and line-oriented; commands operate on text either a character at a time or a line at
a time. A line is a block of characters ending in a CARRIAGE RETURN.

To edit the file filename.typ, type the following:

A>ED filenarne.t'dP<cr-)

Once the editor program is loaded into memory, it creates a new file with the
name filename and the type "$$$" and waits for your command. You may now use
the built-in commands of ED to

. Delete or change any part of the existing file, or

. Insert new information into the file from the keyboard or from another file.

For example, suppose the file DOCUMENT.MA Y requires editing. To invoke
ED type

A>ED DDCU~1ENT .1'1A'i<c r>

ED creates the temporary file DOCUMENT.$$$ on the disk. This file contains
no information, only a Directory entry for it.

In order to make changes to the original file DOCUMENT. MA Y, you must be
able to see the text and manipulate it. ED's commands permit you to move text from
the original file into memory, to view the text that you have moved into memory, to
make the required changes, and to move the text from memory back to the file. You
can only edit a file while it is in memory. The area of memory ED sets aside to hold
text is called the edit buffer.

As you progress in your editing, you will move more text from the original file
into the edit buffer. The edit buffer holds a limited amount of text; as it becomes full
you must move the editing text to the temporary file, DOCUMENT.$$$.

When you complete your editing session, some text may remain in the original file
DOCUMENT. MA Y, some in the edit buffer, and some in the temporary file
DOCUMENT.$$$. To end the edit, ED first moves the edit buffer contents to the
temporary file, DOCUMENT.$$$. Then ED moves the remaining text from the

78

CP/M TRANSIENT COMMANDS

original file to the temporary file. Finally the original file, DOCUMENT.MAY,
is renamed DOCUMENT.BAK, and DOCUMENT.$$$ is renamed DOC­
UMENT.MAY.

You now have a copy of the original input in DOCUMENT.BAK, and your
newly edited version exists on your disk in the file DOCUMENT.MA Y.

Since movement through the entire text may require shifting bodies of text in and
out ofthe edit buffer, you basically move forward through the text (the H command
allows you to restart from the head of the file). This will be explained in more detail
later. Examine the ED commands on the following pages to learn how to perform
the tasks we have described.

ED Commands

To use ED commands, invoke ED, and follow ED's prompt (*) with the proper
command and a CARRIAGE RETURN «cr», as follows:

A>ED d:fllename.typ<cr>
*edcommand<cr>

We will use several abbreviations in this section. Whenever a plus or minus sign
can be typed, you will see the symbol "-", which stands for plus (+) or minus (-); if
you type neither "+" or "-", ED assumes you mean "+". Whenever a number can
be typed to give the command further information, you will see the symbol "n. "This
"n" can be any decimal integer number in the range 0 through 65535, inclusive. Do
not use a comma between the digits. If you omit the number, ED assumes a value of
1. Typing a zero (0) has a special meaning for some commands. If you type a number
sign (#), ED substitutes 65535.

For purposes of ED, a line of text is a sequence of zero or more characters
followed by a CARRIAGE RETURN character and a LINE FEED character. We will
represent this character pair by the symbol CRLF. When you type a line of text for
ED and then press CARRIAGE RETURN, ED adds the LINE FEED character so that the
line ends with CRLF.

We can separate ED commands into four functions: transfer text, work with the
text in the edit buffer, search and change the text, and combine commands.

Transferring Text.
You can transfer text by line or by blocks

From the original file into the edit buffer
From the edit buffer into the temporary file

From the original file to the temporary file
From the edit buffer into another file (not the original or the tempor­
ary file but a distinct file on a disk)
From another file (not original or temporary but a distinct file on the
disk) into the edit buffer.

CHAPTER 3/ 79

CP/ M USER GUIDE

Working in the Edit Buffer.
An imaginary character pointer (CP) locates the text in the edit buffer. These
editing commands

Insert text into the edit buffer

. Manipulate text within the edit buffer in relation to the CP

. Direct the movement of the CPo

Searching and Changing Text.
With this function of ED you can work within the edit buffer to

Search for a particular set of characters

Substitute a set of characters

Switch placement between sets of characters

Move text from the original file through the edit buffer to the tempor­
ary file automatically while searching.

Combining Commands.
A string of ED commands can be entered in one command line ending with a
<cr> to permit a variety of sequential editing functions and to repeat a
command string a specified number of times.

Commands for Transferring Text
#A

Append (copy) a number of linesfrom the originalfile to the edit buffer. To move
a single line, enter" A" only; I is the default number of lines to move. To move the
maximum number of lines into the edit buffer, include the number (#A). The #A
command moves lines until the original file is exhausted or the edit buffer is full. To
move a portion of the text into the edit buffer, enter OA; thi8 moves text from the
original file until the edit buffer is at least half full. Once appended, lines in the
original file are ignored by subsequent commands that read from the original file.

nW
Write a number of lines from the edit buffer into a temporary file.

W

#W

OW

writes a single line

writes the entire buffer

writes until the edit buffer is at
least half empty

"W" always begins with the first line in the edit buffer and writes it in the
tempora.ry file after the line most recently placed there. Lines are deleted from the
edit buffer as they are written to the temporary file.

E
End the editing session. Text is transferred and files are renamed as follows:

I. All text remaining in the edit buffer moves to the temporary file, as with the

80

CPI M TRANSIENT COMMANDS

W command.

2. All text remaining in the original file is then appended to the temporary file.

3. The type of the original file becomes ".BAK."

4. The type of the temporary file is changed to the type of the original file.
5. The block move file X$$$$$$$UB, if present, is erased.

6. The CP I M prompt returns.

Use the E command as the normal ending of an editing session. In order to work
properly, "E" must be the only command on a line.

H

Move to the beginning ofthefile being edited (move to Head). Text is transferred
and files are renamed as follows:

1. All text remaining in the edit buffer moves to the temporary file, as with the
W command.

2. All text remaining in the original file is moved to the temporary file.

3. The type of the original file becomes ".BAK."

4. The type of the temporary file is changed to the type of the original file.

5. A new, empty temporary file is created.

6. You are now ready to edit the new original file.

The H command has two uses.

1. Since the A, N, and W commands can move only forward, not backward,
through the original and temporary files, you use the H command to save
the editing done so far and return to the beginning of the file for more
editing.

2. Use the H command every few minutes during editing of critical files to
save your results on the diskette. Text left in the edit buffer is generally lost
if an operator error or equipment malfunction occurs, but text saved in the
temporary file is easily recovered.

"H" must be the only command on a line. Frequent use of "H" is especially
important when inserting a lot of text or making numerous changes. However,
remember that the H command makes a new backup file. This means that after
using the H command twice the original file as it was before beginning the editing
session is lost. For this reason, if you anticipate using the H command often, use
PIP to make your own second copy of the original file (do not call it type ".BAK,"
use ".OLD" or place it on a different drive to be safe).

o
Erase the edited file. Text is transferred as follows:

I. The contents of the edit buffer and the temporary file are deleted.

2. You are returned to the beginning of the original file.

CHAPTER3! 81

CPI M USER GUIDE

ED asks "O-(Y IN)?" before it proceeds since all changes made to the text are
erased when the 0 command executes. Press "Y"to return to the original file or "N"
to continue editing.

"0" must be the only command on the line.

Q

Quit editing; do not institute any changes. ED asks "Q-(Y I N)?" before it proceeds
since all changes made to the text are erased when the Q command executes. Press
"Y" to quit editing or an "N" to continue the editing session.

"Q" must be the only command on the line.

R<cr>

Reads the file created by the X command into the edit buffer. "R" inserts the
entire contents of the transfer file X$$$$$$$.LIB into the edit buffer immediately
after the character pointer (CP). The transfer file is not affected; you can read it as
many times as you want during an editing session. The transfer file is automatically
erased when you leave ED with the E, Q, or C commands.

Rfilename <cr >

Reads the library file filename. LIB into the edit buffer. This command inserts the
entire contents of the specified file into the edit buffer immediately after the
character pointer (CP). The library file is not affected.

nX
Writes (Xfer, or transfer) lines from the edit buffer to a temporary file named

X$$$$$$$. LIB. You may later transfer these lines back to the edit buffer by using
the R<cr> command. With the X, R<cr> command combination you can move
blocks of information. The file X$$$$$$$.LIB is erased when editing is completed
with a E, Q, or C command. The X command copies the "n" lines that follow the
character pointer in the edit buffer into the transfer file. The lines are not deleted
from the edit buffer, and they are added to any previous contents of the transfer file.

Commands for Working in
The Edit Buffer

-8

Moves the character pointer to the beginning (use a H+" or nothing before the
HB") or to the end (use a H_" before the HB") of the edit buffer. Notice that the
direction implied by the sign in front of the B command is the opposite of that for all
other commands.

-nC
Move the character pointer by plus or minus un" characters. The CARRIAGE

RETURN! LINE FEED combination that terminates a line in ED is counted as two

82

CP/M TRANSIENT COMMANDS

separate characters. Type "+ 5C" to move the character pointer five characters
toward the end of the edit buffer.

-nO
Deletes "n" characters immediately before (-)or after (+) the character pointer.

100: I~OvJ IS THIME FOP ACTION

100:*-30<cr)

100: NOW IS THE TH1E FOP ACTION

(The' indicates character pointer.)

I<cr>

Before

Command

After

Enter the insert mode. ED accepts all characters you type and inserts them into
the edit buffer after the character pointer. With certain exceptions, every character
you type goes into the buffer until you press CONTROL-Z. CONTROL-Z terminates the
insert mode and returns the ED prompt. If you enter an upper-case "I", all inserted
text is automatically translated to upper-case characters only.

There are some characters that perform differently in the insert mode than you
may expect.

A H or BACKSPACE deletes the last character
typed in current CP / M -80 and CP/M -86 versions

A L inserts a CARRIAGE RETURN / LINE FEED

AM or RETURN inserts a CARRIAGE RETURN/LINE FEED

A R redisplays the current line

A U deletes the current line

A X deletes the current line

RUBOUT or DEL deletes the last character typed and redisplays it.

The "current line" consists of the characters which follow the last CARRIAGE
RETURN typed while in the insert mode.

Use the insert mode to type in a new file or to add several lines to an existing file.
Remember to exit the insert mode and use the save command H often.

IstrlngAZ

Insert a string. This command inserts the character sequence "string" into the edit
buffer following the character pointer. Use this command to insert short strings.

Istrlng<cr>

Insert a line. This command inserts the character sequence "string" into the edit
buffer following the character pointer. A CARRIAGE RETURN / LINE FEED combina­
tion is inserted after the string. The CARRIAGE RETURN / LINE FEED is the difference
between this command and the previous one. Use this command to insert a single
line.

CHAPTER 3/ 83

CP/M USER GUIDE

-nK

Kills (deletes) those linesfrom the edit buffer that you do not wish to appear in the
the final edited version. Lines referenced by the nK command are not transferred to
temporary file but remain in the original file, which later becomes the backup file.
You may remove any number of lines from the edit buffer in either direction from
the character pointer. "+ K" or "K" erases all characters after the character pointer
up to and including the current line's CARRIAGE RETURN I LINE FEED. "-K" erases
all characters in the line before the character pointer, back to the first CARRIAGE

RETURN I LINE FEED encountered, but not including it. If you still have some
characters remaining in a line that you thought you had deleted with the K
command, check to see if the character pointer was at the start of the line when you
issued the command.

-nL

Moves the character pointer forward or backward "n" lines in the buffer. The
character pointer moves to the beginning of the current or next line if it is not
currently at the beginning of a line. Subsequent moves encompass full lines; the
character pointer moves "n" lines forward or backward. OL moves the character
pointer to the beginning of the current line.

-nP

Moves the character pointer one page and displays the page following the
character pointer. This command is repeated for a total of "n" pages. "P" is a
convenient method of scrolling through the text in the edit buffer. A page is a fixed
number of lines that varies with the version of CP I M, but usually it is one screen
full. "+nP" moves you forward through the edit buffer and "-nP" moves you
backward. "P" operates by first moving the character pointer backward or forward
one page and then displaying the page that follows the character pointer. "OP"
displays a page without moving the character pointer.

-nT

To see lines of text that are in the edit buffer use the "T" (type) command. To see
the three lines before the character pointer, you would type "-3T. "To see the three
lines after the character pointer, type "+ 3T", or just "3T". If the character pointer is
positioned at the beginning of a line, type "T" to see that line. If the character
pointer is positioned within a line, type "OT" to see the part of the line before the
character pointer, type "T" to see the part of the line after the character pointer, or
type "OTT" to see the whole line.

The T command does not move the character pointer; it displays lines of text in
relation to the character pointer.

-u
To translate lower-case letters to upper-case. Type "+ U" to begin translation and

"-U" to end translation.

84

CP/M TRANSIENT COMMANDS

Ordinarily ED does not translate characters. After being given the command "U"
or "+ U", however, ED translates characters which enter the edit buffer either from
the keyboard or from the original file. Lower-case "a" through "z" are translated to
upper-case "A" through "Z." This translation continues until ED receives the "-U"
command or the editing session is concluded.

NOTE: You can create a file of all lower-case characters by using the PIP [L]
parameter.

-v
When you type" V" or "+ V, "line numbers are displayed. Type "-V" to suppress

display of line numbers. Line numbers are useful in identifying text and moving the
character pointer. ("V" stands for verify line numbers.)

ov
A special function of the V command indicates how much of the edit buffer is in

use and how much is still available for use. Type a "0" before the "V."

*0V<cr>
33706/33719

*
The first number ED reports is the amount of available memory in the edit buffer;
the second is the maximum possible size of the edit buffer. Subtracting the first from
the second, we find that 13 characters of the file being edited are currently in the
buffer.

n:
This command moves you to line number "n. " When line numbers are being

displayed (see - V), you can use this command to move the character pointer
directly to the beginning of a specific line. The n: command can be used as a
command prefix, making commands start at a particular line number (75:0P will
make ED move to line 75 and display a page of text, for example).

:m

Start at the character pointer and continue through line number "m. "This is not
really a command by itself, but a prefix to a command. Suppose you type the
command line

55: *75T<cr>

ED types lines (T) beginning at the character pointer (currently in line 55) and
ending at line 75.

Notice that you can use this command together with the previous one to perform
an operation on a specified range of lines. For example, to delete lines 20 through
30, no matter where the character pointer is, type the command line

87: *20:: 301«cr>

CHAPTER 3/ 85

CP! M USER GUIDE

~n

Moveforward or backward and display one line. This is an abbreviated form of
the command ~nL T, where the character pointer is moved forward or backward by
"n" lines, whereupon the line then at the character pointer is displayed. The simplest
form of this command is just a CARRIAGE RETURN, for example

11: *<cr>
12: L HIE OF TE>:T

12: *"

This is equivalent to "L T," which moves the character pointer to the next line and
displays it.

Commands for Searching and
Changing Text

In this section on searching and changing text, the following rule applies: you
must use lower-case commands to search for lower-case matches. An upper-case
command means that ED will search for upper-case matches to your string only.

nFstring"Z

Find a particular unique sequence (string) of characters. If the search is successful
(the string is found the specified number of times), the character pointer is placed
immediately following the "n"th matching string. If you were searching for the first
chorus of "Row, Row, Row Your Boat" with the command 3fRow<cr>, the
character pointer would come to rest between "w" in the last "Row" and the space
preceding "Your" if its original position was before the first letter of the first "Row."
If the search cannot satisfy the command given, the character pointer does not
move.

Before

Command

After

The search begins at the location of the character pointer, so be sure it is positioned
well before the string to be found when using the F command.

Also, remember that the F command searches only within the text in the edit
buffer; it cannot look through text still in the original file or already saved to
diskette. To do so, see the N command, below.

nNstrlng"Z

Looksfor the string in the edit buffer and on the diskette. It automatically loads
the next portion of the original file into the edit buffer and writes lines from the edit
buffer to the temporary file as necessary. While "F" looks only in the edit buffer for
the string, the N command (called autoscan) acts on the entire document, beginning

86

CP / M TRANSIENT COMMANDS

at the character pointer, even if portions of it are still in the original file.
Remember to position the character pointer properly before issuing the N

command.
See the F command above.
Use CONTROL-L to represent the CARRIAGE RETURN / LINE FEED pair if it is part of

the string.

nSfindstrlng/\ Zreplacestrlng/\ Z

Substitute information in the edit buffer. The substitute command finds one
string and replaces it with another. As shown, the command would search for
"findstring" and replace it with "replacestring." The searching begins at the charac­
ter pointer and ends at the last character in the edit buffer. The substitution is
performed a total of "n" times.

As in all substitution commands, be sure the strings you want to replace are
unique.

Use CONTROL-L to represent the CARRIAGE RETURN / LINE FEED pair in the string.

nJflndstring/\Zlnsertstrlng/\ Zendstrlng/\ Z

Juxtapose two or more unique strings, one or more times. The command
combines the insertion and deletion operations.

This command works in the following way: First find "findstring." Immediately
following "findstring" insert "insert string, "then delete all characters from the end
of "insertstring" to the beginning of "end string. " Repeat a total of "n" times.
Assuming that the operation was successful, the character pointer is placed at the
end of the final "insertstring."

For example, suppose the following lines appear in a document:

*WHEN HI ROME DO A:3 THE ROMANS DO,

*AI~D BE ROMANTIC

Using the juxtaposition command JROM /\ ZDON'T /\ Z AS/\ Z would result in the
following:

*~~HEN IN ROME DON'T DO AS THE R[lMA~IS DO,

*AND BE Rm'1A~nIC

Be careful when using multiple repetitions of the juxtaposition command because
you can often change information you did not mean to change.

Combining Commands

ED lets you group some commands in one command line to save typing time. You
can cascade ED commands one after the other and follo~ the last command with

CHAPTER 3/ 87

CP / M USER GUIDE

the CARRIAGE RETURN. For example

1: *0A<cr>

1: *B<cr>

1: *T<cr>

1: LINE 1

1: *
can be typed as

IS

1: *0ABT<cr>

1: LH1E 1

1: *
There are a few simple rules to follow when typing several command on one line.

1. Some commands must be typed alone in a command line; these commands
are E, H, 0, and Q. This is done to prevent the disastrous consequences of
certain typographical errors.

2. When typing commands which use strings, use CONTROL-Z, rather than
<cr>, to end the strings. Commands that use strings are F, I, J, N, and S.
Use <cr> only at the end of the command line.

You can create a command sequence for frequently used commands. The format

*nMcommand 1 command2command3 <cr >

For example, type:

*MFROM"Z-3DIRAM"ZOTT<cr>

The command line says to repeatedly perform the following sequence of steps:

1. Find ROM (the character pointer is placed after the M)

2. Delete the three previous characters (ROM)

3. Insert RAM

4. Show each line as it is changed (OTT).

The macro command will change all occurrences of ROM to RAM. If used on
the example in the J commands, the resulting line will read: WHEN IN RAME DO
AS THE RAMANS DO, AND BE RAMANTIC ... If "n" is absent, or if "n" is
equal to 0 or 1, the command sequence repeats until an error condition develops.
Striking any key aborts the macro command.

88

DUMP-DISPLAYING THE
CONTENTS OF A FILE

DUMP presents the contents of a file in hexadecimal form.
DUMP operates like the TYPE command discussed earlier. Instead of presenting

CP / M TRANSIENT COMMANDS

the ASCII representations of the file, DUMP presents the contents of the file in
hexadecimal form. Assembly language programmers use the DUMP command to
check the contents of a program file, a binary data file, or any non-ASCII file.

DUMP d:tllename.typ <cr>
Displays the hex representation of each byte stored in the file with the name

filename.typ on drive d:.

DUMP d:*.* <cr>
Displays the hex representation of the first file that matches the *.* (or other

ambiguous) file name.

A>DUMP B:PROGRAM.COM(cr>

00 00 "3A 07 00 FE CB DA AC 03 21 00 (10 39 22 25 07 31

00 10 00 CB 3E 11 03 FO 21 27 07 70 03 FD 7C D3 FD CD

00 20 3B 02 11 13 04 CD 28 02 CD 3B 02 11 55 04 CD 28

A>

The four-digit number which appears at the start of each line is the relative
address of the first byte on that line. The pairs of hexadecimal digits represent each
byte of the stored file, one pair for each byte in the file.

Special Input

"'S pauses DUMP; press any key to interrupt DUMP and return to A>.

Batch Processing Utilities

Your computer is far more sophisticated than the mammoth beasts used in the
1960s. Almost all of the original computers operated primarily in the batch mode. A
batch is a group of things; in the case of computers, it's a sequence of commands or
data.

Most microcomputers in use today are interactive machines. This means that you
input something, the computer responds, you input something else, the computer
responds again, and so on. Interactive processing is appropriate for small business
accounting, word processing, and other tasks for which microcomputers are used.

However, it is sometimes more efficient to submit a group of commands to be
processed sequentially without your presence. The SUBMIT and XSUB commands
fulfill these functions for CP 1M.

SUBMIT-COMMAND LINE
AUTOMATION

SUBMIT directs the sequential entry and execution of a number of CP 1M
commands without additional operator response. To utilize SUBMIT, you must
first create a file with the ".SUB"file type, using the CP I M editor or another editor.

CHAPTER 3/ 89

CP/M USER GUIDE

The file you create should contain the list of CP / M commands to be executed in the
order you wish them performed, one to a line.

SUBMIT can provide a linkage to the BACKUP or DISKCOPY program every
time you finish using a program. First, create a SUBMIT file named
ORREPENT.SUB that has only two commands in it.

RUI'1 YOURPROG. RAM< c r>

BACI<UP<cr>

(The RUN YOU RPROG. RAM can be any valid CP / M command, and you should
substitute the name of your copying program for BACKUP.)

Next, run YOURPROG.RAM by typing SUBMIT ORREPENT<cr> instead
of the usual RUN YOURPROG.RAM<cr>; when you finish using your program
and attempt to return to CP / M, the SUBMIT facility will next whisk you to the
BACKUP program, forcing you to duplicate your diskette every time you run
YOURPROG.RAM.

Program developers often use a compiler rather than an interpreter to write
programs. A compiled program requires an extra process: the actual compilation.
In small business packages there may be five, ten, or more related program modules,
all of which need compiling. The compilation process could take as much as an hour
or more; the SUBMIT facility performs this function and frees the programmer
from typing each compilation command individually.

SUBMIT sequences can be chained (linked together) by including a normal
SUBMIT command line as the last line in a ".SUB" type file.

SUBMIT filename <cr>
Creates a file $$$.SUB on the current drive that contains the commands listed in

filename.SUB and executes commands from this file rather than the keyboard.

NOTE: CP / M always looks for the file $$$.SUB on the A: drive, so if you are
logged into a drive other than "A", the SUBMIT function will not work.
Digital Research makes available a patch to correct this problem.

If you have created a file named NUCLEAR.SUB that contains the following:

STAT *.BAS<cr>

ERA *.BAS<cr>

DIR *.BAS<cr>

when you submit this file for execution the dialog will look like the following:

90

A>SUBMIT NUCLEAR<cr>

A>STAT *.BAS

RECS BYTS EX D: FILENAME. TYP

2 41< 1 A:PORGY.BAS

4 81< 1 A: PORI<\' • BAS

8 171< 2 A:PORTLY.BAS

B\'TES REMAINING OI~ A: 1511(

CP / M TRANSIENT COMMANDS

A>ERA *.BAS
A>DIR *.BAS
~IO FILE

A>

The commands following SUBMIT are not underlined, since CP/M is doing the
typing, not you. The only thing you typed in the above sequence is SUBMIT
NUCLEAR<cr> .

Special Input

Press any key to stop the execution in between submit file commands; that is,
just before the prompt is displayed.

SUBMIT filename A B C<cr>

Creates a file $$$.SUB that contains the commands listed in filename. SUB and
executes commands from this file rather than from the keyboard. This form of the
SUBMIT command differs from the previous one because you may include incom­
plete CP / M command lines in the file filename.SUB when you create it. SUBMIT
fills in the missing information using the "A," "B", "C," and so on from the
command line you type when you start SUBMIT. These parameters can be file
names or any other information needed by the commands in filename.SUB. The
symbols $1, $2, $3, and so on, should be used in your submit file to hold the place
for the missing parameters. Up to nine parameters may be used.

Suppose that you are editing a file on drive" A" and you want to copy it to drive
"B," then check disk space each time you finish an editing session. Without
SUBMIT, you would enter the following command lines in the course of your work
(intervening ED commands and other dialog are omitted for clarity):

A>ED MYFILE.DOC<cr>
A>PIP B:=A:MYFILE.DOC[V]<cr>
A>STAT B:MYFILE.*<cr>

Suppose also that you use this method with every file you edit, not just with
MYFILE.DOC. To make SUBMIT do the typing for you, first create a "SUB"type
file named WORKON (for example) containing the incomplete commands listed
below:

E[I $1.$2<cr>
PIP B:=A:$1.$2[vJ<cr>
STAT B:l$.*<cr>

Now, to use this "SUB" file as outlined above, type the command line below:

A>SUBMIT WORKON MYFILE DOC<cr>

SUBMIT will create $$$.SUB from WORKON.SUB by substituting the first
parameter, MYFILE, for $1 each time it appears, and the second parameter, DOC,

CHAPTER 3/ 91

CPj M USER GUIDE

for $2 each time it appears. SUBMIT then initiates a warm start, and CP / M looks
for the file $$$.SUB. It then executes the commands listed in $$$.SUB.

XSUB-USER INPUT AUTOMATION:
A SUBSET OF SUBMIT

It is possible to put more than commands in a "SUB" type file. In fact, it can
respond to questions a program might ask or add other variables when you invoke
SUBMIT. This is done using the XSUB command. XSUB is not available in
CP / M -80 versions 1.3 and 1.4, or in CP / M -86.

XSUB must precede the program name and program response in the submit file
you create; it is a command which is not typed when you see the CP / M prompt, but
instead is only used within a "SUB" type file as a command to SUBMIT.

When SUBMIT encounters the XSUB command, a special set of instructions is
loaded into CP/M's memory space, and whenever a program requests console
information, the SUBMIT file is used to input it.

As discussed earlier, you may use $1, $2, and so forth, to indicate last minute
submissions of information to SUBMIT, which will pass them on to XSUB, if
needed. The symbols in your "SUB" type file are replaced by the parameters you
type in the actual SUBMIT command.

You should note that XSUB is a subset of SUBMIT; you do not ever type XSUB
in response to a CP I M prompt. XSUB may appear only in a "SUB" type file.

XSUB is most often used in program and system development. But you might
find that programs you purchase use XSUB for a portion of their input. You might
also use XSUB to provide an addition to the automatic backup system we discussed
in the section on SUBMIT. For example, if &BEFREE.SUB contains

RUN YOURPROG.RAM<cr>

XSUB<cr>

BACI<UP<cr>

A< c I' >
B<cr>

the following process occurs when you SUBMIT this file:

92

A>SUBMIT &BEFREE<cr>

A>RUN YOURPROG.RAM<cr>

Program runs until completion

A>X5UB<cl">

(XSUB ACTIVE)

A>BACI<UP<c r>

Message from CP 1M

DRIVE FOR SOURCE DISI<ETTE? A<cr>

CP / M TRANSIENT COMMANDS

DRIVE FOR DESTINATION DISKETTE? B<cr>

PUT BLANI< DISKETTE IN B AND PRESS RETURN WHEN READY< c r>

In this example, everything that happens from the time you input your original
SUBMIT command until you are prompted to put a blank diskette in drive "B" and
press RETURN is done automatically by the computer. XSUB supplies the A<cr>
and B<cr> in response to the BACKUP program's request for information.

The overriding implication of the use of SUBMIT and XSUB together is that the
process of computing can be standardized to the point where actions are repeated in
exactly the order you specify, without having to have a computer operator type in
each individual command. For some computingjobs, such automated standardiza­
tion makes sense; for others, especially those that have unpredictable or changing
input needs, SUBMIT and XSUB offer no help.

Error Messages

We have deferred a discussion of error messages-messages displayed by the
computer when it cannot perform a task as requested or does not understand your
request-to the end of this chapter because many of the error messages provided in
CP / M are general in nature and the same for several programs. Table 3-1 show the
general error messages you might receive.

Each program within CP/M also has some error messages that are only asso­
ciated with it. Table 3-2 shows is a brief list of those messages with some notations
about what to do or to look for to recover from the error.

In general, error messages are printed by the system because there is some action
that is expected of you to correct the condition, or hecause CP / M has terminated
the task it was working on because it could not continue because of the error.

Most error messages you will see using CP / M are short but clear enough to
convey a general idea of what pro blem was encountered. Some programs you might
receive from firms other than Digital Research occasionally use numbers to repre­
sent error messages, such as "Error # I." This is done to save internal computer
memory space, but you must look up the error in the manual to find out what
happened.

If you encounter an error message you do not understand, first try to logically
eliminate or narrow the possibilities. If you are still stumped as to what to do next,
consult the vendor who sold you your computer. If all else fails, write to the vendor
who created the software that issued the error message, explaining exactly what you
did and what the computer reported back to you.

CHAPTER 3/ 93

94

Error Message

command?

BDOS ERR
ONd:

BAD
SECTOR

SELECT

R/O

CP / M USER GUIDE

TABLE 3-1. General Error Messages

What it Means and What to Do About it

When the command you type is repeated by CP / M and dis­
played with a question mark following it, CP / M did not recog­
nize it as a built-in command and could not find a file with the
type "COM" (CP/M-80) or "CMD" (CP/M-86). Check your
typing carefully for misspellings. If you are in doubt about the
command, use the DIR •. COM (or DIR •. CMD) command to
see a directory of the command files on diskette.

The term BDOS stands for Basic Disk Operating System, ERR
stands for error. This message appears when CP / M attempts to
do something with a diskette and cannot complete the task.
Three primary types of BDOS errors exist.

BDOS ERR ON d:. A BAD SECTOR message indicates that
you are either using a unformatted diskette, have a suspect
section on that diskette, or have possibly placed the diskette
upside down in the drive.

BDOS ERR ON d:. The SELECT message means that CP / M
could not find the drive you specified. Either you specified a
non-existent drive, or the drive has not been powered up, or you
have not closed the door on the drive.

BDOS ERR ON d:. The R/O message indicates that you have
either changed diskettes without telling CP/M or you have
placed a write-protect tab on the diskette (for 5 V4-inch
diskettes). For 8-inch diskettes, you have removed the write­
protect tab.

Pressing RETURN forces CP / M to retry, but if the problem
that caused the error has not been corrected, you probably will
get another error message. A CONTROL-C causes CP/M to
reboot; this is the normal method of reacting to a BDOS error.

CP I M TRANSIENT COMMANDS

TABLE 3-2. CP I M Program Error Messages

Program Error Message Comments

STAT ** ABORTED ** The STAT command is terminated.

Bad Delimiter Check placement of punctuation.

Invalid You cannot assign that device in the
Assignment manner you specified.

Invalid File You cannot assign the file names to be
Indicator used in the manner you specified.

**TOO MANY ST AT has an upper limit on how many
FILES** files it can sort; try to use

wildcard file references.

Invalid Disk You cannot assign the disk in the
Assignment manner you specified.

Wrong CP/M STAT is CP / M version dependent.
Version Therefore, you may not use a STAT 1.4

with CP 1M 2.2.

PIP DISK READ ERROR Obvious.

DISK WRITE ERROR Obvious.

VERIFY ERROR Dr. Kiidall never got one of these to
appear without a BDOS error
also appearing.

NOT A CHARACTER You cannot send characters there.
SINK

READER STOPPED Obvious.

NOT A CHARACTER You cannot get characters
SOURCE from there.

ABORTED The process is terminated.

BAD PARAMETER The [] parameter(s) is incorrect.
!

INV ALID USER Obvious.
NUMBER

RECORD TOO LONG Obvious.

INV ALID DIGIT Hex format does not match.

END OF FILE, CTL-Z? PIP thinks the end of file has been
detected, but wants a confirming
CONTROL-Z sent to be sure.

CHECKSUM The Intel format checksum did not

ERROR match the record read.

CORRECT ERROR Obvious.

CHAPTER 3/ 95

CP/M USER GUIDE

TABLE 3·2. CP I M Program Error Messages (continued)

Program Error Message Comments

INVALID FORMAT Obvious.

NO DIRECTORY CP I M has run out of room to keep
SPACE track of files.

NO FILE PIP could not find the file
you specified.

START NOT The start string you specified was not
FOUND found when end-of-file

was reached.

QUIT NOT The quit string you specified was not
FOUND found when end-of-file

was reached.

CANNOT CLOSE FILE Check diskette.

DESTINATION IS RIO The file you specified for information to
be sent to is read-only. Press "Y" to
delete it and write the new file into it.

NOT DELETED Confirmation that you pressed "N" in
response to above error.

NOT FOUND Same as NO FILE.

REQUIRES CP/M 2.0 PIP version must match
CP! M version.

UNRECOGNIZED The device you specified does
DESTINATION not exist.

CANNOT WRITE Obvious.

INVALID PIP FORMAT Check punctuation.

CANNOT READ Obvious.

INV ALID SEP ARA TOR Check punctuation.

SUBMIT Error on line Improper command
line in SUB file.

No SUB SUBMIT could not find SUB file.
file present

Disk Write Error Diskette must not be write-protected
for SUBMIT to work correctly, and
there must be enough room on the
diskette for $$$.SUB.

Command Buffer Command too long.
Overflow

96

CP I M TRANSIENT COMMANDS

TABLE3-2. CP/M Program Error Messages (continued)

Program Error Message Comments

Command Too Command with more than
Long 127 characters.

Parameter Error The $1, $2, and so forth, are not
specified correctly or do not match
SUB file requests.

Invalid Control You have a control character in your
Character file that SUBMIT

cannot recognize.

Directory Full Obvious.

Cannot Close, RIO? Cannot close the SUBMIT file,

XSUB
is it read-only?

XSUB Already You have an unnecessary XSUB
Present command in the SUB file.

Requires CP / M 2.0 XSUB does not work with CP/M 1.3
or Later or 1.4.

ED Break "X" at "e" "X" refers to one of six symbols:

The "c" refers to the
:jj:: Search failure

command that caused
? Unrecognized command
0 The file could not be found

the error message. > The buffer is full
E The command was aborted
F The disk is full

CHAPTER 3 I 97

CHAPTER

4 Assembly Language
Utilities

Despite CP/M's simplicity, the computer novice will still find a IDt to learn­
certainly more than most users require. The information in this chapter has limited
application for users who primarily use packaged programs. If you are not develop­
ing or modifying programs in assembly language, skip this chapter.

This chapter covers the CP/M assembly language programming aids, ASM,
DDT, LOAD, ASM-86, DDT-86, and GENCMD. ASM and ASM-86 are
assemblers. They convert a source code program written in assembly language into
an object program in hex format. This product is an intermediate step to a true
machine language program which the computer can use. LOAD and GENCMD
perform the final conversion step by creating a machine language program file from
the hex format file. DDT and DDT-86 are debugging programs used to locate and
correct errors in machine language programs. The DUMP program described in the
last chapter is another useful assembly language programming aid. DUMP displays
the contents of a file as hexadecimal numbers.

ASSEMBL V LANGUAGE

Assembly language is two steps removed from the action in the computer.
Remember, the computer uses l's and O's as the basic elements of data. These bits
can be either data or instructions to the computer, depending upon the context in
which the CPU receives them.

Since it is inconvenient to think in terms of numbers like 1000 1010 and 100 I 00 1 0,

99

CP! M USER GUIDE

we use hexadecimal notation to refer to eight bits at a time. We call these groups of
eight bits bytes of information. Some hexadecimal representations of bytes are OC3,
45, and OD. Remember that the computer itself always uses binary notation (I 's and
O's), but we use the hexadecimal representation to help us recognize the patterns.

Since the hexadecimal representations are also awkward, we assign names to the
machine instructions and the data they represent. The names are the components of
the computer language known as assembly language. We call the names that
represent instructions mnemonics. A mnemonic is the assembly language represen­
tation of one CPU machine instruction. Other names are used to represent other
elements of a program; these names are all described in the section on ASM and
ASM-86.

Generally, any machine language program for the 8080 CPU will run correctly on
an 8085 CPU or a Z80 CPU. Since CP! M-80 was written for the 8080, it also runs
on the 8085 and Z80. This book uses only the 8080 instruction mnemonics desig­
nated by Intel when referring to CP I M-80 assembly language, as they represent the
assembly language instructions available to all users of CP! M -80.

The assembly language mnemonics for the 8085 CPU are nearly identical to those
of the 8080. Those of the Z80 CPU are completely different however, even though
the same machine language instructions are often intended. AS M and DDT under­
stand only 8080 mnemonics, assembly language, and machine language.

CP I M-86 was written for use on the 8086 and 8088 CPUs manufactured by Intel.
The differences between these two central processing units primarily lie in how they
relate to the other components in the system (the 8088 has only an 8-bit data bus
while the 8086 has a 16-bit data bus). Therefore, the mnemonics, assembly lan­
guage, and machine language for CP! M-86 are consistent no matter what CPU is
being used.

This chapter assumes you understand assembly language programming. If you
do not, but want to learn, see the bibliography in Appendix F for an appropriate
book on the subject.

ASM AND ASM-86:
ASSEMBLE A PROGRAM

The CP I M assemblers, ASM and ASM-86, both convert assembly language
source programs into object code, executable by the computer. ASM generates
8080 object code, while ASM-86 generates 8086 object code. Each assembler also
provides a listing showing each line from the source program together with the
corresponding object code it creates, if desired. ASM-86 also generates a symbol
table, a cross-referencing tool that allows a programmer to quickly find the location
of routines within his or her source code.

Assembly language source code is generated by typing it into a disk file using an
editor. CP I M's ED may be used, or more sophisticated editors, such as WordStar,
PMA TE, or VEDIT may be used.

100

ASSEMBL Y LANGUAGE UTILITIES

ASM and ASM-86 Command Line

Once you have obtained or created the source file, you invoke ASM and ASM-86
as follows:

A>ASM fllename.opt<cr)
A>ASMB6 fllename $option[s)<cr>

CP/M-80
CP/M-86

The file name must be a valid CP / M file with the "ASM" file type for CP / M-80
and the "A86"file type for CP / M-86. If you are wondering why the two assemblers
require different file types, it is because source code for either assembler can be
resident on the same disk. Therefore, some way of distinguishing the two is
necessary.

The opt in the CP I M-80 command line refers to a series ofthree options you may
specify and not an "OPT" file type. The three letters following the period represent

The drive that contains the source (original) file (FILEN AME.ASM)
The drive that should receive the hex (assembled program) file
(FILENAME. HEX)
The drive that should receive the print (listing of the program with error
messages) file (FILENAME.PRN).

You can use the standard CP/M drive specifiers "A" through "P" as option
letters, subject to the existence of those drives on your computer. Also, the option
letters "X" and "Z" have special meanings; they do not mean drives "X" and "Z."

Z Can be used for either the HEX or PRN file option to skip generation of
that file.
X Can be used as the PRN file option to display the listing on the console
instead of storing it in a file.

If you type

A>ASM BSM.AAZ<cr>

you are telling CP / M-80's assembler to assemble a file named BSM.ASM, found on
drive "A," into a hex (object program) file named BSM.HEX, also on drive "A,"
and to skip generation of the print file. The assembled program file always has the
"HEX" file type; the print file always has the "PRN" file type. If all files are to be
placed on the currently logged drive, you need not specify anything after the file
name, that is, no options or period. After assembling the program BSM.ASM in
such an assembly, you have the following files:

8SM.ASM
8SM.HEX
85M. PRr1

Original (source) file
Assembled program file
Listing file

ASM-86 operates in a slightly different manner. If you type a period followed by
three letters after the file name, CP / M-86 thinks this is the file type for that source
code program file. Options are specified after a space and dollar sign.

CHAPTER 4/ !OJ

CP/M USER GUIDE

A- Specifies source code input location
H* Specifies hex file output location

P* Specifies print file output location
S* Specifies symbol file output location.
F@ Specifies format of hex output file.

Each option must be separated from the others by a space, and all are optional;
any that are not specified will be assumed to default to the currently logged disk
drive or normal setting.

The characters "~", "* ", and "@"followingeach of the letters above stands for a
second letter, as follows:

Can be any valid disk drive specifier (A-P)

* Can be any valid disk drive specifier (A-P), or
X to specify the console device, or

Y to specify the printer device, or

Z to suppress output
@ Can be "I" for Intel format, or "D" for Digital Research format.

The options may be entered in any order following the dollar sign. Thus, the
following is a valid ASM-S6 command line:

A>A5M 86 FILE-19.86 $FI H8 PY 5B<cr>

The above line would assemble the contents of FILE-19.S6, found on drive "A"
(the default), in Intel hex format (the "FI") on drive "B" (the "HB"), print the listing
("PY"), and save the symbol table file on drive "B" ("SB"). When the above
command line finished, the following files would exist:

FILE-19.86 Original (source) file
B:FILE-19.H86 Assembled program file
B:FILE-19.5YM Symbol table listing file

The listing file, FILE-19.LST, would not exist since we sent the listing to the
printer device. Note that the hex format assembled program file has the file type of
"HS6" in CP I M-S6 instead of "HEX," and that the listing file has the file type of
"LST"in CP I M-S6 and "PRN" in CP I M-SO. Also, the default source code file type
is "AS6" in CP I M-S6, instead of CP I M-SO's "ASM" file type.

Files Used by ASM and ASM·86

What does the multiplicity of files we just discussed do for you? The" ASM" or
"AS6" file type contains the assembly language source program and is created by
you with ED or another text editor.

The assembler creates a "HEX"type file. It contains the hexadecimal representa­
tions of the instructions in the "ASM" or" AS6"file. Theformat for the "HEX"file
in CP I M-SO is known as Intel Hex Format. Intel first used the format for storing the

102

ASSEMBLY LANGUAGE UTILITIES

hexadecimal characters on paper tape devices, and the disk format is equivalent.
Here is an example of a short "HEX" file.

:020100003E00BF
:0000000000

Not particularly enlightening, is it? Here is the 8080 assembly language program
that created that information.

ORG 0100h ; p rog ram s ta r ts a t add ress 0100 hex
MVI A,0 ;move a 00 hex into Register A
END ;end of program

The listing file, SAMPLE.PRN, combines both ofthe above sets of information.
We see both the program we originally typed and what the assembler created.

0100 ORG 0100h ;pr"ogram starts at address 0100 hex
0101 3E 00 MVI A,0
0102 END

imove a 00 hex into Register A
;end of program

This type of listing is particularly useful when you use many labels and symbols.
Of what use are the "HEX" and "PRN"type files? The "HEX"file is used to create

an executable program. The "PRN" file is useful in the process of debugging a
program (ridding it of errors). The listing in the "PRN" file is also an important part
of the program documentation.

CP / M-86 naming conventions differ from CP / M-80. Here are the equivalent
files.

CP/M-80

filename.ASM

filename.HEX

fllename.PRN

CP/M-86

filename.A86

filename.H86

filenal11e.LST
filename.SYM

Source code file
Hex format program code

file
Program listing file
Symbol table listing file

In addition to the "HEX" and "PRN" files created by the CP / M-80 assembler,
the CP / M-86 assembler creates one additional file, the symbol table file, with the
"SYM" file type. A typical symbol table listing file for a short 8086 assembly
language program might look like the following:

0000 VARI ABLES
0080 I~AMEN 0090 STAT

0000 ~IUMBERS
0123 SHORTSTACI<
0000 LABELS
0073 LAST 0042 MIDDLE (')000 FIRST

V ARIABLES lists, in alphabetical order, each of the data statements referenced
by the assembler, such as NAMEN DB O. NUMBERS lists, in alphabetical order,
each of the equates or calculated numbers referenced by the assembler. LABELS

CHAPTER 4/ 103

CP I M USER GUIDE

lists, in alphabetical order, all of the statement labels found by the assembler. The
numbers to the left of each entry are the location at which they were found.

SOURCE PROGRAM FORMAT

The assembler expects the source file to be in a very specific form. The source file
is a sequence of ASCII-coded (text) statements or lines. Each line ends with a
CARRIAGE RETURN and LINE FEED.

Assembly Language Statements

Each assembly language statement is composed of between one and fiveJields. A
field is a group of characters, and the fields are separated from one another by
spaces or TAB characters. TAB characters create a more readable source program
because the fields are aligned at the TAB STOPs . TAB STOPS are set at columns 1,9,
17,25,33, and so on; that is, at every eight columns. ASM and ASM-86 differ only
slightly in which fields they use. The general format of the assembly language
statement is

lineli
label:

label
prefix

Line Numbers (IIn&#)

mnemonic operand(s) ;comment
mnemonic operand(s) ;comment

CP/M-80
CP/M-86

The line number is an optional integer decimal number at the beginning of an
8080 source code line. Some editors insert these line numbers automatically; ED
does not. ASM ignores the line number.

Labels

A label is an identifier used to represent an address or value. A label is one to 16
characters long for ASM, and any length up to the length of the physical line for
ASM-86. The first character must be a letter; the others can be letters or numbers.
Lower-case letters are treated as if they were upper-case ones. A colon may follow a
label when it is used in the label field for ASM, but it must follow a label when it is
used in the label field for ASM-86. ASM ignores the "$" character while ASM-86
ignores the characters "@"and "_". The label is optional for all statements except
those which use it in the operand field, such as with the EQU and SET directives.
Generally, a particular label should appear in the label field of only one statement,
but it can appear in the operand field of many statements.

There are certain reserved words that must not be used in the label field because
they have predetermined meanings to ASM and ASM-86. The reserved words are

All the 8080 and 8086 instruction mnemonics

All the ASM and ASM-86 directive names

104

ASSEMBLY LANGUAGE UTILITIES

All the 8080 and 8086 register names

Special ASM-86 keywords, BYTE, WORD, and DWORD.

Prefix

Several 8086 instructions, notably those of the REP family and LOCK, perform a
special prefixing action to the rest of the instructions on an assembly language
statement. To work correctly, such prefixes must precede the mnemonic on the line.

Mnemonics

The mnemonic field is the only field that is not optional; it must be included in
every statement. This field contains either an 8080/8086 instruction mnemonic or
the name of an assembler directive. Most of the assembly language programming
books listed in Appendix F contain a list of the 8080 or 8086 instruction mnemonics.
Since the mnemonics are the heart of assembly language, it is wise to make sure that
you are familiar with the entire set before attempting to write assembly language
code.

Operands

Many assembly language instructions require one or more operands, while some
require none at all. Assembler directives generally require one or more operands.
An operand can be a constant, a label, or an expression. Constants and expressions
are described below.

Comments

The comment field begins with a semicolon. This field is optional and is ignored
by the assembler. However, you should always include comments because they are
essential program documentation.

Constants and Expressions
The operand field of an assembly language instruction or directive can be

occupied by a label, a constant, or an expression. Labels were explained above.
Constants and expressions, and the rules for forming them, are described here.

Constants
A numeric constant is a fixed number in one of four number bases. The four

number bases are binary, octal, decimal, and hexadecimal.
A binary constant is a sequence of the digits 0 and I followed by the letter "B" to

signify that the number is binary.
An octal constant is a sequence of the digits 0 through 7 followed by the letters

"Q" or "0" to signify that the number is octal.
A decimal constant is a sequence of digits 0 through 9 optionally followed by the

letter "D" to signify that the number is decimal. If no letter suffix follows a constant,
ASM and ASM-86 assume that the constant is a decimal number.

A hexadecimal constant is a sequence of the digits 0 through 9 and letters "A"

CHAPTER 4/ 105

CP/M USER GUIDE

through "F", followed by the letter "H" to signify that the number is hexadecimal. A
hexadecimal constant must begin with a number; this requirement can be satisfied
by always preceding the contant with the digit O.

You can insert the dollar sign within a numeric constant to be used with ASM to
make it easier to read. ASM ignores the dollar signs. The following three constants
are equal:

11010101 = 1101$0101 = 11$010$101

A string constant is a sequence of characters that is enclosed between apostrophe
(') symbols. A string constant is limited to 64 characters for ASM and 255 charac­
ters for ASM-86. Only printable characters are allowed within such strings. Lower­
case letters are not converted to upper-case. You can include an apostrophe within a
string by typing two apostrophes in a row. ASM and ASM-86 compute the value of
a string by adding a high-order bit of 0 to the seven-bit ASCII code for each
character.

Expressions
You can use expressions in place of operands for many instructions. An expres­

sion is a combination of constants, labels, arithmetic operators, logical operators,
and parentheses. During assembly, each expression is evaluated and reduced to a
single value.

Arithmetic Operators

The assembler can perform simple arithmetic when it evaluates an expression to
determine its value. You can use the following arithmetic operators to join labels
and constants into expressions:

A+B
Is the sum of "A" and "B"

A-B
Is "B" subtracted from "A"

+B
is the same as "B"

-B
Is the same as "B" subtracted from zero

A.B
Is "A" multiplied by "B" (unsigned)

AlB
Is the quotient of "A" divided by "B" (unsigned)

AMODB
Is the remainder of A divided by B

ASHLB

106

Is "A" shifted left "B" bit positions; shifted out high-order bits are dis­
carded, and vacated low-order bits are replaced with zeros

ASSEMBLY LANGUAGE UTILITIES

ASHRB
Is "A" shifted right "B" bit positions; shifted out low-order bits are dis­
carded, and vacated high-order bits are replaced with zeros.

The assembler performs the operation on 16-bit unsigned values and produces
16-bit unsigned results, modulo 2 to the 16th power.

Logical Operators

The assembler can perform Boolean (logical) operations as well as arithmetic
operations. The following operators can be used:

NOTB
Is the bit-by-bit complement of "B"

AANDB
Is the bit-by-bit logical AND of "A" and "B"

AORB
Is the bit-by-bit logical OR of "A" and "B"

AXORB
Is the bit-by-bit logical exclusive OR of "A" and "B."

Logical operations are performed on 16-bit unsigned values and result in a 16-bit
unsigned value.

Other Operators

Another frequently used operator is the dollar sign, which, when used as the
operand, creates a value equal to the current value of the location counter.

In addition, ASM-86 recognizes the following other operations:

SEGA
Is the segment value of "A"

OFFSET A
Is the offset value of "A"

TYPE A
Is 1,2, or 4, depending upon whether "A" is of TYPE BYTE, WORD, or
DWORD

LENGTH A
Is the number of bytes associated with "A"

LAST A
Is LENGTH A-I unless LENGTH=O, in which case LAST A equals zero

APTRB
Is the virtual variable created with the type of "A "and the attributes of "B. "

CHAPTER 4/ 107

CP/M USER GUIDE

Relational Operators (8086 Only)

ASM-86 also allows the following relational operators:

AEQB
True if "A" equals "B"

ALTB
True if "A" is less than "B"

ALE B
True if "A" is less than or equal to "B"

AGTB
True if "A" is greater than "B"

AGE B
True if "A" is greater than or equal to "B"

A NEB
True if "A" is not equal to "B."

Precedence of Operators

When the assembler evaluates an expression containing several operators, it does
not simply proceed from left to right applying each operator in sequence. Instead, it
applies certain operators before others. This hierarchy is called the precedence of
the operators. The hierarchy used by ASM and ASM-86 is shown below. Operators
shown on the first line are always used first if they exist in an expression. Those on
the fifth line are used last. Within a line below, the operators have equal precedence
and are used left to right as they are encountered in an ex pression. The precedence is
as follows:

$ (highest)
the operation in the innermost parentheses
(8086: SEG, OFFSET, PTR, TYPE, LENGTH, LAST)
* I MOD SHL SHR
-+
(8086: EQ, LT, LE, GT, GE, NE)
NOT
AND
OR XOR (lowest)

You use sets of parentheses in an expression to override this hierarchy or
to make the expression easier to read.

ASSEMBLER DIRECTIVES

You can include a number of special instructions to the assembler that are not
part of the 8080 or 8086 assembly language set. These assembler directives control
the assembly process and affect the resulting machine code. You place assembler

108

ASSEMBLY LANGUAGE UTILITIES

directive statements in the source program in roughly the same form as assembly
language statements. The directive name goes in the mnemonic field of the
statement.

DB, OW, and OS Assembler
Direct"lves

Use these three directives to initialize storage areas in memory.

DB Define byte.
Initializes an area byte by byte

DW Define word.
Initializes an area two bytes at a time

DS (8080) Define storage.
Reserves an area of a specified size

DD (8086) Define double word.
Initializes an area four bytes at a time

RS (8086) Define storage.
Reserves an area of a specified size

RB (8086) Define storage.
Similar to RS, above

R W (8086) Define word storage.
Reserves an area of a specified size.

Operand expressions in the DB statements are evaluated and stored as 8-bit
values in successive memory locations. Expressions in the DW statement are
evaluated and stored as 16-bit values in successive pairs of memory locations; within
a pair, the low-order byte is stored first, followed by the high-order byte. The
expressions in the DS, RS, RB, and R W directives are evaluated, and then the
number of memory locations given by the resulting 16-bit value is reserved. These
reserved locations are not filled.

A label is optional in these storage directives. Ifa label is used, ASM and ASM-86
assign it the value of the address of the first byte defined or reserved by the directive.
Any number of expressions, each separated by commas, can be used with the DB,
DW, and DD storage directives. Only one expression can be used with the DS, RS,
RB, and R W directives, however.

ORG, END, EQU, CSEG, DSEG, SSEG,
And ESEG Assembler Directives

A number of location directives are available with ASM and ASM-86. Both
assemblers include the following directives:

ORG
This directive gives the assembler the memory address to use for the sequence of

CHAPTER 4/ 109

CP/M USER GUIDE

statements that follows it. The form of the ORG statement is

label ORG expression ;comment

The value of the expression is used by the assembler as the memory address of the
next program instruction or define directive; this address is fixed for 8080 code,
relative for 8086 code. Comments are optional. You can use more than one ORG in
a program.

END
The END directive tells the assembler that it has reached the end of the source

statements. The 8080 form of the directive is

label END expression ;comment

The END directive is optional; if present, it should be the last statement in the
source program.

The optional label is assigned the value of the assembler's location counter at that
point in the program. The optional expression is evaluated and used as the program
starting address in the Intel Hex Format file. If the expression is omitted, a starting
address of "0000" is used. The comment field is optional.

The 8086 form of the directive is

END ;comment

EQU

The EQU (equate) directive assigns values or expressions to a label. The format is

label EQU expression ;comment

In addition, the 8086 assembler recognizes

label EQU register ;comment
label EQU mnemonic ;comment

The expression may be any valid number, address, constant, or expression, and in
the case of the 8086 assembler, a register or mnemonic as well. The label and
expression are required in an equate statement. You may use other labels-if
previously defined-within the expression.

A variant of the EQU directive for 8080 code is the SET directive, which, unlike
the EQU directive, allows you to reassign the value to a label. The format of the SET
directive is the same as for EQU.

CSEG, DSEG, ESEG, SSEG

The CSEG (code segment), DSEG (data segment), ESEG (extra segment), and
SSEG (stack segment) may be specified using these 8086 directives. All 8086 source
code statements must be assigned to one of the segments in order for the CPU to
correctly reference them. Instruction statements are legal in the CSEG only. Direc­
tive statements are legal in any of the segments. Data storage statements are valid in
the DSEG or CSEG segments.

110

ASSEMBLY LANGUAGE UTILITIES

These directives form an integral part of the 8086 assembly language source code.
To understand them properly, you must first understand how the 8086 CPU
operates. Consult a reference work on the 8086 to find out more about what these
important directives do.

IF and ENDIF Assembler
Directives

Define a section of assembly language code that will be assembled only if the
condition listed in the IF statement is true. The form of these directives is

label IF expression ;comment

subsequent statements

label ENDIF ;comment

The assembler evaluates the expression in the IF statement. If the value of the
expression is zero, the assembler ignores the statements between the IF and END IF.
If the value of the expression is non-zero, the statements are assembled.

Using IF statements is called conditional assembly; the assembly takes place only
if certain conditions are met.

The IF statement may be used in assembly language programming in a number of
ways. Here is one of the most frequent.

HAVE$TERMINAL
NO$TERMINAL

EQU
EQU

0FFFFh
NOT HAVE$TERMINAL

IF HAVE$TERMINAL

;value = tr-ue

;\Ialue = false

Assembly language statements to
be used when there is a terminal

ENDIF
IF NO$TERMINAL

CHAPTER 4/ 111

ENDIF

CP I M USER GUIDE

Assembly language statements to
be used if there is no terminal

In the 8080 example shown, you can change the program to reflect the presence of
a terminal by changing only the HA VE$TER MIN AL equate. Note that
HA VE$TERMIN AL (a label) is assigned a value that is all ones; NO$TERMIN AL
(another label) is assigned the complement value of HA VE$TER MIN AL. The
operator NOT changes each one to a zero.

Special 8086 Assembler Directives

ASM-86 also recognizes a few additional directives.

INCLUDE

The INCLUDE directive allows an assembly language program to wholly con­
tain another assembly language program without having the actual text to the
included program present. The form of the directive is

INCLUDE filename.typ

A file that is included during assembly cannot contain an INCLUDE directive; no
nested INCLUDEs are allowed.

TITLE
The listing file prints a title at the top of each page as defined by the TITLE

directive.

TITLE

PAGESIZE

The listing file normally prints with a page length of 66 lines. This can be changed
by the PAGESIZE directive.

PAGESIZE expression

PAGEWIDTH

The listing file normally prints with a page width of 120 characters if it sends
information to a disk file or printer; a page width of 79 is used with the display
terminal. This can be changed by the PAGEWIDTH directive.

PAGEWIDTH expression

112

ASSEMBLY LANGUAGE UTILITIES

EJECT

The listing file can have page breaks forced by using the EJECT directive. When
an EJECT directive is encountered, printing resumes with the top of the next page.

EJECT

SIMFORM

The listing device is assumed to respond to form feed characters. If it cannot, the
SIMFORM directive should be used to substitute the proper number of line feeds
for each form feed character.

SIMFORM

NOLIST

This directive blocks the creation of the list file for all subsequent assembly.

NOLIST

LIST

This directive restores the creation of the list file for all subsequent assembly.

ASSEMBLER PROGRESS MESSAGES

The assembler displays messages when it starts and when it finishes. Since the
operations of ASM and ASM-86 are slightly different, we will discuss each
separately.

ASM

After you enter the ASM command line, you will see a message such as

CW~1 ASSEMBLER - VER 2.0

This may be followed by error messages if there were any errors.
When ASM has finished its job, it displays a three-line message.

xxxx

yyyH USE FACTOR

END OF ASSEMBLY

Interpret this as follows: "xxxx" is the hexadecimal address of the first free
(unused) location following the assembly language program. "yyyH" is a rather
perplexing indication of the portion of the symbol table area that has been used; the
assembler has a finite amount of room in which to store the values of labels. "yyy"is
a hexadecimal number between 000 and OFF. This number divided by OFF hex is
the fraction of the symbol table used. If "yyy" is 080, for example, then about
one-half (80/0FF hex = 128/255 decimal) ofthe symbol table has been used. The

CHAPTER 4/ 113

CP! M USER GUIDE

END OF ASSEMBLY message means that ASM is finished; it does not mean that
the assembly language program was necessarily created successfully.

ASM-86

Like its 8080 counterpart, ASM-86 displays a message when it starts assembly.

CP'r'l 8086 ASSEMBLER VER 1.1

During assembly, the following appears:

E~m IJF PA:3S 1

E~ID OF PAS::, 2

These messages indicate ASM-86's progress in assembly. Upon completion, the
following message appears:

EI'I[J [IF A~,SnlBL'i. I,IUMBER OF ERROPS: 0

This message is self-explanatory, but it does not indicate that an assembly
language program was successfully assembled, only that no coding errors were
detected during assembly. ASM-86 may be stopped by pressing any key while it is
assembling.

ASSEMBLER ERROR MESSAGES

The assemblers display two kinds of error messages. The first is a terminal error
message, which indicates that conditions prevented the assembler from completing
its job.

Problems with disks or files typically cause terminal error messages. The second
kind of error message arises when ASM or ASM-86 cannot properly assemble a
source code statement but can continue the assembly despite the error.

Terminal Error Messages

NO SOURCE FILE PRESENT
or
NO FILE

The assembler could not find the "ASM" or "A86"type file with the source code.

NO DIRECTORY SPACE
or
DIRECTORY FULL

CP I M has no more room to keep track of file names. To eliminate this message,
erase a few files from your diskette.

SOURCE FILE NAME ERROR
You cannot use "*" and "?" in a file name to be assembled.

114

ASSEMBLY LANGUAGE UTILITIES

SOURCE FILE READ ERROR
or
DISK READ ERROR

The file containing your source file could not be understood or is damaged.

OUTPUT FILE WRITE ERROR
or
CANNOT CLOSE
or
CANNOT CLOSE FILES

Check for a write-protected diskette or a full disk condition.

SYMBOL TABLE OVERFLOW

You have too many labels and symbols in your program for the assembler to keep
track of.

PARAMETER ERROR

The options following the file name in the command line are incorrect.

Source Program Error Messages
The assembler provides the second set of messages during program assembly. If

no messages appear, the assembler is proceeding and has encountered nothing it
cannot understand. (This is not saying the program is correct.) If ASM or ASM-86
encounter something they do not understand, they display a line in the following
format:

a bbbb cccc label mnemonic operand ;comment

The "a" is a letter representing the type of error. The "bbbb" is the hexadecimal
address of the statement at which the error was encountered, and the "ecce" is the
hexadecimal representation of the machine language created by the assembler.
When an error occurs, some or all of the machine code is set to zeros because the
assembler did not know what to put there.

The following are the error codes ASM displays:

D Data error.
The value of the expression does not fit into the data area you indicated;
it may be too long.

E Expression error.
You formed the expression improperly or its value cannot be computed
at assembly time because it is too complex.

L Label error.
You used the label incorrectly. This normally occurs when you use the
same label in the label field of more than one statement in a program.

CHAPTER4j 115

CP / M USER GUIDE

N Feature not implemented.
Digital Research also has an assembler known as MAC, which accepts
directives that ASM cannot handle. When ASM encounters something
that only MAC can recognize, the "N" error message is given.

o Overflow error.
Your expression is so complicated that the assembler cannot handle it in
its present form. Separate the expression into smaller pieces or simplify
it by reducing the number of operators.

P Phase error.
The label changes value during assembly. If you must reassign a value,
use the SET directive. This error can also be caused by a duplicate label.

R Register error.
You specified a register that is not compatible with the mnemonic given.
For instance, POP B is a valid assembly language statement, but POP A
is not. POP A would trigger the "R" error message.

S Syntax error.
This is a catchall error that can occur by using an invalid mnemonic or
having a typographical error in the source file.

U Undefined symbol.
You used a label in an expression without assigning a value to it. For
example,

IJ 0102 05 00 t'1VI B, ot\IE

appears if ONE is not defined in the program.
V Value error.

The operand (expression) encountered is not correct. This usually
occurs with typing errors, where you forget to include a comma or
certain letter the assembler is expecting.

ASM-86's messages use a number system that is similar to that of ASM. ASM-
86's messages are more completely defined than ASM's, and most of them are
obvious as to their meaning. The following are the error messages ASM-86
presents:

116

o Illegal first item.
The first item on the statement line is not a valid label or mnemonic.

1 Missing pseudo instruction.

2 Illegal pseudo instruction.

3 Double-defined variable.
The variable was defined twice.

4 Double-defined label.
The label was defined twice.

5 Undefined instruction.

ASSEMBL Y LANGUAGE UTILITIES

6 Garbage at end of line-ignored.
Usually encountered when control characters are embedded in file.

7 Operand(s) mismatch instruction.
8 Illegal instruction operands.
9 Missing instruction.

10 Undefined element of expression.
II Illegal pseudo operand.
12 Nested IF illegal-IF ignored.

You have an IF statement embedded in a section of code that already is
being evaluated with an IF directive.

13 Illegal IF operand-IF ignored.
14 No matching IF for ENDIF.
15 Symbol illegally forward referenced-neglected.
16 Double defined symbol-treated as undefined.
17 Instruction not in code segment.
18 File name syntax error.

19 Nested INCLUDE not allowed.
20 Illegal expression element.
21 Missing TYPE information in operand(s).

BYTE, WORD, or DWORD must be assigned first.
22 Label out of range.
23 Missing segment information in operand.
24 Error in code macro building.

DYNAMIC DEBUGGING TOOL (DDT)

The Dynamic Debugging Tool (DDT) is used to test and debug machine lan­
guage programs. CP / M-80 comes with DDT, while CP / M-86 comes with DDT -86.
You can use DDT to

Load an assembled program into memory
Make simple changes to a machine language program
Help locate errors in machine language programs
Make corrections or updates to your software
Install special driver routines (programs that drive a peripheral, such as a
printer)
Change disk parameters with CP / M -80 version 2.2 or CP / M -86

Examine and modify the contents of memory
Enter assembly language code one line at a time

CHAPTER 4/ 117

or

CP/M USER GUIDE

Disassemble a section of a program (for example, turn machine language
back into assembly language instructions)
Examine and modify the contents of the internal registers of the CPU

Set breakpoints-locations at which to stop the program and check what
has happened so far
Trace the execution of a program-follow what happens to memory and the
internal registers of the CPU.

By typing in the following:

DDT<cr-> CP/M-80

DDT85<cr> CP/M-86

you load the Dynamic Debugging Tool program into the memory of your computer
where it waits for further instructions.

Again, typing the following:

DDT d:filename.t'dP<cr> CP/M-80

or

DDT85 d:filename<cr> CP/M-86

loads DDT into memory and also loads the designated file into memory for
examination, modification, or extension. The file type must be "COM" or "HEX"
for CP / M-80; DDT-86 assumes a file type of "CMD" for loading.

When DDT or DDT-86 are resident in your computer's memory, they display a
prompt that consists of a hyphen. The hyphen indicates that DDT is waiting for a
command.

DDT Commands

Once DDT has been loaded into memory (with the optional file name, if speci­
fied, being placed into memory as well), DDT is ready to accept commands. A brief
summary of the available commands is shown in Table 4-l.

Most DDT commands require additional information in order to be used. Often,
this additional information is a memory address or a hexadecimal value. DDT and
DDT-86 expect slightly different formats to be used for specifying locations in
memory, because CP / M-80 only uses 16-bit addresses, while CP / M-86 uses 20-bit
addresses.

118

CP/M-80
0000 to FFFF are valid addresses

CP/M-86
0000:0000 to FOOO:FFFF are valid addresses. The number before the
semicolon is the 16-bit segment number; the number after the semicolon is
the 16-bit address within the segment specified. If you are not sure about

ASSEMBL Y LANGUAGE UTILITIES

TABLE 4-1. DDT Commands and Functions

Letter Typed
Function

CP/M-80 CP/M-86
(DDT) (DDT-86)

Assemble instructions A A
Display memory D D
Load program E
Fill memory F F
Execute program G G
Hexadecimal arithmetic H H
Set up FCB I I
List instructions L L
Move memory M M
Read disk file R R
Set memory to value S S
Trace program T T
Execute partially U U
Show disk file read V
Write contents to disk W
Examine / modify registers X X

what a memory segment is, refer to the section on CP / M -86 in Chapter 7 or
consult a technical reference on the design of the 8086 CPU. You do not
need to specify the segment number-it is valid only to specify the 16-bit
address. In addition, you may use the name of one of the four 8086 segment
registers as the number before the semicolon and DDT-86 will fill in the
proper offset.

Assembly Instructions

A/<cr>
Enter assembly language instructions beginning at the hexadecimal address

specified. There should be no space between the command letter (A) and the address
you specify. After pressing CARRIAGE RETURN, DDT displays the memory address
and waits for you to type a valid 8080 (or 8086 for DDT-86) mnemonic or operand.
Mnemonic and operand should be separated by one space, and each instruction is
terminated by issuing a CARRIAGE RETURN. After each instruction is entered, the
next available address is displayed, and you may continue entering assembly
language instructions in the fashion just described. To end the entry of assembly
language instructions, simply type a period followed by a CARRIAGE RETURN

instead of a valid instruction. Entry can also be terminated by merely pressing the
CARRIAGE RETURN key as the first character on a new line.

CHAPTER 4/ 119

-A(li(l(1(Cr-)

0100 M[I\! A,C<CI'>

0101 .<cr>

CP / M USER GUIDE

If OOT or 00T-86 do not understand your instruction, they present a question
mark and repeat the memory address to be filled.

Display Memory

D<cr>
Three forms of the display memory command exist. The first is merely the letter

"0" followed by a CARRIAGE RETURN. The single letter tells DDT to display
memory at the current memory location. On most systems, a total of 192 bytes (12
rows of 16 bytes each) are displayed. Some systems, notably those with screens less
than 80 characters wide, may display fewer characters, but there is no functional
difference to the display memory command.

Memory is displayed with the first memory location for a line at the left-hand
edge of each line, followed by 16 hexadecimal representations of the bytes in
memory beginning at that address. Next, 16 ASCII characters are displayed (with
the period being used to substitute for any nondisplayable character) on the far right
of each row. These 16 characters are the ASCII representations of the 16 bytes being
displayed in hexadecimal.

-[i(cr-)

,)1,:'0 311 ~:I, (l0 FE C8 ['H Ae t13 21 (ll:' 3':- .:..::. 25 0:-:' 31 : , 9 .. % 1

011(' (il() [8 3E 11 [13 m 21 ~
I)-=' -[, [,3 F[, """'c 03 F[, e[' > , I I

\:112(1 38 (12 11 13 (1-1- e[1 ':::8 1:1'::: e[1 38 1)2 11 5:, (q e[1 28 : r ; u I
(113(1 1:'2 lE 0' 0E (12 e[1 05 1)(1 \:'[(11 e[1 05 (II:' FE lE: LA
('I· .. W Al 03 FE 0[1 C2 28 1:'1 11 91 (q C[28 02 3E 4[' 3'::: r I > 1'1 "
IH50 2A I)' 21 l[J 0' 36 (18 -E [16 (1[1 LJ3 FF 3E I)' lE . , 5 > 2

1)150 07 21 2A (1""') 35 3E ell 32 28 1)--' 11 HE r'~ e[1 A8 ,:1': , . 5 > 2+ '.
01 7 0 3E 0-l 32 20 07 e[1 55 1:12 21 -,- I:" 36 21 C[, 2E 1)2 > ~ e , e, ,
0180 FA [IE, ,)2 C[J C5 I)'::: C.::: bH 1:'1 21 lE I)"" 35 C.: 51 01 J

, 5 a

0190 3E 02 32 24 07 e[1 e,5 02 3A 28 [5 1:1"7 3:=- ':::H 0"'" > ~ $ e : . 2 *
01A(1 36 0' 21 2A 07 35 3E 02 3:=' 21 e[1 6:1 (12 21 c 6 , - 5 2 , e ,
(':)18(1 (1"7 36 32 CD 2E 02 FA E9 (12 3E 01 ~" 28 (I""'l 11 HE 5 2 > 2+

Each successive display memory command displays the next 192 bytes of
memory. The starting address for the first use of "D" depends upon the file, if any,
loaded with DDT. Common starting values are 0100 hex and 0000 hex.

D#<cr>
The second form of the display memory command allows you to specify the

starting address to use. If you start a display command with an address that is not a
multiple of 16 (does not end with a 0), the first line of the display will not have 16
locations represented. DDT likes nice round numbers, and round numbers to it

120

ASSEMBLY LANGUAGE UTILITIES

mean multiples of 16. If we typed 0501, the first line of our displayed memory
would show only 15 bytes, for exam pIe. Any su bseq uent letter" 0" typed without an
address will resume where the "0#" display leaves off.

-D500<cr>

0500 52 52 4F 52 20 20 20 44 52 3E 42 24 52 45 41 44 RROR DR-8$REAO
0510 20 45 52 52 4F 52 20 20 20 20 44 52 30 42 24 56 ERROR OR-S$V
0520 45 52 49 46 59 20 45 52 52 4F 52 20 20 42 4C 4F E R I F Y ERR 0 R 8LO
0530 43 48 30 20 20 24 20 20 54 52 48 30 20 20 20 20 C K - - - $ T R I< - - -

0540 53 43 54 52 30 20 20 24 20 20 53 54 53 57 44 3D 5CTR---$ 5TSNO-
0550 20 20 20 20 20 20 2D 20 20 20 24 AE 05 C1 05 05 - - - - - - - - $

0560 05 E5 05 F5 05 08 06 lA 06 98 05 2F 06 3F 06 58 ~ ••••••.•••• / . ? • X

0570 06 98 05 98 05 9B 05 9B 05 9B 05 71 06 83 06 95 •••••••••••• q ••••

0580 06 A7 06 BE 06 04 06 EB 06 FF 06 9B 05 9B 05 9B
0590 05 9B 05 9B 05 9B 05 9B 05 9B 05 4E 4F 20 45 52 •••••••••••• NO ER
05A0 52 4F 52 20 40 53 47 20 46 4F 55 4E 44 24 44 52 ROR MSG FOUNO$OR

05B0 49 56 45 20 4E 4F 54 20 4F 50 45 52 41 42 4C 45 I V E NOT OPERABLE

D#,#<cr>
A third form of the display memory involves typing two numbers: the starting

and ending locations ofthe memory to display. If you start or end the display with a
memory location that does not end in 0, your display will not have exactly 16 bytes
in the beginning and ending lines, respectively. Any subsequent letter "0" typed
without an address resumes where the "0#,#" display leaves off.

DDT -86 allows you to display information as 16-bit values, normally referred to
as words of memory, not the eight-bit values normally shown. To specify 16-bit
value displays, insert a "w" between the "0" and the address parameters.

DW(cr> Displays 96 words of memory
DWtI(cr> Displays 96 words of memory beginning at "#"
DWtl, tI<cr> Displays 96 words of memory beginning at the first number and

ending at the second.

Fill Memory

F#,#,#<cr>
The fill memory command allows you to fill a block of memory with a single,

constant byte value. A common use of this instruction is to put the null character (00
hex) into a section of memory before doing any new work in that area.

The fill memory command requires three numbers to follow the letter "F" that
identify it. The first number is the starting address of the memory block to fill, the
second is the ending address ofthe memory block, and the third is the byte to insert
into the block of memory.

-F0100,01F0,0A0<cr>

CHAPTER 4/ 121

CP/M USER GUIDE

The above command would place the value AO hex in every memory location
from 0100 hex to 01 FO hex, inclusive. As with many of the other commands, you
can tell DDT-86 to use 16-bit words instead of bytes by placing the letter "W"
immediately following the "F" that starts the fill memory command (remember to
change the byte value to a word value or you might get some unexpected results).

You can use the fill memory command as a crude memory test to isolate blatant
memory errors. Try filling memory with "00, ""55, ""AA," and "FF" with successive
commands. After each command use the display memory command to make sure
that the memory actually received the characters you sent it. If you fill memory with
55 hex and see a byte with 54 in it, you most likely have a memory problem and you
should take your machine to your vendor for repairs. Be careful, however, not to fill
memory locations used by CP / M or DDT (generally the first 256 memory locations
and the last 6K to 10K memory locations).

Execute (Go at Location)

G<cr>

The "G" command tells DDTto begin execution of the instructions of memory at
the memory address contained in the CPU's program counter. DDT-86 begins
execution at the location derived from the CS and IP registers.

You seldom use the "G" command when debugging a program without specifying
a final address because DDT has no control over execution with this form of the
command. After the "G" command is used by itself, you have no way of stopping the
program and returning to DDT unless you have placed the correct RST instruction
for DDT somewhere in the executed code.

G#<cr>

To specify execution to begin at an address other than the current program
counter (or CS and IP register for DDT-86), follow the "G" command with a
number indicating the starting address to use. This form of the command places the
hexadecimal number you specify into the program counter (or CS and IP registers)
and then lets the CPU begin execution at that address. As with the "G" command,
DDT may never regain control.

G#,#<cr>

To specify that instructions beginning at one address and ending at another be
executed, follow the "G" command with the two addresses separated with a comma.
This command first sets a breakpoint at the second address by storing an RST 7
instruction there. Then execution is started at the first address. If the CPU executes
the breakpoint at the second address, execution of the program stops, and DDT
prompts for another command.

You may specify two addresses which, when encountered, cause the CPU to
restart DDT. The form of this command is G#,#,#<cr>. If either breakpoint is
executed, DDT prompts for another command.

122

ASSEMBLY LANGUAGE UTILITIES

G,#<cr>

You may omit the starting address in any otherwise valid "G" command to tell
DDT to use the current program counter (or CS and IP register values). This form
of the "G" command is useful for continuing execution after encountering a
previous breakpoint.

Hexadecimal Math

H#,#<cr>

The hexadecimal math command computes the sum and difference of the two
hexadecimal numbers you specify. The numbers are first converted to 16-bit values
(if you type less than four hexadecimal digits) before the calculations are made. The
first number shown will be the sum, the second the difference between the two
numbers.

Input Command

Ifllename<cr>
The "I" command identifies the file you wish to load into memory using the "R"

command. The first file name following the "I" command is placed into the default
file control block (normally at 005C hex). If more than one file name is specified
(separated with a space), the second one is placed in the second portion of the file
control block (normally 006C hex). The length of the command following the "I" is
placed at 0080 hex, followed by the command, followed by a terminating binary
zero character.

In short, the "I" command prepares the file control block so that you can use the
"R" command to read a file from disk into memory. The "I" command always sets
up the file control block for accessing the currently logged disk drive. You cannot
include a drive specifier-such as B:-with the "I" command; an error message is
issued if you do. You could, however, modify the file control block using the "S"
command to change the byte at memory location 005C from 00 to the value that
corresponds to the desired drive. Choose one of the values 'from Table 4-2.

In DDT -86, if a file has been loaded using the "E" command, DDT -86 copies the
file control block information from the base page of the program loaded.

Because the "I" command also fills in the command buffer at 0080 hex exactly as
if the user had typed it, the "I" command can be used to simulate what would
happen if a user typed in a command at the CP/M prompt level and traced
execution of the program using DDT.

List Memory

L<cr>
To disassemble a portion of memory, use the ·'L" (list) command. The "L"

command lists the contents of memory in assembly language, beginning after the

CHAPTER 4/ 123

CP/M USER GUIDE

TABLE 4-2. Values for Disk Drive Specifier
in Default File Control Block

Contents of
Disk Drive Location 005C

(Hexadecimal) Selected

00 Currently Logged Drive
01 Drive B
02 Drive C
03 Drive D
04 Drive E
06 Drive F
07 Drive G
08 Drive H
09 Drive I
OA Drive J
OB Drive K
OC Drive L
OD Drive M
OE Drive N
OF Drive 0
10 Drive P

last listed address (or 0100 hex, if none have been listed).

-L<cr>
10151MOVD,A

10152 MVI E,IOIO

10154 PUSH D

10155 LXI H,I02101O

10158 MOV A,B

10153 ORA C

1015A JZ 10165

1015D DCX B

1015E MOV A,M

1015F STAX D

101610 INX D

When DDT does not know how to display a hexadecimal value encountered in
8080 assembly language, the message ??=## is displayed, where "##" is the hexadec­
imal byte found by DDT.

Each successive use of "L" disassembles the next eleven instructions. Operands
that are numeric values are always displayed as hexadecimal numbers; labels and
symbols are not displayed (Digital Research's ZSID Symbolic Debugger displays
labels, if known).

124

ASSEMBLY LANGUAGE UTILITIES

L#,#<cr>

Like many ofthe other DDT commands, you may specify a starting and ending
address for the "L" instruction. You may omit either number, but the comma must
be present if you omit the starting address.

Moving Memory

M#,#,#<cr>

The "M" (move memory) command requires three numbers to function. The first
number is the first memory location to be moved, the second is the last memory
location to be moved, and the third is the first memory location of the new position
for the block of memory specified.

There are a number of considerations to keep in mind with the move command.
Do not specify a destination within the block of memory to be moved.

The move command does not relocate a program. A program usually contains
references to other locations within the program. The move command does a literal
move; each byte in the original block is moved exactly as is to the new location. If a
program is moved away from its normal location, it most likely will not work at its
new location.

If a question mark appears after you type the "M" command, at least one of the
numbers you specified is not a valid hexadecimal address. Also, if the last memory
location to be moved is a lower address than the starting memory location, nothing
is moved by DDT.

Read File

DDT
R#<cr>

To read a file from a diskette, first use the "I" command to identify the file, then
issue the "R" command. The "R" command is followed by an optional one-to-four
character hexadecimal address offset.

The optional number is an offset, or bias, as Digital Research refers to it. If
omitted, an offset of zero is assumed. The offset is added to the normal load
location, and the file is loaded at the resulting address.

Any address that would exceed FFFF hex wraps around to 0000 hex. Thus, a file
that would load at 8000 hex with an offset of zero would load at 0 100 if loaded with
an offset of8100 (R8100<cr». Also, you may not load a file so that it resides in the
portion of memory between 0000 and 0100 hex or so that it overlays DDT.

You should not load a file that would load into any part of memory used by
CP/ M-80. The forbidden areas are 0000 to 0100 hex and the CP / M-80 area below
FFFF hex. The address of the start of this area can be found by entering the
command L5,7<cr>; the address shown after the]MP mnemonic is the lowest
address used by CP / M and DDT.

CHAPTER 4/ 125

CP I M USER GUIDE

If you entered a file type of "CO M" with the "I" command, then loading begins at
0100 plus the offset. If you entered any other file type, including "HEX," the "R"
command assumes the file will be in Intel hex format, and it will add the offset to the
addresses contained in the hex format file to determine load addresses.

00T·86
R fllename<cr>

DDT -86 does not allow an offset to be used. The "R" command reads the
specified file into memory. The 8086 CPU allows up to seven files, plus DDT-86, to
be resident in memory at one time without overlap. Thus, DDT-86 loads files into
memory with the "R" command in the first free memory area.

Set Memory

S#<cr>
The set memory command allows you to display and optionally change (set) the

contents of memory, beginning at the location you specify immediately following
"S." In DDT·86 you may follow the "S"with a "W"to indicate that words are to be
set instead of bytes.

DDT displays a memory location, the current contents ofthat location, and then
waits for you to enter a byte (or word) value, or simply press CARRIAGE RETURN to
leave the setting as it is.

-50100<cr>

0100 C3 3D< c 0

0101284F<cr>

010238 <CI'>

0103 CI:l <cO

C3 become 3D
28 become 4F
Leave as is
Terminate input

A question mark appears if DDT or DDT-86 cannot understand your input or
you typed an invalid hexadecimal digit or address.

Trace

OOT,OOT·86
T#<cr>

To selectively trace program execution, use the trace command. Trace displays
CPU registers as they exist immediately prior to the next program instruction's
execution. The number following the "TO. command indicates how many program
instructions to execute. Pressing any key terminates tracing and returns control to
DDT.

A program being traced runs about 500 times slower than normal because DDT
instructions simulate each program instruction. The trace command enables inter­
rupts. This can be a major problem if your program requires that interrupts be
disabled.

126

ASSEMBLY LANGUAGE UTILITIES

The trace display looks like the following for CP I M-80:

C0Z0M0E0 I0 A=00 B=OFBS D=0000 H=0(,100 5=0100 P=013D L/ I 5P. 0200

where CO means the carry flag is set at zero
ZO means the zero flag is set at zero
MO means the minus flag value is zero
EO means the even parity flag is zero
IO means the intermediate carry flag is zero
A=OO means the A register contents are 00
B=OFB6 means the BC register contents are OFB6
D=OOOO means the DE register contents are 0000
H=OOOO means the HL register contents are 0000
S=O 100 means the stack pointer is at 0100
P=013D means the program counter is at 013D
LXI SP,0200 is the next instruction to execute.

The trace display looks like the following for CP / M-86:

A< B>< C>: [Ii< '3P BP 5I [JI IP

- - - 5ZAPC 0003 (1100 0000 0(100 ll'3E ('11)121121 (1121121(1 0(1('11) 001C HlC 5I

where the left column is the flags that are set
the next nine columns are the 8086 registers
the last column is the next instruction to execute.

DDT-86 also allows you to display the 8086 segment registers during the trace
operation. To do so, specify an "s" following the "T" (TS#<cr».

Untrace

U#<cr>

The untrace command is exactly the same as the trace command, except that you
see only one line that represents the CPU registers before the completion of any
program steps. It is similar to setting a breakpoint in a "G" command and preceding
this with an "X" command. The "U" command thus differs from the "T" command
in that the "U" command displays register values only once, while the "T" command
displays registers at each step. Using "u" is faster than using "T", but slower than
using "G." Using "U" is preferable to using "G" without breakpoints because you
can interrupt execution by pressing a key on the keyboard. As with the trace
command, an "S" following the "U" displays the segment registers using DDT -86.

CHAPTER 4/ 127

CP/M USER GUIDE

Examine CPU State

X<cr>
To examine the current state of the CPU, you use the "X"command. The format

of the display is the same as with the "T" and "U" commands, unless you specify a
single register to display, such as

DDT:
XC Carry flag
XZ Zero flag
XM Minus flag
XE Even parity flag
XI Interdigit carry flag
XA Accumulator
XB Register pair BC
XD Register pair DE
XH Register pair HL
XS Stack pointer register
XP Program counter register

DDT-86:
XO Overflow flag
XD Direction flag
XI Interrupt enable flag
XT Trap flag
XS Sign flag
XZ Zero flag
XZ Auxiliary carry flag
XP Parity flag
XC Carry flag

Plus all registers (AX,BX,CX, and so forth).

Load for Execution (00T-86 Only)

Efllename<cr>
The "E" command allows you to load an 8086 file into memory so that a

subsequent "G," "T," or "U" command begins program execution. If no file type is
specified, the file type of "CMD" is used. As usual with 8086 program files, the
header information in the file is used to alter the segment registers and the IP
register before execution. DDT-86 displays the starting and ending addresses of
each segment in the program when the file is loaded.

128

ASSEMBLY LANGUAGE UTILITIES

Value (00T-86 Only)

V<cr>
The value command displays information pertaining to the last file loaded using

an "E" or "R" command. If the file was loaded using the "E" command, the "V"
command displays the start and end addresses of each of the segments in the file. If
the last file was read with an "R" command, "V" displays only the starting and
ending addresses of the memory block where the file was loaded.

Write File (00T-86 Only)

Wfllename,#,# <cr>
The write command is similar to the CP / M-80 SAVE command in that it allows

you to write a block of information to a disk file. The two numbers following the
filename and separated by commas are the starting and ending addresses of the
memory block. If these addresses are omitted, the start and end addresses found in
the last "R" command are used.

LOAD-CREATE AN
EXECUTABLE PROGRAM

The CP / M-80 LOAD command has only one function: it takes a file of type
"HEX" and converts it into an executable file with the "COM" file type.

A "HEX" type file is created by the CP / M-80 assembler. A "HEX" file contains
Intel hex format machine code ready to be tested using DDT or converted into an
executable file. LOAD creates a "COM" file, which begins at 0100 hex, and which
contains executable machine code.

To use LOAD, first assemble yourfile using"ASM. "Next, use LOAD to create a
"COM" type file.

A>LOAD B:POX<cr>

FIRST ADDRESS 0100

LAST ADDRESS 0234

BYTES READ 0135

RECORDS WRITTEf1 02

A>

If your "HEX"file is a long one, the disk drive may be active for an unreasonably
long time as LOAD performs its function. The messages printed out are informative
only, and tell you some basic information about the size of the "COM" type file
created.

CHAPTER 4/ 129

CP/M USER GUIDE

Load Error Messages

Several error messages may be presented by LOAD if your file is in the incorrect
format or if a problem occurs in making the conversion. They may be

CANNOT OPEN SOURCE, LOAD ADDRESS xxxx
This message is displayed if LOAD cannot find the file name you specify or if no

file name is specified.

INVERTED LOAD ADDRESS

The program origin is less than 0100 hex or the program contains at least one
statement with an address less than the address of the previous instruction (the hex
format records are not in ascending order by address). Check the ORG statements
in your assembly language file.

INVALID HEX DIGIT
CHECKSUM ERROR

These messages appear when the information within the "HEX" type file is
incorrect. This normally would not occur if you immediately assembled the output
of an assembly, but may occur if you use Intel hex format to pass information
between computers and then edit the file.

DISK READ
DISK WRITE
NO MORE DIRECTORY SPACE
CANNOT CLOSE FILE

Each of the above errors are printed in conjunction with specific problems
encountered by LOAD trying to read from or write to the diskette. Check for a full
diskette, a full directory on the diskette, or if the diskette is set to read-only status.

GENCMD-CP/M-86 Create an
Executable Program File

CP / M -S6 allows programs to reside in almost any portion of memory, unlike
CP / M-SO, which assumes that all transient commands (programs) start at 0100 hex.
Because of this difference, LOAD is not appropriate to the CP / M-S6 programmer;
instead, you use GENCMD.

GENCMD takes a file of type "HS6" (created by ASM-S6) and creates a file of
type "CMD" from it. In this sense, it functions almost exactly like LOAD.

GENCMD also contains a great number of options. These options allow you to
specify such things as using the SO SO model for intermixing code and data, location
of the code, data, or stack elements, or the specification of the memory size used for
each segment.

130

ASSEMBLY LANGUAGE UTILITIES

The format for the GENCMD command is

A>GENCMD f i lenarne Dptions

where "filename" is the name of the H86 file to use and "options" is the list of
optional settings to use during the generation of the CMD file. The valid options are

8080
Specifies that code and data are intermixed into a single 64K byte segment,
regardless of the use of specific segment directives in the program

CODE[#]
Specifies the start of the code segment

DATA[#]
Specifies the start of the data segment

EXTRA[#]
Specifies the start of the extra segment

STACK[#]
Specifies the start of the stack segment

Xl[#]
X2[#]
X3[#]
X4[#]

Specify the start of auxiliary segments.

CHAPTER 4/ 131

CHAPTER

5 Transient Programs
And CP/M

You will use many different types of programs in conjunction with CP/M.
Digital Research provides a number of support programs to help you develop your
own software, but Digital Research markets little or no user application programs.
Remember, CP/M is not the entire solution, although application programs con­
tribute significantly to the solution.

The four classes of solution programs this chapter addresses are

Utilities
High-level languages
Application programs
Word processors

In Chapter 2 we used the term housekeeping to describe programs that help you
keep your diskette and its files clean. We refer to another class of related programs
as utilities. A utility diskette contains programs that maintain your diskette collec­
tion. Such utility programs are

Editors
Disk copying programs

Disk formatting programs

CP / M system generators
Disk viewers

Editors differ in degrees of sophistication; a pencil, scissors, tape, typewriter, and
copy machine individually add or modify information on paper. An editor or word
processing program adds, deletes, or modifies information on a disk.

133

CP / M USER GUIDE

You may add information on a disk using Digital Research's Context Editor, ED,
or by using a powerful word processing program (such as WordStar). In this
chapter we briefly describe several popular editors and explain how their use relates
to the use of CP / M.

Before we proceed with a description of the utility, language, and application
programs you will use with CP / M, it is appropriate to back up a step and make sure
that you understand the hierarchy that software follows.

Machine instructions are one of several layers of software existing between the
computer and the user. Historically, software was frequently designed to make
subsequent development of microcomputer programs easier. In this manner, sev­
eral layers of software exist; each layer is directly dependent on an earlier
development.

Machine instructions are at the core of programming. They are the binary l's and
O's the CPU interprets. Each different pattern of l's and O's causes the CPU to
perform a unique task. Each CPU model has a particular set of instructions it
understands. This is why CP / M-80 and CP / M-86 differ. To program (instruct) a
computer at this level, you need a method of entering the machine instructions.
CP / M does not directly provide this facility, but you may enter instructions
indirectly with DDT (see Chapter 4). Two conceptual problems are apparent with
machine instructions, however.

A machine instruction (such as 11000011) bears little resemblance to the opera­
tion that the computer performs in response to it. This is true of any code or
language that does not use hieroglyphics. While the l's and O's represent various ON
and OFF states to the computer, we must translate the l's and O's further. In human
languages, number strings do not form basic components of meaning. A series of
numbers may represent something, but we require an intermediary translation.
Computers are similar, and, therefore, the 11000011 translates into an instruction to
"jump" to an address for 8080-based computers.

Instructions perform operations that are firmly rooted in computer architecture
and terminology. The task you wish to perform may be difficult to describe using
the selected computer's machine instructions. Suppose you want to place a charac­
ter on a piece of paper using a printer; some of the necessary instructions might be

134

Hexadecimal
Representation

DB
03
E6
01
C2
00

Binary Machine
Representation

11011011
00000011
11100110
00000001
11000010
00000000

TRANSIENT PROGRAMS AND CP / M

Hexadecimal
Representation

00
3E
58
D3
02

Binary Machine
Representation

00000000
00111110
01011000
110100 II
00000010

Assembly language moves one step away from the computer, providing a mne­
monic to describe the action of each machine instruction. Using the above 8080
example (sending a character to the printer to type), we now get

IN 03
ANI 01
JZ 0000
MVI A,58h
OUT 02

If you know what MVI, IN, ANI, JZ, and OUT mean, then the instruction is now
represented in a shorthand that is translated into human-understandable language.
Unfortunately, these five assembly language program lines convey only the mean­
ing of each single instruction. What do the five lines together, as a program,
accomplish?

One step further removed from machine instructions, the computer interprets a
high-level language. Here assembly language instructions are combined into larger
building blocks. Our program now becomes

LPRINT "X"

which sends the character "X" to the printer. The concept of what the program does
is now evident. LPRINT "X" may actually trigger the execution of several (or
several hundred) machine instructions. But by LPRINT "X" we immediately
understand the function of the program. As we get closer to understanding the task
the computer accomplishes, we get further from the machine instructions the CPU
actually executes. The first high-level languages were created using the next most
sophisticated method, in this case, assembly language. And the first assembly
language programs were written in machine language.

The last level we will consider is the application program. An application pro­
gram causes a computer to execute a specific task, for example, to create and
maintain a list of names and addresses. Most computer users run application
programs unaware of any lower level of program interface.

N ow that we have introduced the levels of program instructions, let us now return
to look in more detail at each of the four types of programs you may use with
CP/M.

CHAPTER 5/ 135

CP / M USER GUIDE

UTILITY PROGRAMS

We will present several useful utility programs in a general fashion. Each supplier
of CP / M may also provide some utility programs that are similar to, but not the
same as, the programs described here. It is important to be aware of these utilities
and to learn how to use them. This is particularly true of the disk formatting and
copying programs. As you read the following sections, consult the manual(s) that
accompany the version of CP / M you purchased. Compare the material in your
manuals with our discussion to determine how to use your CP / M utility programs.

format-Preparing a Diskette for Use

How does the computer know where to put information on a diskette? We
discussed how the diskette is laid out in sectors and tracks, but how does the
computer distinguish between sector and tracks? How does it assign information
within a sector or track? Part of the job is done by the hardware (equipment) and
CP / M, but another part requires you to prepare the diskette.

Almost any CP / M-80 or CP / M-86 package includes a format or initialization
type of program. Among others, the following names have been given to initializa­
tion programs:

FORMAT
DSKFMT
INITDSK
FORMTHD

INIT
FMT
INITDISK
MFORMAT

IN
CREATE
FORMT#
HDF

The exact name of your formatting program depends on your CP / M source. In
some rare instances, there may be no initializing program; instead, the accompany­
ing documentation describes how to initialize a diskette.

Every blank diskette must be formatted before you can put data onto it. This is a
good practice even if your diskette vendor claims to have formatted the diskettes for
you.

Assume your initialize diskette program is called FORMAT. A FORMAT
program session might look like this.

A>FORMAT<cr>

0151< TO FORMAT? (A,B,C,D) B<cr>

PRESS RETURN TO BEGIN FORMATTING <cr>

DI51(FORMATTED. MORE? (Y/N) N<cr>

A>

While the exact syntax ofthe messages may differ, the following steps normally
occur in any format program:

1. Run the program (type its name, then press CARRIAGE RETURN)

2. Tell the program which drive contains the diskette to format

136

TRANSIENT PROGRAMS AND CP 1M

3. If your system runs both single and double density diskettes, then you have
to specify a density

4. Tell the program to start formatting

5. Tell the program whether you want to quit or format another diskette when
it finishes.

The program may also direct you to remove any diskette you are not formatting
to prevent accidental formatting of a diskette that contains valuable, irreplaceable
information.

The format program mayor rpay not obey the write-protect notch on the diskette.
To determine this, try to format a protected diskette. If the format program ignores
the write-protect mechanism, you must be extra careful not to inadvertently format
a diskette containing useful information.

Initializing a diskette only prepares it for use. If you ask for a directory of the
diskette after initializing it, messages like NO FILE or NOT FOUND appear, since
no files are yet present. Also, initializing a diskette does not mean that the diskette
can be used to boot (start) the system; the diskette does not contain the CP! M
system yet (see SYSGEN below).

The format program moves the magnetic head of the disk drive to the first sector
of the first track. Then the program writes some known dummy information and
moves on. Each sector of a track is written into, then the head moves to the next
track. Most programs fill the diskette with the hexadecimal byte E5. You probably
do not care what is done, or how it is done, so long as the diskette is properly
formatted.

Be extra careful when formatting hard disks. Normally, such an operation is only
done once. Formatting a hard disk erases all information from the disk surface and,
since so much data is stored there, it can be a time-consuming process to recover
your information if you inadvertently format over it.

Copy-Transferring Information from
One Disk to Another

Suppose you want to make a copy of an entire diskette. You could use PIP, as
described in Chapter 3, but it is slow and does not initialize a blank diskette. Instead,
you normally use a COpy program.

Like initialization, the name of the program used to copy entire diskettes varies
depending upon your CP I M implementation. Names vary because Digital
Research included neither an initialize nor copy program with CP! M-80 (Digital
Research does include a COPYDISK utility with CP I M-86). Efficient initialize and
copy programs must be written specifically for each hardware system; manufactur­
ers and distributors generally provide custom versions of these two programs.
Among the various copy program names you may encounter

COPY
DSKCPY

DISKCOPY
BACKUP

COPYDISK
COPYATOB

CHAPTER 51 137

COPYID
FCOPY

SDCOPY
FASTCOPY

MCOPY
DUPE

CP / M USER GUIDE

Using any of these programs is similar to using the formatting program we
discussed.

A>DISI<COPY(cr>

SOURCE DRIVE? A<cr>

DESTINATION DRIVE? B<cr>

PRESS RETURN TO BEI3IN COPYING~

COpy CDr1PLETE. MORE? (Y/N) N<cr>

A>

Again, most copy programs function similarly, but they may not conform exactly
to the prompts in our example. The following steps usually occur:

1. Type the name of the copy program to execute it.
2. Indicate which drive contains the original diskette (the one to be copied

FROM; known as the source diskette).
3. Indicate which drive contains the diskette you want the copy placed onto

(the destination diskette).
4. Begin the copying process by pressing CARRIAGE RETURN.

5. When the copy is complete, indicate whether you wish to quit or make
more copies.

Check the manuals you received with your CP / M to determine whether or not
your copy program requires an initialized diskette as the destination diskette. Most
do not, but a few do. If you try using the copy program with a blank diskette and get
an error message, try initializing the diskette first. Most good copy programs
initialize the diskette.

MOVCPM-Adjusting CP/M to
Memory capacity

When you first receive your CP / M-80 diskette, it is usually ready to operate in a
16K or 24K computer. This means you need only 16 or 24K bytes of RAM to use
CP/M-80. You will quickly find this is not enough memory to execute most
programs, especially when using a higher-level language like BASIC or Pascal. In
this case, you need to make CP / M-80 aware of the maximum amount of memory
available in your system. If you have 48K bytes of memory and you receive a
CP / M-80 expecting only 24K, you waste 24K bytes of memory. CP / M-86 does not
require MOVCPM, as it normally uses the lowest portion of available memory,
leaving the rest available to you.

The MOVCPM command provides a simple method of changing CP/ M-80's
memory size expectations. Changing CP / M-80 to expect a different quantity of
memory is called "moving." Two ways can be used to move CP / M-80.

138

TRANSIENT PROGRAMS AND CP 1M

. Move CP / M and immediately execute it, but not save it on diskette

. Move CP/M and save the new configuration on diskette.

The first possibility is perfect for the day you borrow an extra 8K bytes of
memory from another system to learn what you can do with more memory.

To move CP / M and immediately execute (use) it, type

~10VCPM<cr>

Makes use of all existing memory
or

MOVCPI11t < c t")

Where # is the decimal number of kilobytes of memory you want CP / M-80
to recognize. Use this command when you want to reserve some room for a
special program or utility above CP / M.

F or example, if you want to create and execute a 48K CP / M -80 system (one that
makes use of 48K bytes of your available memory), type MOVCPM 48<cr> or
MOVCPM<cr>, if you have only 48K bytes of RAM memory. After a few
moments, you see a message followed by the A> prompt; you are now using the
48K CP / M system you created.

Most of the time, however, you will want a more permanent solution. To move
CP / M-80 and then save it to diskette, type

or

MOVCPI" * *<cr>

Makes use of all existing memory

MOVCPI1 It Hct">

Where # is the number of kilobytes of memory you want CP/M-80 to
recognize.

The "#" in the above examples must be

A decimal number between 16 and 64 inclusive for CP / M-80 versions 1.3
and 1.4, or
A decimal number between 20 and 64 inclusive for CP / M-80 versions 2.0
and newer, and
Less than or equal to the number of kilobytes of memory in your computer.

Saving your new sized CP/M system on diskette requires another step.
MOVCPM prompts you for this step by displaying

READ'r' FOR" S\'SGEN" OR

.. SAVE 32 CPI'1ltlt. cm,"

This cryptic message means that in order to save the CP I M you just created you
must type SYSGEN<cr> or SAVE 32 CPM##.COM ("##" is the size of the new
CP/M-80 system given in the MOVCPM command above). Unless you are an
experienced CP / M-80 user or a brave soul, you should immediately execute the
SYSGEN program by typing SYSGEN<cr> (see the next section).

CHAPTER 5! 139

CP/M USER GUIDE

MOVCPM is sometimes called another name, such as CPM, NEWCPM,
MAKECPM, CPMGEN, or MOVECPM. MOVCPM does not affect any files on a
diskette.

If MOVCPM does not work properly your computer may "die" (fail to operate
properly). Press the RESET button to recover. If this happens, it means that the
portion of CP / M-80 that customizes it for a particular computer (the BIOS) has not
been placed in the MOVCPM program (see Chapter 7), or you specified a greater
amount of memory than your system contains. This last possibility can often be
overlooked; the Osborne 1 computer, and most computers that use memory­
mapped video, uses the top 4K of memory for video displays, meaning you can only
create a 60K CP / M-80 system, not a 64K one.

SYSGEN-Placing the CP/M-80 System
O'n a DlskeHe

SYSGEN is short for system generation. System refers to the CP / M-80 operating
system. Placing a copy of the operating system on a diskette is called system
generation. This is the purpose of SYSGEN.

Why not copy the CP / M-80 system just as you would copy a file? Because the
system is not stored as a file. The details of this oddity are explained at the end of this
SYSGEN section. For now, remember that SYSGEN copies a CP / M-80 operating
system from one diskette to another.

System generation is accomplished in one of the three following ways:

1. By using SYSGEN alone to copy the system from a diskette, without
change, and place it on a new diskette.

2. By using MOVCPM and then using SYSGEN to place the new system on a
diskette.

3. By using MOVCPM, saving the result on diskette, then reloading the result
for modification by DDT, then saving it on a diskette using SYSGEN.

Modifying the system is described in Chapter 7. Here we will first describe the use
of SYSGEN alone, and then describe its use in conjunction with MOVCPM.
SYSGEN does not affect any file on either the source or destination diskette.

When copying the system from one diskette to another, your dialog with the
computer looks like the following:

140

A>S\'SGEN<cr'>

S\'SGEN VER 2.2

SOURCE DR I VE NAt1E (OR RETURN TO Sin P) !i
SOURCE m·1 A:, THEI'j rIPE RETURN <cr>

FUNCTION COMPLETE

[JESTHIATI O~I DRI VE t·jAt1E i OR RETURN TO REBOOT) §.

DE':,THlATIOI·1 01·1 B:. THEN rIPE RETURI'I <cO

FUI·ICTIOI~ Cm1PLETE

TRANSIENT PROGRAMS AND CP / M

DESTHIATION DRIVE flAME (OR RETURN TO REBOOT) <cO

A>

Let us examine each step a little more closely. First, you type SYSGEN<cr> in
order to load and execute the SYSGEN program. It requests the source location;
you type the letter" A." That tells SYSG EN to get the system from the diskette in
drive "A."

Next SYSGEN asks where to put the system; you specify drive "B." SYSGEN
then tells you to put a diskette in drive "B" (DESTIN ATION ON B:) and press the
CARRIAGE RETURN key when you are ready. After you press the CARRIAGE

RETURN, the drives whir and clack for a few moments while the system is written
onto the diskette in drive "B," then the process starts over (DESTINATION
DRIVE NAME ...). A CARRIAGE RETURN ends the process, or another drive speci­
fier tells SYSGEN that you wish to place the same system onto another diskette.

If you want to save a different-sized CP / M-80 system you created using
MOVCPM on the diskette in drive "A, "you could specify this drive instead of drive
"B." But when you press the CARRIAGE RETURN key at the end of the program you
may discover something is wrong. Usually you must exit from SYSGEN using the
diskette with which you first started the system.

When saving the new size system you created with MOVCPM, your dialog
with SYSGEN differs slightly. Assume you type MOVCPM * * <cr> or
MOVCPM ## * <cr>, and now MOVCPM reports that you are ready for a
SYSGEN or a SAVE. Proceed as follows:

READ\' FOR" SYSI:;EI~" OR

•• SAVE 32 CP111i1i. C0I1"

A>SYSGEN(u>

SYSGEN VER 2.2

SOURCE DRIVE NAME (OR RETURN TO SI<IP) <cO

DESTI NATI ON ON B:, T HEN TYPE RETURN < c r>

FUNCTION COMPLETE

DESTINATION DRIVE NAME (OR RETURN TO REBOOT) <cr>

A>

As the example shows, SYSGEN continues to ask for a destination diskette until
you respond with a CARRIAGE RETURN only; you can update many diskettes in one
session.

The SYSGEN command can also include the name ofa CP / M-80 system that has
been saved as a file, for example, SYSGEN CPM48.COM<cr>. This form ofthe
SYSGEN program loads the system file into memory and then asks only for the
destination drive.

Why SYSGEN Is Necessary

The SYSGEN procedure requires further clarification.
The first two tracks-tracks 0 and I-of every CP / M -80 diskette do not contain

CHAPTER 5/ 141

CP/M USER GUIDE

files. Instead, this 6656-byte space is reserved for bootstrap (cold start) loaders and
the CP / M-SO operating system. These programs are not stored as files; they do not
appear in the file directory; nor are they accessible as files. However, it is sometimes
necessary to read or write to these tracks.

Diskette tracks 0 and I are always set aside, whether or not they contain the
loader and system programs. It is not necessary to keep these programs on every
diskette. They are required on a diskette only if you do a cold or warm start with it.

Most diskette copying programs copy the system, or lack of it, from one diskette
to another. Diskettes that contain application programs you receive from software
companies rarely, if ever, contain CP / M-SO on the system tracks.

That is why a special program, SYSGEN, is needed to place a new or modified
operating system on diskettes. Only by using SYSGEN can you save your changed
CP/M-SO.

One last word on the subject of system generation: MOVCPM moves only the
raw, bare bones of the CP / M-SO operating system. Any additional special printer
drives or other changes you have made to the BIOS section of CP / M (see Chapter 7)
are not moved by MOVCPM. If you use MOVCPM and then the printer (or any
other special device you may be using) refuses to work, you might need to add the
special drives for those devices again. SYSGEN, on the other hand, always copies
the entire operating system, including all of BIOS. In fact, SYSGEN copies all of
tracks 0 and 1.

Generating a New CP/M-86 System
Thus far, we have discussed new systems only in the context of CP/M-SO.

CP / M-S6 operates in a different manner than CP / M-SO, thereby differing in the
way in which a new system is created.

CP / M-S6 loads the operating system from a file saved on diskette named
CPM.SYS. In order to properly load CP/M-S6, however, a cold start loader
program must be resident on the first two tracks of your CP / M-S6 diskette. Since
the task is complex and should only be performed by someone familiar with SOS6
assembly language programming, we will simply outline the steps involved in
creating a new loader program.

1. Assemble a special version of your BIOS with the name LDBIOS.AS6.

2. Concatenate the resulting file with LDBDOS.HS6 and LDCPM.HS6 by
typing

PIP LOADER.H86=LDCPM.H86,LD8DOS.H86,LDBIOS.H86<cr>

3. Generate a command file (type CMD) for the resulting file
GENCMD LOADER 8080 CODE [A400] < c r>

142

(The above example creates an SOSO memory model system beginning at
the absolute address of 400 hex.)

4. Use DDT or DDT-S6 to place a copy of the LOADER.CMD file in
memory, and use SYSGEN or LDCOPY to place a copy of the CP / M-S6
loader on the system tracks of your diskette.

TRANSIENT PROGRAMS AND CP / M

When you start your CP / M-86 system, the loader on the system tracks is placed
in memory and executed, an act that results in the file CPM.SYS being loaded into
memory and executed. The organization of the CPM.SYS file is as follows:

128-byte header identifying load parameters
CCP.CMD
BDOS.CMD
BIOS.CMD

Creating a CPM.SYS file is similar to the process just described for the system
loader.

1. Assemble your BIOS file (BIOS.A86).

2. Concatenate the resultant file with CPM.H86 into
PIP CPMTEMP.H8S=CPM.HBS,BI05.H8S<cr>

3. Convert the resultant file into a command file

GENCMD CPMTEMP 8080 CODE[A40]<cr>

4. Rename the resultant file for use
REN CPM. 5Y5=CPMTEMP. CMD

CPM.SYS should be the first file on a CP I M-86 boot diskette.

HIGH-LEVEL LANGUAGES

As we mentioned earlier in this chapter, high-level languages are one of the
building blocks that program developers use. They write computer programs in a
high-level language for many reasons. The most frequently mentioned reasons are

High-level languages are easier to use since one high-level instruo,tion con~
veys the meaning of many machine language instructions. Programming is
faster and programs are easier to understand.
It is easier to conceptualize the executed process when the command resem­
bles human communication. For example, PRINT is understandable in
both human and computer languages.

There are high-level languages that have been designed for particular com­
puterized tasks (computer control of machines, emphasis on numerical
calculations, and so on).

Inclusion in or exclusion from this chapter of a particular language does not
reflect an endorsement or condemnation of the software by the author or publisher.
The relative merits of any given package are not to be implied from any discussion
within this chapter.

CHAPTER 5/ 143

History of High-Level Languages
For CP/M-80 and CP/M-86

CP/M USER GUIDE

Before describing the details of several popular high-level languages, a brief
history of the development of high-level languages using CP/M is necessary.

CP / M became a quasi-standard operating system because it was one of the first
operating systems available. An operating system acts as the scheduler and arbitra­
tor of the various tasks a computer must perform. In other words, to use disk drives
you must have a disk operating system, but the disk operating system is only a
go-between, not an end in itself.

Soon after CP / M-80 became available to the general public, Gordon Eubanks,
Jr. released a high-level language called EBASIC that he developed as part of his
doctoral dissertation. (EBASIC is sometimes called BASIC-E.) EBASIC was writ­
ten using another high-level language called PL/ M. While other languages could be
used with CP / M-80, EBASIC became available relatively early and made good use
of CP / M logical and physical device handlers. (See the section on devices in
Chapter 3.) EBASIC was written using government facilities, and this automati­
cally placed the software in the public domain. No copyright privileges could accrue
to Eubanks, nor could EBASIC be sold for more than a "reasonable copying
charge." In fact, the PL/ M instructions (called source code) that comprise EBASIC
are available from the CP/M Users' Group (see Appendix G).

EBASIC is a type of compiler for BASIC. You enter BASIC language instruc­
tions using an editor, then EBASIC creates an intermediate file of instructions. But
let us back up a step and describe what happens inside the computer when a
program or high-level language is executed.

The computer executes only machine language instructions, those l's and O's that
keep popping up throughout this book. BASIC is a computer language developed
at Dartmouth to help beginners use computers; it has instructions like

PRINT
GOTO

LET

IF

How do these instructions translate into l's and 0's1 In EBASIC, when you have
entered a set of BASIC instructions in a file with an editor, you have a file of text.
We call this file the program source code. The source code consists of recognizable
letters and numbers. Using other CP / M-80 programs you can manipulate the
source code text. For example, you can use PIP to copy the text to a device like a
printer and thus create a printed copy of the text.

On your BASIC diskette you have a file named EBASIC.COM (sometimes
abbreviated BAS. COM). Use that file to create an intermediate code file from the
source code file.lfyou have a BASIC program in a file named SOURCE.BAS, type

EBRSIC SOURCE<cr>

144

TRANSIENT PROGRAMS AND CP / M

The conversion from text to a more compact form that the computer uses occurs
automatically. When it is complete, your diskette has a file named SOURCE.lNT.
This new file contains no text; instead, each BASIC instruction has been compacted
into a one-byte representation. For instance, a PRINT instruction from the source
code file (SOURCE. BAS) is stored as hexadecimal I A in the intermediate code file
(SOURCE.INT). A number of advantages result from this compacting process
(often called compiling, although a true compiler generates real machine instruc­
tions, not representations of high-level language instructions). The most significant
advantages are a reduction in the file size and faster execution speed. It takes less
time to interpret one byte, such as lA, than it does to interpret a series of letters,
such as the PRINT instruction.

To execute a program written in EBASIC, you use another portion of EBASIC
called RUN.COM. This program interprets compacted instructions in the file
SOURCE.INT. RUN.COM is loaded into memory and begins execution, then
SOURCE.INT is loaded into memory and is interpreted by RUN.COM. While this
sounds confusing, EBASIC takes care of the details. However, in order to use
RUN.COM you must write (or purchase) an EBASIC program, use EBASIC to
create the intermediate file, and use RUN to begin interpretation of the intermediate
file.

EBASIC is not well-suited to business software. Nevertheless, because it was one
of the first high-level languages available on CP / M-80 and because of its low cost,
EBASIC was quickly adopted by those supplying CP / M-80 with systems. While
EBASIC is actually an extension of the standard Dartmouth BASIC, it lacks
several features of a suitable business processing language.

Fortunately, Eubanks did not stop with EBASIC. Using his experience in writing
and developing EBASIC, he formed a small firm and developed CBASIC (and
later, CBASIC2). CBASIC is an upward enhancement ofEBASIC; many EBASIC
programs will run using CBASIC, but not necessarily vice versa. Many program
developers have used CBASIC and CBASIC2 to write programs, and you may find
application programs that require CBASIC in order to run. (CBASIC, by the way,
uses the same three-step process we described for EBASIC. The program used to
run the CBASIC intermediate file is named CRUN.)

While EBASIC and CBASIC were developing as one primary high-level lan­
guage for CP/M-80, two young men from Washington began supplying another
version of BASIC out of a company called Microsoft. Microsoft's clients have
included MITS-the company that started the personal computer revolution­
Radio Shack, Apple, Texas Instruments, Exidy, Ohio Scientific, Osborne, IBM,
and other microcomputer manufacturers. What began as a cassette-based BASIC
interpreter of modest size has grown into a comprehensive, disk-based language.
The primary versions of Microsoft BASIC have been

8K BASIC
Usually used with cassettes; this version is used in various forms by MITS,
Ohio Scientific, Apple, Radio Shack, and Exidy.

CHAPTER 5/ 145

CP! M USER GUIDE

Disk BASIC
Originally developed for MITS but modified for both Radio Shack and
CP / M-80 systems.

Extended Disk BASIC
The current version of the interpreter which is used with CP / M-80 and
CP/M-86.

Until 1980, all versions of Microsoft BASIC were interpreter high-level lan­
guages, as opposed to compiler languages like CBASIC. Rather than using an
editor to enter programs, with an interpreter BASIC you enter programs directly
into the computer's memory. The interpreter BASIC has a built-in line editor; type a
command to load BASIC into memory (MBASIC <cr», and the interpreter
BASIC accepts valid statements thereafter. These statements are immediately
interpreted as you enter them. (Actually, they are interpreted once you press a
CARRIAGE RETURN.) Each line is processed when completed.

Again, a compacting scheme saves both space and time in the actual execution of
a program. The statement is compacted as soon as it is entered for immediate
execution.

Unlike compilers, an interpreter language allows you to develop and test each
piece of a program individually. You may at any time stop entering instructions and
begin executing the partial program by typing R UN<cr>. If an instruction error is
present, the line on which it occurs is identified and a message details the type of
error encountered. You can immediately edit the offending line, correct the error,
and run the program again.

Compare this to the method of program development you must use with a
compiler. You must leave BASIC, return to CP/M, invoke the editor, edit the
program file, then recompile it-all before you get another chance to run it. An
interpreter performs these same tasks, but the interpreter handles most of the details
for you. Microsoft BASIC became popular, even though it largely duplicated
features and instructions available from EBASIC and CBASIC.

In 1980 Microsoft released a compiler version of their Extended Disk BASIC. A
unique advantage of the Microsoft BASIC allows you to use the interpreter for
program development, then compile the final version. Many people believe Micro­
soft's compiler BASIC provides the fastest execution of any BASIC currently
available.

Computers have existed since the 1950's. As computers advanced, so did lan­
guages to be used on them. With the introduction of CP/M, many existing
languages were adapted for microcomputer systems use.

Microsoft released COBOL and FORTRAN soon after CP / M was available.
Since these languages are two of the most popular on large systems, it was logical
that they would be two of the first to be developed for operation under CP / M. For
nearly two years, CP/M users could choose among various BASIC dialects,
COBOL and FORTRAN, but in time, several more languages have become availa­
ble under CP / M.

146

TRANSIENT PROGRAMS AND CP / M

While any high-level language can be used to achieve a given task, each approach
can be so varied as to make you wonder which to use. To help you deal with this
problem, we discuss the reasons to choose one language over another and give you
some short profiles to some of the more popular languages.

Choosing a Language

When choosing a language, you should remember the following two rules:

I. Many applications programs require run-time modules to operate. Some­
times vendors supply the necessary software, but most of the time they
assume you will supply it yourself. A typical example would be programs
written in any of the BASIC dialects, and especially CBASIC. Many
excellent accounting programs available today are written in CBASIC, but
CBASIC programs need the CRUN module to run. Therefore, before you
could run a program written in CBASIC, you would need to purchase the
CBASIC language if the vendor did not supply CRUN with the software
package you purchased.

2. If you are already familiar with a high-level language, choose a similar
language available for operation under CP / M. Why buy Pascal if you
are already well-versed in COBOL?

If your expertise with computers is limited, or if you are interested in acquiring
another language to satisfy your curiosity or expand your knowledge, read the next
section thoroughly. This will help you decide which language or languages will meet
your goals.

A Dictionary of Languages

Following are short descriptions of currently available languages for operation
under CP / M. Refer to Appendix G for a list of companies currently offering them.
This list is by no means complete because companies are continually forming and
existing companies keep expanding their lines of available software. Reading trade
journals, such as BYTE and Personal Computing, keeps you current with the latest
software available. An important item to remember about Microsoft's software is
that, unlike most companies, Microsoft does not sell any of its manuals separately.
If you purchase a software package, make sure you backup not only the software
but manuals as well.

ADA
ADA is a new language developed by the Department of Defense. It is named

after Augusta Ada Byron, who is thought of as the "first programmer." ADA was
developed because all other languages evaluated by the Department (Pascal, PL/ I,
COBOL, FORTRAN, and so forth) failed to meet the needs of military software
systems. All programs now used by the Department must be written in ADA. It is a
highly structured and sophisticated language usable for all types of programs from
simple applications to highly technical systems programming.

CHAPTER 5/ 147

CP/M USER GUIDE

Assemblers
In addition to the assembler which Digital Research supplies with CP / M, several

advanced assemblers are now available. If you are well-versed in assemblers, a more
advanced product could be well worthwhile. If your system is Z80-based rather than
an 8080 machine, investigate them because they allow you to program directly in
Z80 and 8080 codes, letting you take advantage of the Z80's more powerful
instruction set.

BASIC

BASIC stands for Beginner's All-purpose Symbolic Instruction Code. This lan­
guage was developed by Dartmouth College in the 1960's to teach computer use and
programming. Although BASIC was partially derived from FORTRAN, it has a
simpler syntax; BASIC is slightly more understandable to the casual program
reader.

Unfortunately, it is difficult to generalize about BASIC. There is an American
National Standards Institute (ANSI) definition of the BASIC instruction set, but
this standard was defined after the language had established itself as the most
popular microcomputer programming language. By the time the standards were set,
almost every extant version of BASIC deviated from the standards. In fact, lan­
guage developers frequently add instructions from other languages to BASIC (most
notably from Pascal) to overcome deficiencies.

148

Reduced to simplest terms, here are some advantages of BASIC.

It is widely available; almost every microcomputer uses a version of
BASIC.
H is easy to learn. Hundreds of books provide introductions to program­
ming in BASIC. Many schools use BASIC for introductory programming
courses, and most computer retailers offer instruction using BASIC.
It is simple to understand; BASIC uses words and phrases similar to English
words. As Radio Shack, Commodore, and Apple have shown in computer
sales to grade schools, with proper instruction children can learn the com­
mands and write programs.

A great number of the programs published in computer magazines are
written in BASIC, thus providing samples of programming style and logic
to the BASIC user.

Most BASICs are interpreters; you can type in instructions and imme­
diately see the results. That makes BASIC an excellent learning tool.

There are more BASICs available than any other language (at least for
CP / M systems). You will probably find one dialect which suits your style
and personality.

Some of the disadvantages of BASIC are

There is no standardization. While the frequently used instructions remain

TRANSIENT PROGRAMS AND CP / M

essentially constant in all BASICs, there are many extensions and added
instructions. Extensions may please individual programmers, but they frus­
trate standardization.

BASIC programs execute slowly in comparison to other languages. Not­
withstanding occasional compiler versions of BASIC, the fact that most
BASICs are interpreters immediately adds an extra level of execution (the
interpretation). Even BASIC compilers generate programs that execute
slowly. The structure of the language and the resulting program do not
make good use of memory space.
You can write a sloppy BASIC program and still have the program work.
BASIC does not impart much structure to programs. Unfortunately, the
slack BASIC allows in programming style encourages programming "off
the top of the head."
Standard BASIC has not kept pace with other developments in the compu­
ter industry. BASIC is over 20 years old, and computers have changed
radically in that time. The versions of BASIC which accommodate these
changes inevitably suffer from not being standard.

Overall, BASIC is probably the most approachable language available to CP / M
users. The number of programs written in BASIC, the number of books written
about it, and its wide application all suggest you will find help in understanding the
language if you need it.

c
Bell Laboratories developed C; it is an integral part of the Bell operating system,

UNIX. Currently there are a few C's available for CP/M, and more will be
developed as the language becomes more popular.

Several languages are relatively close: C, ALGOL, PL/ M, and Pascal. These four
languages all require structured programming techniques. In terms of instruction
execution order, structured programs are easy to trace and are not easily written off
the cuff.

The language C differs from these other languages in a number of ways. C often
uses abbreviations or shorthand instructions where Pascal and the others use
complete words and phrases. For instance, C uses the instruction

INTX;

Pascal expands that same concept in an instruction like

X: INTEGER;

In addition, C demands more understanding and memorization by its users but
requires less typing.

Despite being exact, C is not difficult to learn. C clearly excels over other
languages in the instruction set extensions which make it capable of many tasks
normally reserved for assembly language.

Users can develop modules with C that can be used repeatedly without reentering

CHAPTER 5/ 149

CP/M USER GUIDE

instructions. This can be done both internally in a program (using user-defined
"procedures") or externally (using the #INCLUDE function built into C). Repeti­
tive tasks do not require the same amount of programming effort each time they
occur.

Above all C is transportable. Since it was specified and created by Bell Laborato­
ries, it does not suffer from innumerable versions. Your C programs are likely to run
on a larger variety of microcomputers than programs written in any other language.

Among its other advantages, C executes programs extremely fast and creates
extremely compact program codes (it is, in fact, a compiler). Its features allow easy
access to peripheral devices at a machine language level.

The primary disadvantage of C is its newness. Few resources are available for
learning C. It is so new to the CP / M environment that only a few application
programs are presently commercially available in C, nor have any of the primary
computer magazines presented more than a few examples of C programs.

COBOL

COBOL is an acronym for Common Business-Oriented Language. COBOL
program statements are much like spoken English. In fact, programmers refer to
COBOL statements as sentences and use a number of predefined words.

A short section of COBOL program code looks like the following:

PROCEDURE CALCULAT I ON.

DETERMINE-COST.

COMPUTE OUR-COST=LIST-PRICE - 110.105

IF OUR-COST> ZERO

SET PRICE-TO-US TO OUR-COST

MOVE "01(" TO VALID-PRICE-CODE

ELSE

MOVE "NO" TO VALID-PRICE-CODE.

Notice how the sentences end with a period. By reading the sentences aloud, you
learn what the program does. COBOL has little unintelligible computer code built
into the language.

The origin of COBOL is unique in the computer world. COBOL is a committee­
designed computer language. A group named CODASYL (Conference On Data
Systems Languages) established the COBOL language and also defined a standard­
ized database structure for business computing. Unlike the other languages
described in this book, COBOL is extremely standardized. A program written in
ANSI COBOL (the standardized definition) should run on any computer utilizing
the language. The United States government recognizes the standard COBOL
version and periodically officially recognizes COBOL versions as meeting the
accepted minimum standards. At present COBOL is one of the few languages the
U.S. government checks to assure a standard definition is met.

Since COBOL was developed with business applications in mind, you would
expect.it to be used primarily by businesses. This is true for the larger computer

150

TRANSIENT PROGRAMS AND CP i M

environment, but several factors have minimized COBOL's impact in the micro­
computer world.

First, COBOL is a large language. COBOL uses full sentences to indicate the task
to be performed, and it is a carefully structured language. Statements must appear
in a certain order, and a number of system specific statements must also be included.
In consequence, COBOL is not well-suited to microcomputers. This was especially
true when memory was a relatively expensive component of microcomputer sys­
tems. With the decrease in memory prices, 48K- and 64K-equipped microcomputers
are commonplace, and several microcomputer versions of COBOL have appeared.

COBOL is not very efficient; a microcomputer CPU takes a long time to decipher
its lengthy program statements alone. This applies primarily to compilation rather
than program execution. In addition, processing usually makes COBOL a relatively
slow language compared to others. On larger computer systems, there was plenty of
execution speed to spare and tasks were often handled in a batch mode rather than
as interactive processes. Microcomputers, however, are often taxed by the number
of internal manipulations COBOL makes.

COBOL was designed at a time when interactive computing was relatively
unknown. It cannot efficiently utilize the console device in a CP / M system. Both
Microsoft COBOL and CIS COBOL, the two most popular microcomputer ver­
sions of the language, include extra (and thus non-standard) instructions to utilize
the high-speed console devices featured on most available microcomputers.

FORTH

FOR TH is one of the more misunderstood microcomputer languages. A rela­
tively new language (invented in the early 1970's by Charles Moore), FORTH has
been described as everything from "an assembly language like BASIC" to "a
religion."

A FO R TH program is not easily deciphered; it is a threaded language. You use its
basic building blocks to make larger ones. In fact, it is extremely difficult to describe
just how to program in FORTH. Consider the following program (reprinted from
BYTE, August 1980, page 158):

(' (BREAI<FClPTH '~IMSFClRTH. BY AP~mL[I SHAEFFEP. PART 5 ClF 5)

1

2 : CLR

3 ><PCI::, @ 2 - 124 AI,I[! 2+ DUF' 4 + SvlAP [lCi \'PClS @ I [lCLR LClClF'

4 'iPClS @ 27 - ABS SCClRE+ ! (1 32 PTC S[[IPE ? BClP

5 'i'DIR @ mt~US 'iDIR I

5
,
/

8 BALLCHli\, DIR @ \'PClS+! XDIR @ ::<PClS +! XCHI< YCHI< PCHI<

'3 'iPClS @ >:PClS @ [l~' IF CLR THEN

10

11

12 BALL \'PCI':, @ :<F'ClS @ [lCLR

CHAPTER 5/ 151

13

14

15

CP / M USER GUIDE

BALLCHI< DUP l)= IF ','F'OS @ :<POS @ DSET THEN;

GAMECHI< SCORE @ 18l'l0 1'10Cl 0= IF 191 15616 320 FILL THEI'i;

Pretty intimidating, right? FO R TH includes many aspects a beginner prefers not
to find in a computer language. It frequently uses abbreviations; numeric manipula­
tions are done in Reverse Polish Notation (the same as some pocket calculators);
and FORTH allows the user to invent new commands (BALLCHK is one such
invention in our small sample).

If FORTH has so many apparent disadvantages, why does it exist? First, it is fast
and well-suited to applications which require quick screen or disk manipulations.
Second, the machine language code created by FORTH is generally much smaller
than other languages (another factor in its speed advantage). And finally, FORTH
is the language you make it. The fact that the programmer can extend the language
at will is a strong asset; programs can be tailored to the task.

If you are interested in getting a clearer description of FORTH's virtues, see
Discover FORTH. *
FORTRAN

FORTRAN is another acronym; it stands for Formula Translator language. It
was designed for complex numerical calculations where speed is the primary factor.
FORTRAN is not good at manipUlating characters like letters of the alphabet; it
does not handle input! output devices efficiently; neither was it designed for interac­
tive use (although it can be modified).

In many ways FORTRAN is the parent of BASIC; many BASIC statements are
FOR TRAN descendents. The primary differences lie in BASIC's efficient input and
output to the console and its ability to manipUlate strings. In FORTRAN, the
FORMA T statement, which is difficult to understand, must be used to prepare
information for transfer to the console or other devices.

FORTRAN, like C and COBOL, is a true compiler. Programs are input using an
editor, then reduced to machine instructions. The FORTRAN compiler most often
used with microprocessors is the Microsoft version, which is a subset of FORTRAN
IV. New programs are rarely written in FORTRAN; it is primarily used to run
existing programs in the microcomputer environment.

Pascal

Like C and COBOL, Pascal is a structured language; programs must follow a
particular structural concept. Statements must be executed in order, and blocks of
program code are identified to make the block easy to use elsewhere. The same
block may be used in several programs. BASIC, FORTRAN, and several other
languages allow the programmer to jump program execution from one set of
statements to another set in an entirely different area. Logical grouping of program

·Thorn Hogan, Discover Forth (Berkeley: Osborne/ McGraw-Hill, 1982).

152

TRANSIENT PROGRAMS AND CP 1M

statements into subroutines (sections of code which perform one function and then
return control to the calling statement) is possible in BASIC, but not with the
flexibility offered in Pascal.

Developed in Switzerland in 1968 by Nicklaus Wirth, Pascal relates directly to
Algol. A typical section of a Pascal program might look like the following:

VAR HOUR, MINUTES, SECDIiDS: HITEI:;ER;

BEGIN

HOUf;'::, : = 1 ;

11It~UTE5:=1;

::,E C 01,1[1 5 : = 15 ;

REPEAT

WR ITEL~1 ('T H1E LEFT =')

I,JRITE(HOUR,':')

WRITE(MINUTES,':')

WRITE(SECONDS,':');

WHILE SECONDS>=0 DO

SECONDS:=5ECONDS-1;

END;

IF SECONDS=-l THEN

SECONDS:=59;

MINUTES:=MINUTE5-1;

IF MINUTES=-l THEN

~1HIUTE5 :=59;

HOUPS:=HOURS-1;

UNTIL (HOUP5=0) AND (MINUTES=0) AND (SECO~ID5=0);

WPITELN(' TIME UP!');

Consider a Pascal program's appearance. First, it has a definite structure. The
indentations are not required, but they are strongly suggested to reflect the structure
of the program. Next, like COBOL, Pascal uses sentences whose meanings are
immediately apparent. Unlike COBOL, however, Pascal has relatively few prede­
fined statements, and the sentences formed tend to be shorter. This means Pascal
programs are not quite as unwieldy as COBOL in terms of length, but they still
remain readable.

Pascal also has an attribute known as recursiveness. To varying degrees, so do
Algol, PL(I-80, FORTH, and C. This means a block within the program may call
itself, or pass execution back to itself. This is a useful feature for complex proce­
dures which occur repeatedly within a program. Long division, that terrible
mathematical tool we all struggled with at some point in our elementary education,
employs a recursive function; you apply the same concept repeatedly until you get a
zero or repeating pattern. Pascal is well-suited to tasks which encompass a number
of repeated procedures due to its recursive nature.

Programmers like Pascal because their conceptions of a program fit directly into

CHAPTER 5/ 153

CP/M USER GUIDE

the structural constraints of Pascal. In fact, many programmers use a pseudo­
Pascal language to describe the flow of program execution.

WHILE RESULT NOT ZERO 00

COMPUTE NEW VALUE

IF NEW VALUE> OLD

THEN PERFORM FUNCTI OI~ :<
ELSE

F'ERFDRM FUNCTION Y

END WHILE

The portion of a Pascal program that accomplishes the above logic might be

WHILE RE'3UL T NOT 0 00

FIRSTNUM:=SECONDNUM-OFFSET;

t-IEWVALUE ; •• --------- Passes execution to a routine
IF NEWRESUL TRESUL T THEN which calculates NEWRESULT

ELSE

END{~IHILE}

X

Y; •• -------- X and Y represent procedures
which are performed each time
they are encountered

We have discussed the appearance of a Pascal program for a number of reasons.
Pascal is frequently hailed as the language of the future because of its easily
understood structure. Also, Pascal is a good beginner language because it is
straightforward. If you do not try to write Pascal programs off the top of your head,
you will be able to create working programs. Of course, learning to program any
microcomputer requires a good deal of dedicated effort and time, so seek expert
instruction (many universities offer free or inexpensive courses for beginners in
Pascal programming).

PL/I-80

With the introduction of PL/ 1-80 in mid-1980 by Digital Research, almost every
major programming language is now available to microcomputer users. PLjI-80
combines the structure of Pascal, the simplicity of Pascal and BASIC, and the
ability to perform complex operations with various peripheral devices.

PL/ 1-80 and its cousin, Intel PL/ M, are frequently described as system develop­
ment languages, or languages used by computer manufacturers and systems inte­
grators to create other software. In fact, EBASIC and a good portion ofCP / M were
written in PL/ M, as were several other high-level languages.

Digital Research's PL/ I compiler uses a subset, called Subset G, of the original
language. PL/ I programs execute fast and are generally relocatable.

154

TRANSIENT PROGRAMS AND CP / M

Other languages

RPG (Report Program Generator) was originally developed by IBM for non­
programmers. It is less a language than a way of selecting and outputting data from
a disk file. The only readily available RPG is marketed by Cromemco; it runs only
with the CDOS operating system (see Chapter 6). If RPG has been recommended to
you, or you wish to find an easy way to create, maintain, and select information
from a data base, consider some of the more sophisticated data management
systems like Selector (from MicroAp), PEARL (from Relational Systems Interna­
tional) or HDBMS (from Micro Data Base), or Dbase II (from Ashton-Tate).

LISP (List Processing) is an interpretive language developed in conjunction with
artificial intelligence research at Stanford University. LISP's primary application is
string processing, and it is not particularly well-suited for numeric applications.

APL stands for A Programming Language. Its modest name does not properly
reflect the immense power this language possesses. Rather than using words to
express a given programming concept, APL uses graphic characters to represent
certain commands. This following APL program calculates the average of a list of
numbers and demonstrates APL's conciseness.

al/erage

"Enter the numbers 'dou want averaged"

Nur1 ~ 0

SUr'1 ~ +,'NUM

AI~S ~ SUM - : - pl~UM

"The sum CI f 'dClLIr numbe rs is" ; ANS

Note the use of symbols (V, 0,_) to represent a concept. One statement, such as
NUM - 0, specifies a number of computer operations. The number typed is
moved to the variable NUM for each number typed, rather than representing each
operation with a statement. BASIC and other languages sometimes eliminate this
limitation through statements which repeat the execution of another statement.

Word Processors
One of the most useful application programs you can purchase is a word proces­

sor or text editor. The Digital Research editor (ED.COM, described in Chapter 3)
provides basic editing functions. You may need a versatile editor with CP I M-80
and CP I M-86 for the following reasons:

To create and edit programs
To create and edit data files

To perform emergency maintenance on text files
To create and edit documents (letters, articles, documentation, and so on)

To format documents and print them.

Some questions immediately come to mind. The first may be "Why do I need to

CHAPTER 5/ 155

CP/M USER GUIDE

do all that? I thought the programs I bought would take care of everything I need."
Your computer primarily creates and stores information. A typewriter does the

same thing, using paper as a storage media. You would not attempt serious typing
without some method of correcting your mistakes, and serious computing also
requires a way to correct the information you put on diskette. A good editor
performs this function for you.

You could use ED. COM as your editor. Digital Research also sells a companion
text formatting program called TEX. ED and TEX do not reflect state-of-the-art
editing software, however. Today, a number of extremely sophisticated word
processing editors exist that you should investigate.

Magic Wand. Magic Wand (soon to be named Peach Wand and also available in
a slightly modified version of SuperWriter) is a no-nonsense, straightforward editor
suitable for word processing. Magic Wand does not sacrifice ease of use for a
reduced number of features. Magic Wand consists of two modules, EDIT and
PRINT.

The EDIT module consists of two modes: command and edit. To edit a docu­
ment, you need to learn only a few commands for cursor movement, character
insertion and character deletion. The EDIT module is screen-oriented; you see the
changes as they are made. A single-key command takes you from the edit mode to
the command mode. In the command mode you may specify a number of other
instructions to Magic Wand. Most of these additional instructions manipulate
information in diskette files or instruct Magic Wand to format and print the
information.

The PRINT module prints the document created using Magic Wand. Depending
upon the document you wish to print, this session can be automatic or may request
information from you before the printing begins.

Magic Wand can incorporate information from separate data files into a docu­
ment being printed. This is especially useful for generating form letters or for adding
a personalized touch to an otherwise standard document. Magic Wand can incor­
porate names and addresses into a letter and can print envelopes as well as letters.

Electric Pencil. Electric Pencil was one of the first dynamic screen-oriented word
processors available for the CP / M -80 operating environment. A number of Electric
Pencil versions are available. You need the version designed specifically for the
memory-mapped video system in your computer. Electric Pencil will not work with
serial terminals.

Once Electric Pencil has been loaded, it presents a copyright message on an
otherwise clear screen. You can then choose either the typing, disk, or print mode.
Enter the typing mode by beginning to type. Enter the disk mode by typing
CONTROL K. Enter the print mode by typing CONTROL P.

Files created by Electric Pencil are not immediately usable as program or data
files under CP / M-80 because Electric Pencil inserts CARRIAGE RETURN without
line feeds into the text. To use Electric Pencil to create program or data files, you
must purchase a program called CONYER T from Michael Shrayer, Inc. A convert
program is also available from the CP / M Users' Group.

156

TRANSIENT PROGRAMS AND CP / M

WordStar. WordStar is a text processing program that emulates dedicated word
processing systems. Every now and then a program comes along that is well-suited
to computer novices. WordStar is one of those programs.

Once WordS tar is loaded into the computer, you may specify the size ofthe help
menu, a constantly displayed list of command choices. Note that just because the
program displays excellent on-screen aids is no reason to skip reading the manual.

You must give WordStar information about the operating environment before
you use it for the first time. Use the INSTALL program supplied with WordStar.1f
you have "standard" equipment, the installation process is straightforward. If your
equipment is not listed as one of the predefined choices available under INSTALL,
then consult your computer dealer or W ordStar vendor.

This book was written using WordStar. Three features dictated the choice of
WordStar: the ability to see the text format on the screen exactly as it would print
out, the ability to perform the number of manipulations necessary for numerous
major revisions, and the fact that the publisher can typeset directly from the
author's diskettes.

SELECT, Benchmark, Memorite, Electric Blackboard. A number of other good
word processing programs have appeared since the first edition of this book. Each
has its good points, and you should investigate each before making a choice of
which one to purchase.

SELECT's major advantages are its ease of use and its built-in self-teaching
abilities. In other respects, SELECT is very much like WordStar. Benchmark also
has many features similar to WordStar, and some users prefer its simpler editing
commands. Memorite is an extremely flexible and powerful word processor, but it
is restricted to use with Vector Graphic systems. Electric Blackboard is unique in
that it allows the user to divide the screen into mUltiple "windows," which can be
manipulated individually. In addition, Electric Blackboard is probably the best of
the word processors to create text wider than the normal 65-character margins on
8!;2 X 11 inch paper.

CHAPTER 5/ 157

CHAPTER

6 MP/M, CP/NET, and
CP/M Derivatives

The immense popularity of CP I M has spawned a number of similar operating
systems. Like Cromemco's CDOS, some of these systems are direct descendants of
CP/M but are not totally compatible with it. Other "work-alikes," I/OS and
TP I M, for example, retain CP I M compatibility and claim to improve CP 1M
features. Digital Research expanded CP I M capabilities with MP I M and CP I NET.

CP I M sales exceed those of all other microcomputer operating systems, includ­
ing Apple DOS and Radio Shack TRSDOS. CP I M-80 is available for both the
Apple and Radio Shack computers, and CP I M-86 is now available with an add-on
8088 processor board for the Apple II computer.

The popularity of CP I M has generated a growing library of CP 1M-compatible
software. Compared to application programs for other operating systems, CP I M­
compatible software was developed largely for business applications.

You may have consciously chosen CP / M, you may not have had a choice, or you
may simply have bought another operating system because you felt it offered
additional useful features. In any case, learn the relationship between your operat­
ing system and CP/M to determine if your computer will run CP / M-compatible
software.

The degree of compatibility between CP / M and other operating systems varies.
CDOS cannot be used on an 8080-based system since CDOS includes some Z80
instructions. In addition, CDOS has several extensions, and programs that utilize
these extensions are not usable on a CP 1M -80 system. Other operating systems, like
IIOS and TurboDOS, claim to correct several CP I M "faults" but otherwise retain
compatibility with it. Some, like 86-DOS, are not really compatible since they
utilize a different file format than CP / M-80 and CP I M-86.

159

CPIM USER GUIDE

Erroneous assumptions about the compatibility of operating systems and appli­
cation programs cause problems for everyone. This chapter clarifies compatibility
between selected operating systems and discusses the features of MP / M and
CP / NET, two Digital Research extensions of the CP / M family.

MULTIUSER AND
MULTITASKING SYSTEMS

Up to now, we have described computer systems that perform one task for one
user at a time.

Multitasking computer systems perform a number of chores concurrently. Other
names that refer to this multitasking computer setup include multiuser, time­
sharing, time-slicing, multiprogramming, and multiterminal. Unfortunately, the
microcomputer industry changed some definitions that had previously referred to
minicomputer and mainframe computer systems. In this text, multitasking refers to
a microcomputer system performing two or more jobs simultaneously.

How does a multitasking computer system work? In a normal computer, a
sequence of events occurs for each task. For example, when you press a key on the
keyboard, the following (simplified) sequence occurs:

1. You press the key

2. The keyboard sends the character to the computer
3. The 110 device within the computer captures the character
4. The CPU gets the character from the I/O device
5. The CPU processes the character according to a set of instructions already

in memory.

While steps 1 through 3 take place at one keyboard, the CPU could perform step 5
(processing a character) for a second keyboard. If the CPU is waiting for the
character from the first keyboard, it is idle.

Multitasking, in its simplest form, requires the CPU to perform a second job
while it waits to continue processing for the first job. The computer appears to
perform two things simultaneously, since the tasks outlined above are measured in
thousandths or millionths of a second.

Were everything as simple as our description, all computer systems would be
multitasking devices. We must address one problem to fully describe the concept of
multiplejobs on a single computer. The problem simply stated is: how do you know
the two tasks will not interfere with each other? How does the CPU know when to
work on which task?

The answer is that computer designers cheat In a multitasking system, the
designers make some assumptions and take one of two conventional approaches.

160

Each user is given a time slice. If the slice of CPU time is a particular length,
the two users of the system are not aware of the other's presence on the

MP/M, CP/NET, AND CP/M DERIVATIVES

computer. Nor do they notice any appreciable slowing of the system since
the computer wastes time waiting for the user to do something. Multitask­
ing has certain advantages. For 110 bound systems where time is spent on
input to and output from various devices-for example, a word processing
system-the computer waits for keys to be depressed; this is clearly a good
candidate for the time slice system.

The CPU can also switch jobs each time it must wait for another device. A
related method processes onejob until another job demands CPU attention
(this is called an interrupt-driven system). The differences between these
two methods are more subtle than they first appear.

These approaches mayor may not be satisfactory methods for dividing CPU
time. If the CPU rarely waits for 110 in onejob, the secondjob may not be activated
for quite some time. On the other hand, if one device constantly demands attention,
the other devices are ignored. The result is the same: one task gets an advantage over
the others.

These methods have been inaccurately described as polling systems. Polling
means checking to see if a device is ready. A time slice system may include polling. It
is possible to implement a multitasking system without polling, however.

Microcomputer multitasking systems often combine these two methods. Each
user has a time slice, but if the CPU must wait during that time slice, or if another
device demands attention, the CPU alternates to another job before the time slice
ends. This solves any problems that result from unequal demands on the CPU by
either the devices or the operator.

One way in which jobs demand attention from the CPU involves interrupts.
When you press a key, a character needs to be processed; your input must reach the
CPU before you release the key. A special line monitored by the CPU is triggered,
and the CPU immediately switches to the routine that fulfills that process. When
this routine is done (the interrupt task), the CPU returns to the interrupted task.

A method of "pseudo-multitasking" involving mUltiple connected computers
that share devices is known as networking. This concept involves two con­
siderations.

The computers must be linked by a physical means (like a telephone connec­
tion or a simple cable) and a software means. The software means is the
protocol.

The method in which computers are linked together depends on the interfac­
ing capabilities of each computer in the network. In some instances all
computers can use all devices on all other computers. In other systems a
hierarchy operates: one machine acts as a host to several others, or only
certain linkages are allowed.

With this introduction to multitasking, we now turn our discussion to the features
of MPI M and CP/NET.

CHAPTER 6/ 161

CP / M USER GUIDE

MP/M

In general, this discussion pertains to MP! M II; however, users of the earlier
MP! M version will find most of the information useful as well.

The letters MP! M stand for Multi-Processing Monitor Control Program.
M P / M is an operating system that can control more than one console terminal and
more than one program at each terminal. Thus, several users can each run several
programs "simultaneously" on one computer.

Differences Between MP/M and CP/M

You will notice three general differences between the operation of MP / M and
CP / M: the prompt is different, there are new control characters, and there are new
commands. Let us examine these differences between MP / M and CP/M.

162

1. The prompt. Like CP/M, MP / M displays the drive identifier of the
currently logged drive (A, B, C, and so forth) followed by a>, but MP / M
also includes the currently logged user number (0 to 15, inclusive) before the
drive identifier.

CP/M prompt

MP/M prompt

A> Drive A is the default
B> Drive B is the default
C> Drive C is the default

OA> User 0 on drive A
4F> User 4 on drive F
3D>User 3 on drive D

Each user number is associated with a group of files on disk. Enter the
USER command to switch to another user area on the disk.

2. Extra control characters. MP / M recognizes several control characters that
CP / M does not. These are

A D Detach console from current job
A Q Restart console after A S pressed
A Z End input from console

CONTROL-D lets you "detach"the console from ajob. This is useful when
a job requires little or no input from the console or when you wish to
suspend one job while starting another. You may reattach a job by typing
ATTACH <cr> in response to the MP / M prompt.

The characters A S stop the console display, just as they do in CP / M.
However, unlike CP / M, only a A Q will restart the console after using AS.

CONTROL-Z ends the input from the console device. You will rarely need
A Z. When the console functions like a disk device A Z sends an end-of-file
marker.

MP/M, CP/NET, AND CP/M DERIVATIVES

3. Additional commands and utilities. MP / M has the following new
commands:

DIR[SYS]
Displays a directory including system files

ERAQ
Enables a query mode for erasure of files

CONSOLE
Displays the console number

DSKRESET
Enables user to change diskettes

GENHEX
Creates a hex file from a COM file

PRLCOM
Creates a COM file from a special PRL file

GENMOD
Creates a PRL file from a special HEX file

SPOOL
Sends printer output to a spooling device

STOPSPLR
Stops spooler output

TOD
Sets or displays time and date

SCHED
Schedules a task to be run automatically

ABORT
Aborts a task, even if detached from console

ATTACH
Reattaches a detached job

MPMSTAT
Displays MP / M status

PRINTER
Selects printer to be used

SDIR
Displays directory and options

SHOW
Displays disk status

SET
Sets disk and file status, passwords, and time stamping

Detailed descriptions of these new commands follow in the next section.

CHAPTER 6/ 163

CP/M USER GUIDE

MP/M Commands

When you purchase MP / M you receive a number of programs unique to MP / M.
All MP / M commands, except for the control characters, are transient commands
or programs. We will briefly summarize each MP / M program.

DIR[Sys1

Type the DIR *.* command followed by a space and an "S" with MP/ M 1.1, or
type DIR[SYS] with MP / M 2.0, to receive a directory of files that includes system
files. System files would not otherwise appear in the directory display. Normally, all
program files are made system files in MP / M so that all users have access to them.

In addition to the normal DIR commands, MP / M 2.0 recognizes the following:

DIR [G8]
Displays directory of user 8

DIR file,file
Displays directory matching the file specifications of the first file and the
second file. Each additional specification must be separated by a comma.

ERAQ

The ERAQ command is an extension of the CP/M ERA (erase) command. When
you use ERAQ instead of ERA, MP / M asks about each file; the "Q" stands for
query. For example,

0F>ERAC) *. *(cO

F:IRAN OIL? ~

F:SAUDI
F: ISRAELI
F:AFGHAN
0F>

DIU !2
MEN'! !2
OIL? rl

In our example, we erased IRAN.OIL but not the other three files on the diskette.
Using the ERAQ command instead of ERA decreases accidental erasures.

CONSOLE

There can be as many as 16 independent console devices in MP / M. These
terminals are numbered console device number one, console device number two,
and so forth.

The console number is distinct from the user number, and the distinction is
important. One fixed console number is assigned to each terminal. The user
number, on the other hand, is associated with a group of files on diskette.

To see which console you are using, type

CON50LE(cr>

164

MP/M, CP/NET, AND CP/M DERIVATIVES

MP / M replies

Console • x

where "x" is your console number.

DSKRESET

Unfortunately, several users may share one or two disk drives. What if one user
must change the disk in the drive to access a different disk, or to load another
program? Remember, after changing diskettes in CP / M you must perform a warm
start. With MP / M you want to perform that warm start for your job only, not for
everyone else's.

DSKRESET selectively changes diskettes. Type the command with no other
parameters to reset all disk drives on the system. Follow the command with a list of
valid drive identifiers (A:, B:, and so on), each separated by a comma, to reset only
the drives you specify. For example, the command

D51<RE5ET E: ,N: ,D:<cl'>

resets drives "E," "N," and "D."

MP / M does not allow you to reset a drive if some task is using files on that drive.
When that happens, you see

Disk reset denied, Dril/e x: Console 'd Program z

This message informs you which console and program still have open files on that
diskette. If your console is specified, complete your use of the program (at least
finish using the files it is addressing) and then retry DSKRESET. If your console is
not listed, you must wait until the other user finishes before you can reset that disk
drive, or check for another available drive.

You must use DSKRESET before removing a diskette from the system or you
may cause another user to have unrecoverable errors.

GENHEX
This program is the opposite of LOAD; it reads a COM-type file and creates a

"HEX" type file to be used either by LOAD or GENMOD.

PRLCOM

Files destined for MP / M with the "PRL" file type may be changed to files usable
on CP / M -based systems (for example, "CO M" type files) by using PRLCO M. The
format of this command is

PRLCOM prlt'dpe.fil comt'dpe.COM<cr>

This command line violates the common NEW=OLD convention of most com­
puter commands.

CHAPTER 6/ 165

CP I M USER GUIDE

GENMOO

With CP / M, LOAD changes the HEX file created by the assembler to a COM
type file to be loaded and executed by typing its name. MP / M locates an individual
user program at the beginning of the memory dedicated to that user, but CO M files
always load beginning 0100 hex. GENMOD converts a "HEX" type file into a
"PRL" type file that can be loaded at some other memory address.

GENMOD reads a file consisting of two assembled versions of a program (each
assembly with a different beginning location) and creates a file with the PRL file
type. Two assemblies are required at different beginning locations since GENMOD
compares the two resulting sets of object code to ascertain where specific addresses
appear in the program. Since MP / M does not assume anyone beginning location
for a program, it identifies portions of the program that use specific locations so
they can be changed to reflect the memory area where the program is loaded.

SPOOL

Several users on a system may share a single printer. Instead of sending your
information directly to the printer, with MP / M you normally send your output to a
disk file, and then use SPOOL to print the file.

SPOOL maintains a queue of files to be printed. If user 1 asks for a file to be
printed using SPOOL, and user 2 asks for some printed report moments later,
SPOOL will first finish printing user l's report, then print the information for user
2. When you invoke SPOOL, it summarizes the queue and then returns the MP / M
prompt to your console. You are free for other jobs; the printer automatically prints
your document according to the queue.

To get your files into the spooler queue type

SPOOL filename. t'dP. filename. t'dP (cr)

You may specify any number of files to add to the queue, each separated by a
comma, up to the limitation of the command line length.

STOPSPLR

To stop the SPOOL function type STOPSPLR followed by your console
number. If you have any files waiting to be printed, they will all be removed from the
queue. This is a drastic action. It may result in a partially printed report. Be sure you
want to stop the printing of your files.

TOO

MP / M maintains a clock to track both date and time. Do not assume its
complete accuracy. First, if the computer shuts down for any time period-even a
fraction of a second-MP / M restarts the clock. Second, the clock's accuracy
depends on how your MP / M system was implemented. If you are using a Digital
Microsystems computer or an Intel MDS-based system, the clock functions exactly
as Digital Research intended. Other implementations mayor may not function
properly.

166

MP/M, CP/NET, AND CP/M DERIVATIVES

To set the clock, type

TOO mm/dd/yy hh:mm:ss<cr>

Type in the month, day, year, hours, minutes, and seconds in exactly that order
and format. Here is a valid entry

TOO 01/16/83 10:00:00<cr>

This tells the computer it is the 16th day of January, 1983, and the time is 10 a.m.
When you type the above command, MP / M responds

Strike key to set time
THU 01/16/8310:00:0(1

Press any key to begin the clock and return you to MP / M. Now, any time you
type TOO<cr>, you see the current date and time as MP / M maintains it. Typing
TOO P<cr> continuously displays the date and time until you press another key.

SCHED

A clock allows automatic scheduling of tasks. The computer could perform a task
when no one else uses the system. This is especially useful for long reports that might
slow the computer's response time. To schedule tasks, type

SCHEO mm/dd/yy hh:mm task<cr>

where task is a valid MP/M command line and the "mm/dd/yy hh:mm:ss" is the
exact date and time you wish the task to begin. You cannot specify execution of
tasks in increments shorter than one minute.

ABORT

To cancel any task type ABORT task<cr>. If the task was invoked from a
different console, you must add the console number from which you scheduled the
task

ABORT task <cr>

MP/M's Internal Structure

MP / M is very similar in structure to CP / M-80. MP / M equipment requirements
are

An 8080, 8085, or Z80 CPU (MP / M-86 uses an 8088 or 8086 CPU)

At least 32K bytes of memory

At least one disk drive

A keyboard for input of characters

A printer or CRT for output of characters

A clock timer interrupt.

Consider how CP / M loads into memory (see Chapter 1). Load MP / M with a

CHAPTER 6/ 167

CP/M USER GUIDE

cold start loader just like CP/M, or use the special MP / M loader-a CP/M
transient program-to load and execute MP / M for later use.

The internal structure of MP / M is similar to CP/M. Where CP/M had a
Transient Program Area (TP A), Console Command Processor (CCP), Basic Disk
Operating System (BDOS), and Basic Input/ Output System (BIOS), MP / M has
the following parts:

TPA
Transient Program Area

MEMSEG
Between I and 8 memory segments, one for each user

XDOS
Extended Disk Operating System

BDOS
CP / M's Basic Disk Operating System with a bank switching utility added

XIOS
Extended Input/ Output System

Although MP / M adds to the CP/M structure, it does not significantly alter
CP/M. Remember, MP/M has been expanded to include 16 user terminals, 16
printers, and 16 drives, each with up to 512 megabytes. MP/M does not support
PUNCH and READER devices, as does CP / M.Where CP / M BIOS describes one
user terminal, reader, punch, and printer, MP / M XIOS describes terminals and
printers for each user. In other words, the concept has not been changed, but the
operating system has been expanded to include information about all users. This is
one reason why MP / M requires more memory space than CP / M.

MP / M functions differ slightly from CP / M. CP / M always loads a utility pro­
gram beginning at 0100 hex and stores it in a "COM" type file. MP / M retains this
feature but adds the ability to use "PRL" (page relocatable) type files and pla­
ce/ execute them beginning at any interval of 0100 hex (0100, 0200, 0300, and so on).

Suppose two users each have 48K bytes of memory, and each job requires only
20K bytes of memory. If both jobs must start at location 0100 hex there is a major
problem: each user would try to use 20K bytes of memory beginning at 0100 hex,
and the top 28K bytes would not be used.

Some programs you buy from vendors other than Digital Research come only as
"COM" type files. They must be loaded and executed beginning at 0100 hex. Can
two users use that program concurrently?

No. But fortunately there is a solution. Most MP / M computers utilize a feature
called bank selectable memory. The 8080/8085/ Z80 microprocessors can directly
address only 64K bytes of RAM. The key word is directly. Imagine you can tell a
memory section to ignore all processes until it receives a special coded signal from
the CPU. Another memory section pays attention to all processes until it receives
that special coded signal, then ignores the proceedings. Your imagined system is a
bank selectable memory system.

168

MP/ M, CP/NET, AND CP/M DERIVATIVES

TABLE 6-1. An MP / M Memory Map

Bank 1
64K Bytes of RAM

Memory Address
(Hexadecimal)

Bank 2
64K Bytes of RAM

--------------------------0000------------------------....

Reserved for MP! M Reserved for MP! M

.... ----------------------.... 0100------------------------....
User 1 Program

(TPA)
User 2 Program

(TPA)

-------------------------cooo-------------------------
Not Used

--------------------------EOOO

MP/M

User 3 Program
(Optional)

.... ------------------------FFFF-------------------------

With MP / M, each user usually gets one bank of memory. If you have two banks
of 48K bytes of RAM in your system, the first user has 48K from the first bank, the
second user has 48K in the second bank, and 16K of common memory area in the
first bank is reserved for MP/M. A sample memory map is shown in Table 6-1.
Notice the addresses in the middle column. Both user 1 and user 2 use the same
addresses for their programs; they do not interfere with one another because MP / M
uses only the currently active memory bank. You do not need to tell the system when
to change memory banks. This is done automatically by MP / M.

If your memory address begins at an address other than 0100 hex, you must use
"PRL" type files rather than "CO M" type files to store programs. Digital Research
provides its programs as "PRL" type files. In addition, the Digital Research MAC
assembler can create "PRL" files from assembly language programs. You can do
this with "ASM," but with greater difficulty. Digital Research now includes RMAC
(a relocatable assembler), LINK-80, and a library of common routines with MP / M
so you can create "PRL" type files.

CP/NET

CP / NET is the Digital Research networking addition to the CP/M family of
operating systems. CP / M is designed for a single user on a single computer system;
MP / M is designed for mUltiple users on a single computer system; CP / NET is
designed for multiple users on multiple computer systems.

The concept of computer networks differs slightly from multitasking. Multitask­
ing tends to be hierarchical.

CHAPTER 6/ 169

CP/M USER GUIDE

Each user is a separate entity; multitasking allows little or no interaction between
users.

Master System

User 1 User 2

CP / NET operates on a different concept.

User I
System

/ "\
User 2

f--
User 3

System System

Partitions within
the Master System

User 3

Each of the three users are represented as systems, not merely users. The logical
linking between each user is more direct; there is no master system.

CP / NET differs slightly from the concept we illustrated. CP / NET requires at
least one node in the network to act as a master. One user manages the network. The
master node must have MP / M and disk drives. Other nodes may consist only of an
8080/8085/ Z80 CPU and a minimum of 16K bytes of memory. While these nodes
need no other components, a terminal, more memory, and disk drives increase a
node's functions. Considering these requirements for a CP /NET system, we will
modify our diagram as follows:

Master Node
Large Capacity - MP/M f-- Terminal

Disks and CP/NET
User 1

/ \
Node 2 Node 3
CP/M - CP/M
User 2 User 3

I I
Terminal Terminal

170

MP/M, CPjNET, AND CP/M DERIVATIVES

There are two primary advantages to a network system of computers: sharing of
resources and speed of execution.

The primary shared resource for a microcomputer network is high capacity disk
drives. Hard disk drives are expensive. It may be unreasonable to buy three hard
disk drives for three computer systems. Large database applications (storage,
maintenance, and use of large bodies of data) may require all users to share one
common file or group of files.

Another shared resource is usually a printer. Typewriter-quality printers are both
expensive and slow. There may be a typewriter-quality printer at one node, while
another may have a faster but less readable dot matrix printer. For rough drafts you
might use the faster dot matrix printer. But since each user in this network may send
output to either printer, you might want to produce final copies with the typewriter­
quality printer.

Each node on a CP! NET system can function independently; each node may be a
separate computer. Nodes connect to the network only to share a resource in the
network. A business might use CP! NET to consolidate several different machines
into one system.

CP! NET nodes can use all MP! M or CP! M commands and programs; the
exceptions are minimal. In addition, CP / NET includes the following new
commands:

LOGIN
Logs the user into the master node

LOGOFF
Signs the user off the network

SNDMAIL
Sends mail (text message) to another user

RCVMAIL
Receives mail from another user

BROADCST
Sends mail from master node to all users

MRCVMAIL
Receives mail from all users to the master node

NETWORK
Enables one node to use network devices

LOCAL
Reassigns local devices in place of network ones

ENDLIST
Sends CONTROL-Z to list device

In the time since its introduction, CP / NET has not attracted a large number of
users. This is primarily because many computer manufacturers replace the BIOS in
CP! M with a special "networking" BIOS that fools CP / M into thinking that it has
the network's resources as its own. A number of microcomputer networks work this

CHAPTER 6/ 171

CP/M USER GUIDE

way. The only disadvantage is that the creator of the networking system must
provide a few extra programs to resolve contentions over net~ork resources and to
provide the mail functions CP / NET offers.

OPERATING SYSTEMS SIMILAR TO CP/M

Many software creators have tried to improve CP / M's control over the comput­
ing process. Most ofthese attempts have been based upon CP / M-80 version 1.4.

A number of other manufacturers provides CP / M-80 compatible operating
systems. Some, like ADDS (Applied Digital Data Systems), have written their own
operating system to function like CP / M-80. Others have simply licensed CP / M-80
from Digital Research and added a few features that reflect specific abilities oftheir
equipment.

Figure 6-1 summarizes how the major operating systems that are similar to
CP / M developed. Several other operating systems might fit into this outline. Subtle

FIGURE 6-1. The evolution of CP/ M-like operating systems

172

MP/M, CP/NET, AND CP/M DERIVATIVES

changes in an operating system (CP/M 1.41 versus 1.42, for instance) are not
reflected in this illustration; only major changes are shown.

Cromemco COOS
Cromemco was one of the first microcomputer manufacturers. Its first products

were not microcomputers but components used with IMSAI and Altair microcom­
puters. Rapid growth and careful attention to the order of new product develop­
ment allowed Cromemco to introduce a complete system.

Cromemco's first disk-based system was the Z-2 computer. This system was
housed in a rugged industrial-grade cabinet and included two built-in disk drives.
Later, Cromemco designed the System 3, a computer for the business environment.
Both computer systems were introduced with an operating system developed from
CP / M-80 by a firm named InfoSoft (then named TSA); the operating system was
named Cromemco Disk Operating System (CDOS).

Originally, CDOS was little more than a rewrite of CP I M-80; it took advantage
of the enhanced abilities of the Z80 microprocessor. CDOS, however, continuously
evolved, with more subtle refinements than CP / M-80 has encompassed.
Cromemco has been able to update CDOS because it has full control over the design
of the computer systems that utilize it. CDOS functions only with the Cromemco
disk controller and a Z80 CPU. Digital Research has no control over the micro­
computers that utilize CP / M-80, thus necessitating fewer changes.

COOS Compatibility with CP/M-80
Cromemco includes the following notice regarding CDOS's compatibility with

CP/M-80 with each copy.

NOTE: The Cromemco Disk Operating System (CDOS) is an original product designed
and written in Z80 machine code by Cromemco, Inc. for its own line of microcompu­
ters. However, due to the large number of programs currently available to run under
the CP / M operating system, CDOS was designed to be upwards CP / M-compatible.
Cromemco is licensed by Digital Research, the originator of CP/M, for use of the
CP / M data structures and user interface. This means that most programs written for
CP / M (versions up to and including 1.33) will run without modification under CDOS.
This also means that programs written for CDOS will not generally run under CP / M. oil

CDOS evolved from the first commercially available version of CP / M, version
1.3; it does not include features Digital Research added in later versions. This is only
a minor inconvenience if you use CDOS and try to run programs written for
CP / M-80 version 1.4; the differences between CP / M 1.3 and l.4are not as extreme
as those between 1.4 and 2.2.

A program written using features of CP / M-80 2.2 (actually, any version after 2.0)
will not run on a CDOS-equipped computer. However, most programs written for
CP / M-80 version 2.2 do not necessarily use the added features. A program devel­
oped to run with EBASIC works equally well with CP / M-80 version 1.4 or 2.2 and

*From Cromemco Users Bulletin, Issue #1, December 1978.

CHAPTER 6/ 173

CP I M USER GUIDE

retains compatibility with CDOS. Versions of Microsoft BASIC and CBASIC2,
especially the new compilers for these languages, may not work properly on your
CDOS-equipped computer.

A program written for CP / M-80 will not run correctly on your CDOS systemjust
because you can load and execute it. To guarantee everything works correctly, you
may

. Test the programs thoroughly, or

. Buy a version of CP / M-80 for your Cromemco computer.

The preferred choice is the second one. Remember Cromemco's advice on
CDOS-CP / M-80 compatibility: the CDOS file structure is the same, but some of
the system functions are not. Use a CP / M -80 operating system on your Cromemco
machine to execute a CP / M -80 program. This is more reliable and economical than
modifying CP / M-80 programs to fit CDOS.

CDOS Commands and Utilities

The following CDOS commands operate like CP I M-80 commands:

BYE
Returns to the Cromemco System Monitor

DIR*
Displays a diskette file directory

ERA*
Erases a file or files from a diskette

REN*
Renames a file

SAVE*
Saves a portion of memory in a diskette file

TYPE*
Displays an ASCII file on the console device

Cromemco includes the following utility programs (transient commands):

BATCH*
Submits a list of commands for execution

DUMP*
Displays hexadecimal representations of a disk file's contents

EDIT*
A simple character-oriented editor

INIT
Initializes (formats and prepares) a diskette

WRTSYS*
Copies CDOS from one diskette to another

174

MP/M, CP/NET, AND CP/M DERIVATIVES

XFER*
Transfers files from disk or device to. another disk or device

STAT*
Displays statistics regarding disk and devices

*Command similar to ones recognized by current version of CP! M -80.

These are the minimum commands and utilities supplied. New versions of CD OS
(1.07,2.17, and later) include other utilities and enhance other commands and
utilities. Early versions of the STAT program, for example, display the amount of
disk space left, the number of directory entries, the names of any null files, and an
error message for diskette problems. The latest versions of CDOS include ST AT
programs that display all of the above plus specific information on disk status,
usage, and device assignments. (Detailing the differences between each version of
CDOS and CP / M-80 and explaining how all CDOS commands work would
require another book.)

Some versions of CDOS include several other utility programs. They are

CDOSGEN
Creates a different-sized operating system

DEBUG*
A debugging tool similar to DDT

LINK
A linker program that takes compiled program code from Cromemco's
languages and creates an executable file

SCREEN
A sophisticated editor that works only with Cromemco terminals and may
be used for system development or word processing tasks

MEMTEST
Tests Cromemco RAM and reports errors

COOS Relatives

Cromemco has spawned two derivatives of CDOS. The first is not a unique
operating system but rather an extension of CDOS. This relative is a multiuser
system based on Cromemco Multi-User BASIC. Cromemco also developed
another operating system similar to some popular minicomputer operating systems,
called Cromix.

The Multi-User BASIC system allows seven users to run BASIC programs
independently and simultaneously. Alternatively, one user can run up to seven
independent programs concurrently. Almost complete compatibility exists between
Multi-User BASIC and CDOS-developed programs and disk files.

Cromix operates in a completely different user environment, one derived from
the minicomputer operating system called UNIX. A single-user Cromix system
requires twice as much memory (64K bytes for the operating system plus 64K bytes

CHAPTER 6/ 175

CP/M USER GUIDE

for the user) as does COOS (l6K bytes for the operating system and 48K bytes for
the user). Cromix uses this extra memory to provide

File names up to 24 characters long
Files that are directories of other files. This is known as a tree-structured
directory; if you were to sketch a complex file system, your structure would
look like an upside-down tree

Twelve built-in commands
Over 35 utility programs
Privilege levels, that is, protection of files from unauthorized users

Multiple tasks and multiple users
Date and time support.

Cromix is not directly compatible with COOS; Cromix maintains information
on the disk in a different fashion (a 24-character file name would not fit into a
CP I M-80 directory). Cromemco provides utility programs to convert COOS files
to Cromix files and vice versa. Thus, programs developed with COOS can still be
used. Consider Cromix and CP I M-80 as two totally different operating systems
with no compatibility. Running a CP I M-80 program with Cromix requires a
multistep conversion process, with no guarantee of success. Converting Cromix
files and programs back to CP I M-80-compatible ones is theoretically possible, but
so fraught with complications that a non-programmer should not bother to attempt
it.

For a Cromemco user, Cromix and Multi-User BASIC are worth considering
because each has specific abilities that transcend the abilities of both COOS and
CP I M-80. For a CP j M-80 user, neither offers any improvements that can easily be
transferred to the CP I M-80 environment.

CP/M-80 Work-allkes

A number of CP I M-80 work-alike operating systems are now in existence.
Generally each has its advantages and disadvantages when compared to the stand­
ard CP I M-80 operating system. The most popular ofthese work-alikes are

II OS. Formerly known as TSAj OS, II OS is written by the same people who
wrote COOS. II OS maintains compatibility with COOS and CP j M-80, and this is
its most obvious advantage. Recently, a multiuser version of Ij OS has evolved
named MUL TIj OS; users of MP I M-80 might be interested in investigating the
features of MUL TIjOS.

TP/ M. TP j M is essentially a Z80 version of CP I M-80; it will not run on
8080- or 8085-based computers. The advantage over CP j M-80 usually cited in
conjunction with TP j M is that the use of Z80 instructions in the operating system
improves the overall speed of the operating system noticeably. Such claims, of
course, are equipment specific, and you mayor may not detect any noticeable
differences in speed.

176

MP/M, CP/NET, AND CP/M DERIVATIVES

SDOS. SD Systems made some minor and cosmetic changes to CP; M-80 to
create SDOS. The current version of SDOS, however, is a derivative of CP / M-80
version 1.4 and, therefore, does not feature some of the improvements Digital
Research made to CP / M-80 when version 2.2 was introduced.

TurboDOS. A relative newcomer, TurboDOS introduces a number of state-
of -the-art software concepts to the CP / M-80 environment, with the result being a
substantially faster operating system when disk-oriented tasks are performed.
TurboDOS actually attempts to anticipate which sections of the diskette the user
will reference and to make sure that they are available when the user calls for them.
In addition, some of the more aggravating aspects of CP; M-80, most notably the
fact that you cannot exchange diskettes without telling CP! M-80, are eradicated by
use of TurboDOS. A multiuser version of TurboDOS is also now available.

CP/ M-80 for Zenith/Heath, Polymorphic, and Radio Shack Computers.
Owners of early Zenith; Heath, any Polymorphic, or Radio Shack Model I or III
computers need to be careful when purchasing CP; M -80 for their systems. While
CP / M-80 may operate in the same manner as described in this book, its memory
locations have been moved to reflect design differences in these computers. The
relocation of CP; M-80 and its reference points in memory make it so that CP / M-80
programs that are normally interchangeable will have to be modified to be used on
your machine. Make sure a program version is suitable for your machine if you have
any of the following computers and use CP! M-80:

Poly 88

Polymorphic 8813
Radio Shack TRS-80 Model I

Radio Shack TRS-80 Model III

Heathkit H8
Heathkit H89
Zenith Z89

In each of the above cases, it is possible to modify the equipment to run a standard
CP / M-80 operating system, but such modifications should be made by a competent
computer technician.

AlternatIves for CP /M-86
With the introduction of the IBM Personal Computer in 1981, the CP/M

work-alike competition extended itself to CP / M-86.
The initial operating system provided with the IBM Personal Computer was one

called, alternatively, IBM DOS or Microsoft DOS. In fact, this operating system is
similar to one introduced earlier as 86-DOS, a product of Seattle Computer
Products.

86-DOS was written before CP! M-86 was available and, possibly because of this,
incorporates an interesting mixture of the features of CP / M -80 and CP / M -86. The
built-in commands for 86-DOS are listed below.

CHAPTER 6/ 177

86-DOS
DIR
RENAME
ERASE
COPY
TYPE
CLEAR

CP/M-86
DIR
REN
ERA
(same features of PIP)
TYPE
(same function as
FORMAT program)

In addition, the original 86-00S operating system was provided with the following
transient commands:

ROCPM
Copies files from CPt' M-80 to 86-00S format

MKROCPM
Creates ROCPM for user's version of CP; M-80

HEX2BIN
Same as CP! M-80 LOAO.COM

CHKOSK
Scans diskette for bad sections

SYS
Similar to CP/M-80 SYSGEN.COM

EDLIN
Similar to CP! M-80 EO.COM

ASM
Similar to CP / M-86 ASM-86

TRANS
Translator of Z80 to 8086 source code

DEBUG
Similar to CPiM-86 00T-86

In addition, the command interpreter of 86-00S (the equivalent to CP / M-80's
CCP) regards any file with the type "BAT" as a batch submit file and processes the
commands in that file in the order in which they are read.

Microsoft purchased the rights and adapted 86-00S to the IBM Personal
Computer. The documentation provided with the operating system is excellent,
and, together with this book, the user should be able to quickly learn to operate
86-00S, IBMOOS, Microsoft ~OS, or anything else one wants to call this operat­
ing system. The roots to CP / M-80 are clearly evident in the choice offile name size
and file naming conventions, the use of control characters to edit the command line,
the prompt displayed on the screen, and many other "visible" aspects of 86-00S.

Where 86-00S differs, however, is in the inner reaches of the operating system.
The BOOS calls are different for either CP / M-80 or CP / M-86, although they are
clearly intended to be similar. What is especially important, however, is that the

178

MP!M, CP/NET, AND CP/M DERIVATIVES

layout of information on the diskette is different between 86-DOS and both
versions of CP! M. The critical difference is simple: the arrangement of the directory
and system tracks are different. For the same disk format, here is the way 86-DOS
and CP! M utilize the space.

Track 0
Track 1
Track 2
Tracks 3-77

86-D05
DIRECTORY
SYSTEM
SYSTEM
DATA

CP/M-86
SYSTEM
SYSTEM
DIRECTORY
DATA

The very earliest versions of 86-DOS also used a 16-byte directory entry format,
although this has now been changed to the 32 bytes used by CP! M. 86-DOS,
however, does not require that the user inform the operating system when a diskette
is changed.

In short, 86-DOS is an alternative to CP! M-86. Microsoft and Digital Research,
once close partners in software development, have taken on an adversarial relation­
ship over which of the two operating systems deserves to be the "standard" for
8086-based systems. Unfortunately, it looks like neither may win, as Microsoft has
already announced its intention of creating a superset of 86-DOS that is more like
Xenix, their UNIX-derivative operating system, while Digital Research is working
on what it calls "concurrent CP! M-86." Only CP! M-86 is directly compatible with
the format of CP! M-80 diskettes. However, for users moving from Z80 to 8086-
based systems, this may prove to be the deciding factor, because a diskette must
either be converted to be used with 86-DOS, or an extra program that translates the
diskette format must first be loaded into the computer.

CHAPTER 6/ 179

CHAPTER

7 Technical Aspects
Of CP/M

In the previous chapter we presented information you must know in order to use
CP / M. This chapter presents information the assembly language programmer
should know in order to program effectively in the CP / M environment. If you are
interested in learning about the internal structure of CP / M, then read this chapter.
Many readers will find the material presented here too technical for their purposes.

THE STRUCTURE OF CP/M

When you cold start CP / M in your computer, CP / M-80 normally loads into the
topmost free memory area. CP / M-80 itself takes approximately 6K bytes of
memory space, but the machine-dependent portion may take anywhere from
another lK to 8K of memory. Thus, in a normal CP/M-80 system, the top 7K to
14K of memory are occupied by the instructions we have been -referring to as
CP / M-80 (CP / M-86 will be discussed later in this chapter).

In addition to the chunk of memory CP / M-80 occupies at the top of memory, the
first 256 bytes of memory (called the "base page") in your computer system are
reserved for use by CP / M-80. Your programs and data may occupy the area in
memory between 0100 hex and the bottom of CP / M-80. A 32K CP / M-80 system
does not contain 32K of memory for your programs and data, but instead allows
about 24K of memory to be used as you please.

181

CP/M-80

Transient
Program

Area

CP/M USER GUIDE

,...-____ -, zzFF (generally top of RAM)

BIOS

xxOO+I600

BOOS

xxOO+0800

CCP

xxOO

TPA

0100

Base Page

0000

NOTE: All addresses are in hexadecimal. The "xx" and "zz" are dummy arguments to represent
addresses that change depending upon memory size.

When CP / M-80 is first started, the base page is filled in with some special
information. This information is covered in detail later in the chapter, but for now
we will summarize the information that is stored in the base page as follows:

Memory
Location

0000-0002
0003
0004
0005-0007
0008-0037
oo38-003A
003B-003F
0040-004F
0050
0051
0053
0054
0056
oo57-005B
005C-006B
006C-007F
0080-00FF

Function
Jump to BIOS warm start routine
IOBYTE
Current drive number. current user number
Jump to BOOS entry vector
Reserved for machine interrupts
RST7, used by DDT
Reserved for machine interrupts
Reserved for "scratch" use by BIOS
Drive command was loaded from CP/M 3 or MP/M 2
Address of password for first default FCB (CP/M 3, MP / M 2)
Length of password for first FCB (CP / M 3, MP / M 2)
Address of password for second default FCB (CP / M 3, MP / MP / M 2)
Length of password for second FCB (CP / M 3, M P / M 2)
Reserved
First default file control block (FCB) (CP / M 3, MP / M 2)
Second default file control block (FCB) (CP / M 3, MP / M 2)
Default disk buffer/command buffer

NOTE: CP/ M 1.4, CP/ M 2.2, and MP/ M I all use only one file control block beginning at 005C
hex, with the area from 007D-007F hex reserved for the random record position in CP / M 2.2 and
M P I M I. Digital Research is in the process of changing the base page slightly to add special
functions like file protection and multiuser capabilities.

Now that you know the basic overall structure of CP / M-80, let's take a look at
the pieces one by one.

CCP-The Console Command Processor

The CCP module interprets the CP / M-80 commands you type. This portion of
CP / M is generally only relevant when you see an A> (or the prompt for another

182

TECHNICAL ASPECTS OF CP/M

drive) on your terminal. The CCP recognizes only a few commands and a handful of
control characters (see Chapter 2).

The command you type when you see the A> is first stored at location 0080-00FF
hex. If the CCP doesn't recognize the command, it checks the disk directory for a
file with the type "COM"whose name matches the first eight characters (or up to the
first space in the command line). The "matched" file is loaded into memory
beginning at 0100 hex, and execution is passed to 0100 hex when the file is
completely loaded. Digital Research calls such a file a "transient command."

The command buffer extends from 0080 hex to 0 1 00 hex, meaning that the
longest command CP / M-80 recognizes is 128 characters in length.

Since the default disk buffer is not used to load the program, the command that
the CCP executed still begins at 0080 hex and may be used by the program for
subsequent processing. This is how long command lines, such as MBASIC
FILEN AME / F:3, are executed. In this example, the CCP would first load the
contents of MBASIC.COM into memory, then pass execution to 0100 hex. The
MBASIC program then looks at the command line beginning at 0080 hex, detects
that additional information was typed, and attempts to continue executing your original
command.

There is another trick that the layout of the CCP allows advanced programmers
to use: a program may be automatically started. Some special locations within the
CCP must first be learned.

CCP start + 07 hex
CCP start + 08 hex

CCP start + 87 hex
CCP start + 88 hex
CCP start + 89 hex

Length of the command
First byte of command

Last byte that can be used for command
Low-order byte of pointer
High-order byte of pointer

Simply place your command in the area beginning at the memory location of the
CCP plus 8; the command may be up to 80 hex (128 hex) characters in length. The
command string must end with a 00 (null) character for the automatic start to work
properly.

The two "pointer" bytes must contain the location of the first byte of the
command (low-order byte first, high-order second, as is normal in 8080 program­
ing conventions). The CCP uses this pointer to keep track of how much of the
command it has processed. If you do not reset the pointer, the CCP may assume it
has already processed part of your command.

Here is a short assembly language program that uses the autostart concept. You
can append this program to another assembly language program in order to
automatically transfer execution from one program to another .

. --.
; AUT05TRT. A5M ve rs ion 1.0 10/12/81

; COP'd r i gh t 1981 b'd Thom Hogan

CHAPTER 7/ 183

CP I M USER GUIDE

May be used for non-comrner'cial purposes wi thout

permission •

. --,

BOOS EQU

ORG

START: LHLD

MVI

MOV

SUI

MOV

SHLD

0005H

@10@H

@@@lH

L,@@H

A,H

16H

H,A

CCP

;cp/m BOOS entry point

;get addr-ess of E:IOS + 3

; in the zero 10l,)-Clt-der byte of H6

;get it wher-e ".Ie :;an use it

;subtract Dffset to CCP

;put it back in HL

;salJe CCP 10catilJn fClt- later' use

DO ANY EXTRA PROCESSING YOU ~nSH IN HERE

MIDDLE: LXI D,FILENAME ;pDint to command

LXI B,l@ ;set to length of command + 1

LHLD CCP ;get CCP location

MVI L,07 ;location of lenl;]th is after CCP

CALL MOVE ; move command s t r- i ng

LHLD CCP ;get back CCP location

MVI L,88H ; loca tion 0 f 1 sb po inter

MVI A,@8H ;get defaul t Isb start

MOV M,A ;put it in place

INX H ; loca tion of msb pOinter

MOV A,H ;get defaul t msb start

MOV M,A ;put it in place

LHLD CCP ;get back CCP location

PCHL ;and go to it!

MOVE: LDAX D ; ge t by te to mOIJE!

MOV M,A ; mDve it

INX H ;incr-eITlent destination

INX D ; increment source

DCX B ; dec r-ernen t coun t

MOV A,B ;get counter intJ A

ORA C ; check if dDne

JI,<Z MOVE ; ••• not dDne

RET ; ••• done

184

TECHNICAL ASPECTS OF CP/M

CCP: [IS 2

FILENAME: DB 00 'XXXXXXXXX' 00
/' \'-----

Command length Command Trailing zeros at end
END

There are more elegant methods of programming the above action (especially if
you have a Z80-based computer), but this process we show here is not masked by
programming tricks. You could even follow the above example, but recode it into
BASIC. It would be slow and cumbersome, but if done properly would still perform
the same function: directly executing any valid CP / M-80 command at the end of
any program.

BDOS-The Basic Disk
Operating System

All disk drive activity and most console activity passes through this section of
CP / M-80. BOOS is not accessible through direct commands at the console
however. Instead, the CCP or a transient program places the number of the desired
function in the microprocessor's internal C register and then executes a CALL
instruction to location 0005 hex.

Some BOOS functions also require that extra information be placed in other
internal registers. If you wanted to make a particular character appear on the
console display, you would put the character to be displayed in internal register E.

Other BDOS functions return information to the calling program (or portion of
CP / M -80). If you ask BOOS to get a character from the console, the character will
be returned to your program in the A register.

Let's briefly examine each of the BOOS functions and what they do. Before doing
so, however, some information about the notation we will be using is necessary.

The 8080 CPU, for which CP / M was originally written, provides seven 8-bit
general purpose internal storage registers and eight status bits. Six of these registers
are often paired into three 16-bit registers. The 8080 registers and their normal usage
by assembly language programmers in CP / M are as follows:

Register Usage
A (Accumulator) Eight-bit character, input/ output, or

B
C

D
E

H
L

manipUlated data register

When used separately, 8-bit registers;
when paired, a 16-bit address
register

When used separately, 8-bit registers;
when paired, a 16-bit address
register

When used separately, 8-bit registers;
when paired, a 16-bit memory address register

CHAPTER 7/ 185

CP/M USER GUlDE

Status Eight bits of flags to i.ndicate carry,
parity, zero, and SOl on.

Digital Research uses the registers in a particular way for all BDOS functions in
CP / M-80. To be specific, the usage breaks down as follows:

A (Accumulator) Any 8-bit value passed to or from BDOS

B Not used for BDOS c:alls

C

DE

HL

BDOS function number to use

16-bit memory location of variable

16-bit value passed to or from BDOS
and L; copies A register contents.

To understand the function definitions shown in Tabile 7-1, you will also need to
know about the file control block (FCB) and the IOBYTE. Detailed descriptions of
these two concepts appear later in this chapter. .

To use any BDOS function, a program loads the functiion number into register C,
loads other registers as required, and calls BDOS via memory location 0005 hex.
BDOS performs the function and returns control to the calling program.

We will demonstrate this by displaying a string on the console. As Table 7-1
shows, the print string function number is 09 hex. The DE register pair must contain
the address of the string, and the string must terminate with a "$" in order for the
function to work properly. A string is displayed as follows:

1. Your program must place the string somewhere in memory, terminated by
a "$."

2. Place a 09 hex in the C register.
3. Your program then places the starting address of the string in register pair

DE.

4. Your program then CALLs BDOS via the BDOS entry vector at 0005 hex.
5. BDOS performs the "print string" function and returns execution to your

program.

One way to perform these steps in assembly language: is shown below .

. ---,
; PRHIT A STRII\IG EXAMPLE;

; Uses BODS entry ,"ector at 1010105 hex

. ---,

BOOS

STRII\IG

DOIT:

186

EQU
EQU

ORG

MVI

OQlQl5H
09H

QllQlOH

C,STRING

; the BDO~, en t 1"'01 \IElC to r

; the PRINT '3TRHIG function ~

;start at the first TPA addl-ess

; load the function numbel"

TECHNICAL ASPECTS OF CP / M

TABLE 7-1. BDOS Function Definitions for CP/M-80 Version 2.2

Function Entry Exit
Parameter(s) Parameter(s) Explanation

No. Name

00 SYSTEM None None Restarts CP I M-80 by returning control to the
RESET the CCP after reinitializing the disk subsystem.

01 CONSOLE None A = ASCII Returns the next character typed to the
INPUT character character calling program.

Any non-printable character is echoed to the
screen (like BACKSPACE, TAB, or CARRIAGE

RETURN). Execution does not return to the
calling program until a character has been
typed. Standard CCP control characters are
recognized and their actions performed
(CONTROL.P begins or ends printer echoing
and so on).

02 CONSOLE E = ASCII None Displays the character in the E register on
OUTPUT character the console device. Standard CCP control

characters are recognized and their actions
performed (CONTROL-P begins or ends printer
echoing and so on.).

03 READER None A = ASCII Returns the next character received from the
INPUT character reader device to the calling program.

Execution does not return to the calling
program until a character is received.

04 PUNCH E = ASCII None Transmits the character in the E register to
OUTPUT character the punch device.

05 LIST E = ASCII None Transmits the character in the E register to
OUTPUT character the list device.

06 DIRECT E = FF hex A = ASCII If register E contains an FF hex, the console
CONSOLE device is interrogated to see if a character is
IN ready. If no character is ready, a 00 is
DIRECT E = ASCII None returned to the calling program in register A;
CONSOLE character otherwise the character detected is returned
OUT in register A. If register E contains any char-

acter other than an FF hex, that character is
passed to the console display. All CCP con-
trol characters are ignored. The user must
protect the program against nonsensical
characters being sent from or received by the
console device.

07 GET None A= Places a copy of the byte stored at location
IOBYTE IOBYTE 0003 hex in the A register before returning

control to the calling program.

08 SET E = IOBYTE None Places a copy of the value in register E into
IOBYTE the memory location of 0003 hex before

returning control to the calling program.

NOTE: CP! M-80 always copies the contents of the H register in the A register if nothing is to be
specifically returned in the A register. Some manufacturers, specifically Microsoft, make use of
such information to reduce movement of information between the H and A registers.

CHAPTER 7/ 187

CP/M USER GUIDE

TABLE 7-1. BDOS Function Definitions for CP / M-80 Version 2.2 (continued)

Function Entry Exit
Explanation

No. Name Parameter(s) Parameter(s)

09 PRINT DE = String None Sends the string of characters stored
STRING address beginning at the address stored in the DE

register pair to the console device. All
characters in subsequent addresses are sent
until BOOS encounters a memory location
which contains a 24 hex (an ASCII "S''). The
CCP control characters are checked for and
performed if encountered.

OA READ DE = Buffer Data in This function performs essentially the same
CONSOLE address buffer as the CCP would in that it takes the
BUFFER characters the user types and stores them

into the buffer that begins at the address
stored in the DE register pair. The first byte
in the buffer pointed to by the DE pair must
be the maximum length of the command;
BOOS will place the number of characters
encountered in the second byte, with the
typed command beginning with the third
byte pointed to by the DE pair. All standard
CCP editing characters are recognized during
the command entry.

OB GET None A = Status BOOS checks to the status of the console
CONSOLE device and returns a 00 hex if no character is
STATUS ready, FF hex if a character has been typed.

OC GET None HL= If the byte returned in the H register is 00
VERSION Version hex then CP/!vI is present, if 01, then MP/ M
NUMBER is present. The byte returned in the L register

is 00 if the ver:;ion is previous to CP/M 2.0,
20 hex if the vl~rsion is 2.0, 21 hex if 2.1 and
so on.

00 RESET None U sed to tell CP / M to reset the disk subsystem.
DISK Should be used any time diskettes are
SYSTEM changed.

OE SELECT E = Disk None Selects the disk to be used for subsequent
DISK number disk operations. A 00 hex in the E register

indicates disk A, a 0 I hex indicates
disk B, etc.

NOTE: CP/M -80 always copies the contents of the H register in the A register if nothing is to be
specifically returned in the A register. Some manufacturers, specifically Microsoft, make use of
such information to reduce movement of information between tht: H and A registers.

188

TECHNICAL ASPECTS OF CP / M

TABLE 7-1. BDOS Function Definitions for CP/ M-80 Version 2.2 (continued)

Function Entry Exit

No. Name Parameter(s) Parameter(s) Explanation

OF OPEN DE = FCB A ='Found'j Used to activate a file on the current disk
FILE address not found drive and current user area. BDOS scans the

code first 14 bytes of the designated FCB block
and attempts to find a match to the filename
in the block. A 3F hex (ASCII "?") can be
used in any of the filename positions to indi-
cate a "don't care" character.

If a match is found, the relevant informa-
tion about that file is filled into the rest of
the FCB by CP! M -80. A value of 00 hex to
03 in register A upon return indicates the
open operation was successful, while an FF
hex indicates that the file could not be found.
If question marks are used to identify a file,
the first matching entry is used.

10 CLOSE DE = FCB A ='Found'j Performs the opposite of the open file
FILE address not found function. A close file function must be

code performed upon completion of use of any file
which has had information written
into it.

II SEARCH DE= FCB A= 'Found'j Performs the same as the open file function
FOR address not found with the difference being that the current
FIRST code disk buffer is filled with the 12S-byte record

which is the directory entry of the matched
file.

12 SEARCH None A= 'Found'j Performs the same as search for first function
FOR not found except that the search continues on from
NEXT code the last matched entry.

13 DELETE DE = FCB A='Found'j Changes a flag on the directory entry for the
FILE address not found file pointed to by the FCB so that CP j M-SO

code no longer recognizes it as a valid file. No
information is actually erased when this
function is performed, although subsequent
writes to diskette may use some of the area
previously associated with the "deleted" file.

14 READ DE = FCB A = Error If a file has been activated for use by an open
SEQUEN- address code file or make file function, the read sequential
TIAL function reads the next 12S-byte block into

memory at the current DMA address. The
value of 00 hex is returned in the A register if
the read was successful, while any non-zero
value in the A register indicates failure.

15 WRITE DE = FCB A = Error If a file has been activated for use by an
SEQUEN- address code open file or make file function, the write
TIAL sequential function writes the 12S-byte block

of memory at the current DMA address to
the next 128-bvte record of the named file.

NOTE: CP! M-SO always copies the contents of the H register in the A register if nothing is to be
specifically returned in the A register. Some manufacturers, specifically Microsoft, make use of
such information to reduce movement of information between the H and A registers.

CHAPTER 7/ 189

CP I M USER GUIDE

TABLE 7-1. BDOS Function Definitions for CP I M-80 Version 2.2 (continued)

Function Entry Exit
Explanation

No. Name Parameter(s) Parameter(s)

16 MAKE DE= FCB A= DIR Creates a new file with the information
FILE address code (name) indicated by the FCB. CP/M-80 does

not check to see if the file indicated already
exists, so you must first check to see if the
file exists (or delete it). A newly created file
need not be opened, as the make file function
also performs the necessary opening
operations.

17 RENAME DE = FCB A= DIR Changes the lIame of the file referenced by
FILE address code the first 16 bytes of the FCB to the name in

the second 16 bytes.

18 RETURN None HL = Disk The bits in the HL register are used to
LOGIN login specify which disk drives are active. The first
VECTOR bit in the L register refers to drive A, the last

bit in the H register corresponds to drive P,
the highest possible drive. A bit value of I
indicates active status, a zero denotes an
inactive drive.

19 RETURN None A = Current The numbers 0 through 15 are used to
CURRENT disk represent the current default disk drive upon
DISK return from this function.

IA SETDMA DE= DMA None Used to select the I 28-byte memory block to
ADDRESS be used for buffering all disk transfers. Upon

system or disk reset, cold or warm start, the
buffer is reset to 0080 hex on a normal
CP I M-80 system.

IB GET 'None HL= Alloca- Returns the starting address of the allocation
ALLOC tion address vector, a tabl.: which is maintained in
ADDRESS memory for each on-line disk drive that indi-

cates the portions of the diskette which
are in use.

IC WRITE None None Provides temporary write-protection for the
PROTECT diskette in the: current default disk drive.
DISK

1D GET RIO None HL = Disk Returns a 16-bit value in the HL registers
VECTOR RIO which indicate which drives on the system

are write-protected. The drives are assigned
as in the LOGIN VECTOR, with a value of I
indicating wr·ite-protection.

IE SET FILE DE = FCB A= DIR Sets the file attributes that indicate system!
ATTRI- address code directory and Rj 0 or RI W file status for the
BUTES file pointed to by the FCB address.

NOTE: CP I M-80 always copies the contents of the H register in the A register if nothing is to be
specifically returned in the A register. Some manufacturers, specifically Microsoft, make use of
such information to reduce movement of information between the H and A registers.

190

TECHNICAL ASPECTS OF CP/M

TABLE 7-1. BDOS Function Definitions for CP / M-80 Version 2.2 (continued)

Function Entry Exit
Parameter(s) Parameter(s) Explanation

No. Name

IF GET DISK None HL= DPB Retrieves the disk parameter block for the
PARMS address current active disk drive. These parameters

can be used to determine space available on a
diskette or to change the characteristics of
the disk drive under user control.

20 GET USER E= FF A = Current If the E register contains an FF hex, the
CODE User or current user number is returned in the A reg-
SET USER E = User None ister. To reset the user number, the approp-
CODE code riate user code is placed in the E register.

While the USER command allows user
numbers in the range 0-15, this BOOS func-
tion can set user numbers in the range
of 0-31.

21 READ DE= FCB A = Error Reads the random record number contained
RANDOM address code in the 33rd, 34th, and 35th byte (a 24-bit

address) of the BCB pointed to.

22 WRITE DE = FCB A = Error Writes information from the current DMA
RANDOM address code address to the random record pointed to by

the number contained in the 33rd, 34th, and
35th byte of the indicated FCB.

23 !cOMPUTE DE= FCB RRF set Returns the current size of the random
FILE SIZE address record file in the three bytes that constitute

the random record field of the FCB. If the
third byte contains a I, then the file contains
the maximum record count of 65536, other-
wise the value in the first two bytes is a 16-bit
value that represents the file size.

24 SET DE = FCB RRF set Returns the next random record (fills in the
RANDOM address random record field of the FCB) after the
RECORD last sequentially read record. Digital

Research suggests that this function is most
appropriate to file indexing.

25 RESET DE = Reset A = Error Forces the specified drives to be reset to the
DRIVE drive bits code drive bits initial non-logged status.

26 WRITE DE = FCB A = Error Writes a record of all zeros to diskette before
RANDOM address code a record is written; useful for identifying
(ZERO) unused random records (an unused record

would contain zeros instead of data).

NOTE: CP M-80 always copies the contents of the H register in the A register if nothing is to be
specifically returned in the A register. Some manufacturers, specifically Microsoft, make use of
such information to reduce movement of information between the H and A registers.

CHAPTER 7/ 191

LXI

CALL

GETOUT: JMP

LABEL: DB

END

D,LABEL

BOOS

0000H

CP/M USER GUIDE

;load the string pOinter in

;rel;J. pair DE
;do it!

; restart CP/M (not part of

; the example, but necessary

;to make this a "'runnable"

;example),

'DOCTOR, MY PRtlBLEM IS $'

The example just presented is a complete CP / M-80 program, and should run if
you type it in and assemble it as explained in Chapter 4.

Most experienced assembly language programmers use the "equate" pseudo­
operation EQU to assign names to the values for each function and for the location
of BDOS, as in the previous example. This practice makes the program much easier
to understand. A novice programmer might create the same assembly language
program as follows:

ORG 100H
MVI C,9
LXI 0,$+10
CALL 0
DB 'DOCTOR, '
DB 'MY PROBLEM IS'
DB '$'
E~ID

This does the job, but not very well.
It is wise to begin building a set of standard routines, for your assembly language

programming using the BDOS functions when possible. An experienced pro­
grammer might code the above example as follows:

.. ---,
; PROGRAM TO PRINT OUT A STRING:
.. --,

WM5TRT EQU 0000H ;CP/M I,JarlT! stat'!; address

BD05 EQU 0005H ;B005 entrl,J point

P5TR EQU 09H ;print string function number

ORG 0100H ;begin program here

BEGIN: LXI D,LABEL ; load the strin~l address

192

TECHNICAL ASPECTS OF CP / M

PRINT:

CALL

JMP

MVI

JMP

PRINT

WRMSTRT

C,PSTR

BOOS

;execute the print subroutine

; restart CP/M

; load print string function

; no need to CALL BDOS he re

; RET performed b'd BOOS

LABEL: DB 'DOCTOR, MY PROBLEM IS$'

END

If the program is to print strings several times, an experienced programmer might
eliminate some repeated steps. It helps to separate your own programming from
programming that should be standardized (the BOOS calls). Note that the PRINT
routine "jumps" to BOOS instead of calling it. This saves a return instruction (one
byte) and some execution time, because the BOOS function executes a RET
instruction anyway. By calling the PRINT routine and performing a JMP to
BOOS, one instruction is saved each time the routine executes.

B105-The Basic Input/Output System

A great deal of confusion about CP / M-80 originates with BIOS. Many people
purchase CP / M-80 and discover that it does not work properly. This is due to an
incorrect BIOS, or one which was not designed for their particular machine.
Configuring a CP / M-80 BIOS is straightfoward for software developers, but it can
be frustrating (and impractical) for the computer novice. The BIOS provides a
number oflow-Ievel functions that CP / M programs (and BOOS) use. The BIOS is
provided by the manufacturer, dealer, or software vendor from whom you pur­
chased CP/M -80, not by Oigital Research.

Most CP / M-80 suppliers provide a sample BIOS with the original diskette.
Oigital Research provides both a skeletal BIOS Gust the bones and a number of
comments; the routines do not include specific instructions) and a completed one
for the system they use. Many microcomputer manufacturers remove these two
sample BlOSs and include their own. Some supply only the BIOS routines that may
need changing (the printer, punch, and reader routines).

If you do not know assembly language, or if you are a newcomer to microcompu­
ters, do not try to write a BIOS section/or CP/ M-80!

The BIOS performs crucial, hardware-dependent functions for CP / M-80.1t tells
CP / M-80 how to access the various devices that constitute your computer system
(for example, how to make the head of the disk drive move from place to place). Any
errors in the BIOS section of CP / M-80 can cause your computer to function
improperly, or not at all.

BIOS for CP/M-80 version 2.2 begins at the memory location 1600 hex bytes
after the location of the CCP and begins with a series of jump instructions called,
appropriately enough, the "jump table." These instructions must be arranged in the

CHAPTER 7 / 193

CP / M USER GUIDE

proper order, and all must be present for the BIOS to work properly. The first
section of a BIOS must therefore be as follows:

· --,
; BIOS FOR TVPICAL CP/M-80 COMPUTER

· --·
The following JMPs must be left in the order in which

theld are presented.

The following ORG statement applies to CP/M-80 vel"sion 2.2

ORe; CCP+1600H ;start of BIOS

JMP COLDS TART ;restart CP/M from sCI-atch

JMP WARMSTART ; res ta r' t CP/M

JMP CONSTAT US ;console devicEl status

JMP CONINPUT ;console devic€; input

JMP CONOUTPUT ;console del)ic€l output

JMP LISTOUT ; 1 ist device output

J~IP PUNCH ; punch del) ice ou tpu t

JMP READER ; reader del)ice input

JMP HOME ; r'eset disk head to home

JMP SETDISD ;select disk tCI use

JMP 5ETTRACI< ;select track to use

JMP SETSECTOR ;'3elect sector- to use

JMP SETDMA ; se 1 ec t DMA ado I-ess to use

JMP READDISI< ;read curr'ent s;ectol-

JMP ~IRITEDISI< ;wri te current sectol-

The follOiding tl"IO jumps do not apply to CP/M-80 version

1.4. but are necessary for I)el"sion 2.2.

JMP LISTSTATUS ;list deVice status

JMP SECTORTRAN ;sector translation

; End of standard CP/M-80 jump table. but you may extend

; the table to add other functions, if you desire.

Each of the "jumps"in the above example points to a particular BIOS routine. An
example of a BIOS routine for output to a printer (which the BIOS finds with JMP
LISTOUT) follows:

· --· ; LIST OUTPUT ROUTINE

· --·
194

TECHNICAL ASPECTS OF CP/M

; This routine provides output to the Vector' 13raphic

; Bi ts tr-eame r II I/O boa r-d addressed at pm-t 2.

; All CP/M-80 list output will be directed to this

; routine.

; Assurnptions:

LISTST:

LISTDAT:

LISTOUT:

·Bitstrearner is initialized by cold star-to

·Character to be printed is in C.

·Bitstrearner is addressed at port 2.

EOU 03H ;status port

EOU 02H ;data port

IN LISTST ;get cur-Tent status

ANI 1 ; check if ready

JNZ LISTOUT ;not ready

; Printer is ready if routine gets this far_ Print it!

LISTON:

MOV

OUT

RET

A,C

LISTOAT

;CP/M-80 has char in C

;send it

;done, return

Each routine in your BIOS concludes with a RET (return) instruction. Our
sample routine consists of only six instructions; the comments explain the operation
of the routine.

Like the BDOS routines, there are certain assumptions made by CP / M -80 as to
the entry and exit values of each routine. Refer to Table 7-2 for a full listing of the
BIOS routines needed, including entry and exit parameters.

How to Modify BIOS

To create a new or modified BIOS, perform the following steps:

1. On a freshly initialized/formatted diskette, copy the sample BIOS, an editor
program, ASM.COM, DDT.COM, SYSGEN.COM, and MOVCPM.COM. Use
SYSGEN.COM to copy an unmodified CP / M-80 system onto the diskette. Use a
newly formatted diskette for creating your new BIOS so that you do not acciden­
tally destroy a working system.

2. Print a copy of the sample BIOS if you can (you may be changing the BIOS to
include routines for a printer). Study the copy carefully. Become familiar with its

CHAPTER 7/ 195

CP/M USER GUIDE

TABLE 7-2. CP / M-80 BIOS Routine Definitions

Label in Entry Exit
Explanation Jump Table Parameter(s) Parameter(s)

COLDSTART None C=O Your routine should perform all the
necessary start-up operations, including
initializing all the values in the base page.
Before exiting, the C register must be set
to zero.

WARMSTART None C = Drive Your routine should perform all the
necessary restart operations but does not
need to reinitialize the base page. The C
register, on exit, should contain the cur-
rent drive number.

CONSOLE None A = Status
STATUS
(CONST A TUS)

CONSOLE* None A = Character
INPUT

READER* None A = Character Your routine should wait for a character
INPUT to be entered at the appropriate device

and then return the character in the
A regist,er.

CONSOLE* C = Character None
OUTPUT

LlST* C = Character None
OUTPUT

PUNCH· C = Character None Your routine should take the character in
OUTPUT the C register and display it on the

appropriate device.

HOME DISK None None The head of the disk drive should be
returned to the home position (track 0,
sector 0).

SELECT DISK C = Drive HL= DHA Your routine should select the drive indi-
cated by the number in the C register.
The HL register on return should contain
the address of the disk parameter header.

SET TRACK C = Track None The trac:k indicated by the C register
value should be set as the next track to be
accessed by the disk drive.

SET SECTOR C = Sector None The sector indicated by the C register
value should be set as the next track to be
accessed by the disk drive.

SETDMA BC= DMA None The DMA address indicated by the BC
ADDRESS address register pair should be set as the address

to use for all information transfers from
memory to diskette and vice versa.

* All console and device I/O should be done by first looking at the IOBYTE (0003 hex) to determine
which device is selected.

196

TECHNICAL ASPECTS OF CP / M

TABLE 7-2. CP/M-80 BIOS Routine Definitions (continued)

Label in Entry Exit
Jump Table Parameter(s) Parameter(s) Explanation

READ DISK None A = Status Read the current track and sector and
transfer the data to the D MA address
already set. A 0 I hex should be returned
if there was an error during transfer.

WRITE DISK None A == Status Write the current track and sector from
the data at the DMA address.

SECTOR BC == Logical HL == Physical
sector sector

TRANSLA nON DE == Sector A special routine used for systems which
map address maintain data in other than 128-byte

blocks. The logical sector on entry is
changed to reflect the appropriate actual
sector on the diskette.

LIST STATUS None A == Status Your routine should interrogate the
appropriate device to see if a character is
ready and return a 00 hex in the A regis·
ter if not ready, or a FF hex if ready.

*All console and device I/O should be done by first looking at the IOBYTE (0003 hex) to
determine which device is selected.

structure, the individual routines required, and the comments included m the
sample.

3. Edit the sample BIOS with ED. COM or some other text editor. Begin by
inserting comments indicating the date, your name, the reason you are changing the
BIOS, and any other information that will help you and others trace problems that
may occur later.

4. Minor additions or changes should not prove too difficult, assuming you
understand assembly language and the device you wish to manipulate. An example
of a minor modification follows. Here is what you might find in the sample BIOS, as
a part of the COLDST ART routine.

5IGNON:

DB
DB

MOVEIT; L>:I

I(EEPON; MOV

CPI

RZ

MOV

14H,0DH,OAH ;cleal- sCI-een, move down

'CP/M-80 version 2.2' ,ODh,OAh, '$'

H,5IGNON

A,M
'$,

C,A

;point to signon message

;get a b'dte

;check for end of message

; ... end 0 f message

; no tend, g8 t I-ead'd

CHAPTER 7/ 197

CP/M USER GUIDE

---,
;WARNING! Your CONOUT routine may destroy or undesirably

;al ter the contents of the registers used in ~lIJ\jEIT. To be

; su re, PUSH the con tents 0 f any reg i s te rs not needed by CONOUT

; onto the stack, then POP them off the s tack in to the or ig i nal

;registet-Is) •

---,
PUSH H ;out of harm's way

CALL CONOUT ; send da ta to conso 1 e

POP H ;all safe and sound

INX H ; increment memonJ location

JMP I<EEPON ;doitagain

This routine displays the CP I M-80 sign-on message and initializes the terminal
screen with the 14 hex that starts the message. But what if your terminal requires a
04 hex to be initialized (cleared)? Let's change the above BIOS to reflect the new
terminal and to personalize the message that is displayed.

SIG~ION :

DB

DB

DB

DB

DB

MOVEIT: LXI

I<EEPON: MOV

CPI

RZ

~lIJV

PUSH

CALL

POP H

IN>: H

JMP

04H,0DH,0AH ;clear screen, move down

'Thom Hogan's Vectrola 1.1' ,0DH,0AH

'------------',0DH,0AH,0AH

'CP/M-80 2.2-111)/17/80 last update' ,0DH,0AH

'no printer installed' ,0DH,0AH,0AH,0AH, '$'

H, SIGNCI~I

A,M

'$'

C,A

H

CCiNOUT

I<EEPON

;point to signon message

;get a b'dte

;check for end of message

; ••. end of message

;not end, get ready

;out of harm's way

;send data to console

;al1 safe and sound

;increment memory location

;do it again

The sample BIOS signs on as follows:

<clear SCt-een>

CP/M-80 version 2.2

A>

The new version displays

<clear screen>

Thom Hogan's Vectrola 1.1

CP/M-80 2.2-10/17/80 last update

198

TECHNICAL ASPECTS OF CP 1M

no printer installed

A>

In this example we have not changed anything important. Notice that the DB '$'
line remains so that the routine knows where to end the message.

There are three types of changes to make to BIOS.

Inserting new material
Deleting old material
Changing existing material.

When you insert information into BIOS, previously entered information remains
unchanged. You can easily backtrack your steps and restore the BIOS to its original
form. We suggest that you identify where you have inserted new material so that it is
easier to locate later. A line of hyphens (---------) can separate individual routines. A
line of equal signs (========) can delineate instructions added later. A section
of the BIOS might look like the following:

---,
; ~1ODEM ROUTI"IES - substi tute fOl- PUNCH/READER

110DEM EOU TRUE ;'des , we have a modem toda'd

DCH EOU FALSE ;no, it isn't a DC Ha'des

IF NOT DCH ;if standard mode,.,.,:

~1ODEMCTL EOU 03H ;modem control port

r1[1DEM58IT EOU 80H ;modem send control bit

~1ODEMR8IT EOU 40H ;modem recei\)e control bit

MODEMDATR EOU 02H ;modem data port

ENDIF

;===
10/17/81 - r,e Finall':,! got a D.C. Ha':,!es Modem board.

IF

MODEMCTL

MDDEMS8IT

MODEMR8IT

MODEMDATR

~lODEMCTL2

EI~DIF

Her-e are the EOUs that we think l,jill

ope ra te ou r- new modem. When we've had a

chance to check these au t, we'll go bacl­

and change the DCH EOU to TRUE.

DCH

EOU 82H ;DC Ha':,!es control port

EOU 2 ;modem send control bit

EOU 1 ;modem r'eceive contr-'ol

EOU 80H ;modem data port

bit

EOU 81H ;second control port needed

;======-==

CHAPTER 7/ 199

CP / M USER GUIDE

lXI H,0

DAD SP

SHlD STACI<

etc.

The routines for the Hayes Microcomputer Products' modem are not yet fully
implemented, but you can see how we clearly identified the newly inserted section of
program code.

When you delete a section from an existing BIOS, do not erase it; make it a
comment instead. Insert semicolons in front of each line you wish to make inopera­
tive. Add a note to explain the deletion.

RCVSOH: MVI B,l ; timeout= 1 second

CAll RECV ;get sector

JC RCVSTOT ;got timeout

MOV D,A ;D= block number

MVI B,l ; timeout= 1 second

CAll RECV ;get cma 'd i3ect number

;THE NEXT JUMP CANCEllED 10/1/80 TO DISABLE TIMEOUT

JC RCVSTOT ;got timeout

CMA

CMP

JZ RCVDATA

; END OF DELETED SECTION OF CODE

;calculate complement

;good sector number?

;yes, got data

NOTE: This routine is from MODEM527.ASM by Ward Christensen-a public domain program
available from the CP / M User's Group.

By making the deleted section a comment, you can easily restore the file to its
original form; just remove the semicolons.

Changing an area of the BIOS is more difficult; it is not easy to document
changes. To trace changes, make the original line a c:omment, and insert the new
line below it. Unfortunately, when you make numerous changes the results are
difficult to read. Be sure you always have a copy of the original BIOS; name it
BIOSOLD.ASM, BIOSOO 1.ASM, or something similar to indicate that it is not the
current version. Each time you edit the BIOS, save a copy of the previous version,
and date all versions.

5. Before leaving the editor, return to the beginning of the BIOS file and examine
the ORG (origin) directive and any labels named BIOS, BIAS, or OFFSET.
Instructions to the assembler on where to start assembling the BIOS differ among
programmers. Usually the BIOS is either originated aibsolutely (by a statement like

200

TECHNICAL ASPECTS OF CP/M

ORG OEFOOH) or is calculated using the following method suggested by Digital
Research:

CCP: EQU
BIOS: EQU

ORG

or

CCP: EQU
BIOS: EQU

ORG

2900H

1500H+CCP

BIOS

3400H

1600H+CCP

BIOS

; for 161< CP/M-80 ',)8rsion 1.4

;location of BIOS

; for 201< CWM-80 ',18rsion 2.2

; location of 810'3

Check the CP I M-80 size indicated in such an example. If it matches the CP I M-
80 size you are using, go to the next step. If it does not match, or if you cannot tell,
do not proceed (size means 48K CP I M-80, 56K CP I M-80 and so on).

Unfortunately, there is no absolute rule about the relationship of the BIOS
section with the base section (CCP) of CP I M-80. Knowing the starting location of
CP 1M -80 does not necessarily mean you can calculate the beginning location of the
BIOS section. Digital Research has tried to standardize this, but several distributors
and computer manufacturers continue to change the pattern.

Using DDT to locate the start of the BIOS jump table is relatively easy, as shown
here.

A> DDT <u>

A>

DDT \/8 rs. 2.2

-LO,2 <Ct->
0000 JMP 9603

003

--C

Here, the JMP instruction at address 0000 hex, when disassembled, points to the
warm start routine. Recall that the warm start is the second entry in the jump table;
therefore, subtracting three bytes from 9603 hex will yield the first entry in the table,
which shows the start of the BIOS: 9600 hex.

Change the ORG directive in your BIOS to the address found -in this example,
9600 hex.

6. Assemble the new BIOS. If the BIOS assembles without any error messages,
proceed to the next step. Always correct your errors before proceeding.

7. To test a new BIOS, perform the following steps:

Q. Create a new CP I M-80 image using MOVCPM * *.

b. SAVE the new CP / M-80 image using SA VE 34 CPMXX.COM (where
"XX" is the size of the CP / M-80 system, for example, 32).

CHAPTER 7/ 201

202

CP / M USER GUIDE

NOTE: With some versions of CP / M-80, MOVCPM will tell you to use a
number other than 34 for saving; for example, if MOVCPM displays

READY FOR •• SYSGEN' ,

or
•• SAVE 39 CPM64. cm1"

then your SAVE command is

SAVE 39 CPM64. COM

C. Use OOTto load the image ofCP/ M-80into memory. If your version of
MOVCPM operates correctly, the following addresses apply:

BOOT 900H

CCP 980H (sometimes A00H if long BOOT)

BDOS 1180H (sometimes 1200H if long BOOT)

BIOS lF80H (CP/M 2.2)

lE80H (CP/M 1.4)

d. Use OOTto load the assembled BIOS into the correct area of memory. The
proper method is as follows:

-IBIOS.HEX <cr>

-Roffset

where offset loads your BIOS at the proper point of the CP / M-80 image
and not at its eventual location.

The offset is calculated by adding a number to the eventual location of
BIOS (its permanent address) so that it loads at 1 F80 hex (version 2.2) or
1 E80 hex (version 1.4). To calculate this number, first subtract the loading
address (l F80 hex or I E80 hex) from the eventual address.

For a 56K CP / M-80 2.2 system, for example

DA00H - lF80H = BA80H FFFF - DAI~0 + IF80

it is a good idea to fill memory beginning at I F80 hex or I E80 hex with
zeros before loading in the BIOS, so you can tell whether or not it was
correctly loaded.

e. Exit from OOTwitha "Cand save the new CP / M-80 system with a SAVE
34 CPMxxOK.COM, where "xx" is the size of the system you are creating.

f If you have CP / M-80 version 2.2 you may 'lIse SYSGEN to save the new
system onto diskette by typing

A>SYSGEN CPMxxOI<' COM < c r>

Older versions of CP / M-80 require that you reload the system image before
using SYSGEN with

A>DDT CPMxxOI<' COM <cr>

-'C

A>S'iSGEN <cr>

TECHNICAL ASPECTS OF CP/M

The IOBYTE

The concept of the IOBYTE predates CP / M-80 by several years. Gary Kildall
used it in some sample implementations ofCP / M-80, and it is documented in most
of the Digital Research manuals. Other software creators writing BIOS modules
have elaborated upon the IOBYTE concept but have not changed its basic function.

The IOBYTE is a reserved byte of memory that indicates the current assignment
of physical devices to logical devices. In CP / M-80, you have the following four
logical devices:

CON: Console device

L5T: List device

RDR: Reade I' de." i ce

PUN: Punch device

When you have two different printers, terminals, or paper tape readers, the
IOBYTE indicates which device is to be used.

The IOBYTE is normally located at address 0003 hex. The byte is treated as four
separate two-bit indicators.

Bit I Bit
7 6

Bit I Bit
5 4

Bit I Bit
3 2

Bit I Bit
1 0

LIST PUNCH READER CONSOLE

Table 7-3 shows how CP / M interprets the two bits for each device. The device
names should look familiar. They are the physical devices that PIP and ST AT
address. An IOBYTE value of 00 100 100 (or 24 hex) means the physical devices are
currently assigned to logical functions as follows:

The TTY: device is performing the CONSOLE function
The PTR: device is performing the READER function
The UPI: device is performing the PUNCH function
The TTY: device is performing the LIST function.

A BIOS routine you or your computer vendor wrote examines the IOBYTE to see
where to send or receive information. The console status, console input, console
output, reader, punch, and list jumps in the BIOS jump table should all point to
special routines to see which device to use. These routines proceed as follows:

I. Get the IOBYTE

2. Determine which device to use
3. Go to the routine for that device.

Disk Operations

Some indication of how CP / M-80 stores information on a diskette is appropriate
for this chapter. Unfortunately, we cannot be exacting about the information we are

CHAPTER 7/ 203

CP/M USER GUIDE

TABLE 7-3. Interpreting the IOBYTE

Logical Device of Physical Device
Function 00 01 10 11

Console CON: TTY: CRT: BAT: UCI:

Reader RDR: TTY: PTR: URI: UR2:

Punch PUN: TTY: PTP: UPI: UP2:

List LST: TTY: CRT: LPT: ULl:

about to present, as each different type of disk drive usually requires a slightly
different set of parameters. To avoid confusion, we will talk specifically about
8-inch single-density CP / M-80 version 2.2 and attempt to indicate how other
versions may differ.

You already know that information is stored on diskettes in "sectors" which
divide "tracks" of information into blocks of information. Each sector stores 128
bytes of data, and with single-density 8-inch diskettes, there are 26 sectors on each of
77 tracks. Here is how some common disk formats diJfer.

Format
Eight-inch single density
Eight-inch double density
North Star single density
North Star double density
Micropolis MOD II
Intertec Superbrain
Apple
Altos double density
Pickles and Trout TRS-80
Osborne 1 (256-byte sectors)

Number of Number of
Sectors

26
26
20
40
32
40
32
48
64
10

Tracks
77
77
35
35
77
35
35
77
77
40

On most implementations of CP / M-80 the first two tracks are reserved as
"system tracks." This is where the CP/M-80 is stored by SYSGEN, and sometimes
this area also contains special utilities used by your particular computer. The third
track on most floppy diskette systems is reserved for the directory. The remaining
tracks are used to store data.

CP / M-80 allocates sectors to files in a "group." A group is composed of a fixed
number of sectors, usually 8 or 16. Although CP/M-80 stores data in 128-byte
blocks, a file will use the entire group it has been assigned (8 X 128 = 1024 bytes)
even if it holds only one byte of information. While this wastes space, it does allow
the directory to be more efficient, since it need only keep track of groups, rather
than individual sectors.

If you have a hard disk or a double-density floppy disk on your system, it is likely

204

TECHNICAL ASPECTS OF CP/M

that it has more than eight sectors per group, resulting in 202S-, 4056-, and even
Sl12-byte groups.

Each directory entry is comprised of 32-byte blocks.

Byte 1 indicates whether the file is active or erased

Bytes 2 through 9 are the file name
Bytes 10 through 12 are the file type
Byte 13 is the extent number

Bytes 14 and 15 are reserved for internal use

Byte 16 is the extent size in sectors
Bytes 17 through 32 store the groups assigned to the file.

CP/M-SO also uses a concept called "extents." An extent is a group of groups,
again usually 8 or 16 in number. Each directory entry is for one extent of a given file.
If the file gets big enough so that 16 groups are not enough to store the entire file, a
second directory entry is created for the file-the second "extent." The maximum
size of a file is limited by the maximum number of extents allowed by your version
of CP / M-SO, multiplied by 12S times the number of sectors per group.

This is not as complex as it seems. A file consists of some number of extents, each
of which consists of some number of groups, each of which consists of some number
of sectors. So that you get an idea of this multiextent concept, following are four
directory entries as they would appear in both hexadecimal and ASCII format (see
the file control block section immediately following for an explanation).

1010 41 53 40 210 210 210 210 210 43 4F 40 1010 1010 1010 4(1 .ASM COM ••• @

18 1C 10 1E 1010 1010 00 010 100 00 00 00 00 100 1010 00

010 SA 53 40 20 20 210 210 210 43 4F 40 010 1010 (110 38 .ZSM COM ... ;
1F 210 21 22 010 1010 100 00 010 010 100 100 0~) 010 1010 00 !

100 40 38 310 210 20 20 20 20 43 4F 40 010 1010 1010 810 • M80 COM

23 24 25 26 27 28 2:J 2A 00 00 00 010 010 1010 1010 010 1I$%8,·()*

00 40 38 30 210 20 20 20 20 43 4F 40 01 00 00 0:J . r180 cm1. ...
28 1010 010 00 010 1010 100 00 00 00 00 00 1010 00 1010 1010 +
This directory comes from a diskette the author uses on his Vector Graphic

computer system. This particular implementation of CP / M-80 allows eight groups
per extent, but the file MSO.COM occupies nine groups (23 hex through 2B hex).
Thus this file's second extent is marked with a 01 hex immediately following the
name of the file, while the first extent has a 00 hex immediately following the name.

File Control Blocks (FCBs)

The file control block is a section of memory reserved by CP / M to hold informa­
tion about the file currently being used. The FCB is 36 bytes in length and is
normally located at 005C hex. Here are the bytes of the standard CP/M (both
CP / M-SO and CP / M-S6) FCB and what they are used for.

CHAPTER 7/ 205

Byte Number

1

Function

Drive code
o = use default drive
1 = use drive A
2 = use drive B

CP/M USER GUIDE

2-9 File name
Eight bytes with unused characters filled with
ASCII spaces

10-12 File type

13
14
15

16
17-32

33

34-35
36

Three bytes with unused characters filled with ASCII
spaces

The high bit of byte 10 is used to indicate that a file is
RIO

The high bit of byte 11 is used to indicate that a file is
SYS

The current extent number for the file
Reserved for CP I M's use
Reserved for CP I M's use; should be set to

zero for OPEN, MAKE, or SEARCH FOR FILE
functions

Record count for the current extent

Filled in by CP I M with information about
location of records in file

Current record number to read or write in a
sequential file operation

Random record number

Random record number overflow indicator

Disk Parameter Tables

Earlier in this chapter, the disk parameter header was mentioned in passing. This
is a special area of BIOS memory reserved for some important information CP I M-
80 needs to know in order to use the disk drives you own. Each disk drive has an
associated 16-byte parameter header that contains information about the drive and
provides some space for BOOS to write temporary information into.

Bytes
1-2

3-8

206

Title
XLT

None

Description
Translation Vector: the address of the sector transla­
tion table which contains the skew factor for the drive.
A value of 0000 hex indicates no translation takes
place. Drives that use the same skew factors may share
the same translate tables.
Bytes of scratchpad RAM for BOOS use.

TECHNICAL ASPECTS OF CP/M

9-10 DIRBUF Directory Buffer: the address of a 128-byte RAM area
to be used for directory operations for the drive. All
drives share the same directory buffer.

11-12 DPB Disk Parameter Block: the address of the disk para­
meter block. Drives with identical characteristics may
share the same disk parameter block.

13-14 CSV Check for Changed Diskettes: the address of a
scratch pad area used to check for changed diskettes.
The address must be different for each drive.

15-16 ALV Disk Allocation Vector: the address of a scratchpad
area used to keep information about the disk drive's
storage allocation. The address must be different for
each drive.

The disk parameter headers for each drive appear in order, one immediately
following the other. The SELDSK routine in BIOS should return the base address
of the header for the drive selected. If a drive does not exist, SELDSK returns a 0000
hex.

The translation vectors referred to by the DPH may be located elsewhere in
BIOS, and are simply a listing of the sectors to be read in the order in which they are
to read. A valid sector translate table might look like the following:

DISKXLATE: dB I, 7,13,19,25
dB 5,11,17,23,3
dB 9,15,21, 2, 8
dB 14,20,26, 6,12
dB 18,24, 4,10,16
dB 22

The translate table above shows a skew factor of six (the disk drive reads a sector,
then reads the sector which comes six later, and so on). Changing the translate table
is one way in which disk speed may be increased.

The disk parameter block tells CP I M-80 the layout of a drive.

Bytes
1-2
3-4
5
6-7
8-9
1O-11
12-13
14-15

Title
SPT
BSH/BLM
EXM
DSM
DRM
ALO/I
CKS
OFF

Description
Number of sectors per track
Block shift factor
Data block allocation size
The maximum data block number
The number of directory entries
Directory group allocation
Check directory entry
Number of tracks skipped at beginning of disk

CHAPTER 7! 207

CP/M USER GUIDE

CP/M-80

For further information on the internal structure of CP / M-80, consult the
annotated bibliography in Appendix F. A number of excellent articles about
specific portions of CP / M-80 have appeared in trade publications.

Differences Between CP/M-80 and CP/M-86

CP / M-80 and CP / M-86 are designed to work with different CPUs. CP / M-80
works with 8080, 8085, and Z80 chips, while CP / M-86 works only with 8086 and
8088 chips. The former are 8-bit chips, while the latter are 16-bit chips (the 8088,
more correctly, is a 16-bit chip which uses an 8-bit data bus).

There are a few differences between CP / M-80 and CP / M-86 that are important
to users. Primarily, CP/M-86 can address (use) up to one megabyte of memory,
while CP / M-80 is limited to 64K bytes of memory space (version 3.0 of CP / M-80
allows use of an additional64K of memory). CP / M-80 makes reference to memory
in an absolute fashion; in other words, CP / M -80 always references specific memory
locations between 0000 hex and FFFF hex. CP / M-86 refers to memory locations
by an offset method, based on the values in the segment registers of the 8086 or 8088
chips.

Instead of using a BOOS call to location 0005 ht:x like CP / M-80, CP / M-86
programs use software interrupt number 244 to perform the same function; the
registers are first loaded with the appropriate values, followed by the interrupt.
CP / M-86 BOOS calls do not use the addresses at 0006 hex and 0007 hex; CP / M-86
maintains these addresses anyway for programs that are translated from the CP / M-
80 environment and use that location to determine memory size.

To understand the following descriptions of BOOS functions, a description of the
8086 registers is necessary. Eight 8-bit general purpose data registers are available,
and all are grouped together in twos to provide 16-bit register pairs.

8-Bit Registers become 16-Il:it Register Pairs
AH + HL AX
BH + BL
CH + CL
OH + OL

BX
CX
OX

In addition, the 8086 has four 8-bit index (base) registers.

BP
SP
SI
DI

Last, four segment registers (used to calculate the extended addressing needed for
more than 64K bytes of memory access) are available.

Code
Data

208

TECHNICAL ASPECTS OF CP / M

Stack
Extra

CP I M-86 BDOS calls are detailed in Table 7-4.
Forthe most part, programmers familiar with CP I M should find CP I M-86 quite

similar. At the time this book was revised, Digital Research had just completed a
revision of CP I M-86 and also announced a version called Concurrent CP I M-86.
Readers interested in more information about the particulars of CP I M-86 should
contact Digital Research (the address is given in Appendix H).

CHAPTER 7/ 209

CP I M USER GUIDE

TABLE 7·4. BDOS Functions for CP; M-86*

Function Entry Exit
Explanation

No. Name Parameter(s) Parameter(s)

00 SYSTEM DL = Abort None Restarts CP! M-86 by returning control to
RESET code the CCP after reinitializing the disk

I subsystem. The abort code in DL is 00 hex to
terminate the currently active program and
control is returned to CCP; if D L is 0 I hex,
the program remains in memory and the
memory allocation state remains unchanged.

01 CO'\fSOLE None AL = ASCII Returns the next character typed to the
INPUT character calling program. Any non-printable

character is e,;hoed to the screen (like
BACKSPACE, 1 AB, or CARRIAGE RETUR"i).

Execution does not return to the calling
program until a character has been typed.
Standard CCP control characters are
recognized and their action performed
(CO,\TROL-P begins or ends printer echoing
and so on).

02 CO'\fSOLE DL = ASCII None Displays the character in the DL register on
OUTPUT character the console device. Standard CCP control

characters are recognized and their action
performed (CONTROL-P begins or ends printer
echoing and :;0 on).

03 READER None AL = ASCII Returns the next character received from the
I'\fPUT character reader device to the calling program. Execu-

tion does not return to the calling program
until a character is received.

04 PUNCH DL = ASCII '\fone Transmits the character in the DL register to
OUTPUT character the punch device.

05 LIST DL = ASCII None Transmits the character in the DL register to
OUTPUT character the list device.

06 DIRECT DL = FF AL = ASCII If register DL contains an FF hex, the con-
CONSOLE character sole device is interrogated to see if a charac-
I'\f or 00 ter is ready. If no character is ready, a 00 hex
DIRECT is returned to the calling program in register
CO'\fSOLE A; otherwise the character detected is
STATUS DL= FE AL = Status returned in register A. If register DL con-
DIRECT DL = ASCII '\fone tains any character other than an FF or FE
CONSOLE character hex, that character is passed to the console
OUT display. All CCP control characters are

ignored. The user must protect the program
against nonsensical characters being sent
from or received by the console device.

07 GET '\fone AL= Places a copy of the 110 byte in the AL reg-
IOBYTE IOBYTE ister before returning control to the

calling progr,am.

*NoTE: In CP! M-86, the function number is loaded into the CL Register. This is the same as
loading the C register in CPi M-80.

210

TECH!I<IC AL ASPECTS OF CP 1M

TABLE 7-4. BDOS Functions for CP I M-86* (continued)

Function Entry Exit
Parameter(s) Parameter(s) Explanation

No. Name

08 SET OL=IOBYTE None Places a copy of the value in register OL into
IOBYTE the I/O byte location before returning con-

trol to the calling program.

09 PRINT OX = String None Sends the string of characters stored begin-
STRING address ning at the address stored in the OX register

pair to the console device. All characters in
subsequent addresses are sent until BOOS
encounters a memory location which con-
tains a 24 hex (an ASCII "$"). The CCP con-
trol characters are checked for and
performed if encountered.

OA REAO OX= Data in This function performs essentially the same
CONSOLE buffer buffer as the CCP would in that it takes the charac-
BUFFER address ters the user types and stores them into the

buffer that begins at the address stored in the
OX register pair. The first byte in the buffer
pointed to by the OX pair must be the max-
imum length of the command; BOOS will
place the number of characters encountered
in the second byte, with the command typed
beginning with the third byte pointed to by
the OX pair. All standard CCP editing char-
acters are recognized during the command
entry.

OB GET None AL = Status BOOS checks to the status of the console
CONSOLE device and returns a 00 hex if no character is
STATUS ready, 01 hex if a character has been typed.

OC GET None BX=Version If the byte returned in the B H register is 00
VERSION hex. then CP / M is present, if BL = 01, then
NUMBER M P / M is present. The byte returned in the

BL register is 00 hex if the version is previous
to CP / M 2.0, 20 hex if the version is 2.0, 21
hex if 2.1, and so on.

00 RESET None Used to tell CP / M to reset the disk subsys-
DISK tern. Should be used any time diskettes
SYSTEM are changed.

OE SELECT OL = Oisk None Selects the disk to be used for subsequent
OISK number disk operations. A 00 hex in the OL register

indicates disk A, a 0 I hex indicates disk B,
and so on.

*NoTE: In CP / M-86, the function number is loaded into the CL Register. This is the same as
loading the C register in CP / M-80.

CHAPTER 7/ 211

CP/M USER GUIDE

TABLE 7-4. BDOS Functions for CP / M-86* (continued)

Function Entry Exit
Explanation

No. Name Parameter(s) Parameter(s)

OF OPEN DX= FCB AL = DIR Used to activate a file on the current disk
FILE address code drive and current user area. BDOS scans the

first 14 bytes of the designated FCB block
and attempts to find a match to the filename
in the block. A 3F hex (ASCII "?") can be
used in any of the filename positions to indi-
cate a "don't care" character. If a match is
found, the rekvant information about that
file is filled into the rest of the FCB by
CP / M -86. A value of 00 hex to 03 hex in
register A upon return indicates the open
operation was successful, while an FF hex
indicates that the file could not be found. If
question marks are used to identify a file, the
first matching entry is used.

10 CLOSE DX = FCB AL = DIR Performs the opposite of the open file func-
FILE address code tion. A close file function must be performed

upon completion of use of any file which has
had information written into it.

11 SEARCH DX = FCB AL = DIR Performs the same as the open file function
FOR address code with the differ,ence being that the current
FIRST disk buffer is filled with the 128-byte record

which is the directory entry of the matched
file.

12 SEARCH None AL = DIR Performs the same as search for first func-
FOR code tion except that the search continues on from
NEXT the last matched entry.

13 DELETE DX=FCB AL = DIR Changes a flag on the directory entry for the
FILE address code file pointed to by the FCB so that CP / M -86

no longer recognizes it as a valid file. No
information is actually erased when this
function is performed, although subsequent
writes to diskette may use some of the area
previously associated with the "deleted" file.

14 READ DX= FCB AL = Error If a file has becm activated for use by an open
SEQUEN- address code file our make file function, the read sequen-
TIAL tial function reads the next 128-byte block

into memory at the current DMA address.
The value of 00 hex is returned in the AL
register ifthe read was successful, while any non-
zero value in the AL register indicates
failure.

15 WRITE DX = FCB AL = Error If a file has bem activated for use by an open
SEQUEN- address code file or make fil,~ function, the write sequential
TIAL function writes the 128-byte block of

memory at the current DMA address to the
next 1 28-byte record of the named file.

*Non: In CP / M-86, the function num ber is loaded into the C L Register. This is the same as
loading the C register in CP! M-80.

212

TECHNICAL ASPECTS OF CP / M

TABLE 7-4. BDOS Functions for CP / M-86* (continued)

Function Entry Exit
Parameter(s) Parameter(s) Explanation

No. Name

16 MAKE DX = FCB AL = DIR Creates a new file with the information
FILE address code (name) indicated by the FCB. CP! M-86 does

not check to see if the file indicated already
exists, so you must first check to see if the
file exists (or delete it). A newly created file
need not be opened, as the make file function
also performs the necessary opening
operations.

17 RENAME DX = FCB AL = DIR Changes the name of the file referenced by
FILE address code the first 16 bytes of the FCB to the name in

the second 16 bytes.

18 RETURN None BX == Disk The bits in the BX register are used to specify
LOGIN login which disk drives are active. The first bit in
VECTOR the BX register refers to drive A, the last bit

in the BX register corresponds to drive P, the
highest possible drive. A bit value of I indi-
cates active status, a zero denotes an inactive
drive.

19 RETURN None AL=Current The numbers 0 through 15 are used to
CURRENT disk represent the current default disk drive upon
DISK return from this function.

lA SET DX= DMA None Used to select the 128-byte memory block to
DMA address be used for buffering all disk transfers. Upon
ADDRESS system or disk reset, cold or warm start, the

buffer is reset to 0080 hex on a normal
CP j M-86 system.

IB GET None BX=Alloca- Returns the starting address of the allocation
ALLOC tion address vector, a table which is maintained in
ADDRESS ES=Segment memory for each on-line disk drive that indi-

base cates the portions of the diskette which are
in use.

IC WRITE None None Provides temporary write-protection for the
PROTECT diskette in the current default disk drive.
DISK

lD GET None BX == Disk Returns a 16-bit value in the BX registers
RIO RjO which indicate which drives on the system
VECTOR are write-protected. The drives are assigned

as in the LOGIN VECTOR, with a value of I
indicating write-protection.

IE SET FILE DX == FCB AL = DIR Sets file attributes to those indicated in the
ATTRI- address code appropriate portion of the FCB pointed to in
BUTES DX.

IF GET DISK None BX == DPB Returns the offset and segment base of the
PARMS address disk parameter block of the currently

ES==Segment selected drive.
base

*NoTE: In CPI M-86, the function number is loaded into the CL Register. This is the same as
loading the C register in CP I M-80.

CHAPTER 7/ 213

CP/M USER GUIDE

TABLE 7·4. BDOS Functions for CP / M·86* (continued)

Function Entry Exit
Explanation

No. Name Parameter(s) Parameter(s)

20 kJET USER DL= FF AL=Current If the DL register contains an OFF hex the
CODE user current user number is returned, otherwise
SET USER DL = User None the user number is set to the value in the DL
CODE code register.

21 READ DX = FCB AL = Error Reads the random record pointed to by the
RANDOM address code random record! portion of the FCB indicated.

22 IwRITE DX = FCB AL = Error Writes the random record pointed to by the
RANDOM address code random record portion of the FCB indicated

from the current DMA buffer.
23 COMPun X= FCB RRF set Fills in the random record portion of the

FILE address FCB indicated to the last record in the file
SIZE (the size of the file).

24 SET DX = FCB RRF set Produces the next random record from the
RANDOM address position of the last sequential disk read and
RECORD places it into the correct position in the FCB.

25 RESET DX = Reset AL = Error Resets the drive(s) indicated to the not·
DRIVE drive bits code logged·in status.

28 WRITE DX = FCB AL = Error Writes zeros into the random record before
RANDOM address code writing the information in the DMA buffer.
(ZERO)

32 DIRECT DX = BIOS None Allows BDOS to directly access BIOS rou-
BIOS descriptor tines. The first 8-bit value at the location
CALL pointed to by DX is the BIOS function

number, the n.~xt two l6-bit locations are
loaded into th.~ 8086 CX and DX registers
before the BIOS call is initiated.

33 SET DMA DX = Base None Sets the base address for subsequent DMA
BASE address transfers.

34 GET DMA None BX= DMA Returns the base address for the last DMA
BASE offset transfer made.

ES = DMA
segment

35 IGET MAX DX = Offset AL=Return Finds the larg.est available memory region
MEM ofMCB code which has at least the number of bytes indi-

cated by the current memory
control block.

36 IGET ABS DX = Offset AL=Return Finds the larg,est possible region of memory
MAX ofMCB code at the absolutl: paragraph boundary indi-

cated by the current memory
control block.

37 ALLOC DX = Offset AL=Return Allocates memory according to the MCB at
MEM ofMCB code the address indicated by DX.

*NOTE: In CP/M -86, the function number is loaded into the CL Register. This is the same as
loading the C register in CP / M-80.

214

TECHNICAL ASPECTS OF CP/M

TABLE 7-4. BDOS Functions for CP/M-86* (continued)

Function Entry Exit
Parameter(s) Parameter(s) Explanation

No. Name

38 ALLOC DX = Offset AL=Return Similar to function 37, except that the abso-
ABS ofMCB code lute base address is used in
MEM the calculation.

39 FREE DX = Offset None Releases memory areas allocated to a pro-
MEM ofMCB gram with the MCB indicated by DX.

3A FREE None None Releases all memory for use in the system.
ALL MEM

3B PRO- DX = Offset AX=Return Loads a .CMD file.
GRAM ofFCD code
LOAD BX = Base

page address

*NOTE: In CP / M-86, the function number is loaded into the CL Register. This is the same as
loading the C register in CP I M-80.

CHAPTER 7/ 215

CHAPTER

8 The Systems
Approach

Although CP / M is a relatively simple operating system, it has not always been
well understood. During its first years of existence, the public criticized the doc­
umentation and often mistook hardware problems to be errors in CP / M's design.

Selling computer systems to the general public includes a responsibility for
thorough training and product reliability. The microcomputer industry has often
been deficient in this regard. Digital Research has left the task of educating the
general public in the use of CP / M-80 and CP / M-86 to computer manufacturers,
distributors, and dealers. Some do a goodjob of educating the computer consumer;
most have yet to come to grips with the problem.

To simply complain about the industry's neglect of the computer user avoids the
main problem being discussed here: how does the end user learn to use CP / M?
While this book provides one answer, it is only one of many needed aids.

The following pages present a series of recommendations to CP / M users. They
offer a system solution to problems you may encounter. For our purposes, system
will be assumed to include the entire universe of people, equipment, paper, infor­
mation, and resources involved in the use of a computer. Buying a computer, some
software, and buying this book is not enough. You must integrate each component
of the system into your current needs and procedures.

SYSTEM RECOMMENDATIONS

Misleading advertising and consumer naivete cause many users to buy a compu­
ter system according to price. If two computer sellers promote the XY system, the
customer buys from the firm with the best price. This is dangerous. While it is possi­
ble to use this approach with items purchased for purely personal reasons, if you do

217

CP M USER GUIDE

so while choosing a computer for your business, you may find that the promises
made to you are never kept.

Support should be considered just as important as price in your decision of where
to purchase computer equipment. Support is a nebulous term that includes such
factors as

Training of personnel in use of the equipment

Installation and checking of equipment

Local and on-site service when necessary

An attempt by the seller to make sure you are getting the type and quality
equipment you need, not just a brand name

The willingness of the seller to answer questions and help you use your sys­
tem after the sale.

If you are using your computer for a business activity, the diskettes you use to
store information become your most valuable computer asset. If your computer
breaks down and is unusable for any period of time, it would be like having all the
paper records in your office locked in the safe when you cannot remember the
combination; in a word, the information stored on diskette is useless unless it is
available to you.

Thus, you must weigh the initial price of a system against the ongoing support
cost. Most reputable computer dealers not only go out of their way to help compu­
ter users with problems but also make it a point to help the customer make sure the
problem does not occur again. Mail-order firms may offer good prices on equip­
ment, but you must weigh these prices against the amount and type of support you
will need after the sale.

An element of support that is often neglected is making sure that the equipment
and software chosen meet the requirements of the job they are to perform. CP IM-
80 and CP I M-86 dictate many aspects of the computer system they are used on. To
operate CP / M effectively, you should have available

Two disk drives

500K or more of disk storage space

48K of main computer memory

A terminal that displays 24 lines, each 80 characters

A printer

A modem.

We will examine each of these components individually.

Two Disk Drives

You need two disk drives for several reasons. As we discussed in Chapter I,
diskettes are fragile. They are easily bent, useless when dirty, and can be tampered
with, lost, or stolen. In short, they are not a permanent storage medium. Thus, you

218

THE SYSTEMS ApPROACH

need to copy a diskette for backup purposes. Copying is far easier and faster with
two disk drives.

While you can operate a computer system with only one drive-indeed, some
systems only come with one drive-if that drive malfunctions, you can no longer
use your system. With two drives, you can often continue to operate, although in a
limited fashion, if one drive breaks down.

It is inconvenient to operate with only one drive. If your computer system is diffi­
cult to use, as it would be if you had to continually transfer diskettes in and out of a
single drive, you might stop using it. Many serious business application programs
compatible with CP / M require two disk drives simply because the programs them­
selves take up all of the space on one diskette. In addition, most computer profes­
sionals suggest that it is a good idea to get into the habit of using separate data
diskettes and program diskettes, something you probably wouldn't be able to do
with only one drive.

500K Bytes of Disk Storage Space

Five hundred thousand characters of information seem like a lot of information.
For example, the text of this book is about 450,000 characters. In general, however,
most computer users tend to underestimate the volume of information they use and
generate.

Serious accounting programs (like the Structured Systems Group Integrating
Accounting package or the Peachtree Integrated Accounting package) use as much
as 700,000 characters of disk space just to store the programs, although this is nor­
mally split among several diskettes. The volume of information a business keeps for
tax and auditing purposes is staggering. For example, tracing the meter readings
and payments of 1000 utility district customers for one year takes up about 300K
bytes.

Consider a typical retail business which averages 100 transactions a day. With
only 100 characters of information per transaction, one year's worth of transac­
tions will occupy almost four million characters of information.

It is unrealistic to try to store all the information you need on a single diskette.
Instead, apportion the information into logical blocks and save a block on an
individual diskette. The reason for this suggestion is simple. Suppose your annual
business transactions require four million characters of information and you want
to see the transactions for the second week of August. On many systems, the pro­
gram must first wade through January through July before it finds the August data,
taking a considerable amount of time just to identify the data. A more practical and
convenient method would be to assign each month's information to a single disk­
ette. Only rarely do accounting systems address all data at the same time.

There is another advantage to floppy disk systems with capacities ranging from
500K bytes to 1 megabyte when you use accounting software. Many accounting
systems close all transactions every month and carry forward only the balances.
Usually you cannot look at the details of each transaction in a closed month. If you

CHAPTER 8/ 219

CP. M USER GUIDE

make an extra copy of your data (by making a duplicate diskette), you can recover
the individual transactions whenever necessary. While exact figures are impossible
to project because of the variables involved, a month's worth of information could
fit comfortably on a single diskette with a capacity of between 241 to 500K bytes.
With any less storage space, the entire month's information mayor may not fit.

For general accounting purposes, 500K to I megabyte of disk storage space is
usually convenient. Maintaining the inventory of an electronic parts distributor,
though, would probably require more.

Between the publication of the original revision of this book and this second revi­
sion, a pattern of manufacturers releasing low-cost CP; M-based computers with
minimal disk storage capacities has evolved. Heath; Zenith, Osborne, IBM, and
Xerox are all such examples. The 160 to 320K of disk storage these machines pro­
vide limits their usefulness for many applications. While you might use such
machines for word processing, summary statistics or accounting, budget calcula­
tions, or personal tasks, they would not be suitable for general accounting, inven­
tory management, or any other task where manipulation oflarge amounts of data is
necessary.

48K Bytes of Main Memory

WordStar, the program used in the writing of this book, occupies 44K bytes of
computer memory. This leaves about 4000 characters of information you can scan
at one time (without accessing the disk drives). Many programs now require be­
tween 32 and 48K bytes of memory to operate, while some may require as much as
64K bytes. Almost all commercially available programs compatible with CP; M-80
will operate in 56K of memory; most will also operate in 48K of memory. Because
of the internal structure of CP j M-86, you should probably have between 96 and
128K bytes of main memory to operate efficiently.

Program size is not the only consideration in determining the proper amount of
memory, however. Most accounting or database programs must sort the informa­
tion stored on the diskette in order to process it. A good sort routine uses all of the
computer's memory; the more memory available for the sort routine at one time,
the faster it will operate. To give you an idea of the amount of memory versus the
efficiency of the sort, consider the following figures:

Task Time Required
An inefficient sort running in

16K bytes of memory sorting
706 items by two fields.

An efficient sort running in
48K bytes of memory sorting
525 items by five fields.

3 hours, 10 minutes

I minute, 25 seconds

Note that there are other variables involved here in addition to memory. Giving
the inefficient sort more memory speeds up the process but only by an hour. This
example typifies real business packages sold by computer stores.

220

THE SYSTEMS ApPROACH

Buy a minimum of 48K bytes of memory for your system. Buy 64K bytes if you
can afford it. If you are operating CP / M-86, you might want to consider expanding
memory to 128K bytes so that you can more easily utilize some of its advanced fea­
tures.

Character Terminals

The terminal should have a video screen that can display at least 24 lines of 80
characters each. This recommendation entails several considerations. One of the
most practical uses of a computer system is word processing: writing, storing, and
retrieving textual information. Terminal screen size determines how much of the
document or record you can create or edit at a time. A terminal which shows only
16 lines of 64 characters can have a maximum display of 1024 characters at a time.
A terminal which shows 24 lines of 80 characters can show you 1920 viewed at a
time, almost twice as many characters.

The number of characters on the screen at one time can enhance or impair read­
ability. The program may leave extra space between blocks of information, making
it more readable, or it may pack characters close together, making the display con­
fusing. Some of the more sophisticated word processing programs use two or more
lines of the screen display to show you the status of a document being edited. Word­
Star, for example, provides the following information on your current location:

A:CPMI3 PAGE 5 LINE 26 COL 35 INSERT ON
L----I----I----I----I----I----I----I----I----I----I------------R

The example shows you are editing the file CPM8 on drive "A," page 5, line 26,
and the cursor is in column 35. INSERT ON means you are inserting information
into some previously prepared text. The following line shows the left (L) and right
(R) margins and tab stops (!). This is valuable information, but if it occupies two
lines of a 16-line screen, there is little room left for the document.

Unfortunately, many software creators have assumed the least common denomi­
nator (the 16X 64 terminal) for their programs; users of24X 80 character terminals
waste some terminal capabilities with such programs.

Remember, a printed page of elite type is 66 lines long by 102 characters wide, 85
lines long in pica. If the prime purpose of your computer system is to automate the
paperwork process, you will want to choose a display which most closely approxi­
mates your finished paperwork. While such terminals generally cost more, their
convenience more than pays for itself in time saved.

Another consideration in choosing a terminal is the type and layout of the key­
board. Almost every terminal being sold has a slightly different arrangement of the
keys. Some mimic the IBM Selectric keyboard, while others have their own layout.
Some things to watch for in a keyboard are

Are the shift and control keys conveniently located and not a hindrance
when typing?

Are there cursor arrow keys to move the display cursor?

CHAPTER 8; 221

CPI M USER GUIDE

Is the RETURN key (sometimes labeled ENTER) conveniently located?
How is the "touch" of the keyboard? Does the keyboard require force to
assure keystrokes are entered?

One important thing to look for is the location of the keyboard in relation to the
display screen. If the center of the keyboard is slightly set off from the center of the
screen, you might find that you consistently put your hands on the wrong keys.
Therefore, a detachable keyboard is preferable to one: that is fixed and off-center.

A Printer

Recall that we descri bed diskettes as fragile and temporary records that you must
copy to insure against accidental loss of the information. The information stored
on diskettes may be displayed on a CRT, but it is often convenient to have a printed
record. We recommend using a printer for a number of reasons.

The Internal Revenue Service (IRS) does not always consider computer docu­
ments (files on diskettes) as suitable material for an audit. In many cases, the use of
a computer for accounting or information storage has not kept the IRS from de­
mandingprinted copies of the information. If the agency allowed computer audits
in all cases, it would have to acquire knowledge of a variety of computers and com­
puter software to insure the integrity of the information. While standards exist for
auditing a company's books, the accounting profession has been negligent in
adopting and enforcing standards for computerized record keeping. It is unlikely
you will find standards adopted outside of large corporations.

Users are often hesitant to commit valuable information to a medium they can­
not read. The first copyright case concerning computer software made specific note
of the inability of anyone to read the information contained with the computer, on
diskette, or in Read-Only Memory (ROM). This implies that the same information
printed on paper has a different status. Perhaps the current generation of children,
growing up with both television and computers, will solve the official acceptance
problems with information stored as magnetic impulses. Until then, we are limited
by a society which places special emphasis on the printed word. The smart compu­
ter user creates printed documents to supplement magnetic information storage.

Another reason to keep printed records is the lack of standards among comput­
ers. At last count, there were over 50 different formats for diskette storage (all using
CP I M), making reliance on magnetic media for all readers unrealistic. In fact, even
where information can be displayed on a screen, it makes sense to save hard copy
versions of the information. Until your eye and mind are trained in using a video
display to review information, you will find that you miss errors when reviewing
documents on the screen, while you would not miss these errors if you were looking
at a printed copy. In short, since you were trained to read looking at paper, it will
take a while before you can read as accurately on a video display.

In summation, use a printer to

Save information for audit purposes

222

THE SYSTEMS ApPROACH

Make the information portable

Create human-readable information.

Making paper copies of your data also provides an additional back-up measure.
This can be especially effective if the paper copies are not stored in the same place as
the diskettes.

Modems
Many people today are finding a modem an indispensable piece of equipment for

their com puter system. It allows one system to communicate with another over the
telephone lines. Modems are available in all price ranges and features, from the
simple acoustic coupler to the advanced microprocessor controlled units. Some
widely used units are the D.C. Hayes Smartmodem, the PMMI MM-I03, and the
Novation CAT. Their features include varying data transmission rates, automatic
dial/ answer, and dialing in either touch-tone or pulse (rotary dial) mode. When
buying a modem, make sure you purchase one with everything you need. But do not
buy one with more features than you need if a less expensive unit will do. For
instance, if you intend to work at only one transmission rate, why buy a higher­
priced unit which goes up to a much higher rate when a lesser-priced unit would
adequately suit your needs? Likewise, if you need to work with touch-tone dialing,
do not get a unit that only does pulse dialing. You would be wasting your money,
since not all the features you needed would be available.

If you intend to communicate with another remote computer system via tele­
phone with the added ability to send or receive programs, data, and reports and
save what you get, then a modem control program is called for. This program is
designed to help you make the most efficient use of the modem with your system.
Typically, a program will save you the bother of remembering commands to send to
the modem and ask you plain questions about what you want to do. For example,
you have a Smartmodem and you want to dial a number, using touch-tone dialing.
Without a control program, you would have to type AT DT, then type the number.
With a control program you would be asked NUMBER? You would then type the
number, and the program would automatically send the letters and number for
you. Without a control program, you may have to resort to remembering or look­
ing up many different commands. With a control program, this aspect is
eliminated. Many programs which use the automatic dial feature allow you to store
commonly used phone numbers on your system.

This means that with a few keystrokes, the program will automatically send not
only the modem command but also the phone number as well. If you use MCI or
Sprint (low-cost long-distance phone services), this feature can be a real timesaver.
You type a few keys and the program automatically dials your special number and
code.

The real power of a control program is the saving of transmissions onto disk or
tape. Suppose you have a friend who wrote a great new game and wanted to give
you a copy of it. Without a control program, you must manually enter the game into

CHAPTER 8/ 223

CP/M USER GUIDE

your system. But with a control program, your friend sends you the game over the
modem, your program puts it in memory as it is received, and then the program is
automatically saved to disk or tape. Businesses are finding modems and control
programs increasingly valuable in everyday operations such as sending and receiv­
ing sales data, reports, and other items. And businesses operating under MP / M
with multiple phone lines and modems have found telecommunications capabilities
once found only in large systems such as the IBM 370 and similar machines. Com­
mon control programs include MODEM7, SMODEM 36, Crosstalk, and
ZTERM. MODEM7 and SMODEM 36 are public domain software, with
SMODEM 36 having been developed for use with the Smartmodem. Crosstalk is a
popular program but with one drawback-it can send and receive data for storage
on one system only if the other system is using Cros~,talk. ZTERM is considered
one of the best programs available today. U nfortunate:ly, it can only be installed on
an Apple computer. As is the case with modems, shop around for a control pro­
gram which meets your own individual needs.

Another common use for modems is accessing two popular timeshare networks,
the Source and CompuServe. Users can access the latest news, events, and stock
market quotes, learn foreign languages, play games, and take advantage of many
other features. To use them, you must have a usable credit card, and pay a cost of
between $4 and $10 per hour. If you do not mind the cost, these networks are well
worth looking into.

Many free computer bulletin boards are available across the country. A common
practice among their subscribers is sending mail to other computer users, listing
sales items, items wanted, meetings, and other related news. Much free software is
available today on these bulletin boards. Often the only cost is the cost of the tele­
phone call.

If none of the uses described above is planned by you, then a modem would be a
complete waste of money. However, if the idea of communicating with other sys­
tems, often for little or no cost, appeals to you, then a modem would a wise invest­
ment.

PROCEDURE RECOMMENDATIONS

N ow here are some recommendations to help you get started using CP / M. These
recommendations should help you use CP / M both wisely and efficiently.

Understand what you want the computer to do (see the section on system design
at the end of this chapter). Read all manuals, even if you do not understand them all
at this point. If you are confused or unsure of your skills at using the computer,
request help from an expert on microcomputers, such as your computer dealer.

Figure out how many diskettes you need, both originals and backup diskettes,
and format them for use with your version of CP / M ..

Create usable copies of all program diskettes. Never use the original diskette. The
original copy of the programs (this includes the original CP / M diskette) should be

224

THE SYSTEMS ApPROACH

put in a secure place such as a safe, safe-deposit box, or locked file cabinet. Label all
diskettes as they are created or modified. Date the label, indicating the dates you
created or modified the diskette.

Use the SYSGEN program to copy CP/ M-80 onto every diskette you will use
with your system (if you have CP / M-86, you use LDCOPY to copy CP / M-86
loader information onto every diskette's system tracks, then use PIP to copy
CPM.SYS onto each diskette). Copy the same CP / M on all diskettes; do not put a
48K CP / M-80 on one diskette and a 56K CP / M-80 on another. You never know
when you may have to reboot (warm start) CP / M because of a disk error or an
accidental interruption of the computer. If all your diskettes have the same CP / M
you will always know how to recover from the error.

Establish a rational backup procedure and stick to it. The following is recom­
mended for business applications: do not trust the computer to remember every­
thing; do not eliminate the current system you use to keep information. Keep any
information the computer prints out; file it as you would any other information.
Regard the computer as you would any other employee. If you think it is important
enough to pay for health insurance for employees, get some for the computer, too; a
service contract should guarantee the maximum length of time you will be without
a computer.

If you are using the computer to replace a current accounting or information pro­
cessing system, do not sell or throwaway the old system. If the computer provides
word processing, do not sell all your typewriters. Likewise, do not layoff every
employee who knew the old system. Occasionally your computer will have
problems, and you need to be prepared for them.

Computers are productivity boosters, not surrogate employees. Use the compu­
ter to augment your operation and increase its efficiency, not to replace people.
Making your business or personal data handling more efficient may decrease your
need for an individual's participation, but that should not be your intention, nor
should you overlook the political ramifications of such an action.

Cut out the "computerese . .. Why force someone to use a command like PIP
when it really means COPY? Use the REN command in CP / M to create program
names that are meaningful to you. Here are some starting suggestions.

Change PIP to COpy

CRUN37 to RUN

ED to EDIT

CBAS2 to COMPILE

ASM to ASSEMBLE

MOVCPM to MOVE-CPM

WS to WORDSTAR

A number of other programs can be changed so you and others using the system
can immediately recognize each disk file and not be intimidated by acronyms or

CHAPTER 8/ 225

CP / M USER GUIDE

abbreviations. In addition, ask your computer dealer to change (or show you how
to change) the following:

Change BDOS ERR ON X: to DISK ERR ON X:

Other small changes can eliminate some of the computer jargon that confuses
users. For instance, the following might be useful changes to CP 1M:

· For diskettes that include automatic execution instructions whenever
CP I M is started (or restarted), CP I M could issue the following message:

AUTO~1ATIC EXECUTION OF program name OCCURR::~m

Since some programs take a long time to load but provide no indication of
what is happening, panic sometimes sets in. "What's happening?" is a
frequent exclamation at this point and it is usually accompanied by a
strong desire to press the RESET button to start over. A message might
relieve some of the frustration.

· Programs without adequate techniques to hand It: errors can be improved
by telling the programmer to make sure that the program notifies the user
of the error and by providing an option to retry rather than to abort the
program and return to CP 1M. You should have the error messages in your
program rewritten so that you cannot ignore them. Error messages that
require you to consult a manual for further interpretation are poor error
messages.

· Train everyone who will be using the computer. This book will fulfill a por­
tion of this need. Also, choose a computer dealer who will not desert you
but will provide training and education. Learn the computer procedures
yourself. It's not wise to have only one employee who can "run the system."

If you implement these suggestions, make sure that you change the appropriate
places in the manuals that came with your system. Otherwise, you may end up being
more confused than ever.

The microcomputer industry is a young and competitive one. Share your prob­
lems with others. There are a number of publications that pride themselves on
being advocates of the computer user. These include Info World, Kilobaud Micro­
computing, Creative Computing, and Interface Age. Let others know of your
problems and frustrations. Do not continue to buy products from a firm that you
are not satisfied with.

THE SYSTEMS APPROACH

This issue is not directly related to CP I M but may affect your ability to use it.
Many computer users should not be using computers. Often our society believes it
can solve any problem with new and better technology. This just is not true. To

226

THE SYSTEMS ApPROACH

make sure you do not fall into the technology trap, stop and analyze your current
use of the computer. See if you can answer the following questions:

Did you buy the computer because someone promised it would solve
specific problems? Did you believe that promise?
Did you buy the computer because you were fascinated by technology?
Can you do the work the computer does just as efficiently by hand?
Is the computer used less than an hour a day?

Does the computer take up too much of your time for the results achieved?
If you were offered the same deal again, would you decline it?

If you answered yes to any of these questions, chances are you have not devel­
oped a systems approach to using your computer. The key word is systems. Systems
implies that the computer is used in a systematic, logical fashion.

Consider this example to clarify what we mean by systems approach. You work
for a company that sells tennis equipment by mail. You wish to computerize order
processing, inventory, and periodic reports of mail and phone orders for your chief
executive officer. You can buy a computer and software to perform the order pro­
cessing, inventory, and report tasks, but is that all you need? Definitely not.

Your company receives orders through the mail and, occasionally, by phone.
Your computer system must detail how the computer receives mail and phone in­
formation (remember, mail is received only once a day in most companies, while
the phone can ring at any time). In addition, you receive the invoices, merchandise,
packing slips, and pricing updates from wholesale companies. The computer must
receive this information, too. In fact, the computer must have inventory before it
can begin selling goods. And how can the computer keep track of order cancella­
tions, queries about order status, lost merchandise, and damaged goods?

Suppose your company employs ten people in addition to its chief executive
officer. Do all ten use the computer? Does everyone in the firm have access to all the
information stored in the computer? Does everyone in the firm need access to all the
information stored in the computer?

In practice, a computer is generally a small part in an overall system. Paperwork
still exists and gets passed from person to person. In the case of a retail business you
can't computerize the merchandise; it still needs to be stored somewhere, identified,
and processed for shipping.

To assure that the computer ties in with the other parts of the system, you must
talk with the people who sell you your computer and software. If more than one
firm is involved, bring them together for the discussion. Make sure that everyone
knows you are looking for a complete integration of the computer into your busi­
ness environment. Deal only with people who accept a systems approach to prob­
lems. Remember, a computer dealer who knows everything about wait state,
NAND gates, and vectored interrupts but nothing about cash flow, inventory
valuation, and charge card procedures, will be of no use to a business like yours.

These discussions will inform you which computer equipment and software you
need as well as how the computer will fit into your operating environment. You

CHAPTER 8/ 227

CP / M USER GUIDE

may find it helpful to create a systems flowchart to learn how your business really
works (track the progress of each physical item your business deals with through
every process it goes through).

Once you are positive the computer and software will work for your system
instead of against it, proceed with the acquisition. See demonstrations ofthe equip­
ment and software functioning as it will in your environment. A computer store will
use a computer for some portion of their own operations. If not, they are not inter­
ested in users, they are hardware freaks, and they are more interested in computers
as toys or gimmicks.

Train personnel and prepare the business for the computer before the computer
arrives, not afterward. Where will you place it? Does it need a special environment?
Does everyone have to learn typing? Many more questions need to be considered
before the equipment arrives and you try to use it.

What about your old system? If you currently prepare all the order and inventory
records by hand, do you stop writing? There are several approaches to introducing
a new computer system. You may start using the new system

Cold turkey
One day you stop using the old system and start using the new one.

Phased in
You separate each task into its component parts and convert them one at a
time. When one part works fine on the new system, you convert the next
part. It is a series of small "cold turkeys."

Parallel
Use your old system and the new system at the same time. You can com­
pare the two side by side to ensure the new system performs the job
correctly and completely. You can easily show employees the differences
between the systems.

Now look at your projected use of the computer. Is it part of a system? Do the rest
of the pieces work with the computer, or is the comput1er isolated from other proce­
dures?

To reiterate the lessons of this section, remember

A computer is a tool

A computer is not a complete solution to any problem

You control the com puter, not vice versa.

Buyinga computer is not a necessity. Evaluate how a computer relates to all your
business needs.

What Next?

It is somewhat amazing that an operating system that only has a handful of built­
in commands takes more than 200 pages to describe in full. In a way, this is an
indication of the complexity that computer software users must still deal with.

228

THE SYSTEMS ApPROACH

At the same time, however, it is hoped that this book presents more information
than you will ever need about CP / M-80 and CP/ M-86. If you use CP / M on your
computer and just want to learn more about it, reading through this book one or
more times will probably give you enough background to deal with the day-to-day
details that the use ofCP / M implies. In addition, the layout of this book should be
clear enough so that when a particular question does come up, you can turn right to
the answer.

Therefore, for most CP / M users, the answer to the question "what next?" is to
use the computer and keep this book nearby.

If you are curious, a computer hobbyist, or perhaps even a computer profes­
sional, you should not stop after you have finished reading this book. Use the
annotated bibliography in the appendix of this book to find more information of
interest to you. Use the chapter on the technical aspects of CP / M-80 and CP / M-86
to begin experimenting. Ask your local computer dealer if there are any user groups
in your area, and if so, join one. If there are none, consider starting one. In short, do
not consider this book the last word on CP / M -it isn't.

CHAPTER 8/ 229

APPENDIX

A CP/M COMMAND
SUMMARY

This appendix summarizes the command line format and the function of each
CP / M-80 and CP / M-86 built-in and transient command. The commands are listed
in alphabetical order.

In the space below, fill in the command line format for your disk copy and disk
format (initialize) programs. See Chapter 5 for more information.

231

CP/M USER GUIDE

ASM Command Lines

ASM fllename<cr>

Assemble the file filename.ASM; use the currently logged disk for all files.

ASM fllename.opt<cr>

Assemble the file filename.ASM on drive 0: (A:,B:, ... ,P:). Write HEX file on
drive p: (A:,B:, ... ,P:), or skip if p: is Z:.

Write PRN file on drive t: (A:,B:, ... ,P:), send to console if p: is X:, or skip if p: is
Z:.

ASM-86 Command Lines

ASM-86 fllename.typ $optlons

Assemble the file filename.A86 (or filename.typ if type is specified) using the
options specified.

Ad Source drive (filename.A86)
Hd Hex code drive (filename.H86)
Pd Print drive (filename.LST)
Sd Symbol table drive (filename.SYM)
Fx Format of hex file (D = Digital Research, I = label)

DDT or DDT-86 Command Lines

OOT<cr> or 00T-86<cr>

Loads DDT and waits for DDT commands.

DDT :fllename.typ<cr> or 00T-86 :fllename.typ<cr>

Loads DDT into memory and also loads filename.typ from drive x: into memory
for examination, modification, or execution.

DDT Command Summary

Assss

Enter assembly language statements beginning at hexadecimal address ssss.

Bssss,ffff ,cccc

Compare blocks of memory (DDT-86).

o
Display the contents of the next 192 bytes of memory.

232

CP/ M COMMAND SUMMARY

Dssss,ffff

Display the contents of memory starting at hexadecimal address ssss and finish­
ing at hexadecimal address ffff.

Efllename.type

Load program for execution (DDT-86).

Fssss,ffff ,CC

Fill memory with the 8-bit hexadecimal constant cc starting at hexadecimal
address ssss and finishing with hexadecimal address ffff.

Fwssss,ffff,cccc

Fill memory with 16-bit hex constant ecce (DDT-86).

G

Begin execution at the address contained in the program counter.

G,bbbb

Set a breakpoint at hexadecimal address bbbb, then begin execution at the
address contained in the program counter.

G,bbbb,cccc

Set breakpoints at hexadecimal addresses bbbb and ecce, then begin execution at
the address contained in the program counter.

Gssss

Begin execution at hexadecimal address ssss.

Gssss,bbbb

Set a breakpoint at hexadecimal address bbbb, then begin execution at hexadec­
imal address ssss.

Hx,Y

Hexadecimal sum and difference of x and y.

Ifllename.typ

Set up the default file control block using the name filename.typ.

L

List the next eleven lines of assembly language program disassembled from
memory.

ApPENDIX AI 233

CP/M USER GUIDE

Lssss

List eleven lines of assembly language program disassembled from memory
starting at hexadecimal address ssss.

Lssss,ffff

List the assembly language program disassembled from memory starting at
hexadecimal address ssss and finishing at hexadecimal address ffff.

Mssss,ffff ,dddd

Move the contents of the memory block starting at hexadecimal address ssss and
ending at hexadecimal address ffff to the block of memory starting at hexadecimal
address dddd.

R

Read a file from disk into memory (use "I" command first).

Rnnnn
Read a file from disk into memory beginning at the hexadecimal address nnnn

higher than normal (use "I" command first).

Rfllename (DDT-86)
Read file into memory for debugging.

Sssss

Display the contents of memory at hexadecimal address ssss and optionally
change the contents.

Tnnnn
Trace the execution of (hexadecimal) nnnn program instructions.

Tsnnn
Trace execution and show all registers (DDT-86).

Unnnn
Execute (hexadecimal) nnnn program instructions, then stop and display the

CPU register's contents.

Usnnn

Execute nnnn program instructions, then display all registers (DDT-86).

v
Show memory layout after disk read (DDT-86).

234

CPj M COMMAND SUMMARY

Wfilename.typ,ssss,ffff

Write memory from ssss to ffff into filename.typ (DDT-86).

x
Display the CPU register's contents.

Xr

Display the contents of CPU register or Flag r and optionally change it.

DIR Command Lines

DIRx:<cr>

Displays directory of all files on drive x:. Drive x: is optional; if omitted, the
currently logged drive is used.

DIR x:fllename.typ<cr>

Displays directory of all files on drive x: whose names match the ambiguous or
unambiguous filename.typ. Drive x: is optional; if omitted, the currently logged
drive is used.

DIRS (CP/M-86)

Displays names of system files. Otherwise it functions like DIR.

DUMP Command Line (CP/M-80)

DUMP x:fllename.typ <cr >

Displays the hexadecimal representations of each byte stored in the file
filename.typ on drive x:. Iffilename.typ is ambiguous, displays the first file which
matches the ambiguous file name.

ED Command Line

ED:fllename.typ<cr>

Invokes the editor, which then searches for filename.typ on drive x: and creates a
temporary file x:fiJename.$$$ to store the edited text. The filename.typ is unambig­
uous. Drive x: is optional; if omitted, the currently logged drive is assumed.

ED Command Summary

NOTE: Non-alphabetic commands follow the "Z" command.

nA
Append lines. Moves "n" lines from original file to edit buffer.

OA moves lines until edit buffer is at least half full.

ApPENDIX Aj 235

+/-B
Begin/ Bottom. Moves CPo

+ B moves CP to beginning of edit buffer
- B moves CP to end of edit buffer.

+/-nC
Move by characters. Move CP by "n" character positions.

+ moves forward
-moves backward.

+/-nO

CP i M USER GUIDE

Delete characters. Deletes "n" characters before or a.fter the CP in the edit buffer.

+ deletes before the CP
-deletes after the CPo

E

End. Ends edit, closes files, and returns to CP / M; normal end.

nFstrlng"Z
Find string. Find the "n"th occurrence of string, beginning the search after the

CPo

H

Move to head of edited file. Ends edit, renames files, and then edits former
temporary file.

I<cr>
Enter insert mode. Text from keyboard goes into edit buffer after the CP; exit

with CONTROL-Z.

Istring"Z

Insert string. Inserts string in edit buffer after the CPo

Istrlng<cr>

Insert line. Inserts string and CRLF in the edit buffer after the CPo

nJtlndstrlng" Zinsertstring" Zendstrlng" Z

Juxtaposition. Beginning after the CP, finds find string, inserts insertstring after
it, then deletes all following characters up to but not including end string; repeats
until performed "n" times.

236

CPj M COMMAND SUMMARY

+/-nK
Kill lines. Deletes "n" lines.

+ deletes after the CP
- deletes before the CPo

+/-nL
Move by lines. Moves the CP to the beginning ofthe line it is in, then moves the

CP "n" lines forward or backward.
+ moves forward
- moves backward.

nMcommandstrlng A Z

Macro command. Repeats execution of the ED commands in commandstring
"n" times. "n" = O,"n" = I, or "n" absent repeats execution until error occurs.

nNstrlng"Z
Find string with autoscan. Finds the "n"th occurrence of string, automatically

appending from original file and writing to temporary file as necessary.

o
Return to original file. Empties edit buffer, empties temporary file, returns to

beginning of original file, ignores previous ED commands.

+/-nP
Move CP and print pages. Moves the CP forward or backward one page, then

displays the page following the CPo "nP" displays "n" pages, pausing after each.

Q

Quit edit. Erases temporary file and block move file, ifany, and returns to CP / M;
original file is not changed.

R<cr>
Read block move file. Copies the entire block move file X$$$$$$$. LIB from disk

and inserts it in the edit buffer after the CP.

Rfllename <cr >
Read library file. Copies the entire file filename with extension LIB from the disk

and inserts it in the edit buffer after the CPo

nSflndstrlng A Zreplacestrlng" Z

Substitute string. Starting at the CP, repeats "n" times: finds find string and
replaces it with replacestring.

ApPENDIX AI 237

+/-nT
Type lines. Displays "n" lines.

+ displays the "n" lines after the CP

- displays the "n" lines before the CPo

If the CP is not at the beginning of a line

OT displays from the beginning of the line to the: CP

T displays from the CP to the end of the line

OTT displays the entire line without moving the CPo

+/-u

CP / M USER GUIDE

Upper case translation. After + U command, alphabetic input to the edit buffer is
translated from lower-case to upper-case; after - U, no translation occurs.

ov
Edit buffer free space/ size. Displays the decimal number of free (empty) bytes in

the edit buffer and the total size of the edit buffer.

+/-v
Verify line numbers. After +V, a line number is displayed with each line dis­

played; ED's prompt is then preceded by the number of the line containing the CPo
After -V, line numbers are not displayed, and ED's prompt is "*."

nW

Write lines. Writes first "n" lines from the edit buffer to the temporary file; deletes
these lines from the edit buffer.

nX
Block transfer (Xfer). Copies the "n" lines following the CP from the edit buffer

to the temporary block move file X$$$$$$$.LIB; adds to previous contents of that
file.

nZ
Sleep. Delays execution of the command which follows it. Larger "n" gives longer

delay, smaller "n" gives shorter delay.

n:

Move CP to line number "n." Moves the CP to the beginning of line number "n"
(see "+ /-V").

:m
Continue through line number "m." A command prefix which gives the ending

point for the command which follows it. The beginning point is the location of the
CP (see "+ /-V").

238

CP/M COMMAND SUMMARY

+/-n
Move and display one line. Abbreviated form of + j-nLT.

ERA Command Lines

ERA x:fllename.typ<cr>

Erase the file filename.typ on the disk in drive x:. The filename andj ortyp can be
ambiguous. Drive x: is optional; if omitted, the currently logged drive is used.

ERA x:*.*<cr>
Erase all files on the disk in drive x:. Drive x: is optional; if omitted, the currently

logged drive is used.

GENCMD Command Line (CP/M-86)

GENCMD filename options

Convert hexadecimal object file type (H86) into executable CMD type file.
Options include 8080 model and setting of CODE, DATA, STACK, and EXTRA
segment registers.

Line Editing Commands

CONTI~OL-C

Restarts CP j M if it is the first character in command line. Called warm start.

CONTlK>L-E

Moves to beginning of next line. Used for typing long commands.

CONTROL-H or BACKSPACE

Deletes one character and erases it from the screen (CP j M version 2.0 and
newer).

CONTROL-J or LINE FEED

Same as CARRIAGE RETURN (CP j M version 2.0 and newer).

CONTROL-M

Same as CARRIAGE RETURN «cr».

CONTROL-P

Turns on the list device (usually your printer). Type it again to turn off the list
device.

CONTROL-R

Repeats current command line (useful with version 1.4); it verifies the line is

ApPENDIX AI 239

CP/M USER GUIDE

corrected after you delete several characters (CP I M version 1.4 and newer).

CONTROL·S

Temporarily stops display of data on the console. Press any key to continue.

CONTROL-U or CONTROL-X

Cancels current command line (CP I M version 1.4 and newer).

RuBOUT (RUB) or DELETE (DEL)

Deletes one character and echoes (repeats) it.

LOAD Command Line (CP/M-80)

LOAD x:fllename<cr>

Reads the file filename. HEX on drive x: and creates the executable program file
filename.COM on drive x:.

MOVCPM Command Line (CP/M-80)

MOVCPM<cr>

Prepare a new copy of CP I M which uses all of memory; give control to the new
CP I M, but do not save it on disk.

MOVCPM nn <cr >

Prepare a new copy of CP I M which uses "nn" K bytes of memory; give control to
the new CP/M, but do not save it on disk.

MOVCPM * *<cr>
Prepare a new copy of CP I M, which uses all of memory, to be saved with

SYSGEN or SAVE.

MOVCPM nn *<cr>

Prepare a new copy of CP I M, which uses "nn" K bytes of memory, to be saved
with SYSGEN or SAVE.

The "nn" is an integer decimal number. It can be 16 through 64 for CP 1M 1.3 or
1.4. For CP 1M 2.0 and newer "nn" can be 20 through 64.

PIP Command Lines

PIP<cr>

Loads PIP into memory. PIP prompts for commands, executes them, then
prompts again.

240

CPIM COMMAND SUMMARY

PIP plpcommandllne<cr>

Loads PIP into memory. PIP executes the command pipcommandline, then exits
to CP/M.

PIP Command Summary

x:new.typ=y:old.typ(p]<cr>

Copies the file old.typ on drive y: to the file new.typ on drive x:, using parameters
p.

x:new.typ=y:old 1.typ[p].z:Old2.typ[q]<cr >

Creates a file new.typ on drive x: which consists of the contents of file oldl.typ on
drive y: using parameters p followed by the contents of file 01d2. typ on drive z: using
parameters q.

x:fllename.typ=dev:[p]<cr>

Copies data from device dev: to the file filename.typ on drive x:.

dev:=x.1I1ename.typ[p] <cr>

Copies data from filename.typ on drive x: to device dev:.

dst:=src:[p]<cr>

Copies data to device dst: from device src:.

PIP Parameter Summary

B
On

E
F

Gn

H
I

L
N

o
Pn

Qs"Z

R

Ss"Z

Tn

Specifies block mode transfer.
Deletes all characters after the "n "th column.

Echoes the copying to the console as it is being performed.

Removes form feed characters during transfer.

Directs PIP to copy a file from user area "n."

Checks for proper Intel Hex File format.

Ignores any :00 records in Intel Hex File transfers.

Translates upper-case letters to lower-case.

Adds a line number to each line transferred.

Object file transfer (ignores end-of-file markers).

Issues page feed after every "n"th line.

Specifies quit of copying after the string "s" is encountered.

Directs PIP to copy from a system file.

Specifies start of copying after the string "s" is encountered.

Sets tab stops to every "n"th column.

ApPENDIX AI 241

U Translates lower-case letters to upper-case.

V Verifies copy by comparison after copy finished.

W Directs PIP to copy onto an R/O file.

Z Zeroes the "parity" bit on ASCII characters.

PIP Destination Devices

CON: PUN: LST:

TTY: PTP: LPT:
CRT: UPl: ULl:
UCI: UP2:

OUT: PRN:

PIP Source Devices

CON: RDR:

TTY: PTR:
CRT: URI:
UCI: UR2:

NUL: EOF: INP:

REN Command Line

Logical devices

Physical devices

Special PIP devices

Logical devices

Physical devices

Special PIP devices

REN newname.typ = oldname.typ <cr >
Finds the file oldname.typ and renames it newname.typ.

SAVE Command Line (CP/M-80)

SAVE nnn x:fllename.typ<cr>

CP I M USER GUIDE

Saves a portion of the Transient Program Area of memory in the file filename.typ
on drive x: where nnn is a decimal number representing the number of pages of
memory. Drive x: is the option drive specifier.

STAT Command Lines

STAT<cr>

Displays attributes and amount offree space for all diskette drives accessed since
last warm or cold start.

STATx:<cr>

Displays amount of free space diskette in drive x:.

242

CP/M COMMAND SUMMARY

STAT x:fllename.typ <cr > (CP/M 2.0 and newer)

Displays size and attributes offile(s) filename.typ on drive x:. filename.typ may
be ambiguous. x: is optional; if omitted, currently logged drive is assumed.

STAT x:fllename.typ $atr<cr>

Assigns the attribute atr to the file(s) filename.typ on drive x:. File filename.typ
may be ambiguous. Drive x: is optional; if omitted, currently logged drive is
assumed.

STAT DEV:<cr>

Reports which physical devices are currently assigned to the four logical devices.

STATVAL:<cr>

Reports the possible device assignments and partial ST AT command line
summary.

STAT log:=phy: <cr >
Assigns the physical device phy: to the logical device log: (may be more than one

assignment on the line; each should be set off by a comma).

STAT USR:<cr> (CP/M 2.0 and newer)

Reports the current user number as well as all user numbers for which there are
files on currently logged disks.

STAT x:DSK:<cr> (CP/M 2.0 and newer)

Reports the characteristics of disk drive x:.

STAT x:=R/O<cr> (CP/M 1.4 and newer)

Assigns a temporary write-protect status to drive x:.

SUBMIT Command Lines

SUBMIT fllename<cr>

Creates a file $$$.SUB which contains the commands listed in filename. SUB;
CP! M then executes commands from this file rather than the keyboard.

SUBMIT filename parameters <cr >
Creates a file $$$.SUB which contains commands from the file filename.SUB;

certain parts of the command lines in filename.SUB are replaced by parameters
during creation of $$$.SUB. CP! M then gets commands from this file rather than
the keyboard.

ApPENDIX AI 243

SYSGEN Command Line

SYSGEN <cr>

CP / M USER GUIDE

Loads the SYSGEN program to transfer CP I M from one diskette to another.

TOO (CP/M-86)

TOO Options

Sets or displays time of day clock.

TYPE Command Line

TYPE x:filename.typ<cr>

Displays the contents of file filename.typ from drive x: on the console.

USER Command Line

USER n<cr>
Sets the User Number to "n," where "n" is an integer decimal number from 0 to

15, inclusive.

x: Command Line

x:<cr>
Changes the currently logged disk drive to drive x:. Drive x: can be "A" through

"P."

244

APPENDIX

B ASCII Character
Codes

The American Standard Code for Information Interchange (ASCII) consists of a
set of 96 displayable characters and 32 non-displayed characters. Most CP 1M
systems use at least a subset of the ASCII character set. When CP I M stores
characters on a diskette as text, the ASCII definitions are used.

Several of the CP/M utility programs use the ASCII Character Code. Text
created using ED is stored as ASCII characters on diskette. DDT and DDT-86,
when displaying a "dump" of the contents of memory, display both the hexadecimal
and ASCII representation of memory's contents.

ASCII does not use an entire byte of information to represent a character. ASCII
is a seven-bit code, and the eighth bit is often used for parity. Parity is an error­
checking method which assures that the character received is the one transmitted.
Many microcomputers and microcomputer devices ignore the parity bit, while
others require one of the following two forms of parity:

Even Parity
The number of binary l's in a byte is always an even number. If there is an
odd number of 1 's in the character, the parity bit will be a 1; if there is an
even number of l's in the character, the parity bit is made a O.

Odd Parity
The number of binary l's in a byte is always an odd number. If there is an
even number of l's in the character, the parity bit will be a 1; if there is an
odd number of l's in the character, the parity bit is made a O.

Alternative ways of coding the information stored by the computer include the
eight-bit EBCDIC (Extended Binary Coded Decimal Interchange Code), used by
IBM, and a number of packed binary schemes, primarily used to represent numeri­
cal information.

245

CP/M USER GUIDE

TABLE B-1. ASCII Character Codes

b7- 0 0 0 0 I I I I
b6- 0 0 I I 0 0 I I
b5- 0 I 0 I 0 I 0 I

b4 b3 b2 bl ~. Row 0 I 2 3 4 5 6 7

0 0 0 0 0 NUL DLE SP 0 @ P
,

P
0 0 0 I I SOH DCI ! I A Q a q
0 0 I 0 2 STX DC2 " 2 B R b r
0 0 I I 3 ETX DC3 # 3 C S c s
0 I 0 0 4 EOT DC4 $ 4 D T d t
0 I 0 I 5 ENQ NAK % 5 E U e u
0 I I 0 6 ACK SYN & 6 F V f v
0 I I I 7 BEL ETB

, 7 G W g w
I 0 0 0 8 BS CAN (8 H

I
X h x

I 0 0 I 9 HT EM) 9 I Y i Y
I 0 I 0 10 LF SUB * : J Z j z
I 0 I I II VT ESC + , K [k {
I I 0 0 12 FF FS

, < L \ I I
I I 0 I 13 CR GS - = M] m }
I I I 0 14 SO RS > N 1\ n -
I I I I 15 SI US / ? 0 - 0 DEL

NUL Null DCl Device control I
SOH Start of heading DC2 Device control 2
STX Start of text DC3 Device control 3
ETX End of text DC4 Device control 4
EOT End of transmission NAK Negative acknowledge
ENQ Enquiry SYN Synchronous idle
ACK Acknowledge ETB End of transmission block
BEL Bell, or alarm CAN Cancel
BS Backspace EM End of medium
HT Horizontal tabulation SUB Substitute
LF Line feed ESC Escape
VT Vertical tabulation FS File separator
FF Form feed GS Group separator
CR Carriage return RS Record separator
SO Shift out US Unit separator
SI Shift in SP Space
OLE Data link escape DEL Delete

246

ASCII CHARACTER CODES

TABLE B-2. ASCII Character Codes in Ascending Order

Hexadecimal

00
01
02
03
04
05
06
07
08
09
OA
OB
OC
OD
OE
OF
10
11
12
13
14
15
16
17
18
19
lA
IB
lC
ID
IE
IF

20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F

Binary

0000000
0000001
0000010
0000011
0000100
0000101
0000110
0000111
0001000
000 1001
0001010
000 1011
000 1100
000 1101
0001110
0001111

0010000
0010001
0010010
0010011
0010100
0010101
001 0110
0010111
001 1000
001 1001
001 1010
001 1011
001 1100
001 1101
0011110
001 1111

010 0000
010 0001
010 0010
010 0011
010 0100
0100101
0100110
0100111
010 1000
010 1001
010 1010
010 1011
0101100
010 1101
0101110
010 1111

ASCII

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
SI

DLE
DCl
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
US

SP

$
%
&

*
+

Hexadecimal

30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F

50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F

Binary

011 0000
0110001
0110010
011 0011
011 0100
0110101
0110110
0110111
011 1000
011 100 I
0111010
011 1011
0111100
0111101
0111110
0111111

1000000
1000001
1000010
1000011
1000100
1000101
1000110
10001 I I
1001000
1001001
100 1010
100 1011
100 1100

·100 1101
100 1110
1001111

1010000
101 0001
101 0010
101 0011
101 0100
1010101
1010110
1010111
101 1000
101 1001
101 1010
101 1011
101 1100
101 1101
1011110
1011111

ASCII

o
I
2
3
4
5
6
7
8
9

,
<

>
?

A
B
C
D
E
F
G
H
I
J
K
L
M
N
o
P
Q
R
S
T
U
V
W
X
Y
Z
[
\
]

ApPENDIX BI 247

CP I M USER GUIDE

TABLE B-2. ASCII Character Codes in Ascending Order (continued)

Hexadecimal Binary ASCII Hexadecimal Binary ASCII

60 1100000 70 111 0000 p
61 110 0001 a 71 1110001 q
62 110 0010 b 72 1110010 r
63 1100011 c 73 111 0011 s
64 1100100 d 74 1110100 t
65 1100101 e 75 1110101 u
66 1100110 f 76 111 0110 v
67 1100111 g 77 111 0111 w
68 110 1000 h 78 111 1000 x
69 1101001 i 79 1111001 Y
6A 110 1010 j 7A 111 1010 z
6B 1101011 k 7B 1111011 {
6C 110 1100 I 7C 1111100 I
6D 110 1101 m 7D 1111101 }
6E 110 1110 n 7E III 1110 -
6F 1101111 0 7F 1111111 DEL

248

APPENDIX

c
Comparison of CP/M-80
Versions 1.3, 1.4, and 2.2,
And CP/M-86

TABLE Col. Line Editing Commands

Command Version 1.3 Version 1.4 Version :Z.:Z CP/M-86

CONTROL-C Yes Yes Yes Yes
CONTROL-E No Yes Yes Yes
CONTROL-H or No No Yes Yes

BACKSPACE

CONTROL-J or No No Yes Yes
LINE FEED

CONTROL-M or Yes Yes Yes Yes
CARRIAGE RETURN

CONTROL-P Yes Yes Yes Yes
CONTROL-R No Yes Improved Improved
CONTROL-S Yes Yes Yes Yes
CONTROL-U Yes Yes Improved Improved
CONTROL-X No Same as BACKSPACE Yes

CONTROL-U and ERASE
DELETE or Yes Yes Yes Yes

RUBOUT

249

CPj M USER GUIDE

TABLE C-2. New or Changed Commands

Command Version 1.3 Version 1.4 Version 2.2 CP/M-86

DIR Yes Yes New: Yes
Displays 4 file
names per line.
Displays only
DIR file: names.
Displays file names
for current user
only.

DIRS No No No Displays all files,
including system
files.

ED Yes New: New: Yes
+I-V OX +V is default.
OV nnnn: Cannot alter RIO
nX :mmmm file. Cannot access

Singly only: SYS file:.
E,H,Q,OTabs
always echo as
spaces.

ERA Yes New: New: Yes
Asks ALL? after Erases files of
ERA *.* current user only.

PIP Yes New: New parameters: Yes
Option parameters. Gn
Physical device R
names. W
Ambiguous
file names.

SAVE Yes Yes New: No
Does not alter user (see DDT-86)
memory (TP A).

STAT Yes New: New: Yes
Displays free disk Displays size of VAL: menu
space only. each file. DSK:

log:=phy: x:DSK:
x:=R/O USR:

Detects switched $S
disks. Displays File attributes:
free space on all R/W, RIO
active disks. DIR, SYS

SUBMIT Yes Yes New: Yes
XSUB (No XSUB)

USER No No Yes Yes

250

COMPARISONS OF CPI M-80 AND CPI M-86

TABLE C-3. Disk Differences

Item Version 1.3 Version 1.4 Version 2.2 CP/M-86

Maximum number 2 4 16 16
of drives

Maximum storage I Mbyte I Mbyte 16 Mbyte 16 Mbyte
per drive

Maximum number 64 64 Expandable Expandable
of files

Access method Sequential Sequential Sequential Sequential
or random or random

Location of disk BDOS Disk para- BIOS BIOS
characteristics meter block

TABLE C-4. New or Changed BDOS Functions

Function Version 1.3 Version 1.4 Version 2.2 CP/M-86

6-Direct Console 110 No No Yes Yes
IO-Read Console buffer Yes Yes Improved Improved

line editing line editing
12-(see right) Lift disk Lift disk Return Return

head head version version
number number

15-0pen File Yes Yes Improved Improved
17-Search for Yes Yes Improved Improved

First
18-Search for Yes Yes Improved Improved

Next
19-Delete File Yes Yes Improved Improved
22-Make File Yes Yes Improved Improved
23-Rename File Yes Yes Improved Improved
24-Return Yes Yes Improved Improved

Login vector
28 through 36 No No Yes Yes

ApPENDIX C/ 251

APPENDIX

D CP/M Prompts

x>
nx>

*
*

*

CP I M waiting for command; drive x: is currently logged drive.
MP I M waiting for command; drive x: is currrently logged

drive; current user number is "n."

PIP waiting for command.
ED waiting for command.
ED waiting for command; character pointer is at line number

"nnnn."
Also used by Microsoft BASIC, EDIT, FORTRAN, COBOL,

and Pascal when waiting for a command.
DDT waiting for command.

In the space below, write in the prompts of other programs you use.

253

APPENDIX

E DiskeHe Selections

Within each category below, diskettes may be single-density or double-density.
Be sure to choose the proper density for your system. Double-density systems can
usually be operated in single-density mode, so you may be using both varieties if you
have such a system.

Systems Which Use 8-lnch
Soft-Sectored Diskettes
Altos
Cromemco FDC Controller
Cromemco System 3
Delta
Digital Microsystems
Discus
Dynabyte DB8/4
Godbout
iCOM 3712,3812
IMS 8000
IMSAI FDC2
IMSAI VDP-80
Intecolor (ISC) 8063, 8360, 8963
Intel MDS
Micromation
Morrow Discus
Mostek
Ohio Scientific C3
Pertec PCC 2000

255

Processor Technology Helios
Radio Shack TRS-80 Model II
Radio Shack TRS-80 Model

1/ Micromation
Radio Shack TRS-80 Model

I/Omikron
Radio Shack TRS-80 Model

1/ Shuffleboard
Research Machines
SD Systems
Spacebyte
Tarbell
TEl
Thinker Toys
TRS-80. See Radio Shack
Vector Graphic System 2800

Systems Which Use 8-lnch
Hard-Sectored DlskeHes
MITS 3200, 3202
Processor Technology Helios II

Systems Which Use 5Ua-lnch
Soft-Sectored DlskeHes
Apple/SoftCard
AVL Eagle
BASF System 7100
Cromemco Z2D
DEC VTl80
Digi-Log Microterm II
Durango F-85
Gnat
IBM Personal Computer
Hewlett-Packard HP-80 Series
Heath/ Zenith double-density
iCOM 2411 Micro Floppy
IMS 5000
IMSAI VDP-40, -42, -44
Intertec SuperBrain
Kontron PSI-80
MSD
Osborne I
Polymorphic 8813

256

CP/M USER GUIDE

DISKETTE SELECTIONS

Quay 500, 520
Radio Shack TRS-80 Model I
Radio Shack TRS-80 Model

II FEC Freedom
Radio Shack TRS-80 Model

I/Omikron
RAIR
Research Machines
Sanco 7000
SO Systems
SuperBrain. See Intertec
TEl
Quay
Vector Graphic (current systems)
Xerox 820

Systems Which Use 5%-lnch
Hard-Sectored 10-Sector DlskeHes
Heath H8 and H17, H27
Heath H89
Horizon
Meca
North Star Horizon
Vista V80
Vista V200
Zenith Z89

Systems Which Use 5%-lnch
Hard-Sectored 16-Sector DlskeHes
Blackhawk (40 TPI)
CDS Versatile 3B (40 TPI)
CDS Versatile 4 (100 TPI)
COMPAL-80 (100 TPI)
Oynabyte (Some Models)
Exidy Sorcerer (100 TPI)
Micropolis Mod 1(40 TPI)
Micropolis Mod II (100 TPI)
Nylac (40 TPI, 100 TPI)
REX (40 TPI)
Sorcerer. See Exidy
Vector Graphic (100 TPI)
Vector MZ (100 TPI)
Versatile. See C~S .

ApPENDIX Ej 257

APPENDIX

F Annotated
Bibliography

CP/M General

Ballinger, Charles. "HDOS or CP I M?" Interface Age, September 1980, pp. 88-91.
Compares two disk operating systems available for Heath computers.

Brigham, Bruce, ed. CP/ M Summary Guide. Glastonbury, Ct.: Rainbow Associates,
1980.

The book reprints and summarizes the commands available with CP 1M,
DESPOOL, MAC, TEX, CBASIC, and BASIC-80 from Microsoft. A useful
computer-side reference.

Epstein, Jake, and Terry, Chris. "Introduction to CP I M; The CP I M Connection."
SIOO Microsyslems, September/October 1980, pp. 10-32.

Continuation of a series of CP / M articles.

Fernandez, Judi, and Ashley, Ruth. Using CP/M. New York: John Wiley Sons,
1980.

A self-teaching book that uses a question and answer format while conveying
technical information. A quick primer of CP I M commands and syntax.

Fritzon, Richard. "The New CP/M: Is It Worth It?" Kilobaud Microcomputing,
July 1980, p. 66.

Quickly summarizes the differences between versions 1.4 and 2.0 of CP 1M.

259

CP/ M USER GUIDE

Miller, Alan. "Diagnostics Package for CP/M." Interface Age, October 1980,
. p. 104.

Reviews the Supersoft CP / M Diagnostics pac:kage; these programs test
memory, CPU, disk, printer, and console.

North, Steve. "The CP/M Disk Operating System." Creative Computing,
November/December 1978, pp. 52-53.

A short summary of the CP / M operating system and the programs that
accompany it.

Stewart, John. "CP / M Primer; A Most Sophisticated Operating System." Kilo­
baud Microcomputing, April 1978, pp. 30-34.

An early detailed description of the CP / M operating system.

"U pgraded CP/M Floppy Disc Operating System." Dr. Dobbs, November 1976,
p. 51.

A detailed summary of the features of CP / M revision 1.4. Includes descrip­
tions of the accompanying 1.4 manuals.

Warren, Jim. "First Word on a Floppy-Disc Operating System." Dr. Dobbs, April,
1976, p. 5.

Provides first available information on CP / M.

___ . "The Time for Floppy's Is Just About Now!" Dr. Dobbs, August, 1976,
p.5.

Reviews the available floppy disk systems of the time and summarizes CP 1M's
features.

Zaks, Rodnay. The CP/ M Handbook with MP/ M. Berkeley: Sybex, 1980.
Discusses CP / M and MP I M commands, programs, and facilities.

CP/M Compatible Software

Collins, Rosann; Hines, Theodore; and Rowan, George. "Manipulating Pencil
Files; Convert Them to BASIC." Creative Computing, August 1979, pp. 98-99.

Illustrates how to use files created with Electric Pencil using Processor Tech­
nology's BASIC; applicable to many different CP / M compatible BASICs.

Craig, John. "A New Kind of Pencil!" Creative Computing, February 1979,
pp.30-33.

Thoroughly reviews the Electric Pencil word processor.

Didday, Rich. "Universal Data Entry System; In a Car Pooling Application."
Creative Computing, May 1980, pp. 102-110.

Reviews UDE from the Software Store and demonstrates the program.

260

ANNOTATED BIBLIOGRAPHY

Eubanks, Gordon. "Notes on CP/M's BASIC-E." Dr. Dobbs 19:35.

Letter to the editor describing the versions of BASIC-E, its public domain
status, and how to obtain revised versions.

(NOTE: Gordon Eubanks developed BASIC-E for a Master's thesis project; it is the
ancestor of CBASIC and CBASIC2.)

Fitzgerald, Jim. "Off-the-Shelf Word-Processing System." Kilobaud Microcom­
puting, September 1980, pp. 92-94.

Describes a CP I M system using Electric Pencil.

Foster, Charlie. "Pascal with a Z80." Interface Age, November 1980, pp. 60-62.

Reviews Pascali Z from Ithaca Intersystems, emphasizing its differences with
UCSD Pascal.

Hallen, Rod. "Super Word Processors." Kilobaud Microcomputing, June 1980, pp.
214-217.

Summarizes the features of ED, EDIT, Electric Pencil, WordStar, and The
Magic Wand; makes no conclusions or recommendations. Provides a brief
bibliography of articles on word processing.

___ . "Tarbell Disk BASIC." Kilobaud, May 1980, pp. 168-170.

Summarizes the features of Tarbell Disk BASIC; emphasizes the features of
Tarbell BASIC in comparison with other interpreters.

___ . "The Battle of the Word Processors." Creative Computing, November
1979, pp. 48-53.

Reviews ED, TEX, EDIT, and Electric Pencil.

Hamilton, R.W. "WPDaisy Word Processing System." Creative Computing, May
1979, pp. 36-41.

Reviews a little-known, but powerful, word processing system.

Hart, Glenn. "New BASIC from Tarbell." Creative Computing, January 1980,
pp.20-23.

Reviews a slightly different BASIC available for CP I M systems.

___ . "Magic Wand Word Processor." Creative Computing, August 1980,
pp.38-45.

Reviews the features of the Magic Wand word processing system.

Heintz, Carl. "Analyst: Another Data Base Manager." Interface Age, December
1980, pp. 42-44.

Reviews the Analyst data base management system from Structured Systems.

___ . "Maxiledger." Interface Age, September 1980, pp. 42-44.

Reviews the Maxiledger general ledger accounting system available from
Compumax Associates.

ApPENDIX Fj 261

CP/M USER GUIDE

___ . "A Peach of a General Ledger Program." Interface Age, October 1980,
pp.46-48.

Reviews the Peachtree General Ledger system.

___ . "Pearl-A Novel Programming Gem." Interface Age, November 1980,
p.47.

A program which "writes" programs; Pearl writes custom application pack­
ages from user input. Explains the power inherent in such a concept.

Heyman, Victor. "IDS WORD The Comprehensive Processing System for
Home and Business." Creative Computing, pp. 43-44.

Reviews another little-known word processing system compatible with CP! M
systems.

Hogg, Douglas. "How Good Is Microsoft's FORTRAN-80." Creative Computing,
January 1979, pp. 62-67.

Reviews Microsoft's FORTRAN-80 and examines the FORTRAN implemen­
tation on a microcomputer.

Johnson, Bob. "Business Software Review." Interface Age, August 1979, pp. 38-39.

Reviews the Graham Dorian Apartment Management and Payroll software
packages.

Kendall, Wallace. "Prettyprinting with Microsoft BASIC." Kilobaud Microcom­
puting, May 1979, p. 80.

Presents a simple way to format program listings using Microsoft BASIC.

Knecht, Ken. "CBASIC Review."80 Microcomputing, April 1980, pp. 130-132.

Compares CBASIC features with Microsoft BASIC; introduces FMG's
CP! M operating system for the TRS-80.

Lindsay, John. "New Version of BASIC." Kilobaud, May 1980, pp. 72-74.

Summarizes the features of Microsoft BASIC version 5. Discusses the differ­
ences between versions.

Lutz, Dick. "Sharpening Your Pencil." Creative Computing, March 1980,
pp.30-35.

Reviews a program designed to add to the features of Electric Pencil.

Magruder, Bob. "The New WPDaisy: W ord-Processing Software." on Computing,
Fall 1980, pp. 68-74.

Extensively reviews WPDaisy.

McClure, James. "CBASIC-A Review." Creative Computing, September 1979,
pp.48-5\.

Reviews a frequently used high-level language. Provides timing comparisons

262

ANNOTATED BIBLIOGRAPHY

for a series of standardized benchmarks, indicating CBASIC's relatively slow
speed on many tests.

___ . "Microsoft vs. MicroFocus COBOL." Creative Computing, March 1980,
pp.20-29.

Compares the features of the two primary implementations of COBOL avail­
able to CP / M users.

___ . "A Personal Finance System." Kilobaud Microcomputing, June 1979,
pp. 74-78; July 1979, pp. 50-56; August 1979, pp. 66-75.

An extensive CBASIC2 program for managing personal finances.

Miller, Alan. "BASCOM: Microsoft's BASIC Compilerfor the 8080/ Z80." Inter­
face Age, July 1980, pp. 124-126.

Discusses the difference between compilers and interpreters, emphasizing the
features of Microsoft's compiler BASIC. Presents sample programs.

___ . "CBASIC: A Business-Oriented Language for CP/M." Interface Age,
August 1979, pp. 116-119.

Summarizes and reviews the CBASIC high-level language for CP /M.

___ . "CP/M for the TRS-80 Model II: Lifeboat and FMG Corp. Versions."
Interface Age, November 1980, pp. 94-98.

A detailed comparison of two different implementations of CP/M for the
Model II.

___ . "The Electric Pencil for CP / M." Interface Age, August 1978, pp. 148-149.

A r'eview of a popular word processing package.

___ . "Pascal for CP/M: Digital Marketing's Pascal/M." Interface Age,
September 1980, pp. 96-103.

Reviews Pascal/ M and conveys the difference between Pascal and other
high-level languages.

North, Steve. "Creative Computing Reviews Five Software Packages-Tiny C,
Microsoft BASIC 5.0, Research Machines Z80 Algol, Structural Analysis SP80
Macros, Digital Research CP /M 2.0 and MP / M." Creative Computing, March
1980, pp. 40-44.

Summarizes the features of the titled packages.

Pournelle, Jerry. "Omikron TRS-80 Boards, NEWDOS+, and Sundry Other
Matters." Byte, July 1980, pp. 198-208.

A rambling look at Pournelle's experiences with microcomputers in writing; a
popular science fiction writer (Mote in God's Eye, Lucifer's Hammer, and
others), Pournelle offers a personal and fascinating account.

ApPENDIX F / 263

CP / M USER GUIDE

Press, Larry. "A Review of Four Text-Formatting Programs." on Computing, Fall
1980, pp. 48-54.

Reviews S-80, TEX, TPS, and Textwriter.

___ . "Word Processors: A Look at Four Popular Programs." on Computing,
Summer 1980, pp. 38-52.

A detailed review of Auto Scribe, Electric Pencil, Magic Wand, and W ordStar.

Sanger, Joseph. "The Electronic Librarian." Kilobaud Microcomputing, Novem­
ber 1979, pp. 44-62.

A BASIC-E program for maintaining an information database.

Sjowall, Tor. "CP / M to UCSD Pascal File Conversion." Dr. Dobbs, October 1980,
pp. 16-19.

Pascal source code for converting CP / M files to the UCSD Pascal format.

VanHorn, Eric. "Super-Sort by Micro-Pro International." Creative Computing,
July 1979, pp. 34-37.

Reviews the features of Super-Sort.

CP/M and Assembly Language Programming

Barbier, Ken. "CP/M for Single-Drive Systems." Kilobaud Microcomputing,
September 1980, pp. 94-98.

Explains the problems with using a single-drive CP/M system; includes an
assembly language single-drive file copy program source listing.

Barker, Lee. "Help with OSI's CP/M." Dr. Dobbs, May 1980, pp. 36-37.
A modification of the BIOS for OSI computers using CP/M to eradicate

problems encountered.

Biese, Leo, and Iannuccillo, Emilio. "MASTHEAD: Why Not Title Your Print­
outs?" Interface Age, August 1980, pp. 122-127.

A method of printing large titles on program listings, with source code in both
assembly language and Microsoft BASIC.

Cecil, Alex. "ACT: An 8080 Macroprocessor." Dr Dobbs 23:20-45.

A "TRAC"-like text interpreter, ACT is written in PL/ M. Computer pro­
gramming students will be interested in the source code.

Christensen, Ward. "An 8080 Disassembler." Dr. Dobbs, February 1977, pp. 30-43.

A complete assembly language source listing for an 8080-based disassembler.
Documentation explains disassembly to assembly language programmers.

Cotton, Gene. "How to Solve Your Damaged Disk Dilemma." Interface Age,
September 1980, pp. 80-86, 130-131.

An assembly language program to save bad spots on a diskette as a file named

264

ANNOTATED BIBLIOGRAPHY

[unused]. bad. Contains a fairly detailed explanation of how CP/M maintains
information on the diskette.

Epstein, Jake. "An Introduction to CP / M." S-lOO Microsystems, January / Febru­
ary 1980, pp. 6-10; March/ April 1980, pp. 28-33; May/ June 1980, pp. 12-17.

An excellent introduction to CP/M for computer programmers; details
specific technical information.

Foster, Charlie, and Meador, Richard. "8080 Dynatrace." S-lOO Microsystems,
July/ August 1980, pp. 22-31.

A dynamic screen-oriented assembly language debugging system: source code
is in 8080 assembly language. Article assumes expertise required to modify the
output routines.

Frantz, James. "Turn-Key CP / M Systems." Creative Computing, December 1979,
pp. 104-107.

Step-by-step directions to make CP / M automatically execute a program on
cold starts.

Friedman, David. "Las Vegas Super Slot: A CP / M Game Machine Program Using
Flashwriter I Graphics." Dr. Dobbs, November/December 1980, pp. 10-22.

A game program in assembly language for CP/M systems using Vector
Graphic's Flashwriter I board.

Gagne, Jim. "Vice Versa-Pencil to CP / M and Reverse." Dr. Dobbs, March 1979,
pp.26-29.

How to reformat Electric Pencil files to CP / M format and vice versa; assembly
language source code provided.

Haanstra, Bruce. "Optional Printing with CP / M and Microsoft BASIC." Interface
Age, November 1980, pp. 84-86.

Illustrates how to circumvent Microsoft BASIC's interception of the /\ P char­
acter used to turn the printer on and off in CP / M.

Hallen, Rod. "Battle of the Assemblers." Creative Computing, December 1979, pp.
42-45.

Compares ASM, supplied with CP / M, with ASMB, an assembler available
from Technical Systems Consultants. Briefly describes an assembler called
"SASSY."

Hoffer, W.c. "Data and Time for the CP / M Operating System." Interface Age,
August 1978, pp. 152-156.

Assembly language routines enable a CompuTime board to perform automatic
time and dating of program listings.

Kildall, Gary. "Simple Technique for Static Relocation." Dr. Dobbs 22: 10-13.

The author of CP / M describes CP / M's relocation technique.

ApPENDIX F / 265

CP!M USER GUIDE

Miller, Alan. "CP / M Part 2 - A Macro Assembler and Other Goodies." Interface
Age, December 1978, pp. 130-135.

Reviews the MAC assembler available from Digital Research; the SID sym­
bolic instruction debugger also from Digital Research, and a sample CBIOS for a
North Star CP / M system.

___ . "An Interrupt-Driven Keyboard Buffer." Interface Age, October 1980,
pp. 106-107, 137-141.

A different approach for implementing a keypress detection routine for North
Star BIOS in CP / M.

___ .. "Structured Assembly-Language Programming for the 8080." Interface
Age, November 1979, pp. 153-155.

Reviews SP80, a structured assembly language set of macro routines available
for CP / M systems. Compares Digital Research's MAC assembler with SP80.

___ . "ZStD Z80 Debugger for CP / M." Interface Age, August 1980, pp. 88-90.

Reviews the ZSID symbolic debugger for assembly language programs avail­
able from Digital Research; also mentions the DES POOL program from Digital
Research.

Parsons, Ronald. "UCSD Pascal to CP/M File Transfer Program." Dr. Dobbs,
August 1979, pp. 12-16.

Assembly language program transfers from UCSD Pascal format to CP / M file
structure.

Pugh, Tim. "Intelligent Terminal Implementation on S 100 Bus." Dr. Dobbs
26:4-16.

A well-commented assembly language program that allows communication
between any CP / M system using an IDS-88 modem board and any other
computer system.

Terry, Chris. "The CP/M Connection." S-lOO Microsystems, July/ August 1980,
pp.32-35.

Discusses CP / M's relocation method and how to interface CBIOS and make
other modifications to a relocated system.

Van Buer, Darrel. "A Table-Driven Assembler on CP / M." Dr. Dobbs, February
1980, pp. 18-25.

A PL/ M source code for a macro assembler.

Willoughby, Steve. "Hardcopy Device Driver Programs for CP / M." Dr. Dobbs
48:34-37.

Assembly language routines to be included in CP/M CBIOS section for
Diablo 1650 or Teletype printers.

266

APPENDIX

G CP/M Sources

Sources 01 CP/M Compatible
Languages. Programs. and Computers

Word Processing Programs
Magic Wand

Microsoft Edit
Electric Pencil
SCOPE
WordStar

Languages
Assemblers

ADA

BASIC

C

CBASIC

COBOL

Small Business Applications, Inc.

Microsoft, Inc.
Michael Shrayer Software, Inc.
Vector Graphic, Inc.
MicroPro International

Digital Research, Inc.
Microsoft, Inc.
Sorcim Corp.

Supersoft, Inc.

Microsoft, Inc.
Supersoft, Inc.

Supersoft, Inc.
Whitesmiths, Ltd.

Digital Research, Inc.

Microfocus, Inc.
Microsoft, Inc.

267

FORTRAN

FORTH

LISP

Pascal

PL/I

Microsoft, Inc.
Supersoft, Inc.

Forth, Inc.
Supersoft, Inc.

Microsoft, Inc.
Supersoft, Inc.

Digital Research, Inc.
Ithaca Intersystems, Inc.
Sorcim Corp.

Digital Research, Inc.

Data Management Systems

SELECTOR-IV Micro.AP, Inc.

Pearl
HDMS

Computer Pathways Unlimited
Micro Data Base Systems

CP/M Derivative Operating Systems

CDOS

SDOS

TPM

TSA/OS

268

Cromemco, Inc.
SD Systems

Computer Design Labs

TSA Software

CPj M USER GUIDE

APPENDIX

H Manufacturers' Index

ADDS
Applied Digital Data Systems
100 Marcus Boulevard
Hauppauge, NY 11787
(516) 231-5400

Altos Computer Systems
2360 Bering Drive
San Jose, CA 95131
(408) 946-6700

ANSI
American National Standards Institute
1430 Broadway
New York, NY 10018
(212) 354-3300

Apple Computer
10260 Bandley Drive
Cupertino, CA 95014
(800) 538-9696 (except California)
(800) 662-9238 (from California)

BDS
BD Software
See Lifeboat Associates

Bell Laboratories-C Language
Patent License Organization
Western Electric Company
P.O. Box 25000
Greensboro, NC 27420
(919) 697-6530

Byte Publications, Inc.
70 Main Street
Peterborough, NH 03458
(603) 924-9281

Compiler Systems, Inc.
P.O. Box 145
Sierra Madre, CA 91024
(213) 355-4211

Computer Design Labs
342 Columbus Avenue
Trenton, NJ 08629
(609) 599-2146

Computer Pathways Unlimited
2151 Davcor Street S.E.
Salem, OR 97302
(503) 363-8929

269

CP/M Users Group
1651 Third A venue
New York, NY 10028

Cromemco, Inc.
280 Bernard A venue
Mountain View, CA 94043
(415) 964-7400

Digital Microsystems
1840 Embarcadero
Oakland, CA 94606
(415) 582-3686

Digital Research
P.O. Box 579
80 I Lighthouse A venue
Pacific Grove, CA 93950
(408) 649-3896

DynaByte, Inc.
liS Independence Drive
Menlo Park, CA 94025
(415) 329-8021

Exidy
1234 Elko Drive
Sunnyvale, CA 94086
(408) 734-9410

FORTH, Inc.
2309 Pacific Coast Highway
Hermosa Beach, CA 90254
(213) 372-8493

Heath Data Systems
Hilltop Road
St. Joseph, MI 49085
(616) 982-3200

Industrial Micro Systems
628 N. Eckhoff Street
Orange, CA 92668
(714) 978-6966

Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051
(408) 987-8080

270

Ithaca Intersy:stems, Inc.
1650 Hanshaw Road
P.O. Box 91
Ithaca, NY 14850
(607) 257-0190

Lifeboat Associates
1651 Third Avenue
New York, NY 10028
(212) 860-0300

CP/M USER GUIDE

Lifelines Publishing Corp.
1651 Third Avenue
New York, NY 10028
(212) 722-1700

Michael Shrayer Software, Inc.
1198 Los Robles Drive
Palm Springs, CA 92262
(714) 323-14010

Micro Data Base Systems
P.O. Box 248
Lafayette, IN 47902
(317) 448-1616

MICRO.AP, Inc.
9807 Davona Drive
San Ramon, CA 94583
(415) 828-6697

Micro Focus Inc.
1620 Civic O:nter Drive
Santa Clara, CA 95050
(408) 984-6961

Micromation, Inc.
1620 Montgomery Street
San Francisco, CA 94111
(415) 398-0289

MicroPro International Corp.
1299 4th Street
San Rafael, CA 94901
(415) 457-8990

Microsoft, Inc.
10800 N.E. Eighth, Suite 819
Bellevue, W A 98004
(206) 455-8080

MITS
See Pertec Computer Corp.

MANUFACTURERS' INDEX

MMS
Miller Microcomputer Services
61 Lake Shore Road
Natick, MA 01760
(617) 653-6136

Morrow Designs
5221 Central Avenue
Richmond, CA 94804
(415) 524-2101

Ohio Scientific
1333 South Chillicothe Road
Aurora, OH 44202
(216) 831-5600
(800) 321-6850

Onyx Systems, Inc.
10375 Bandley Drive
Cupertino, CA 95014
(408) 257-8022

Pertec Computer Corp.
20630 Nordhoff Street
Chatsworth, CA 91311
(213) 998-1800

Radio Shack
1300 One Tandy Center
Fort Worth, TX 76102
(817) 390-3700

SD Systems
P.O. Box 28810
Dallas, TX 75228
(214) 271-4667

Small Business Applications, Inc.
3220 Louisiana, Suite 205
Houston, TX 77006
(713) 528-5158

Sorcim Corp.
405 Aldo A venue
Santa Clara, CA 95050
(408) 727-7634

Supersoft, Inc.
P.O. Box 1628
Champaign, IL 61820
(217) 359-2112

Tarbell Electronics
950 Dovlen Place, Suite B
Carson, CA 90746
(213) 538-4251

Texas Instruments, Inc.
P.O. Box 1444
Houston, TX 77001
(800) 257-7850

(except NJ)
(800) 322-8650

(from NJ)

Thinkertoys
See Morrow Designs

TSA Software
5 North Salem Road
Ridgefield, CT 06877
(203) 438-3954

Vector Graphic, Inc.
31364 Via Colinas
Westlake Village, CA 91362
(213) 991-2302

Whitesmiths, Ltd.
P.O. Box 1132
Ansonia Station, NY 10023
(212) 799-1200

Zenith
See Heath Data Systems

ApPENDIX HI 271

Glossary

ASCII. American Standard Code for Information Interchange refers to the
computer's internal recognition of the letters, numbers, and symbols of the
English language. Appendix B provides a complete listing of these re­
presentations.

Assembly Language. Assembly language consists of a series of names (called
mnemonics) that represent the various combinations of l's and O's which instruct
the computer. Instead of typing "11001001" (machine instruction), the mne­
monic "RET" instructs the computer to RETURN to a location stored by the
computer.

BASIC. Beginners All-purpose Symbolic Instruction Code is a "high-level"
language. It is more than a symbolic representation of the instructions a compu­
ter can interpret. For example, the BASIC statement "PRINT" contains many
computer instructions.

Batch Processing. Before video terminals and other sophisticated devices were
invented, most computers received instructions from punched cards. The holes in
the cards represented computer instructions and data. The cards were collected
in groups (batches) for effective processing. Today, the term batch processing
refers to any process which collects instructions and data (by terminals, key­
punches, optical card readers, and so on) and delays processing until a large
"batch" accumulates.

Booting / Bootstrap. Booting initializes a computer system by copying an oper-
ating system into the internal memory of a computer from a diskette or tape.

273

CP / M USER GUIDE

Buffer. A buffer is an area within the computer's memory which temporarily
stores input from or output to any peripheral computer device (like a disk drive).
The central processing unit can more quickly process information to the compu­
ter's memory than a slower mechanical device, printer, disk drive, punch, or
keyboard.

Byte. The storage capacity of a microcomputer's memory, or its disks, is always
described as some number of bytes. A byte is a memory unit capable of storing a
single character. For example, the letter "A" or the digit "1" could be stored in
one byte of memory. Numbers without decimal points are usually stored in two
bytes of memory, while numbers with decimal points may require five or more
bytes of memory per number. Memory size is usually expressed not as thousands
of bytes, but rather as some number of K bytes. 1 K equals 1024. All computers
are binary machines that count in twos. You will get the number 1024 if you
mUltiply 2 to the 10th power.

Call. A call instructs the computer to transfer control to another section of
memory where the required routine is located. Calls are used often in computing
since many processes divide into subroutines. Instead of duplicating the same
routine in several memory locations, the routine is stored at one location and
called as necessary. When the call is completed, it fC!turns control to the instruc­
tion immediately following the one which called it.

Close. To close a file means to finish (at least temporarily) any processing
associated with it. Closing makes information storage and retrieval on files
quicker and more efficient. CP/M does not completely update a file until it is
closed.

COBOL. Common Business Oriented Language instructs the computer in
English-like sentences. COBOL programs are easy to read, but require a lot of
space. COBOL is a standardized language; it is the same no matter what compu­
ter uses it. COBOL is used primarily by large businesses and the government.

Compiler. Compiler applies to a high-level language which does not translate
the instructions as you type. If you had a BASIC compiler, for instance, you
would enter a program using an editor and then compile the program. Compiling
consists of the following steps: first the computer checks your program for
blatant errors, then it translates your high-levell language instructions into
machine instructions. (See also Interpreter.)

Configure. To configure a program means to change some program parameters
to reflect the equipment used. One program can be used on several combinations
of terminals, printers, and other devices. In CP / M,. the term configure is usually
associated with the BIOS (Basic Input Output System). In order to run CP / M,
BIOS must be configured to your equipment. This operation is best left to a
computer professional; the process is summarized in Chapter 7.

Console Device. The console device sends and receives input to and output
from the computer. For most CP/M users the console device is a standard

274

GLOSSARY

terminal with both a keyboard and CR T display. On some systems the keyboard
and display may be separate units. Some older systems use a typewriter-like
computer printer (one which has a keyboard for input) as the primary console
device, but this practice has diminished with the advent of low-cost video
displays.

Central Processing Unit.
passes through it.

A CPU is the heart of a computer; all information

Data. Data refers to any information the computer processes or stores. An
important distinction exists between an instruction to the computer and data the
computer processes. A computer distinguishes between data and instructions
entirely by context. One missing piece of information can cause strange results.

Directory. A directory provides a table of contents of the disk. The directory
stores the name of each file and some other information CP / M uses to trace the
file's physical status located on the disk and its current use.

DM A. Direct Memory Access bypasses the CPU and information goes directly
to and from memory. While the disk drives perform a DMA transfer, the CPU
simply waits for the process to be completed. Normally, information must pass
through the CPU when traveling from diskette to computer memory or vice
versa. Despite bypassing the CPU, DMA transfers are generally faster than if the
CPU were involved.

Documentation. Documentation includes all written information about a piece
of computer equipment or software. Your computer system manuals are
documentation.

Drivers. A driver is a complete set of instructions which controls a piece of
equipment. In other words, to run your disk system, you must have drivers which
specifically apply to your equipment. CP / M's drivers are in the BIOS (Basic
Input Output System).

Execute. To execute a program means that the computer performs all the
instructions which comprise that program. When the CPU interprets a piece of
information as an instruction, it executes it.

File. File refers to related blocks of data or instructions stored on a disk. One
complete program might be stored in a file named "PROGRAM. BAS," for
instance. One complete set of related data (check register, name and address file,
and so on) may be saved in a datafile.

File Names / File Types. The file name in CP / M has three distinct sections: a
name of up to eight characters, followed by a period, and a unique type identifier
called a file type. CP / M locates the file by the file name and file type.

Formatting. Formatting puts dummy (nonsense) information onto a diskette
prior to use. It also verifies whether the diskette can be read.

Hard Disk. Hard disk refers to media mounted in polished metal surfaces or

275

CP/M USER GUIDE

platters. The platters are coated with magnetic oxid,e. In a fixed disk the platters
are permanently fixed (and sealed) within the drive; you cannot remove the
medium without ruining the drive. In hard disk dri.ves which are not fixed, the
media is encased in removable plastic cartridges.

Hex. Hex, short for hexadecimal, refers to a numbering system which counts" I
2 3 4 5 6 7 8 9 ABC D E F," or in math base 16. The smallest computer unit of
meaning (a byte-eight I's or O's) consists of two hex digits. Thus" 11110000"
becomes "FO hex. "The table in Appendix B illustrates the equivalencies between
binary, hexadecimal, and decimal digits.

Interrupts. An interrupt is a signal to the CPU to stop processing one instruc-
tion and to execute a different set of instructions.

Library File. A library file contains a set of standard routines you can add to a
new program. You could write a complete program from various library files.

Machine Code/ Machine Language/ Machine Instructions. Machine code,
machine instructions, and machine language all refer to the lowest level of
instructions directly understood by the computer.

Machine Dependent. If a program or device is machine dependent, it only
operates with a particular set of equipment.

Macro. Macro refers to library files in assembly language; thus there are macro
assemblers.

Media. Media is the material on which information is stored. Floppy diskettes
and cassette tapes are media.

Memory Location. Computer memory locations are defined by addresses. One
specific memory location can store one computer word (byte) of
information.

Minifloppies. Minifloppy, a trademark of Shugart Associates, refers to their 5Y4-
inch floppy diskettes. Other manufacturers also produce 5Y4-inch floppy
diskettes.

Modem. Modulator / Demodulator, converts data and/ or computer instruc-
tions into tones (frequencies) and decodes them. Telephone lines carry the
modulated signals. Compared to computers, modems are generally very slow
devices.

Operating System. The operating system is the brains of the computer. The
operating system is configured to "know" which peripheral devices are available
and how to communicate with them. The operating system controls all of the
equipment but usually (as in the case of CP / M) does not perform complicated
procedures.

Punch. A punch device punches holes in a strip oJ paper or paper tape. Before
the advent of floppy disks, data or programs were stored by creating punch cards
or paper tape representations.

276

GLOSSARY

RAM. Random Access Memory is the primary storage area of a computer. The
information stored in RAM is lost when power is disconnected. This is one
reason why CP / M must be loaded each time you turn on your computer system.

Random. Disk systems use two storage methods: random and sequential
access. Random access implies you may read pieces of information at random.
Random access files are accessed by a record number (location within a group of
records). In order to find a random access record quickly and accurately, random
files consist of same length records.

Read. Read means getting a piece of information from a file. Reading a file
means getting the information in that file and transferring it to memory (or
another device).

Reader. A paper tape reader reads the holes punched by the paper punch device
and interprets them according to a predetermined code.

Register. A register is an internal temporary storage area within a CPU. The
8080 family of CPUs (on which CP / M runs) has a minimum of eight registers.
8080 CPU registers are the A and Flag, Band C, D and E, and Hand L registers.
The pairing of these registers reflects the 8080 computer instructions which
reference a pair of registers. Only assembly and machine language programmers
are interested in register contents.

Reset. Reset instructs the computer to restart. It turns the computer off, then on
again.

ROM. Read Only Memory can only be read from; you cannot change the
information stored in it. Non-changing routines like the system bootstrap or a
system monitor (which controls the computer at a higher level than CP / M) are
often put into ROM.

Routines. Routines are a set of modules (related instructions) which perform
specific tasks. Routines comprise programs but are not programs in themselves.
Examples of routines might include a routine to input one character, to see if a
key was depressed, to display one character, and to turn on the disk drive motor.

Run- Time. Sometimes modules are referred to as run-time routines, or run-
time code. Another name for this is executable code.

Sectors and Tracks. When information is stored on a cassette tape, it is stored
as a single track of data down the length of the tape. When information is stored
on a diskette, the surface of the diskette is divided into a number of concentric
tracks. Each track is divided into a number of sectors, so that CP / M can access
any point on the diskette surface, given a sector and track number. Figure 1-3
illustrates the sectors and tracks.

Sequential. Elements of a sequential access file are accessed in order. If you
want to read element number ten, you must first read the preceding nine ele­
ments. Sequential storage methods are used when the amount of data to be
stored cannot be anticipated. Sequential files have an end-of-record marker, and

277

CP / M USER GUIDE

you may have elements of varying length (called variable length records).

Skewing. Skewing relates to how information is physically stored on a diskette.
Information is assigned to non-adjacent locations (the first piece of information
is put in sector one, the second in sector 18, the third in sector 25, and so on). This
weaving of information is handled completely by CP / M.

Source. Source code refers to the original program in its original state. Since
programs are sometimes compiled (translated into machine language, or a more
efficient language), the distinction between sourct~ and run-time is important.
Additionally, the term source describes any original data or program, and
backup refers to a copy of the source.

Statement. A statement is one complete instruction (or combination of instruc-
tions) to a computer. The complexity of a statement (think of it as a computer
sentence) depends entirely on the language used and the programmer's style.

Status. Computer devices are either ready or not ready. When the computer
wants to use a device (say a printer), it checks its status; it checks to see if the
device is ready. Unfortunately, status schemata are not standardized. A positive
voltage emitted from a device can either mean that it is ready or not ready,
depending on the manufacturer's design. CP / M performs status checks automat­
ically, assuming a proper BIOS has been created.

Tape. Computer tape is like audio tape. It usually consists of Y2-inch or I-inch
tape wound on reels. Computers store a higher density of information onto a tape
than do home tape recorders. The information is stored differently; digital pulses
versus analog representations. Tape is an easy to handle and inexpensive medium
to store data or programs. Unfortunately, tape is not suited for random access.
The longer the tape, the longer the wait for record location. Tape remains a
mainstay of minicomputer and large computer installations and is used as an
inexpensive storage medium for home computers. However, it is not often used
with CP / M systems.

Utilities. Utility programs are usually used for more than one purpose by many
kinds of users. This is distinct from an application program, which performs only
one job.

Wildcard. Global parameters remain constant throughout a process and accept
any specification. For example, in the CP / M command, "STAT B:*.ASM", "*"
is a global parameter since anything can fill that position in the command line.

Write. Write puts information onto a diskette or other media, including RAM.

Write-Protect. You cannot add information to a write-protected disk; it can
only be read. An 8-inch diskette'S write-protect notch appears on the bottom of
the diskette; a minifloppy diskette is write-protected by covering the notch on the
right side of the diskette. The STAT command also write-protects diskettes and
files.

278

GLOSSARY

8080. The 8080 microprocessor was designed by Intel. The 8080 is a second
generation CPU chip and the first to have widespread appeal. The 8080 has eight
internal registers: A, Band C, D and E, Hand L, and Flag. Its instruction set (the
instructions that it can directly interpret) is somewhat limited compared to later
CPU designs.

Z80. The Z80 chip is a redesign of the 8080; while it retains full compatibility (it
can execute all of the 8080 instructions exactly as the 8080 does), it introduces a
number of other features. In addition to the 8080 register set, the Z80 contains a
duplicate set, referred to as the A', B' and C', D' and E', H' and L', and Flag'.
Also, indexing, a special type of computer instruction, is allowed.

279

Index

A
ABORT,I67
ADDS, 172
ALGOL, 149, 153
Ambiguous file references. See Wildcard

references
APL,I55
Apostrophe, in string constant, 106
Application programs, 2, 133, 135
Arithmetic operators, 106-07
ASCII, 7, 273

character codes, 245-48
ASM and ASM-86, 100-04, 178

command lines, 10 I, 232
error messages, 115-17
files used by, 102-03
invoking, 10 I
progress messages, 113-14
reserved words, 104-05

Assembler directives, 108-13
Assemblers, 148
Assembly language, 99-131, 135,273

assembler directives, 108-13
comments, 105
constants, 105-06
expressions, 105-06
labels, 104
line numbers, 104
mnemonics, 105
operands, 105
progress messages, 113-14
reserved words, 104-05
statements, 104-05

Asterisk
in ED prompt, 79
in PIP prompt, 66, 68
in wildcard references, 31-32

B
BACKSPACE key, 45-46, 239, 249
Bank-selectable memory, 168
BASIC, 144, 148-49,273

compiler, 146
interpreter, 146
Multi-User, 175-76

BAT:, 61
BATCH·, 174
Batch processing utilities, 89
BOOS, 168, 182, 185-93

CP / M -86 functions, 209-15
functions, versions compared, 252

Benchmark, 157
Bias, 125
Binary notation, 100, 134-35
BIOS, 168, 171-72, 182, 193-202

deleting information, 200
disk parameter header, 206
editing, 200-02
inserting information, 199
jump table, 193-94
modifying, 195-202

Bit, 7, 100
Boolean operators, 107
BROADCST,I71

281

Built-in commands, 23-49. See also Individual
command names

line editing, 25, 43-49
summary, 24-25

BYE,174
Byte, 7, 100, 274

c
CARRIAGE RETURN key, 46, 249

abbreviations for, 25
CBASIC,2, 145, 147
CCP, 168, 182-85
CDOS, 159, 173-76. See also Individual

command names
commands, 174-75
compatibility with CP/M-80, 173-74
derivatives, 175-76
utilities, 174-75

CDOSGEN,175
Character pointer, 80
CHKDSK,178
C language, 149-50
COBOL, 146, 150-51,274
Cold start, 43, 62, 181

effect on device assignments, 62
Command line

format, 25-27, 52-53
length of, 52

Commands. See also Individual command
names

built-in, 23-49
entering, 25-27
line-editing, 25, 43-49
summary, 231-44
transient, 23

Comments, 105
CON:, 61, 62, 203
CONSOLE, 164-65
Constants, 105-06
Context editor. See ED
CO;llTROL-C, 43-44, 239, 249

error messages, 44
CONTROL-E,45, 239,249
CONTROL-H, 45-46, 239, 249
CONTROL-], 46, 239, 249
CONTROL key, abbreviations for, 25
CONTROL-M,46, 239, 249
CONTROL-P,47,239,249

error messages, 47
CONTROL-R, 48, 239, 249
CONTROL-S, 48, 240, 249
CONTROL-U, 48-49, 240, 249
CONTROL-X, 48-49, 240, 249
Compiler, 274
CP,80
CP/M

command summary, 231-44
compatibility, 9

282

CP/M (continued)
history of, 1-3
initialization, 18-20
look-alikes, 12-13
manuals, 3-4
prompts, 19,23,26,253
structure of, 181-82
versions of, 3, 9

CP/M-80

CP / M USER GUIDE

differences from CP / M-86, 100, 208-09,
249-52

Lifeboat Associates, II
with Polymorphic computers, 177
with Radio Shack computers, 177
versions of, 9-10
work-alikes, 176-77
with Zenith/ Heath computers, 177

CP/M-86, 3,10-11
alternatives, 177-79
BDOS functions, 209-15
Concurrent, II
differences. from CP/M-80, 100, 208-09,

249-52
generating new system, 142-43

CP/NET, 10, 159, 169-72. See also Individual
command names

commands, 171
CPU, 6, 275
CRLF,79
Cromix, 175-76
CRT:,61
CSEG,109-1O

o
d:, 24, 42-43

error messages, 43
DB,109
DD,109
DDT, 39, 117-29, 134

assembly instructions, 119-20
command lines, 232
commands, 118-29,232-35
DDT-86, 1I7, 232
loading, 118
prompt, 253

DEBUG,178
DEBUG*, 175
Debugging, J 03
DELETE key, 46, 240, 249
Devices, logical and physical, 5, 60, 61-63. See

also individual device names
Disks, 13-18,53

backup, 21-22
capacity, 16
copying, 137-38
differences among CP / M versions, 251
Digital Research, 10
drive identifiers, 31

INDEX

Disks (continued)
extents, 205
fields, 7-8, 24, 104
files, 275
floppy, 8-9, 13
formatting, 136-37
handling, 15-16
hard, 8, 9, 13
information storage, 203-05
inserting, 17-18
parameter tables, 206-07
records, 24
removing, 17-18
sectors, 7-8, 204-05, 277
selections, 255-57
storage requirements, 219-20
tracks, 7, 204-05, 277
use of two drives, 218-19
write-protect notch, 15, 57

DlR, 24, 33-34, 55, 250
command lines, 235

DlR., 174
DlRS, 250
DlR[SYSj, 164
Display memory command (D), 120-21
Dollar sign, as operator, 107
DS,109
DSEG, 109-10
DSKRESET,44, 165
DUMP, 55, 56, 88-89, 99

command line, 235
DUMP., 174
DW,109
Dynamic debugging tool. See DDT

E
E,128
EBASIC, 144, 145, 154
Echoed characters, 46
ED, 55, 56, 78-88, 100, 102, 134, 250

command line, 235
commands, 79-88, 235-39
edit buffer, 78, 82-86
insert mode, 83
line numbers, 104
prompt, 253

EDIT., 174
EDLIN,178
86-DOS, 177-79

commands, 178
EJECT,113
Electric Blackboard, 157
Electric Pencil, 156
END,109-1O
ENDlF,III-l2
END LIST, 171
End-of-file marker, 67, 70, 74, 162
EOF:, 68, 77

EQU, 109-10
ERA, 24, 34-35, 55

command lines, 239
error messages, 36

:ERA,250
ERA*,174
ERAQ, 34-35, 164
Error messages, 93-97

ASM,1I5-17
assembler, 114-17
d:,43
DlR,34
ERA,36
general, 93-94
LOAD,130
numbers representing, 97
program, 94-97
REN,37
SAVE,4O
source program, 115-17
terminal, 114-15
USER,42

ESEG, 109-10
Examine CPU state command (X), 128
Execute command (G), 122-23
Expressions, 105-06

F
F, 121-22
FCB,205-06
Files

disk drive identifiers, 31
extents, 205
fields, 7-8, 24, 104
file extension, 30
file name, 27, 30-32
file type, 27, 28-32
groups, 204-05
length of, 24
records, 24
wildcard references, 31-32

Fill memory command (F), 121-22
Form feed, 72, 74
FORTH,151-52
FORTRAN, 146, 152

G
G,122-23
GENCMD, 130-31

command line, 239
GENHEX, 165
GENMOD,166
Go command (G), 122-23

H
H,123
Hexadecimal math command (H), 123
Hexadecimal notation, 100, 134-35

283

HEX2BIN,178
High-level languages, 135, 143-47
Housekeeping utilities, 54-56

I, 123
IBMDOS,I77-79
IBM Personal Computer, 4,177,178
IBM 3740 diskette format, 10, 11
IF, 111-12
IMDOS,2
INCLUDE, 112
IN IT, 174
INP:, 68, 77-78
Input command (I), 123
Intel hex format, 72, 73, 102-03, 129, 130
Interrupts, 161
IOBYTE,203
lOIS, 159, 176

L
L, 123-25
LDCOPY,56
Line editing commands, 25, 43-49, 239-40. See

also Individual command names
LINE FEED key, 46, 239, 249
Line numbers, 104

adding, 73
LINK, 175
LISP, 155
LIST, 113
List memory command (L), 123-25
LOAD, 129-30

command line, 240
error messages, 130

Load for execution command (E), 128
LOCAL, 171
Logical operators, 107
LOGIN, 171
LOGOFF, 171
Lower case

in command line examples, 26, 31
conversion from upper case, 73
conversion to upper case, 76, 84-85
with PIP, 75

LPT:, 61, 62
LST:, 61, 62, 203

M
Machine instructions, 134-35
Magic Wand, 156
Manuals, Digital Research, 3-4
Memorite, 157
Memory requirements, 220-21
MEMSEG,168
MEMTEST,175
Microprocessor, 6
Microsoft BASIC, 145-46

284

CP / M USER GUIDE

Microsoft DOS, 177-79
MKRDCPM,I78
Mnemonics, IDO, 105, 135
Modems, 223-24, 276
MOYCPM, 55, 56, 138-40

command lines, 240
Move memory command (M), 125
MP/M, 10, 159, 162-69. See also Individual

command names
commands, 163-67
control characters, 162
differences from CPI M, 162-63
end-of-file marker, 162
internal structure of, 167-69
memory map, 169-70
prompt, 162,253

MRCYMAIL,171
Multitasking systems, 160-61, 169-72
Multiuser systems, 160-61

N
NETWORK, 171
Networking, 161, 169-72,224
NOLIST,113
NUL:, 68, 77
Number sign

at end of ca nee led line, 49
with ED, 79
in MOYCPM command, 139

o
Offset, 125
Operands, 105
Operating systems, 5, 276

similar to ('PI M, 172-79
Operators

arithmetic, 106-07
Boolean, 107
logical, 107
precedence of, 108
relational, 108

ORG,109-10
OUT:, 68, 77-78

P
Page, 84
PAGESIZE,112
PAGEWIDTH, 112
Parameters, 52-53
Parity bit, 76
Pascal, 149, 152-54
PIP, 55, 56, 66-78, 250

command lines, 240-41
command summary, 241
destination devices, 242
parameters, 241-42
prompt, 66, 68, 253
source devices, 242

INDEX

PIP (continued)
special devices, 77-78

PL/I-80,154
PL/M, 144,149,154
Polling, 161
Printers, 222-23
PRLCOM,165
PRN:, 68, 77
Prompts

CP/M, 19,23,26,162,253
DDT,253
ED, 79, 253
MP/M, 162,253
PIP, 66, 68, 253

PTP:, 61, 62
PTR:, 61,62
PUN:, 61, 62, 203

Q

Question mark
in error message, 93
in file name or type, 32

QUIT,43

R
R, 125-26
RCVMAIL, 17l
RDCPM,178
RDR:, 61, 62, 203
Read file command (R), 125-26

DDT-86,126
Relational operators, 107
REN, 24, 37-38, 55

command line, 242
error messages, 37

REN·, 174
Reserved words, 104-05
RESET button, 20-21
R/O,57
RPG,155
RUBOUT key, 46, 240, 249
RjW,57

5
S,126
SA VE, 24, 38-40, 55, 250

command line, 242
error messages, 40

SAVE., 174
SCHED,167
SCREEN, 175
SELDSK,207
SELECT,157
Semicolon, in comments, 105
Set memory command (S), 126
Sign-on message, CP 1M, 19
SIMFORM, 113
SNDMAIL, 17l

Source code, 144
Source programs

error messages, 115-17
format, 104

SPACE BAR, 26
SPOOL, 166
SSEG, 109-10
STA T, 55, 56-66, 251

command lines, 242-43
on devices, 60-66
on files, 58-60
terminology, 56-58

STAT",175
STOPSPLP, 166
SUBMIT, 89-93, 251

command lines, 243
XSUB,92-93

Subroutines, 153
SYS, 178
SYSGEN, 55, 56, 140-42

command line, 244

T
T, 126-27
TAB character, 75-76, 104
Terminals, recommendations for, 221-22
TITLE, 112
TOD,166-67

command line, 244
TPA, 168, 182
TP/M, 12, 159, 176
Trace command (T), 126-27
TRANS, 178
Transient commands, 23, 51-97. See also

Individual command names
format, 54

Transient programs, 133-57
TTY:, 61, 62
TurboDOS, 159, 177
TYPE, 24, 40-41, 55

command line, 244
error messages, 41

TYPE",174

u
U,127
UCI:,61
ULl:, 61
Underlines, 25
Untrace command (U), 127
UPI:,61
UP2:,61
Upper case

in command line examples, 26, 31
conversion from lower case, 76
conversion to lower case, 73
in file names, 27

URI:,61

285

UR2:,61
USER, 24,41-42,55,244,251

command line, 244
error messages, 42

Utilities, 133
Utility programs, 136-43

v
Value command (V), 129

w
Warm start, effect on device assignments, 62
Wildcard references, 31-32, 278

286

Word processors, 155-57
Words, 121

CP I M USER GUIDE

WordStar, 76-77, 100, 157
Write file command (W), 129
WRTSYS*, 174

x
X, 128
x: command line, 244
XDOS,168
XFER*,175
XIOS,168
XOFF,71
XSUB,92-93

Other Osborne/McGraw-Hill Publications

An Introduction to Microcomputers: Volume 0-The Beginner's Book, 3rd Edition
An Introduction to Microcomputers: Volume 1-Basic Concepts, 2nd Edition
An Introduction to Microcomputers: Volume 3-Some Real Support Devices
Osborne 4 & 8-Bit Microprocessor Handbook
Osborne 16-Bit Microprocessor Handbook
8089 I/O Processor Handbook
CRT Controller Handbook
68000 Microprocessor Handbook
8080A/8085 Assembly Language Programming
6800 Assembly Language Programming
Z80 Assembly Language Programming
6502 Assembly Language Programming
Z8000 Assembly Language Programming
6809 Assembly Language Programming
Running Wild-The Next Industrial Revolution
The 8086 Book
PET®ICBM™ and the IEEE 488 Bus (GPIB)
PET® Personal Computer Guide
CBM™ Professional Computer Guide
Business System Buyer's Guide
Osborne CP/M® User Guide, 2nd Edition
Apple IJ® User's Guide
Microprocessors for Measurement and Control
Some Common BASIC Programs
Some Common BASIC Programs-PET™ICBMTM Edition
Some Common BASIC Programs-Atari® Edition
Some Common BASIC Programs- TRS-80™ Level II® Edition
Some Common BASIC Programs-Apple II Edition
Some Common BASIC Programs-IBM® Personal Computer Edition
Some Common Pascal Programs
Practical BASIC Programs
Practical BASIC Programs-TRS-80™ Level II Edition
Practical BASIC Programs-Apple II® Edition
Practical BASIC Programs-IBM® Personal Computer Edition
Practical Pascal Programs
Payroll with Cost Accounting
Accounts Payable and Accounts Receivable
General Ledger
CBASIC™ User Guide
Science and Engineering Programs-Apple IJ® Edition
Interfacing to S-100IIEEE 696 Microcomputers
A User Guide to the UNIX™ System
PET™ Fun and Games
Trade Secrets: How to Protect Your Ideas and Assets
Assembly Language Programming for the Apple IJ®
VisiCalc®: Home and Office Companion
DIscover FORTH
6502 Assembly Language Subroutines
Your AT ARI® Computer
The HP-IL System

" .. . one of the very best CP/M manuals available."
Creative Computllg, May 1982

OSBORN~
CP/M

US~RGUI~

Second Edition
In this revised edition. the latest CP/ M® develop·
ments are discussed. including CP/ MlM·86, the
operating system for 8086- and 8088-based
microcomputers such as the IBM- Personal
Computer. For computer users who want to know
the basics of CP/M~ this guide bridges the gap
between technical manuals and your working
knowledge of microcomputers.

For beginners, the OSBORNE CP/ M® USER GUIDE
• Covers all the CP/ M® commands in detail
• Describes standard CP/ M® utility programs
• Discusses high-level languages and utility

programs that run on CP/ M®
• Provides reference lists and tables
• Examines the systems approach to

implementing CP/M~

For more advanced users and programmers, the
OSBORNE CP/ M- USER GUIDE
• Details CP/ M""-80 and CP/ M""-86 system calls
• Discusses CP/ M® modification for different

computer systems.
This edition includes a discussion of CP/ M·
derivatives, MP/ M II"" and CPj NET®

CP/ M and CP/ NET are registered trademarks of Dig ital
Research Corp. Inc.

CP/ M·80, CP/ M-86. a nd MP/ M II are trademarks af Digital
Reseorch Corp. Inc.
IBM Is a registered trademark of IBM.

