
BBC Microcomputer System
User Guide

Original edition written by John Coll, edited by David Allen.

Amendments and corrections to this edition by Acorn Computers Limited

Part no 0433 000

Issue 1

Date October 1984

WARNING: THE COMPUTER MUST BE EARTHED

Important: The wires in the mains lead to the computer are coloured in accordance with the
following code:

Green and yellow Earth
Blue Neutral
Brown Live

As the colours of the wires may not correspond with the coloured markings identifying the
terminals in your plug, proceed as follows:

The wire which is coloured green and yellow must be connected to the terminal in the plug which
is marked by the letter E, or by the safety earth symbol or coloured green, or green and yellow.

The wire which is coloured blue must be connected to the terminal which is marked with the
letter N, or coloured black.

The wire which is coloured brown must be connected to the terminal which is marked with the
letter L, or coloured red.

If the socket outlet available is not suitable for the plug supplied, the plug should be cut off and
the appropriate plug fitted and wired as previously noted. The moulded plug which was cut off
should be disposed of as it could be a potential shock hazard if it were to be plugged in with the
cut off end of the mains cord exposed. The moulded plug must be used with the fuse and fuse
carrier firmly in place. The fuse carrier is of the same basic colour* as the coloured insert in the
base of the plug. Different manufacturers’ plugs and fuse carriers are not interchangeable. In the
event of loss of the fuse carrier, the moulded plug MUST NOT be used. Either replace the
moulded plug with another conventional plug wired as previously described, or obtain a
replacement fuse carrier from an authorised BBC Microcomputer dealer. In the event of the fuse
blowing it should be replaced, after clearing any faults, with a 3 amp fuse that is ASTA approved
to BS1362.

*Not necessarily the same shade of that colour.

Exposure

Like all electronic equipment, the BBC Microcomputer should not be exposed to direct sunlight or
moisture for long periods.

Econet and The Tube are trademarks of Acorn Computers Limited

©The author and the British Broadcasting Corporation 1982

Neither the whole nor any part of the information contained in, or the product described in, this
manual may be adapted or reproduced in any material form except with the prior written
approval of Acorn Computers Limited (Acorn Computers).

The product described in this manual and products for use with it are subject to continuous
development and improvement. All information of a technical nature and particulars of the
product and its use (including the information and particulars in this manual) are given by Acorn
Computers in good faith. However, it is acknowledged that there may be errors or omissions in
this manual. A list of details of any amendments or revisions to this manual can be obtained upon
request from Acorn Computers Technical Enquiries. Acorn Computers welcome comments and
suggestions relating to the product and this manual.

All correspondence should be addressed to:

Technical Enquiries
Acorn Computers Limited
Newmarket Road
Cambridge CB5 8PD

All maintenance and service on the product must be carried out by Acorn Computers’ authorised
dealers. Acorn Computers can accept no liability whatsoever for any loss or damage whatsoever
caused by service or maintenance by unauthorised personnel. This manual is

intended only to assist the reader in the use of the product, and therefore Acorn Computers shall
not be liable for any loss or damage whatsoever arising from the use of any information or
particulars in, or any error or omission in, this manual, or any incorrect use of the product.

First published 1984
Published by the British Broadcasting Corporation
Typeset by Bateman Typesetters, Cambridge

Within this publication the term ‘BBC’ is used as an abbreviation for ‘British Broadcasting
Corporation’.

This book is part of the BBC Computer Literacy Project, prepared in consultation with the BBC
Continuing Education Advisory Council.

The editor of the project is David Allen

Note: If this manual is to be used in conjunction with a BBC Microcomputer which is fitted with
an Operating System with version number lower than 2.00, then the following points should be
borne in mind:

– Chapter 42 and all other references to the ‘shadow screen’ should be ignored.
– Chapter 49 should be ignored (unless the machine with which the manual is to be used is fitted
with BASIC II).

In all other respects this manual is functionally compatible with earlier versions of the BBC
Microcomputer.

Contents

Introduction 1

Equipment required 1

Text conventions used in this manual 1

What this user guide can and can’t do 2

1 Getting started 3

Experimenting 5

Connecting up the cassette recorder 7

Leads 7

Volume 8

Running the WELCOME programs 8

The keyboard 11

Cursor control keys 13

Giving the computer instructions – Part 1

2 Commands 15

3 An introduction to variables 18

4 A simple program 20

Using the screen editor 22

Deleting part of a program 24

Removing a program 25

5 Recording programs on cassette 26

Saving a program on cassette 26

Checking a recording 27

Loading a program from cassette 27

Cataloguing a tape 28

What the numbers mean 28

6 Sample programs 30

7 AUTO, DELETE, REM, RENUMBER 43

8 Introducing graphics 45

Modes, colours, graphics and windows 45

Graphics 46

Windows 47

Making a graphics window 47

Making a text window 48

Changing the colours of text and graphics 50

9 More on variables 52

Numbers and characters 52

String variables 53

How numbers and letters are stored in the computer’s memory 54

Real and integer variables 55

Summary 56

10 PRINT formatting and cursor control 57

Field widths in different screen modes 57

Altering the width of the field and the way in which numbers are printed 60

For the more technically minded 60

TAB(X) 62

TAB(X,Y) 62

Advanced print positioning 63

Cursor control 65

Cursor on/off 66

11 Input 67

12 GET, INKEY 70

Advanced features 71

13 TIME, RND 73

Structure in BASIC

14 REPEAT...UNTIL, TRUE, FALSE 74

15 FOR...NEXT 77

A note on LISTO 80

16 IF...THEN...ELSE. More on TRUE and FALSE 84

Multiple statement lines 84

For the slightly more advanced 85

More on TRUE and FALSE 85

17 Procedures 87

Local variables in procedures 90

18 Functions 94

19 GOSUB 96

GOTO 99

20 ON GOTO, ON GOSUB 100

Giving the computer instructions – Part 2

21 Even more on variables 102

Arrays 102

22 READ, DATA, RESTORE 107

23 Integer handling 110

24 String handling 114

25 Programming the red user-defined keys 119

The BREAK key 120

Other keys 120

26 Operator priority 122

27 Error handling 125

28 Teletext control codes and MODE 7 128

To change the colour of the text 129

To make characters flash 129

To produce double-height characters 130

Graphics 132

Graphics codes 133

Making a large shape 133

Teletext graphics codes for the more adventurous 134

29 Advanced graphics 137

How to change the screen display modes 137

How to draw lines 138

How to draw a square in the centre of the screen 138

Changing the colour of the square 138

How to fill in with colour 138

How to change colours 139

How to plot a point on the screen 144

How to remove a point selectively 144

Animation 145

How to make a ball and move it on the screen 145

How to create your own ‘graphics’ characters 146

How to make a character (eg a man) 146

How to make him move 147

How to make a larger character 148

How to make the movement smoother 149

Making a complete lunar landing game 151

Running the program 154

30 Sound 155

The pitch envelope 158

The amplitude envelope 159

Note synchronisation and other effects 161

31 File handling 163

32 Speeding up programs and saving memory space168

Reference section

33 BASIC keywords alphabetical summary 170

34 VDU drivers 347

VDU code summary 348

Detailed description 349

35 Cassette files 360

Cassette motor control 360

Recording levels 360

Playback volume and tone 360

Keeping an index of programs 360

Saving a BASIC program 361

Saving a section of memory 362

Loading a BASIC program 362

Loading a machine code program 363

Loading and running a BASIC program 363

Loading and running a machine code program 364

Using a cassette file to provide keyboard input 364

Reading cassette data files 365

Testing for end of file 365

Storing data on tape 366

Recording single characters on tape 366

File names 366

Responses to errors 367

Changing responses to errors 368

Cassette tape format 369

36 Changing filing systems 370

37 How to merge two BASIC programs 371

38 Using printers 373

Connecting the printer to the computer 373

A parallel printer cable 374

Parallel printer connections 375

Telling the computer whether you are using a parallel or serial printer 376

Telling the computer to copy everything to the printer 377

Characters not sent to the printer 377

39 Indirection operators 378

40 HIMEM, LOMEM, TOP and PAGE 383

41 Operating system statements 385

42 The shadow screen 387

Other shadow mode-related commands 388

43 The operating system and how to make use of it 389

What is the operating system? 389

The *FX commands 390

OSBYTE calls from BASIC 391

OSBYTE calls from assembly language 393

The *FX commands and OSBYTE calls 395

Functional summary (alphabetical) 396

Numerical summary 398

44 An introduction to assembly language 428

Machine code and the assembler 428

Uses of assembly language 429

The main features of 6502 assembly language 429

The 6512 registers 430

Program counter 430

Accumulator 430

X register 430

Y register 430

Program status register 431

Stack pointer 431

The assembler delimiters ‘[’ and ‘]’, and general assembly language syntax

rules 431

Addressing modes 432

Implicit addressing 432

Immediate addressing and zero page addressing 432

Absolute addressing 433

Indirect addressing 433

Indexed addressing 433

Relative addressing 435

Accumulator addressing 436

Placing machine code programs in memory 436

OPT, forward referencing and two-pass assembly 438

The EQUate facility 439

Machine code entry points 441

45 The operating system calls 442

Files 442

OSWRSC 443

OSRDSC 443

OSFIND 443

OSGBPB 4454

OSBPUT 4454

OSBGET 4454

OSARGS 4454

OSFILE 446

OSRDCH 448

OSASCI 448

OSNEWL 449

OSWRCH 449

OSWORD 449

Command line interpreter (&FFF7) 455

Faults, events and BRK handling 456

Accumulator description 456

Interrupt handling 457

NMI – non-maskable interrupt 457

IRQ – interrupt request 457

46 Analogue input 459

Digital input/output using the eight-bit user port 460

47 Error messages 462

48 Minimum abbreviations 473

49 BASIC II 475

ABS 475

COUNT 475

ELSE 475

EVAL 475

INPUT 476

INSTR 476

ON ERROR 476

OPENIN and OPENUP 476

ASC 4776

EQUB, EQUD, EQUS, EQUW 477

OPT 477

Appendix A 478

Teletext (MODE 7) displayed alphanumeric characters

Appendix B 480

Teletext (MODE 7) displayed graphic characters

Appendix C 482

ASCII (MODES 0 to 6) displayed character set and control codes

Appendix D 484

Hexadecimal ASCII codes

Appendix E 485

Text and graphics planning sheets

Appendix F 489

Keyboard codes

Appendix G 490

Printed circuit board layout for the BBC Microcomputer

Appendix H 491

External connections at the rear of the BBC Microcomputer

Appendix I 492

External connections underneath the BBC Microcomputer

Appendix J 493

Memory map amd memory map assignments

Appendix K 496

Circuit layouts

Appendix L 501

VDU code summary

Appendix M 502

6502 instruction set

Appendix N 504

*FX and OSBYTE call summary

Appendix O 506

Operating system calls

Index 507

1

Introduction

Equipment required

Before you start using your computer check that you have received the following

in addition to this User Guide:

– A BBC Microcomputer.

– A guarantee registration card.

– An aerial lead about two metres long which connects the computer to your

television.

– The Welcome Package – containing a cassette and an introductory booklet.

If you are short of any of these items then write immediately to your supplier

quoting the number given to you when you placed your order. The number also

appears on the dispatch label.

You will also require a lead to connect your computer to an ordinary cassette tape

recorder. If you ordered the appropriate lead when you placed your order, check

that it has arrived. If you didn’t, take your cassette recorder, the computer and

this book to a dealer and ask if he can supply a lead or make one up for you. In

many cases a standard audio lead will be suitable. The most common, useful type

is a 5-pin DIN to 5-pin DIN (see below). Alternatively, order the appropriate lead

from the supplier of your BBC Microcomputer. Unfortunately, as there are a

large number of different kinds of connections, it has not been possible to supply

a lead to fit every machine.

Text conventions used in this manual

You will notice that the style of printing used to present the text in this manual

varies. This is to help you tell the difference between explanatory text, words

which appear on your monitor screen (including BASIC keywords) and certain

keys on the computer keyboard.

– Ordinary text appears like this, or like this for emphasis.

– Text displayed on the screen (including BASIC keywords) appears like this .

– Words like RETURN mean that you should press the key marked RETURN

rather than type the letters R E T U R N.

2

What this User Guide can and can’t do

The BBC Microcomputer is a very versatile machine. On its own, connected to

your television set, the computer can respond to programs which you yourself

type in, to produce numbers, words, lines and movement on the screen and

sound. Connect a suitable cassette tape recorder and you can then save your own

programs for future use or run programs which have been written by other

people. The WELCOME cassette which comes with the computer contains a

number of programs specially written for the machine. Other programs are

available in large numbers, including programs linked to hobbies and games, and

programs for use in the home, in business and in education. Languages other

than BASIC (such as LISP, FORTH, BCPL and PASCAL) are available. These

languages are stored in an integrated circuit which has to be plugged into your

BBC Microcomputer. This must be done by your dealer.

The early chapters of this book will show you how to load and save programs

from cassette, how to write simple programs and how to create certain graphics

effects on the screen. There are also some complete programs to type in yourself.

However, this is not a step-by-step course in BASIC programming.

Most of what follows in the later chapters forms a reference guide on how to use

the various commands and keywords of the BBC BASIC language. If you are an

absolute beginner then much of this will not be very easy to understand.

However, as you get more experience of programming, this material will prove

invaluable.

3

1 Getting started

To get your computer working you will need a television set for a screen. Most

people at home will use their ordinary colour or black and white television to

show the pictures that the BBC Microcomputer produces. You will also need a

cassette recorder if you wish to save and load programs.

If you have a high quality monitor (for example in a school) then it can be

connected directly to one of the sockets at the back of the computer. To connect

the monitor to the computer you will need a special monitor lead.

Assuming that you want to use your normal television set, then you can connect

it to the computer using the aerial lead that is supplied with the computer. One

of the plugs on this lead has a long central prong which fits into the socket on the

back of the computer marked UHF out. The other end of the lead goes into the

back of your television set in place of the normal aerial lead (see figure 1). Don’t

worry about the cassette recorder for the moment.

Next, plug your computer into the mains and switch it on (the On/Off switch is at

the back). It should make a short ‘beep’ and the red light marked caps lock should

come on. Turn the television on too and let it warm up for a moment.

Probably all you will see on the TV screen at this stage is a ‘snow storm’. You will

have to tune the TV so that it can receive the transmissions from the BBC

Microcomputer. When your television is tuned correctly words will appear on the

screen.

Your television probably has some push-buttons which can be used to select

different channels. Often button number 1 is tuned to BBC 1, button number 2 to

BBC2, button number 3 to ITV and so on. It is best to tune a spare channel for

the computer, for example channel 8. You can then use this for the computer

without interfering with the tuning of the normal channels.

Different televisions tune channels in different ways. For some of them, you turn

the same knob that you use to select the channel. For others, there are separate

controls. In either case, you should depress a spare channel button and then

adjust it, or the associated control, until you get a good picture on the screen. A

message similar to

Acorn OS 64K

BASIC

>

4

5

should appear, which should be clear and sharp. Many types of tuning control

indicate the channel number that you are tuning to. The BBC Microcomputer

transmits on channel 36. It will not be too difficult to find the right channel but

you will have to tune the TV carefully to get a really clear picture.

When you have a clear picture, do by all means press every button in sight on the

computer – you can’t do it any harm at all. Usually it just keeps on saying

Mistake

>

whenever you press the large key marked RETURN. Mistake just means that

the computer does not understand your commands. Its fault – not yours!

You will see that if you hold any key down for more than a short time the

character on the key appears on the screen, then there is a short pause, then the

character repeats until you take your finger off again. On the whole, when

pressing keys on the keyboard you should press them briefly – unless you want

this repetition.

Experimenting

Now you are ready to experiment. You might like to try some of the following to

see what the computer can do, but first be sure to press the key marked BREAK.

This will clear the screen and get the computer ready for you.

Type in the following exactly as shown:

MODE 5

and then press the RETURN key. As you will see the command MODE 5 clears

the screen and just leaves the > mark on the screen. > is known as the ‘prompt’

and it means that the computer is ready for your next command.

Pressing the RETURN key tells the computer that you have finished the line you

are typing and that you want it to obey your command. Before you press the

RETURN key you can correct errors by pressing the key marked DELETE.

If the computer says Mistake then press the BREAK key and try again,

starting with MODE 5.

Then type in each of the following lines – but don’t forget to press the RETURN

key at the end of every line. Don’t worry if you make a mistake – it really doesn’t

matter!

DRAW 1000,100

DRAW 0,750

6

GCOL 0,1

PLOT 85,0,0

If the computer says No such variable then you are probably pressing the

letter O instead of the number 0.

PLOT 86,1000,750

VDU 19,1,4,0,0,0

VDU 19,3,2,0,0,0

VDU 19,0,1,0,0,0

DRAW 200,0

DRAW 0,200

As you can see, the DRAW command is used to draw lines while PLOT 85 and

PLOT 86 are used to plot and fill in triangles on the screen. When using the

graphics the points on the screen are numbered from 0 to 1279 (left to right) and

from 0 to 1023 (bottom to top). They are like positions on a piece of graph paper.

Words can also be plotted in colours, as you will have seen. Clear the screen by

typing MODE 5 and then type the following:

COLOUR 1 This selects a red foreground.

COLOUR 2 This selects a yellow foreground.

COLOUR 3 This selects a white foreground.

COLOUR 129 This selects a red background.

COLOUR 0 This selects a black foreground.

COLOUR 130 This selects a yellow background.

The computer can create sound as well. Try typing this in:

SOUND 1,-15,100,200

and then press RETURN.

That gives a simple, crude sound. It is also possible to alter the quality of the

sound. Try this:

ENVELOPE 2,3,2,-4,4,50,50,50,127,0,0,0,126,0

7

(This should be typed in as one line even though it may spill over to the next line

on the screen just as it has on this page. The computer will treat it as being ‘one

line’ when you press RETURN.) Now carry on with:

SOUND 1,2,1,10

SOUND 2,2,100,1

SOUND 3,2,200,1

You will have to press ESCAPE to stop the sound.

Here’s another one:

ENVELOPE 1,1,-26,-36,-45,255,255,255,127,0,0,0,126,0

SOUND 1,1,1,1

There is a whole chapter on sound later on.

Connecting up the cassette recorder

Now get a cassette recorder connected so that you can load the demonstration

programs into the computer from the cassette tape supplied in the WELCOME

pack. For the moment just follow the instructions – we can sort out the ‘whys and

wherefores’ later.

You have to do two things before you can load the programs from the WELCOME

tape: first get the right lead to connect your cassette recorder to the computer

and secondly set the volume control on the cassette recorder to the correct

position.

Leads

There are a number of different kinds of leads (figure 2). The connection to the

computer is through a 7-pin DIN connector; a lead has not been supplied with the

machine because there are so many connections to the many different cassette

recorders in use. In many cases a standard 5-pin DIN to 5-pin DIN lead will be

suitable, provided you do not want to use the motor control. If you want full

motor control, take your cassette recorder to your nearest BBC Microcomputer

dealer who will be able to supply a lead or make one up for you. Alternatively,

take your cassette recorder and this book to a local hi-fi dealer.

Note: Although you may find the ideal cassette lead difficult to buy locally, many

cassette recorders do have a standard 5-pin DIN socket and a standard 5-pin DIN

to 5-pin DIN hi-fi lead will work with the BBC Microcomputer in many cases.

8

Volume

Having got the cassette recorder connected to the computer the only remaining

thing to do is to set the playback volume on the cassette recorder to the correct

level.

With the BBC Microcomputer the cassette volume control setting is not critical.

However, a special procedure for setting the volume control correctly is

incorporated into the first program on the tape.

Running the WELCOME programs

Note: If your machine is fitted with a Disc, Econet, Teletext or IEEE interface

and you wish to use a cassette, you must first select the Cassette Filing System

by typing

*TAPE RETURN

This command should also be typed in (if your machine has one or more of the

above interfaces) directly after use of BREAK or CTRL BREAK. In some cases,

very long cassette programs may not run because of the small amount of extra

memory used by the Disc and Net filing systems. To overcome this, follow the

*TAPE RETURN command by:

PAGE = &E00 RETURN

NEW RETURN

(See chapter 33 for explanations of PAGE and NEW .) If at any time you wish to

return to the Disc or Econet filing systems, press BREAK or CTRL BREAK, or

type:

*DISC RETURN

or

*NET RETURN

Bearing in mind the above note, the WELCOME programs can be run by typing

in

CHAIN "WELCOME"

9

10

and then press the RETURN key. Next insert the WELCOME cassette into your

recorder. If your cassette recorder has a tone control then set it to maximum

‘treble’ and leave it there. Now start the cassette recorder playing by pressing the

PLAY button on the recorder. Then adjust the cassette recorder volume control

slowly, until you get the message:

Your volume control is now properly set. Please

wait while the first program is loaded

on the screen. This will give the minimum volume level. You should then increase

the setting a little more. If you need to, you can rewind the tape at any time. If no

message appears rewind the tape and play it again, increasing the volume control

setting in larger steps, or check the cassette leads are correctly plugged in.

The system is very reliable, so if you have problems it may be that your tape

recorder is at fault or that you have a fault in the computer. You are advised to

contact your dealer.

Note: Each computer program is recorded on the tape as a kind of screeching

noise. It’s not meant to be listened to, but some cassette recorders have the

annoying habit of playing the tape through the loudspeaker while the tape is

loading into the computer. Everything depends on what plugs and sockets are

being used. It is possible to stop this on most recorders by inserting a small

(3.5mm) jack plug into the socket on the recorder marked EAR. You could insert

the ear piece supplied with the recorder if that is more convenient. On other

recorders you may have to insert a DIN loudspeaker plug, with no wire

connections, into the socket marked LS to turn off the noise. Don’t try turning the

volume control down because then the computer will not be able to ‘hear’ the tape

either. The important thing to do is to try to disable the loudspeaker as described

above.

Make a note of the volume setting on your cassette recorder and always use that

setting when playing back the WELCOME cassette. You may need to use a

different setting with other tapes that you have purchased or recorded yourself.

On the WELCOME cassette the volume control setting is repeated many times at

the beginning of the tape. With practice it is possible to save time by running the

tape forward by about two minutes (once the volume control is set) and then

begin playing the tape from this point, having first entered the command

CHAIN "WELCOME" RETURN

When the first WELCOME program has loaded into the computer it will clear the

screen and give you instructions.

The WELCOME pack includes a booklet which describes not only how to get the

programs running but also what each of the programs does.

11

The keyboard

Anyone who has used a standard typewriter will be familiar with the positions of

most of the symbols on the keyboard of the BBC Microcomputer. However, there

are a number of special keys which need to be mastered (see figure 3) and these

are described below.

If you are a keyboard novice you may find the layout confusing. Don’t worry –

first of all it is not necessary to be a touch typist to work the computer; secondly,

there is a program on the WELCOME cassette which will help you to practice

finding the various keys, and most people find that with a little practice they

become familiar with them fairly quickly.

Some keys have two symbols engraved on them – we’ll call those on the top

‘upper case’ and those below ‘lower case’ symbols.

CAPS LOCK

When the machine is switched on, the middle light should be on, telling you that

the CAPS LOCK key is on. This gives capital letters and lower case symbols and

is the most useful state for programming because the computer only recognises

commands typed in using capital letters. By pressing the CAPS LOCK key once

you can switch the light off. Now you get lower case letters and lower case

symbols. Press it again and it will be on again.

SHIFT

Whether CAPS LOCK is on or off, if you press either of the SHIFT keys and

hold it down while typing in a character you will get a capital letter or upper case

symbol.

Holding down CTRL and SHIFT together stops the computer ‘writing’ to the

screen. This can be useful if it is writing faster than you can read.

SHIFT LOCK

Pressing this key once gives capital letters and upper case symbols until it is

pressed again. It has its own on/off light.

Practice in the use of these keys is given in one of the first programs in the

introductory pack – the one called KEYBOARD.

SHIFT CAPS LOCK

Depressing and releasing SHIFT and CAPS LOCK in unison reverses the effect

of the SHIFT key, causing a lower case letter to be printed when pressing a

letter key with SHIFT held down. Pressing CAPS LOCK again returns the

keyboard to normal.

12

13

RETURN

This key is the most commonly used key on the keyboard. When a command or

anything else is typed in, it is not usually acted upon until the RETURN key is

pressed. In other words, this key informs the computer that you have finished

entering a line or a reply. Until you press RETURN, you can add to or delete

what you have typed in.

CURSOR control keys

These enable you to move the flashing cursor around the screen when editing a

program. Pressing any of them makes the computer automatically enter the

‘editing mode’ during which two cursors are shown on the screen (see chapter 4).

DELETE

Pressing this key will cause the last character typed in to be erased from the

screen. If held down, it will then erase further characters until released.

COPY

This key, used in conjunction with the cursor control keys, enables anything on

the screen to be copied – a useful feature when editing a line in a program.

ESCAPE

This key is usually used to stop a program which is running. However, it can be

programmed to do other things when pressed – such as moving you from one part

of a program to another.

BREAK

This key stops the computer no matter what it is doing. The computer forgets

almost everything that it has been set to do. Pressing BREAK also resets the

screen to MODE 7.

Do not get into the habit of using BREAK. The ESCAPE key provides a much

less violent way of escaping from a program! (See chapter 25 for more details on

BREAK).

14

CTRL

This key behaves similarly to the SHIFT key in that it can be used to change the

character generated by other keys. For example, pressing CTRL and G (called

Control G) makes the internal speaker make a short noise. CTRL B is used to

turn a printer on and CTRL C turns it off. CTRL N makes the computer stop at

the bottom of each page, etc, etc. More information on control codes is given in

chapter 34.

TAB

Another key that is useful in special circumstances – like word processing.

These keys can be somewhat confusing because they seem to generate the wrong

characters sometimes. The problem is that there are two international standards

for displayed characters (Teletext and ASCII) and the BBC Microcomputer can

display either. MODE 7 generates the Teletext display characters and MODES 0

to 6 show the ASCII characters. But don’t worry, the computer recognises the

key correctly regardless of what is displayed on the screen. Here is a table

showing all these characters:

Displayed on the screen
On the key

in MODE 7 in MODES 0 to 6

~ ÷ ~
^

�
^

¦ � ¦

\ ½ \

{ ¼ {

[� [

} ¾ }

] �]

Note that in MODE 7 a zero is shown as a rather pointed O whereas in all other

modes, zeros have a slash – 0 – to help to differentiate them from the letter O.

The keyboard is also marked in this way.

15

2 Commands

There are two ways of getting the computer to do something:

1. Give it commands which it can act on immediately. This is what happened

when you typed in the lines in chapter 1.

2. Give it a series of numbered instructions, often called statements, which it can

store in its memory and carry out in sequence when told to do so. A stored series

of instructions is called a program.

Many of the keywords in BASIC can be used both as commands and as

statements in a program.

The rest of this chapter is concerned with ‘command mode’.

PRINT is used to make the computer print something on the screen. Try these

two examples:

PRINT "HELLO"

Don’t forget to press RETURN at the end of each line.

PRINT 3 + 4

In the second example you have given the computer a command to print the sum

of 3 and 4. The computer can very easily do addition, subtraction, multiplication

and division. The addition, subtraction, multiplication and division signs areall

on the right side of the keyboard. If you are interested in doing mathematical or

financial work then you will need to know the symbols that the computer uses for

various mathematical operations. They are:

+ Addition

- Subtraction

* Multiplication

\ Division

^ Exponentiation

. Decimal point

If you want to get the + or * then you will have to press the SHIFT key as well as

the key you want. It’s rather like a typewriter: while holding the SHIFT key

down, press the + sign once.

16

Try typing in the following and check that they work – in other words see that

they produce the expected answers.

PRINT 4 + 8

PRINT 18 - 2 * 4

PRINT 131/4

PRINT SQR(2)

The last one will print the square root of 2 which is 1.41421356.

Then try

MODE 5

which will make the computer clear the screen and get it ready to draw lines as

well as text. In this mode

COLOUR 129

will select a red background, and

CLS

will clear the screen to the background colour. In each case you have given the

computer a command and it has obeyed it immediately. Working like this is

called ‘working in command mode’.

While in this mode you might like to learn how to use the bright red user defined

function keys. Each of these keys can be used to store a word or several words.

For example they could be programmed so that each one selects a different

colour. Try this:

*KEY 2 COLOUR 2 |M

The | shown above is produced by a special key. On the keyboard this key is the

third key from the right on the row below the red keys. In MODE 7 this key

produces � on the screen.

Once you have typed that in then every time you press the key marked f2, the

computer will change to COLOUR 2 which gives yellow lettering. In a similar way

you could program some of the other keys like this:

*KEY 0 COLOUR 0 |M

*KEY 1 COLOUR 1 |M

*KEY 3 COLOUR 3 |M

Note the exact position of spaces when you type in a command.

17

Of course red letters don’t show up very well on a red background! You will have

noticed the |M at the end of each line above. That is the code used to get a

RETURN into the user defined function keys.

If the picture on your television screen is either too far up or too far down the

screen, you can move the whole display with the command *TV .

*TV 255 will move down one line

*TV 254 will move down two lines

*TV 1 will move up one line

*TV 2 will move up two lines

The movements come into effect next time you press BREAK or change mode.

*TV also controls the interlace of the television display. See chapter 43.

18

3 An introduction to
variables

In the last chapter we made the computer do a number of calculations but it was

never expected to remember any of the results after it had printed them out.

Suppose that you have to calculate the wages for everyone in a company. After

you have worked out each person’s wage, it would be useful to be able to add

them all together, so that in the end you would know the total wage bill. Keeping

track of things that vary during a long calculation is done by using variables.

Try typing this line into the computer:

LET Z=5

And now try typing in each of the following lines:

PRINT Z+6

PRINT Z * 12

As you will have seen, once we have told the computer that ‘Z is 5’ it understands

that every time we use the letter Z in a sum it has to go and have a look to find

out what the value of Z is (5 in this case) and use that number in the arithmetic

that we set it to do. Now type in

LET Z=7

and then try these two lines:

PRINT Z+12

PRINT Z/3

As you will gather the value of Z has changed from 5 to 7. In computer jargon Z is

called a numeric variable. That means that Z can be used to store any number,

and you can change the value of Z at any time you want to.

The computer is able to store hundreds of different variables and the variables

don’t have to be called something as simple as Z; you can call a variable by as

long a name as you want. For example you could type

MYAGE=30

Notice that MYAGE was written without any spaces between the word

19

MY and AGE. There are only four restrictions about the names that we give to

variables:

1. There must be no spaces in the middle of a variable name.

2. All variable names must start with a letter – however you can add in as many

numbers as you want to later on.

3. You must not use punctuation marks (such as exclamation marks and question

marks) in the variable name but you can use an underline character.

4. Variable names should not begin with BASIC keywords like PRINT and LET.

One that is particularly easy to use by mistake is the keyword TO. However it is

permissible to start a variable name with a lower case ‘to’ because upper and

lower case names are different. There is a full list of keywords in chapter 48 and

they are described in detail in chapter 33.

To get lower case characters on the screen, make sure that the CAPS LOCK is

off by depressing it to turn off its light. Now you will get small letters and

numbers. Hold the SHIFT key down if you want to use capital with lower case

letters.

Any of the following variable names are acceptable.

LET AGE=38

LET this year=1984

LET lengthOFrod=18

LET CAR_mileage=13280

LET value5=16.1

LET weight4=0.00135

LET chicken2egg3=51.6

However the following variable names are illegal.

LET Football Result=3 (There’s a space.)

LET Who?=6 (There’s a question mark.)

LET 4thvalue=16.3 (Starts with a number.)

LET TODAY=23 (Starts with TO.)

LET PRINT=1234.56 (PRINT is a reserved word.)

You will notice that in all the examples above we have put the word LET before

the variable name. That gives a clear indication of what is actually happening

inside the computer, namely that the numeric variable this_year, in one of the

examples, is being given a new value ‘1984’. The word LET is optional and the

computer will also accept

this_year=1984

This shortened version is more frequently used.

20

4 A simple program

In the previous chapter we have been giving the computer commands which it

obeys immediately. The problem with this technique is that you have to wait

until the computer has completed one command before you can give it the next

one. If the computer takes a long time to work out one of the problems you have

set it, then you may have to waste an awful lot of time just sitting there waiting

for it. For example if you want your computer to work out the number of £1, £5

and £10 notes that you will need to pay the wages at the end of the week the

computer will take a fair time to calculate all the wages before it can sort out the

notes required.

The same problem comes up when you take a car into a garage to be serviced.

You could for example stand by the mechanic and say ‘First of all I want the oil

changed’ and then you could wait for him to change the oil. When that is

completed you could then say ‘Now I want you to replace the bulb that has blown

in one of the front headlights’ and then you could wait for that job to be done.

And thirdly you might say ‘The exhaust is making a noise, so I want you to put

the car up on the ramp and check it’.

You would spend a great deal of time waiting for the mechanic to complete each

job before assigning the next. There is a far more efficient way of doing things;

when you go into the garage you give the mechanic a whole set of instructions, for

example:

– First of all change the oil.

– Secondly replace the headlight bulb.

– Thirdly stop the noise in the exhaust.

Once you have given your set of instructions and checked that the garage

understands what has to be done, you can walk off and have a cup of coffee and

then go back expecting the job to be finished. Now the same thing applies with a

computer. It is far better to give it a whole set of instructions and let it run while

you wander off and have a cup of coffee. ‘Writing a computer program’ is nothing

more than giving a set of instructions.

If you give the computer a command like

PRINT "HOW ARE YOU"

then the computer will do that immediately. On the other hand, if you give the

computer a statement

10 PRINT "HOW ARE YOU"

21

then the computer will regard that as instruction number 10 and it will not do it

immediately, but expect other instructions to follow. Instruction number 10 is

usually referred to as line 10. Again: if there is a line number then the statement

is part of a program; if there is no line number then it is a command which the

computer must obey immediately.

When you have given the computer a set of instructions and you then want it to

carry them out, you type the word RUN on the keyboard. The computer will then

carry out the instructions that you asked it to do one at a time and in line-

number order. In other words, it will ‘execute’ the program that you have typed

in. Just to check that you have got the idea of what is going on, here is a small

program that you can type in.

10 REPEAT

20 PRINT "GIVE ME A NUMBER";

30 INPUT B

40 PRINT "12 TIMES ";B;" IS ";12*B

50 UNTIL B=0

When you RUN the program line 20 will print the message

GIVE ME A NUMBER

on the screen.

Line 30 will print a question mark on the screen and wait for you to type in a

number (followed by RETURN – as usual). The number you type in will become

the value of the variable ‘B’.

Line 40 will first print the words 12 TIMES followed on the same line by the

number you typed in, followed on the same line by the word IS followed by the

result of the calculation. The semi-colons tell the computer to print the next item

on the same line as the previous one and right up against it.

Line 50 sends the computer back to line 10 unless B=0, when the program will

stop.

Another way of stopping the program is to press the ‘panic button’ which is

marked ESCAPE (it’s at the top left of the keyboard). If the computer seems to

be ignoring you because it’s too busy running a program. You can nearly always

get its attention by pressing the ESCAPE key. When you do that it will stop

running your program and print a > prompt to show that it has stopped the

program and is waiting for your command.

When the computer shows a > it is in command mode. You can change your

program, give it commands for immediate execution, or tell it to RUN the

program (in its memory) again. It doesn’t forget a program when you press

ESCAPE.

22

If the computer is in command mode (in other words if the last thing on the

screen is >) then you can command it to print the program in its memory by

typing

LIST

and pressing RETURN.

The computer will then give a listing of the program on the screen for you to

cheek. If you discover that you have made an error, for example that you have got

something wrong in line 20, then it is easy to correct the error. There are two

ways of correcting major errors:

– Retype the whole line.

– Use the screen editor.

Using the screen editor

There is a group of six keys on the right hand side of the keyboard which can be

used to edit, or alter, program lines that are displayed on the screen. Four of the

keys have arrows on them and are coloured a lighter brown that most of the other

keys. These keys enable you to move a flashing cursor around the screen to a line

that you wish to edit. As soon as you press one of these keys the computer enters

a special ‘editing mode’ where it displays two cursors. The large white block is

called the write cursor and it shows you where anything that you enter will

appear.

The other small, flashing cursor – the read cursor – is the one that can be moved

around by the arrow keys.

Try moving the read cursor, by using the arrow keys, until it is under a letter at

the start of a word and then press the COPY key several times. As you will see

the COPY key copies everything that the read cursor passes under into the new

input line. Halfway through copying a line you can always use

to move the read cursor to some new place on the screen before using COPY

again to copy some other text to your new input line. The DELETE key can

always be used to delete characters from the input line.

You can also type new characters in at any time instead of using the COPY key.

When your new input line is complete just press RETURN in the usual way.

23

Try the following: clear the screen with the command CLS and then LIST the

program. It should include the line

20 PRINT "GIVE ME A NUMBER";

If not, then type that line in so that you can edit it. Suppose that you wanted to

insert the word BIG so that line 20 reads

20 PRINT "GIVE ME A BIG NUMBER";

then all you have to do is to press the up-arrow cursor key until the small

flashing line is positioned under the 2 of 20 . Then press the COPY key to copy

the first part of line 20 to a fresh line at the bottom. When the cursor reaches the

space after the A where you want to insert the word BIG, just type it in with a

space in front – it will appear on the bottom line. Then COPY the rest of the line

20. The space after the A becomes the space after BIG. At the end press

RETURN.

Now try changing the program already in the computer once again by doing the

following:

1. List the program by using the LIST command.

2. Practice using the cursor control and COPY keys to alter line 20 so that it

reads:

20 PRINT "NOW GIVE ME A BIG NUMBER";

3. Now add these new lines. Don’t forget to press RETURN after each one.

5 CLS

25 REPEAT

35 IF B<1000 THEN PRINT "I SAID A BIG NUMBER"

37 UNTIL B>=1000

Note: It doesn’t matter in what order you type new lines. The computer will

automatically put them into numerical order. You will see that this is true by

typing

LIST RETURN

These extra lines tell the computer to reject any number smaller than 1000 and

to keep on going back to line 30 to ask for a new number until that number is

greater than 1000. The symbol < means ‘is smaller than’, and > means ‘is

greater than’. IF and THEN are self explanatory.

24

4. Now RUN the program.

>RUN

NOW GIVE ME A BIG NUMBER? 16

I SAID A BIG NUMBER

?20

I SAID A BIG NUMBER

?2000

12 TIMES 2000 IS 24000

NOW GIVE ME A BIG NUMBER?

This program will go on running until you press ESCAPE. If you look you will

see that if you give the value 0 for the number, the program never reaches line

50, so it can never end unless you press the panic button!

Deleting part of a program

Quite often you will want to delete a whole line or group of lines in your program.

This is easy to do but don’t forget that if you type in a new line 20 (for example),

it will automatically remove the old line 20 and replace it with your new one. If

you want to delete a line completely then type in just the line number and press

RETURN:

20 RETURN

To delete a whole set of line numbers, for example, lines 50 to 70 inclusive, you

can type

DELETE 50, 70

You cannot get these lines back once they are deleted – unless you can copy them

off the screen, so use this with care.

After you have deleted several lines – or if you have typed in lots of new lines you

often find that you have a very odd set of line numbers. The command

RENUMBER

will make the computer go through your whole program renumbering all the

lines so that they are given line numbers in a numeric sequence. Here is an

example of terrible programming style – but it will illustrate the RENUMBER

command. Don’t bother to type it in – just look at it.

>LIST

 1 REM ** GOTO GOTO GOTO

 2 REM WITH ACKNOWLEDGEMENTS TO

 3 REM "COMPUTERS IN SCHOOLS"

 4 REM THE JOURNAL OF MUSE

15 GOTO 100

16 GOTO 95

40 N=N+1

25

 44 END

 57 IF N=18 THEN PRINT "GOTO OR NOT TO GOTO"

 60 IF N>35 THEN GOTO 110

 78 GOTO 40

 95 PRINT "**THE GOTO SHOW**": GOTO 40

100 N=0: GOTO 16

105 PRINT "GOT TO GOTO GOTO NOW"

110 GOTO 44

115 PRINT "GOTO OR NOT TO GOTO";:GOTO 60

>RENUMBER

>LIST

 10 REM ** GOTO GOTO GOTO

 20 REM WITH ACKNOWLEDGEMENTS TO

 30 REM "COMPUTERS IN SCHOOLS"

 40 REM THE JOURNAL OF MUSE

 50 GOTO 130

 60 GOTO 120

 70 N=N+1

 80 END

 90 IF N=18 THEN PRINT "GOTO OR NOT TO GOTO"

100 IF N>35 THEN GOTO 150

110 GOTO 70

120 PRINT "**THE GOTO SHOW**": GOTO 70

130 N=0: GOTO 60

140 PRINT "GOT TO GOTO GOTO NOW"

150 GOTO 80

160 PRINT "GOTO OR NOT TO GOTO";:GOTO 100

>RUN

THE GOTO SHOW

As you will see, the RENUMBER command has not only renumbered the references

to line numbers which occur within the program itself – namely after the

statements containing the keyword GOTO. (This gives the computer the

instruction to go to a particular line number and carry out the instruction it finds

there.)

Removing a program

If you want to write a new program you will want to remove the old program

from the computer’s memory. This can be done by using the command NEW, or by

pressing the BREAK key. In either case, if you regret having lost your program,

type OLD and press RETURN and, providing you haven’t begun to type in the

new program, the old one should reappear.

You can always check what’s in the memory by typing LIST . Try experimenting

with these various commands on the program you have typed in.

26

5 Recording programs on
cassette

The WELCOME cassette supplied with your BBC Microcomputer has a number

of programs stored on it. You can store a copy of any program on cassette and

then load it back into the machine at some time in the future. It really is just like

recording music onto a cassette – you can then play the cassette back a few days

later and the music will still be there.

If you decide that you don’t want to keep the computer program that you have

saved on cassette then you can just record a new program over the old one in the

same way that you can re-use a cassette when recording music. And in the same

way that it is very easy to forget where a particular piece of music is recorded on

a cassette, so it’s very easy to forget where on the cassette you have stored a

particular program. It is very strongly suggested that you use the tape counter to

keep an index of where programs are on cassette. Also you must leave gaps

between programs. It is easy to let one program run over the start of the next one

if they are all squashed close together. If programs do overlap then you will

definitely lose one of them. Be warned!

Most short programs will only move the cassette tape counter on 30 or 40

positions but play safe and spread the programs out over the length of the

cassette. If you record the first program at 0000, the second at 0100, the next at

0200 and so on then they will be easy to find and they are unlikely to run over

each other.

Note: don’t make the mistake of trying to record on the clear plastic tape ‘leader’

– wind the tape on by hand until the brown tape itself is exposed.

Saving a program on cassette

If you have typed a program into your microcomputer then all you have to do to

save it is to

1. Insert the cassette into the recorder.

2. Set the tape counter to 0000 when the tape is fully re-wound.

3. Type

SAVE "MYPROG"

on the computer and then press the RETURN key.

4. The message RECORD then RETURN will appear.

27

5. Fast forward the cassette to the place where you want to record the program -

this will be 100 or 200 or 300 etc, on the tape counter.

6. Press the RECORD button on the cassette and then press the RETURN key.

If you want to give up at any time then press the ESCAPE key.

Notice that MYPROG is the name that we happened to give to the program. You can

call your program by any name you like so long as it has no more than ten

characters. For example you could have typed

SAVE "FRED" or

SAVE "GAME3" or

SAVE "picture"

While the program is being saved on cassette the name of the program and some

numbers will appear to tell you that things are happening. When the computer

has finished, the > prompt will re-appear and the tape will stop automatically. If

you don’t have cassette motor control then you will have to stop the recorder

manually after the > prompt re-appears. That’s it.

Checking a recording

If you want to check that you have successfully recorded your program on the

tape then you can use the *CAT command (see below). If your recording failed for

any reason you can always re-record it. See chapter 35 if you have problems.

Loading a program from cassette

Loading a program back into the computer is just like playing a particular piece

of music which has been recorded on the cassette.

1. Type

LOAD "MYPROG"

and then press the RETURN key. The message

Searching

will appear. Of course if your program is called something else then use the right

name, for example

LOAD "GAME3" RETURN

2. Rewind the cassette to just before the start of your program (which will be at

100 or 200 etc.)

3. Check that the volume and tone control settings are correct – see chapter 1 if

you are not sure how to find the correct settings.

4. Start playing the cassette by pressing the PLAY button on the recorder.

28

When the computer finds any program on the cassette it will show the name of

the program on the screen. When it finds the program it is looking for it will print

Loading

to let you know that it is now loading the right program.

When the computer has finished loading the program it will print the

>

prompt. It will also automatically stop the tape if you have automatic motor

control, if not then you will have to stop the tape manually.

The program is now in the computer. You can type

RUN RETURN

to make it work, as usual.

There is one more useful feature to do with loading and saving programs. Instead

of typing

LOAD "MYPROG" RETURN

you can type

CHAIN "MYPROG" RETURN

This not only loads in the program MYPROG but also starts it working as soon as

it has loaded. It is normally more convenient to use CHAIN than LOAD.

Cataloguing a tape

If you forget what programs you have on the tape then you can get a catalogue by

typing

*CAT

and then playing the tape, but you’ll have to wait until the tape has run through

the programs.

What the numbers mean

A typical catalogue looks like this

WELCOME 00 0084

INTRO 08 088E

INDEX 0A 0ABA

KEYBOARD 25 2545

29

The file-name is followed by two ‘hexadecimal’ numbers which give the ‘block

number’. Each program is recorded as a series of ‘blocks’. See chapter 10 for an

explanation of hexadecimal numbers.

The last number on the line gives the ‘length’ of the file.

The action of cataloguing a tape also lets the computer verify the information

recorded. If there are errors in any of the data on the tape it will print a message

and continue.

The ESCAPE key allows you to leave cassette operations whenever you like. If

you leave from the middle of a LOAD operation you will probably get a Bad

Program error. Type NEW to remove this.

More information about cassette formats, loading errors and files is given in

Chapter 35.

30

6 Sample programs

Most of the rest of this book is concerned with introducing the various parts of

the BBC BASIC language which the computer understands and other features of

the machine. But first, here are a few complete programs which you can try to

type in yourself. They must be typed in accurately and can then be run. If a

program fails to run properly, then you probably typed a line in incorrectly – for

instance, you may have typed ; when you should have typed : or typed O

instead of 0.

Most of the sample programs are too big to fit all of the lines on the screen. If you

LIST a program you have typed in, for example to check that you have made no

mistakes, you may find that the lines you want to look at disappear off the top of

the screen. To prevent this you can specify the range of lines you want to be

listed. For example

LIST 100,200

will only list those lines numbered between 100 and 200.

Alternatively you can enter ‘paged mode’ by pressing CTRL N (hold down CTRL

and press N). In this mode the listing will stop after every ‘page’ and will continue

only when you press the SHIFT key. Paged mode is switched off by pressing

CTRL O and you should always remember to do this after you have listed the

program.

Typing in programs will help you to get a feel for the keyboard and, if you save

them on cassette after you are satisfied that they do run properly, will enable you

to start building up a library of them.

Learning to use the computer is a little like learning to drive a car – when you

first start you find that there are an enormous number of things to think about

all at one time. Many of the things you come across from now on will be

bewildering at first, but as you get further into the book and as you gain

experience in using BASIC, the various parts of the jigsaw puzzle should begin to

fall into place. So don’t worry if, for instance, some of the comments about the

following programs are difficult to understand at first.

Note: In the program listings which follow, extra spaces have been inserted

between the line numbers (10,20, etc) and what follows on each line. This is to

improve the readability of the programs. However, although it will do no harm,

there is no reason to type in any spaces after the line number. For example in the

first program, called POLYGON, when entering line 250, all you need to type is

250MOVE 0,0

31

POLYGON

This program draws polygons (many sided shapes) in random colours.

Lines 120 to 180 move to a random place on the screen which will be the centre

(origin) of the next shape. Lines 210 to 290 calculate the X and Y coordinates of

each ‘corner’ of the polygon and store the values in two ‘arrays’ for future use. In

addition the shape is filled with black triangles (lines 260 and 290) that make it

appear that the new polygon is in front of the older ones. Lines 310 to 370 draw

all the lines that make up the polygon.

Lines 50 to 70 set the actual colour of logical colours 1,2 and 3 to red, blue and

yellow. You can change these if you wish to use other colours.

10 REM POLYGON

20 REM JOHN A COLL

30 REM VERSION 1 / 16 NOV 81

40 MODE5

50 VDU 19,1,1,0,0,0

60 VDU 19,2,4,0,0,0

70 VDU 19,3,3,0,0,0

80 DIM X(10)

90 DIM Y(10)

100

110 FOR C=1 TO 2500

120 xorigin=RND(1200)

130 yorigin=RND(750)

140 VDU29,xorigin;yorigin;

150 radius=RND(300)+50

160 sides=RND(8)+2

170 MOVE radius,0

180 MOVE 10,10

190

200 GCOL 0,0

210 FOR SIDE=1 TO sides

220 angle=(SIDE-1)*2*PI/sides

230 X(SIDE)=radius*COS(angle)

240 Y(SIDE)=radius*SIN(angle)

250 MOVE0,0

260 PLOT 85,X(SIDE), Y(SIDE)

270 NEXT SIDE

280 MOVE0,0

290 PLOT 85,radius,0

300

310 GCOL 0,RND(3)

320 FOR SIDE=1 TO sides

330 FOR line=SIDE TO sides

32

340 MOVE X(SIDE), Y(SIDE)

350 DRAW X(line), Y(line)

360 NEXT line

370 NEXT SIDE

380 NEXT C

You may like to try this alternative for line 200

200 GCOL 0, RND(4)

MONTHLY

This program plots a set of ‘blocks’ on the screen which might represent prices

over a 12-month period. In this example the height of the bars is randomly

selected at line 170. Lines 180 to 270 then draw a ‘solid’ bar and the edges are

marked in black by lines 290 to 330. Lines 340 and 350 print out one letter

representing the month of the year at the bottom of each bar.

Notice that lines 60 and 70 set up two of the function keys. Key f0 sets the

computer to MODE 7 and then lists the program. Key f9 can be used to run the

program.

 10 REM MONTHLY

 20 REM JOHN A COLL

 30 REM VERSION 1 / 16 NOV 81

 50

 60 *KEY 0 "MODE7 |M LIST |M"

 70 *KEY 9 "RUN |M"

 80 M$="JFMAMJJASOND"

 90 C=0

100 MODE 2

110 VDU5

120 VDU 29,0;100;

130

140 FOR X=0 TO 1100 STEP 100

150 GCOL 0,C MOD 7+1

160 C=C+1

170 H=RND(400)+200

180 MOVE X,0

190 MOVE X,H

200 PLOT 85,X+100,0

210 PLOT 85,X+100,H

220 MOVE X+70,H+50

230 MOVE X,H

240 PLOT 85,X+170,H+50

250 PLOT 85,X+100,H

260 PLOT 85,X+170,50

33

270 PLOT 85,X+100,0

280 GCOL,0

290 MOVEX,H

300 DRAW X+100,H

310 DRAW X+170,H+50

320 MOVE X+100,H

330 DRAW X+100,0

340 MOVE X+10,50

350 PRINT MID$(M$,C,1)

360 NEXT

370

380 GCOL 4,1

390 MOVE 0,450:PRINT "----------------"

400 VDU4

410 PRINTTAB(3,0)"critical level"

The height of each bar is set randomly by the variable H. If you want to put in

your own values (data), then type the following extra lines. Line 170 must also be

deleted by typing 170 followed by RETURN.

 50 DIM data(12)

 82 FOR J=1 TO 12

 84 PRINT "Input data for month "MID$(M$,J,1);

 86 INPUT data(J)

 88 NEXT J

 89 INPUT "CRITICAL LEVEL", level

155 H=data(C+1)

390 MOVE 0,level:PRINT"---------------"

QUADRAT

This program can be used to solve equations of the form

Y=Ax2 + Bx + C

The ‘roots of the equation’ are printed to two decimal places.

The number of decimal places is set by line 90.

The main program between lines 110 and 170 uses three procedures – one for

each of the three types of result. The main program is surrounded by

REPEAT

.....

.....

.....

UNTIL FALSE

which keeps the program going for ever – or until the ESCAPE key is pressed.

34

Line 170 PRINT''' prints three blank lines to separate one set of results from

the next.

 10 REM QUADRAT

 20 REM JOHN A COLL BASED ON A PROGRAM

 30 REM BY MAX BRAMER, OPEN UNIVERSITY

 40 REM VERSION 1.0 /16 NOV 81

 50 REM SOLVES AN EQUATION OF THE FORM

 60 REM A*X^2 + B*X + C

 70 ON ERROR GOTO 350

 80 MODE 7

 90 @%=2020A

100 REPEAT

110 PRINT "What are the three coefficients ";

120 INPUT A,B,C : IF A=0 THEN 110

130 DISCRIM=B^2-4*A*C

140 IF DISCRIM<0 THEN PROCcomplex

150 IF DISCRIM=0 THEN PROCcoincident

160 IF DISCRIM>0 THEN PROCreal

170 PRINT'''

180 UNTIL FALSE

190 END

200

210 DEF PROCcomplex

220 PRINT "Complex roots X=";-B/(2*A);

230 PRINT " +/- "; ABS(SQR(-DISCRIM)/(2*A)) "i"

240 ENDPROC

250

260 DEF PROCcoincident

270 PRINT "Co-incident roots X=";B/(2*A)

280 ENDPROC

290

300 DEF PROCreal

310 X1=(-B+SQR(DISCRIM))/(2*A)

320 X=2(-B-SQR(DISCRIM))/(2*A)

330 PRINT "Real distinct roots X=";X1;" and X=";X2

340 ENDPROC

350 @%=&90A:REPORT:PRINT" at line "ERL

 >RUN

What are the three coefficients ?1,-1,-2

Real distinct roots X=2.00 and X=-1.00

What are the three coefficients ?3,3,3

Complex roots X=-0.50 +/- 0.87i

35

What are the three coefficients ?1,2,1

Co-incident roots X=1.00

What are the three coefficients ?

Escape at line 120

>

FOURPNT

This program draws a pattern (lines 80 to 140) and then changes foreground and

background colours with a half second pause between each change.

 10 REM FOURPNT/DRAWS A PATTERN WITH 4 POINTS

 20 REM JOHN A COLL

 30 REM VERSION 1 /16 NOV 81

 50 MODE 4

 60 VDU 29,640;512

 70

 80 FOR A=0 TO 500 STEP 15

 90 MOVE A-500,0

100 DRAW 0,A

110 DRAW 500-A,0

120 DRAW 0,-A

130 DRAW A-500,0

140 NEXT A

150

160 FOR B=0 TO 7 :REM CHANGE THE COLOUR

170 FOR C=1 TO 3

180 T=TIME :REM WAIT A WHILE

190 REPEAT UNTIL TIME-T>50

200 VDU 19,3,C,0,0,0

210 VDU 19,0,B,0,0,0

220 NEXT C

230 NEXT B

TARTAN

This program builds up a changing pattern by overdrawing lines on the screen.

The main program between lines 90 and 140 loops for ever and calls various

subroutines as necessary. The use of subroutines with implied GOTO (eg line 170)

results in a structure which is not easy to follow! It would be better to use

‘structures’ such as procedures (see chapter 17).

 10 REM TARTAN

 20 REM BASED ON RESEARCH MACHINES DEMO

 30 REM VERSION 1.0/16 NOV 81

36

 40 MODE 2: REM ALSO WORKS IN MODE 5

 50 R=1: D=1: X=0

 60 Y=RND(800)

 70 MOVE X,Y

 80

 90 REPEAT

100 ON D GOSUB 160,260,350,430

110 IF RND(1000)<10 THEN R=D-1

120 GCOL R,(D*1.7)

130 DRAW X,Y

140 UNTIL FALSE

150

160 X=X+800-Y

170 IF X>1000 THEN 220

180 Y=800

190 D=2

200 RETURN

210

220 Y=800/1000-X

230 X=1000: D=4

240 RETURN

250

260 Y=Y-800+X

270 IF Y<0 THEN 310

280 X=1000: D=3

290 RETURN

300

310 X=1000+Y

320 Y=0: D=1

330 RETURN

340

350 X=X-Y

360 IF X<0 THEN 400

370 Y=0: D=4

380 RETURN

390

400 Y=-X: X=0: D=2

410 RETURN

420

430 Y=Y+X

440 IF Y>800 THEN 480

450 X=0: D=1

460 RETURN

470

37

480 X=Y-800

490 Y=804: D=3

500 RETURN

PERSIAN

This program produces a pattern by drawing hundreds of lines. Random colours

are selected by lines 60 and 70. Line 80 moves the origin (middle) of the picture

to the middle of the screen.

 10 REM PERSIAN

 20 REM ACORN COMPUTERS

 30 REM VERSION 2/16 NOV 81

 40 MODE 1

 50 D%=4

 60 VDU 19,2,RND(3)+1,0,0,0

 70 VDU 19,3,RND(3)+4,0,0,0

 80 VDU 29,640;400;

 90 J1%=0

100 FOR K%=400 TO 280 STEP -40

110 REPEAT J2%=RND(3): UNTIL J2%<>J1%

120 J1%=J2%

130 GCOL 3,J1%

140 FOR I%=-K% TO K% STEP D%

150 MOVE K%,I%

160 DRAW -K%,-I%

170 MOVE I%,-K%

180 DRAW -I%,K%

190 NEXT

200 NEXT

SQR ROOT

This program calculates the square root of a number by repeating a simple

operation (line 90 and 200) until the calculated result stays steady. The program

also indicates how long the calculation takes.

This program illustrates an important mathematical technique but of course you

don’t have to work out square roots this way – the function SQR is provided in

BASIC (see chapter 33).

 10 REM ROOT

 20 REM VERSION 1.0 / 16 NOV 81

 30 REM TRADITIONAL ITERATION METHOD

 40 REM TO CALCULATE THE SQUARE ROOT

 50 REM OF A NUMBER TO 3 DECIMAL PLACES

 60 MODE 7

38

 70 ON ERROR GOTO 300

 80 @%=&2030A

 90 REPEAT

100 count=0

110 REPEAT

120 INPUT "What is your number ",N

130 UNTIL N>0

140 DELTA=N

150 ROOT=N/2

160 T=TIME

170 REPEAT

180 count=count+1

190 DELTA=(N/ROOT-ROOT)/2

200 ROOT=ROOT+DELTA

210 UNTIL ABS(DELTA) <0.001

220 T=TIME-T

230 PRINT

240 PRINT "Number ",N

250 PRINT "Root ",ROOT

260 PRINT "Iterations",count

270 PRINT "Time",T/100;" seconds"

280 PRINT''

290 UNTIL FALSE

300 @%=&90A:PRINT:REPORT:PRINT

>RUN

What is your number?34

Number 34.000

Root 5.831

Interations 5.000

Time 0.070 seconds

What is your number?125

Number 125.000

Root 11.180

Interations 6.000

Time 0.080 seconds

What is your number?

39

BRIAN

This program prints a ‘path in the grass’.

It is a fine example of a ‘non-structured’ use of BASIC; you might like to try and

‘structure’ it.

 90 REM BRIAN2

100 REM(C) BRIAN R SMITH 1980

110 REM ROYAL COLLEGE OF ART, LONDON

120 REM VERSION 1.0 /16 NOV 81

130 INPUT "NUMBER OF CYCLES e.g. 1 to 5 ",T

140 INPUT "BACKGROUND SYMBOL e.g. +",D$

150 INPUT "MOTIF(<20 chrs.)",A$

160 INPUT "TEXT AFTER DESIGN",B$

170 CLS

180 F=1

190 READ A,G,S,C,D,N

200 H=(D-C)/N

210 X=0

220 J=1

230 X=X+S

240 Y=SIN(X)

250 Y1=1+INT((Y-C)/H+0.5)

260 I=0

270 I=I+1

280 IF I=Y1 THEN 310

290 PRINT D$;

300 GOTO 420

310 Z=Z+F

320 IF Z>0 THEN 350

330 F=-F

340 GOTO 450

350 IF Z<=LEN(A$) THEN 390

360 F=-F

370 Z=Z-1

380 GOTO 310

390 S$=LEFT$(A$,Z)

400 PRINT S$;

410 I=I+Z

420 IF I<40 THEN 270

430 PRINT

440 GOTO 230

450 J=J+1

460 IF J>T THEN 490

470 Z=Z+1

40

480 GOTO 310

490 FOR K=1 TO 39

500 PRINT D$,

510 NEXT K

520 PRINT

530 PRINT B$

540 DATA 0,6.4,0.2,-1,1,20

>RUN

NUMBER OF CYCLES e.g. 1 to 5 ?3

BACKGROUND SYMBOL e.g. +?.

MOTIF(<20 chrs.)?Hello David!!

TEXT AFTER DESIGN?That's all folks

SINE

This program draws a sine wave on the screen. The computer can draw dotted

lines and the feature is used to fill in one part of the sine wave (line 130).

The computer can also print letters anywhere on the screen not just on a 40 by 25

grid. Lines 190 to 220 print a message in the shape of another sine curve.

 10 REM SINE

 20 REM JOHN A COLL

 30 REM VERSION 2 / 16 NOV 81

 50 MODE 4

 60 VDU5

 70 GCOL 0,1

 80 VDU19,1,1,0,0,0

 90 MOVE 16,400

100

110 FOR X=0 TO 320

120 IF X<150 THEN MOVE 4*X+16,400

130 PLOT 21,4*X+16,300*SIN(X/48)+400

140 NEXT

160 GCOL 0,1

170 A$="SINE WAVES ARE FAR MORE INTERESTING

."

180

190 FOR X=1 TO 39

200 MOVE X*1280/40,300*SIN(X/6)+500

210 PRINT MID$(A$,X,1)

220 NEXT

230

240 VDU4

250 END

41

DOUBLE HEIGHT

Here is an example of an assembly language program embedded within a BASIC

program between the two brackets [and] which enables you to type in double

height letters on the screen.

 10 REM DOUBLE HEIGHT IN TELETEXT

 20 WIDTH 36: MODE 7

 30 VDU 28,0,23,39,0

 40 write=!&20E AND &FFFF

 50 DIM PROG 100

 60 FOR PASS = 0 TO 1

 70 P%= PROG

 80 [

 90 OPT PASS*3

100 CMP#&D : BNE noter

110 PHA :JSR write

120 LDA#&8D : JSR write

140 LDA#&08 : JSR write

150 LDA#&8D : JSR write

160 PLA : RTS

170 .noter CMP #&20 : BCS legal

180 JMP write

190 .legal PHA : JSR write

200 LDA #$0B : JSR write

210 LDA #&08 : JSR write

220 PLA : PHA : JSR write

230 LDA #&0A : JSR write

240 PLA : RTS

250]

260 NEXT PASS

270 !&20E=!&20E AND &FFFF0000 OR PROG

280 END

Line 270 changes the ‘write character’ routine indirection vector so that all

output is sent to the new routine given above. This routine tests for a ‘return’

code (line 100) and if it finds one it issues Teletext double height control codes on

to the next two lines. Otherwise the routine just prints the characters on two

lines one above the other so as to produce a double height character. This routine

has a quite different effect in non-Teletext modes. Try it. Press BREAK after you

have finished with this program.

Before we leave this section, here are a few points about entering lines into

BASIC.

1. Control characters, for example CTRL B, will only be ‘reflected’ in BASIC and

not entered into any program lines, strings etc.

42

2. Spaces entered in lines will be preserved, including those at the end of the line.

This allows blank lines to be entered eg

10 space RETURN

to separate program sections. Some of the programs above have such blank lines.

Because of this you should avoid using COPY past the true end of a line.

3. Most keywords can be abbreviated using a full stop, eg L. for LIST , SA. for

SAVE. See chapter 48 for a list of abbreviations.

43

7 AUTO, DELETE, REM,
RENUMBER

BASIC provides a number of facilities to help the user enter programs into the

computer and modify programs already there. As you will know by now, it is

usual to use line numbers 10, 20, 30, 40 etc for programs. This leaves gaps where

the user can insert extra lines later on – for example, he or she might insert lines

11, 12, 13 and 14. When typing in a line of program the user types in the line

number first and then the rest of the line. For example:

10 PRINT "THIS IS A PROGRAM"

The command AUTO instructs the computer to ‘assign’ the line numbers

automatically for the user. As an option you can tell the computer to start

assigning lines from any number. Thus AUTO 300 would make the computer

produce line number 300, then 310, then 320, etc. There are other options, too,

which are explained in chapter 33.

The command DELETE allows the user to delete a group of lines from his or her

program. When you are writing a long program you often need to be able to delete

a large section of it. The keyword DELETE is followed by two numbers which give

the first and last lines that you wish to remove.

For example

DELETE 150,330

would delete all the lines with numbers between 150 and 330.

Single lines can be removed by typing in the line number and pressing

RETURN.

REM is a very useful statement. It enables you to put remarks in your program to

remind you (not the computer) what is going on. If you are developing a big

program – or loading a simple program that you have not used for some time it is

very easy to forget how it works or what it does. Normally people place several

REMs at the start of a program to give general information and then put a REM at

major points further down the program.

44

Once you have entered a program you will very often find that the line numbers

are no longer in a numeric sequence. As we have seen the command RENUMBER

makes the computer go through the whole program changing all the line numbers

so that they start at line 10 and increase by 10 for each successive line. When you

have finished a program it is a good idea to RENUMBER it. If you have a program

in the computer try

RENUMBER RETURN

and then LIST the program to see the effect. After that try

RENUMBER 900,100 RETURN

and you will see, when you list the program, that the computer has renumbered

the whole program but the new version has line numbers starting at 900 and this

time increasing by steps of 100.

It is possible to put more than one statement on a line. For example, the two

statements

CLS (clear the screen)

and

PRINT "HELLO"

can be put on one line, as long as the individual statements are separated by

colons, for example:

CLS : PRINT "HELLO"

You can put as many statements on a line as you like as long as the line has less

than about 230 characters. The argument for using ‘multiple statement lines’ is

that it saves some memory space and may make the program work a little faster.

But the argument against is that you will notice it becomes much more difficult

to follow the program when you list it (see chapter 16).

45

8 Introducing graphics

Modes, colours, graphics and windows

The BBC Microcomputer can display text and windows in eight different screen

modes. Only one mode can be used at a time. When the computer is turned on,

and also when the BREAK key is pressed, it is in MODE 7. MODE 7 will display

text (40 columns and 32 rows) and/or graphics. MODE 7 differs from all the other

modes in many ways and a whole chapter (chapter 28) has been devoted to it. In

particular it is not easy to draw lines or triangles in MODE7 and the colour of the

text is changed in a different way. Finally some characters are displayed on the

screen differently in this mode – for example the character [is displayed as �.

The description that follows assumes that you are in MODE 5. To enter MODE 5 ,

simply type

MODE 5 RETURN

Note that pressing BREAK will return you to MODE 7 so avoid using BREAK .

The ‘panic button’ is marked ESCAPE. If you press this the computer will stop

what it is doing and return control to you. MODE 5 is a four colour mode which

means that up to four different colours can be shown on the screen at any time.

When you enter MODE 5 two ‘colours’ are displayed – white letters on a black

background. As you will be aware from earlier chapters the colour of the text can

be changed by using the COLOUR statement, and since this is a four colour mode

you can select from:

COLOUR 0 Black

COLOUR 1 Red

COLOUR 2 Yellow

COLOUR 3 White

The same four colours (black, red, yellow and white) may be selected for the

background with the commands:

COLOUR 128 (128+0) Black

COLOUR 129 (128+1) Red

COLOUR 130 (128+2) Yellow

COLOUR 131 (128+3) White

The colour can be used to change the colour of the text foreground and

46

background – but not the colour of any graphics: for that you need to use another

BASIC keyword – GCOL, which stands for Graphics COLour.

Graphics

Now for the graphics: when drawing lines and triangles positions on the screen

are given with two numbers (the X and Y coordinates).

The point A has coordinates 600 across, 0 up. The point B is at position 100,500

and C is at 800,800.

The statement

DRAW 800,800

will draw a line from the last point ‘visited’ to 600,600. If no point has been

visited, the computer will assume that it starts from the point 0,0.

To move without drawing a line use the command MOVE. So to draw a line from

1000,0 to 1000,600 type

MOVE 1000,0 RETURN

DRAW 1000,600 RETURN

DRAW 100,500 will draw another line, and so on. As well as MOVE and DRAW

there are PLOT commands for other effects. These are described in a later

chapter. The statement GCOL is used to change the graphics colour used by the

DRAW statement. GCOL is followed by two numbers, the first is normally zero and

the second determines the graphics colours, eg:

GCOL 0,0 Black lines

GCOL 0,1 Red lines

GCOL 0,2 Yellow lines

GCOL 0,3 White lines

47

We’ll consider what happens when the first number is not zero later on (chapter

29).

As with the text colours, you can change both foreground and background

colours. However, before that can be illustrated it will be easier to set up two

windows on the screen – one for text and one for graphics so that you are sure

which is which. We will then return to the GCOL statement.

Windows

At the moment the whole screen can be used for text and the whole screen can be

used for graphics. In some modes (eg MODE 5) we can restrict each to a specific

window – or section of the screen. In modes without graphics (MODE 3, 6 and 7)

only text windows can be used. Imagine we want to create two windows as shown

below – on the left a graphics window, on the right a text window. Suppose that

the text window stretches from the top of the screen right to the bottom but the

graphics window stops short of the bottom:

Making a graphics window

Imagine a graphics window which has its edges a, b, c and d ‘graphics units’ away

from the bottom left hand corner of the screen (which is always the starting point

for graphics).

48

The statement VDU 24 is used (with some numbers after it) to set up a graphics

window (VDU stands for Visual Display Unit). For the window shown above the

full statement is

VDU 24,a;b;c;d;

Note: There is a comma after the 24 and a semi-colon after all the other values.

The reason for this punctuation is given in chapter 34. So for our actual graphics

window we would put

VDU 24,0;100;300;799;

In all screen modes which can support easily defined graphics the range of values

for a, b, c and d is always the same: 0-1023 vertically, 0-1279 horizontally.

Making a text window

Unlike graphics, text ‘starts’ at the top left hand corner of the screen, so text

windows are defined using that point as zero.

Imagine the text window has edges a, b, c and d ‘text units’ away from the top left

of the screen, as shown:

The statement VDU 28 is used to set up the window as follows:

VDU 28,a,b,c,d

Note: There is a comma after the 28 and between the other values. There is no

comma at the end.

For the text window we wanted to set up, the statement would be

VDU 28,5,24,19,0

To prove that you now have two separate windows try

COLOUR 129

CLS

49

to fill the text window with red and

GCOL 0,130

CLG

to fill the graphics window with yellow.

Note: In the various different screen modes the number of text characters which

can be accommodated along the screen and down the screen is also different. This

affects the range of values for the horizontal distances a and c as follows:

MODEs 0 and 3 (80 characters to a line) 0 to 79

MODEs 1, 4, 6 and 7 (40 characters to a line) 0 to 39

MODEs 2 and 5 (20 characters to a line) 0 to 19

Similarly the values of b and d depend on the MODE:

MODEs 0, 1, 2, 4 and 5 have 32 lines (0 to 31)

MODEs 3, 6 and 7 have 25 lines (0 to 24)

To recap, to set up the windows press BREAK then type the following – with

RETURN at the end of each line. You are working in command mode rather

than writing a program, so the computer acts on each instruction as you press

RETURN. It also means that pressing BREAK while you are using windows

would destroy the text and graphics windows and send the computer back to

MODE 7.

MODE 5

VDU 24,0;100;300;1000;

VDU 28,5,31,19,0

CLS

The command CLS clears the text from the screen. Now try typing the following

lines:

DRAW 0,1000

DRAW 100,1000

DRAW 0,0

DRAW 1000,1000

You will find that text is now only appearing in the text window and that

graphics are only appearing in the graphics window. If you want to clear the text

only, type

CLS RETURN

If you want to clear the graphics only, type

CLG RETURN

50

(Normally CLS clears the whole screen, but where independent text and graphics

areas are defined, CLS only clears the text.) You will also notice that although

some of the commands have told the computer to draw in areas of the screen

outside the graphics window, you will not see this on the screen.

Windows may overlap – in fact when you change mode both text and graphics

windows fill the whole screen, and you can move windows without destroying

what is on the screen, although changing mode does clear the screen. To reset

both text and graphics windows to the whole screen, eg in the middle of a

program, use VDU 26 .

VDU 5 enables text to be drawn at any position inside a graphics window – see

chapter 34.

Changing the colours of text and graphics

Now back to text and graphics colours. Let us define the text background to be

red and the graphics background to be yellow:

COLOUR 129 Red text background

GCOL 0,130 Yellow graphics background

and then clear the text and graphics areas to their background colours:

CLS Clear text area

CLG Clear graphics area

Now to select the foreground colours for the two areas – for example to obtain

yellow letters (text foreground) type COLOUR 2 and to get black graphics lines

type

GCOL 0,0

Test this out by typing

DRAW 150,500

Although you start up (in MODE 5) with the four colours set to black, red, yellow

and white, you can select other colours (still of course only four at a time) by

using VDU 19 , as we saw in chapter 1. See chapter 34 for more details of VDU 19 .

So far we have been working in command mode. Next try typing in this program.

You can use MODE 4 to type the program in but nothing will happen until you

run the program. So, press BREAK and then the following:

 10 MODE 5

 20 VDU 24, 0; 0; 500; 1000;

 30 VDU 28,10,20,19,5

 40 COLOUR 129

51

 50 COLOUR 2

 60 GCOL 0,130

 70 CLS: CLG

 80 FOR N = 1 TO 1000

 90 PRINT "LINE"; N

100 GCOL 0, RND(4)

110 DRAW RND(500), RND(1000)

120 NEXT N

>RUN

You might like to try saving this program on cassette as described in chapter 5

52

9 More on variables

In an earlier chapter the idea of ‘variables’ was introduced. Variables are a

fundamental concept in computing, and it is not possible to go far without

understanding them.

As we have seen, it is possible to say

LET X = 12

or just

X = 12

and the computer knows that it must label a ‘box’ in its memory with the name X

and that the current value of X is 12. With a variable it is possible to alter the

value of what is in the box but not the name of the box itself. The statement

X = 14

simply changes the value of X from 12 to 14. Similarly we can say

X = X+1

which looks unusual – like an equation which does not balance. In fact all that

this is doing is saying to the computer – whatever the value inside your box X,

increase it by 1 from now on.

So far we have considered only numeric variables – that is, variables which

contain numbers and on which arithmetic can be carried out. But the computer

has letters and symbols of various kinds on its keyboard – what about them?

Numbers and characters

Although we can talk of the ‘number’ 22, we can also consider 22 as a pair of

characters – in the same way as A, B, C, ?, $ are characters. In computing it is

important to be able to distinguish between numbers and characters. Arithmetic

can be carried out on numbers but not on characters. To give you an example to

show that this is not such an esoteric idea, consider 22. We can divide 22 by 2

and get 11 if 22 is taken to be a number. But if we talked about a train leaving

‘Platform 22’ the 22 here would be a pair of characters. You cannot, with a great

deal of meaning, divide ‘Platform 22’ by 2 and get ‘Platform 11’.

Next it’s important to have a look at the other major kind of variable used in

computing – one which can hold characters, not numbers. This is called a string

variable.

53

String variables

String variables are used to store ‘strings of characters’ eg words. They can be

recognised easily because they always end with a dollar sign. Here are a few

examples of string variables containing various strings of characters. Note that

these strings must be enclosed by quotation marks.

X$ = "HELLO"

DAY$ = "SUNDAY 3RD JANUARY"

NAME$ = "ALEX"

In the first example X$ is called a string variable and HELLO is called a string.

Once X$ has been set to contain HELLO we can use statements like

PRINT X$

in just the same way as we said earlier.

Z = 5

PRINT Z

String variables can be used to hold any number of characters between zero

(empty) and 255 (full).

X$ = "" will empty X$

X$ = "A" will set X$ to contain one character

Of course you cannot use ordinary arithmetic on string variables. For example

NAME$ = "SUSAN"

PRINT NAME$ / 10

does not make sense. You can’t divide Susan’s name into ten parts. While you can

add, subtract, multiply and divide using numeric variables the only similar

operation that can be carried out on string variables is that of ‘addition’. Thus

10 A$ = "TODAY IS "

20 B$ = "SUNDAY"

30 C$ = A$ + B$

40 PRINT C$

>RUN

TODAY IS SUNDAY

The importance of understanding string variables cannot be over-emphasised.

Later chapters develop this idea.

54

How numbers and letters are stored in the computer’s
memory

Each memory location in the computer can be used to store any number between,

and including, 0 and 255, and yet some way has to be found to store letters and

also very large numbers. A number of codes are used in the computer in much the

same way that different groups of people have used different codes to count. Thus

the number 1984 can be written as

MCMLXXXIV in Roman numerals

or 1984 in decimal Arabic numerals

or 7C0 in hexadecimal Arabic

or 11111000000 in binary

The need to transmit and store letters has produced another set of codes. The

letter ‘J’ is coded in various ways thus

• – – – in Morse

10001010 in ASCII binary

4A in ASCII hexadecimal

74 in ASCII decimal

The ASCII (American Standard Code for Information Interchange) is by far the

most common code used by computers to represent characters. A complete code

table is given in Appendix C.

When you tell the computer

A$ = "HELLO"

it stores the ASCII codes for the letters in the word HELLO in successive memory

locations. The fact that they are stored as ASCII codes is really irrelevant as far

as the user is concerned, it just works. However, there are times when the user

needs to know about the ASCII codes and two functions are provided to convert

between characters and ASCII codes.

The function ASC converts a character into its ASCII code. Thus

PRINT ASC("J")

would print 74.

The reverse function, of converting an ASCII code into a character, is performed

by CHR$.

Thus PRINT CHR$(74) would print the letter J . In fact, one quite often needs to

use PRINT CHR$, so there is a further shortened version of that statement. It is

VDU; VDU 74 would also print the letter J .

55

Those doing more complicated programming will need to know the exact way that

the computer stores strings and numerics in memory. Full information is given at

the end of chapter 39.

Real and integer variables

The numeric variables you have met so far are technically known as real

variables. They can be used to store any number between 170 000 000 000 000

000 000 000 000 000 000 000 000 (1.7 X 10
38

) and 0.000 000 000 000 000 000 000

000 000 000 000 000 001 47 (1.47 x 10
-39

) and can include a decimal point. Of

course a similar range of negative numbers can be stored too. The problem with

real numbers is that they are only stored to nine figure accuracy, although this is

generally accurate enough for most purposes. Note that values can be assigned to

variables in exponent format, which is especially useful with very large or very

small numbers. For example, instead of typing

A=15000000000000000000000000000000 ,

A=1.5E31

could be typed instead. Another type of numeric variable is an integer variable.

Integer variable names are distinguished by having a percent sign as the last

character of the variable name. They can only store whole numbers between

-2,147,483,648 and +2,147,483,647.

On the other hand integer variables are held with complete accuracy – so

accounting problems can be dealt with the nearest penny in £2M. Arithmetic

calculations with integer variables are significantly faster than with real

variables. (See chapter 32 for other suggestions for speeding up programs.)

The two integer operators MOD and DIV are described in chapter 23.

The variables A% to Z% are special in that they are permanently allocated space

in memory. Typing RUN or NEW does not destroy them. As a result the variables

A% to Z% can be set in one program and then used in another program later on

without losing their values. Of course the values will be lost if the machine is

switched off but otherwise they will remain, even if BREAK is pressed.

The variables A% to Z% are called the resident integer variables.

56

Summary

Three main types of variables are supported in this version of BASIC; they are

integer, real and string.

Integer Real String

Example 346 9.847 “HELLO”

Typical variable A% A A$

Name SIZE% SIZE SIZE$

Maximum size 2,147,483,647 1.7 × 10
38

255 characters

Accuracy 1 digit 9 sig figs -

Stored in 32 bits 40 bits ASCII values

All variable names can contain as many characters as required and all characters

are used to identify the variable. Variable names may contain capital letters,

lower case letters and numbers and the underline character. Variable names

must start with a letter and must not start with a BASIC keyword.

57

10 PRINT formatting and
cursor control

This chapter describes the PRINT statement which is used to put text on the

screen or to a printer. It assumes that you understand that a variable (such as X)

can be used to hold a number and that a string variable (such as A$) can be used

to hold a line of text.

The following program will help to illustrate some of the ideas. Press BREAK

and then type in the following program.

10 X=8

20 A$="HELLO"

30 PRINT X, X, X

When this is RUN it produces this:

>RUN

 8 8 8

This shows that commas separating items in the print list (the print list is the

list of things to be printed – X,X,X in this case) will force items to be printed in

columns or “fields” ten characters wide. Numbers are printed at the right hand

side of each column whereas words are printed on the left hand side. You can see

the difference if we add some lines to the program.

10 X=8

20 A$="HELLO"

30 PRINT X,X/2,X/4

40 PRINTA$,A$,A$

>RUN

 8 4 2

HELLO HELLO HELLO

field width

Field widths in different screen modes

As we said above, the width of each ‘field’ is automatically set to ten characters

when the computer is switched on.

Since the computer can operate in different screen modes, displaying 20, 40 or 80

characters to the line, clearly the number of fields which can be displayed on

58

the screen will differ depending on the MODE. So try typing in a new line and

running the program above.

5 MODE 5

or

5 MODE 0

80 character modes 40 character modes 20 character modes

(MODES 0 and 3) (MODES 1, 4, 6 and 7) (MODES 2 and 5)

Note: the widths of the fields can be altered by the use of a special command, @%

(see below).

Commas between items in the print list always put things in columns or ‘fields’.

On the other hand semi-colons between items in the print list cause items to be

printed next to each other, without spaces:

10 X=8

20 A$="HELLO"

30 PRINTA$; X; A$; X; X

>RUN

HELLO8HELLO88

Of course if the first item is a number it will be printed to the right of a ‘field’

unless it is preceded by a semi-colon.

10 X=8

20 A$="HELLO"

30 PRINT X; A$; A$

>RUN

 8HELLOHELLO

or

10 X=8

20 A$="HELLO"

30 PRINT ;X;A$;A$

>RUN

8HELLOHELLO

59

As well as printing variables and string variables as shown above the computer

can print any characters placed in between double quotes exactly as they have

been typed in, provided they are in a PRINT statement. The next program asks

for your name and remembers it in the string variable N$.

10 PRINT "WHAT IS YOUR NAME";

20 INPUT N$

30 PRINT "HELLO";N$;". HOW ARE YOU?"

>RUN

WHAT IS YOUR NAME ?JOHN

HELLO JOHN. HOW ARE YOU?

Notice the semi-colon at the end of line 10 that makes the computer stay on the

same line while it waits for you to provide it with a value for N$. Without the

semi-colon this happens:

>RUN

WHAT IS YOUR NAME

?JOHN

HELLO JOHN. HOW ARE YOU?

Note also the space after the word HELLO and before the word HOW in line 30.

Without these spaces the words run together to produce

HELLOJOHN.HOW ARE YOU?

It is also legitimate to do calculations in a print list – for example

10 X=4.5

20 PRINT X,X+2,X/3,X*X

>

>RUN

 4.5 6.5 1.5 20.25

but look what happens if instead of X=4.5 we put X = 7

10 X=7

20 PRINT X,X+2,X/3,X*X

>RUN

 7 92.33333333 49

because X/3 is 2.33333333 it makes the number move left in the field until it

immediately follows the previous field which contains a 9 and appears to give a

result 92.33333333, which is misleading. For this reason, amongst others, the

next section is important if you want to print out a lot of numbers.

60

Altering the width of the field and the way in which
numbers are printed

It is often useful to be able to specify the width of the field when printing columns

of figures or words and also to be able to specify the number of decimal places to

which numbers will be printed.

On the BBC Microcomputer this can be done by setting a special ‘variable’ (called

@%) in a particular way. For the moment this must be treated as a bit of ‘magic’

but, for example, if we write

@%=&20209

then this statement tells the computer to print in a field nine characters wide,

and that number will be printed with a fixed number of decimal places – in this

case, to two decimal places. The following program shows this being used:

 5 @%=&20209

10 X=7

20 PRINT X,X+2,X/3,X*X

>RUN

 7.00 9.00 2.33 49.00

For the more technically minded

@% is made up of a number of parts.

& 2 02 09

Means

hexadecimal

numbers follow

Format number

2 ie fixed

number of

decimal places

Two decimal

places

characters

Field width

of nine

@%=&20309 would give Format 2, three decimal places and field width of nine

characters.

 5 @%=&20309

10 X=7

20 PRINT X,X+2,X/3,X*X

>RUN

 7.000 9.000 2.333 49.000

If you want four decimal places and a field width of 12 you would put the

following:

5 @%=&2040C

10 X=7

20 PRINT X,X+2,X/3,X*X

61

>RUN

 7.0000 9.0000 2.3333 49.0000

A few points:

1. The maximum number of significant figures is ten.

2. Format 1 gives figures as exponential values

Format 2 gives figures to a fixed number of decimal places.

Format 0 is the ‘normal’ configuration.

3. To set the print format back to its initial value (Format 0 and field width ten),

set @%=&90A.

The & tells the computer that the numbers which follow are ‘hexadecimal’

numbers – that is, numbers based not on 10s but on 16s. Here is a list of

hexadecimal numbers (which include the letters A to F).

Decimal number Hex number

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 A

11 B

12 C

13 D

14 E

15 F

16 10

17 11

18 12

19 13

20 14

If you want the computer to print a number or variable in hex then you must put

the symbol ~ before it. For example

PRINT ~12

will give C.

62

TAB(X)

As well as controlling the print layout by using the comma and semi-colon you

can use the TAB statement to start printing at a particular place on the screen.

You will remember that there can be 20, 40 or 80 characters to the line

depending on the MODE. MODE 7 has 40 characters. Try this:

10 PRINT "012345678901234567890"

20 F=16

30 REPEAT

40 PRINT TAB(10);F;TAB(15);2*F

50 F=F+1

60 UNTIL F=18

>RUN

012345678901234567890

 16 32

 17 34

TAB(10) prints the value of F ten spaces from the left and then TAB(15) prints

the value of 2*F 15 spaces from the left, on the same line. Note the semi-colon

after TAB(10) – this causes the computer to begin printing at that point.

Be sure to place an open parenthesis immediately after the word TAB. If you

leave a space between them, thus: TAB (10) the computer will not understand

and will report

No such variable

If you are beyond the place that you tell the computer to tab to, for example in

position 15 with request to TAB(10) , then the computer moves to the next line

and then tabs ten spaces.

Type in this replacement line:

40PRINT TAB(15);F;TAB(10);2*F

>RUN

012345678901234567890

 16

 32

 17

 34

TAB(X,Y)

A useful extension of the TAB statement allows print to be placed at any specific

character location anywhere on the screen. You will remember that in MODE 7

the text coordinates are

63

This program counts to 1000, printing as it goes:

 5 CLS

10 Q=1

20 REPEAT

30 PRINT TAB(18,5);Q

40 Q=Q+1

50 UNTIL Q=1000

The two numbers in parentheses after TAB represent the X and Y text

coordinates where printing should start (see also the third program in chapter

23).

Advanced print positioning

Using PRINT TAB(X,Y) allows text etc to be printed in any character ‘cell’ in

the appropriate MODE. In MODE 5 there are 20 cells across the screen and 32 cells

(lines) down the screen. Sometimes it is useful to be able to position characters on

a much finer grid. The statement VDU5 enables text to be printed at the exact

position of the graphics cursor. The statement MOVE can be used to position text.

Note that this will not work in MODE 7. You will remember that the graphics

screen is addressed as shown below

in all modes except MODE 7.

64

Each character cell is 32 graphic units high and, in a 40 character mode such as

MODE 4, 32 units wide. Suppose we want to subscript a letter to produce for

example the chemical formula H
2
. This can be done as follows

10 MODE 4

20 VDU 5

30 MOVE 500,500

40 PRINT "H";

50 MOVE 532,484

60 PRINT "2"

70 VDU 4

Note that the letter H is positioned with its top left corner at 500,500. The 2 is

then printed one character to the right (532) and a half a character down (484).

Again the top left of 2 is at 532,484.

A neater way of achieving the same effect is to replace line 50 with

PLOT 0,0,-16

One further feature of the BBC Microcomputer which is not normally available

on ‘personal’ computers is the ability to superimpose characters. One obvious use

of this facility is to generate special effects such as accents and true underlining.

The short program below prints the word rôle with the accent correctly placed.

10 MODE 4

20 VDU 5

30 X=500

40 Y=500

50 MOVE X,Y

60 PRINT "role"

70 MOVE X+32,Y+16

80 PRINT "^"

90 VDU 4

Once in VDU5 mode the screen will not scroll up when you reach the bottom of

the page, instead the writing will start from the top of the screen again. In

addition characters will be superimposed on those already on the screen. When in

VDU5 mode you can only print things in the graphics window and not in the text

window, and colour is selected with the GCOL statement. VDU5 will not work in

text-only modes such as MODES 3, 6 and 7.

65

Cursor control

The text cursor is the flashing line on the screen which shows where text will

appear if it is typed in on the keyboard. The text cursor also indicates where text

will be printed on the screen by a PRINT statement. The cursor can be moved

around the screen by a number of special ‘control codes’, some of which are as

follows.

Code Effect

8 Move cursor left

9 Move cursor right

10 Move cursor up

11 Move cursor down

These code numbers can be used with either the VDU command or the PRINT

command – eg to move left four spaces, use either

VDU 8,8,8,8

or

PRINT CHR$(8);CHR$(8);CHR$(8);CHR$(8)

Clearly the VDU command is simpler to type in in most cases.

In addition to the codes shown above the user can use the PRINT TAB(X,Y)

statement to move the cursor directly to any character position on the screen. As

we’ve seen in MODE 7 the screen can contain up to 25 lines (numbered 0 to 24) of

up to 40 characters per line.

The position marked on the diagram above is 18 positions across and six lines

down. The cursor could be moved directly there with the statement

PRINT TAB(18,6);

Note that the opening parenthesis must immediately follow the word TAB thus

TAB(and not TAB (.

66

Exactly the same effect can be obtained with the statement

VDU 31,18,6

The cursor can be moved to the ‘home’ position at the top left of the screen with

the statement

VDU 30

If the user wishes to clear the screen as well as move the cursor to the home

position then he or she can use the statement

VDU 12

The last of the VDU commands directly to do with cursor control is VDU 127

which moves the cursor left and deletes the character there. If you wish to delete

the next four characters and then return the cursor to its initial place you could

use

VDU 9,9,9,9,127,127,127,127

Cursor on/off

In some applications the flashing cursor can be a distraction. The cursor can be

turned off with the statement

VDU 23,1,0;0;0;0;

The cursor can be turned back on with the statement

VDU 23,1,1;0;0;0;

or by changing screen mode using a MODE statement.

67

11 Input

The previous chapter showed how to get information out of the computer and on

to the screen. This chapter deals with getting things from the keyboard into the

computer. When a program is running there will often be a need for it to request

some information from the person at the keyboard.

10 PRINT "HOW OLD ARE YOU"

20 INPUT AGE

30 IF AGE<18 THEN PRINT "YOU ARE TOO YOUNG AT ";

40 IF AGE = 18 THEN PRINT "CONGRATULATIONS ON BEING

";

50 IF AGE>18 THEN PRINT "YOU ARE PAST IT IF YOU ARE

";

70 PRINT ;AGE

>RUN

HOW OLD ARE YOU

?22

YOU ARE PAST IT IF YOU ARE 22

Line 20 of the above program prints a question mark on the screen and then

takes in everything that is typed on the keyboard until RETURN is pressed.

Line 20 says INPUT AGE so the computer is expecting a number since AGE is a

numeric variable rather than a string variable (see chapter 9). If words are

supplied instead of numbers then the computer assumes that the number is zero.

>RUN

HOW OLD ARE YOU

?I DON'T KNOW

YOU ARE TOO YOUNG AT 0

Because line 20 said INPUT AGE a number was expected. If you want to INPUT

a string (word or group of words) then you must place a string variable (eg

NAME$) on the input line.

10 PRINT "WHAT IS YOUR NAME"

20 INPUT NAME$

30 PRINT "HELLO ";NAME$;" HOW ARE YOU?"

>RUN

WHAT IS YOUR NAME

?JOHN

HELLO JOHN HOW ARE YOU?

68

You must follow the word INPUT with a numeric variable if you are expecting a

number and with a string variable if you are expecting a string.

As you will have seen from the examples above you usually need to print a

question on the screen to tell the person at the keyboard what you are waiting

for. In the last example the question was ‘What is your name’. Instead of placing

this in a separate PRINT statement you can include the question on the INPUT

statement.

20 INPUT "WHAT IS YOUR NAME ", NAME$

30 PRINT "HELLO ";NAME$;" HOW ARE YOU?"

>RUN

WHAT IS YOUR NAME ? SUSAN

HELLO SUSAN HOW ARE YOU?

Notice the punctuation between the question ‘What is your name’ and the string

variable NAME$. It is a comma. Notice also that the computer printed a question

mark after the question when the program was run. It always prints a question

mark on an INPUT statement if a comma is used to separate the question from

the string variable. If you leave the comma out of the program the computer will

leave the question mark out when the program is RUN.

20 INPUT "WHAT IS YOUR NAME " NAME$

30 PRINT "HELLO ";NAME$;" HOW ARE YOU?"

>RUN

WHAT IS YOUR NAME STEPHEN ALLEN

HELLO STEPHEN ALLEN HOW ARE YOU?

The INPUT statement, which we have explored above, requires that the user

presses the RETURN key after he or she has entered the reply. Until the

RETURN key is pressed the user can delete errors with the DELETE key or

delete the whole entry so far with CTRL U.

Several inputs can be requested at one time. If you type

10 INPUT A,B

20 PRINT A,B

two numbers will be expected by the computer. They can either be typed in

separated by commas, or both can be followed by RETURN.

The INPUT statement will ignore leading spaces and anything after a comma

unless the reply is inside quotation marks.

10 INPUT A$

20 PRINT A$

>RUN

?ABC,DEF

ABC

69

The INPUT LINE statement can be used in the same way as INPUT, but it will

accept everything that is typed, including leading spaces and commas. Replace

line 10 by

10 INPUT LINE A$

>RUN

?ABC,DEF

ABC,DEF

Of course if you make the program

10 INPUT A$,B$

20 PRINT A$,B$

you will get

>RUN

?ABC,DEF

ABC DEF

because now two different inputs are needed in line 10.

70

12 GET, INKEY

Sometimes it is useful to be able to detect a key as soon as it is pressed without

having to wait for the RETURN key to be pressed. For example most games

react immediately when a key is pressed. There are a group of four functions

which respond to single keystrokes.

GET

GET$

INKEY

INKEY$

The GET and GET$ functions wait until a key is pressed; the INKEY and INKEY$

pair give up after a while if no key is pressed.

100 A$ = GET$

will wait (for ever) until a key is pressed but

100 A$ = INKEY$(200)

will wait for only two seconds (200 hundredths of a second). If no key is pressed

within two seconds then the computer will move on to the next line of the

program and A$ will be empty. If a key was pressed after say one second then

the computer will immediately move on to the next line of the program and will

put the character typed into A$.

100 PRINT "DO YOU WANT TO GO ON"

110 PRINT "YOU HAVE 2 SECONDS TO REPLY"

120 A$=INKEY$(200)

130 IF A$="" THEN PRINT "TOO LATE YOU MISSED IT"

140 IF A$="Y" THEN PRINT "COURAGEOUS FOOL!"

150 IF A$="N" THEN PRINT "COWARD"

One of the most common uses of GET$ is to wait at the bottom of a page for the

user to press any key when he or she is ready to go on.

100 A$ = GET$

GET and INKEY are very similar to GET$ and INKEY$ but instead of returning

a character which can be put into a string variable they return a number which is

the ASCII code of the character. The ASCII code of ‘Y’ is 89 and the ASCII code of

‘N’ is 78, so the last program could be re-written as

71

100 PRINT "DO YOU WANT TO GO ON"

110 PRINT "YOU HAVE 2 SECONDS TO REPLY"

120 A=INKEY(200)

130 IF A=-1 THEN PRINT "TOO LATE YOU MISSED IT"

140 IF A=89 THEN PRINT "COURAGEOUS FOOL!"

150 IF A=78 THEN PRINT "COWARD"

You will see that ‘no reply’ returns the value -1 when using INKEY and returns

an empty string when using INKEY$.

Advanced features

Another important use of INKEY and GET is with the group of four direction

keys at the top of the keyboard. Normally these are used for editing, but a special

statement can make these keys produce ASCII codes like all the other keys on

the keyboard. They can then be used by a program for some special purpose – for

example to move a point around the screen. The statement *FX 4,1 makes the

editing keys produce ASCII codes and the statement *FX 4,0 returns the keys

to their editing function. The keys produce the following codes:

COPY 135 or (&87)� 136 or (&88)� 137 or (&89)�
138 or (&8A)	
139 or (&8B)

For example:

10 *FX 4,1

 20 MODE4

 30 X=500

 40 Y=500

 50 REPEAT

 60 PLOT 69,X,Y

 70 K=GET

 80 IF K=136 THEN X=X-4

 90 IF K=137 THEN X=X+4

100 IF K=138 THEN Y=Y-4

110 IF K=139 THEN Y=Y+4

120 UNTIL Y=0

130 *FX 4,0

This program waits at line 70 for a key to be pressed. The program shown above

would often be part of a much larger program in which case you would not want

everything to stop until a key is pressed. Here it would be better to use

K=INKEY(0) at line 70 which will let the computer have a quick look to see if a

key has been pressed but not wait at all.

72

 10 *FX 4,1

 20 MODE4

 30 X=500

 40 Y=500

 50 REPEAT

 60 PLOT 69,X,Y

 70 K=INKEY(0)

 80 IF K=136 THEN X=X-4

 90 IF K=137 THEN X=X+4

100 IF K=138 THEN Y=Y-4

110 IF K=139 THEN Y=Y+4

120 UNTIL Y=0

130 *FX 4,0

73

13 TIME, RND

TIME

The BBC Microcomputer contains an ‘elapsed time’ clock. That means that the

clock ticks away at a hundred ticks per second but it does not know the real time.

However, you can set it and read it. Once set it will stay running until you turn

the power off or you do a ‘hard reset’ (see chapter 25). It can be set to any value,

for example 0:

TIME = 0

This program will print a running stopwatch in the middle of the screen:

 5 CLS

10 T = TIME

20 PRINT TAB(10,12);(TIME-T)/100;

30 GOTO 20

There is a program to print a 24 hour clock in chapter 23.

RND

When writing games (and simulations), we very often want the computer to make

a random choice – or to pick a random number. The most useful function for this

is RND(X) which picks a random number between 1 and X. The program below

prints out a new random number between 1 and 6 every time a key is pressed –

like throwing a dice.

10 PRINT RND(6)

20 G=GET

30 GOTO 10

and this program draws random triangles in random colours

10 MODE5

20 PLOT 85,RND(1200),RND(1000)

30 GCOL 0,RND(3)

40 GOTO 20

Sometimes it is useful to be able to reset the random number generator to a

known value. That may sound a bit strange but when testing a program it is

sometimes convenient to have a predictable set of ‘random numbers’! To do this

the number in parenthesis after the RND must be a negative number. Thus

X=RND(-8) will ensure that the number sequence resulting from RND is

repeatable.

74

14 REPEAT...UNTIL, TRUE,
FALSE

Computers are fundamentally pretty stupid things but their power comes from

their ability to repeat things many times – sometimes many millions of times in

one second. In this version of BASIC two types of repeating loops can be used.

They are called REPEAT...UNTIL and FOR...NEXT loops. This chapter

explains REPEAT...UNTIL loops and the next deals with FOR...NEXT loops.

Do you remember the story about a man starting with one grain of rice and

doubling it each time he won a bet? How many times would he have to double his

grains of rice to own more than a million grains? In the following program C is a

counter showing how many times the number of grains has doubled and X

represents the number of grains of rice.

10 X=1

20 C=0

30 REPEAT

40 X=X*2

50 C=C+1

60 UNTIL X>1000000

70 PRINT C,X

>RUN

 20 1048576

Lines 30 to 60 are called a REPEAT...UNTIL loop and everything within the loop

is repeated until X is greater than one million.

The ‘terminating condition’ in this program is that X is greater than 1000000.

The next program terminates after 15 seconds. Line 40 reads the starting time

and the program repeats until the present time minus the starting time is

greater than 1500 hundredths of a second – the internal clock ticks a hundred

times a second.

 10 PRINT "SEE HOW MANY SUMS YOU"

 20 PRINT "CAN DO IN 15 SECONDS"

 30 PRINT

 40 STARTTIME=TIME

 50 REPEAT

 60 F=RND(12)

75

 70 G=RND(12)

 80 PRINT "WHAT IS ";F;" TIMES "G;

 90 INPUT H

100 IF H=F*G THEN PRINT "CORRECT" ELSE PRINT "WRONG"

110 PRINT

120 UNTIL TIME-STARTTIME>1500

130 PRINT "TIME UP"

>RUN

SEE HOW MANY SUMS YOU

CAN DO IN 15 SECONDS

WHAT IS 6 TIMES 9?72

WRONG

WHAT IS 1 TIMES 4?4

CORRECT

WHAT IS 9 TIMES 8?72

CORRECT

TIME UP

REPEAT...UNTIL loops are very useful and should be used frequently. The next

program selects random letters (line 20) and times how long it takes you to find

and press the appropriate key. It uses two REPEAT...UNTIL loops. One of them

is used to wait for a particular key to be pressed on the keyboard.

10 REPEAT

20 Z=RND(26)+64

30 PRINT

40 PRINT "PRESS THE KEY MARKED ";CHR$(Z)

50 T=TIME

60 REPEAT UNTIL GET=Z

70 PRINT "THAT TOOK YOU"(TIME-T)/100" SECONDS"

80 UNTIL Z=0

>RUN

PRESS THE KEY MARKED Y

THAT TOOK YOU 1.1 SECONDS

PRESS THE KEY MARKED G

THAT TOOK YOU 1.03 SECONDS

Lines 10 and 80 are the main loop and line 60 is a single line REPEAT…UNTIL

loop.

76

Look at line 80. This will stop the REPEAT...UNTIL loop if Z=0. However Z is

calculated in line 20 and will have a value between 65 and 90. It will never equal

zero, so the program will never stop on its own – you have to press the ESCAPE

key.

Line 80 says

80 UNTIL Z=0

Z=0 will never be ‘true’. Z=0 will always be ‘false’, so line 80 can be replaced with

80 UNTIL FALSE

which just means ‘go on for ever’. This is a far better way of doing things than

using Z=0 because you might decide to change Z next time you looked at the

program. It is also better to use REPEAT...UNTIL loops in this way than to put

at line 80

80 GOTO 20

Using REPEAT...UNTIL keeps this section of the program well organised. See

chapter 19 for a comment on GOTO.

If you delete line 10, then the computer will meet an UNTIL statement at line 80

with no idea of where the loop is meant to start.

>RUN

PRESS THE KEY MARKED A

THAT TOOK YOU 2.09 SECONDS

No REPEAT at line 80

In summary REPEAT...UNTIL should be used for loops which must terminate on

some specific condition.

77

15 FOR...NEXT

This structure makes the computer repeat a number of statements a fixed

number of times. Try the following:

10 FOR X = 8 TO 20

20 PRINT X, X+X

30 NEXT X

>RUN

 8 16

 9 18

 10 20

 11 22

 12 24

 13 26

 14 28

 15 30

 16 32

 17 34

 18 36

 19 38

 20 40

You can see that the computer looped through line 20 with X taking on the value

8, then 9, then 10 etc up to 20. Each time through the loop, X increased by 1. The

‘step size’ can be changed easily.

10 FOR X = 8 TO 20 STEP 2.5

20 PRINT X, X+X

30 NEXT X

>RUN

 8 16

 10.5 21

 13 26

 15.5 31

 18 36

In the two previous examples the value of X (which is called the ‘control variable’)

increased each time through the loop. The ‘control variable’ can be made to

decrease by using a negative step size.

78

10 FOR S = 100 TO 90 STEP -1

20 PRINT S,S/2,S/5

30 NEXT

>RUN

 100 50 20

 99 49.5 19.8

 98 49 19.6

 97 48.5 19.4

 96 48 19.2

 95 47.5 19

 94 47 18.8

 93 46.5 18.6

 92 46 18.4

 91 45.5 18.2

 90 45 18

Here is a program which uses several FOR...NEXT loops. Some are ‘nested’

within each other in the way that one REPEAT...UNTIL loop was included

within another.

 10 FOR ROW = 1 TO 5

 20 FOR STAR = 1 TO 10

 30 PRINT"*";

 40 NEXT STAR

 50 FOR STRIPE = 1 TO 20

 60 PRINT "=";

 70 NEXT STRIPE

 80 PRINT

 90 NEXT ROW

100 FOR ROW = 1 TO 6

110 FOR STRIPE = 1 TO 30

120 PRINT"=";

130 NEXT STRIPE

140 PRINT

150 NEXT ROW

79

>RUN

**********====================

**********====================

**********====================

**********====================

**********====================

==============================

==============================

==============================

==============================

==============================

==============================

The listing shown above is not very easy to follow – try typing

LISTO 2

and then re-listing the program.

>LISTO 2

>LIST

 10 FOR ROW = 1 TO 5

 20 FOR STAR = 1 TO 10

 30 PRINT"*";

 40 NEXT STAR

 50 FOR STRIPE = 1 TO 20

 60 PRINT "=";

 70 NEXT STRIPE

 80 PRINT

 90 NEXT ROW

 100 FOR ROW = 1 TO 6

 110 FOR STRIPE = 1 TO 30

 120 PRINT"=";

 130 NEXT STRIPE

 140 PRINT

 150 NEXT ROW

This causes each of the ‘nested’ FOR...NEXT loops to be indented which can

make it easier to follow.

Lines 20 to 40 print out ten stars.

Lines 50 to 70 print out 20 equal signs.

Lines 10 and 90 ensure that the above are repeated five times.

Lines 100 to 150 print out six rows of 30 equal signs.

80

A note on LISTO

LISTO stands for LIST Option and it is followed by a number in the range 0 to 7.

Each number has a special effect and details are given in the BASIC keywords

chapter under LISTO . However, the two most useful values are 0 and 7.

LISTO 0 lists the program exactly as it is stored in memory.

LISTO 1 lists the program with one space after each line number. Most

programs in this book have been listed like this.

LISTO 7 lists the program with one space after the line number, and two extra

spaces every time a FOR...NEXT loop or a REPEAT...UNTIL loop is detected.

If you are using the screen editor then make sure that you list the program with

LISTO 0 or else you will copy all those extra spaces into the line!

A few points to watch when using FOR...NEXT loops:

1. The loop always executes at least once.

10 FOR X=20 TO 0

20 PRINT X

30 NEXT

>RUN

20

The loop finishes with the ‘control variable’ larger than the terminating value. In

the next two examples the terminating value is 10.

10 FOR Z=0 TO 10 STEP 3

20 PRINT Z

30 NEXT

40 PRINT "OUT OF LOOP"

50 PRINT Z

>

>RUN

 0

 3

 6

 9

OUT OF LOOP

 12

10 FOR Z=0 TO 10 STEP 5

20 PRINT Z

81

30 NEXT

40 PRINT "OUT OF LOOP"

50 PRINT Z

>

>RUN

 0

 5

 10

OUT OF LOOP

 15

Note that it is not necessary to say NEXT Z in line 30: it is optional, though it

could be argued that it is clearer to put the Z in.

2. You should never jump out of a FOR...NEXT loop. It is generally accepted that

this is poor style. If you do this your programs will become extremely difficult to

follow – there are always better alternatives usually involving the use of a

procedure, or setting the control variable to a value greater than the terminating

value for example

10 FOR X=0 TO 1000

15 PRINT

20 PRINT "TYPE IN A SMALL NUMBER"

30 PRINT "OR ENTER -1 TO STOP THE PROGRAM"

40 INPUT J

50 IF J=-1 THEN X= 2000

60 PRINT "12 TIMES ";J;" IS "; 12*J

70 NEXT X

>

>RUN

TYPE IN A SMALL NUMBER

OR ENTER -1 TO STOP THE PROGRAM

?32

12 TIMES 32 IS 384

TYPE IN A SMALL NUMBER

OR ENTER -1 TO STOP THE PROGRAM

?456

12 TIMES 456 IS 5472

TYPE IN A SMALL NUMBER

OR ENTER -1 TO STOP THE PROGRAM

?-1

12 TIMES -1 IS -12

82

The REPEAT...UNTIL loop provides a much better way of dealing with this sort

of problem.

3. If you omit the FOR statement an error will be generated. First a correct

program:

10 FOR X=1 TO 5

20 PRINT "HELLO"

30 NEXT

>RUN

HELLO

HELLO

HELLO

HELLO

HELLO

and then the program with line 10 deleted

20 PRINT "HELLO"

30 NEXT

>RUN

HELLO

No FOR at line 30

4. Every FOR statement should have a matching NEXT statement. This can be

easily checked by using LISTO 7 (list option 7). If the FOR...NEXT loops are

correctly nested then the END in line 50 will line up with the FOR in line 5.

 5 FOR H=1 TO 4

10 FOR X=1 TO 2

20 PRINT "HELLO" ,H,X

30 NEXT X

40 NEXT H

50 END

>LISTO 7

>LIST

 5 FOR H=1 TO 4

10 FOR X=1 TO 2

20 PRINT "HELLO", H,X

30 NEXT X

40 NEXT H

50 END

>RUN

HELLO 1 1

HELLO 1 2

HELLO 2 1

83

HELLO 2 2

HELLO 3 1

HELLO 3 2

HELLO 4 1

HELLO 4 2

If the NEXT X in line 30 is deleted the computer does its best to make sense of the

program.

 5 FOR H=1 TO 4

10 FOR X=1 TO 2

20 PRINT "HELLO", H,X

40 NEXT H

50 END

>RUN

HELLO 1 1

HELLO 2 1

HELLO 3 1

HELLO 4 1

This is not the way to write programs! Mis-nested FOR...NEXT loops will cause

problems.

5. In summary FOR...NEXT loops should be used when you wish to go through a

loop a fixed number of times.

84

16 IF...THEN...ELSE
More on TRUE and FALSE

The IF...THEN statement has been used in several of the programs earlier in

this book – for example, in the program in chapter 14 which checked your

multiplication. Line 100 was

IF H=F*G THEN PRINT "CORRECT" ELSE PRINT "WRONG"

As you will realise, this type of statement enables the computer to make a choice

as it is working its way through the program. The actual choice that it makes will

depend on the values of H, F and G at the time. As a result, the same program

can behave in very different ways in different circumstances.

Multiple statement lines

It was explained earlier (chapter 7) that you can put more than one statement on

a line and this can be particularly useful with the IF...THEN statement. Take,

for example:

10 X=4 : Y=6 : PRINT "HELLO"

20 PRINT ;X + Y : X=X+Y: PRINT ;X+Y

>RUN

HELLO

10

16

which is just the same as

10 X=4

20 Y=6

30 PRINT "HELLO"

40 PRINT ;X+Y

50 X=X+Y

60 PRINT ;X+Y

This helps to understand how the computer treats multiple statement lines using

the IF...THEN statement. In the first example which follows, K=6 and

therefore the computer obeys everything after the word THEN until the word

ELSE. Note that a colon only separates statements – the word ELSE must be

found if you want the other course of action to follow.

85

10 K=6

20 IF K=6 THEN K=9: PRINT "K WAS 6"

ELSE PRINT "K WAS NOT 6": PRINT "END OF LINE"

>RUN

K WAS 6

(Note that line 20 was so long that it overflowed on the printer but it is all part of

line 20.)

Changing line 10 to K=7 causes the computer to execute everything after the

ELSE and as a result it prints

K WAS NOT 6

END OF LINE

IF...THEN is often used with more complicated conditions involving the words

AND, OR and NOT. For example:

IF X=5 AND Y=6 THEN PRINT "GOOD"

IF X=5 OR Y=6 THEN PRINT "TOO LARGE"

The word NOT reverses the effect of a condition, thus

IF NOT (X=6) THEN PRINT "X NOT 6"

These are powerful features which are easy to use.

For the slightly more advanced

It was explained above that you can use multiple statement lines with

IF...THEN but this leads to messy programs. It is far better to use procedures if

you want a whole lot of things to occur. Thus:

100 IF H=F*G THEN PROCGOOD ELSE PROCBAD

This helps to keep the program readable which is very important, not just from

an aesthetic point of view but from the very practical point that a readable

program is much easier to get right!

More on TRUE and FALSE

In chapter 14 the concept of TRUE and FALSE was introduced. A variable can

have a numeric value (eg 6 or 15) or it can be TRUE or FALSE. In fact this is just

playing with words (or perhaps we should say numbers) since the computer

understands TRUE to have the value -1 and FALSE to have the value 0.

10 IF 6=6 THEN PRINT "YES" ELSE PRINT "NO"

>RUN

YES

86

This prints YES because 6=6 is TRUE.

 5 H=-1

10 IF H THEN PRINT "YES" ELSE PRINT "NO"

>RUN

YES

The above program prints YES because H is TRUE since it has the value -1.

 5 H=0

10 IF H THEN PRINT "YES" ELSE PRINT "NO"

>RUN

NO

This program sets H=FALSE at line 5 so the program prints NO. -1 implies TRUE

and 0 implies FALSE. What about other values of H? In fact all non-zero values

(except non-integers between -1 and +1) are regarded as TRUE, as the following

shows:

 5 H=-55

10 IF H THEN PRINT "YES" ELSE PRINT "NO"

>RUN

YES

Here are some other peculiar examples:

10 G= (6=6)

20 PRINT G

>RUN

 -1

because (6=6) is TRUE.

10 IF 5-6 THEN PRINT "TRUE"

>RUN

TRUE

This works because (5-6) is -1 which is TRUE.

These tricks are more than academic. They can be very useful – not least when

you are trying to fathom out what on earth the computer thinks it is doing!

87

17 Procedures

The BBC Microcomputer has a very complete version of BASIC – often called

‘Extended BASIC’ and in addition it includes the ability to define and use

procedures and functions. It is probably the first version of BASIC in the world to

allow full procedure and function handling. These extremely powerful features

enable the user to structure his or her programs easily and in addition provide a

real introduction to other computer languages like PASCAL.

A procedure is a group of BASIC statements which can be ‘called by name’ from

any part of a program.

 10 REM REACT

 20 REM JOHN A COLL

 30 REM BASED ON AN IDEA BY THEO BARRY, OUNDLE

 40 REM VERSION 1/16 NOV 81

 50 @%=&2020A

 60 ON ERROR GOTO 470

 70 MODE7

 80

 90 PROCINTRO

100 REPEAT

110 PROCFIRE

120 PROCSCORE

130 UNTIL FNSTOP

140 END

150

160 DEF PROCINTRO

170 PRINT "This program tests your reactions"

180 PRINT

190 PRINT "Press the space bar to continue"

200 REPEAT UNTIL GET=32

210 CLS

220 ENDPROC

230

240 DEF PROCFIRE

250 CLS

260 PRINT "Press the space bar"

270 PRINT "as soon as a cross appears"

280 T=TIME

290 R=RND(200)+100

300 REPEAT UNTIL TIME>T+R

88

310 PRINT TAB(17, 10);"+"

320 *FX 15,1

330 REPEAT UNTIL GET=32

340 DELAY=TIME-T-R

350 ENDPROC

360

370 DEF PROCSCORE

380 PRINT TAB(0, 22);

390 PRINT "You took "; DELAY/100;" seconds"

400 ENDPROC

410

420 DEF FNSTOP

430 PRINT "Do you want another go?"

440 REPLY$=GET$

450 =(REPLY$="N") OR (REPLY$="n")

460

470 @%=&90A

The program above shows how named procedures and functions can be used. The

main part of the program is between line 90 and line 140.

 90 PROCINTRO

100 REPEAT

110 PROCFIRE

120 PROCSCORE

130 UNTIL FNSTOP

140 END

The program tests a person’s reactions by measuring how long it takes him or her

to notice a cross on the screen. As you will see from the section above, line 90

calls a procedure which gives an introduction. The procedure is called

PROCINTRO and it produces the following on the screen.

This program tests your reactions

Press the space bar to continue

Then the program repeats PROCFIRE and PROCSCORE until the user indicates

that he or she does not wish to continue.

PROCFIRE produces this:

Press the space bar

as soon as a cross appears

+

and PROCSCORE produces this:

You took 2.03 seconds

89

It all seems very straightforward and logical – and it is. Using procedures

enables you to split a problem up into a number of small manageable sections

and to use (or call) those sections with a sensible name. The main section of most

programs should be just a number of procedure calls as are lines 90 to 140. The

procedures themselves should be in a separate section – after the END statement.

Let us examine PROCINTRO more closely.

160 DEF PROCINTRO

170 PRINT "This program tests your reactions"

180 PRINT

190 PRINT "Press the space bar to continue"

200 REPEAT UNTIL GET=32

210 CLS

220 ENDPROC

Notice how it is defined: line 160 is the start of the definition and the procedure

ends at line 220; between those lines are normal BASIC statements. Lines 170,

180 and 190 just print messages on the screen. Line 200 waits until the space bar

is pressed, after which line 210 clears the screen.

There are a number of more complex things that can be done with procedures

and another program will illustrate the use of parameters – variables passed to

the procedure from the main program.

 10 REM HYPNO

 20 REM TIM DOBSON / ACORN COMPUTERS

 30 REM VERSION 2 / 16 NOV 81

 40 MODE 5

 50 VDU29,640;512;

 60

 70 FOR X=510 TO 4 STEP -7

 80 GCOL0,X

 90 PROCBOX(X)

100 NEXT

110

120 REPEAT

130 GCOL RND(4),RND(4)

140 FOR K=0 TO 500 STEP 8

150 PROCBOX(K)

160 NEXT K

170 GCOL RND(4),RND(4)

180 FOR K=500 TO 0 STEP -9

190 PROCBOX(K)

200 NEXT K

210 UNTIL FALSE

90

220 END

230

240 DEF PROCBOX(J)

250 MOVE -J,-J

260 DRAW -J,J

270 DRAW J,J

280 DRAW J,-J

290 DRAW -J,-J

300 ENDPROC

The program uses a procedure called PROCBOX which draws a box. The size of

the box is determined by the parameter J in the procedure. However you will see

that in line 90 the procedure is called with the statement PROCBOX(X). The

initial value of X will be 510 because that is the starting value of the FOR loop at

line 70. This value of X (510)will be passed to the parameter J in the procedure.

As a result the procedure PROCBOX will draw a box of ‘size’ 5 10. J is called the

‘formal parameter’ for the procedure since it is used in the procedure itself.

However the X in line 90 and the K in line 150 are referred to as actual

parameters. Whatever value K has in line 150 will be transferred to the formal

parameter J.

A procedure may have any number of parameters but there must be exactly the

same number of actual parameters when the procedure is called as there are

formal parameters in the procedure definition. Thus if a procedure was defined

like this

1000 DEF PROCSWITCH(A,B,C$)

1040 ENDPROC

it could not be called with a statement like

150 PROCSWITCH(X,Y)

but this would be acceptable:

150 PROCSWITCH(length, height, NAME$)

Local variables in procedures

10 J=25

20 FOR X=1 TO 5

30 PROCNUM (X)

40 PRINT "OUT OF PROCEDURE J= ";J

50 NEXT X

60 END

70 DEF PROCNUM(J)

91

80 PRINT "IN PROCEDURE J= ";J

90 ENDPROC

>RUN

IN PROCEDURE J= 1

OUT OF PROCEDURE J= 25

IN PROCEDURE J= 2

OUT OF PROCEDURE J= 25

IN PROCEDURE J= 3

OUT OF PROCEDURE J= 25

IN PROCEDURE J= 4

OUT OF PROCEDURE J= 25

IN PROCEDURE J= 5

OUT OF PROCEDURE J= 25

In the program above the variable J is used in two ways. The main program

starts at line 10 and ends at line 60. The procedure is defined between lines 70

and 90. Line 10 declares that J has the value 25 and the value of J is not changed

in the main program. However J is used as the formal parameter in the

procedure. All formal parameters are local to the procedure which means that

their value is not known to the rest of the program. Inside the procedure, J takes

on the value of the actual parameter X, but outside the procedure it has a

different value. The distinction is made between global variables and local

variables. Global variables are known to the whole program, including

procedures, whereas local variables are only known to those procedures in which

they are defined and to procedures within that procedure.

In the program above, X is a global varible and it looks as if J is global too, since

it is defined in line 10 of the main program. In fact that J is global but the use of

the parameter J in the procedure creates another variable J which is local to the

procedure. If a different parameter had been used in the procedure definition

then J would have remained global. Thus in the program below the formal

parameter has been changed to K in line 70, which leaves J as a global variable.

10 J=25

20 FOR X=1 TO 5

30 PROCNUM(X)

40 PRINT "OUT OF PROCEDURE J= ";J

50 NEXT X

60 END

70 DEF PROCNUM(K)

80 PRINT "IN PROCEDURE J= ";J

90 ENDPROC

>RUN

IN PROCEDURE J= 25

92

OUT OF PROCEDURE J= 25

IN PROCEDURE J= 25

OUT OF PROCEDURE J= 25

IN PROCEDURE J= 25

OUT OF PROCEDURE J= 25

IN PROCEDURE J= 25

OUT OF PROCEDURE J= 25

IN PROCEDURE J= 25

OUT OF PROCEDURE J= 25

The program is pointless in its present form for several reasons – mostly because

it doesn’t actually do anything with K in the procedure!

Now that J is global its value could be altered anywhere – including inside the

procedure. Line 75 increases J by 10:

10 J=25

20 FOR X=1 TO 5

30 PROCNUM(X)

40 PRINT "OUT OF PROCEDURE J= ";J

50 NEXT X

60 END

70 DEF PROCNUM(K)

75 J=J+10

80 PRINT "IN PROCEDURE J= ";J

90 ENDPROC

>RUN

IN PROCEDURE J= 35

OUT OF PROCEDURE J= 35

IN PROCEDURE J= 45

OUT OF PROCEDURE J= 45

IN PROCEDURE J= 55

OUT OF PROCEDURE J= 55

IN PROCEDURE J= 65

OUT OF PROCEDURE J= 65

IN PROCEDURE J= 75

OUT OF PROCEDURE J= 75

It has been pointed out that all formal parameters are local to the procedure in

which they are defined (and to inner procedures) but other variables can be

declared as LOCAL if required. We very often use the variable X as a counter for

a FOR...NEXT loop and as a result you have to be careful not to use it twice in

the same section of a program. Declaring X as local to a procedure ensures that

its use locally will not affect the value of X outside the procedure.

10 J=25

20 FOR X=1 TO 5

93

30 PROCNUM(X)

40 PRINT "OUT OF PROCEDURE J= ";J

50 NEXT X

60 END

70 DEF PROCNUM(K)

72 LOCAL X

75 FOR X= 1 TO 10

80 J=J + J/X

85 NEXT X

90 ENDPROC

>RUN

OUT OF PROCEDURE J= 275

OUT OF PROCEDURE J= 3025

OUT OF PROCEDURE J= 33275

OUT OF PROCEDURE J= 366025

OUT OF PROCEDURE J= 4026275

In the program above, X is used twice – once in the main program (lines 20 and

50) and secondly, and very differently, as a local variable in the procedure. J

remains global.

It is wise to declare variables as LOCAL in procedures and functions wherever

possible except when the variable is a formal parameter. A formal parameter is

automatically local and therefore does not need to be declared.

94

18 Functions

Functions are in many ways similar to procedures but there is one major

difference – they always calculate a result which may be a number or a string.

BASIC already contains a number of functions. For example the function SQR

returns the square root of a number. The square root of 16 is 4 so the statements

Y = SQR(16)

and

PRINT SQR(16)

make sense. The first example calculates the square root of 16 and places the

result in Y. Compare this to a procedure – for example the one above, to draw a

box. The procedure makes things happen (a box appears on the screen) but it

does not produce a numeric or a string value. Functions always produce a

numeric or string result.

If you have a reasonable understanding of procedures and parameters then you

can probably cope with this example of a function:

 10 PRINT "GIVE ME THREE NUMBERS ";

 20 INPUT A,B,C

 30 PRINT "THE SUM OF THE NUMBERS IS ";

 40 PRINT FNSUM(A,B,C)

 50 END

100 DEF FNSUM(X,Y,Z)

105 LOCAL K

110 K=X+Y+Z

120 =K

>RUN

GIVE ME THREE NUMBERS ?2,4,4

THE SUM OF THE NUMBERS IS 10

Again this program is not of much use – we are using a sledge hammer to crack a

nut – but we had better learn to walk before we run!

The function is defined in lines 100 to 120 and three parameters are passed to

the function. A, B and C are the actual parameters and the numbers in A, B and

C are passed to formal parameters X, Y and Z. For the sake of illustration a local

variable K has been used. Line 110 sets K equal to the sum of X, Y and Z. Line

120 shows the way in which a function is ended. It says that the function FNSUM

has the value of K.

95

The example above was spread out to show how a function can be constructed – it

could have been compressed to

 10 PRINT "GIVE ME THREE NUMBERS ";

 20 INPUT A,B,C

 30 PRINT "THE SUM OF THE NUMBERS IS ";

 40 PRINT FNSUM(A,B,C)

 50 END

100 DEF FNSUM(X,Y,Z)

120 = X+Y+Z

or even to the single line function shown below

 10 PRINT "GIVE ME THREE NUMBERS ";

 20 INPUT A,B,C

 30 PRINT "THE SUM OF THE NUMBERS IS ";

 40 PRINT FNSUM(A,B,C)

 50 END

100 DEF FNSUM(X,Y,Z) = X+Y+Z

Of course we could have managed without a function at all…

10 PRINT "GIVE ME THREE NUMBERS ";

20 INPUT A,B,C

30 PRINT "THE SUM OF THE NUMBERS IS ";

40 PRINT A+B+C

50 END

…and clearly that would have been the right thing to do in this case. However as

soon as your programs reach 40 or 50 lines you should be using procedures

extensively and functions occasionally.

As mentioned at the start of this chapter, functions can be used to calculate a

numeric or a string result. The function which follows returns the middle letter of

a string. The string is passed as a parameter

100 DEF FNMID(A$)

110 LOCAL L

120 L=LEN(A$)

140 =MID$(A$,L/2,1)

Again, the function is terminated by a statement starting with an equal sign. To

use the above function type in the following additional lines.

 10 INPUT Z$

 20 PRINT FNMID(Z$)

 30 END

Notice that the function is placed after the END statement where it will not be

executed unless it is called by name.

96

19 GOSUB

This statement allows the program temporarily to divert to another section.

Think about the process of writing a letter. In essence it is really a

straightforward procedure – but in practice while the main aim is to write the

letter there are often several diversions like the need to get another sheet of

paper or answer the phone. These small ‘sub-tasks’ are essential but if we write a

description of every single thing that occurred while writing a letter the reader

would probably be so confused that he or she wouldn’t realise what the overall

aim was. However if the job is described as a series of subroutines or procedures

then the main task will emerge more clearly. The subroutine and the GOSUB

statement were introduced some years ago to help people who write BASIC

programs to break their programs up into recognisable modules. In recent years

more flexible and more easily used tools have become available – namely

procedures and functions – and these two should be used in preference to GOSUB.

None the less, BBC BASIC maintains the GOSUB statement for compatibility

with other versions of BASIC.

A temperature scale conversion program is shown in two forms below. Both

produce exactly the same output on the computer screen but one has been

written using GOSUB and GOTO and the other using procedures.

First with GOSUB and GOTO:

 10 REM TEMPERATURE CONVERSION

 20 REM WITHOUT STRUCTURED BASIC

 30 REM THIS IS NOT THE WAY TO WRITE PROGRAMS!

 40 REM JOHN A COLL

 50 REM VERSION 1.0 /22 NOV 81

 60 MODE 7

 70 @%=&2020A

 80 PRINT "ENTER THE TEMPERATURE FOLLOWED BY"

 90 PRINT "THE FIRST LETTER OF THE TEMPERATURE"

100 PRINT "SCALE. e.g. 100C or 72F or 320K"

110 PRINT

120 PRINT "Enter the temperature ";

130 INPUT REPLY$

140 TEMP = VAL(REPLY$)

150 SCALE$=RIGHT$(REPLY$,1)

160 GOODSCALE=FALSE

170 IF SCALE$="C" THEN GOSUB 370

180 IF SCALE$="F" THEN GOSUB 390

97

190 IF SCALE$="K" THEN GOSUB 430

200 IF NOT (GOODSCALE AND TEMP>=-273.16) GOTO 260

210 PRINT''

220 PRINT TEMP; " Celsius"

230 PRINT TEMP+273.16; " Kelvin"

240 PRINT TEMP*9/5 + 32;" Fahrenheit"

250 PRINT

260 IF GOODSCALE THEN 310

270 CLS

280 PRINT "You must follow the temperature with"

290 PRINT "the letter ""C"", ""F"" or ""K"" "

300 PRINT "and nothing else"

310 IF TEMP>=-273.16 THEN 360

320 CLS

330 PRINT "The temperature you have given is"

340 PRINT "too cold for this universe! Try again"

350 PRINT

360 GOTO 110

370 GOODSCALE=TRUE

380 GOTO 460

390 REM CONVERT TO CELSIUS

400 TEMP=(TEMP-32)*5/9

410 GOODSCALE=TRUE

420 GOT0460

430 REM CONVERT TO CELSIUS

440 TEMP=TEMP-273.16

450 GOODSCALE=TRUE

460 RETURN

Lines 430 to 460 are referred to as a ‘subroutine’, and these lines of the program

can be called from line 190 by the statement GOSUB 430. Notice that this

statement does not give the reader any idea of the purpose of the subroutine. The

statement RETURN at the end of the subroutine returns it to the statement after

the original GOSUBstatement.

Compare the last program with the one that follows.

 10 REM TEMPERATURE CONVERSION

 20 REM JOHN A COLL

 30 REM VERSION 1.0 /22 NOV 81

 40 MODE 7

 50 @%=&2020A

 60 PRINT "ENTER THE TEMPERATURE FOLLOWED BY"

 70 PRINT "THE FIRST LETTER OF THE TEMPERATURE"

 80 PRINT "SCALE. e.g. 100C or 72F or 320K"

 90 REPEAT

98

100 PRINT

110 PRINT "Enter the temperature ";

120 INPUT REPLY$

130 TEMP = VAL(REPLY$)

140 SCALE$=RIGHT$(REPLY$,1)

150 GOODSCALE=FALSE

160 IF SCALE$="C" THEN PROCCENT

170 IF SCALE$="F" THEN PROCFAHR

180 IF SCALE$="K" THEN PROCKELVIN

190 PROCEND

200 UNTIL FALSE

210 END

220

230 DEF PROCCENT

240 GOODSCALE=TRUE

250 ENDPROC

260

270 DEF PROCFAHR

280 REM CONVERT TO CELSIUS

290 TEMP=(TEMP-32)*5/9

300 GOODSCALE=TRUE

310 ENDPROC

320

330 DEF PROCKELVIN

340 REM CONVERT TO CELSIUS

350 TEMP=TEMP-273.16

360 GOODSCALE=TRUE

370 ENDPROC

380

390 DEF PROCEND

400 IF GOODSCALE AND TEMP>=-273.16 THEN PROCRESULTS

410 IF NOT GOODSCALE THEN PROCILLEGAL_SCALE

420 IF TEMP< -273.16 THEN PROCILLEGAL_TEMP

430 ENDPROC

440

450 DEF PROCRESULTS

460 PRINT''

470 PRINT TEMP; " Celius"

480 PRINT TEMP+273.16; " Kelvin"

490 PRINT TEMP*9/5 + 32; " Fahrenheit"

500 PRINT

510 ENDPROC

520

530 DEF PROCILLEGAL_SCALE

99

540 CLS

550 PRINT "You must follow the temperature with"

560 PRINT "the letter ""C"", ""F"" or ""K"" "

570 PRINT "and nothing else"

580 ENDPROC

590

600 DEF PROCILLEGAL_TEMP

610 CLS

620 PRINT "The temperature you have given is"

630 PRINT "too cold for this universe! Try again"

640 PRINT

650 ENDPROC

Obviously the second version is long (about a third longer) but it is much more

understandable and this is of crucial importance for medium and large programs.

GOTO

You may have noticed the use of the GOTO statement in many of the examples

above. GOTO is a very useful statement which tells the computer to skip to a

particular line number. Beginners in programming find it easy to use. However,

it should be used with care because it can lead to what some people call

‘spaghetti’ programming, a tangle of loops backwards and forwards which makes

it very difficult indeed to follow what is going on. The example at the end of

chapter 4 shows this in an extreme form.

If you are writing short programs then by all means use GOTO. For example, the

following program prints out the ASCII code of any key which is pressed – useful

if you can’t find an ASCII code chart:

10 PRINT GET

20 GOTO 10

It would be taking things too far to expect people to write

10 REPEAT

20 PRINT GET

30 UNTIL FALSE

However, when you write programs of more than, say, 50 lines it is a very good

idea to try to use the ‘structure’ provided instead of GOTO statements. It is

generally accepted that it is still useful to use GOTO statements as a last resort

when handling error conditions. Use whatever techniques make your program (a)

work and (b) easy to follow.

100

20 ON GOTO, ON GOSUB

There is often a need, in a computer program, to proceed in one of a number of

directions. For example your program might present a ‘menu’ of eight options for

the user to choose from. When the user has made the choice your program will

need to branch off in the appropriate direction. There are a number of ways of

doing this. Here is one in part of a program.

100 MODE 7

110 PROCINTRO

120 REPEAT

130 PROCMENU

140 IF M=1 THEN PROCOscar7

150 IF M=2 THEN PROCOscar8

160 IF M=3 THEN PROCUOSAT

170 IF M=4 THEN PROCorbit

180 IF M=5 THEN PROCtransmit

190 IF M=6 THEN PROCshowfigs

200 IF M=7 THEN PROCMercator

210 IF M=8 THEN PROCLocator

220 IF M=9 THEN PROCgetdatetime

230 UNTIL M=-1

240 END

Lines 140 to 220 provide exits to a number of procedures all of which will

automatically return to the main program. Which procedure is selected depends

on the value of M as selected by the user during the procedure PROCMENU.

The above method is easy to understand and is recommended but there are other

methods which should be noted. The statement ON...GOTO also provides a

number of exits.

100 ON M GOTO 1000,1200,1250,1600

would provide an exit to line 1000 of the BASIC program if M=1. If M=2 then

control will pass to line 1200 and so on.

An alternative format is

100 ON M GOSUB 1000,1200,1350

In this case control is passed to the subroutines indicated and then returned to

the next line.

101

Both these techniques are widely used but are less clear than the use of

procedures as indicated at the beginning of this chapter.

ON...GOTO and ON...GOSUB may be used with ELSE to trap an ON variable

which is out of range.

60 ON F% GOTO 100,210,350 ELSE PROCfind

will perform PROCfind if F% is any value other than 1, 2 or 3.

102

21 Even more on variables

Arrays

Very often we use the computer to store and manipulate sets of data rather than

just a single value. For example, we might want to calculate wages for a group of

people or sort a group of 20 numbers into order. The 20 numbers might well be

associated with 20 names. Arrays make it a lot easier to deal with groups of

names and numbers. To get to a more manageable example let’s consider working

with five names and their associated year of birth. We could store the five names

in five variables like this:

N1$ = "SARDESON"

N2$ = "MATTINSON"

N3$ = "MOIR"

N4$ = "ALLEN"

N5$ = "MOUNT"

That is quite reasonable and it works. If you say

PRINT N2$

the computer will then print out MATTINSON.

However, you cannot tell it to print out the fifth entry or the fourth entry. The

computer doesn’t have any way of knowing that N5$ is the fifth entry. Using

arrays, though, we can pick out the fifth entry in a long list and that is very

useful.

The first thing we have to do is to tell the computer how large an array we are

going to use. This is done with a DIM statement – eg

DIM N$(5)

creates an array (a table) and we can then say

N$(1) = "SARDESON"

N$(2) = "MATTINSON"

N$(3) = "MOIR"

N$(4) = "ALLEN"

N$(5) = "MOUNT"

If we follow that with

X = 1

and then say

103

PRINT N$(X)

the computer will print "SARDESON".

Note that the X was a variable which, in this case, had the value of 1.

Here is a complete program – as far as we have got.

 10 DIM N$(5)

 20 N$(1)="SARDESON"

 30 N$(2)="MATTINSON"

 40 N$(3)="MOIR"

 50 N$(4)="ALLEN"

 60 N$(5)="MOUNT"

 70 PRINT "WHICH ENTRY DO YOU WANT"

 80 INPUT X

 90 PRINT N$(X)

100 GOTO 70

We could also define an array to contain the five years of birth:

200 DIM Y(5)

210 Y(1)=1964

220 Y(2)=1960

230 Y(3)=1950

240 Y(4)=1959

250 Y(5)=1962

It would be easy to add lines to this program to make the computer search for

various things. Of course with only five entries it would undoubtedly be quickest

to do the whole thing manually – but with a hundred, a thousand or a million

entries the computer would be faster – and certainly more accurate. A few

examples of extra lines will make the use of these arrays clearer. Delete lines 70

to 100.

To print out everyone born before 1963

300 FOR X=1 TO 5

310 IF Y(X)<1963 THEN PRINT N$(X)

320 NEXT X

or to print out everyone whose name contains more than five letters

400 FOR X=1 TO 5

410 J$=N$(X)

420 IF LEN (J$)>5 THEN PRINT J$

430 NEXT

104

or to print out everyone whose name begins with M

500 FOR X=1 TO 5

510 J$=N$(X)

520 IF LEFT$(J$,1)="M" THEN PRINT J$

530 NEXT

All these things can only be done if the computer is able to select a position in a

list and it can only do this with arrays.

Note: For an explanation of how the last examples worked, see chapter 22.

You will have noticed that we used the array N$(X) to store strings (the names

of the people), and array Y(X) to store numbers (the years of birth). Each

element of the array N$(X) can store as long a name as you want (up to 255

characters) and you can dimension N$ to have as many entries as you want. For

example, DIM N$(1000) would create a string array with space for 1000

different names. N$(X) is called a ‘string array’ since it is used to store strings.

The array Y(X) is called a ‘numeric array’ and again it can have as many

elements (entries) as you need – eg DIM Y(2000) . You can also have ‘integer

numeric arrays’ like DIMJ%(100) .

As usual on the BBC Microcomputer the story doesn’t finish there! There is

another whole group of arrays which we haven’t met yet. The arrays we have met

(both string and numeric) are all ‘single-dimension arrays’ and could be

illustrated by this diagram.

Y(1) Y(2) Y(3) Y(4) Y(5)

1964 1960 1950 1959 1962

Now suppose we wanted to store the day and month of the birthday as well as the

year. We need more boxes.

21 12 4 24 19

2 2 2 10 12

1964 1960 1950 1959 1962

A set of data like that is called a ‘5 by 3 array’ and the (empty) boxes can be set

up by the statement

10 DIM (5,3)

The array could then be filled with the statements

20 Y(1,1)=21

30 Y(1,2)=2

40 Y(1,3)=1964

50 Y(2,1)=12

60 Y(2,2)=2

105

70 Y(2,3)=1960

… etc.

In practice it would involve a lot less typing, and make the program shorter, if all

the figures were held in DATA statements. You may well need to skip this section

at first and return to it when you have understood chapter 22 which deals with

the keywords READ, DATA and RESTORE.

If you use READ and DATA to fill the above five by three array the program could

look like this:

 10 DIM Y(5,3)

 20 FOR COLUMN=1 TO 5

 30 FOR ROW=1 TO 3

 40 READ Y(COLUMN, ROW)

 50 NEXT ROW

 60 NEXT COLUMN

500 DATA 21,2,1964

510 DATA 12,2,1960

520 DATA 4,2,1950

530 DATA 24,10,1959

540 DATA 19,12,1962

The program above takes successive numbers from the DATA statements and

inserts them into the array. Once this program has been run the array will be set

up – filled with the figures – and other sections of the program (not shown above)

could search the array as required. The array above is a ‘two-dimensional array’

used to store numbers. The phrase ‘two dimensional’ refers to the fact that there

are five entries in one dimension and three entries in another dimension – a total

of 15 entries. A three-dimensional array could be defined with the statement

DIM W(4,5,6)

and a four-dimensional array with

DIM T(2,2,5,3)

This last array would have 2x2x5x3 (60) individual entries. Actually, array

elements can be numbered from zero instead of one, so an array declared with

DIM V(3)

has, in fact, got four elements which are V(0) , V(1) , V(2) and V(3) . Similarly

the array T(2,2,5,3) has 3x3x6x4 (216) elements and will take up over 1000

bytes of memory. Multi-dimension arrays are voracious memory eaters – only use

them when needed and, if at all possible, use every element that you set up.

There is no limit, other than lack of memory, on the number of dimensions in an

array.

106

At the start of this chapter we set up a string array with the statement DIM

N$(5) .

This contains six elements, N$(0) to N$(5) . The length of each string element is

limited to the usual 255 characters but you can have as many elements as you

wish and as many dimensions – just as for numeric arrays. String arrays are

even more ravenous for memory than numeric arrays – use them sparingly!

Just to make sure that the various possibilities are clear, here is a program to set

up a string array with first names as well as last names. The program reads

names and dates into two arrays:

 10 DIM Y(4,2)

 20 DIM N$(4,2)

 30 FOR COLUMN=0 TO 4

 40 FOR ROW=0 TO 2

 50 READ Y(COLUMN, ROW)

 60 NEXT ROW

 70 FOR ROW=0 TO 2

 80 READ N$(COLUMN, ROW)

 90 NEXT ROW

100 NEXT COLUMN

500 DATA 21,2,1964, JAMES,C,SARDESON

510 DATA 12,2,1960,A, MICHAEL, MATTINSON

520 DATA 4,12,1960,CHARLES,C,MOIR

530 DATA 24,10,1959,STEPHEN,R, ALLEN

540 DATA 19,12,1962, GAVIN,,MOUNT

107

22 READ, DATA, RESTORE

One very common way of storing a whole set of information along with the

computer program is to use DATA statements. You will remember that computer

programs can be stored on cassette and sets of data can be stored in the program

as well. For example, it might be necessary in a program to convert the month

given as a number into a name. The program below stores the names of the

month as DATA.

 5 REPEAT

 10 PRINT "GIVE THE MONTH AS A NUMBER"

 20 INPUT M

 30 UNTIL M>0 AND M<13

 40 FOR X=1 TO M

 50 READ A$

 60 NEXT X

 70 PRINT "THE MONTH IS ";A$

100 DATA JANUARY,FEBRUARY,MARCH,APRIL

110 DATA MAY,JUNE,JULY,AUGUST,SEPTEMBER

120 DATA OCTOBER,NOVEMBER,DECEMBER

>RUN

GIVE THE MONTH AS A NUMBER

?6

THE MONTH IS JUNE

Lines 10 to 30 repeat until a sensible value for M is entered – it must be between

1 and 12. In the example run a value of 6 was given to M. In this case the

FOR...NEXT loop between lines 40 and 60 will repeat six times. Each time

through it READs the next piece of DATA into A$ until finally A$ will be left

containing JUNE. It might make it clearer if an extra line is temporarily inserted

at line 55 to print out the value of A$ and X each time through the loop.

>55 PRINT A$,X

>

>LIST

 5 REPEAT

 10 PRINT "GIVE THE MONTH AS A NUMBER"

 20 INPUT M

 30 UNTIL M>0 AND M<13

 40 FOR X=1 TO M

 50 READ A$

108

 55 PRINT A$,X

 60 NEXT X

 70 PRINT "THE MONTH IS ";A$

100 DATA JANUARY,FEBRUARY,MARCH,APRIL

110 DATA MAY,JUNE,JULY,AUGUST,SEPTEMBER

120 DATA OCTOBER,NOVEMBER,DECEMBER

>

>RUN

GIVE THE MONTH AS A NUMBER

?6

JANUARY 1

FEBRUARY 2

MARCH 3

APRIL 4

MAY 5

JUNE 6

THE MONTH IS JUNE

This is one way of getting to the (say) sixth element of a list but there is another

way of using an array.

Sometimes there is more than one set of data and it is useful to be able to set the

‘data pointer’ to a selected set of data. The next program has two sets of data

each containing a set of prices and car names. One set of data refers to British

Leyland cars and the other to Lotus cars.

 10 REPEAT

 20 PRINT "DO YOU PREFER BL OR LOTUS CARS?"

 30 A$=GET$

 40 PRINT A$

 50 IF A$="B" THEN RESTORE 170 ELSE RESTORE 270

 60 INPUT "HOW MUCH ARE YOU WILLING TO SPEND ",P

 80 PRINT "IN THAT CASE, YOU CAN AFFORD THESE:"

 90 FOR X=1 TO 8

100 READ NAME$

110 READ PRICE

120 IF PRICE <P THEN PRINT PRICE,TAB(15); NAME$

130 NEXT X

140 PRINT

150 UNTIL FALSE

160

170 REM BRITISH LEYLAND CARS

180 DATA MINI 1000 CITY, 3198

190 DATA METRO HLE, 4699

200 DATA MAESTRO 1.3L, 5419

109

210 DATA MONTEGO 1.6, 5660

220 DATA TRIUMPH ACCLAIM CD, 6239

230 DATA MAESTRO VANDEN PLAS, 7395

240 DATA ROVER 2300S, 10264

250 DATA DAIMLER 4.2, 22995

260

270 REM LOTUS CARS

280 DATA EXCEL, 14990

290 DATA ESPRIT SERIES 3, 15985

300 DATA ESPRIT TURBO, 19980

>RUN

DO YOU PREFER BL OR LOTUS CARS? B

HOW MUCH ARE YOU WILLING TO SPEND ?6000

IN THAT CASE YOU CAN AFFORD THESE:

 3198 MINI 1000 CITY

 4699 METRO HLE

 5419 MAESTRO 1.3L

 5660 MONTEGO 1.6

DO YOU PREFER BL OR LOTUS CARS? L

HOW MUCH ARE YOU WILLING TO SPEND ?1900

IN THAT CASE, YOU CAN AFFORD THESE:

Out of DATA at line 100

You will notice that line 50 usees the RESTORE statement to set the data ‘pointer’

to either line 170 where BL data is stored or to line 270 where Lotus data is

stored. This ensures that data is read from the correct list.

Lines 90 to 130 attempt to read off eight sets of data from the data lists, but fail

when Lotus data is selected as only three sets of data are provided. The message

Out of DATA at line 100

indicates the failure to find enough entries in the data table. Methods of

overcoming the problem are given in chapter 27 which deals with error handling.

110

23 Integer handling

Two special arithmetical functions are provided which produce integer (ie whole

number) results. These integer functions are DIV and MOD (DIVision and

MODulus).

The result of a normal division has two parts – the whole number part and the

remainder. Normally the remainder is quoted as a decimal fraction. Thus

11/4 = 2.75 or 2¾

However the functions DIV and MOD enable the whole number part and the

remainder to be calculated separately. Thus

11 DIV 4 = 2

(ie 4 goes into 11 two times) and

11 MOD 4 = 3

(ie the remainder is 3).

A simple division test shows how they can be used.

 5 CLS

 10 PRINT "Division test!"

 20 PRINT "Answer with a whole number, and a" '

"remainder"

 30 REPEAT

 40 X=RND(100)

 50 Y=RND(10)

 60 PRINT ' "What is ";X;" divided by ";Y

 70 INPUT A

 80 INPUT "Remainder? "B

 90 IF A=Y DIV Y AND B=X MOD Y THEN PRINT "That's

correct" ELSE PRINT "That's wrong"

100 PRINT ' "Press any key to continue"

110 T=GET

120 UNTIL FALSE

DIV and MOD are used whenever you are trying to convert units – for example

seconds into minutes. Thus 500 seconds is 500 DIV 60 minutes and 500 MOD

60 seconds – that is 8 minutes 20 seconds.

For example this program prints a 24 hour clock

111

 5 PRINT "Please input the time"

 10 INPUT "Hours ",H

 20 INPUT "Minutes ",M

 30 TIME=H* 360000 + M* 6000

 40 CLS

 50 REPEAT

 60 SEC=(TIME DIV 100) MOD 60

 70 MIN=(TIME DIV 6000) MOD 60

 80 HR=(TIME DIV 360000) MOD 24

 90 PRINT TAB(7,12) HR;":";MIN;":";SEC;SPC(2)

100 UNTIL FALSE

The clock is improved if you type VDU 23,1,0;0;0;0; which switches off the

flashing cursor (see chapter 10). The next program would keep time to the end of

the century – if you left the computer switched on that long!

 10 lastminute=0

 20 MODE7

 30 PROCOFF

 40 PROGgetdatetime

 50 CLS

 60 REPEAT

 70 PROCshowtime

 80 UNTIL FALSE

 90 END

100

110 DEF PROCgetdatetime

120 CLS

130 PRINT"Please supply the day, month and year"

140 PRINT "as numbers e.g. 24 10 1984"

150 PRINT

160

170 REPEAT

180 PRINT TAB(5,10);"Day ";

190 INPUT TAB)12,10) ""day

200 UNTIL day>0 AND day<32

210

220 REPEAT

230 PRINT TAB(5,12);"Month ";

240 INPUT TAB(12,12)"" month

250 UNTIL month>0 AND month<13

260

270 REPEAT

280 PRINT TAB(5,14);"Year";

290 INPUT TAB(12,14) "" year

112

300 UNTIL year>1799 AND year<2500 OR year>0 AND

year<99

310 IF year<99 THEN year=year+1900

320

330 CLS

340 PRINT"and now the time please"

350 PRINT "using a 24 hour clock"

360

370 REPEAT

380 PRINT TAB(5,10);"Hours ";

390 INPUT hour

400 UNTIL hour>-1 AND hour<24

410

420 REPEAT

430 PRINT TAB(5.12) ;"Minutes ";

440 INPUT minute

450 UNTIL minute>-1 AND minute<60

460

470 TIME=100*60*(minute+60*hour)

480 ENDPROC

490

500

510 DEF PROCshowtime

520 IF TIME>8640000 THEN

TIME=TIME-8640000

530 hour=TIME DIV 360000 MOD 24

540 minute=TIME DIV (100*60) MOD 60

550 second=TIME DIV 100 MOD 60

560 IF (hour=0 AND minute=0 AND

lastminute=59) THEN PROCincdate

570 lastminute=minute

580 PRINT TAB(0,0);"Date = ";day;" ";

590 RESTORE 600

600 DATA

Jan,Feb,Mar,Apr,May,June,July,Aug,Sept,Oct,Nov,Dec

610 FOR X=1 TO month

620 READ months

630 NEXT X

640 PRINT month$;" ";year;" ";

650 PRINT "GMT = ";

660 IF hour<10 THEN PRINT " ";

670 PRINT;hour;" : ";

680 IF minute<10 THEN PRINT " ";

690 PRINT ;minute; " ";

113

700 IF second<10 THEN PRINT " ";

710 PRINT ;second; " "

720 ENDPROC

730

740 DEF PROCOFF

750 VDU 23,1,0;0;0;0;

760 ENDPROC

770

780

790 DEF PROCincdate

800 day=day+1

810 IF (month=2) AND (day>29) THEN day=1:month=3

820 IF (month=2) AND (day=29) THEN IF NOT

FNLEAP(year) THEN day=1:month=3

830 IF ((month=4 OR month=6 OR month=9 OR month=11)

AND (day=31)) THEN day=1: month=month+1

840 IF day>31 THEN day=1:month=month+1

850 IF month>12 THEN month=1:year=year+1

860 ENDPROC

870

880

890 DEF FNLEAP(Y)

900 REM RETURNS TRU IF Y IS LEAP YEAR

910 IF Y MOD 4=0 AND (Y MOD 100<>0 OR Y MOD 400=0)

THEN =TRUE ELSE =FALSE

114

24 String handling

It has been explained that the BBC Microcomputer can store words or other

groups of characters in string variables. There are a number of functions which

can be used with strings. For example if A$= "NOTWITHSTANDING" then the

string function LEFT$ can be used to copy, say, the left three letters of A$ into

another string – B$.

10 A$="NOTWITHSTANDING"

20 B$=LEFT$(A$,3)

30 PRINT B$

>RUN

NOT

Similarly MID$ can be used to extract the middle section of a string. Change line

20 thus:

10 A$="NOTHWITHSTANDING"

20 B$=MID$(A$,4,9)

30 PRINT B$

>RUN

WITHSTAND

Line 20 can be read as ‘B$ is a copy of the middle of A$ starting at the fourth

letter and continuing for nine letters’. As a result of this flexible use of the word

‘middle’, MID$ can in fact be used to copy any part of a string. Change the

program again:

10 A$="NOTWITHSTANDING"

20 B$=MID$(A$,1,7)

30 PRINT B$

>RUN

NOTWITH

As well as LEFT$ and MID$ there is the string function RIGHT$ which copies

the rightmost characters of a string.

10 A$="NOTWITHSTANDING"

20 B$=RIGHT$(A$,4)

30 PRINT B$

>RUN

DING

115

It is easy to join two strings together to make a long string by using the ‘string

concatenation operator’ which is a plus sign. Its title sounds grand but its

purpose is obvious – but quite different from its arithmetic use.

10 A$="NOTWITHSTANDING"

20 B$=LEFT$(A$,3)

30 C$=" LIKELY"

40 D$=B$+C$

50 PRINT D$

>RUN

NOT LIKELY

The numeric function LEN can be used to count up the number of characters in a

string – in other words how long it is.

10 A$="NOTWITHSTANDING"

20 X=LEN(A$)

30 PRINT X

>RUN

 15

LEN is very useful if you don’t know how long a string is going to be. For example

in this palindrome testing program A$ is copied backwards letter by letter into

B$.

 5 REPEAT

 7 B$=""

10 INPUT "What would you like to reverse? " 'A$

20 FOR T=LEN(A$) TO 1 STEP-1

30 B$=B$ + MID$(A$,T,1)

40 NEXT T

50 PRINT '"If you reverse"' A$'" you get" ' B$

60 UNTIL A$=""

The numeric function INSTR can be used to see if there is a particular letter (or

group of letters) in another string.

10 A$="NOTWITHSTANDING"

20 B$="T"

30 X=INSTR(A$,B$)

50 PRINT X

>RUN

 3

You will notice that it finds that there is a T at position 3 in A$. Sometimes it is

useful to be able to start the search further along the string. To do this you can

add a third parameter which gives that position to start the search.

116

10 A$="NOTWITHSTANDING"

20 B$="T"

30 X=INSTR(A$,B$,4)

50 PRINT X

>RUN

 6

If no match is found then INSTR returns zero.

10 A$="NOTWITHSTANDING"

20 B$="Z"

30 X=INSTR(A$,B4,4)

50 PRINT X

>RUN

 0

This looks like the elements of the game called hangman! But first three more

string related functions. It is possible to make a string containing many copies of

another string by using the string function STRING$. So to make a string

containing 20 copies of ”ABC” we write:

10 A$="ABC"

20 B$=STRING$(20,A$)

30 PRINT B$

>RUN

ABCABCABCABCABCABCABCABCABCABCABCABC

ABCABCABCABCABCABCABCABC

There is also a function STR$ which converts a number into a string.

10 A=45:B=30

20 A$=STR$(A)

30 B$=STR$(B)

40 PRINT A+B

50 PRINT A$+B$

>RUN

 75

4530

>

ie line 40 treats A and B as numbers and line 50 as string characters.

Note that STR$ is affected by the special variable @% if this has been set (see

chapter 10).

The opposite function is VAL. This extracts the number from the start of the

string, which must start with a plus + or minus - sign or a number. If it

117

doesn’t a zero is returned. Numbers which are embedded in other characters are

ignored. So

10 A$="124ABC56"

20 PRINT VAL(A$)

will print 124 .

However, back to the outline of a hangman program.

 10 MODE 7

 20 W=RND(12): REM 12 WORDS TO CHOOSE FROM

 30 FOR X= 1 TO W

 40 READ A$

 50 NEXT X

 60 REM WE HAVE SELECTED A RANDOM WORD

 70 REM NOW GIVE THE USER CHANCES TO

 80 REM GUESS LETTERS IN THE WORD

 90 L=LEN(A$)

100 CORRECT=0

110 TRIES=0

120 PRINT TAB(0,5); "The word has ";L;"letters"

130 PRINT TAB(0,6);"You have ";2*L;"tries"

140 REPEAT

150 PRINT TAB(10,7);"GUESS A LETTER";

160 G$=GET$

170 PRINTTAB(25,7);G$

180 P=0

190 REPEAT

200 P=INSTR(A$,G$,P+1)

210 IF P <>0 THEN PRINT TAB(P+12,15);G$

220 IF P <>0 THEN CORRECT=CORRECT +1

225 IF P=L THEN P=0

230 UNTIL P=0

240 TRIES=TRIES+1

250 PRINT TAB(0,0);"TRIES ";TRIES;

TAB(20,0);"CORRECT ";CORRECT

260 UNTIL (CORRECT=L OR TRIES=2*L)

270 IF CORRECT =L THEN PRINT TAB(10,19);

"Congratulations"

280 IF TRIES=2*L THEN PRINT

TAB(0,16);"The word was ";A$

290 DATA NOTWITHSTANDING

300 DATA INQUISITION

310 DATA MONUMENTAL

320 DATA PRESCRIPTION

118

330 DATA CARNIVOROUS

340 DATA TENTERHOOK

350 DATA DECOMPRESSION

360 DATA FORTHCOMING

370 DATA NEVERTHELESS

380 DATA POLICEWOMAN.

390 DATA SOPHISTICATED

400 DATA GUESSTIMATE

There are a number of improvements to be made to this program. Its screen

layout is poor and also it lets you guess the same letter twice.

It is possible to use some mathematical operators on strings. For example one can

check to see if two strings are ‘equal’ or if one string is ‘greater’ than another.

Obviously the words ‘equal’ and ‘greater’ have slightly different meanings when

applied to strings. A few examples may help to clarify things. As far as the

computer is concerned, ‘XYZ’ is greater than ‘ABC’ because X is further down the

alphabet than A. Similarly, ‘ABC’ is greater than ‘AB’ because ‘ABC’ is a longer

string.

You can use the following comparisons with strings:

= equal to

<> not equal to

< less than

> greater than

<= less than or equal to

>= greater than or equal to

The following are legal statements:

IF A$ = "HELLO" THEN PRINT "HOW ARE YOU"

IF B$ > "FIFTEEN" THEN GOTO 1000

Notice that if B$ contained SIX it would be regarded as ‘greater than’ FIFTEEN

because it starts with an S whereas FIFTEEN starts with an F.

10 B$ = "SIX"

20 IF B$ >"EIGHT" THEN STOP

This program would stop because the word SIX begins with an S which is

regarded as ‘greater than’ the letter E.

Strings are compared character by character using ASCII codes. If two strings

start with an identical sequence of letters, for example PIN and PINT then the

longer string is regarded as the larger one.

119

25 Programming the red user
defined keys

At the top of the keyboard is a group of special red keys which are called user

defined keys. Instead of producing a fixed character the user can ‘define’ these

keys to generate any character or string of characters that is required. For

example, to set up key f1 so that it produces the word PRINT every time it is

pressed you can type

*KEY 1 PRINT RETURN

To set key f2 to produce the word DATA you enter

*KEY 2 DATA RETURN

If you want to enter more than one word into a user defined key then you can

enclose the words in quotes

*KEY 3 "IF X=" RETURN

though quote marks are not necessary.

When you are developing programs it is very useful to have one of the keys set up

to change to MODE 7 and then LIST the program automatically. If you were

typing in the commands MODE 7 and LIST you would normally follow each with

a RETURN, and you have to include something equivalent to pressing the

RETURN key when you set the key up. In fact to set up key f0 you enter this:

*KEY 0 MODE 7 |M LIST |M

The two characters | and M together are understood to mean the same thing as

pressing the RETURN key. In fact the | in front of any letter makes the

computer generate a control character. You may remember that to enter ‘paging

mode’, where the computer stops at the bottom of every page, you can type CTRL

N. That instruction can be added to the key f0 definition as well, if you wish.

*KEY 0 MODE 7 |M |N LIST |M

It is important to remember than any *KEY definition must be the last

statement on a line because once the computer finds a * at the start of a

statement it passes the rest of the line to the Machine Operating System and not

to BASIC. The Machine Operating System does not understand : which BASIC

would understand as a multiple statement separator. The same thing

120

applies to *FX statements – only one is allowed per line.

However, it is acceptable to use colons to separate statements within the key

definition. For example:

*KEY 6 MOVE 0,0 : DRAW X,Y |M

If you want to you can set up the user defined keys in a program in exactly the

same way that they are set up in command mode. Thus

10 *KEY 7 "|B LIST|M |C"

would let key 7 turn the printer on, list the program and then turn the printer

off.

If you wish to include an ASCII code greater than 128 (&80) then you can do this

by using the sequence |! to add 128 to the value produced. For example:

*KEY 8 "|!|V"

would put a single ‘character’ in key 8 and the ASCII value of the character

would be made up from the two parts. The |! is worth 128 and the ASCII value

of CTRL V is 22, giving a total value of 150.

The BREAK key

Pressing the BREAK key causes a ‘soft reset’ which does not reset the clock or

clear the definitions of the user defined keys. However, pressing BREAK while

the CTRL key is pressed will cause a ‘hard reset’ which resets everything.

Pressing SHIFT and BREAK together is used on disc and runs a program

without any further instructions.

As you know, when you press the BREAK key the computer is reset and nothing

can change that. Your program will stop and all variables will be lost; even your

program will appear to be lost. However, there are a number of things that can be

done to alter the course of events.

First, a program can be recovered by typing OLD RETURN and then RUN

RETURN. Alternatively, the BREAK key can be ‘redefined’ by using the

expression

*KEY 10 "OLD |M RUN |M "

which treats the BREAK key as another user definable key.

Other keys

The and COPY keys can also be redefined – they can be

considered to be user defined keys 11 to 15 (see also chapter 43).

121

COPY 11

12

13

14

15

122

26 Operator priority

An operator is something like +, / , <, etc, which affects one or more items – for

example comparing them, or adding them.

Mathematical operators are familiar. Most act on two numbers – for example

3+7 addition

2-5 subtraction

4*6 multiplication

1/9 division

7 DIV 4 integer division

7 MOD 4 integer remainder

3^4 raise to a power

These operators are referred to as binary operators since they require two

operands (ie two things to operate on).

-5

This shows one of the few ‘unary’ operators that we are used to. The - just acts

on the 5 to make it a negative number.

This version of BASIC has a large number of operators and it is very important

that the user is aware of their order of priority. You will remember that in

mathematics multiplication must be completed before addition. The same applies

to other operators – there is a strict hierarchy and you must be aware of it if the

computer is to do what you expect.

The overall order of precedence for operators is as follows.

unary minus

unary plus

NOT

functions

parentheses ()

Group 1

indirection

operators (see

chapter 39)

Group 2 ^ raise to the power

* multiplication

/ division

DIV integer division

Group 3

MOD integer remainder

123

+ additionGroup 4

- subtraction

= equal to

<> not equal to

< less than

> greater than

<= less than or equal to

Group 5

>= greater than or equal to

Group 6 AND logical and bitwise AND

OR logical and bitwise ORGroup 7

EOR logical and bitwise EOR

All operators in each group have equal priority and will be dealt with on a left to

right basis – in other words in order in each line.

Some of the operators should be familiar by now, others may need explanation.

Group 1

NOT is most often used to reverse the result of a test, eg

IF NOT (X=5) THEN....

Clearly this example could be written

IF X<>5 THEN

but the operator NOT is often needed when using functions, eg

IF NOT FNVALID THEN...

Functions include all the predefined functions such as SQR,SIN ,ASC etc and user

defined functions like FNVALID.

Parentheses can be used to ensure that everything within the parentheses is

evaluated before any other calculations take place. Indirection operators are

described in chapter 39.

Group 2

Raise to the power, eg

3^2=9

3^3=27

Group 3 and Group 4

These contain all the usual arithmetic operators. Nothing unexpected here.

124

Group 5

This contains the relational operators which mean ‘greater than’, ‘less than’, etc.

They are used in expressions such as

IF X>10 THEN...

Group 6

Logical AND is used to ensure that two or more conditions hold true before some

action is taken, eg

IF X>10 AND Y=6 THEN...

For further details see under AND in the chapter on BASIC keywords.

Group 7

Logical OR is also used with multiple conditions, eg

IF X>10 OR Y=6 THEN

The action is taken if one or more of the conditions is true. EOR is normally only

used as a bitwise operator and the user is referred to the BASIC keywords

chapter for details.

125

27 Error handling

If the computer is unable to deal with a situation such as this:

PRINT 3/0

then it will report the fact to you with an ‘error message’ and then stop, waiting

for your next command

>PRINT 3/0

Division by zero

If you are just playing at the keyboard this entry is not a problem – in fact one of

the main virtues of BASIC is that it does try to give you an indication of why it is

unable to proceed. However if you are writing a program for someone else to use,

and you do not want them to be bothered with error messages then you must

take the precautions to deal with every possible error that might arise.

The major tool in error handling is the statement

ON ERROR GOTO 5000

(The 5000 is an example – it could GOTO any line number you like.)

Once the computer has encountered an ON ERROR GOTO statement it will no

longer report errors and stop – instead it will go to line 5000 (or wherever you

have told it to go to). The statement ON ERROR OFF makes the computer handle

errors normally again. The computer has an error number for every error it may

encounter and you can use the error number to enable you to know what has

gone wrong. The error number is stored in the variable ERR. The error number

for an attempt to divide by zero is 18 for example.

 10 ON ERROR GOTO 2000

 20 PRINT "HELLO"

 30 PRINT 3/0

 40 PRINT "BYE"

 50 END

2000 PRINT ERR

>RUN

HELLO

 18

The computer also remembers the line at which it detected the error and this

number is stored in the variable ERL.

126

10 ON ERROR GOTO 2000

20 PRINT "HELLO"

30 PRINT 3/0

40 PRINT "BYE"

50 END

2000 PRINT ERR

2010 PRINT ERL

>RUN

HELLO

 18

 30

As you will see from the above the computer detected error number 18 in line

number 30. Instead of just printing an error number the computer can be made

to deal with the problem. Look at the next program which will generate an error

when X gets to zero.

100 X=-5

110 PRINT X, 3/X

120 X=X+1

130 IF X<5 THEN GOTO 110

140 END

>RUN

 -5 -0.6

 -4 0.75

 -3 -1

 -2 -1.5

 -1 -3

 0

Division by zero at line 110

If we put in error handling routine we can let the computer deal with the problem

itself.

10 ON ERROR GOTO 1000

100 X=-5

110 PRINT X, 3/X

120 X=X+1

130 IF X<5 THEN GOTO 110

140 END

1000 IF ERR=18 THEN PRINT: GOTO 120

1010 REPORT

>RUN

 -5 -0.6

 -4 -0.75

 -3 -1

127

 -2 -1.5

 -1 -3

 0

 1 3

 2 1.5

 3 1

 4 0.75

In the example program above error 18 was dealt with successfully but line 1010

causes it to REPORT other errors in the normal way without trying to deal with

them.

It is usually easy, but tedious, to anticipate all the likely errors but careful

planning is needed if all the error handling is to be effective. In particular you

should be aware that when an error occurs you cannot return into a FOR...NEXT

or REPEAT...UNTIL loop or into a procedure or function or subroutine. So long

as you are aware of these limitations you can program around them.

128

28 Teletext control codes and
MODE 7

MODE 7 is a Teletext compatible display mode which is very economical in its use

of memory. It can provide a full colour text display with limited, but full colour,

graphics. This mode is strongly recommended for applications which do not

require very fine graphic detail.

MODE 7 uses the standard Teletext control codes to change colours rather than

the BBC BASIC COLOUR and DRAW statements. It cannot be overemphasied that

MODE 7 requires different codes and statements from those available in MODES

0 to 6. The MODE 7 display consists of 20 lines of 40 characters. Each line will

normally consist of white letters and numbers (text) on a black background. If the

user wishes to change the colour of the text or the background then a control code

must be sent to the screen with a PRINT or VDU statement. By way of

explanation let’s examine one typical line of characters on a MODE 7 screen.

The screen display consists of 25 lines (numbered 0 to 24) each containing up to

40 characters (0 to 39).

Let’s examine a typical line and see what is displayed on the screen.

129

To get this on the screen you will need to type

>MODE 7

>PRINT

"ABC";CHR$(129);"DEF";CHR$(130);"GHI";CHR$(132);"JKL"

You will see that there is a space on the screen between the letters ABC and the

letters DEF. That space is in fact occupied by an invisible ‘control code’. The

control code ‘appears’ on the screen as a spce but it affects everything to its right.

The control code at position 3 is code number 129 and that has the effect of

turning all letters and numbers that follow into red. The code at position 7 is

number 130 which produces green alphanumerics (letters and numbers).

Here is a list of a few more control codes

129 Alphanumeric red

130 Alphanumeric green

131 Alphanumeric yellow

132 Alphanumeric blue

133 Alphanumeric magenta

134 Alphanumeric cyan

135 Alphanumeric white

To change the colour of the text

To get these codes on the screen you have to type PRINT CHR$(X) just before

the text you want to alter, where X stands for the code you want. Often you will

wish to put the codes in between two words and you do that by placing both the

words and the CHR$(X) in one long PRINT statement as shown below

10 MODE 7

20 PRINT "WHITE";CHR$(131);"YELLOW";CHR$(135);"AND

BACK TO WHITE"

To make characters flash

Another code, 136 , makes everything that follows on that line flash. Try

10 MODE 7

20 PRINT "HELLO";CHR$(136);"FLASHER!"

It must be emphasised that every line starts off in white, non-flashing, normal

height, black background and so on. If you want to print a whole page in red

letters then every line must start with control code 129 .

You should by now understand how to put the control codes into a PRINT

statement and now we can see what other effects are available.

130

To change the background colour requires three control codes. Suppose that you

want blue letters on a yellow background then you must use the following

sequence of control codes

131 Yellow alphanumeric

157 New background

132 Blue alphanumeric

10 MODE 7

20 PRINT CHR$(131);CHR$(157);CHR$(132);"BLUE

LETTERS ON YELLOW"

As you will gather to change the background colour you must first select letters of

the desired colour, then declare a new background and then reselect the colour of

the letter. Note that you cannot have a flashing background, so the following

sequence

136 Flash

131 Yellow alphanumeric

157 New background

132 Blue alphanumeric

will produce flashing blue letters on a steady yellow background.

10 MODE 7

20 PRINT

CHR$(136);CHR$(131);CHR$(157);CHR$(132);"BLUE

LETTERS ON YELLOW"

Flash is turned off with control code 137 .

To produce double height characters

It is possible to write characters with double their normal height using control

code 141 . Obviously this takes up two of the normal display lines. What is not so

obvious is that you must therefore print exactly the same text on two successive

lines. Try the following:

10 MODE 7

20 PRINT CHR$(141);"THIS IS DOUBLE HEIGHT"

As you will see it only produces the top half of the letters. Add line 30 and it

works properly.

10 MODE 7

20 PRINT CHR$(141);"THIS IS DOUBLE HEIGHT"

30 PRINT CHR$(141);"THIS IS DOUBLE HEIGHT"

131

Of course you can have (for example) double height, flashing red letters on a

white background

141 Double height

157 New background

129 Red alphanumeric

136 Flashing

10 MODE 7

20 PRINT CHR$(141);CHR$(157);CHR$(129);CHR$(136);

"THE LOT"

30 PRINT CHR$(141);CHR$(157);CHR$(129);CHR$(136);

"THE LOT"

Double height is turned off with control code 140 .

As you can see, it can be very tedious typing in CHR$(129) every time you want

a Teletext control code. To make things easier it is possible to use the red user

defined function keys in combination with the SHIFT key to generate these

special codes. While pressing SHIFT the function keys normally produce the

codes shown in the following table.

f0 128 No effect

f1 129 Alphanumeric red

f2 130 Alphanumeric green

f3 131 Alphanumeric yellow

f4 132 Alphanumeric blue

f5 133 Alphanumeric magenta

f6 134 Alphanumeric cyan

f7 135 Alphanumeric white

f8 136 Alphanumeric flash on

f9 137 Alphanumeric flash off

As you will see f0 is set to produce code 128 and the other keys produce higher

numbers. 128 is said to be the ‘base address’ for the keys. The base address can

be altered with *FX 226 if you wish. See chapter 43 for more details.

Once you have a Teletext control code on the screen you can use the editing keys

(eg COPY) to copy it into another string. This can be very useful.

132

Graphics

In addition to displaying coloured letters it is possible in MODE 7 to do a certain

amount of work with graphics. The graphics available in Teletext mode are more

complicated to use than in other modes but with a little patience very good effects

can be achieved. An additional set of control codes are used to change lower case

letters into small graphic shapes. The shapes are all based on a two by three grid,

the same total size as a large letter.

If you want to use those graphic shapes instead of lower case letters then they

must be preceded with one of the following control codes:

145 Red graphics

146 Green graphics

147 Yellow graphics

148 Blue graphics

149 Magenta graphics

150 Cyan graphics

151 White graphics

Note that upper case letters will still show as letters in the same colour that you

have selected for the graphics. Thus

10 PRINT CHR$(145);"ABCdefGHIjkl"

will show the following on the screen in red.

(The full list of graphics shapes is given in Appendix B.)

133

Graphics codes

It is possible to calculate the code for any particular graphics shape in the

following way. Each of the six cells is represented by a specific code number:

1 2

4 8

16 64

In addition you should add in 32 + 128 (ie 160). For example the ASCII code for

is 2 + 8 + 16 + 32 + 128 = 186.

Making a large shape

In the next chapter you can see how to use user defined characters to draw a

space ship. By way of comparison, a similar but cruder space ship can be made in

Teletext mode. Here is the design and the code number for each graphic

character:

134

To make these display as graphics characters each line must be preceded by (for

example) code 146 (green graphics). So the following codes must be printed on

the screen:

146, 250, 245

146, 255, 255

146, 191, 239

These codes can be sent using PRINT CHR$() as long as you are careful to get

each code in the correct place, eg

10 MODE 7

20 X=20

30 Y=10

40 PRINT

TAB(X,Y);CHR$(146);CHR$(154);CHR$(250);CHR$(245)

50 PRINT

TAB(X,Y+1);CHR$(146);CHR$(154);CHR$(255);CHR$(255)

60 PRINT

TAB(X,Y+2);CHR$(146);CHR$(154);CHR$(191);CHR$(239)

Instead of using PRINT TAB (X,Y) it is probably easier in this case to use

ASCII codes to move the cursor-down one line (code 10) and back four spaces

(code 8 four times). It is probably also easier to use the VDU statement rather

than PRINT CHR$ () . If these two things are done then the program becomes

 5 MODE 7

 6 PRINT TAB(20,10);

10 VDU 146,154,250,245

20 VDU 10,8,8,8,8

30 VDU 146,154,255,255

40 VDU 10,8,8,8,8

50 VDU 146,154,191,239

100 PRINT

A complete list of the Teletext codes is given in Appemdix A and Appendix B.

Teletext graphics codes for the more adventurous

As you will have realised, the statements MOVE and DRAW are not available in

the Teletext mode(MODE 7). If you wish to draw lines in this mode you will need

to use a suitable procedure – so here is one. It uses a look-up table, called S%, to

remember the numbers corresponding to each of the six pixels (picture elements)

in a Teletext graphics character. The look-up table must be set up at the

beginning of the program:

135

10 DIM S% 7

20 !S%=&08040201

30 S%!4=&4010

(Refer to chapter 39 for an explanation of the above techniques).

Next a row of Teletext control codes must be written down the left hand side of

the screen to convert every line into a graphics display:

40 PROCGR

and the associated procedure is:

200 DEF PROCGR

210 LOCAL Y%

220 VDU 12

230 FOR Y%=0 TO 18

240 VDU 10,13,&97

250 NEXT

260 ENDPROC

The main program – in this case to plot a ‘sine curve’ – follows:

50 FOR X=0 TO 75 STEP 0.25

60 PROCPLOT (X,28+28*SIN(X/10))

70 NEXT

80 END

and lastly here is the procedure to plot the point:

300 DEF PROCPLOT(X%,Y%)

310 LOCAL C%,A%

330 VDU 31,X% DIV2+1, 19-Y% DIV3

340 C%=S%?((X% AND 1)+(2-Y%MOD3)*2)

350 A%=135

360 VDU (USR &FFF4 AND &FF00) DIV256 OR C% OR 128

370 ENDPROC

There is no need to know how it works but here is an explanation in case you are

interested.

The X and Y coordinates are put into X% and Y% and then line 330 moves the

text cursor to the position X%, Y%.

Line 340 uses the look-up table (S%) to calculate the ‘value’ (in terms of ASCII

code) of the selected pixel at X%, Y%.

Setting A%=135 and jumping to the subroutine at &FFF4 returns the ASCII code

of the character which includes the spot X%, Y%. See chapter 43, which explains

this OSBYTE call for a similar example. The character read from the screen is

then ORed with the new pixel (C%) and written with the VDU statement.

136

The &97 in line 240 produces white graphic dots. Other values will give other

colours. For example &91 would draw a red graph.

Two improvements could be made; first we could test for illegal values of X% and

Y% with

320 IF X%<0 OR X%>75 OR Y%<0 OR Y%>56 THEN ENDPROC

and secondly remember the position of the cursor before we entered the

procedure and restore the cursor to that position at the end of the procedure.

Notice that you do not need to reference actual memory coordinates and this is

vital if your programs are to work via the Tube. You may not think it is

important now but you will find that it is advisable to write programs using the

machine code calls provided and not to get into the habit of addressing the

memory directly.

137

29 Advanced graphics

As we saw earlier, the following keywords can be used in a variety of statements

which produce high resolution graphics effects on the screen:

MODE Selects a particular graphics MODE

GCOL Selects the colour and drawing ‘style’ of any graphics (except

in MODES 3, 6, or 7)

DRAW Draws lines (except in MODES 3, 6, or 7)

MOVE Moves the graphics cursor (except in MODES 3, 6, or 7)

PLOT Draws lines, dotted lines, points and colours in triangles

(except in MODES 3, 6, or 7)

These will only become familiar with use. What follows is a description of how to

use some of the keywords to produce a selection of results on the screen.

How to change the screen display modes

The screen mode can be changed at any time by typing MODE X, where X is the

value 0 to 7 from the following list:

MODE 0 Uses two colours with very high resolution and requires 16K of

memory to ‘map’ the screen

MODE 1 Uses four colours with high resolution and requires 16K of

memory

MODE 2 Uses four colours with medium resolution graphics – 16K

MODE 3 Text only – 16K

MODE 4 Two colours and high resolution graphics – 8K

MODE 5 Four colours and medium resolution graphics – 8K

MODE 6 Text only – 8K

MODE 7 Teletext (which is the subject of a separate chapter of this

book)– 8K

In MODES 0, 1, 2, 4 and 5 the screen is divided up into imaginary rectangles, like

a piece of graph paper. In MODE 0 there are 640x256 squares; in MODEs 1 and 4

there are 320x256 and in MODEs 2 and 5 there are 160x256 (in other words, the

higher the resolution of the graphics, the smaller the rectangle). The higher the

resolution , the more memory is used up in the process of ‘mapping’ the screen.

138

MODES 128-135 do not use any of main memory, and are the ‘shadow screen’

equivalents of MODES 0-7 . See chapter 42 for more details.

How to draw lines

In Appendix E you will find a graphics planning sheet which shows the way the

screen can be thought of as a piece of graph paper, with each point having a

horizontal (X) and a vertical (Y) value. The ‘origin’ is point 0,0 and is at the

bottom left of the screen. Top right is 1279,1023.

How to draw a square in the centre of the screen

1. First set up a screen mode which can support graphics. Use the MOVE

statement to move the graphics ‘cursor’ from its home position (0,0) to a point

where we can start drawing (say 400 units along and 400 units up).

100 MODE 5

110 MOVE 400,400

2. Draw a line horizontally to point 800,400. The DRAW command draws a line

from the last point ‘plotted’ to a point defined in the DRAW statement.

120 DRAW 800,400

3. Finish the box with three more DRAW statements

130 DRAW 800,800

140 DRAW 400,800

150 DRAW 400,400

 Run the program.

Changing the colour of the square

The normal colour in MODE 5 is white. Add the following line:

105 GCOL 0,1

This changes the lines to ‘logical’ colour 1, which in MODE 5 is red. MODE 5 only

has four colours. When the machine is switched on they are black, red, yellow

and white. However, logical colours can be changed by using one of the VDU

commands (see later). So, if you know what you are doing, you can select any four

colours in MODE5.

How to fill in with colour

PLOT 85,X,Y (see the BASIC keywords chapter) draws and then fills in a

triangle drawn from the last two plotted points to the point defined by X and Y.

The colour is the current graphics foreground colour. Add the following line:

160 PLOT 85,800,800

139

Run the program.

This will fill in one half of the square.

Now add:

170 PLOT 85,800,400

Run the program and the whole square should become red.

How to change colours

At any particular moment the computer can print and draw on the screen using

four colours. This page uses two ‘colours’: a white background colour and a black

foreground colour – that is, black writing on a white background. Similarly, the

computer has a text background colour and a text foreground colour but, in

addition, it is aware of a graphics foreground colour (used to draw lines), and a

graphics background colour. When you change MODE the computer resets all these

colours as follows:

– Text foreground colour: white

– Text background colour: black

– Graphics foreground colour: white

– Graphics background colour: black

The number of colours that can appear on the screen at one time depends on the

MODE selected. In MODES 0, 3, 4 and 6 you can only have two colours at any

time and they are normally black and white. In MODEs 1 and 5 you can have up

to four colours at any time and they are normally black, red, yellow and white. In

MODE 2 you can have up to 16 different coloured effects.

Let us consider MODE 5 for a moment and explore the effects that are available.

MODE 5 is a four colour mode and the default colours are black, red, yellow and

white. As you may have gathered, text and graphics are dealt with separately so

to change the colour that will be used for text output type

COLOUR 0 To give black text

COLOUR 1 To give red text

COLOUR 2 To give yellow text

COLOUR 3 To give white text

However, to change the colour used for graphics, for example to produce lines

with the DRAW statement, you use these statements

GCOL 0,0 Black graphics

GCOL 0,1 Red graphics

GCOL 0,2 Yellow graphics

140

GCOL 0,3 White graphics

The two groups of statements above change the ‘text foreground’ and ‘graphics

foreground’ colours.

You will have noticed that, so far, 1 represents red, 2 is yellow and so on. To

change the background colours we add 128 to these numbers. Thus COLOUR 129

will give a red text background, and GCOL 0,129 would set the graphics

background colour to red.

For text, for example, to change from white lettering on black, to black lettering

on red in MODE 5, type

MODE 5

COLOUR 129

COLOUR 0

CLS

All text will now be in black and red. Graphics will still appear in white.

To change text colours in the middle of a program simply insert the appropriate

colour statements before the print statements to which they refer.

For graphics use the GCOL statement which stands for ‘Graphics COLours’. GCOL

has two numbers after it (see the BASIC keywords chapter). The second number

refers to the logical colour which is to be used for graphics in the future. The first

number is usually set at 0.

So for example, to get red graphics lines on a yellow background, type

COLOUR 131

GCOL 0,1

CLS

But suppose that you wanted a blue background in MODE 5. So far the only

available colours have been black, red, yellow and white and there is a limit of

four colours in MODE 5. You can make one of four colours blue if you want to. You

do this with the statement

VDU 19,0,4,0,0,0

and then the four available colours would be blue, red, yellow and white.

In MODE 5, only four colours are available at a time and they are referred to as

‘logical’ colours 0 to 3. In MODE 5 ‘logical’ colour 0 is normally black, ‘logical’

colour 1 is normally red and so on but you can change the ‘actual colour’ of the

‘logical colours’ easily by using the VDU 19 statement followed by five numbers,

separated by commas.

In a two colour mode such as MODE 4 we can do similar things eg

MODE 4

141

VDU 19,1,2,0,0,0

changes logical foreground colour 1 (which is initially white) to actual colour 2

which is green, and

VDU19,0,5,0,0,0

changes logical background colour 0 to actual colour 5, which is magenta. (Note:

The zero at the end are for future expansion of the system.) The computer will

now produce these colours until either it is switched off, the BREAK button is

pressed, or the MODE is changed. These instructions to change the colours can be

embedded in a program thus making it possible to alter the colours while a

program is running.

Here is a list of the numbers for each ‘actual colour’ that the computer can

produce.

Actual colour number Displayed colour

0 Black

1 Red

2 Green

3 Yellow

4 Blue

5 Magenta

6 Cyan

7 White

8 Flashing black/white

9 Flashing red/cyan

10 Flashing green/magenta

11 Flashing yellow/blue

12 Flashing blue/yellow

13 Flashing magenta/green

14 Flashing cyan/red

15 Flashing white/black

So ‘actual colour’ numbers are any numbers between 0 and 15. To make logical 3

a flashing red/cyan effect you write

VDU 19,3,9,0,0,0

and here are some other examples

VDU 19,1,2,0,0,0 Logical colour is green

VDU 19,3,5,0,0,0 Logical colour 3 is magenta

VDU 19,0,12,0,0,0 Logical colour 0 is flashing blue/yellow

142

Having set the logical colours up in this way you could then select logical colour 0

(flashing blue/yellow) as the text foreground colour whith COLOUR 0, or as the

graphics foreground colour with GCOL 0,0 . The table shows the set up for each

time you change MODE.

Foreground colour Background colour

Logical

number

Actual colour Logical

number

Actual colour

Modes 0,3,4,6

0 Black (0) 128 Black (0)

1 White (7) 129 White (7)

Modes 1,5

0 Black (0) 128 Black (0)

1 Red (1) 129 Red (1)

2 Yellow (3) 130 Yellow (3)

3 White (7) 131 White (7)

Mode 2

0 Black (0) 128 Black (0)

1 Red (1) 129 Red (1)

2 Green (2) 130 Green (2)

3 Yellow (3) 131 Yellow (3)

4 Blue (4) 132 Blue (4)

5 Magenta (5) 133 Magenta (5)

6 Cyan (6) 134 Cyan (6)

7 White (7) 135 White (7)

8 Flashing black/white (8) 136 Flashing black/white (8)

9 Flashing red/cyan (9) 137 Flashing red/cyan (9)

10 Flashing green/magenta (10) 138 Flashing green/magenta (10)

11 Flashing yellow/blue (11) 139 Flashing yellow/blue (11)

12 Flashing blue/yellow (12) 140 Flashing blue/yellow (12)

13 Flashing magenta/green (13) 141 Flashing magenta/green (13)

14 Flashing cyan/red (14) 142 Flashing cyan/red (14)

15 Flashing white/black (15) 143 Flashing white/black (15)

You should note that the GCOL statement is followed by two numbers.

The first number can be used to control the way that the colour (which is selected

by the second number) is affected by what is already on the screen. The

statement

GCOL 0,3

143

tells the computer that the graphics colour to be used is to be logical colour 3 and

that this is to appear no matter what was on the screen under the new line or

triangle. Values other than 0, for the first number, have other effects. For

example, a value of 4, as in GCOL 4,0 has the effect of drawing a line which is

the ‘inverse’ logical colour to the colour that it is currently crossing over.

In two colour MODEs the inverse of logical colour 0 is logical colour 1. In four

colour modes the following applies.

Logical colour Inverse

0 3

1 2

2 1

3 0

With ‘default’ actual colour of black, red, yellow and white the inverse colours

would be white, yellow, red and black.

In MODE 2, the 16 colour MODE, all steady colours translate to flashing colours

and vice versa as the next table shows for the default colours.

Logical colour Default displayed colour Inverse

0 Black Flashing white/black

1 Red Flashing cyan/red

2 Green Flashing magenta/green

3 Yellow Flashing blue/yellow

4 Blue Flashing yellow/blue

5 Magenta Flashing green/magenta

6 Cyan Flashing red/cyan

7 White Flashing black/white

8 Flashing black/white White

9 Flashing red/cyan Cyan

10 Flashing green/magenta Magenta

11 Flashing yellow/blue Blue

12 Flashing blue/yellow Yellow

13 Flashing magenta/green Green

14 Flashing cyan/red Red

15 Flashing white/black Black

144

Other values of the first number following GCOL enable the logical colour to be

plotted to be ANDed, ORed or Exclusive-ORed with the logical colour presently

on the screen. The user is referred to the BASIC keywords chapter for a

description of AND, OR and EOR but the following examples may help.

In MODE 5 with the background set to red by the following statements

MODE 5

GCOL 0,129

CLG

an attempt to draw a yellow line ORed with the background colour by using the

statement

GCOL 1,2

would in fact produce a white line since the background logical colour is 1 and the

new line is to be drawn in logical colour (1 OR 2) ie logical colour 3. The same

principles apply to GCOL 2, which ANDs the new colour with the previously

displayed logical colour and to GCOL 3, which Exclusive-ORs the colours

together.

Obviously, an understanding of AND, OR and EOR is required before all the

GCOL statements can be used. The effects which can be produced are very useful

when it comes to producing sophisticated animations.

How to plot a point on the screen

The PLOT command can also be used to plot points.

Type MODE 4 (which is a two colour MODE) and type

PLOT 69,500,500

This will plot a point in white at coordinates X=500, Y=500. Type

PLOT 69,600,500

and another point will appear at X=600, Y=500.

How to remove a point selectively

Typing CLG would clear the whole graphics area. However, instead of CLG , type

PLOT 70,500,500

and you will see that one of the points has gone. This is because PLOT 70 prints

the ‘inverse’ colour at the given point. This is particularly useful when

‘animating’, for example, a point (see below). In MODE 4 the ‘inverse’ of logical

colour 1 is logical colour 0.

145

Suppose we want, for example, a yellow dot on a blue background. We need to

change the foreground colour from white to yellow and the background colour

from black to blue. To do this, use the VDU 19 command as described earlier:

VDU 19,1,3,0,0,0

This alters logical colour 1 (this means the normal foreground colour) to actual

colour 3 (ie yellow). Now type

VDU 19,0,4,0,0,0

This alters logical colour 0 (which is the normal background colour) to actual

colour 4 (ie blue).

PLOT 69, 500, 500

will now produce the desired effect.

Animation

How to make a ball and move it on the screen

This time we’ll write a program in steps to make a yellow ‘ball’ consisting of four

dots which move on the screen on a red background.

1. Setting up MODE and colours

10 MODE 4

20 VDU 19,1,3,0,0,0

30 VDU 19,0,1,0,0,0

2. Next a ‘procedure’ for creating a ball. This procedure will be ‘called up’

whenever we want to create a ball on the screen at a point (X,Y). It is good

practice to put a procedure like this at the end of a program, so we’ll give it a

high line number. X and Y are the parameters for this procedure.

1000 DEF PROCBALL (X,Y)

1010 PLOT 70,X,Y

1020 PLOT 70,X,Y+4

1030 PLOT 70,X+4,Y

1040 PLOT 70,X+4,Y+4

1050 ENDPROC

We use PLOT 70 rather than PLOT 69 to help the animation which follows.

3. Making the ball travel horizontally at height Y = 500.

40 REM HORIZONTAL MOVEMENT

50 FOR N = 1 TO 1000

60 PROCBALL (N,500)

70 PROCBALL (N,500)

146

80 NEXT N

90 END

You will see that this prints the ball at the point (N,500) and then ‘unprints’ it

only to print it again one step further on, and so on.

To speed the ball up, alter line 50:

50 FOR N = 1 TO 1000 STEP 10

How to create your own ‘graphics’ characters

Each character which you type in at the keyboard has an associated ASCII code.

When the computer is told to print this character it looks up the code and prints

the appropriate character as an eight by eight matrix of dots. The letter ‘A’, for

example, has the code value 65 and ‘a’ has the value 97. (See Appendix A for the

other codes.) However, certain code values have been left to be defined by the

user. They include values 224 to 255. (See chapter 34 for more details.) They can

be defined by use of the VDU 23 command.

How to make a character (eg a man)

Create the character by planning it on an eight by eight square grid.

Note the numbers along the top of the grid which start at the right and double at

each column to the left.

To store the character shown above as code number 240, type in

VDU 23,240,28,28,8,127,8,20,34,65

The numbers which follow VDU 23,240 tell the computer the pattern of dots in

each horizontal row. These values are the ‘byte’ patterns corresponding to the

eight cells of each row. They can be calculated in a number of ways and entered

as a decimal or hexadecimal number. The simplest way for the novice is to add up

the values shown in the diagram above. Thus row a consists of 16+8+4=28, row b

is also 28, the third row is 8, the fourth row is 64+32+16+8+4+2+1=127, and so

on. So to create the little man, type the following program:

 5 MODE 5

147

10 VDU 23,240,28,28,8,127,8,20,34,65

20 PRINT CHR$(240);

30 GOTO 20

Note the last two lines, which print him over and over again.

How to make him move

We have created a character which can be reproduced in any MODE (except MODE

7). By printing him and then erasing him at successive positions he can be made

to move across the screen in a similar way to the ball. However, since he exists as

a character he is treated as text, not graphics. This means that he is made to

appear by using PRINT – as above – and the position can be defined by using the

TAB statement.

Try this:

5 MODE 4

10 VDU 23,240,28,28,8,127,8,20,34,65

20 PRINT TAB(20,10); CHR$(240)

The character appears at text position 20,10. This is a 40 character wide MODE so

20,10 is roughly in the middle of the screen.

Now try this:

20 FOR X = 1 TO 19

30 PRINT TAB(X,10); CHR$(240)

40 NEXT X

This will print the man 19 times across the screen. Now type these additional

lines:

40 FOR T = 1 TO 100: NEXT T

50 PRINT TAB(X,10) ; ""

60 NEXT X

and he appears to run across the screen.

By alternating lines 30 and 50 so that the value in parentheses is (X,X) he can be

made to move diagonally across the screen.

Note that line 40 acts as a time delay.

148

How to make a larger character

This time, a space ship.

Plan this by using several grids.

So we have

 5 MODE 4

10 VDU 23,240,8,8,28,28,62,62,62,62

20 VDU 23,241,62,62,62,62,62,62,62,62

30 VDU 23,242,62,62,62,127,127,127,93,93

40 X = 20: Y = 10

50 PRINT TAB(X,Y);CHR$240;

60 PRINT TAB(X,Y+1);CHR$241;

70 PRINT TAB(X,Y+2);CHR$242;

This produces the space ship in the middle of the screen. To make it take off,

change the program by adding these lines:

 7 VDU23,1,0;0;0;0;

35 X=20

40 FOR Y = 24 TO 0 STEP -1

80 FOR T = 1 TO 100: NEXT T

90 PRINT TAB(X,Y); " ";

100 PRINT TAB(X,Y+1); " ";

110 PRINT TAB(X,Y+2); " ";

120 NEXT Y

Now add an extra character to produce flames at the bottom of the space ship for

the initial take-off.

149

 32 VDU 23,243,28,60,30,60,126,108,162,162

 75 IF Y>12 THEN PRINT TAB(X,Y+3);CHR$243;

115 PRINT TAB(X,Y+3); " ";

How to make the movement smoother

The rocket does not appear to move up the screen smoothly but in a series of

jumps. This is because when you use TAB(X,Y) there are only 32 possible lines

you can print on.

The VDU5 statement (see also chapter 10, where it is used for positioning

accents, etc) causes text to be written at the graphics cursor. This means that you

can move to any point on the screen on the normal 1280×1024 graphics ‘grid’ and

print text or user defined characters. To do this MOVE X,Y is used.

VDU 4 undoes the effect of the VDU 5 statement. It causes text to be written

where the text cursor is.

Then the first character can be printed using PRINT CHR$(240); or VDU 240 .

These two alternatives are equivalent but VDU 240 means less typing! We now

need to backspace one character to our original position and move down one

character cell so we can print the next character. We can’t use TAB(X,Y)

because it won’t work after a VDU 5 statement, so we use two of the four ‘cursor

movement commands’ (see chapter 10).

VDU 8 Backspace cursor one character

VDU 9 Forwardspace cursor one character

VDU 10 Move cursor down one line

VDU 11 Move cursor up one line

Later on we’ll also use VDU 127 which has exactly the same effect as pressing

the DELETE key. All the VDU commands are listed at the back of the book –

there’s no need to remember them all.

We need to use VDU 8 and then VDU 10 , or the other way around. You can

string VDU commands together, so we can use

VDU 240,8,10

which will print the first character and then move the cursor into position to

print the next one. To print the whole rocket and flames this is repeated three

times: here it is done in PROCROCKET.

 5 MODE 4

 7 VDU 23,1,0;0;0;0;:REM turn off cursor

10 VDU 23,240,8,8,28,28,62,62,62,62

20 VDU 23,241,62,62,62,62,62,62,62,62

30 VDU 23,242,62,62,62,127,127,127,93,93

150

 32 VDU 23,243,28,60,30,60,126,108,162,162

 35 X%=600

 37 VDU 5

 38 GCOL 4,1

 40 FOR Y%=120 TO 1023 STEP 10

 50 PROCROCKET: REM draw the rocket

 90 PROCROCKET: REM now delete it

 120 NEXT Y%

 130 END

1010 DEF PROCROCKET

1020 MOVE X%,Y%

1025 VDU 240

1030 VDU 10,8,241

1040 VDU 10,8,242

1050 IF Y%<500 THEN VDU 10,8,243

1060 ENDPROC

Notice that ‘integer’ variables (followed by a % sign) are used: these make the

program run considerably faster than ‘real’ variables.

The rocket is printed at line 50 by PROCROCKET. Line 90 prints the rocket again

in its inverse colour (as specified in line 38 GCOL 4,1), and so deletes it.

As an alternative to this, the rocket could be deleted by replacing line 90 with

PROCdelete , deleting line 38, and adding the new procedure

2000 DEF PROCdelete

2010 MOVE X%,Y%

2020 VDU 9,127

2030 VDU 10,9,127

2040 VDU 10,9,127

2050 VDU 10,9,127

2060 ENDPROC

This just deletes the rocket with VDU 127 .

We can get smoother movement if we just delete the bottom character every time.

This removes most of the flicker and what remains becomes a good effect. The

price is that the detail at the bottom of the rocket is lost, so this method only

works if your character gets wider at the bottom!

Delete line 90, and type this new procedure:

 38 GCOL,1

 40 FOR Y%=120 TO 1023 STEP 4

1010 DEF PROCROCKET

1020 MOVE X%,Y%

1025 VDU 240,10,8

1030 VDU 241,10,8

151

1040 VDU 242

1050 VDU 10,8,243

1055 VDU 127

1060 ENDPROC

If you change one line

1050 IF Y%<500 THEN VDU 10,8,243 ELSE VDU 10

the flames will cut out after take-off again.

Making a complete lunar landing game

Using the procedures we have developed for creating and moving the rocket on

the screen, we can incorporate these into a complete game which can test your

skill at landing a space ship on the moon. This complete program uses a range of

techniques described elsewhere in the book and was written by Jim Murray.

Included are a few notes to explain what is going on.

 5 ON ERROR REPORT:GOTO 245

 10 MODE5

 20 VDU 23,240,8,8,28,28,62,62,62,62

 30 VDU 23,241,62,62,62,62,62,62,62,62,

 40 VDU 23,242,62,62,62,127,127,127,93,93

 50 VDU 23,243,28,60,30,60,126,108,162,162

 60 VDU 23,1,0;0;0;0;

 70 VDU 19,2,2,0,0,0

 80 VDU 28,0,20,14,0

 90 @%=&906

110 *FX 11,1

Notes:

Line 70 enables us to use green.

Line 80 sets up a text window.

Line 90 sets @% – so numbers are printed as we want them.

Line 110 sets the auto-repeat delay period to its minimum value.

Line 5 disables the effect of line 110 if you press ESCAPE, otherwise it’s difficult

to type anything again!

120 PROClabels

130 PROCmoon

140 PROCinitialise

150 VDU 5

160 X%=960

165 GCOL 0,3

170 REPEAT

180 burn$=INKEY$(0)

185 *FX 15,1

152

190 IF burn$=""THEN burnrate%=0 ELSE

burnrate%=VAL(burn$)*30

200 PROCcalculate

210 PROCdashboard

220 IF Y%>oldY%+4 OR Y%<oldY%-4 THEN PROCrocket

225 PROCburn

230 UNTIL height=0

240 IF speed>0.004 THEN PROCcrash ELSE PROCfanfare

245 *FX 12,0

247 *FX 15,1

250 END

Notes: Although line 250 says END this is not the end of the program. What

follows are the various procedures which have been called by the program as it

exists so far.

Before we give the procedures, some notes on the earlier lines.

Line 120 PROClabels – sets up the titles

Line 130 PROCmoon – draws moon’s surface.

Line 140 PROCinitialise – sets all the variables to initial values.

Lines 170 to 230 are the main part of the program – a REPEAT...UNTIL loop.

Line 180 – checks to see if any key has been pressed.

Line 185 – clears the key buffer, otherwise the burn continues for a long time

after the key is released.

Line 190 – we use INKEY$ to check if anything has been pressed, but this

returns a string. Line 190 converts it to a number.

Line 200 PROCcalculate – does the maths.

Line 210 PROCdashboard – prints up the results.

Line 220 – prints the rocket if Y% (the variable used in MOVE X%,Y%) has gone

up or down by 4. In this MODE the rocket is printed in the same place unless the

change is greater than 4.

Line 225 PROCburn – draws the burning fuel.

Line 240 – crash or good landing? – at less than 15 mph it’s good.

Line 247 – clears keyboard buffer again so you don’t get a string of numbers

printed when the program stops.

700 DEF PROClabels

710 PRINT TAB(0,7)"secs"

720 PRINT TAB(0,9)"miles"

725 PRINT TAB(0,10)"feet"

730 PRINT TAB(0,12)"speed"

740 PRINT TAB(0,14)"fuel"

750 PRINT TAB(0,16)"burn?"

760 ENDPROC

153

 800 DEF PROCmoon

 805 GCOL 0,2

 810 LOCAL X

 820 FOR X=100 TO 1280 STEP 200

 830 MOVE X,0

 840 PLOT 85,X,30

 850 PLOT 85,X+100,0

 860 NEXT X

 870 ENDPROC

 900 DEF PROCinitialise

 910 TIME=0:now=0

 920 speed=1 :REM in miles/second

 930 height=46:REM in miles

 935 Y%=920

 937 oldY%=Y%

 940 gravity=0.001

 950 fuel=16500

 960 totalmass=33000

 965 burnrate%=0

 970 ENDPROC

1100 DEF PROCcalculate

1105 IF fuel<=0 THEN fuel=0:burnrate%=0

1110 burntime=(TIME-now)/100

1120 now=TIME

1130 slower=(burnrate%/

totalmass)*2*EXP(burnrate%*burntime/totalmass)

1140 height=height-speed*burnttime-

burntime*burntime/2*

(gravity-slower)

1150 speed=speed+burntime*(gravity-slower)

1160 burnt=burnrate%*burntime

1170 totalmass=totalmass-burnt

1180 fuel=fuel-burnt

1190 IF height<0 THEN height=0

1200 Y%=height*20+32

1210 ENDPROC

1300 DEF PROCdashboard

1310 VDU4

1320 PRINT TAB(5,7)INT(TIME/100)

1330 PRINT TAB(5,9)INT(height)

1340 PRINT TAB(5,10)INT(height*5280) MOD 5280

1350 PRINT TAB(5,12)INT(speed*3600)

1360 PRINT TAB(5,14)INT(fuel)

154

 1370 PRINT TAB(5,16)burnrate%

 1375 VDU5

 1380 ENDPROC

 5000 DEF PROCcrash

 5020 SOUND 4,-15,100,70

 5030 FORX=1 TO 100

 5040 MOVE 850+RND(200),RND(200)

 5045 GCOL, RND(4)

 5050 DRAW RND(1280),RND(1024)

 5055 NEXT

 5060 ENDPROC

 6000 DEF PROCfanfare

 6010 FOR X=1 TO 11

 6015 READ P,D

 6017 IF P=999 THEN L=0 ELSE L=-15

 6020 SOUND 1,L,P,D

 6025 SOUND 1,0,0,3

 6030 NEXT

 6035 DATA

97,15,97,5,101,5,999,5,101,5,97,5,101,10,97,2,89,5,81

,5,77,10

 6040 ENDPROC

 8000 DEFPROCburn

 8005 GCOL0,1

 8010 MOVEX%,oldY%

 8015 IF burnrate%=0 THEN VDU10,9,127 ELSE VDU10,243

 8025 GCOL0,3

 8030 ENDPROC

10000 DEFPROCrocket

10100 MOVEX%,oldY%

10110 VDU 10,9,127,11,9,127,11,9,127,11,9,127

10120 MOVE X%,Y%

10140 VDU 242,8,11,241,8,11,240

10150 oldY%=Y%

10160 ENDPROC

Running the program

You start off at a height of 46 miles moving at 1 mile/sec or 3600 mph. You have

fuel of 16500lbs and your weight to start with, including fuel, is 33000 lbs. You

fire the rockets by pressing one of the keys 1-9 and holding it down until you

want to stop burning. The rate of burning is proportional to the number. You

must land at less than 15 mph.

155

30 Sound

The BBC Microcomputer contains integrated circuits specifically designed to

generate musical sounds and noises on four ‘channels’. Two statements control

the generation of musical sounds; they are SOUND and ENVELOPE . For simple

effects the statement SOUND can be used by itself but if the user wishes to have

greater control over the quality of the sounds generated then ENVELOPE can be

used. At its simplest the sound statement is followed by four numbers, eg

SOUND C,A,P,D

C is the channel number 0 to 3

A is the amplitude or loudness 0 to -15

P is the pitch 0 to 255

D is the duration 1 to 255

The channel number C, determines which of the four ‘voices’ is to be used.

Channel 0 produces ‘noise’ (this channel will be explained in detail later) whereas

channels 1, 2 and 3 produce purer notes.

The amplitude, A, can be varied between 0 (off) and -15(loud).

The pitch, P, selects notes in quarter semi-tone intervals. Middle C is produced

when P is set at 52 and other notes are generated with the values of P shown in

the table.

As you can see the computer can produce notes spanning five full octaves. The

values of P are also shown in the table for a stave in key of C but one octave up.

The duration, D, determines the length of the note and is given in twentieths of a

second. Those used to reading music will find that music marked ‘Moderato

 =60’ will sound about right with the following settings for D.

156

Octave number

Note 1 2 3 4 5 6

B 0 48 96 144 192 240

C 4 *52 100 148 196 244 *middle C

C# 8 56 104 152 200 248

D 12 60 108 156 204 252

D# 16 64 112 160 208

E 20 68 116 164 212

F 24 72 120 168 216

F# 28 76 124 172 220

G 32 80 128 176 224

G# 36 84 132 180 228

A 40 88 136 184 232

A# 44 92 140 188 236

That completes the simple description of the SOUND command.

There are two main areas where the SOUND command can be extended. First,

instead of working with a fixed sound quality, one can select an ‘envelope’ to vary

both the amplitude and the pitch of the note while it is playing; secondly it is

possible to ensure that notes are synchronised so that chords start together. In

addition to these major extensions there are a number of other things that can be

controlled, and these will be described later.

If you wish to use an envelope to vary either the amplitude or the pitch of a note

(or both) then you must first define the envelope and secondly, instead of using a

fixed amplitude in the SOUND statement, you must quote the envelope number

for A. Four envelopes are normally permitted and they are numbered 1 to 4.

Thus

SOUND 1,2,53,20

would produce on channel 1 a note of middle C with a duration of one second and

the amplitude and pitch would be controlled by the envelope number 2.

The statement ENVELOPE is followed by 14 numbers and the following labels will

be used for the 14 parameters.

157

ENVELOPE N, T, PI1, P12, PI3, PN1, PN2, PN3, AA, AD

,AS, AR, ALA, ALD

A brief description of each parameter follows.

Parameter Range Function

N 1 to 4 Envelope number

T bits 0-6 0 to 127 Length of each step in hundredths of a second

0=auto-repeat pitch envelopebit 7 0 or 1

1=don’t auto-repeat pitch envelope

PI1 -128 to 127 Change of pitch per step in section 1

PI2 -128 to 127 Change of pitch per step in section 2

PI3 -128 to 127 Change of pitch per step in section 3

PN1 0 to 255 Number of steps in section 1

PN2 0 to 255 Number of steps in section 2

PN3 0 to 255 Number of step in section 3

AA -127 to 127 Change of amplitude per step during attack

phase

AD -127 to 127 Change of amplitude per step during decay

phase

AS -127 to 0 Change of amplitude per step during sustain

phase

AR -127 to 0 Change of amplitude per step during release

phase

ALA 0 to 126 Target level at end of attack phase

ALD 0 to 126 Target level at end of decay phase

Note that the pitch can take on a value between 0 and 255. If the pitch is greater

than 255 (eg 257) then 256 will be repeatedly subtracted from it until it is in

range.

The amplitude has a range of 0 to 127 in the ENVELOPE statement whereas it

had a range of 0 to -15 in the SOUND statement. The amplitude cannot be set

outside the range 0 to 127.

Note also that the total duration of the attack, decay and sustain periods (but not

the release period) is determined by the SOUND statement and not the ENVELOPE

statement.

The envelope is divided up into a number of steps – usually a hundredth of a

second each and both the pitch and amplitude can be changed at the end of each

step.

158

The pitch envelope

The pitch of the note can be changed in three sections. For each section you can

specify the change in pitch at each tick of the clock (step) in the section. Suppose

we wish to generate a wailing sound like a police siren. The pitch has to rise and

fall like this:

During section 1 the pitch changes +2 units per step and section 1 contains 10

steps. In section 2 the pitch changes -2 units per step and there are 20 steps.

Section 3 contains 10 steps of +2 units. So thus far the ENVELOPE command

looks like

ENVELOPE 2,1,2,-2,2,10,20,10

The next six numbers control the amplitude of the sound and might well be

1,0,0,-1,100,100 (these will be explained in a moment).

So the total program to show the pitch envelope working would be

10 ENVELOPE 2,1,2,-2,2,10,20,10,1,0,0,-1,100,100

20 SOUND 1,2,100,100

Here is another pitch envelope – it plays three notes in succession.

10 ENVELOPE 3,25,16,12,8,1,1,1,10,-10,0,-10,100,50

It reads:

– Envelope number 3.

– Each step is 25/100 ie 1/4 second long.

– The first section of the pitch envelope uses a pitch change of 16 units.

– The second section uses a pitch change of 12 units.

– The third section has a pitch change of 8 units.

– All three sections have only 1 step in each section.

– Now to explain the amplitude envelope.

159

The amplitude envelope

Suppose that we wish to imitate a car driving towards us getting louder all the

time and then driving past before stopping nearby and then driving away. The

amplitude of the sound against time might well look like this:

The first phase of the amplitude envelope, where the sound is getting louder is

called the ‘attack phase’.

The amplitude envelope is specified by giving six parameters. The first (AA) gives

the change of amplitude at the end of each step during the attack phase and it

must be a positive number. Usually the envelope starts with an amplitude of

zero. However it is possible to start with a non-zero amplitude if you have just

interrupted a note on the same channel. The attack phase continues until the

amplitude reaches the level given by the parameter ALA.

160

For reference the six parameters are defined again here.

Parameter Range Function

A -127 to 127 Change of amplitude per step during attack phase

AD -127 to 127 Change of amplitude per step during decay phase

AS -127 to 0 Change of amplitude per step during sustain phase

AR -127 to 0 Change of amplitude per step during release phase

ALA 0 to 126 Target level at end of attack phase

ALD 0 to 126 Target level at end of decay phase

In our example the attack phase takes four seconds and each step lasts 1/4

seconds so there will be 16 steps. We want these 16 steps to get us from an

amplitude of zero to an amplitude of at least 100 – if we make each step increase

the amplitude by seven we will get there in 16 steps. So parameter AA = 7.

During the decay phase the amplitude must drop from 100 to 60 in two seconds.

During two seconds there are eight steps. So the amplitude drops 40 units (100-

60) in eight steps – so each step must reduce the amplitude by five units. Thus

AD=-5. So far we have determined the following parameters of the amplitude

envelope.

A=7

AD=-5

ALA=100

ALD=50

In our case the amplitude does not change during the sustain period so we can

set AS = 0. The sound will go on until the sustain phase is ended. The total time

allowed for the attack, decay and sustain phases is given by the duration part of

the SOUND command. The release phase then starts.

Note that the length of the attack and decay phases is set by the values chosen

for AA, AD, ALA and ALD but that the sustain phase can be terminated either by

the amplitude reaching zero or the time set by the duration of the SOUND

statement running out. The duration has to be set with care to ensure that it

doesn’t cut the note off at the wrong moment.

At the end of the sustain period the note enters the release phase where the note

changes in amplitude at the rate set by AR until it reaches zero.

161

As you may have guessed there are many ways for things to go wrong so that a

phase does not complete as expected. For example with ALA set to 100 and ALD

set to 50 and a decay rate (AD) of zero the amplitude will not decay at all during

the decay phase. However the sound will be moved to the release phase when the

duration is reached.

The ENVELOPE statement is very complicated and there is a wide range of

possible effects. You will have to use it a lot before you can accurately predict

what effect you will produce.

Some sample envelopes to try out:

ENVELOPE 1,1,0,0,0,0,0,0,2,0,-10,-5,120,0

ENVELOPE 2,3,0,0,0,0,0,0,121,-10,-5,-2,120,120

ENVELOPE 3,7,2,1,1,1,1,1,121,-10,-5,-2,120,120

ENVELOPE 4,1,0,0,0,0,0,0,61,0,-10,-120,120,0

ENVELOPE 1,8,1,-1,1,1,1,1,121,-10,-5,-2,120,1

Note synchronisation and other effects

The first parameter of the SOUND statement has been considered, up to now, to

control only the channel number. It can in fact control a number of other

features. For this purpose the channel number should be considered as a four

digit hexadecimal number

C=&HSFN

Parameter Range Function

N 0 to 3 Channel number itself

F 0 or 1 Flush control

S 0 to 3 Synchronisation control

H 0 or 1 Continuation control

N selects the channel number.

F If F is 0 the sound will be placed in a channel queue if a note is playing on that

channel. If F = 1 then the channel queue will be flushed (emptied) so that the

sound can be generated immediately.

S It is possible to synchronise two or more channels so that they do not start until

all have received a note marked for synchronous production. The value of S

determines how many other channels are to form the chord. Thus for a three note

chord all three channels should be fed a note with S set to 2.

H This parameter allows the previous effect on the channel to continue if it is set

to 1. In this case the amplitude, pitch and duration parameters of the new sound

command have no effect. Because the ‘dummy’ note thus created is added to the

queue in the normal way it can be used to ensure that the release

162

phase of a sound is completed. Normally the release phase is truncated by the

next note on the queue. If H=0 then the note is treated as a ‘real’ note in the

usual way.

Typical values of C are:

C=&201 A note on channel 1 to be synchronised with two others.

C=&12 A note on channel 2 is to be played immediately regardless of what was in

the channel 2 queue.

A more succinct description of SOUND and ENVELOPE is given in the BASIC

keywords chapter.

163

31 File handling

You are probably already aware that as well as storing computer programs on

cassette or disc, you can store ‘data’. By ‘data’ we mean sets of numbers or words.

We might, for example, store a set of names and telephone numbers. This set of

data is called a file. A set of BASIC statements are provided to enable you to read

information from files, to write information to a new file, to update an existing

file, to delete a file, to find out how big a file is, to move to a certain record in a

file, to check if you have reached the end of a file and to obtain a catalogue of all

the files that exist. There are also several other statements for performing other

actions on the files.

One of the major features of the BBC Microcomputer system is that exactly the

same statements are used no matter which ‘filing system’ is in use. A number of

different filing systems are available including cassette, disc and Econet systems.

Programs written to work on a cassette filing system will usually work

unmodified on a disc system. See chapter 36 for details of other filing systems.

First here is a summary of all the file handling statements available in BBC

BASIC.

*CAT Gives a catalogue of all data files and programs on the cassette

or floppy disc. It takes a very long time on a cassette.

OPENIN Opens a file so that it can be read.

OPENOUT Opens a new (empty) file for writing.

OPENUP Opens a file for reading and/or writing. (Not cassette.)

INPUT# Reads data from a file into the computer.

PRINT# Writes data from the computer into a file.

BGET# Reads a single character (byte) from a file.

BPUT# Writes a single character (byte) to a file.

PTR# Can be used either to find out which record we are about to

read (or write) or to move to a specific record. (Not cassette.)

EXT# Indicates how long a file is. (Not cassette.)

EOF# Indicates whether or not the end of a file has been reached.

CLOSE# Indicates to the computer that you have finished with a file.

164

The statement *CAT can be used at any time. However before you can use any of

the other file statements you have to open the file. After you have opened a file

you can read and write to it as much as you wish. When you have finished with

the file you must close it.

An analogy may help to make one or two points clearer. The files are all kept in

one room and your only method of communicating with them is via five telephone

links to five clerks. In addition there is a supervisor who knows which telephone

line to use to communicate with the right clerk. It is the clerk’s job to keep all the

files organised and you really have no idea how he or she looks after the files –

nor does it matter, so long as the method is efficient.

To return to our computer, suppose that we wish to create a file called "DRINKS"

in which we list every drink we have ever tried. First of all we have to ask the

supervisor to allocate a phone line and clerk to us. The statement

X = OPENOUT "DRINKS"

will place the number of the channel (telephone line) allocated to the file into the

variable X. Next we can ask the user for the names of the drinks using

INPUT "WHAT IS THE DRINK CALLED?", D$

and then send the name (held in D$) to the clerk to be entered in the file. Notice

how we have to use the variable X to ensure that it is entered in the correct file.

PRINT#X,D$

We could then repeat this process until the user replied with the word STOP. The

program would look like this:

10 X=OPENOUT "DRINKS"

20 REPEAT

30 INPUT "What is the drink called ", D$

40 PRINT#X, D$

50 UNTIL D$="STOP"

60 CLOSE# X

When run the program will save the data on cassette (if one is connected).

>RUN

What is the drink called?WHISKY

What is the drink called?VODKA

What is the drink called?GIN

What is the drink called?WINE

What is the drink called?CIDER

What is the drink called?TOMATO JUICE

What is the drink called?STOP

165

That has created a file called "DRINKS" which has been stored on cassette. The

program to read the file back in is also straightforward.

10 Y=OPENIN "DRINKS"

20 REPEAT

30 INPUT Y , R$

40 PRINT R$

50 UNTIL R$="STOP"

60 CLOSE# Y

When this is run, the list will appear on the screen as it is read from the cassette.

>RUN

WHISKY

VODKA

GIN

WINE

CIDER

TOMATO JUICE

STOP

For most applications that is all you will need to know about file handling and

you will only use statements like these

*CAT

X=OPENIN "FILENAME"

X=OPENOUT "FILENAME"

PRINT#X,A,B$

INPUT#X,A,B$

CLOSE#X

"FILENAME" is the name of the file which normally consists of up to ten letters

but see chapter 35 for more details.

A and B$ represent any (and as many) numeric and string variables as you wish

to record.

X is a numeric variable used to remember the channel number allocated to the

file number.

For more specialised applications a number of other functions and statements are

provided. BGET# and BPUT# enable single characters to be input and output.

They would be used for recording special data, for example, laboratory

experiments.

EXT# and PTR# are used with disc systems where random access files are

required. They cannot be used with cassette systems.

166

EOF# enables a program to detect the end of the file when reading in data. It is

normally used in the following way

10 Y=OPENIN "DRINKS"

20 REPEAT

30 INPUT#Y, A$

40 PRINT A$

50 UNTIL EOF#Y

60 CLOSE#Y

Telephone book program

One of the programs on the WELCOME cassette can be used to keep a personal

telephone directory. Clearly it should be possible to save a copy of all your entries

on to cassette and to load them back into the computer later. Several

modifications must be made to the program to enable this to happen. These

modifications are shown below. Once you have modified the program you can

then save the corrected version with a new name, for example

SAVE "TELE2"

First, load the program. Don’t RUN it, but type CTRL N then LIST to list the

program in ‘page mode’. To move down the program, press SHIFT. When you

come to a page requiring one of the changes set out below, press ESCAPE and

edit the line in the normal way.

Lines 210 to 280 omit final '

Add new lines:

282 PRINT" 9 - Load data from cassette"

284 PRINT" 0 - Save data to cassette"

Change line 290 to

290 SEL = -1

In line 300 change TAB(3,22) to TAB(3,23)

Line 330 change to

330 IF A<0 OR A>9 THEN 310

Change line 350 to

350 IF SEL> -1 THEN PRINT TAB(2,SEL+3 -

10*(SEL=0));CHR$(&89);

Change line 360 to

360 PRINT TAB(2,A+3-10*(A=0));CHR$(&88);A;CHR$(&89)

Change line 380 to

167

380 IF SEL=-1 THEN 300

Change line 500 to

500 ON SEL + 1 GOTO

505,510,520,530,540,550,560,570,580,590

New lines:

505 PROCSAVE:GOTO 200

590 PROCLOAD:GOTO 200

10000 DEF PROCLOAD

10005 PRINT TAB(0,16); "Play tape and press any key"

10007 Q=GET

10008 PRINT "Please wait"

10010 E%=OPENIN "DATA"

10020 INPUT#E%,X

10030 FOR I%=1 TO X

10032 INPUT#E%,NAME$(I%),PHONE$(I%)

10034 PROCPACK (I%)

10036 NEXT

10040 CLOSE#E%

10050 ENDPROC

11000 DEF PROCSAVE

11005 PRINT TAB(0,16); "Please press ";

11010 E%=OPENOUT "DATA"

11015 PRINT '"Please wait"

11020 PRINT#E%,X

11030 FOR I%=1 TO X

11032 PRINT#E%,NAME$(I%),PHONE$(I%)

11036 NEXT

11040 CLOSE#E%

11050 ENDPROC

168

32 Speeding up programs
and saving memory space

For some applications it is important that a program runs as quickly as possible

and a few tips are given here which will, together, substantially increase the

execution speed of programs. In other applications space may be at a premium

and other suggestions are given for saving space. Sometimes there is a trade-off

between the size of a program and speed and the user will have to decide which is

more important.

The most dramatic saving that can be made is in the speed of execution of

programs. The use of integer variables (eg WEIGHT%), and especially of the

resident integer variables A% to Z%, will result in execution times as little as 50%

of those achieved with ‘real’ variables. Again, integer division (DIV) is much

faster than normal division when working with integers. Using integer arrays

rather than real arrays will save 20% of the memory required.

Execution speed can also be increased in the following ways.

1. Allocate variable names with an even spread throughout the alphabet – so

don’t start all your variables with ‘F’, for example.

2. Omit the control variable after the word NEXT – eg say NEXT rather than

NEXT X. This saves a reasonable amount of time.

3. REPEAT...UNTIL loops are much faster than IF...THEN...GOTO loops.

4. Procedures are faster than GOSUBs, and it is faster to pass parameters to a

procedure than to use global variables – ie do use PROCBOX(X,Y,Z) rather than

PROCBOX.

5. If you have a line which contains a lot of ‘integer’ arithmetic and a little ‘real’

arithmetic then, if possible, place the integer work at the start of the line where

it will be executed first.

6. Have as few line numbers as possible – ie use long lines and spread the line

numbers out rather than re-numbering with an interval of 1. An interval of 10 is

good.

As far as space saving is concerned the following can be tried – but both reduce

the readability of programs and should not be used unless it is really necessary.

169

7. Omit spaces wherever possible – but you must keep a space or a % or $ sign or

some other separator before most keywords to avoid ambiguity. If a variable

FRED is in use then you must write

Y=FRED OR MARY

and not

Y=FREDORMARY

In the latter case the computer will look for the variable FREDORMARY rather

than the two variables FRED and MARY. The space after OR is not required.

8. Omit REM statements.

9. Remember that the whole of user memory can be kept for use by your

programs by using the ‘shadow screen’ facility – see chapter 42 for more details.

170

33 BASIC keywords

This chapter contains a detailed description of every word that BASIC

understands. These words are called ‘keywords’.

Some parts of the description are intended for the novice user and others for the

person who is familiar with BASIC. Note that your BBC Microcomputer is

supplied with the latest version of BBC BASIC, known as BASIC II. If you are

already familiar with the earlier version, you may wish to refer to chapter 49

before reading this chapter. Chapter 49 lists those BASIC keywords which exist

only in BASIC II. Each keyword is described under a number of headings as

follows:

Keyword

Sometimes followed by a few words explaining the derivation of the word.

Purpose

A plain-English description of what the keyword does. This is intended for the

person who is learning BASIC.

The only technical terms used are ‘string’ and ‘numeric’ – if you don’t understand

those two words then read chapter 9 first. The mathematical functions SIN , COS,

TAN etc are not exlained for the absolute beginner – there just isn’t room to

explain everything!

Examples

This section gives a few one-line examples of the keyword (not complete

programs). Some of the examples have a number at the start of the line. This

number is an ‘example line number’.

The examples are only intended to be illustrative. In some cases a line of BASIC

program may overflow onto the next line as elsewhere in this book.

Description

In this section the keyword is described using normal computer jargon.

Syntax

The syntax of each keyword’s usage is given more by way of helpful explanation

than for its strict accuracy. Purists will, rightly, complain at travesty of Backus-

Naur form. Others may find the entries useful.

171

The following symbols are used as part of the syntax explanation:

{ } Denote possible repetition of the enclosed symbols

zero or more times.

[] Enclose optional items.

| Indicates alternatives from which one should be

chosen.

<num-const> Means a numeric constant such as ‘4.5’ or ‘127’

<num-var> Means a numeric variable such as ‘X’ or ‘length’

<numeric> Means either a <num-const> or a <num-var>, or a

combination of these in an expression such as

" 4*X+6 "

<string-const> Means a string enclosed in quotation marks, eg

"ROBERT BULL" .

<string-var> Means a string variable such as A$ or NAME$.

<string> Means either a <string-const> or a <string-var>, or an

expression such as A$+"LINDA" .

<testable condition> Means something which is either TRUE or FALSE.

Since TRUE and FALSE have values it is possible to

use a <numeric> at any point where a <testable

condition> is required. The distinction between these

two is, in fact, rather unnecessary.

<statement> Means any BASIC statement, for example, PRINT or

GOSUB or PROC.

<variable name> Means any sequence of letters or numbers that obeys

the rules for variables (see chapters 3, 9 and 21).

172

Associated keywords

This section is intended to draw your attention to other keywords which either

have similar functions or which are normally used in conjunction with this

keyword. You will probably find it helpful to read the pages which describe the

associated keywords.

Demonstration program

If appropriate a short program is included to illustrate the use of the keyword.

Parentheses are generally optional where sense is unaffected.

173

ABS absolute value

Purpose

This function turns negative numbers into equivalent positive numbers but

leaves positive numbers alone. For example the absolute value of -9.75 is 9.75

while the absolute value of 4.56 is 4.56.

The ABS function is often used when calculating the difference between two

values if you do not know which is the larger of the two. Thus (K-L) will be

positive if K is greater than L, and will be negative if L is greater than K.

For example, if K = 9 and L = 12 then (K - L) would be equal to -3. However the

value of ABS(K-L) will always be positive. In the example given ABS(K-L)

would equal 3.

Examples

205 error=ABS(DIFFERENCE)

100 DIFF=ABS(X2-X1)

PRINT ABS(temp%-50)

Description

A function giving the absolute value of its argument.

Syntax

<num-var>=ABS(<numeric>)

Associated keywords

SGN

174

ACS arc-cosine

Purpose

To calculate an angle whose cosine is known. The calculated angle is in radians

but may be converted to degrees by using the function DEG. See DEG for more

information.

Examples

10 X=ACS(Y)

1205 angle=DEG(ACS(0.5678))

330 OUT=ACS(.234)

PRINT ACS (0.5)

Description

A function giving the arc-cosine of its argument. The result is in radian measure.

Syntax

<num-var>=ACS(<numeric>)

Associated keywords

ASN, ATN, SIN , COS, TAN, RAD, DEG

175

ADVAL analogue to digital converter value

Purpose

An analogue signal is one which can have almost any value – including fractional

parts. It is contrasted with a digital signal which is expressed in exact numbers.

The height of the water in a harbour is an analogue quantity whereas the

number of boats it contains is a digital quantity.

Watches always used to have analogue dials – ‘The time is about four fifteen’.

Electronic things usually work with whole numbers; for example

16h : 15m : 23s

There are four ‘analogue to digital’ converters in the BBC Microcomputer. Each

analogue to digital converter in the computer accepts a voltage and gives out a

whole number indicating how large the voltage is. This voltage might be

controlled by, for example, the position of a ‘games paddle’ or ‘joystick’ control

which is connected to the computer. Alternatively the computer might be

connected to a speed sensor on a piece of machinery or it might measure the

temperature of a room.

The input voltage range is 0 volt to 1.8 volt. When the input is 0 V the converter

produces the number zero. With 1.8 V input the converter produces the number

65520. Why 65520? The circuit in the computer which does the conversion was

designed to give out numbers in the range 0 to 4095. However it may well be that

future converters can give out numbers over a larger range – enabling the

computer to measure things more accurately. In order to ensure that the BBC

Microcomputer can be used in this situation we have specified a large range.

Instead of producing numbers in the 0 to 4095 range it produces a number in the

range 0 to 65520. Therefore instead of numeric results going up in the sequence

0, 1, 2, 3 etc they will go 0, 16, 32, 48, 64 etc. If you prefer the range 0 to 4095

then just divide the value by 16.

There are four analogue input channels provided in the BBC Microcomputer and

the number in parentheses after the keyword ADVAL refers to the channel whose

value you wish to find. The channels are numbered 1, 2, 3, 4.

ADVAL(0) performs a special function in that it can be used to test to see which

of the ‘fire’ buttons is pressed on the games paddles. The value returned also

indicates which ADC channel was the last one to be updated. The following can

be used to extract these two pieces of information from the value returned by

ADVAL(0) .

176

X=ADVAL(0) AND 3

will give a number with the following meaning

X=0 no button pressed

X=1 left side fire button pressed

X=2 right side fire button pressed

X=3 both fire buttons pressed

X=ADVAL(0) DIV256

will give the number of the last analogue to digital channel to complete

conversion. If the value returned is zero then no channel has yet completed

conversion.

ADVAL with a negative number in the parentheses, eg X=ADVAL(-3) , can be

used to see how full any of the internal buffers are. When characters are typed in

on the keyboard they are put into a buffer from which they are extracted with

statements like INPUT and GET. Other buffers are used internally for other

purposes. The exact meaning of the number returned depends on the buffer being

tested.

X=ADVAL(-1) Returns the number of characters in the keyboard buffer.

X=ADVAL(-2) Returns the number of characters in the RS423 input buffer.

X=ADVAL(-3) Returns the number of free spaces in the RS423 output

buffer.

X=ADVAL(-4) Returns the number of free spaces in the printer output

buffer.

X=ADVAL(-5) Returns the number of free spaces in the sound channel 0

buffer.

X=ADVAL(-6) Returns the number of free spaces in the sound channel 1

buffer.

X=ADVAL(-7) Returns the number of free spaces in the sound channel 2

buffer.

X=ADVAL(-8) Returns the number of free spaces in the sound channel 3

buffer.

X=ADVAL(-9) Returns the number of free spaces in the speech buffer.

This feature can be used, for example, to ensure that a program never gets stuck

waiting for a sound channel to empty, eg:

IF ADVAL(-7)<> 0 THEN SOUND 2, …etc

177

Examples

980 X=ADVAL(3)

125 TEMP=ADVAL(X)

intensity=ADVAL(1)

Syntax

<num-var>=ADVAL(<numeric>)

Description

A function which returns the last known value of the analogue to digital channel

given in its argument. There are four channels, each of 10 bit resolution, but the

returned value is scaled to 16 bits.

The analogue to digital converter cycles repeatedly through the selected channels

and keeps a table of the result so that the function ADVAL returns very quickly.

New samples are taken about every ten milliseconds. Therefore with four

channels selected results will be updated every 40ms. See chapter 43 for

information on changing the number of channels selected.

178

AND

Purpose

AND can be used either as a logical operator or as a ‘bit by bit’, or ‘Boolean’

operator.

As a logical operator AND is used to ensure that two conditions are met before

something is done. For example

IF X=9 AND Y=0 THEN PRINT "HELLO"

Logical AND is most often used as part of an IF...AND...THEN...

construction.

Boolean AND compares the first bit of one number with the first bit of another

number. If both bits are set to a one (rather than a zero) then the first bit in the

answer is also set to a one. This process is then repeated for the second bit in

each of the two numbers being compared and so on for all 32 bits in the numbers.

For example the result of 14 AND 7 is 6, since in binary

14 is 0000 0000 0000 0000 0000 0000 0000 1110

7 is 0000 0000 0000 0000 0000 0000 0000 0111

6 is 0000 0000 0000 0000 0000 0000 0000 0110

Examples

300 IF length>9 AND wt>9 THEN PRINT "YES"

100 IF X=2 AND cost>5 AND J=12 THEN PRINT "NO!!"

The above example will only print NO!! if all three conditions are met.

Description

The operation of Boolean AND between two items. Note that the logical and

Boolean operations are in fact equivalent. This follows since the value of TRUE is

-1 which is represented on this machine by the binary number

1111 1111 1111 1111 1111 1111 1111 1111

Similarly the binary value of FALSE is

0000 0000 0000 0000 0000 0000 0000 0000

Thus PRINT 6=6 would print -1 since 6=6 is TRUE.

179

Syntax

<num-var> = <numeric> AND <numeric>

or

<testable condition> = <testable condition> AND <testable condition>

Associated keywords

EOR, OR, FALSE, TRUE, NOT

180

ASC American Standard Code (ASCII)

Purpose

There are two commonly used methods of talking about characters (things like A,

B, 5, ?, and so on). Obviously they are single characters! So we can say D$="H" -

meaning put the letter H into the box in the computer labelled D$. The computer

understands this but it doesn’t actually put an H into the box, Instead it stores a

number which represents the letter H (in fact the number is 72). Every character

has a unique corresponding number called its ASCII code. (ASCII stands for

American Standard Code for Information Interchange. The abbreviation ASCII

rhymes with ‘Laski’.)

Sometimes it is convenient to find out what number corresponds to a particular

character - that is its ASCII code. You can look it up at the back of this book or

you can say to the computer

PRINT ASC("H")

The function ASC gives the ASCII value of the first letter in the string. Thus

PRINT ASC("Good")

gives 71, the ASCII value of ‘G’.

The reverse process of generating a one-character string from a given ASCII

value is performed by the function CHR$.

Examples

25 X=ASC("Today")

would put the ASCII value of ‘T’ which is 84 into the variable X.

650 value5=ASC(A$)

Description

A function returning the ASCII character value of the first character of the

argument string. If the string is null (empty) then -1 will be returned.

Syntax

<num-var> = ASC(<string>)

Associated keywords

CHR$, STR$, VAL

181

ASN arc-sine

Purpose

To calculate an angle whose sine is known. The calculated angle is in radians but

may be converted to degrees by using the function DEG. A radian is equal to about

57 degrees. Mathematicians often prefer to work in radians.

Examples

340 J=ASN(0.3456)

30 angle=DEG(ASN(.7654))

PRINT ASN(.5)

Description

A function giving the arc-sine of its argument. The result is in radian measure.

Syntax

<num-var>=ASN(<numeric>)

Associated keywords

ACS, ATN, SIN , COS, TAN, RAD, DEG

182

ATN arc-tangent

Purpose

To calculate an angle whose tangent is known. The calculated angle is in radians

but may be converted to degrees by using the function DEG.

Examples

1250 X=ATN(Y)

240 value=DEG(ATN(22.31))

Description

A function giving the arc-tangent of its argument. The result is in radian

measure.

Syntax

<num-var>=ATN (<numeric>)

Associated keywords

ACS, ASN, SIN , COS, TAN, RAD, DEG

183

AUTO automatic

Purpose

When typing a BASIC program into the computer it is common to make the first

line of the program line number 10, the second line 20 etc. To save having to type

in the line number each time, the command AUTO can be used to make the

computer ‘offer’ each line number automatically. Used on its own the command

AUTO will offer first line 10 and then lines 20, 30, 40 etc. The command AUTO

455 would instead start the process at line number 455, followed by lines 465,

475, 485 etc.

Another option allows the user to select the step size. Thus the command AUTO

465,2 would cause the computer to offer lines 465, 467, 469, 471 etc. The larges

step size is 255.

To escape from AUTO mode the user must press the key marked ESCAPE. AUTO

mode will be abandoned if the computer tries to generate a line number greater

than 32767.

Examples

AUTO

AUTO 220

AUTO 105,5

Syntax

AUTO [<num-const>[, <num-const>]]

Description

AUTO is a command allowing the user to enter lines without first typing in the

number of the line. Because AUTO is a command it cannot form part of a multiple

statement line. AUTO mode can be left by pressing ESCAPE or generating a line

number exceeding 32767.

AUTO may have up to two arguments. The first optional argument gives the

starting line number and the second optional argument gives the increment

between line numbers.

184

BGET# get a byte from file

Purpose

Numbers and words can be recorded on cassette tape and on disc. The function

BGET# enables a single character or number to be read back into the computer

from the cassette, disc or network. Before using this statement a file must have

been opened using the OPENIN function or else an error will occur (see chapter

31 for more information about ‘files’). When a file is opened, using OPENIN, the

computer will allocate the file a channel number. This number must be used in

all subsequent operations on the file, for example when reading the file or when

writing a new file. Again see the chapter on file handling for more information.

Examples

6000 character=BGET# (channel)

340 next_letter%=BGET#C

Description

A function which gets a byte from the file whose channel number is the

argument. The file must have been opened before this statement is executed.

Syntax

<num-var>=BGET#<num-var>

Associated keywords

OPENIN, OPENUP, OPENOUT, CLOSE#, EXT#, PTR#, PRINT#, INPUT#, BPUT#, EOF#

185

BPUT# put a byte to file

Purpose

To store a byte on cassette or disc. See chapter 31 for a more detailed description

of file handling. The number which is sent to the file can have any value between

0 and 255. If you attempt to store a number that is greater than 255, then 256

will be repeatedly subtracted from the number until it is less than 256. The final

number will then be sent to file. (This statement is used to store single bytes –

not large numbers. Larger numbers can be stored using PRINT#.) As with BGET#

the file must be ‘open’ before this statement can be used.

Examples

30 BPUT# channel,number

700 BPUT#N,32

450 BPUT# STAFF_FILE, A/256

Description

A statement which puts a byte to the file whose channel number is the first

argument. The second argument’s least significant byte is sent. The file must be

open before this statement is executed.

Syntax

BPUT#<num-var>, <numeric>

Associated keywords

OPENIN, OPENUP, OPENOUT, CLOSE#, EXT#, PTR#, PRINT#, INPUT#, BGET#, EOF#

186

CALL transfer control to a machine code subroutine

Purpose

This statement makes the computer execute a piece of machine code which the

user has previously placed in the computer’s memory. Before using this powerful

statement you should have a good understanding of machine code and assembly

language as incorrect use can destroy a program completely! Unfortunately there

is not enough room in this book to teach assembly language programming but

brief guidance on the principles of 6502 assembly language is given in chapter 44.

Examples

50 rotate=&0270

60 CALL rotate,J,K,L

200 CALL 1234,A$,M,J$

Description

A statement to call a piece of machine code. The number of parameters passed is

variable and may be zero. The parameters are variable parameters and may be

changed on execution of the subroutine. The addresses of parameters are passed

in a parameter block starting at location 0600 hex.

On entry to the subroutine the processor’s A, X, Y registers are initialised to the

least significant bytes of the integer variables A%, X% and Y%. The carry flag is

set to the least significant bit of the C% variable.

On entry a parameter block is set up by the computer and it contains the

following list:

Number of parameters 1 byte

Parameter address 2 bytes

Parameter type 1 byte

Parameter address

Parameter type

Repeated as often

as necessary

Parameter types

0 - 8 bit byte (eg ?X)

4 - 32 bit integer variable (eg !X or X%)

5 - 40 bit floating point number (eg V)

128 - A string at a defined address (eg $X - terminated by a &0D)

129 - A string variable such as A$

187

In the case of a string variable the parameter address is the address of a string

information block which gives the start address, number of bytes allocated and

current length of the string in that order.

Syntax

CALL<numeric>{ , <num-var>| <string-var>}

Associated keywords

USR

188

CHAIN

Purpose

CHAIN enables a program to be split up into a number of small sections.

The CHAIN statement is used to enable one program to LOAD and RUN another

program automatically. For example, one program might enable the user to enter

the number of hours worked by employees and that program might CHAIN a

second program which would print out the payslip. In turn that might CHAIN a

third program which would do a cost per hour analysis on the data held on the

file.

CHAIN is also useful in a game with a lot of instructions. The instructions could

all be stored as one file which would then CHAIN the main game – thus releasing

a lot of the computer’s memory.

CHAIN"" (without the program name) will chain the next program on a cassette,

whatever its file name. This will not work with disc filing systems where you

must give the file name. For that reason it must not be used in programs which

may be used on disc systems.

Examples

900 CHAIN "GAME_1"

1234 CHAIN "NEWPROG"

CHAIN A$

Description

A statement which will load and run the program whose name is specified in the

argument. All variables except @% and A% to Z% are cleared.

Syntax

CHAIN<string>

Associated keywords

LOAD, SAVE

189

CHR$ character string

Purpose

To generate a character (single letter or number etc) from the number given in

string form. The character generated will be the ASCII character at the position

given in the ASCII table. See the description of ASC and the full ASCII table in

Appendix C.

The statement VDU has a similar effect to PRINT CHR$ and may be more useful

in some applications.

Examples

220 RED$=CHR$(129)

1070 PRINT CHR$(8);

makes the cursor move left one position.

PRINT CHR$ (7)

causes a short note to be emitted by the loudspeaker.

Description

A string function whose value is a single character string containing the ASCII

character specified by the significant byte of the numeric argument. Thus

CHR$(-1) would give ASCII character number 255.

Note that the statement VDU is probably more useful when sending characters to

the screen, since it involves less typing. CHR$ is needed when you wish to put a

special character into a string.

Syntax

<string-var>=CHR$(<numeric>)

Associated keywords

ASC, STR$, VAL, VDU

190

CLEAR

Purpose

This tells the computer to forget all variables previously in use, including string

variables and arrays but excluding the ‘resident integer variables’ @% and A% to

Z% which are not affected in any way. See chapter 9 for an explanation of integer

and string variables.

Examples

350 CLEAR

CLEAR

Description

A statement which deletes all variables except the resident integer numeric

variables @% and A% to Z%

Syntax

CLEAR

Associated keywords

None

191

CLG clear the graphics screen

Purpose

To clear the graphics area of the screen. The graphics area of the screen is left in

the colour selected as the ‘current graphics background colour’. See the keyword

GCOL for more information. The graphics cursor is then moved to its home

position (0,0) which is at the bottom left of the graphics area.

Examples

870 CLG

CLG

Description

Clears the current graphics area of the screen and sets this area to the current

graphics background colour in addition. The statement then moves the graphics

cursor to the graphics origin (0,0).

Syntax

CLG

Associated keywords

CLS, GCOL

192

CLOSE#

Purpose

To inform the computer that you have completely finished with a particular file.

The computer then transfers any data still in memory to cassette, disc or Econet

as needed. See chapter 31 on file handling for more information.

Example

90 CLOSE#N

Description

A statement used to close a specific disc or cassette file. CLOSE# 0 will close all

files.

Syntax

CLOSE#<numeric>

Associated keywords

OPENIN, OPENUP, OPENOUT, EXT#, PTR#, PRINT#, INPUT#, BGET#, BPUT#, EOF#

193

CLS clear the text screen

Purpose

To clear the text area of the screen. Any graphics in this area will also be cleared.

The text area will be left in the ‘current text background colour’. The text cursor

will then be moved to its ‘home’ position at the top left of the text area. See the

keyword COLOUR for more information about text background colours.

Examples

560 CLS

CLS

Description

Clears the current text area and sets this area of the screen to the current text

background colour. The statement then causes the text cursor to move to the text

origin (0,0) at the top of the current text area. CLS resets COUNT.

Syntax

CLS

Associated keywords

CLG, COLOUR

194

COLOUR

Purpose

This statement selects the colour in which the computer is to print the text and

also its background. The command has a number of variations which are most

easily explained by example.

Type in the following:

MODE 5

COLOUR 1

COLOUR 2

COLOUR 3

and press RETURN at the end of each line as usual.

As you will have seen, these commands change the colour of the text. This is

often called the ‘text foreground colour’. Now try

COLOUR 129

COLOUR 130

COLOUR 128

These numbers change the ‘text background colour’.

In any two colour MODE (MODE 0, 3, 4 or 6) the following normally apply:

Foreground Background Colour

0 128 Black

1 129 White

In any four colour MODE (MODE 1 or 5) the following normally apply:

Foreground Background Colour

0 128 Black

1 129 Red

2 130 Yellow

3 131 White

In MODE 2 the following normally apply:

195

Foreground Background Colour

0 128 Black (normal background)

1 129 Red

2 130 Green

3 131 Yellow

4 132 Blue

5 133 Magenta (blue/red)

6 134 Cyan (blue/green)

7 135 White (normal foreground)

8 136 Flashing black/white

9 137 Flashing red/cyan

10 138 Flashing green/magenta

11 139 Flashing yellow/blue

12 140 Flashing blue/yellow

13 141 Flashing magenta/green

14 142 Flashing cyan/red

15 143 Flashing white/black

If you are not familiar with BASIC then you may already have had too much of

this! Nevertheless, it is possible, for example in a four colour MODE to select any

four colours from the available 16 effects by using another command. Remember

that the colours given above (black, red, yellow, white) will be available as soon

as four colour MODE is selected – but you can then select other colours later.

Try the following:

MODE 5

COLOUR 1

VDU 19,1,4,0,0,0

VDU 19,1,5,0,0,0

COLOUR 2

VDU 19,2,4,0,0,0

VDU 19,1,3,0,0,0

As you will see the statement VDU 19 , can be used to change the ‘actual colour’ of

colour 1 or 2.

The number which follows the VDU 19 , is the number that is referred to by the

COLOUR statement. It is referred to as a ‘logical colour’.

196

The number which follows the ‘logical colour’ is referred to as the ‘actual colour’

and is as follows:

0 Black

1 Red

2 Green

3 Yellow

4 Blue

5 Magenta (blue/red)

6 Cyan (blue/green)

7 White

8 Flashing black/white

9 Flashing red/cyan

10 Flashing green/magenta

11 Flashing yellow/blue

12 Flashing blue/yellow

13 Flashing magenta/green

14 Flashing cyan/red

15 Flashing white/black

Thus the statement VDU 19,3,6,0,0,0 will set logical colour 3 to be cyan. So if

in MODE 4, a two colour MODE, you wanted black letters on a yellow background

you would issue the command:

VDU 19,1,0,0,0,0

VDU 19,0,3,0,0,0

Alternatively, you could string the whole lot together as

VDU 19,1,0,0,0,0,19,0,3,0,0,0

This combination of the COLOUR statement and the VDU 19 statement enables a

very wide range of effects to be obtained. There are also calls which enable the

flash rates of the colours to be altered as well. See chapter 43 on *FX calls.

Syntax

COLOUR<numeric>

Associated keywords

VDU, GCOL

197

COS cosine

Purpose

To calculate the cosine of an angle. Note that the number in parenthesis (the

angle) is expressed in radians and not in degrees. To convert from degrees to

radians use the function RAD.

Examples

PRINT COS(2.45)

780 X=COS(Y)

655 Number=COS (RAD (45))

Description

A function giving the cosine of its argument. The argument must be given in

radians.

Syntax

<num-var>=COS(<numeric>)

Associated keywords

SIN , TAN, ACS, ASN, ATN, DEG, RAD

198

COUNT

Purpose

COUNT counts all the characters printed using PRINT, whether to screen, printer

or RS423 output channel. On the other hand POS returns the current position of

the actual text cursor on the screen.

Examples

290 A=COUNT

75 fred=COUNT

PRINT COUNT

Description

A function returning the number of characters printed since the last new line.

COUNT is set to zero if the output stream is changed.

Syntax

<num-var>=COUNT

Associated keywords

POS

Demonstration program

 5 REM to print a row of 16 * signs

 7 REM this is not the easiest way!

10 X=16

20 REPEAT PRINT "*";

30 UNTIL COUNT=X

199

DATA

Purpose

DATA is used in conjunction with the keyword READ, and sometimes with

RESTORE, to enable you to make available automatically any data (numbers and

words) that will be needed by a program.

For example, if you were writing a geography quiz, you might want to use the

names of five countries and their five capital cities each time you used the

program. The names of the cities and countries can be entered as DATA in the

program and will always be there when the program is run.

Computers using the language BASIC are really clumsy at handling information

like this, as the demonstration program on the next page shows.

In the example program the DATA consists of many words. DATA statements can

just as well contain numbers – or a mixture of words and numbers. In our

example the words were all read into a string array.

It is essential that the DATA contains numbers where numeric variables are to be

filled. Text information, eg hello , will just give 0.

There is no need to put each word in quotes unless leading spaces are important

in the DATA words, for example " four spaces" .

If you wish to have leading spaces then these words should be enclosed in quotes.

Since a comma is used to separate items of DATA, if you want a comma in your

DATA, you must enclose the DATA in quotes.

Examples

100 DATA "Allen, Stephen", Stamp dealer, 01-246

8007, 24

130 DATA "TOP OF ROOF", 450, January

Description

A program object which must precede all lists of data intended for use by the

READ statement.

Syntax

DATA<str-const>| <num-const>{ , str-const>| <num-const>}

200

Associated keywords

READ, RESTORE

Demonstration program

 10 REM geography quiz

 20 DIM city$(5)

 30 DIM country$(5)

 40 FOR x=1 TO 5

 50 READ city$(x)

 60 READ country$(x)

 70 NEXT x

 80 right=0

110 FOR x=1 TO 10

120 r=RND(5)

130 PRINT "What city is the capital"

140 PRINT "of "; country$(r)

150 INPUT answer$

160 IF answer$=city$(r) THEN PROCyes ELSE PROCno

170 NEXT x

180 PRINT "You got ";right;

190 PRINT " correct out of 10"

200 END

500 DATA Paris, France, Reykjavik

505 DATA Iceland

510 DATA Moscow, Soviet Union

520 DATA Athens, Greece

530 DATA Spitzbergen, Spitzbergen

600 DEF PROCyes

610 PRINT "Well done!"

620 right=right+1

630 ENDPROC

700 DEF PROCno

710 PRINT "No, the capital of

720 PRINT country$(r);" is ";city$(r)

730 ENDPROC

Line 10 is just a REMark which the computer ignores.

Lines 20 and 30 tell the computer that we are going to use two string arrays –

one to store the names of the five cities and the other to store the names of the

five countries. See chapter 21 for an explanation of arrays.

Line 40 sets up a FOR...NEXT loop that will go around five times.

201

Line 50 reads the next word (which will be a city) into the array city$ and then

moves the ‘data pointer’ on to point to the next word (which will be a country).

Line 60 reads the next piece of DATA into the country$ array.

Line 70 is the end marker of the FOR...NEXT loop.

Lines 110 to 170 loop ten times through a ‘question and answer’ quiz.

Lines 500 to 530 contain the DATA used above.

Lines 600 to 630 are a procedure to deal with correct replies.

Lines 700 to 730 deal with incorrect replies.

202

DEF define

Purpose

The word DEF is used to inform the computer that a procedure or function is

about to be defined. Once the computer has been informed that this procedure or

function exists, then the procedure or function can be called by name anywhere

in the program.

Definitions of procedures and functions must not occur in the body of a program.

They should be placed in a separate section which is not executed – for example

after the final END in the program. This also aids readability.

The language BASIC has many predefined functions which the computer already

knows about. For example, the function SQR enables it to calculate the square

root of a number.

Often though, it is useful to be able to define your own functions. For example,

you might want to have a function which calculates the VAT inclusive price of a

product from the basic sale price by multiplying by 1.15.

A function always produces a result so you can write X=FNST. A procedure, on the

other hand, is used to perform a number of actions, but it does not by itself

produce a numerical result. For example, a procedure might be set up to clear the

screen and draw a number of lines on the screen.

You may well feel confused, but do not be put off! The use of procedures and

functions may be difficult to understand at first but it is well worth the effort.

Their use greatly enhances the readability and reliability of programs.

The section below gives a more detailed explanation of the use of procedures and

functions. It should be read in conjunction with the examples which follow.

Both procedures and functions may contain local variables which are declared

using the word LOCAL. In the third example given below, K is declared as a local

variable. This means that although K is used in this procedure its value is

notdefined when the procedure finishes. In fact the variable K might well be used

elsewhere in the program. The variable K, elsewhere within the program, would

not be altered by the use of the local variable K within the procedure. Any

variable which is not declared as LOCAL will be available outside the procedure,

in other words to the rest of the program.

Also, both procedures and functions may have parameters passed to them. Look

at the first example program below: line 1010 says

1010 DEF FNST(g)=1.15*g

203

‘g’ is called a ‘formal parameter’ for the fuction FNST. It tells the computer that

one number is going to be passed to the function when the function is used and

inside the function we have decided to use the letter g to represent the variable.

The procedure is ‘called’ or used like this – for example

230 PRINT "VAT inclusive price ";

236 PRINT FNST(P)

and in this case ‘P’ is the ‘actual parameter’ for the function FNST. Whatever

value ‘P’ has will be used inside the fuction wherever reference is made to teh

formal parameter ‘g’. This is very convenient since you can use any variable

names you like for the parameters inside the procedure. Then you can call the

procedure with a quite different set of parameter names from the outside. Very

often a procedure will be called from many different places in the program – and

the actual parameters may have different names each time the procedure or

function is called.

If a procedure or function is defined with (say) three formal parameters then,

when it is called, three actual parameters must be supplied. See the fifth

example below where three parameters are passed to the function.

The end of the procedure is indicated with the statement ENDPROC. The end of a

multi-line function is indicated by the statement that starts with an = sign. The

function is given the value of the expression to the right of the = sign.

Examples

First example – full program

 210 REPEAT

 220 INPUT "Basic price ",P

 230 PRINT "VAT inclusive price ";

 235 PRINT FNST(P)

 240 UNTIL P=0

 250 END

1000 REM line numeric function

1010 DEF FNST(g)=1.15*g

Second example – program section

Multi-line string function with one string parameter.

1000 DEF FNREVERSE(A$)

1010 REM reverse the order of the letters in A$

1015 REM

1020 LOCAL d%,B$

1030 FOR d%=1 TO LEN(A$)

204

1040 B$=MID$(A$,d%,1)+B$

1050 NEXT d%

1060 =B$

Third example – program section

Multi-line procedure with one parameter.

 200 DEF PROCbye(X)

 210 REM print bye X times

 220 LOCAL K

 230 FOR K=1 TO X

 240 PRINT "bye"

 250 NEXT K

 260 ENDPROC

Fourth example – program section

This sets the background colour to a new value given in the parameter.

 10 DEF PROCINITSCREEN(X)

 20 REM clear screen and draw border

 25 COLOR 128+X

 30 CLS

 40 DRAW 1279,0

 50 DRAW 1279,799

 60 DRAW 0,799

 70 DRAW 0,0

 80 ENDPROC

Fifth example - full program

 110 INPUT X,Y,Z

 120 M=FNMEAN(X,Y,Z)

 130 PRINT "The mean of ",X,Y,Z

 140 PRINT "is ";M

 150 END

8990 REM Single line numeric function

8995 REM with three parameters

9000 DEF FNMEAN(A,B,C)=(A+B+C)/3

Description

A program object which must precede declaration of a user function or procedure.

String and numeric functions and procedures may be defined. Multi-line

functions and procedures are allowed. All procedures and functions must be

placed in the program where they will not be executed, eg after the END

statement.

205

Syntax

DEF FN| PROC<variable name>[(<string>| <numeric>

{, <string>| <numeric>})]

Associated keywords

ENDPROC, FN, PROC

206

DEG degrees

Purpose

This function converts angles which are expressed in radians into degrees. A

radian is equal to about 57 degrees.

Examples

100 X=DEG(PI/2)

300 angle=DEG (1.36)

PRINT DEG(PI/2)

Syntax

<num-var>=DEG<numeric>

Description

A function which converts radians to degrees.

Associated keywords

RAD, SIN , COS, TAN, ACS, ASN, ATN

207

DELETE

Purpose

The DELETE command is used to delete a group of lines from a program. It

cannot be used as part of a program. You can specify which lines should be

deleted with a command of the form

DELETE 120,340

This would remove everything between line 120 and line 340 inclusive.

To delete everything up to a certain line number (for example up to line 290) use

DELETE 0,290 .

To delete from line 500 to the last line, use as the last line to be deleted any

number greater than the last line number in the program. Since the largest line

number allowed is 32767

DELETE 500,32767

will do the trick, but will take a long time.

To delete a single line just type the line number and press RETURN. There is no

need to use the DELETE command.

Examples

DELETE 0,540

DELETE 180,753

DELETE 540,32000

Syntax

DELETE<num-const>, <num-const>

Description

A command enabling a range of lines to be deleted from a program. Since DELETE

is a command it cannot be used in a program or as part of a multiple statement

line.

Associated keywords

LIST , OLD, NEW

208

DIM dimension of an array

Purpose

As well as simple numeric and string variables (such as ‘X’ and ‘name$’) it is

possible to work with ‘arrays’ of variables. These are extremely useful when

working with groups of numbers or words. For example if you wanted to work

with a set of information about the rooms in a hotel with four floors, each with 30

rooms, then an array of four by 230 entries can be created like this:

DIM hotel(4,30)

Having set up an array, one can enter information into each of its ‘elements’. For

example the cost of the room per night might be £26.50

hotel(1,22)=26.50

hotel(4,1)=165.00

In practice the statement DIM hotel(4,30) produces an array of five by 31

entries since the lowest array element is hotel(0,0) .

All the above arrays are called ‘two dimension numeric arrays’. Another array

could contain the names of guests:

DIM name$(4,30)

name$(1,22)="Fred Smith"

name$(4,1)="The Queen"

That sort of array is called a ‘two dimension string array’.

Arrays may have one or more dimensions. A single dimension array would be

appropriate for all the houses in a road, eg

DIM MainSt(150)

That sort of array is called a ‘single dimension numeric array’. All arrays are

normally dimensioned very early in the program. It is ‘illegal’ to attempt to

change the size of an array by re-dimensioning it later in the program. An array

may have as many dimensions and as many elements in each dimension as the

computer has space for – but you tend to run out of computer memory pretty fast

with large arrays! It is essential that there is no space between the array name

and the first parenthesis. Thus DIM A(10) is correct but DIM A (10) will not

define an array.

209

Examples

100 DIM partnumbers(1000)

3000 DIM employeename$(35)

240 DIM ALL_hours_in_the_week(24,7)

100 DIM A(X)

Description

A statement which dimensions arrays. Arrays must be predeclared before use.

After dimensioning all elements of arrays are initialised to zero for numeric

arrays or null strings in the case of string arrays. The lowest element in an array

is element zero. Thus DIMX(4) would create an array of five elements (0 to 4

inclusive).

There is a second and quite different use for the DIM statement. It can be used to

reserve bytes in memory for special applications. To reserve 25 bytes, type

DIM X 24

Notice two things about this statement: firstly the space between the variable X

and the (number of bytes minus 1) and secondly the absence of parentheses

around the 24 . The address of the start of the group of 25 bytes is given in the

variable X in this example.

Syntax

DIM<num-var>| <str-var>(<numeric>{ , <numeric>})

or

DIM<num-var> <numeric>

Associated keywords

None

210

DIV division of whole numbers

Purpose

See the keyword MOD for a full explanation. DIV is an operator which gives the

whole number part of the result of a division. Thus

PRINT 11 DIV 4

gives 2 (leaving a remainder of 3).

Description

A binary operator performing integer division between its operands. The

operands are truncated to integers before division takes place.

Syntax

<num-var>=<numeric>DIV<numeric>

Associated keywords

MOD

211

DRAW

Purpose

This statement draws lines on the screen in MODEs 0, 1, 2, 4 and 5. The DRAW

statement is followed by two numbers which are the X and Y coordinates of the

end of the line. The line starting point can either be the end of the last line that

was drawn or else a new point if the MOVE statement has been used before the

statement DRAW.

The screen is addressed as

1280 points wide X-axis, 0-1279

1024 points high Y-axis, 0-1023

regardless of the graphics MODE selected. The origin (position 0,0) is normally at

the bottom left of the screen.

The line is drawn in the current graphics foreground colour. This can be changed

using the GCOL statement.

Examples

780 DRAW X,Y

DRAW 135,200

Description

DRAW X,Y means draw a line to X,Y in the current foreground colour.

DRAW X,Y is equivalent to PLOT 5,X,Y .

DRAW is one of a large group of line drawing statements. See PLOT for others.

Syntax

DRAW<numeric>, <numeric>

Associated keywords

MODE, PLOT, MOVE, CLG, VDU, GCOL

212

Demonstration program

140 MODE 5

160 REM Red background

170 GCOL 0, 129

175 CLG

180 REM Yellow foreground

190 GCOL 0,2

200 REM draw a box

210 MOVE 100,100

220 DRAW 400,100

230 DRAW 400,400

240 DRAW 100,400

250 DRAW 100,100

213

ELSE

Purpose

To provide an alternative course of action. ELSE can be used following an

IF...THEN statement, an ON...GOTO statement, and an ON...GOSUB

statement. See the pages describing the associated keywords and chapter 16 for

more details.

Examples

560 IF length > 0 THEN PRINT "OK" ELSE PRINT "No

good"

100 IF A<>B THEN C=D ELSE PRINT "Values match"

Description

Part of the IF...THEN...ELSE structure.

Syntax

IF <testable condition>[THEN]<statement>[ELSE<statement>]

or

ON<num-var>GOTO<numeric>{ , <numeric>} [ELSE<statement>]

or

ON<num-var>GOSUB<numeric>{ , <numeric>} [ELSE<statement>]

Associated keywords

IF , THEN, ON

214

END

Purpose

This informs the computer that it has reached the end of the program. END is

optional but may be used as many times as required in a program.

Example

9000 END

Description

Optional end of program which may occur anywhere and as often as is required.

The command END has a special use in that it causes BASIC to search the

program in memory for a valid end program marker. BASIC then updates its

internal pointers. This may be useful after unusual loading procedures. If the

user changes the value of PAGE then internal pointers such as TOP will not be

reset until an END statement or command is met.

Syntax

END

Associated keywords

STOP

215

ENDPROC end procedure

Purpose

This indicates the end of a procedure definition. See the keyword DEF for more

information.

Examples

1000 DEF PROCdash(param)

1010 REM print dashes lots of times

1020 REM in fact "param" dashes in total

1025 REM

1030 LOCAL counter

1040 FOR counter=1 TO param

1050 PRINT"-";

1060 NEXT counter

1070 ENDPROC

2010 DEF PROCtriangle(A,B,C,D,E,F)

2020 REM fill a triangle with colour

2050 MOVE A,B

2060 MOVE C,D

2070 PLOT 85,E,F

2100 ENDPROC

Description

Part of the DEF PROC...ENDPROC structure.

Syntax

ENDPROC

Associated keywords

DEF, FN, PROC, LOCAL

216

ENVELOPE

Purpose

The ENVELOPE statement is used with the SOUND statement to control the

volume and pitch of a sound while it is playing. All natural sounds change in

volume (loudness or amplitude); for example, the sounds from a piano start off

loudly and then fade away. An aircraft flying overhead starts off softly, gets

louder and then fades away.

The variation of amplitude (loudness) for the aircraft, as it flies overhead, looks

something like this:

This variation of amplitude with time is described as an ‘amplitude envelope’.

Some sounds change in pitch. For example, a wailing police siren:

This variation of pitch with time is called a ‘pitch envelope’.

The BBC Microcomputer can use both pitch and amplitude envelopes and these

are set up with the ENVELOPE statement.

Example

10 ENVELOPE 1,1,4,-4,4,10,20,10,127,0,0,-5,126,126

20 SOUND 1,1,100,200

217

Description

The ENVELOPE statement is followed by 14 parameters.

ENVELOPE

N,T,PI1,P12,PI3,PN1,PN2,PN3,AA,AD,AS,AR,ALA,ALD

Parameter Range Function

N 1 to 4 Envelope number

T bits 0-6 0 to 127 Length of each step in hundredths of a second

0 = auto-repeat pitch envelopebit 7 0 or 1

1 = don’t auto-repeat pitch envelope

PI1 -128 to 127 Change of pitch per step in section 1

PI2 -128 to 127 Change of pitch per step in section 2

PI3 -128 to 127 Change of pitch per step in section 3

PN1 0 to 255 Number of steps in section 1

PN2 0 to 255 Number of steps in section 2

PN3 0 to 255 Number of steps in section 3

AA -127 to 127 Change of amplitude per step during attack

phase

AD -127 to 127 Change of amplitude per step during decay

phase

AS -127 to 0 Change of amplitude per step during sustain

phase

AR -127 to 0 Change of amplitude per step during release

phase

ALA 0 to 126 Target level at end of attack phase

ALD 0 to 126 Target level at end of decay phase

The N parameter specifies the envelope number that is to be defined. It normally

has a value in the range 1 to 4. If the BASIC statement BPUT# is not being used

then envelope numbers up to and including 16 may be used.

The T parameter determines the length in hundredths of a second of each step of

the pitch and amplitude envelopes. The pitch envelope normally auto-repeats but

this can be suppressed by setting the top bit of T – ie using values of T greater

than 127.

The six parameters PI1, P12, P13, PN1, PN2 and PN3 determine the pitch

envelope. The pitch envelope has three sections and each section is specified with

two parameters: the increment, which may be positive or negative, and the

number of times the increment is to be applied during that section, that is the

number of steps. A typical pitch envelope might look like

218

In the above example T = one hundredth of a second.

PI1 = +10 PN1 = 12

PI2 = -5 PN2 = 27

PI3 = +50 PN3 = 3

The pitch envelope is added to the pitch parameter (P) given in the SOUND

statement. In the above example it must have been 40 since the pitch starts at

40. If bit 7 of the T parameter is zero then at the end of the pitch envelope, at a

time given by the equation

time = (PN1 + PN2 + PN3)*T hundredths of a second

the pitch envelope will be set to zero and will repeat automatically. Note that the

pitch can only take on values in the range 0 to 255 and values outside this range

are treated as MOD 256 of the value calculated.

The six parameters AA, AD, AS, AR, ALA and ALD determine the amplitude

envelope. Although the current internal sound generator has only 16 amplitude

levels the software is upward compatible with a generator having 128 levels.

The shape of the amplitude envelope is defined in terms of rates (increments)

between levels, and is an extended form of the standard ADSR system of

envelope control. The envelope starts at zero and then climbs at a rate set by AA

(the attack rate) until it reaches the level set by ALA. It then climbs or falls at

the rate set by AD (the decay rate) until it reaches the level set by ALD.

However, if AD is zero the amplitude will stay at the level set by ALA for the

duration (D) of the sound.

The envelope then enters the sustain phase which lasts for the remaining

duration (D) of the sound. The duration is set by the SOUND statement. During

the sustain phase the amplitude will remain the same or fall at a rate set by AS.

219

At the end of the sustain phase the note will be terminated if there is another

note waiting to be played on the selected channel. If no note is waiting then the

amplitude will decay at a rate set by AR until the amplitude reaches zero. If AR

is zero then the note will continue indefinitely, with the pitch envelope auto-

repeating if bit 7 of parameter T is zero.

A typical amplitude envelope might look like

In the above example T = one hundredth of a second.

ALA = 120

ADA = 80

AA = 30 (120 in four hundredths of a second)

AD = -4 (-40 in 10 hundredths of a second)

AS = 0

AR = -5 (-80 in 16 hundredths of a second)

Note that the amplitude cannot be moved outside the range 0 to 126.

Syntax

ENVELOPE <numeric>, <numeric>, <numeric>, <numeric>,

<numeric>, <numeric>, <numeric>, <numeric>, <numeric>,

<numeric>, <numeric>, <numeric>, <numeric>, <numeric>

Associated keywords

ADVAL, SOUND

220

EOF#

Purpose

This function is used to determine whether the end of the file has been reached or

not. The function returns the value 0 or -1. It returns the value -1 if the end of

the file has been reached. The number following EOF# is the channel number of

the file. Refer to chapter 31 for more information.

Examples

100 X=EOF# (channel)

200 REPEAT UNTIL EOF#(y)

Description

The function used to determine whether the end of the file has been reached or

not.

Syntax

<num-var>=EOF#(<num-var>)

Associated keywords

OPENIN, OPENUP, OPENOUT, EXT#, PTR#, PRINT#, INPUT#, BGET#, BPUT#,

CLOSE#

221

EOR Exclusive-OR

Purpose

This is a special logical operator often used to complement certain bits in a byte

selectively. Refer to the keyword AND for an introduction to the concepts

involved.

The process of Exclusive-OR tests whether the corresponding bits in two numbers

are the same or different. If the corresponding bits in the two numbers are

different then the resultant bit will be a one, if they are the same it will be a zero.

Another way of looking at this process is that it complements (changes 0 to 1 and

1 to 0) those bits in one number which are at logic 1 in the other number. Thus if

X is 0000 1100 0011 0000 1110 1011

Y is 1011 1111 0000 1010 0010 1000

Then

X EOR Y is 1011 0011 0011 1010 1100 0011

Examples

100 d%= A% EOR &FFFF00

200 R= X EOR Y

Description

An operator performing the operation of logical or bitwise Exclusive-OR between

the two operands.

Syntax

<num-var>=<numeric>EOR<numeric>

or

<testable condition>=<testable condition>EOR<testable condition>

Associated keywords

NOT, AND, OR

222

ERL error line number

Purpose

This enables the program to find out the line number where the last error

occurred. See chapter 27 for more information.

Examples

8500 X=ERL

8100 IF ERL=100 THEN PRINT "I didn't understand"

300 IF ERL=10000 THEN CLOSE#0

Description

A function returning the line number of the line where the last error occurred.

Syntax

<num-var>=ERL

Associated keywords

ON ERROR... , ON ERROR OFF, REPORT, ERR

223

ERR error

Purpose

If the computer finds an error that it cannot resolve, it may give up and report

the error on the screen. In addition it remembers an ‘error number’. For example,

if you try to calculate with numbers which are too large for the computer it will

report Too big and remember error number 20.

Pressing the ESCAPE key behaves as an error (error number 17) and you can

detect this and act on it if you wish.

It is possible to make the computer deal with most of these errors itself by

writing special sections of the program to deal with the inevitable! These sections

of the program need to know what the error was and where it occurred.

The function ERR enables your program to find the error number of the last error

which occurred. This is generally used to enable the program to respond helpfully

to an error caused by the user.

Examples

1000 wrong=ERR

100 IF ERR=17 THEN PRINT "YOU CAN'T ESCAPE!"

1230 IF ERR=18 THEN PRINT "You can't divide by

zero!"

Description

Returns the error number of the last error which occurred.

Syntax

<num-var>=ERR

Associated keywords

ON ERROR... , ON ERROR OFF, ERL, REPORT

224

EVAL evaluate

Purpose

This function is mainly used to enable the user to type an expression, such as a

mathematical equation, into the computer while a program is running.

For example, suppose that a program has to plot a graph; you need a way of

getting your equation into the computer while a program is running. In most

versions of BASIC this is very difficult to do. With the BBC BASIC the equation

is put into a string and then EVAL is used to tell the computer to work out the

string.

The function is not common in other versions of BASIC so a few more specific

examples are given of instructions which can be evaluated by the statement EVAL

A$.

A$="M*X+C"

A$="SIN(x/120)+COS(x/30)"

Note that EVAL can be used to evaluate functions (SIN , COS, SQR etc) but cannot

be used to execute a statement like MODE 4.

Examples

100 X=EVAL(A$)

234 value=EVAL (z$)

Description

A statement which applies the interpreter’s expression evaluation program to the

characters held in the argument string. An easy way to pass a function into a

program from a user input.

Syntax

<num-var>=EVAL(<string>)

or

<str-var>=EVAL(<string>)

Associated keywords

VAL, STR$

225

Demonstration program

10 INPUT A$

20 FOR X=1 TO 5

30 Y=EVAL(A$)

40 PRINT Y

50 NEXT X

>RUN

?5*X

 5

 10

 15

 20

 25

This second program makes the computer act as a calculator.

 5 REPEAT

10 INPUT B$

20 PRINT EVAL B$

30 UNTIL FALSE

>RUN

?3+4

 7

?SIN (RAD (45))

0.707106781

?

226

EXP exponent

Purpose

This mathematical function calculates e (2.7183…) raised to any specified power.

Examples

120 Y=EXP(X)

3000 pressure=EXP(height)

Description

A function returning e to the power of its argument.

Syntax

<num-var>=EXP(<numeric>)

Associated keywords

LN, LOG

227

EXT# extent

Purpose

This function finds out how large a particular file is. It only works with disc and

Econet filing systems – not with cassette files. The number returned is the

number of bytes allocated to the file. The file to be investigated must have been

opened during the OPENIN, OPENOUT or OPENUP statements. See chapter 31 for

more information on file handling.

Examples

100 X=EXT#(employee)

PRINT EXT# (N)

Description

A function which returns the length in bytes of the file opened on the channel

given in its argument.

Syntax

<num-var>=EXT#(<num-var>)

Associated keywords

CLOSE#, PTR#, INPUT#, PRINT#, BGET#, BPUT#, OPENIN, OPENUP, OPENOUT,

EOF#

228

FALSE

Purpose

Sometimes the computer has to decide whether or not something is true. For

example:

10 X=12

20 IF X=20 THEN PRINT "X EQUALS 20"

Clearly, in this example, the statement x=20 is false. As program will never print

X EQUALS 20 .

100 X=12

110 REPEAT

120 PRINT "HELLO"

130 UNTIL X=20

would repeatedly print HELLO because X will never be anything other than 12.

X=20 is FALSE. The same effect can be achieved by writing

110 REPEAT

120 PRINT "HELLO"

130 UNTIL FALSE

which means repeat for ever.

In fact, the computer has a numerical value of FALSE, which is zero. Thus

PRINT FALSE

will print 0.

Similarly

PRINT 5=4

will also print 0, since 5=4 is false.

It is often useful to say in a program for example

CLOCKSET = FALSE

and then later you can say

IF CLOCKSET THEN PRINT "THE CLOCK IS CORRECT"

229

Examples

100 oldenough = FALSE

245 UNTIL FALSE

Description

A function returning the value zero.

Syntax

<num-var>=FALSE

Associated keywords

TRUE

230

FN function

Purpose

FN preceding a variable name indicates that it is being used as the name of a

function. Both string and numeric functions may be defined. See the keyword

DEF and chapters 17 and 18 for a more detailed description of functions and

procedures.

Since a function always returns a value. It often appears on the right of an equal

sign or in a print statement. Procedures, on the other hand, do not return results.

Example

1000 DEF FNmean2(x,y)=(x+y)/2

Description

A reserved word used at the start of all user defined functions.

Syntax

DEF FN<variable-name>[(<num-var>| <str-var>{ , <num-var>| <str-

var>})]

Associated keywords

ENDPROC, DEF, LOCAL

231

FOR

Purpose

The word FOR is one of the words used in a FOR...NEXT loop. This makes the

computer execute a series of statements a specified number of times; for example

120 FOR X=1 TO 5

130 PRINT X

140 NEXT X

would print out the numbers 1, 2, 3, 4, 5.

The variable X in the above example initially takes on the value 1 and the

program then goes through until it reaches the word NEXT. The program then

returns to the line or statement FOR X=1 TO 5 and X is increased in value by

1. The program continues the loop, increasing the value of X in steps of 1, until X

reaches 5. After that, the program no longer loops; instead it moves onto the next

statement after the FOR...NEXT loop.

As an option the ‘step size’ can be changed. In the example above X increased by

1 each time around the loop. In the next example XYZ increases by 0.3 each time

around the loop.

230 FOR XYZ=5 TO 6 STEP 0.3

240 PRINT XYZ

250 NEXT XYZ

The above program would print out the numbers

 5

 5.3

 5.6

 5.9

The value of XYZ on exit from the above program would be 6.2.

The step size may be negative if you wish to make the value of the control

variable decrease each time around the loop.

870 FOR r2d2%=99 TO 60 STEP -12

880 PRINT r2d2%; "Hi there"

890 NEXT r2d2%

232

would print

 99Hi there

 87Hi there

 75Hi there

 63Hi there

The FOR...NEXT loop always executes once so

FOR D=5 TO 3: PRINT D: NEXT D

would print 5 and then stop.

Examples

300 FOR X=1 TO 16 STEP 0.3: PRINT X: NEXT X

1040 FOR A%=0 TO MAXIMUM%

560 FOR TEMPERATURE=0 TO 9

Description

A statement initialising a FOR...NEXT loop. This structure always executes at

least once. Any assignable numeric item may be used as the control variable but

integer control variables are about three times faster than real variables. Note

that when the step is non-integer, rounding errors may creep in and the value of

the control variable may well diverge significantly from the true arithmetic

value.

Syntax

FOR <num-var>=<numeric>TO<numeric>[STEP<numeric>]

Associated keywords

TO, STEP, NEXT

233

GCOL

Purpose

This statement sets the colour to be used by all subsequent graphics operations.

In other words it selects the graphics foreground colour and the graphics

background colour. It also specifies how the colour is to be placed on the screen.

The colour can be plotted directly, ANDed, ORed or Exclusive-ORed with the

colour already there, or the colour there can be inverted (reversed).

The first number specifies the mode of action as follows:

0 Plot the colour specified

1 OR the specified colour with that already there

2 AND the specified colour with that already there

3 Exclusive-OR the specified colour with that already there

4 Invert the colour already there

The second number defines the logical colour to be used in future. If the number

is greater than 127 then it defines the graphics background colour. If the number

is less than 128 then it defines the graphics foreground colour. See the keyword

COLOUR for more information.

Examples

100 GCOL 0,2

GCOL 3,129

Description

This statement is used to select the logical colours used by graphics statements.

Syntax

GCOL<numeric>, <numeric>

Associated keywords

CLS, CLG, MODE, COLOUR, PLOT

234

GET

Purpose

This function waits for a key to be pressed on the keyboard and then returns with

the ASCII number of the key pressed. See chapter 9 for a description of ASCII

numbers.

The GET function is used whenever the computer needs to wait for a reply from

the user before continuing.

Note that when using GET the character typed on the keyboard will not appear on

the screen. If you wish it to appear you must then ask the computer to print it.

Examples

1040 keyhit=GET

350 X=GET

Description

A function which waits for the next character from the input stream. The

function then returns the ASCII value of the character.

Syntax

<num-var>=GET

Associated keywords

GET$, INKEY, INKEY$

235

GET$

Purpose

The GET$ function waits for a key to be pressed on the keyboard and then

returns with a string containing the character pressed. See the previous keyword,

GET, for a similar function and for further explanation.

For example, at the end of a game program you may wish the computer to ask

the player whether or not he or she wants to go again. The demonstration

program below shows how this can be done.

Note that when using GET$ the character typed on the keyboard will not appear

on the screen. If you wish it to appear you must ask the computer to print it.

Example

1050 A$=GET$

Syntax

<string-var>=GET$

Associated keywords

GET, INKEY, INKEY$

Demonstration program

PRINT "Do you want to play another game";

2120 REM if user presses Y then

2130 REM go to line 100

2140 IF GET$="Y" THEN GOTO 100

2160 REM if it gets this far then the

2170 REM reply was not "Y" so give up!

2180 STOP

236

GOSUB go to a subroutine

Purpose

Often a group of lines in a program needs to be used in a number of different

places within the main program. Instead of repeating the same piece of program

several times you can make this small sub-section into a separate subroutine.

This subroutine can then be ‘called’ from a number of different places in the main

program by means of the statement GOSUB. The end of a subroutine is indicated

by the word RETURN. This causes the program to return to the statement after

the GOSUB statement.

Beware of a subroutine calling itself too many times: a depth of 26 subroutines is

the maximum that is allowed.

As with GOTO, it is possible to GOSUB to a calculated line number. The same

cautions that apply to GOTO apply to GOSUB in this case.

Example

1020 GOSUB 4000

Description

A statement used to call a section of program as a subroutine. One subroutine

may call another subroutine (or itself) up to a maximum nested depth of 26.

Syntax

GOSUB<numeric>

ON<num-var>GOSUB<numeric>{ , <numeric>} [ELSE<statement>]

Associated keywords

RETURN, ON

Demonstration program

First, here is a program to print out random phrases without using a subroutine:

100 REM A$ contains 7 words and each word

105 REM contains 5 characters - letters or spaces

110 A$="hand mouthear leg arm chestelbow"

120 FOR count=1 TO 10

125 REM pick a random number

130 R=RND(7)

237

140 REM and use it to pick a random word

150 B$=MID$(A$,5*R-4,5)

160 REM print a message

170 PRINT "My ";B$;" hurts"

180 REM get another random word

190 R=RND(7)

200 B$=MID$(A$,5*R-4,5)

210 REM and print out a second message

220 PRINT "Is your ";B$;" all right?"

230 NEXT count

Now look at the same program using a subroutine and with the REMs (remarks)

removed.

110 A$="hand mouthear leg arm chestelbow"

120 FOR count=1 TO 10

150 GOSUB 810

170 PRINT "MY ";B$;" hurts"

190 GOSUB 810

220 PRINT "Is your ";B$;" all right?"

230 NEXT count

240 END

810 B$=MID$(A$,5*RND(7)-4,5)

820 RETURN

The 7 in line 810 is there to select one of the seven words in A$. In line 810 both

the 5s are there because each word contains five letters or spaces. It is essential

that all the words contain the same number of characters.

Finally, here is the same program written with a string function, with REMs left

out and generally cleaned up.

110 A$="hand mouthear leg arm chestelbow"

120 FOR count=1 TO 10

170 PRINT "My ";FNword;" hurts"

220 PRINT "Is your ";FNword;" all right?"

230 NEXT count

240 END

800 DEF FNword= MID$(A$,5*RND(7)-4,5)

238

GOTO go to a line number

Purpose

This statement makes the computer jump to a specified line number instead of

continuing to the next one in the program. It changes the order in which the

computer executes a program.

Although GOTO is simple to use, do so with caution! It is all too easy to make a

program difficult to follow by using too many GOTOs. Following a program full of

GOTOs is like trying to disentangle a plateful of spaghetti and arrange it in a

straight line!

Adherents of ‘structured programming’ encourage program writers to use

structures like REPEAT...UNTIL and FOR...NEXT and to avoid most (but not

all) GOTO statements.

It is possible in this version of BASIC to GOTO a variable. In the following

example the destination variable is called ‘somewhere’:

10 somewhere=1005

20 GOTO somewhere

but this feature must be used with great care since the program cannot be

renumbered using the RENUMBER command.

Note that if the destination line number is to be calculated using a mathematical

expression then that expression must be in parentheses.

GOTO can be used as a command to start a program without destroying the

values assigned to the variables.

Examples

GOTO 330

100 IF X>5 THEN GOTO 2000

100GOTO (starts*55+14)

Description

A statement used to transfer control to a specified or calculated line number

unconditionally.

239

Syntax

GOTO<numeric>

ON<num-var>GOTO<numeric>{ , <numeric>} [ELSE<statement>]

240

HIMEM highest memory location

Purpose

BASIC uses the computer’s random access memory (RAM) to store the user’s

program, all the variables that the program uses, and memory for high-resolution

graphics displays.

In the absence of other instructions the computer divides the available memory

up logically. However there are occasions, particularly when changing display

modes and when writing machine code programs, when you may wish to tell

BASIC how to divide up the available memory.

One way of changing the allocation is by altering the value of the variable HIMEM.

This variable contains the address of the highest memory location that BASIC

uses for your program and variables. It is automatically set to just below the

memory used for the screen when the MODE is selected. Addresses above HIMEM

are not used by BASIC.

If it is manually altered then locations above HIMEM may be used by the

programmer for other things, for example for machine code subroutines.

If you wish to change the value of HIMEM you should normally do so very early in

your program – preferably right at the beginning. The beginning of the program

is also the place to select the display mode that you will be using.

Other important boundaries are PAGE, TOP and LOMEM. The memory map in

Appendix J gives an indication of their relative positions.

Note that in the ‘shadow screen’ mode, HIMEM always returns a value of &8000

(see chapter 42 for more details).

Examples

100 HIMEM=HIMEM-40

100 PRINT HIMEM

100 HIMEM = &2800

Description

HIMEM contains the address of the first byte that BASIC does not use. This

pseudo-variable must not be altered while executing a function or a procedure.

Alter it with great care! When using a second processor, or if the computer is

being used in shadow mode, HIMEM will not be altered when changing MODE.

241

Syntax

HIMEM=<numeric>

or

<num-var>=HIMEM

Associated keywords

LOMEM, PAGE, TOP

242

IF

Purpose

This sets up a test condition which can be used to control the subsequent action

of the computer.

Examples

100 IF month=12 THEN PRINT "December"

100 IF A=1 THEN PRINT "One" ELSE PRINT "Not one"

100 IF answer$="BANANA" THEN PROCfruit

100 IF height<1.94 OR age<18 THEN GOTO 1030

100 IF length <>5 THEN 2140

100 IF RATE=5 THEN Y=6:Z=8 ELSE PRINT "Wrong rate"

100 IF month=11 THEN IF day=5 THEN PRINT "Guy

Fawkes"

100 IF month=1 AND day=1 THEN PRINT "New Year"

100 IF X THEN Y=0

Description

A statement forming part of the IF...THEN...ELSE structure. The word THEN

is optional as is the ELSE section.

Syntax

IF <testable

condition>[THEN]<statement| numeric>[ELSE<statement| numeric>]

Associated keywords

THEN, ELSE

243

INKEY input the number of the key pressed

Purpose

This function waits for a specified time while constantly testing to see if a key

has been pressed on the keyboard.

If a key is pressed before the time runs out then the ASCII value of the key is

given. If no key is pressed in the given time then -1 is returned and the program

continues. See the keyword ASC for an explanation of ASCII values.

Note that a key can be pressed at any time before INKEY is used. All keys

pressed are stored in a buffer in the computer and a character is removed from

the buffer by, for example, the INPUT statement. You can clear the buffer of all

characters by giving the command

*FX 15,1

The number in parenthesis, after the word INKEY, gives the amount of time that

the computer must wait before giving up. The time is given in hundredths of a

second, and may have any value between 0 and 32767.

In addition, the function INKEY can be used to see if a key is actually pressed at

the instant the function is called. Normally pressing a key once enters the code

for that key into the keyboard buffer. If the key is kept down then it will

normally auto-repeat and further characters will be entered into the buffer.

However, when the buffer is read with INPUT or GET or INKEY, you will have no

idea how long the character has been waiting in the buffer. An alternative

statement is provided which actually tests the keyboard rather than the buffer.

INKEY with a negative number in the parenthesis, eg INKEY(-27) will enable

you to test to see whether a particular key is pressed at that instant. The number

in parenthesis determines which key you wish to test. The following table shows

the negative number to be used to test any particular key. Thus the letter L

would be tested with PRINT INKEY (-87) .

Examples

100 keynumber=INKEY(5)

220 result=INKEY(Y)

X=INKEY(100)

244

Description

A function which waits up to a specified time for a key to be pressed. The function

returns -1 if no key is pressed in the specified time, or the ASCII value of the key

pressed. The argument is the maximum time in hundredths of a second.

Syntax

<num-var>=INKEY(<numeric>)

Associated keywords

GET, GET$, INKEY$

245

Key Number Key Number

f0 -33 1 -49

f1 -114 2 -50

f2 -115 3 -18

f3 -116 4 -19

f4 -21 5 -20

f5 -117 6 -53

f6 -118 7 -37

f7 -23 8 -22

f8 -119 9 -39

f9 -120 0 -40

A -66 - -24

B -101 ^ -25

C -83 \ -121

D -51 @ -72

E -35 [-57

F -68 – -41

G -84 ; -88

H -85 : -73

I -38] -89

J -70 ’ -103

K -71 . -104

L -87 / -105

S -82 Space bar -99

M -102 ESCAPE -113

N -86 TAB -97

O -55 CAPS LOCK -65

P -56 CTRL -2

Q -17 SHIFT LOCK -81

R -52 SHIFT -1

T -36 DELETE -90

U -54 COPY -106

V -100 RETURN -74

W -34
 -58

X -67 � -42

Y -69 � -26

Z -98
 -122

246

INKEY$ input the character pressed

Purpose

This function waits for a specified time while constantly testing to see if a key

has been pressed on the keyboard. If a key is pressed before the time runs out

then the letter or number pressed is placed in the string variable. If no key is

pressed in the given time then an empty string is returned and the program

continues.

Note that a key can be pressed at any time before INKEY$ is used. All keys

pressed are stored in a buffer in the computer and a character is removed from

the buffer by, for example, the INPUT statement. You can clear the buffer of all

characters by giving the command

*FX 15,1

The number in parenthesis, after the word INKEY$, gives the amount of time

that the computer must wait before giving up. The time is given in hundredths of

a second.

Examples

120 letter$=INKEY$(0)

384 result$=INKEY$(100)

920 X$=INKEY$(Y)

Description

A function which waits for a key to be pressed within a specified period of time.

The function returns a null string if no key is pressed in the specified time. If a

key is pressed the string returned consists of the single character pressed. The

argument is the maximum time in hundredths of a second.

Syntax

<string-var>=INKEY$(<numeric>)

Associated keywords

GET, GET$, INKEY

247

INPUT to put information into the computer

Purpose

When a computer program is running there is often a need to get numbers or

words from the outside world into the computer so that it can do calculations on

these numbers or words. The statement INPUT is used for this purpose. There

are a number of options:

100 INPUT X

will print a question mark on the screen and wait for the user to type in a

number. This is not very ‘friendly’ – often it would be helpful to print a message

on the screen before waiting for the user to type his/her reply. This can be done in

two ways:

340 PRINT "How old are you";

350 INPUT AGE

or more simply

340 INPUT "How old are you",AGE

If you do not wish the computer automatically to print a question mark then omit

the comma between the message to be printed out and the variable to be filled in.

340 INPUT "How old are you" AGE

Often you may want to input several values one after the other. This can be done

by placing the variables after each other, but separated by commas, thus:

560 INPUT "Pick three numbers",X,Y,Z

When replying the user separates the values entered either with commas or by

pressing the RETURN key after entering each value. The numbers that are typed

in are placed in the appropriate variables – X, Y and Z in the example above.

The above examples all required numbers to be supplied by the user. You can

INPUT words as well.

250 INPUT "What is your name", NAME$

You can INPUT more than one string at a time if you wish by using

200 INPUT "Town" ,A$,"Country",B$

248

INPUT LINE A$ will accept everything that is typed in including leading spaces

and commas, and will place everything into A$.

INPUT may be used with TAB in the same way that PRINT can be. For example

300 INPUT TAB(3,12) "number please" X

SPC can be used also, to insert spaces.

A semi-colon can replace a comma. Either a semi-colon or a comma will cause the

computer to print a question mark when waiting for the variable to be filled.

Description

A statement to input values from the current input stream. The question mark

prompt may be suppressed by omitting the comma following the prompt string.

INPUT strips leading spaces off strings.

Syntax

INPUT[<string-const>][; | ,]<num-var>| <string-var>{ , <num-

var>| <string-var>}

Associated keywords

INPUT#, LINE , TAB, SPC

249

INPUT# put information into the computer from

cassette or disc

Purpose

It is possible to record data (numbers and words) on cassette or disc where they

can be stored for later use. The statement INPUT# is used to read the data back

into the computer from the cassette or disc. See chapter 31 on file handling for

more information.

Examples

1200 INPUT# channel, date, name$, address$

3400 INPUT#X,U,V,W$

Description

A statement which reads data in internal format from a file and places the data

in the stated variables.

Syntax

INPUT#<num-var>, <num-var>| <string-var>{ , <num-var>| <string-

var>}

Associated keywords

OPENIN, OPENUP, OPENOUT, EXT#, PTR#, PRINT#, BGET#, BPUT#, CLOSE#

250

INSTR in string

Purpose

To search one string for any occurrence of another string, for example to see if

one word contains another specific word.

The search normally starts from the beginning of one string but as an option the

search can start from a specified point along the string.

The number returned is the string position of the second string in the first string.

The leftmost character position is position number 1. If no match is found then

zero is returned. A search for a null string

X=INSTR("Sunday","")

will always return 1.

Examples

240 X=INSTR(A$,B$)

puts the position of B$ in A$ into X.

180 Y=INSTR(A$,B$,Z)

starts search at position Z.

PRINT INSTR("HELLO","L")

would print 3.

Description

A function which returns the position of a sub-string within a string. The starting

position for the search may be specified. There must be no space between INSTR

and the first parenthesis.

Syntax

<num-var>=INSTR(<string>, <string>[, <numeric>])

Associated keywords

LEFT$, MID$, RIGHT$, LEN$

251

INT integer part

Purpose

This converts a number with a decimal part to a whole number. This function

always returns a whole number smaller than the number supplied. Thus

INT(23.789) gives 23 whereas INT(-13.3) returns -14.

Examples

200 X = INT(Y)

1050 wholenumber=INT (decimalnumber)

330 pence=INT(cost * markup/quantity)

Description

INT is a function converting a real number to the lower integer.

Syntax

<num-var>=INT <numeric>

252

LEFT$ left string

Purpose

To copy part of a string starting at the left of the source string. For example if

A$="CATASTROPHE"

then

PRINT LEFT$(A$,3)

would give CAT, namely the left three characters of A$.

Examples

100 INDEX$=LEFT$(WHOLEname$,4)

3000 U$=LEFT$(H4$,value)

Description

A string function which returns the left n characters from a string. If the source

string is too short then the function returns with as many characters as there are

in the source string. There must be no space between LEFT$ and the first

parenthesis.

Syntax

<string-var>=LEFT$(<string>, <numeric>)

Associated keywords

RIGHT$, MID$, LEN, INSTR

Demonstration program

This prints out letters in a pattern.

10 PRINT "What is your full name";

20 INPUT name$

30 FOR X = 1 TO LEN(name$)

40 PRINT LEFT$(name$,X)

50 NEXT X

>RUN

253

What is your full name?JOHN A COLL

J

JO

JOH

JOHN

JOHN

JOHN A

JOHN A

JOHN A C

JOHN A CO

JOHN A COL

JOHN A COLL

254

LEN length (of a string)

Purpose

This function counts the number of characters in a string. For example

K=LEN("FRIDAY ")

would give K=7 since there are six letters in "FRIDAY" and it is followed by a

space.

This function is often used with a FOR...NEXT loop to do something once for

each letter in a string. For example, we might wish to encode a word by replacing

each letter with its successor in the alphabet so that, for example, "FRIDAY"

would become "GSJEBZ" . See the demonstration program.

Examples

100 X=LEN(A$)

2350 length=LEN(main$)

Description

This function returns the length of the string given as the argument.

Syntax

<num-var>=LEN(<string>)

Associated keywords

LEFT$, MID$, RIGHT$, INSTR

Demonstration program

300 PRINT "Type in your word";

310 INPUT A$

320 Length=LEN(A$)

325 C$=""

330 FOR V=1 TO length

340 B$=MID$(A$,V,1)

350 C$=C$+CHR$(ASC(B$)+1)

360 NEXT V

370 PRINT "The coded version is ";C$

In the above program each letter is copied one at a time into B$. Then its ASCII

255

value is calculated, 1 is added to the ASCII value and the new ASCII value is

converted back into a character which is then added onto C$. See the keyword

ASC for more information about the ASCII code.

256

LET

Purpose

In BASIC we often write things like

X=6

meaning put 6 into the box labelled X in the computer. The fact that we are

changing the contents of the variable X can be made clearer by writing

LET X=6

The statement X=X+6 is impossible in mathematical terms. How can something

be the same as itself plus 6? In BASIC though it is quite legal to say LET X=X+6

since the instruction simply means

‘store in the variable X whatever is already there plus 6’, or ‘increase the value of

X by 6’.

The word LET is optional, but its use makes the program more readable.

Examples

100 LET length=15

980 LET DAY$ ="Tuesday"

210 IF A=6 THEN LET length=12

Description

LET is an optional assignment statement.

Note: LET may not be used during the assignment of the pseudo-variables

LOMEM, HIMEM, PAGE, PTR#, TIME.

Syntax

[LET]<var>=<expression>

257

LIST

Purpose

This command makes the computer list whatever program it has in its memory.

It is often used before typing RUN to ensure that there aren’t any typing errors in

the program just entered.

You can list a single line

LIST 280

or a range of lines

LIST 100,450

or the whole program

LIST

LIST ,400 will list all lines up to and including line 400.

LIST 400, will list all lines beyond line 400.

If you have a very long program you may see the whole listing whiz past before

you have time to read it. To stop it, and to make the computer stop at the bottom

of each page you can type CTRL N (while holding down the key marked CTRL

press the letter N). Then type LIST . This is called ‘page mode’ and the computer

stops at the bottom of each page. The next page will be printed when the SHIFT

key is pressed.

To return to ‘scroll mode’ type CTRL O (hold CTRL down while briefly pressing

O). Pressing CTRL and SHIFT together immediately pauses a listing, and

pressing ESCAPE will stop a listing so that corrections can be made to the

program.

If you want a listing on the printer then you can turn the printer on by typing

CTRL B before typing LIST .

To turn the printer off afterwards type CTRL C.

LIST is a command and cannot be used as part of a program or as part of a

multiple statement line.

The layout of programs as listed can be controlled by the command LISTO (see

next entry). As an option, the computer can be instructed to insert spaces for the

duration of all FOR...NEXT and REPEAT...UNTIL loops.

258

Examples

LIST

LIST 400

LIST 400,500

LIST ,900

LIST 900,

Description

A command which lists the current program.

Syntax

LIST [,][<num-const>][,][<num-const>]

Associated keywords

NEW, OLD, LISTO

259

LISTO list option

Purpose

When a program is listed on the screen or the printer, it is often convenient to

show all loops within the program indented. LISTO can be used to control the

way that the LIST command displays a program on the screen. It can cause the

computer to insert spaces in three situations:

– After the line number.

– During FOR...NEXT loops.

– During REPEAT...UNTIL loops.

The number following LISTO should be in the range 0 to 7.

0 Implies no inserted spaces.

1 Implies a space after the line number.

2 Implies spaces during FOR...NEXT loops.

4 Implies spaces during REPEAT...UNTIL loops.

The numbers which select each option (1, 2 or 4) can be added together to select

multiple options. If spaces were required during FOR...NEXT and

REPEAT...UNTIL loops then LISTO6 would be selected. LISTO7 puts a space

after the line number and double spaces for FOR...NEXT and REPEAT...UNTIL

loops.

The most common options are LISTO0 and LISTO7 .

When editing programs using the cursor editing keys it is strongly advised that

you use the LISTO0 option or else you will COPY in a lot of extra space.

Description

LISTO affects the print format produced by subsequent LIST commands. Bit 0

of the argument controls the single space after the line number; bit 1 the double

space in FOR...NEXT loops; bit 2 the double space in REPEAT...UNTIL loops.

Syntax

LISTO<num-const>

Associated keywords

LIST

260

LN natural logarithm

Purpose

A mathematical function to calculate logarithms to the base e – usually called

‘natural logarithms’.

Examples

100 X=LN(temp)

3000 H5=LN(REDOXpotential)

Description

A function returning the natural logarithm of its argument. Inverse logarithms

(anti-logarithms) can be calculated by using

antilog = EXP(log)

Syntax

<num-var>=LN<numeric>

Associated keywords

LOG, EXP

261

LOAD

Purpose

To load a program into the computer from cassette tape, disc or Econet,

whichever is the current filing system. For example

LOAD "GAME1"

Once the program has been loaded, type RUN to start it.

When you use the word LOAD, the computer forgets any previous program it had

in memory and also the values of all variables.

If you are loading from disc then the file name (enclosed in quotes) must be a

string of not more than seven characters in length (or ten characters for the

Advanced Disc Filing System). If a disc directory is specified then you do this by

putting the directory character before the file name, like this:

LOAD "B.GAME1"

If you wish to load from a drive other than the one currently selected then the

drive number also is included in the quotes preceded by a colon. For example

LOAD ":0.D.GAME1"

will load a file called GAME1 in directory D from drive 0.

If you are loading from cassette, then the computer will show the name of each

section of the program as it finds it on the cassette. The file name (enclosed in

quotes) may be up to ten characters in length. LOAD"" (with no file name) will

load the next program found on cassette, whatever its name. This does not work

on disc or Econet or other filing systems.

LOAD does not run a program. It just loads a file into memory. It clears all

variables except A% to Z% and @%. The command LOAD cannot be used in a

program.

The statement CHAIN can be used in a program (or as a command) to load

another program and to start that program running automatically.

Examples

LOAD "STARWARS"

LOAD "MYPROG"

262

Description

The command LOAD deletes the current program, clears all variables except the

resident integer variables and then loads a new program from the current filing

system. The program to be loaded must be in internal format.

Since LOAD is a command it cannot form part of a multiple statement line.

Syntax

LOAD<string>

Associated keywords

SAVE, CHAIN

263

LOCAL

Purpose

This informs the computer that the named variables are ‘local’ to the procedure

or function in which they occur; their use in this procedure or function in no way

affects their value outside it. See the keyword DEF for more information.

Example

560 LOCAL X,Y,A$,B$

Description

A statement which can only be used inside a procedure or function definition.

LOCAL saves the values of the external variables named and restores these

original values when the function or procedure is completed.

Syntax

LOCAL<string-var>|<num-var>{, <string-var>|<num-var>}

Demonstration procedure

780 DEF PROCdrawTRIANGLE(size)

790 LOCAL X1,X2,Y1,Y2

800 X1=320-size

810 X2=320+size

820 Y1=256-size

830 Y2=256+size

840 MOVE X1,Y1

850 DRAW X2,Y1

860 DRAW 320,Y2

870 DRAW X1,Y1

880 ENDPROC

Associated keywords

DEF, ENDPROC, FN, PROC

264

LOG logarithm

Purpose

A mathematical function to calculate the common logarithm of a number to base

10.

Examples

100 Y=LOG (y)

440 pressure=LOG(speed)

Description

A function giving the common logarithm to base 10 of its argument. Inverse

logarithms (anti-logarithms) can be calculated by using

antilog = 10^log

Syntax

<num-var>=LOG<numeric>

Associated keywords

LN, EXP

265

LOMEM
Purpose

Different sections of the computer’s memory are used for different purposes.

Normally BASIC makes an intelligent decision about where to store the numbers

that the user calls X and Y etc. In fact it stores these variables immediately after

the user’s program. You can change the place where it starts to store these

variables by changing the value of LOMEM, but this must be done right at the

beginning of the program.

The variable LOMEM gives the address of the place in memory above which the

computer stores all its variables (except for the resident integer variables @% and

A% to Z%.

LOMEM is normally set to be the same as TOP which is the address of the top of

the user program. See the keyword HIMEM and the memory map in Appendix J

for more details.

Do not accidentally move LOMEM in the middle of a program – the interpreter will

lose track of all the variables that you are using.

Examples

100 LOMEM=TOP+&100

PRINT LOMEM

PRINT ~LOMEM

Note: The ~ tells the computer to print the value in hexadecimal.

Description

A pseudo-variable which sets the place in memory above which the BASIC

interpreter stores dynamic variables – those that are created and destroyed as

required. Space is always set aside for the resident variables @% to Z%. Normally

LOMEM is set equal to TOP which contains the address of the end of the user

program.

Moving LOMEM in the middle of a program will cause loss of all variables.

Syntax

LOMEM=<numeric>

or

<num-var>=LOMEM

Associated keywords

HIMEM, TOP, PAGE

266

MID$

Purpose

To copy part of one string into another string. For example, if

demo$="DOGMATIC"

then the middle part of demo$, starting at position four and going on for three

letters, ie

MID$(demo$,4,3)

would equal MAT. In fact MID$ can be used to copy any part of a string – not just

the middle part. Thus

MID$(demo$,1,3)

would equal DOG and

MID$(demo$,5,4)

would be ATIC .

This string function is very useful for selecting one word out of a long line. There

is a demonstration program under the keyword GOSUB and another under the

keyword LEN.

If the last number is omitted then the function returns with the rest of the string.

Example

RESTofLINES=MID$(main$,10)

Description

A string function which returns a sub-section of the first argument’s string. The

second argument gives the starting position and the third argument gives the

number of characters to be copied. If the source string is too short then the

function returns as many characters as possible from the starting position.

Syntax

<string-var>=MID$(<string>, <numeric>[, <numeric>])

Associated keywords

LEFT$, RIGHT$, LEN, INSTR

267

MOD modulus

Purpose

The function MOD gives the remainder after division. When doing division with

whole numbers (I emphasise – with whole numbers) it is sometimes useful to

know the remainder. For example 14 divided by 5 leaves a remainder of 4

(14=2*5+4). Similarly

PRINT 14 MOD 5

would print 4. The whole number part of the above division is given by the

function DIV . Thus

PRINT 14 DIV 5

would print 2.

Notice that the result of both DIV and MOD is always a whole number.

In fact all numbers used in the calculation of the function are first converted to

integers (using internal truncation) before the computer calculates the result.

Thus

14 DIV 5 gives 2

14.6 DIV 5.1 gives 2

14 MOD 5 gives 4

14.6 MOD 5.1 gives 4

The second example (14.6 DIV 5.1) is really the same as the first. However

14.6 DIV 4.9 gives 3 and

14.6 MOD 4.9 gives 2

are quite different. In effect the computer sees them as

14 DIV 4

14 MOD 4

Examples

100 LET X=A MOD B

PRINT length MOD 12

268

Description

A binary operation giving the signed remainder of an integer division. MOD is

defined such that

A MOD B = A-((A DIV B)*B)

Syntax

<num-var>=<numeric>MOD<numeric>

Associated keywords

DIV

269

MODE graphics mode

Purpose

This statement is used to select which display MODE the computer is about to

use. Changing MODEs clears the screen.

Mode Graphics Colour Text

0 640x256 Two colour display 80x32 text

1 320x256 Four colour display 40x32 text

2 160x256 16 colour display 20x32 text

3 Two colour text only 80x25 text

4 320x256 Two colour display 40x32 text

5 160x256 Four colour display 20x32 text

6 Two colour text only 40x25 text

7 Teletext display 40x25 text

MODE 7 uses the Teletext standard display characters. These cannot be changed

by the user. Since these characters differ slightly from the standard ASCII set

you will find that a number of characters on the screen do not correspond to those

printed on the keys. For example a left hand square bracket will be displayed as

an arrow.

In MODEs 0 to 6 the character set can be changed by the user. See VDU23 in

chapter 34.

You cannot change MODE inside a procedure or function.

MODEs 128 to 135 are the ‘shadow’ equivalents of MODEs 0-7. See chapter 42 for

more details.

Examples

10 MODE 5

MODE 7

Description

A statement used to select the display MODE ,which may not be used in a

procedure or function. MODE resets the value of HIMEM, except when a second

processor is in use, or when the computer is operating in the shadow screen

mode.

270

Syntax

MODE<numeric>

Associated keywords

CLS, CLG, HIMEM

271

MOVE

Purpose

This statement moves the graphics cursor to a particular absolute position

without drawing a line. For example to move to a point 100 points across the

screen and 300 points up the screen one would say

MOVE 100,300

Examples

1050 MOVE 100,300

MOVE X,Y

Description

To move the graphics cursor to a new position without drawing a line. This

statement is identical to PLOT4.

Syntax

MOVE<numeric> , <numeric>

Associated keywords

DRAW, MODE, GCOL, PLOT

272

NEW

Purpose

To ‘remove’ a program from the computer’s memory. In fact the program is still

there but the computer has been told to forget about it. If you want to, you can

usually recover the old program by typing OLD. This only works if you have not

entered any part of another program.

NEW is normally used as a command before typing in a new program - to ensure

that the computer has forgotten all its previous instructions.

NEW does not clear any of the resident integer variables A% to Z% or @%.

Example

NEW

Description

A command which resets internal pointers to ‘delete’ all program statements. The

program may be recovered with OLD provided no new statements have been

entered and no new variables have been created. Since it is a command it cannot

form part of a multiple statement line.

Syntax

NEW

Associated keywords

OLD

273

NEXT

Purpose

This is used in conjunction with FOR to make the computer loop around a set of

statements a number of times.

If the loop is opened with (for example)

FOR speed=10 TO 100

then the NEXT statement would normally be in the form

NEXT speed

but the word speed is optional.

Example

340 length=100

350 FOR X=0 TO 640 STEP 2

360 Y=2*length+250

370 DRAW X,Y

380 NEXT

Description

A statement delimiting FOR...NEXT loops. The control variable (X in the last

example) is optional.

If a variable is given after NEXT then the computer will ‘pop’ other FOR...NEXT

loops off the ‘stack’ until it finds a matching variable. If none is found, an error

will be reported.

Syntax

NEXT[<num-var>], [<num-var>], ...

Associated keywords

FOR, TO, STEP

274

NOT

Purpose

This is normally used with an IF...THEN statement to reverse the effect of

some test.

Example

680 IF NOT (A=6 AND B=5) THEN PRINT "WRONG"

If A=6 and B=5 then the computer will not print WRONG.

Description

NOT is a high priority unary operator equivalent to unary minus.

Syntax

<num-var>=NOT<numeric>

or

<testable condition>=NOT(<testable condition>)

275

OLD

Purpose

To recover a program which has been recently deleted by NEW or by pressing the

BREAK key. Programs can only be recovered if no program lines have been

entered and if no new variables have been created since the program was deleted.

If you get the message Bad program , then type NEW again.

Typing NEW or pressing BREAK are quite drastic moves. OLD will do its best to

recover your program but will not always succeed fully. In particular if the first

line number in your program is greater than 255 then it will get that one line

number wrong. The ESCAPE key provides a clean method of stopping a

program. BREAK is much more violent and should be avoided.

Example

OLD

Description

A command which undoes the effect of NEW.

Syntax

OLD

Associated keywords

NEW

276

ON

Purpose

To alter the order in which BASIC executes a program by jumping to one of a

selection of lines depending on the value of a particular variable. The word ON is

used with three other keywords GOTO, GOSUB and ERROR. For example:

ON value GOTO 800,920,100 ELSE 7300

ON result GOSUB 8000,8300,120,7600

ON ERROR GOTO 9000

ON ERROR GOSUB 2001

First:

ON X GOTO 1100,1210,1450,1600,1950

If the value X is equal to 1 then the program will go to line 1100. If X=2 then the

program will go to line 1210. If X=3 then line 1450 and so on.

What is it used for? Suppose that you are counting coins put into a machine and

you want to offer different things if one, two or three coins are put in. The

program which follows illustrates, in outline, how ON GOTO will help.

450 REM the variable COINS gives the number

460 REM of coins inserted

500 ON COINS GOTO 550,600,650

550 PRINT "One coin buys a biscuit"

560 REM gives him a biscuit somehow

590 GOTO 1000

600 PRINT "Two coins can buy tea or coffee"

610 GOTO 1000

650 PRINT "Three coins can buy a piece of cake"

660 REM something else in here as well

690 GOTO 1000

1000 REM all the routines end up here

Secondly:

ON X GOSUB 2200,2300,2400,2500

ON can also be used with GOSUB instead of GOTO. See GOSUB for an explanation of

subroutines.

ON X GOSUB provides a neat way of using different subroutines in different

situations.

277

An ELSE clause can be included at the end of ON GOTO and ON GOSUB to trap

out of range values without causing an error.

Thirdly:

ON ERROR GOTO

ON ERROR OFF

If the computer detects an error in your program or in the disc drives or anything

else that it can’t handle, then it produces an error. In other words it complains

and stops. The complaint takes the form of a message on the screen - for example

Too big .

Sometimes it is vital that the computer looks after such situations without

troubling the user. The statement ON ERROR GOTO 7000 ensures that if an

error occurs the computer does not complain and does not stop. Instead it goes to

a section of program at line 7000 (in this case) which has been specially written

to get the computer out of the mess it is in. This section of program may have to

give the user instructions like Please enter a smaller number or it may be

able to sort out the problem in some other way.

How well this ‘error trapping’ works depends on the skill of the programmer in

thinking of every possible thing that can go wrong. You will soon re-discover

Murphy’s Law:

‘If anything can go wrong, it will.’

Good error handling is vital in all programs for use by non-specialists - and that

means most people!

The statement ON ERROR OFF lets the computer deal with errors once again -

cancelling the effect of ON ERROR GOTO.

Examples

40 ON ERROR GOTO 9000

50 ON ERROR PRINT "The computer is confused"

10 ON ERROR GOSUB 2000

Description

A statement providing multiple options in changing the order of execution of a

program, and error trapping.

278

Syntax

ON<num-var>GOTO<numeric>{ , <numeric>} [ELSE<statement>]

or

ON<num-var>GOSUB<numeric>{ , <numeric>} [ELSE<statement>]

or

ON ERROR<statement>

or

ON ERROR OFF

Associated keywords

GOTO, GOSUB, ELSE

279

OPENIN open file for input to computer (from

cassette, disc or Econet)

Purpose

To tell the computer that the program wishes to read data (words and numbers).

Reading data in is quite a complicated procedure for the computer and it needs

advance warning when you wish to do so. The advance warning is given by the

OPENIN keyword.

One use of this facility is to store names and addresses on file (eg the cassette or

disc) and to read the file in each time you want to use it. After you have corrected

it you can then transfer it back to disc (using OPENOUT) where it will be saved for

future use. Further information about cassette, disc and Econet files is provided

in chapter 31.

A typical example of the use of OPENIN is

X=OPENIN("cinemas")

This informs the computer that you will shortly want to read data in from a file

which is recorded under the name ‘cinemas’. The file name is ‘cinemas’.

In accepting this instruction the computer allocates a ‘channel’ to this operation.

It is as if it said ‘OK that information will be provided on telephone number 6’. It

makes X=6 (or whatever number it decides). In all future operations on that file

you must refer to it as channel X (channel 6 in this example).

You get the actual data into the computer by using either BGET#X or INPUT#X

as the demonstration program on the next page indicates.

Example

230 file=OPENIN("census")

Description

A function which attempts to open a file for input or random access. In a disc or

Econet environment if a file already exists with the correct name it will be

opened for reading.

The function returns the channel number allocated by the computer’s filing

system. If the file does not exist then zero is returned.

280

Syntax

<num-var>=OPENIN(<string>)

Associated keywords

OPENOUT, OPENUP, EXT#, PTR#, INPUT#, PRINT#, BGET#, BPUT#, EOF#, CLOSE#

Demonstration program

 10 REM to read in the names of 10 cinemas from

 20 REM disc assuming of course that you put

 30 REM them there sometime before!

 50 REM dimension a string array of 10 slots

 60 DIM cine$(10)

 90 REM open the file

100 channel=OPENIN ("CINEMA")

110 REM and read in the ten cinema names

120 FOR X=1 TO 10

130 INPUT# channel, cine$(X)

140 NEXT X

150 REM that's the information in

160 REM do whatever you want with it!

281

OPENOUT open file for output to cassette, disc

or Econet

Purpose

This opens a cassette or disc file for output. Before you can record data (rather

than programs) you have to open a file. More information about files is given in

chapter 31.

OPENOUT is used to inform the computer that you wish to record data on cassette

or disc. The computer allocates a channel to the operation.

When working with discs or over Econet then if a file already exists with that

name it will be deleted. If no file exists then a new one will be created.

Example

330 X=OPENOUT("cinemas")

Description

A function which returns the channel number allocated to an output file.

If a file of the same name exists then that file will first be deleted. If no file exists

then one will be created.

Syntax

<num-var>=OPENOUT(<string>)

Associated keywords

OPENIN, OPENUP, PTR#, EXT#, INPUT#, PRINT#, BGET#, BPUT#, EOF#, CLOSE#

282

OPENUP open a file for update

Purpose

This statement can be used with disc or Econet systems to open a file for update

– that is, simultaneous reading and/or writing. With Econet, only one user may

open a file for writing at any one time and therefore OPENUP should only be used

in single user environments.

If a file of the given name exists already then that file will be opened without any

changes taking place to the file. If no file of that name exists then OPENUP will

fail to open the file requested.

OPENUP is normally used with random access files on disc or on the Level 2

Econet filing systems.

Example

500 Y% = OPENUP("DATA")

Description

A function which returns the channel number allocated to a file opened for both

reading and writing. The file must exist before this function can be used.

Syntax

<num-var>=OPENUP(<string>)

Associated keywords

OPENIN, OPENOUT, PTR#, EXT#, INPUT#, PRINT#, BGET#, BPUT#, EOF#, CLOSE#

283

OPT option

Purpose

This statement determines what output is produced on the screen when assembly

language routines are processed by the BASIC interpreter. An understanding of

the operation of assemblers is required to understand the following.

During assembly two common errors can occur: Branch out of range and

Unknown label .

The latter will occur during pass one for all forward references. It is therefore

often desirable to turn off assembler error messages during pass one.

The statement OPT is followed by a number in the range 0 to 7, with the

following results:

0 Assembler errors suppressed, no listing.

1 Assembler errors suppressed, listing.

2 Assembler errors reported, no listing.

3 Assembler errors reported, listing.

Options 4, 5, 6 and 7 behave exactly as options 0, 1, 2 and 3 except that the code

can be placed at a different location from that at which it is intended to execute.

With options 4 to 7 the variable P% controls the program counter during

assembly, and the variable O% gives the memory location where the code is

placed.

The OPT statement can only occur inside the square brackets which enclose

Assembly Language commands. OPT is set to 3 every time the BASIC interpreter

finds a [. Do not confuse it with *OPT which is described in chapter 43.

Examples

200 OPT 1

350 OPT (pass*2+list)

Description

An assembler pseudo-operation controlling the output during assembly. OPT is

followed by an expression as detailed above.

284

Syntax

OPT<numeric>

Demonstration program

10 oswrch=&FFEE

20 DIM memory% 100

30 FOR Z=0 TO 3 STEP 3

35 P%=memory%

40 [OPTZ

50 .start LDA#ASC"!"

60 LDX #40

70 .loop jsr oswrch

80 dex:BNE loop

90 rts:] NEXT Z

100 CALL start

110 END

285

OR

Purpose

To enable one condition or another condition to determine what happens next.

The OR operator can be used either as a ‘logical OR’ or as a ‘Boolean OR’. See the

keyword AND for details of logical and Boolean operators.

Example

75 IF X=6 OR date>20 THEN PRINT "Good"

Description

An operator performing Boolean integer logical OR between two numerics.

Syntax

<num-var>=<numeric>OR<numeric>

Associated keywords

AND, EOR, NOT

286

OSCLI operating system command line interpreter

Purpose

It is very useful in a BASIC program to be able to send commands to the

operating system. Such commands might include *FX commands followed by two

numbers. When the program is written you do not always know which numbers

are to follow the *FX statement. However, you cannot substitute variables such

as X and Y directly after the *FX because these variables are not known to the

command line interpreter but are only known to the BASIC language. Thus the

statement

X=5:Y=3:*FX X,Y

would be meaningless to the operating system. The statement OSCLI provides a

neat way of passing variables to the operating system in such cases. OSCLI is

followed by a string variable which is set to contain the values to be passed to the

operating system. Note that numbers must be converted to string form by using

the STR$ function; the above example would work correctly with the following.

10 X=5

20 Y=3

30 A$="FX "+STR$X+","+STR$Y

40 OSCLI A$

Examples

10FN$="XYZ" : REM FILE NAME

20 START%= &4000 : REM START OF CODE

30 FINISH%= &6000 : REM END OF CODE

40 EXECADD%= &5000 : REM EXECUTION ADDRESS

300 OSCLI "SAVE "+FN$+" "+STR$~(START%)+"

"+STR$~(FINISH%)+" "+STR$~(EXECADD%)

Note that no * is needed in the string.

Description

A statement which passes its string argument to the operating system command

line interpreter.

287

Syntax

OSCLI<string>

Associated keywords

STR$, CHR$

288

PAGE

Purpose

PAGE is a variable which gives the address in memory where BASIC has stored

(or will store) the user’s program. This is usually automatically set to be the

lowest available address in the computer’s Random Access Memory but can be

changed by the user.

PAGE can be used to enable the computer to store two different programs at the

same time in different areas of memory. Use with care.

Examples

PRINT PAGE

10 PAGE=&5000

20 PRINT ~PAGE

235 PAGE=TOP+1000

Description

A pseudo-variable giving the address used by the interpreter for the start of the

user program. The least significant byte of PAGE is always set to zero by the

computer. In other words user programs always start on a ‘page’ boundary where

one page is 100 bytes hex (256 bytes decimal).

Syntax

PAGE=<numeric>

or

<num-var>=PAGE

Associated keywords

TOP, LOMEM, HIMEM

289

PI

Purpose

PI has the value 3.14159265. It is used in the example to calculate the area of a

circle radius R.

Examples

100 AREA=PI*R^2

PRINT PI

Description

PI=3.14159265

Syntax

<num-var>=PI

290

PLOT

Purpose

PLOT is the multi-purpose point, line and triangle drawing statement in BASIC.

The first number which follows the keyword PLOT tells the computer what kind

of point, line or triangle it is going to draw. The two following numbers give the X

and Y coordinates to be used in plotting the point or drawing the line or triangle.

PLOT K,X,Y plots to the point at X,Y in a manner determined by the value of K.

The effect of each value of K will be:

0 Move relative to last point.

1 Draw line relative in the current graphics foreground colour.

2 Draw line relative in the logical inverse colour.

3 Draw line relative in the current graphics background colour.

4 Move to absolute position.

5 Draw line absolute in the current graphics foreground colour.

6 Draw line absolute in the logical inverse colour.

7 Draw line absolute in the current graphics background colour.

Higher values of K have other effects which are related to the effects given by the

values 0 to 7.

8- 15 As 0-7 but with the last point in the line omitted.

16- 23 As 0-7 but with a dotted line.

24- 31 As 0-7 but with a dotted line and without the last point on the line.

32- 63 Reserved.

64- 71 As 0-7 but only a single point is plotted.

72- 79 As 0-7 but to draw a horizontal line to the left and right of the point

until a colour other than the current background colour is reached.

80- 87 As 0-7 but plot and fill a triangle.

When filling solid triangles with colour the computer fills the triangle between

the coordinates given and the last two points visited.

291

88- 95 As 0-7 but to draw a horizontal line to the right until reaching the

current background colour.

96- 255 Reserved for future expansions.

See chapter 34 on VDU drivers for an alternative interpretation of the numbers

given above.

Suppose that in the above example, PLOT K,X,Y , the value of X was 50 and the

value of Y was 80 then ‘draw line relative’ would mean draw a line to the point on

the screen 50 places to the right of the origin and 80 places up from the origin.

‘Logical inverse colour’ is explained next.

In two colour MODEs the logical inverse colour of logical colour 0 is logical colour 1.

In four colour MODEs the following apply:

Logical colour Inverse

0 3

1 2

2 1

3 0

In the 16 colour MODE logical colour 0 becomes 15, logical colour 1 becomes 14

and so on.

When drawing lines the computer draws a line from the last point X,Y position

given.

Normally the origin is set at the bottom left of the screen, but its position may be

moved to any point by using the VDU29 statement. See chapter 34 for more

information.

The graphics screen is 1280 points (0-1279) wide and 1024 (0-1023) points high.

The most commonly used PLOT statements are PLOT 4 and PLOT 5 , so these

two have been given duplicate keywords; MOVE and DRAW.

To print a string at a specific place on the screen use the TAB(X,Y) statement.

As an alternative one can join the graphics and text cursor together with the

statement VDU5 so that the computer prints text at the graphics cursor position.

Once that has been done then the graphics cursor can be moved with MOVE, DRAW

and PLOT statements.

292

Examples

100 PLOT 3,X,Y

PLOT 6,100,220

Description

A statement controlling the generation of points, lines and triangles on the

screen.

Syntax

PLOT<numeric>, <numeric>, <numeric>

Associated keywords

MODE, CLG, MOVE, DRAW, POINT, VDU, GCOL

293

POINT

Purpose

To find out the colour of a certain position on the screen. Suppose that you are

playing a game involving moving a car around a race track. On the race track are

pools of green oil. To find out if the place where your car is about to move to has

oil on it (so that the car will skid) you need to be able to find out if the screen is

coloured green at that point.

The number returned is the logical colour of the screen at the graphics point

specified. If the selected point is off the screen then the number returned will be

-1. There must not be a space between the word POINT and the opening

parenthesis.

Examples

1340 colour=POINT(X,Y)

100 IF POINT (X,Y) =2 THEN PRINT "SKID!!"

Description

A function returning a number representing the colour on the screen at the

specified coordinates. If the point is off the screen then the function returns -1.

Syntax

<num-var>=POINT(<numeric>, <numeric>)

Associated keywords

PLOT, DRAW, MOVE, GCOL

294

POS position

Purpose

This function finds out how far across the screen the flashing cursor is. The left

hand side of the screen is position 0 and the right hand side is position 19, 39 or

79 depending on the MODE that has been selected.

Examples

1005 X=POS

320 distance=POS

Description

A function returning the horizontal position of the cursor in the current text

window.

Syntax

<num-var>=POS

Associated keywords

COUNT, TAB, VPOS

Demonstration program

To print spaces on the screen up to a certain horizontal position – for example to

align columns.

100 column=12

110 REPEAT PRINT"";

120 UNTIL POS=column

295

PRINT

Purpose

This does not print anything on paper. It does, however, print words and

numbers on the screen.

Anything enclosed in inverted commas (" ") will be printed exactly as it is.

Things not enclosed in inverted commas will be assumed to be variable names

and the contents of the variable will be printed out. The exact layout of the

numbers and figures on the screen will depend on the punctuation used in the

PRINT statement.

The items following the word PRINT are referred to as the ‘print list’.

The screen display is divided into vertical strips (or fields) which are (initially)

ten characters wide.

A comma after an item in the print list will cause enough spaces to be printed to

ensure that the next item will be printed in the next field.

A semi-colon after an item in the print list will cause the next item to be printed

on the same line and immediately following the previous item.

If the print list does not end with a semi-colon then the next PRINT statement

will print its output on a new line.

PRINT by itself leaves a blank line. A new line can be forced at any stage in the

print list by inserting an apostrophe.

The table below gives examples as they would appear, except that commas have

been inserted where spaces would be to aid counting.

296

Example

Print position

12345678901234567890

PRINT 1,2 1 2

PRINT 10,200 10 200

PRINT;10;200 10200

PRINT

PRINT "Answer";A Answer42

PRINT "Answer"A Answer 42

PRINT "Answer",A Answer 42

PRINT 1/2 0.5

PRINT 1/3 0.333333333

PRINT 3.3'2.25 3.3

 2.5

The printer can be turned on at any time by typing CTRL B or by the statement

VDU2 in a program. The output of all PRINT statements will then appear on the

printer as well as the screen. CTRL C turns the printer output off. See chapter

38 for more information about the printer.

Considerable flexibility has been built into the interpreter to enable it to print

numbers in several different layouts. There is no need to learn to use these

options at first but they will be invaluable when layout is crucial. A more detailed

explanation of the advanced features is given below.

It is possible to control the overall field width, the total number of figures printed

and the number of decimal places printed.

All these features are set with one variable called @%. In brief, setting

@%=131594 will give two decimal places

@%=131850 will give three decimal places

@%=&90A will return to the normal output format.

For a detailed understanding of the format it is best to consider @% as a four byte

number (eg @=&01020903), each byte controlling one aspect of the print format.

The most significant byte will be called B4. It has a value of 01 in the example

above. The least significant byte is called B1 and has the value 03 in the example

above.

B4 is tested by the function STR$ to determine the format of strings created by

that function. If B4=01 then strings will be formatted paying attention to the

setting of @% otherwise @% will be ignored by STR$. Initially B4=00.

297

B3 selects the basic format thus:

00 General format (G format)

01 Exponent format (E format)

02 Fixed format (F format)

In G format numbers that are integers will be printed as integers. Numbers in

the range 0.1 to 1 will be printed as 0.1 etc. Numbers less than 0.1 will be printed

in exponent format.

Exponent format will always print numbers in scientific notation; 100 becomes

1E2, 1000 becomes 1E3 and 1200 becomes 1.2E3

Fixed format prints numbers with a fixed number of decimal places. If the

number cannot be fitted into the selected field width it reverts to G format. The

decimal points are aligned vertically which is ideal for scientific and accounting

programs.

B2 controls the total number of digits printed in the selected format. If B2 is too

large or too small for the MODE selected then B2 is taken as 10. The number is

rounded to fit in the B2 digit field.

In G format B2 gives the maximum number of digits that can be printed before

reverting to E format. Range 1-9.

In E format B2 specifies the total number of digits to be printed before and after

the decimal point – but not counting the digits after the E. Another way of

looking at it is to say that (B2-1) digits will follow the decimal point. In E format

three characters or spaces always follow the final E. Range of B2 in E format is 1-

10.

In F format B2 specifies the number of digits to follow the decimal point. Range

0-10.

B1 sets the overall print field width and may have any value in the range 0 to

255 which in hexadecimal is &00 to &FF.

For example accounting purposes would often require fixed format two decimal

places and ten character field width.

The four bytes of @ are built up thus:

@%=& 00 00 00 00
B4 - zero 00

B3 - fixed format 02

B2 - two decimal places 02

B1 - character field 0A

So @%=&0002020A, the & indicating that the number is in hexadecimal. You can,

of course, omit the leading zeros.

298

Here are some other formats:

Format (G2) (G9) (F2) (E2)

@%=& 0000020A 0000090A 0002020A 0001020A
100 1E2 100 100. 00 1. 0E2
10 10 10 10. 00 1. 0E1
1 1 1 1. 00 1. 0E0
0.1 0.1 0.1 0. 10 1. 0E- 1
0. 01 1E- 2 1E- 2 0. 01 1. 0E- 2
0. 0005 5E- 3 5E- 3 0. 01 5. 0E- 3
0. 001 1E- 3 1E- 3 0. 00 1. 0E- 3
0 0 0 0. 00 0. 0E0
-10 -10 -10 -1 0. 00 -1 . 0E1

Description

A statement causing numeric and string values to be printed on the screen.

Syntax

PRINT{ ['][, ?;]<string>?<numeric>} ['][;]

Associated keywords

PRINT#, TAB, POS, STR#, WIDTH, INPUT, VDU

299

PRINT#

Purpose

This records numbers and words on cassette or disc. In other words it stores data

on a file. Numbers and strings are stored in a special internal format. Before this

statement is used the file must have been opened using the OPENIN, OPENOUT or

OPENUP statements. See chapter 31 on file handling for more information.

Example

PRINT# file, X,Y,Z,A$,"Monday",33

Description

A statement which writes data to files. All values are written in a special internal

format:

Integer variables are written as &40 followed by the twos complement

representation of the integer in four bytes, most significant byte first.

Real variables are written as &FF followed by four bytes of mantissa and one

byte exponent. The mantissa is sent lowest significant bit (LSB) first. 31 bits

represent the magnitude of the mantissa and 1 bit the sign. The exponent byte is

in twos complement excess 128 form.

String variables are written as &00 followed by a 1 byte ‘byte count’ followed by

the characters in the string in reverse order.

Syntax

PRINT#<num-var>{ , <numeric>?<string>}

300

PROC procedure

Purpose

This is used as the first part of a name to indicate that it refers to a procedure.

See the keyword DEF for a fuller description.

Example

10 DEF PROChello(X)

20 LOCAL Z

30 FOR Z=0 TO X

40 PRINT "Hello - how about this for BASIC!"

50 NEXT Z

60 ENDPROC

Description

A reserved word used at the start of all user declared procedures. There must not

be a space between PROC and the rest of the procedure name.

Syntax

DEF PROC<variable-name>[(<string-var>| <num-var>{ , <string-

var>| <num-var>}]

PROC<variable-name>[(<string-var>| <num-var>{ , <string-var>| <num-

var>}]

Associated keywords

DEF, ENDPROC, LOCAL

Demonstration program

10 REM Tower of Hanoi problem

20 INPUT "Number of disks",F

30 PROChanoi(F,1,2,3)

40 END

50 DEF PROChanoi(A,B,C,D) IF A=0 ENDPROC

60 PROChanoi(A-1,B,D,C)

70 PRINT "Move disk ";A; " from pile ";B; " to pile

" ;C

80 PROChanoi (A-1,D,C,B)

90 ENDPROC

301

PTR# pointer

Purpose

This statement is not available on cassette based systems. It selects which item

in a long file is to be read or written next. Strings and numbers are stored in a

long line one after the other. Each integer number occupies five bytes, each real

number occupies six bytes and each string takes up the number of letters in the

string plus two. See the keyword PRINT# for more details of the file format. The

file pointer can be moved up and down the file to point to any selected word or

number. Note that you have to keep a careful track of where each word or

number starts to use the function. The number immediately following the

keyword PTR# is the channel number allocated to the file when it was opened. A

file must be opened with the OPENIN and OPENOUT statements. See chapter 31

for more information on file handling.

Examples

PRINT PTR#X

560 PTR#file=PTR#file+80

85 PTR#channel=0

Description

A statement and function which allows the programmer to move a pointer to a

serial file and thus enables random access.

Syntax

<num-var>=PTR#<num-var>

or

PTR#<num-var>=<numeric>

Associated keywords

INPUT#, PRINT#, BGET#, BPUT#, OPENIN,

OPENUP, OPENOUT, EXT#, EOF#

302

RAD radian

Purpose

To convert an angle measured in degrees to radians. A radian equals

approximately 57 degrees.

Examples

1030 X=RAD(Y)

PRINT RAD(45)

Description

A function converting an angular argument given in degrees to radian measure.

Syntax

<num-var>=RAD<numeric>

Associated keywords

DEG

303

READ

Purpose

To enable numbers or words that are required in a program to be made available

every time the program is run. It does this by reading numbers or words into

numeric or string variables from DATA statements in the program. Most often the

data is read into an array. See the keyword DIM for more information on arrays.

See the keyword DATA for a more detailed description.

Example

100 READ name$(X),A

Description

A statement which copies the next item from a data list into the variable or

variables which follow the keyword READ. The DATA must contain the correct

sequence of string and numeric data for the string and numeric variables to be

assigned. In other words numeric data must be supplied if a numeric variable is

to be filled.

Syntax

READ<num-var>| <string-var>{ , <num-var>| <string-var>}

Associated keywords

DATA, RESTORE

Demonstration Program

200 INPUT"How much can you spend",AFFORD

210 PRINT"You can afford the following cars"

220 FOR X=1 TO 10:READ NAME$,PRICE

230 IF PRICE<=AFFORD THEN PRINT NAME$

240 NEXT:END

500 REM British Leyland Cars

510 DATA AUSTIN METRO 1.0 HLE, 4699

520 DATA etc etc

304

REM remark

Purpose

To enable the program writer to put remarks and comments into the program to

help remember what the various parts of the program do. The computer

completely ignores anything that appears after a REM.

When you first start writing small programs you can get away with having no

REMs, but as your programs grow in complexity you will find it necessary to have

them liberally sprinkled over your program. If you come back to a program six

months after you wrote it and find no REMs you will have a real job trying to

remember how it worked and why you used that variable name etc. Use lots of

REMs – it will save you hours of time in the long run.

Examples

10 REM this revision dated 2-8-84

100 REM

550 REM data for British Leyland cars

Description

This statement allows comments to be inserted in a program.

Syntax

REM<anything>

305

RENUMBER

Purpose

When you type in a program you give each instruction a line number. As the

program develops you quite often have to insert extra lines between other lines.

You might well need to insert 25 lines between line numbers 300 and 310 –

difficult!

The RENUMBER command will go through your program and renumber it

automatically. It recalculates things like GOTO 220 – which might well become

GOTO 180 etc. However if your program contains the statement GOTO 100 and

there is no line 100 then the RENUMBER command will be unable to deal with the

problem and will say

Failed at line <new line number>

If you renumber a program containing an ON GOTO statement which contains a

calculated line number, eg

ON X GOTO 120,240,2*R,1000,2000

references prior to the calculated line will be renumbered. However it will not

recalculate a calculated line number or other line numbers in the same

statement–ie 2*R, 100 and 2000 in the example given.

The command RENUMBER will renumber your program giving the first line the

number 10, the second 20 and so on.

The command RENUMBER 200 will give the first line of your program the

number 200, the second will become line 210 etc.

The command RENUMBER 200,4 would renumber starting with line 200 and

then using 204, 208 etc.

RENUMBER is a command: it cannot be used in a program, or as part of a multiple

statement line.

Examples

RENUMBER

RENUMBER 100,20

RENUMBER 6000

306

Description

RENUMBER is a command which renumbers a user’s program and will correct

most of the cross-references within the program.

Syntax

RENUMBER[<num-const>[, <num-const>]]

307

REPEAT

Purpose

To make the computer repeat a set of instructions a number of times until some

condition is met.

If you jump out of a REPEAT...UNTIL loop with a GOTO statement (which is bad

practice) you must jump back in.

A single REPEAT may have more than one UNTIL .

Example

10 REM print stars for 1 second

20 NOW=TIME

30 REPEAT PRINT

40 UNTIL TIME=NOW+100

Description

A statement which is the start of a REPEAT...UNTIL loop. These loops always

execute once and may be nested up to a depth of 20.

Syntax

REPEAT

Associated keywords

UNTIL

308

REPORT

Purpose

To get the computer to report in words what the last error was.

Example

100 REPORT

Description

REPORT prints the error message appropriate to the last error condition.

Syntax

REPORT

Associated keywords

ERR, ERL, ON ERROR

309

RESTORE

Purpose

Sometimes it is useful to have several sets of data in one program. For example

one might want information on British Leyland cars and on Lotus cars as in the

example given in chapter 22. The RESTORE statement enables the data pointer to

be moved from one set of data to the other.

The word RESTORE by itself resets the data pointer to the first set of data in the

program.

Examples

230 RESTORE

100 RESTORE 6500

RESTORE apointer

Description

This statement can be used at any time to reset the data pointer to any selected

line number.

Syntax

RESTORE[<numeric>]

Associated keywords

READ, DATA

310

RETURN

Purpose

The word RETURN – not the key marked RETURN – is used in a program a the

end of a subroutine to make the computer return to the place in the program

which originally ‘called’ the subroutine. See GOSUB for more details.

There may be more than one RETURN statement in a subroutine – but preferably

there should be one entry point and one (RETURN) exit point.

You should try very hard to avoid leaving a subroutine with GOTO – you should

always exit with RETURN. Why? Well you will soon discover in reasonable sized

programs that you can get into an awful tangle and lose track of how a program

works if you make the program jump all over the place.

The importance of dividing your programs into clearly defined sections wherever

possible, with one entry point and one exit point, cannot be over emphasised.

Examples

200 RETURN

300 IF X>4 THEN RETURN

Description

A statement which causes the program to branch to the statement after the one

which contained the GOSUB which called the current subroutine.

Syntax

RETURN

Associated keywords

GOSUB, ON GOSUB

311

RIGHT$

Purpose

To copy the right hand part of one string into another string. For example if

ABCDE$="HOW ARE YOU" then

RIGHT$(ABCDE$,3) would be "YOU" and

RIGHT$(ABCDE$,7) would be "ARE YOU"

Note that RIGHT$(ABCDE$,100) would be "HOW ARE YOU" since there are only

11 characters in HOW ARE YOU.

Examples

A$=RIGHT$(B$,5)

last$=RIGHT$(last$,X)

Description

A string function returning a specified number of characters from the right hand

end of another string.

Syntax

<string-var>=RIGHT$(<string>, <numeric>)

Associated keywords

LEFT$, MID$

312

RND random

Purpose

To generate a random number.

What exactly this function does is determined by the number which follows the

word RND.

RND by itself generates a random whole number between -2147483648 and

2147483647.

RND(-X) returns the value -X and resets the random number generator to a

number based on X.

RND(0) repeats the last random number given by RND(1) .

RND(1) generates a random number between 0 and 0.999999.

RND(X) generates a random whole number between (and possibly including) 1

and X.

The parentheses are compulsory and must immediately follow the word RND

with no intervening space.

Examples

PRINT RND(6)

340 largenumber%=RND

950 PRINT RND(1)

Description

A function generating a random number. The range of the number generated

depends on the argument (if any).

Syntax

<num-var>=RND[(<numeric>)]

Associated keywords

None

313

RUN

Purpose

To make the computer obey the statements in the program in its memory.

All variables (except the resident integer numeric variables @% and A% to Z%)

are first deleted and then the program is executed.

RUN is a statement and programs may therefore execute themselves.

If you want to start a program without clearing all the variables then you can use

the statement

GOTO 100

or GOTO whatever line number you wish to start from, instead of RUN.

Examples

RUN

9000 RUN

Description

RUN is a statement causing the computer to execute the current program.

Syntax

RUN

Associated keywords

NEW, OLD, LIST , CHAIN

314

SAVE

Purpose

To save a program that is in the computer’s memory onto cassette or disc. The

program must be given a name – usually called its file name. The file name can

have up to seven letters and numbers for the Disc Filing System, or ten letters

and numbers for the Cassette Filing System and the Advanced Disc Filing

System. The name must start with a letter, and cannot contain spaces or

punctuation marks.

Examples

SAVE "FRED"

SAVE A$

Description

A command which saves the current program area – that is the area between the

address given in the variables PAGE and TOP.

Syntax

SAVE<string>

Associated keywords

LOAD, CHAIN

315

SGN

Purpose

This determines whether a number is positive, zero or negative. The function

returns

-1 for negative number

0 for zero

+1 for positive number

Examples

100 X=SGN(Y)

230 result=SGN(difference)

Description

A function returning -1 for an argument which is negative, +1 for a positive

argument and zero for an argument equal to zero.

Syntax

<num-var>=SGN(<numeric>)

Associated keywords

ABS

316

SIN sine

Purpose

This calculates the sine of an angle. The angle must be expressed in radians

rather than degrees – but you can convert from degrees to radians using the

function RAD.

Examples

120 Y=SIN(RAD(45))

2340 value=SIN (1.56)

Description

A function giving the sine of its argument. The argument must be in radians.

Syntax

<num-var>=SIN (<numeric>)

Associated keywords

COS, TAN, ACS, ASN, ATN, DEG, RAD

Demonstration program

To draw a sine wave on the screen.

10 MODE 4

20 FOR X=0 TO 1280 STEP 4

30 DRAW X,500+500*SIN(X/50)

40 NEXT X

317

SOUND

Purpose

This statement is used to make the computer generate sounds using the internal

loudspeaker. The sound generator is capable of making four sounds at once. Each

of the four sound channels can generate one note. The keyword SOUND must be

followed by four numbers which specify:

– Which sound channel is to be used.

– The loudness of the note (or the envelope number).

– The pitch of the note.

– How long the note is to last.

For example

SOUND 1,-15,52,20

will play a note on sound channel 1, with a loudness of -15 (maximum volume). A

pitch value of 52 gives middle C and a duration of 20 will make the note last for 1

second.

SOUND C,A,P,D

The channel number (C) can be 0, 1, 2 or 3. Channel 0 is a special channel that

can produce various noises, whereas channels 1, 2 and 3 are used to produce

single notes. Other values of C produce special effects which are explained

further on.

The amplitude or loudness (A) can have any whole number value between -15

and 4. Values -15 to 0 produce notes of fixed loudness throughout the whole note.

A value of -15 is the loudest, -7 is half volume and 0 produces silence. Values of 1

to 4 enable the amplitude to be controlled while the note is playing. When you

play a note on the piano the sound gradually fades away. Effects like this are

selected by using one of the four user defined envelopes which are selected by

setting A to be 1, 2, 3 or 4. Envelopes are explained in chapter 30 and under the

keyword ENVELOPE.

The pitch (P) is used to set the pitch or frequency of the note. The pitch can have

any value between 0 and 255. The note A above middle C is selected with a value

of 88. The table in chapter 30 shows the value of P needed to produce a particular

note. You will see that to go up an octave P is increased by 48 and to go up a

perfect 5th P must be increased by 28.

Increasing the value of P by one will increase the note produced by a quarter of a

semi-tone.

318

To play the chord of C major which consists of the notes C, E and G for two

seconds you could enter

100 SOUND 1,-15,52,40

110 SOUND 2,-15,68,40

120 SOUND 3,-15,80,40

However to play a number of notes in succession you would enter

100 SOUND 1,-15,96,10

110 SOUND 1,-15,104,10

120 SOUND 1,-15,88,10

130 SOUND 1,-15,40,10

140 SOUND 1,-15,68,20

which plays a well-known film theme.

The duration (D) can have any value between -1 and 254. Values in the range 0

to 254 give a note duration of that number of twentieths of a second. Thus if

D=40 the note will last for two seconds. Setting D=-1 means that the note will

continue to sound until you actually take steps to stop it. You can either press the

ESCAPE key or stop it by sending another note, to the same channel, which has

‘flush control’ set to 1 – see later in this section.

As was mentioned earlier, channel number 0 produces ‘noises’ rather than notes

and the value of P in the statement

SOUND 0,A,P,D

has a different effect from that described for channels 1, 2 and 3. Here is a

summary of the effects of different values of P on the noise channel:

P Effect

0 High frequency periodic noise.

1 Medium frequency periodic noise.

2 Low frequency periodic noise.

3 Periodic noise of frequency determined by the pitch setting of channel 1.

4 High frequency ‘white’ noise.

5 Medium frequency ‘white’ noise.

6 Low frequency ‘white’ noise.

7 Noise of frequency determined (continuously) by the pitch setting of channel

1.

Values of P between 0 and 3 produce a rasping, harsh note. With P set to 4 the

noise is like that produced by a radio when it is not tuned to a station – a sort of

‘shssh’ effect. P=6 sounds like the interference found on bad telephone calls.

When P is set to 3 or 7 then the frequency of the noise is controlled by the pitch

setting of sound channel number 1. If the pitch of channel 1 is changed while

319

channel 0 is generating noise then the pitch of the noise will also change. The

program below generates a noise on channel 0 and varies the pitch of the noise by

changing the pitch of channel 1. Notice that the amplitude of channel 1 is very

low (-1) so you will hardly hear it – but you will hear the noise on channel 0.

100 SOUND 0,-15,7,150

110 FOR P= 100 TO 250

120 SOUND 1,-1,P,1

130 NEXT P

Notice that we have not yet described how sounds can be affected by a

superimposed envelope. An envelope can affect both the pitch and amplitude of a

note as it is playing. Thus the statement

SOUND 1,-15,255,255

merely plays a continuous loud note, but

ENVELOPE 1,1,-26,-36,-45,255,255,255,127,0,0,-

127,126,0

SOUND 1,1,255,255

produces a complex sound controlled largely by the envelope

See the keyword ENVELOPE for more details.

As mentioned briefly at the start of the description of the SOUND statement, the

channel number, C, can be given values other than 0,1,2 and 3. You do not need

to understand exactly why the following works to use it!

For C you can write a four figure hexadecimal number to achieve certain effects –

for example:

SOUND &1213,-15,52,40

The first parameter in the above example has the value &1213 . The ampersand

(&) indicates to the computer that the number is to be treated as a hexadecimal

number. The four figures which follow the ampersand each control one feature.

In this new expanded form the SOUND statement looks like

SOUND &HSFC,A,P,D

and the functions H, S, F and C will be explained in turn. In essence these

numbers enable you to synchronise notes so that you can play chords effectively.

The first number (H) can have the value 0 or 1. If H=1 then instead of playing a

new note on the selected channel, the previous note on that channel is allowed

320

to continue. If a note were gently dying away then it might be abruptly

terminated when its time was up. Setting H=1 allows the note to continue

instead of playing a new note. If H=1 then the note defined by the rest of the

SOUND statement is ignored.

The second number (S) is used to synchronise the playing of a number of notes. If

S=0 then the notes are played as soon as the last note on the selected channel has

completed. (There is a slight simplification here; ‘completed’ means ‘has reached

the start of the release phase’.) The user is referred to the keyword ENVELOPE for

relevant detail.

A non-zero value of S indicates to the computer that this note is not to be played

until you have a corresponding note on another channel ready to be played. A

value of S=1 implies that there is one other note in the group. S=2 implies two

other notes (ie a total of three). If a note was sent to channel 1 with S set to 1

then it would not be played until a note was ready on another channel which also

had S set to 1. For example:

110 SOUND &101,-15,50,200

110 SOUND 2,-15,200,100

120 SOUND &102,-15,100,200

When this program is run the note at line 100 will not play until channel 2 is

free. Line 110 sounds a note immediately on channel 2 – and for five seconds

(duration 100). When the note has completed then both the notes from lines 100

and 120 will sound together.

The third number (F) can have the value 0 or 1. If it is set to 1 then the SOUND

statement in which it occurs flushes (throws away) any other notes waiting in the

queue for a particular channel. It also stops whatever note is being generated on

that channel at present. The SOUND statement in which F=1 then plays its note.

Setting F behaves like an ‘over-ride’. For example:

20 SOUND 2,-15,200,100

25 FOR X=1 TO 500:NEXT X

30 SOUND &12,-15,100,200

In the above situation line 20 will start a sound on channel 2 but this will be

stopped almost immediately by line 30 which will generate a lower and longer

note on channel 2. Line 25 just gives a short delay.

Setting F=1 provides an easy way of stopping an everlasting note! Thus

SOUND&13,0,0,1 stops the current note on channel 3 and instead plays one at

zero loudness and of minimum length. This will stop channel 3 immediately.

The last number (C) is the channel number described earlier.

321

Description

The sound generator has four separately controlled synthesis channels. Each can

sound at one of 16 amplitudes, including ‘off’. The audio output is the sum of the

channel outputs. Channels 1-3 each generate a square wave with programmable

frequency. Channel 0 can produce noise (unpitched sound of pseudo-random

structure) or a pulse waveform. The frequency of the pulsewave or period of the

noise can be set to one of the three fixed options, or to the frequency of channel 1.

The BASIC program generates each sound by initiating one or more ‘requests’

each of which may take the form of a musical note or a single effect and is

directed to a specific channel. If the destination channel is idle when a request

requires it, the sound starts playing immediately. If a previous request is still

being handled the new one is placed on a queue, where it waits until the current

event is over (or past a critical stage – see ENVELOPE). If the queue is full, the

program waits. Separate queues are provided for the four channels, each of which

can hold up to four requests, not counting the one currently being executed. The

program can look at the state of any queue and flush any queue, but cannot find

out or alter the state of the current event, except for flushing the whole queue.

The SOUND keyword is followed by four parameters, the first of which consists of

four hexadecimal digits. Thus

SOUND &HSFC,A,P,D

Range Function

H 0 or 1 Continuation

S 0 to 3 Synchronisation

F 0 or 1 Flush

C 0 to 3 Channel number

A –15 to 4 Amplitude or envelope number

P 0 to 255 Pitch

D 1 to 255 Duration

The ‘H’ parameter allows the previous event on that channel to continue and if

this is 1 the amplitude and pitch parameters of SOUND have no effect. Because

the dummy note is queued in the normal way, it can be used to ensure that the

release segment of sound, which occurs after the duration is over and would

otherwise be truncated by the next sounding event on the same channel, is

allowed to complete.

322

The ‘S’ parameter allows requests to be queued separately and then executed at

the same instant, for chords and multiple voice effects. The value initially

determines the number of other channels that must receive requests with the

same value of S before the group will play. For example, each note of a three note

chord would be generated by a SOUND with the value of 2 for S. The system will

read the value of S from the first one and then wait for two more requests with 2

as the value of S before playing the complete chord. Single requests use 0 for S so

that they play as soon as they reach the end of the channel queue.

The parameter ‘F’ will normally be zero, causing the request to be queued. If it is

1, the channel queue will be flushed first, so the request will sound immediately.

The parameter ‘C’ determines the number of the sound channel to be used.

The ‘A’ parameter controls the amplitude of the sound and can be used in two

ways. Positive values up to 4 select the envelope (1 to 4) to be used. If the RS423

is unused then envelope numbers up to 16 may be defined and used. Zero and

negative integers up to -15 directly set the amplitude of the sound, which is then

fixed at this value for the duration of the note. -15 corresponds to the loudest, and

0 is ‘off’.

The ‘P’ parameter determines the pitch of the note. It can take values from 0 to

255.

The ‘D’ parameter determines the total duration of sounds whose amplitude is

determined explicitly by a negative or zero value of the A parameter. The

duration is given in twentieths of a second. If an envelope has been selected, by a

positive value of A, then the duration D determines the total of the attack, decay

and sustain periods - but not of the release phase.

Syntax

SOUND<numeric>, <numeric>, <numeric>, <numeric>

Associated keywords

ENVELOPE, ADVAL

323

SPC space

Purpose

This statement is used to print multiple spaces on the screen. It can only be used

as part of PRINT or INPUT statements. The number in parenthesis gives the

number of spaces to be printed.

Examples

120 PRINT "Name";SPC(6);"Age"; SPC(10);"Hours"

4030 INPUT SPC(10), "Value", V

Description

A statement printing a number of spaces on the screen. Up to 255 spaces may be

printed.

Syntax

PRINT SPC(<numeric>)

or

INPUT SPC(<numeric>)

Associated keywords

TAB, PRINT, INPUT

324

SQR square root

Purpose

This statement is used to calculate the square root of a number.

Examples

10 X=SQR(Y)

300 X=(-B+SQR(B^2-4*A*C))/(2*A)

Description

A function returning the square root of its argument. An attempt to calculate the

square root of a negative number will produce the error message -ve root

which is error number 21.

Syntax

<num-var>=SQR(<numeric>)

Associated keywords

None

325

STEP

Purpose

This is part of the FOR...TO...STEP...NEXT structure.

In the program shown below, STEP indicates the amount that the variable cost

is to be increased each time around the loop. In this case the cost is to increase in

steps of five units.

The step may be positive or negative.

STEP is optional. If omitted a step size of +1 is assumed – see the keyword FOR.

Example

300 FOR X=100 TO 20 STEP -2.3

Description

Part of the FOR...NEXT construct. STEP is optional.

Syntax

FOR<num-var>=<numeric>TO<numeric>[STEP<numeric>]

Associated keywords

FOR, TO, NEXT

Demonstration program

230 FOR cost=100 TO 200 STEP 5

250 production=FNtaken(cost)

260 PRINT production, cost

270 NEXT cost

326

STOP

Purpose

This statement interrupts a program which is running and prints the message

STOP at line <line number>

on the screen; otherwise the effect is identical to END.

STOP may occur as many times as is needed in a program.

Examples

2890 STOP

3080 STOP

Description

Causes execution of the program to cease and a message to be printed out.

Syntax

STOP

Associated keywords

END

327

STR$ string

Purpose

This string function converts a number into the equivalent string representation.

Thus STR$(4.6) would give 4.6 .

STR$ is affected by the field width and format constraints imposed by the

variable @%. The default format is format 0, field width 10 . See chapter 10.

The opposite function of converting a string into a number is performed by the

functions EVAL and VAL.

Examples

20 A$=STR$(X)

5060 num$=STR$ (size)

10 PRINT STR$~(100)

Description

A string function which returns the string form of the numeric argument as it

would have been printed.

Syntax

<string-var>=STR$(<numeric>)

Associated keywords

VAL, PRINT, EVAL, OSCLI

328

STRING$

Purpose

This produces a long string consisting of multiple copies of a shorter string.

Thus STRING$(6,"--0") would be --0--0--0--0--0--0 . This function is

useful for decorative features. It should be used whenever the user needs to

generate a long string from identical short strings.

It is very important, to avoid wasting memory space, that strings are set to their

maximum length the first time that they are allocated. This can easily be done by

using STRING$. For example to set A$ to contain up to 40 characters one could

write

A$=STRING$(40," ")

A$ can then be set back to empty using A$="" before use.

Examples

400 A$=STRING$(x,pattern$)

560 B4$=STRING$(5,"0+")

PRINT STRING$(10,"hello")

Description

A string function returning multiple concatenations of a string.

Syntax

<string-var>=STRING$(<numeric>, <string>)

329

TAB tabulation

Purpose

TAB can only be used with the keywords PRINT and INPUT. There are two

versions:

TAB(X) will print spaces up to a certain column position. If the flashing cursor is

beyond the required position then the cursor will move to the next line down and

space across to the required column.

TAB(X,Y) will move the cursor directly to position X,Y on the screen. Note that

once TAB(X,Y) has been used on a line TAB(X) may not move to the correct

position on the line.

The origin (for all text commands) is at the top left of the current text area of the

screen.

The left hand column of the screen is column number 0. The right hand column is

column 19, 39 or 79 depending on the graphics MODE selected.

The top line is line number 0, the bottom line is line number 31 or 24;

If the text scrolling area of the screen is changed then the TAB command will

still work as outlined above.

Examples

340 PRINT TAB(10);name$TAB(30);job$

440 PRINT TAB(20,31);value

230 INPUT TAB(10,20) "How much" cost

875 INPUT TAB(30), "Doctor's name", DOC$

Description

TAB with a single argument prints spaces (and a new line if necessary) to reach

the specified column.

TAB with two arguments moves the cursor directly to the specified coordinates.

330

Syntax

PRINT TAB (<numeric>[, <numeric>])

or

INPUT TAB (<numeric>[, <numeric>])

Associated keywords

POS, VPOS, PRINT, INPUT

331

TAN tangent

Purpose

This mathematical function calculates the tangent of an angle.

The angle must be given in radians but may be converted to radians from degrees

using the function RAD. A radian is about 57 degrees.

Examples

PRINT TAN(RAD(45))

10 Y=TAN (X)

1030 droop=TAN(load)

Description

A function returning the tangent of the argument. The argument must be given

in radians.

Syntax

<num-var>=TAN<numeric>

Associated keywords

COS, SIN , ACS, ATN, DEG, RAD

332

THEN

Purpose

A keyword used with IF to decide on a course of action as the result of some test.

Examples

780 IF X=6 THEN PRINT "good" ELSE PRINT "bad"

200 IF A$=B$ THEN PROCgood ELSE PROCbad

Description

Optional part of the IF...THEN...ELSE structure.

Note that it is not optional if used when the condition assigns to a pseudo

variable, eg

300 IF X THEN TIME=0

Syntax

IF <testable condition>[THEN]<statement>[ELSE<statement>]

Associated keywords

IF , ELSE

333

TIME

Purpose

This can be used to set or read the internal timer.

The timer counts in one hundredth of a second intervals. It is not a clock

providing true time of day readout. However, once set, the internal clock will

keep good time. Pressing the BREAK key does not reset the clock.

To convert TIME to a 24 hour clock use the following routines:

1000 SEC=(TIME DIV 100) MOD 60

1010 MIN=(TIME DIV 6000)MOD 60

1020 HR =(TIME DIV 360000)MOD 24

Examples

205 TIME=(Ho*60+Mi)*60+Se)*100

400 nowtime=TIME

Description

A pseudo-variable which sets or reads the lower four bytes of the internal elapsed

time clock.

Syntax

TIME=<numeric>

or

<num-var>=TIME

Demonstration program

1070 finishtime=TIME+1000

1080 REPEAT

1090 REM wait for 10 seconds

1100 UNTIL TIME>=finishtime

334

TO

Purpose

Part of the FOR...TO...STEP...NEXT statement. The final terminating value

of the loop is given after the word TO. See chapter 15 for further information.

Description

Part of the FOR...NEXT construct.

Syntax

FOR<num-var>=<numeric>TO<numeric>[STEP<numeric>]

Associated keywords

FOR, STEP, NEXT

Demonstration program

10 MODE 5

20 FOR C=1 TO 3

30 GCOL 3,C

40 FOR X=0 TO 1200 STEP 5*C

50 MOVE 600,750

60 DRAW X,0

70 NEXT X

80 NEXT C

335

TOP

Purpose

The function TOP returns the address of the first free memory location afer the

user’s program. The user’s program is normally stored from the bottom of the

available Random Access Memory upwards.

Thus the length of the user’s program in bytes is given by TOP-PAGE.

Examples

PRINT~(TOP-PAGE):REM length in hex

2340 PRINT TOP

5460 X=TOP

Description

A function returning the first free location above the user’s program.

Syntax

<num-var>=TOP

Associated keywords

PAGE, HIMEM, LOMEM

336

TRACE

Purpose

TRACE makes the computer print out the line number of each line of the program

before execution.

There are three forms of TRACE:

TRACE ON Causes the computer to print line numbers.

TRACE OFF Turns off the trace facility.

TRACE 6780 Would cause the computer to report only line numbers below 6780.

With well-structured programs which have subroutines at high line numbers this

will enable the user to trace through the structure of the program without being

bothered with line numbers in procedures, functions and subroutines.

Note that the interpreter does not execute line numbers very often.

10 FOR Z=0 TO 100

20 Q=Q*Z:NEXT Z

30 END

would print [10] [20] [30] but

10 FOR Z=0 TO 100

20 Q=Q*Z

25 NEXT Z

30 END

would print [10] [20] [25] [25] [25] [25] [25] etc.

(Of course in MODE 7 the [appears as � and] appears as � .)

TRACE is also turned off after an error, or by pressing ESCAPE or BREAK.

Examples

TRACE ON

TRACE OFF

TRACE X

TRACE 3000

337

Description

TRACE ON causes the interpreter to print executed line numbers when it

encounters them.

TRACE X sets a limit on the size of line numbers which may be printed out; only

numbers less than X will be printed.

TRACE OFF turns trace mode off.

Syntax

TRACE ON| OFF| <numeric>

338

TRUE

Purpose

TRUE is represented by the value -1 in this computer.

Examples

PRINT TRUE

300 UNTIL result = TRUE

Description

A function returning -1.

Syntax

<num-var>=TRUE

Associated keywords

FALSE

339

UNTIL

Purpose

Part of the REPEAT...UNTIL construct. See the keyword REPEAT for more

details.

Example

450 UNTIL X<10

Description

A program object signifying the end of a REPEAT...UNTIL loop.

Syntax

UNTIL<testable condition>

Associated keywords

REPEAT

340

USR user subroutine

Purpose

The USR function provides the user with a means of calling sections of machine

code program which are designed to return one value. When the machine code

section is called the computer sets the processor’s A, X and Y registers to the

least significant bytes of A%, X% and Y%. The carry flag (C) is set to the least

significant bit of C%. On return from the machine code section, an integer

number is generated from the four registers P, Y, X, A (most significant byte to

least significant byte).

Again it must be emphasised that USR returns a result while CALL does not.

Therefore you must either assign the result to a variable, eg

Registers=USR(&3000)

or print the result, eg

PRINT USR(&3000)

Each individual register may be obtained as follows:

10 DIM registers 3

20 !registers = USR(address)

After these two lines are executed,

Accumulator = registers?0

X = registers?1

Y = registers?2

Flags = registers?3

Examples

1400 R=USR(&3000)

670 result%=USR(plot5)

Description

A function allowing machine code to return directly a value for problems which

do not require the flexibility of CALL.

341

Syntax

<num-var>=USR(<numeric>)

Associated keywords

CALL

342

VAL value

Purpose

This function takes a string which contains a number and produces the number.

In other words it can convert a number represented by a string (eg A$="+24")

into the number.

The string must start with a plus (+) or minus (-) sign or a number. If not then

the function will return zero.

The opposite function is performed by STR$.

Examples

450 x=VAL (length$)

1560 date=VAL(DATE$)

Description

A function which converts a character string representing a number into numeric

form. If the argument is not a signed unary constant then zero will be returned.

Syntax

<num-var>=VAL(<string>)

Associated keywords

STR$, EVAL

343

VDU

Purpose

The statement VDU is followed by one or more numbers and the ASCII

characters corresponding to these numbers are sent to the screen. The function

CHR$ can generate a single ASCII character from a given number. This

character can be added to a string or printed. VDU on the other hand is used to

generate a sequence of numbers that are then sent to the VDU drivers.

VDU provides an easy way of sending, for example, control characters to the VDU

drivers. See chapter 34 for a detailed list of the VDU control codes.

Two examples will make the purpose of this statement clearer: when defining the

text area of the screen four bytes have to follow the VDU 28 statement. These

four bytes represent the left X, bottom Y, right X and top Y coordinates of the text

area. In MODE 4 the range of X is 0-39 and of Y is 0-31. Thus

VDU 28,0,5,39,0

would define a six line text window at the top of the screen. If a different MODE is

selected then the maximum screen width may be either 19, 39 or 79.

The graphics area of the screen, on the other hand, uses coordinates up to 1279

points horizontally. Thus when defining the graphics area double byte numbers

must be sent to the VDU drivers since the largest number that can be sent as a

single byte is 255.

VDU 24,0;0;1279;830

will define a graphics area at the bottom of the screen and 830 points high. Each

of the four coordinates is sent as a double byte pair. Note that the graphics origin

is bottom left while the text origin is top left and that the graphics screen is

always 1280 by 1024 regardless of MODE.

VDU is equivalent to PRINT CHR$; except that it does not change the value of

COUNT.

Examples

VDU 14 Turn auto-paging mode on.

VDU 15 Turn auto-paging mode off.

VDU 2 Turn printer on.

344

Description

A statement which takes a list of numeric arguments and sends them to the

operating system output character routine (OSWRCH). If the argument is

followed by a semi-colon then that argument will be sent as two bytes. The least

significant byte will be sent first, followed by the most significant byte. This is

the order required by the VDU drivers.

Syntax

VDU <numeric>{ , | ; <numeric>} [;]

Associated keywords

CHR$

345

VPOS vertical position of the cursor

Purpose

VPOS is used to find the vertical position of the text cursor on the screen.

Examples

670 V=VPOS

100 PRINT VPOS

Description

A function returning the vertical position of the text cursor.

Syntax

<num-var>=VPOS

Associated keywords

POS

346

WIDTH

Purpose

WIDTH is used to set the overall ‘page width’ that the computer uses. Initially

this is set to zero which the interpreter interprets as ‘unlimited width’.

WIDTH n will cause the interpreter to force a new line after n characters have

been printed by the PRINT statement.

WIDTH also affects all output to the printer.

Examples

670 WIDTH 60

WIDTH 35

Description

A statement controlling the overall output field width. It is initially set to zero

which disables auto new lines.

Syntax

WIDTH<numeric>

Associated keywords

COUNT

347

34 VDU drivers

The statement VDU X is equivalent to PRINT CHR$(X); and the statement VDU

X,Y,Z is equivalent to PRINT CHR$(X);CHR$(Y);CHR$(Z); .

However the VDU statement is used the most when generating ASCII control

codes and a detailed description of the effect of each control code is given in this

chapter. The control codes are interpreted by part of the Machine Operating

System called the VDU driver.

Programmers writing BASIC programs will need to refer to this summary of the

VDU drivers if they want to use some of the more advanced facilities such as

definition of graphics and text windows. Programmers writing other high level

languages or machine code programs will also need to refer to this chapter.

The VDU drivers are part of the Machine Operating System (MOS) software. All

high level languages (including BASIC) use them to print and draw on the

screen. Because they are so extensive and easily accessible to programmers it will

be easy to ensure that all high level languages and smaller assembly language

programs have access to the same graphics facilities. There is no need for the

user to write special routines to handle the screen display.

The BBC Microcomputer is designed so that it can be expanded in many ways.

All expansions will be compatible with the current Machine Operating System

and it is very important that those writing software use the facilities provided. In

a ‘twin-processor’ machine the only access to the screen memory is via the ‘Tube’

and use of these VDU drivers and other Machine Operating System features will

ensure that code will work correctly whether executed in the input/output

processor or in the language processor.

The VDU drivers interpret all 32 ASCII control character codes. Many of the

ASCII control codes are followed by a number of bytes. The number of bytes

which follow depends on the function to be performed. The VDU code table

summarises all the codes and gives the number of bytes which follow the ASCII

control code.

348

VDU code summary
D

e
c
im

a
l

H
e
x

C
T

R
L

A
S

C
II

a
b

b
r
e
v

ia
ti

o
n

B
y

te
s
 e

x
tr

a

Meaning

0 0 @ NUL 0 Does nothing

1 1 A SOH 1 Send next character to printer only

2 2 B STX 0 Enable printer

3 3 C ETX 0 Disable printer

4 4 D EOT 0 Write text at text cusor

5 5 E ENQ 0 Write text at graphics cursor

6 6 F ACK 0 Enable VDU drivers

7 7 G BEL 0 Make a short beep

8 8 H BS 0 Backspace cursor one character

9 9 I HT 0 Forwardspace cursor one character

10 A J LF 0 Move cursor down one line

11 B K VT 0 Move cursor up one line

12 C L FF 0 Clear text area

13 D M CR 0 Move cusor to start of current line

14 E N SO 0 Page mode on

15 F O SI 0 Page mode off

16 10 P DLE 0 Clear graphics area

17 11 Q DC1 1 Define text colour

18 12 R DC2 2 Define graphics colour

19 13 S DC3 3 Define logical colour

20 14 T DC4 4 Restore default logical colours

21 15 U NAK 0 Disable VDU drivers or delete current line

22 16 V SYN 1 Select screen mode

23 17 W ETB 9 Reprogram display character

24 18 X CAN 8 Define graphics character

25 19 Y EM 5 PLOT k,x,y

26 1A Z SUB 0 Restore default windows

27 1B [ESC 0 Does nothing

28 1C \ FS 4 Define text window

29 1D] GS 4 Define graphics origin

30 1E ^ RS 0 Home cursor to top left

31 1F _ US 2 Move text cursor to x,y

127 7F DEL 0 Backspace and delete

349

Detailed description

0 This code is ignored.

1 This code causes the next character to be sent to the printer only and not to the

screen. The printer must already have been enabled with VDU2. Many printers

use special control characters to change, for example, the size of the printed

output. For example the Epson FX-80 requires a code 14 to place it into double

width print mode. This could be effected with the statement

VDU1,14

or by pressing CTRL A and then CTRL N. This code also enables the ‘printer

ignore’ character selected by *FX6 to be sent to the printer.

2 This code turns the printer on which means that all output to the screen will

also be sent to the printer. In a program the statement VDU2 should be used, but

the same effect can be obtained by typing CTRL B.

3 This code turns the printer off. No further output will be sent to the printer

after the statement VDU3 or after typing CTRL C

4 This code causes text to be written at the text cursor, ie in the normal fashion.

A MODE change selects VDU4, normal operation.

5 This code causes text to be written where the graphics cursor is. The position

of the text cursor is unaffected. Normally the text cursor is controlled with

statements such as

PRINT TAB(5,10);

and the graphics cursor is controlled with statements like

MOVE700,450

Once the statement VDU5 has been given only one cursor is active (the graphics

cursor). This enables text characters to be placed at any position on the screen.

There are a number of other effects: text characters overwrite what is already on

the screen so that characters can be superimposed; text and graphics can only be

written in the graphics window and the colours used for both text and graphics

are the graphics colours. In addition the page no longer scrolls up when at the

bottom of the page. Note however that POS and VPOS still give you the position

of the text cursor. See chapter 29 for more information.

350

6 VDU6 is a complementary code to VDU21. VDU21 stops any further characters

being printed on the screen and VDU6 re-enables screen output. A typical use for

this facility would be to prevent a password appearing on the screen as it is being

typed in.

7 This code, which can be entered in a program as VDU7 or directly from the

keyboard as CTRL G, causes the computer to make a short ‘beep’. This code is

not normally passed to the printer.

8 This code (VDU8 or CTRL H) moves the text cursor one space to the left. If the

cursor was at the start of a line then it will be moved to the end of the previous

line. It does not delete characters – unlike VDU127.

9 This code (VDU9 or CTRL I or TAB) moves the cursor forward one character

position.

10 This statement (VDU10 or CTRL J) will move the cursor down one line. If the

cursor is already on the bottom line then the whole display will normally be

moved up one line.

11 This code (VDU11 or CTRL K) moves the text cursor up one line. If the cursor

is at the top of the screen then the whole display will move down a line.

12 This code clears the screen – or at least the text area of the screen. The screen

is cleared to the text background colour which is normally black. The BASIC

statement CLS has exactly the same effect as VDU12, or CTRL L. This code also

moves the text cursor to the top left of the text window.

13 This code is produced by the RETURN key. However, its effect on the screen

display if issued as a VDU13 or PRINT CHR$(13); is to move the text cursor to

the left hand edge of the current text line (but within the current text window, of

course).

14 This code makes the screen display wait at the bottom of each page. It is

mainly used when listing long programs to prevent the listing going past so fast

that it is impossible to read. The computer will wait until a SHIFT key is pressed

before continuing. This mode is called ‘paged mode’. Paged mode is turned on

with CTRL N and off with CTRL O. When the computer is waiting at the bottom

of a page both the shift lock and caps lock lights will be illuminated.

15 This code causes the computer to leave paged mode. See the previous entry

(14) for more details.

351

16 This code (VDU16 or CTRL P) clears the graphics area of the screen to the

graphics background colour and the BASIC statement CLG has exactly the same

effect. The graphics background colour starts off as black but may have been

changed with the GCOL statement. VDU16 does not move the graphics cursor – it

just clears the graphics area of the screen.

17 VDU17 is used to change the text foreground and background colours. In

BASIC the statement COLOUR is used for an identical purpose. VDU17 is followed

by one number which determines the new colour. See the BASIC keyword

COLOUR for more details.

18 This code allows the definition of the graphics foreground and background

colours. It also specifies how the colour is to be placed on the screen. The colour

can be plotted directly, ANDed, ORed or Exclusive-ORed with the colour already

there, or the colour there can be inverted. In BASIC this is called GCOL.

The first byte specifies the mode of action as follows:

0 Plot the colour specified.

1 OR the specified colour with that already there.

2 AND the specified colour with that already there.

3 Exclusive-OR the specified colour with that already there.

4 Invert the colour already there.

The second byte defines the logical colour to be used in future. If the byte is

greater than 127 then it defines the graphics background colour (modulo the

number of colours available). If the byte is less than 128 then it defines the

graphics foreground colour (modulo the number of colours available).

19 This code is used to select the actual colour that is to be displayed for each

logical colour. The statements COLOUR (and GCOL) are used to select the logical

colour that is to be text (and graphics) in the immediate future. However the

actual colour can be redefined with VDU19. For example

MODE 5

COLOUR 1

will print all text in colour 1 which is red by default. However the addition of

VDU 19,1,4,0,0,0 or VDU 19,1,4;0;

will set logical colour 1 to actual colour 4 (blue). The three zeros after the actual

colour in the VDU19 statement are for future expansion.

352

In MODE 5 there are four colours (0, 1, 2 and 3). An attempt to set colour 4 will in

fact set colour 0 so the statement

VDU 19,4,4,0,0,0 or VDU 19,4,4;0;

is equivalent to

VDU 19,0,4,0,0,0 or VDU 19,0,4;0;

We say that logical colours are reduced modulo the number of colours available in

any particular MODE.

20 This code (VDU20 or CTRL T) resets text and graphics foreground logical

colours to their default values and also programs default logical to actual colour

relationships. The default values are:

Two colour MODEs

0=Black

1=White

Four colour MODEs

0=Black

1=Red

2=Yellow

3=White

16 colour MODE

0=Black

1=Red

2=Green

3=Yellow

4=Blue

5=Magenta

6=Cyan

7=White

8=Flashing black/white

9=Flashing red/eyan

10=Flashing green/magenta

11=Flashing yellow/blue

12=Flashing blue/yellow

13=Flashing magenta/green

14=Flashing cyan/red

15=Flashing white/black

353

21 This code behaves in two different ways. If entered at the keyboard (as CTRL

U) it can be used to delete the whole of the current line. It is used instead of

pressing the DELETE key many times. If the code is generated from within a

program by either VDU21 or PRINT CHR$(21); it has the effect of stopping all

further graphics or text output to the screen. The VDU is said to be disabled. It

can be enabled with VDU6.

22 This VDU code is used to change MODE. It is followed by one number which is

the new MODE. Thus VDU22,7 is exactly equivalent to MODE 7 (except that it

does not change HIMEM).

23 This code is used to reprogram displayed characters. The ASCII code assigns

code numbers for each displayed letter and number. The normal range of

displayed characters includes all upper and lower case letters, numbers and

punctuation marks as well as some special symbols. These characters occupy

ASCII codes 32 to 126. If the user wishes to define his or her own characters or

shapes then ASCII codes 224 to 255 are left available for this purpose. In fact you

can redefine any character that is displayed, but extra memory must be set aside

if this is done.

ASCII codes 0 to 31 are interpreted as VDU control codes – and this chapter is

explaining the exact function of each. The full ASCII set consists of all the VDU

control codes, all the normal printable characters and a user defined set of

characters.

354

For example if the user wishes to define ASCII code 240 to be a small triangle

then the following statement would have to be executed:

Note that you cannot define your own characters in MODE 7.

See chapter 29 for a more detailed explanation.

As explained above the user may define any ASCII code in the range 224 to 255.

To display the resultant shape on the screen the user can type

PRINT CHR$(240) or

VDU 240

In the unlikely event of the user wishing to define more than the 32 characters

mentioned above (ASCII 224 to 255) it will be necessary to allocate more RAM for

the purpose. This is described in chapter 43.

VDU23,1 can be used to turn the flashing cursor off:

VDU 23,1,0;0;0;0;

will turn the cursor off and

VDU 23,1,1;0;0;0;

will turn it on again.

355

A third use of VDU23 is to permit the advanced programmer to alter the contents

of the 6845 CRTC circuit. If the user wishes to place value X in register R this

can be done with the command

VDU 23,0,R,X,0,0,0,0,0,0

The user is cautioned not to do this unless he or she understands how to program

the 6845. Note however that when writing to register 7 (vertical synchronisation

position) or register 8 (interlace) of the 6845, any offset that has been set up with

the *TV statement (chapter 43) will be used to adjust the value sent to R7.

24 This code enables the user to define the graphics window – that is, the area of

the screen inside which graphics can be drawn with the DRAW and PLOT

statements. The graphics screen is addressed with the following coordinates.

Thus the coordinates of A would be approximately 1000,200.

When defining a graphics window four coordinates must be given; the left,

bottom, right and top edges of the graphics area. Suppose that we wish to confine

all graphics to the area shown below.

356

The left hand edge of the graphics area has an X value of (about) 150. The bottom

of the area has a Y value of 300. The right hand side has X=1100 and the top has

Y=700. The full statement to set this area is

VDU 24,150;300;1100;700;

Notice that the edges must be given in the order left X, bottom Y, right X, top Y

and that when defining graphics windows the numbers must be followed by a

semi-colon.

For those who wish to know why trailing semi-colons are used the reason is as

follows: X and Y graphics coordinates have to be sent to the VDU software as two

bytes since the values may well be greater than 255. The semi-colon punctuation

in the VDU statement sends the number as a two byte pair with low byte first

followed by the high byte.

25 This VDU code is identical to the BASIC PLOT statement. Only those writing

machine code graphics will need to use it. VDU25 is followed by five bytes. The

first gives the value of K referred to in the explanation of PLOT in the BASIC

keywords chapter. The next two bytes give the X coordinate and the last two

bytes give the Y coordinate. Refer to the entry for VDU24 for an explanation of

the semi-colon syntax used.

For example

VDU 25,4,100;500;

would move to absolute position 100,500.

The above is completely equivalent to

VDU 25,4,100,0,244,1

26 The code VDU26 CTRL Z) returns both the graphics and text windows to

their initial values where they occupy the whole screen. This code repositions the

text cursor at the top left of the screen, the graphics cursor at the bottom left and

sets the graphics origin to the bottom left of the screen. In this state it is possible

to write text and to draw graphics anywhere on the screen.

27 This code does nothing.

357

28 This code (VDU28) is used to set a text window. Initially it is possible to write

text anywhere on the screen but establishing a text window enables the user to

restrict all future text to a specific area of the screen. The format of the

statement is

VDU 28,leftX,bottomY,rightX,topY

where leftX sets the left hand edge of the window

bottomY sets the bottom edge

rightX sets the right hand edge

topY sets the top edge

For the example shown the statement would be

VDU 28,5,20,30,12

Note that the units are character positions and the maximum values will depend

on the MODE in use. The example above refers to MODE1 and MODE4. In MODES 2

and 5 the maximum values would be 19 for X and 24 for Y since these MODEs

have only 20 characters per line.

358

29 This code is used to move the graphics origin. The statement VDU29 is

followed by two numbers giving the X and Y coordinates of the new origin. The

graphics screen is addressed as shown below:

To move the origin to the centre of the screen the statement

VDU 29,640;400;

should be executed. Note that the X and Y values should be followed by semi-

colons. See the entry for VDU24 if you require an explanation of the trailing

semi-colons. Note also that the graphics cursor is not affected by VDU29.

30 This code (VDU30 or CTRL ^) moves the text cursor to the top left of the text

area.

31 The code VDU31 enables the text cursor to be moved to any character position

on the screen. The statement VDU31 is followed by two numbers which give the

X and Y coordinates of the desired position.

359

To move the text cursor to the centre of the screen in MODE 7 one would execute

the statement

VDU 31,20,10

Note that the maximum values of X and Y depend on the MODE selected and that

both X and Y are measured from the edges of the current text window not the

edges of the screen.

32-126 These codes generate the full set of letters and numbers in the ASCII set.

See the ASCII codes in the Appendices.

127 This code moves the text cursor back one character and deletes the

character at that position. VDU127 has exactly the same effect as the DELETE

key.

128-223 These characters are normally undefined and will produce random

shapes (see below and chapter 43).

224-255 These characters may be defined by the user using the statement VDU23.

It is thus possible to have 32 user defined shapes such as

� VDU 23,224,8,28,28,107,127,107,8,28� VDU 23,225,8,28,62,127,62,28,8,0� VDU 23,226,54,127,127,127,62,28,8,0� VDU 23,227,8,28,62,127,127,127,28,62

Note: You can use a *FX command which will then allow you to define characters

128 to 159 rather than 224 to 255. This has the advantage that you will then be

able to use the new characters easily by holding down the SHIFT key while

pressing one of the user definable (red) keys (see chapter 43).

360

35 Cassette files

This chapter summarises the facilities available for file handling using a cassette

recorder. Refer to chapter 5 for an introduction to loading and saving BASIC

programs.

Cassette motor control

Some cassette recorders have a ‘remote’ or ‘automatic’ motor control socket. This

can be used with a switch on the microphone to start and stop the tape. If your

recorder is of this type then the computer will be able to start and stop the tape

automatically at the start and end of each BASIC program or section of recorded

data.

If your cassette recorder does not have motor control then you will have to start

and stop the tape manually. A light is provided on the keyboard to tell you when

the tape should be running. This is labelled ‘cassette motor’. When it is on, the

tape should be running.

The description which follows assumes that you have automatic or remote motor

control. If you don’t then you’ll have to start and stop the tape manually.

Recording levels

Many cassette recorders employ automatic record level. Recorders of this type do

not have any ‘record level’ controls. If your recorder does not have automatic

record level then you will have to set the record level yourself. Set the control so

that the recording level indicator is slightly below the ‘0dB’ level or the red mark.

Playback volume and tone

It is important that the playback volume is set correctly. You will need to

experiment to find the correct level for your machine. The tone control should

normally be set to ‘maximum’ or ‘high’.

Keeping an index of programs

You will be able to record a large number of BASIC programs on a single

cassette. However it is vital that the programs do not overlap on the tape. If they

do then you will lose one of them. Beware of recording on the blank leader tape –

always wind it on a little first.

361

If you forget what is on a tape then you can always use the command

*CAT

to obtain a ‘catalogue’ of the tape. When you give the command *CAT (and press

the PLAY button on the recorder) the tape will play through, and the computer

will print a catalogue of all the programs onto the screen. The catalogue gives the

program name, the number of blocks (rather like pages in a book) used to record

the program and lastly the length of the program (the number of letters in the

book). It also checks that the recording is readable and reports any errors. As the

catalogue is building up on the screen you will often see something like this

SKETCH 02

This indicates that the computer has found a file called SKETCH and that it is

currently checking block 2 of that file. The block number is given in hexadecimal

not decimal numbers. Press ESCAPE at the end of the tape to get back control of

the computer.

Saving a BASIC program

A program that you have typed into the computer’s memory can be saved onto

cassette tape in the following way:

1. Insert the cassette into the recorder.

2. Type SAVE"PROG" and press RETURN.

PROG is just an example of a file name; file names are explained later in this

chapter.

3. The message

RECORD then RETURN

will appear. Now use the fast forward and reverse buttons to position the tape at

the correct place.

4. Press the RECORD and PLAY buttons on the cassette recorder.

5. Press the RETURN key on the computer to let it know that everything is now

ready.

6. The computer will then record your program.

7. The tape will automatically stop when the computer has finished recording

your program.

You can always abandon this process by pressing ESCAPE.

362

Saving a section of memory

This will not be needed by most people writing BASIC programs. It is most often

used to record sections of machine code programs. The process is very similar to

that employed to record a BASIC program.

1. Insert the cassette in the recorder.

2. Type

*SAVE PROG SSSS FFFF EEEE RRRR

and press RETURN.

3. Continue as for saving a BASIC program, above.

SSSS represents the start address of the data, in hexadecimal (hex).

FFFF represents the end address of the data plus one, in hex. As an option the

format +LLLL can be used in this position. The plus sign is followed by the

length of the data, in hex.

EEEE represents the (hex) execution address of the data. If the program is

reloaded into the computer using the command

*RUN PROG

then once loaded the computer will jump to the specified execution address. The

execution address is optional and if it is omitted the execution address will be

assumed to be equal to the start address.

RRRR represents the (hex) reload address. This is optional, but if used the file

will reload (using *LOAD, see below) at address RRRR. If RRRR is omitted then the

file will reload at address SSSS.

Two examples may make the syntax clearer

*SAVE patch 6000 6200

*SAVE match 4C00+0CE9 2A10 2000

Loading a BASIC program

A BASIC program saved on cassette tape can be loaded into the computer’s

memory in the following way:

1. Insert the cassette in the recorder.

2. Type

LOAD PROG

and press RETURN.

363

3. The message

Searching

will appear.

4. Now use the fast forward and reverse buttons to position the tape at the

correct place.

5. Press the PLAY button on the cassette recorder.

6. The computer will give you the message

Loading

when it finds the correct program. It will then load it into its memory.

7. The tape will automatically stop when the computer has finished loading.

When loading a program the usual catalogue-type display will appear. The

message

Loading

will appear when the correct file is found. If the load should fail for any reason a

message will appear.

Loading a machine code program

This will not be needed by most people using BASIC programs. It is used to load

special purpose programs. The process is identical to that used to load a BASIC

program except that the command is

*LOAD PROG AAAA

AAAA represents the absolute load address. It is optional but, if included, will

force the program to load at the specified address. It therefore over-rides the

reload address given when the program was saved. The program will load but not

run; control will return to BASIC.

Two examples may make the syntax clearer:

*LOAD patch

100 MODE 7: *LOAD match 7E80

Loading and running a BASIC program

The statement CHAIN allows a BASIC program to LOAD and RUN another

program. It is particularly useful when there is a sequence of related programs.

The command is used in exactly the same way as LOAD but with the word CHAIN

substituted for the word LOAD.

364

1. Insert the cassette in the recorder.

2. Type CHAIN PROG and press RETURN.

3. The message

Searching

will appear.

4. Now use the fast forward and reverse buttons to position the tape at the

correct place.

5. Press the PLAY button on the cassette recorder.

6. The computer will give you the message

Loading

when it finds the correct program. It will then load it into its memory.

7. The tape will automatically stop when the computer has finished loading and

the computer will automatically run the program.

Loading and running a machine code program

A machine code program (not a BASIC program) can be loaded and run by using

the statement

*RUN PROG

Using a cassette file to provide keyboard input

It is possible to get the computer to accept input from a cassette file instead of

from the keyboard. In this case the cassette file would contain a set of commands,

or answers to questions which a BASIC program would need. The command to

force the computer to accept input from a file called edit would be:

*EXEC edit

File edit above is known as an EXEC file. EXEC files can contain BASIC

commands or operating system commands (or both). Some operating system

commands are listed in chapter 41. A comment line can be included in an EXEC

file using a BASIC REM statement or by beginning the comment with *| .

To create a suitable cassette file you will need to use the BASIC statement BPUT#

and not PRINT#, since the latter stores things in internal format. The command

*SPOOL also creates suitable files – see chapter 37 for how to use it to merge

programs.

365

Reading cassette data files

Data, as well as programs, may be recorded on cassette tape. This facility enables

the user to keep records of names and addresses (for example) on tape for later

use. Since the cassette tape can be started and stopped by the computer it also

enables it to record results from experiments over many hours.

If the user wishes to read a data file then he or she must first open the file for

input. In the process of opening a file the computer will allocate a channel

number to the operation. If we wished to read in a list of names recorded on a

data file called NAMES then the following statement would get the channel

number into the variable X.

100 X=OPENIN("NAMES")

Once a file has been opened for input data can be read in from the tape. This can

be done in two ways: a chunk at a time (for example a whole name) or a single

letter at a time.

Data is read in a chunk at a time by using the INPUT#X,A$ statement. This will

read the first entry into A$.

To read a single character in use the function A=BGET#(X) .

Testing for end of file

While reading data in it is useful to test to see if the end of the file has been

reached. This is done with the function EOF#. For example:

100 DIM B$(20)

110 Y=1

120 X=OPENIN("NAMES")

130 REPEAT

140 INPUT#X,A$

150 PRINT A$

160 B$(Y)=A$

165 Y=Y+1

170 UNTIL EOF#X

180 CLOSE#X

190 END

The program above reads up to 20 names off tape, prints them on the screen and

then stores them in an array in memory. Of course if there were more than 20

names on file then the program would fail because the array can only hold 20

entries.

366

Storing data on tape

The data in the last example was read into an array in the computer. It could

then be edited and the corrected version could be rerecorded on cassette.

The process of recording the data on the cassette consists of three steps: open the

file for output, write out the data and then close the file. The example program

records 20 entries back to tape from the array in memory.

200 X=OPENOUT("NEWNAMES")

210 FOR Y=1 TO 20

220 PRINT#X,A$(Y)

230 NEXT Y

240 CLOSE#X

250 END

Note that line 200 will make the computer issue the message

RECORD then RETURN

as it did when saving a BASIC program.

The CLOSE# statement will record any remaining data and then stop the

recorder automatically.

Recording single characters on tape

Single characters (bytes) can be placed on tape using the command BPUT#. The

following program stores the alphabet on tape. Note that the letter A has an

ASCII value of 65 and the letter Z has an ASCII value of 90.

100 X=OPENOUT("ALPHABET")

110 FOR D=65 TO 90

120 BPUT#X,D

130 NEXT D

140 CLOSE#X

150 END

File names

File names on cassettes can be up to ten characters long and can include any

character except space.

367

Responses to errors

If an error occurs during any of the following operations

SAVE

LOAD

CHAIN

*SAVE

*LOAD

*RUN

an error message and then the message

Rewind tape

will be printed on the screen. The user must then rewind the tape a short way

and play it again. It is not usually necessary to replay the whole program, but

only far enough to load the blocks causing errors.

If an error is detected during

BGET#

BPUT#

INPUT#

PRINT#

*EXEC

*SPOOL

the tape will stop and an error will be generated. This error can be trapped by

BASIC in the usual way.

The user can escape at any time by pressing the ESCAPE key.

The error numbers generated by the cassette file system are as follows:

216 Data cyclic redundancy check (CRC) error.

217 Header CRC error.

218 An unexpected block number was encountered.

219 An unexpected file name was encountered.

220 Syntax error – for example an illegal *OPT statement.

222 An attempt was made to use a channel which was not opened.

223 End of file reached.

368

Changing responses to errors

If the user wishes to change the way the computer behaves when it detects an

error during a cassette file operation (eg LOAD or SAVE) then this can be done

with the *OPT statement.

*OPT by itself resets error handling and the ‘message switch’ to their default

values. Default values are given later.

*OPT1,X is used to set the message switch which controls the detail of the

message.

X=0 Implies no messages are issued.

X=1 Gives short messages.

X=3 Gives detailed information including load and execution addresses.

*OPT2,X is used to control the action that the computer takes when it detects an

error during a cassette file operation.

X=0 Lets the computer ignore all errors though messages may be given.

X=1 The computer prompts the user to retry by rewinding the cassette.

X=2 The computer aborts the operation by generating an error.

*OPT3,X is used to set the inter-block gap used when recording data using

PRINT# and BPUT#. The gap on SAVE is fixed. The value of X determines the

gap in 1/10 seconds. If X is set to greater than 127 then the gap is set to the

default value.

The default values for the *OPT command are:

For LOAD, SAVE, CHAIN, *SAVE, *LOAD, *RUN

*OPT,1 Short messages.

*OPT2,1 Prompt for retry.

*OPT3,6 0.6 second inter-block gap.

For BGET#, INPUT#, BPUT#, PRINT#

*OPT1,0 No messages.

*OPT2,2 Abort on error.

*OPT3,25 2.5 second inter-block gap.

Note: The effect of the *OPT command is different for each file system. When

writing programs that are to run on cassette and disc the user must be fully

aware of these different effects. The user is referred to the appropriate Disc

Filing System User Guide.

369

Cassette tape format

The format of each block of data stored on cassette is given here for those

whowish to produce tapes on other machines that may be read into the BBC

Microcomputer.

– Five seconds of 2400Hz tone.

– One synchronisation byte (&2A).

– File name (one to ten characters).

– One end of file name marker byte (&00).

– Load address of file, four bytes, low byte first.

– Execution address of file, four bytes, low byte first.

– Block number, two bytes, low byte first.

– Data block length, two bytes, low byte first.

– Block flag, one byte.

– Spare, four bytes, currently &00.

– CRC on header, two bytes.

– Data, 0 to 256 bytes.

– CRC on data, two bytes.

Notes:

1. Each data block has its own header as shown above.

2. Load and execution addresses should have the top two bytes set to &FF in 8 bit

machines.

3. Bit 7 of the block flag is set on the last block of a file.

4. CRC stands for cyclic redundancy check.

The header CRC acts on all bytes from the file name to the spare bytes inclusive.

The data CRC acts on the data only. CRCs are stored high byte first and are

calculated as follows. In the following C represents the character and H and L

represent the high and low bytes of the CRC.

H=C EOR H

FOR X=1 TO 8

T=0

IF (bit 7 of H=1) THEN HL=HL EOR &0810:T=1

HL=(HL*2+T) AND &FFFF

NEXT X

The above algorithm is not a BASIC program!

370

36 Changing filing systems

The previous section dealt in detail with cassette files because the BBC

Microcomputer is fitted with all the circuitry to enable cassette recorders to be

used to store and to retrieve data.

Other filing systems can, of course, be used with the BBC Microcomputer.

However, each of these will require additional hardware which will be

accompanied by its own detailed instructions. Consequently, details are not given

in this guide, for example, of the disc filing system. What is given below,

however, is a list of the commands to enable the user to change from one filing

system to another.

*TAPE Selects the cassette filing system running at the default

speed of 120 characters per second (1200 baud).

*TAPE3 Selects the cassette filing system running at 30

characters per second (300 baud).

*TAPE12 Selects the cassette filing system at 1200 baud.

*DISC This statement selects the disc filing system so that all

future file operations (eg LOAD and SAVE) work to the

floppy disc units.

*ADFS Selects the advanced disc filing system is.

*NET Selects the Econet filing system for all future file

operations.

*ROM Selects the sideways ROM cartridge system.

*IEEE The IEEE 488 interface filing system.

*TELESOFT The Teletext filing system.

371

37 How to merge two BASIC
programs

There are a number of ways of merging two BASIC programs. Two methods are

given below which will work for both disc and cassette. The line numbers in the

two programs should not clash unintentionally.

In order to merge two programs it is necessary to save one of them as an ASCII

file rather than in the usual compressed format. This ASCII version of the

program is then merged into the other program using the command *EXEC.

Suppose we wish to merge the program SHORT into the program LONG. First,

load in one of the programs

LOAD "SHORT"

and then create an ASCII version by typing in the next three lines

*SPOOL SHORT2

LIST

*SPOOL

This produces an ASCII version of the program. The ASCII version is called

SHORT2.

Now load in the big program by typing

LOAD "LONG"

and finally merge in the small program by typing

*EXEC SHORT2

The command

*SPOOL SHORT2

informs the computer that anything that it outputs to the screen is also to be sent

to a file called SHORT2. When the computer lists the file it therefore creates an

ASCII listing. The command *SPOOL without a file name is used to end or close

the spooled file.

372

Having created the ASCII version of SHORT called SHORT2, the user then loads

the file LONG. The command *EXEC "SHORT2" tells the computer to read in the

file SHORT2 as if it were getting characters from the keyboard. If the file SHORT2

contains line numbers (as it does), then these lines will just be added to the

BASIC program. Of course, a line number read in from SHORT2 will replace any

line with an identical line number in LONG, so it is necessary to renumber the two

programs SHORT and LONG so that their line numbers don’t clash.

A quicker method is given below – but if you use this method you must make

sure that the second program that you loaded in uses larger line numbers than

the first program. You will get surprising results if not.

Firstly load the program (with the lower line numbers) in the normal way. Then

get the computer to print, in hex, the top-of-program address less two by entering

PRINT ~TOP-2

Call the resultant number XXXX. Then enter

*LOAD SHORT XXXX

to load the program SHORT (or whatever you have called it) in above the first

program. Finally type END to get the computer to sort its internal pointers out. A

typical dialog might look like this – assuming that one program is called ONE

and the other is called TWO.

>LOAD "ONE"

>PRINT~TOP-2

 195F

>*LOAD TWO 195F

>END

This method is very easy, but you must look after the line numbers.

373

38 Using printers

The BBC Microcomputer can be used with the vast majority of printers available

today. It is not possible, though, to drive old ‘Teletypes’ which operate at ten

characters per second, or printers requiring a 20mA current loop connection. To

use a printer with your BBC Microcomputer you will need to do three things:

– Connect the printer to the computer.

– Tell the computer whether your printer is plugged into the parallel or serial

printer port.

– Tell the computer to copy everything sent to the screen to the printer.

Connect the printer to the computer

As the above implies there are two possible sockets (ports) to which you can

connect the printer. The parallel printer port is often called a Centronics

compatible port. Printers that need to be connected to parallel ports usually have

a 36-way Amphenol socket. To connect the printer to the computer you will need

a cable made up as follows from a 26-way insulation displacement connector,

about one metre of 26-way ribbon cable and one 36-way Amphenol plug.

The 26-way cable should be inserted into the 36-way plug so that pins 1 to 14 and

19 to 32 are connected. The cable should be inserted into the 26-way plug so that

pin 1 of the Amphenol 36-way plug is connected to pin 1 of the 26-way insulation

displacement plug.

374

A parallel printer cable

Both plugs viewed looking at the pins on the underside of the plug body.

375

Parallel printer connections

36-way plug 26-way plug

Name pin number pin number

Strobe 1 1

Data 0 2 3

Data 1 3 5

Data 2 4 7

Data 3 5 9

Data 4 6 11

Data 5 7 13

Data 6 8 15

Data 7 9 17

Acknowledge 10 19

Ground 19 to 32 All even numbers (except 26)

The serial printer port is often referred to as an RS232 or V24 port. The standard

connector plug is a Cannon 25-way D type and there is also a standard for the

connections to the plug. Predictably however, different manufacturers disagree

on the interpretation of the standard! The serial port on the BBC Microcomputer

emerges via a 5-pin DIN plug and it will normally be possible to drive a serial

printer with just three wires. The views of the two plugs are shown below from

the outside of the case and looking into the respective sockets.

376

Proceed as follows:

– Connect a wire between GND and pin 7.

– Connect another wire between data out and pin 3.

– The position of the third wire varies from printer to printer.

– For Qume printers connect CTS to pin 20.

– If that doesn’t work then try CTS to pin 4.

If you require a more complete RS232 connection try the following:

– Data in to pin 2 (transmit data).

– Data out to pin 3 (receive data).

– CTS to pin 4 (clear to send).

– RTS to pin 5 (request to send).

– 5 GND to pin 7 (signal ground).

Telling the computer whether you are using a serial
or parallel printer

*FX5 is used to inform the computer whether it is to send printer output to the

parallel or serial port. Type:

*FX5,1 if you are using a parallel printer

*FX5,2 if you are using a serial printer

*FX5,4 if you are using the Econet printer

The computer defaults to (assumes unless you tell it otherwise, that you are

using) a parallel printer.

If you have selected a serial printer then you will have to set the baud rate to

match that on the printer. The default setting is 9600 baud but many printers

run at other rates. Select one of

*FX 8,1 75 baud

*FX 8,2 150 baud

*FX 8,3 300 baud

*FX 8,4 1200 baud

*FX 8,5 2400 baud

*FX 8,6 4800 baud

*FX 8,7 9600 baud

*FX 8,8 19200 baud (this rate is not guaranteed)

377

Telling the computer to copy everything to the printer

This is often called turning the printer on – but, of course, we are not referring to

switching the printer on but to enabling and disabling its printing.

To turn it on type CTRL B and to turn it off type CTRL C.

In a BASIC program VDU2 will turn the printer on and VDU3 will turn it off.

Note that all output will now appear on the screen and printer. To send output to

the printer only you can use *FX3 .

For disc systems, *TYPE "filename" will print out a data file.

Characters not sent to the printer

Some printers automatically move the paper up one line when they receive a

carrige return. Since the computer also moves the paper up one line (by using a

line feed), the paper may move up two lines instead of one. It is possible to tell

the computer not to send any particular character to the printer. The most

common requirement is to ignore line feed which has an ASCII code of 10.

*FX6,10 will set it to ignore line feeds. *FX6 should be set after *FX5 has been

used to select the printer type. The default is to ignore line feeds.

The complete set-up sequence for a serial printer running at 1200 baud and

which does not require line feeds would be:

*FX 5,2 Serial printer.

*FX 8,4 1200 baud.

*FX 6,10 No line feeds (default so it may be omitted).

A few more detailed points:

Data is transmitted using one start bit, eight data bits and one stop bit.

Receive baud rates may be the same as, or may differ from, transmit baud rates.

Receive baud rates are set by *FX7 .

The user may supply his or her own specialist printer driver routine. The address

of the user routine should be placed at location &222 and the user defined routine

can be selected as the printer output routine with *FX5,3 .

If the user intercepts the operating system write character routine (OSWRCH)

then all the VDU control codes must be dealt with. When a BASIC program

executes DRAW 10,10 a string of six bytes is sent to the VDU driver via

OSWRCH. In this case the bytes would be 25,5,10,0,10,0 , so beware!

378

39 Indirection operators

Indirection operators are not normally available on personal computers. They

enable the user to read and write to memory in a far more flexible way than by

using PEEK and POKE. They are intended for programmers using the

computer’s assembler or programmers wishing to create their own data

structures. There are three indirection operators:

Name Purpose Number of bytes

affected

? query Byte indirection operator 1

! shriek Word indirection operator 4

$ dollar String indirection operator 1 to 256

For the sake of illustration let us play with the memory around location &2000

(that is 2000 hex – an appreciation of hex numbers is essential. If you don’t

understand hex then you will not need to use indirection operators). Let us set

the variable M to &2000

M= &2000

?M means the contents of memory location M, so to set the contents of &2000 to

40 we write

?M = 40

and to print the contents of memory location &2000 we write

PRINT ?M

Those familiar with other dialects of BASIC will realise that

Y=PEEK(X) becomes Y=?X and

POKE X,Y becomes ?X=Y

The query operator acts on one byte of memory only. The word indirection

operator (shriek) acts on four successive bytes. For example

!M=&12345678

would set location

&2000=&78

&2001=&56

&2002=&34

&2003=&12

379

and PRINT ~!M (print in hex, shriek M) would give

12345678

Four bytes are used to store integers so the shriek operator can be used to

manipulate integer variables.

The last operator in this group is the string indirection operator called dollar. Do

not confuse $M with M$ as they are quite different. M$ is the usual string

variable. On the other hand $M can be used to read or write a string to memory

starting at memory location M. Remembering that we have set

M = &2000 then

$M="ABCDEF" will place the string ABCDEF and a carriage return (&0D) in

memory from location &2000 on.

Similarly PRINT $M will print

ABCDEF

And one last twist to the use of these operators. We have seen how query, shriek

and dollar can be used as unary operators – that is with only one operand. We

have used M as the operand in the example above – for example

M=&2000

?M=&45

Y=?M

PRINT ?M

!M=&8A124603

Y=!M

PRINT!M

$M="HELLO ZAPHOD"

B$=$M

PRINT $M

but in addition both query and shriek can be used as binary operators provided

that the left hand operand is a variable (such as M9) and not a constant.

Thus M?3 means the contents of (memory location M plus 3) – in other words of

location &2003.

There is a simple routine to examine the contents of memory for 12 bytes beyond

&2000.

10 FOR X=0 TO 12

20 PRINT ~M+X, ~M?X

30 NEXT

380

Line 20 reads ‘print in hex (M plus X) and in the, next column, in hex, the

contents of (M plus X)’. It is easy to write this into one of the user defined

function keys and keep it for debugging – like this

*KEY 0 FOR X=0 TO 12: P. ~M+X, ~M?X:NEXT |M

but don’t forget that in MODE 7 it will be displayed as

*KEY 0 FOR X=0 TO 12: P. ÷M+X, ÷M?X:NEXT�M
just to complicate matters!

Here are some illustrations of some of the above.

Set up function key 0 and use it to examine memory beyond &2000.

>*KEY 0 FOR X=0 TO 12:P. ~M+X, ~M?X:N.|M

>M=&2000

>FOR X=0 TO 12:P. ~M+X, ~M?X:N.

 2000 FF

 2001 FF

 2002 FF

 2003 FF

 2004 FF

 2005 FF

 2006 FF

 2007 FF

 2008 FF

 2009 FF

 200A FF

 200B FF

 200C FF

Use the byte indirection operator to change one byte.

>M?3=&33

>FOR X=0 TO 12:P. ~M+X, ~M?X:N.

 2000 FF

 2001 FF

 2002 FF

 2003 33

 2004 FF

 2005 FF

 2006 FF

 2007 FF

381

 2008 FF

 2009 FF

 200A FF

 200B FF

 200C FF

Use the word indirection operator to change four bytes.

>M!2=&12345678

>FOR X=0 TO 12:P. ~M+X, ~M?X:N.

 2000 FF

 2001 FF

 2002 78

 2003 56

 2004 34

 2005 12

 2006 FF

 2007 FF

 2008 FF

 2009 FF

 200A FF

 200B FF

 200C FF

Use the string indirection operator to insert a string into a known place in

memory.

>$M="ABCDEFG"

>FOR X=0 TO 12:P. ~M+X, ~M?X:N.

 2000 41

 2001 42

 2002 43

 2003 44

 2004 45

 2005 46

 2006 47

 2007 D

 2008 FF

 2009 FF

 200A FF

 200B FF

 200C FF

382

Note that interesting structures can be generated using ! and $. For example

you may need a structure containing a ten character string, a number and a

reference to a similar structure. ! and $ together can do this. If M is the address

of the start of the structure then

$M is the string

M!11 is the number

M!15 is the address of the next structure

The tools are therefore provided to enable you to manipulate general tree

structures and lists very easily in BASIC.

383

40 HIMEM, LOMEM, TOP
and PAGE

These four pseudo-variables give the programmer an indication of the way the

computer has allocated the available memory. PAGE and TOP give the bottom

and top of the user’s program so

PRINT TOP-PAGE

can be used to find out how big a program is.

HIMEM gives the top of memory so

PRINT HIMEM-TOP

will indicate how much space is left.

When you run the program the computer will need some space to store variables

so you cannot use up all the available memory just with your program.

Random Access Memory extends from location 0 to location 32767 (in

hexadecimal that is &7FFF). RAM is normally allocated in MODE 7 as shown in

the diagram. As the user enters more program the program grows, increasing the

value of TOP. Normally the computer stores program variables immediately

above the user program but this can be changed by resetting the variable LOMEM.

Again the computer normally expects to be able to use all the memory up to that

set aside for the screen, but the user may move the position of the highest

boundary by changing HIMEM.

Note that in the ‘shadow screen’ mode, HIMEM always returns a value of &8000

(see chapter 42 for more details).

The variable TOP is calculated by the computer on request. It does this by

starting at PAGE and working through the program. The user cannot reset the

value of TOP but can reset PAGE, HIMEM and LOMEM if needed for some special

purpose. On a cassette system PAGE will be set to &0E00. On a disc system

(DFS) PAGE would be &1900. On a system with an Econet interface (NFS) PAGE

would be &1200. On a system with both disc and Econet interfaces fitted PAGE

will be set to &1B00. If the Advanced Disc Filing System (ADFS) fitted, PAGE is

&1D00. ADFS with DFS or NFS gives a PAGE value of &1F00, and ADFS with

DFS and NFS gives a PAGE value of &2100.

384

The above notes, and the diagram, refer only to machines without a second

processor fitted.

385

41 Operating system
statements

The BBC Microcomputer includes a large and powerful operating system. This

can be accessed from user written machine code routines or from BASIC. If a

BASIC statement starts with an asterisk then the whole of the rest of the

statement is passed to the operating system directly. Note that the filing systems

listed below can only be accessed if your BBC Microcomputer is fitted with the

appropriate hardware. Full details of each filing system are contained in their

related user guides. The operating system (OS) commands include:

*LOAD Loads a section of memory (not a BASIC program) (see

chapter 35).

*SAVE Saves a section of memory (see chapter 35).

*RUN Loads and executes a machine code program (see

chapter 35).

*CAT Displays a catalogue of files on the cassette, disc or

Econet disc unit (see chapter 35).

*KEY Programs one of the user defined keys (see chapters 25

and 43).

*OPT Determines how the computer reacts to errors during

loading of cassettes and the amount of detail given

during cassette operations.

*FX Enables the user to control a large number of the

computer effects such as flash rate (see chapter 43).

*TAPE Selects the cassette filing system running at 1200 baud.

*TAPE3 Selects the cassette filing system running at 300 baud.

*DISC This statement selects the disc filing system so that all

future file operations (eg LOAD and SAVE) work to the

floppy disc units.

*ADFS Selects the advanced disc filing system for all future file

operations.

*NET Selects the Econet filing system for all future file

operations.

386

*SPOOL Copies all screen output to a named file (see chapter

37).

*EXEC Uses a named file to provide input as if it had been

typed in at the keyboard (see chapters 35 and 37).

*MOTOR Used to turn the cassette motor on or off.

*TV This can be used to move the whole of the displayed

picture up or down the screen and also controls the

picture interlace (see chapter 43). The interlace on the

BBC Microcomputer is off by default.

*ROM Selects the sideways ROM filing system.

*SHADOW Selects the shadow screen on a subsequent MODE

change (see chapter 42).

*IEEE Selects the IEEE 488 interface filing system.

*TELESOFT Selects the Teletext filing system.

All these OS statements may, if required, have the contents of BASIC variables

passed to them as parameters by using OSCLI (see chapter 33).

387

42 The shadow screen

There are two areas of memory in the computer that can be selected for use as

display memory: from &3000 (variable, according to the display MODE selected)

to &8000 in the main memory map, or an area outside the main memory map

known as the ‘shadow RAM’. Using the shadow RAM leaves the whole of user

memory (ie from PAGE to &8000) free for your use.

Display MODEs 128 to 135 use the shadow RAM as the display memory by

default, and are the shadow screen equivalents of MODEs 0 to 7 (respectively). To

enter a shadow display MODE, simply type in its MODE number – for example:

MODE 135 RETURN

would enter the shadow screen equivalent of MODE 7. Non-shadow mode may be

re-entered by changing to a non-shadow MODE. The following command sequence

illustrates the memory map changes which take place when switching between

shadow and non-shadow MODEs:

MODE 3

P. ~HIMEM

 4000

MODE 131

P. ~HIMEM

 8000

MODE3

P. ~HIMEM

 4000

(The screen would be cleared by each MODE change).

To force the operating system to enter shadow mode on subsequent MODE

changes, (even if a non-shadow MODE is selected) type

*SHADOW RETURN

To return to non-shadow mode type

*SHADOW 1 RETURN

388

followed by a MODE change to a non-shadow MODE. The following command

sequence illustrates the memory map changes which take place when using the

*SHADOW commands:

MODE 3

P. ~HIMEM

 4000

*SHADOW

P. ~HIMEM

 4000

MODE 3

P. ~HIMEM

 8000
MODE 131 would have the same effect as the second MODE 3 command above,

although in that case there would be no need for the preceding *SHADOW

command. Continuing from the above sequence we have:

*SHADOW 1

P. ~HIMEM

 8000

MODE 3

P. ~HIMEM

 4000

Substituting MODE 131 for MODE 3 above would give:

P. ~HIMEM

 8000

The *SHADOW commands are useful when switching between software which

uses shadow RAM and software which doesn’t.

Other shadow mode-related commands

*FX114 produces the same effect as *SHADOW, and *FX114,1 produces the

same effect as *SHADOW 1.

VDU22,<128+n> (used when in non-shadow mode) will select MODE n; shadow

mode will not be entered and HIMEM will not be reset.

Shadow mode is retained across a soft break, but is reset to non-shadow by a

hard break.

389

43 The operating system and
how to make use of it

What is the operating system?

The operating system (or the machine operating system (MOS) to give it its full

title) is a program which controls the operation of the computer. The MOS for the

BBC Microcomputer lives in ROM, and is activated automatically as soon as the

microcomputer is switched on. The MOS runs constantly, performing repetitive

tasks with such speed that you are not even aware that anything is going on;

indeed, the MOS has already done a tremendous amount of work before you even

press a key! The functions performed by the MOS include scanning the keyboard,

updating the screen, performing analogue-to-digital conversions (for input from

joysticks) and controlling the sound generator.The MOS is a large and complex

machine code program (more about machine code later), consisting of a number of

routines which perform functions such as those listed above. Like all computer

programs, the MOS will not do anything until it is told to (although as already

mentioned, just switching the computer on, and leaving it on, tells the MOS to do

quite a lot). All the functions performed by the MOS can be made available to

other machine code programs, and one machine code program which you will be

familiar with is BASIC. BASIC provides an easy way of using the

microcomputer’s computing power, and it makes constant use of the MOS

routines to get input from the keyboard and reflect that input on the screen. How

ever, the degree of control over the MOS provided by BASIC is limited. For

example, typing

COLOUR 9 RETURN

in MODE 2 will cause subsequent screen display to appear in flashing red/cyan,

the ‘work’ being done by the MOS routines. However, BASIC provides no way of

varying the flash rate. There are three principal ways of achieving fine control of

this kind:

1. Using *FX commands

2. Calling operating system routines from BASIC

3. Calling operating system routines from assembly language

Although the rest of this chapter covers all of the above three topics, you are

referred to the next chapter for a detailed introduction to assembly language.

390

The *FX commands

The *FX commands are a family of operating system commands which act

directly on the MOS, causing its routines to carry out a variety of functions which

are summarised below.

The general form of a *FX command is

*FXa,x,y

where a, x and y are integers. (There can be a space between the X and the a.)

For example, the MOS version number can be printed out on the screen by typing

*FX0 RETURN

Note that in the above command a=0, but x and y are absent. Another example,

(which incidentally solves the ‘flashing colour’ problem which was referred to

earlier) is

*FX9,10

which causes the first named colour (red in our example) to be displayed for ten

fiftieths of a second (*FX9,20 would display it for twenty fiftieths of a second,

and so on). Note here that the default duration of the first named colour – ie the

time for which it is displayed before a *FX9 command is typed in to change the

time – is half a second, so restoring the default duration could be achieved by

typing

*FX9,25 RETURN

Incidentally, loading the default duration (plus many other default parameter

values) into RAM is one of the jobs done by the MOS when the microcomputer is

switched on. Typing

*FX9,0 RETURN

would set the duration to infinity, causing the first colour to be displayed

continuously, and the second colour not to be displayed at all. Exactly the same

effect could be achieved by typing

*FX9 RETURN

which illustrates the fact that if the x and y parameters are omitted they are

taken to be equal to zero. As a final example,

*FX144,2,1

would move the display two lines up the screen and turn the interlace off (after

the next MODE change or soft break). A summary of all the *FX commands and

their functions is given later in this chapter.

391

All the *FX commands can be typed in in immediate mode or can be included as

a line of a BASIC program. The values typed in for x and y (if any) are copied by

the MOS into registers known as X and Y, which reside in the microcomputer’s

6512 microprocessor (see next chapter for more details). Some *FX commands

return values in X and Y, but unfortunately the MOS does not copy these

returned values back into X% and Y% (it doesn’t even ‘know’ about X% and Y%).

However, this drawback can be overcome through the use of a certain operating

system call. An operating system call is a means of activating one of the routines

which exist within the MOS. Several operating system calls exist, which perform

a variety of functions (see chapter 45). The operating system call which we will

examine first is OSBYTE.

OSBYTE calls from BASIC

OSBYTE has call address &FFF4, a memory location within the operating

system ROM. This means that when OSBYTE is called, the instruction held in

location &FFF4 is executed. This instruction loads an address which is held in a

RAM location whose address is given in locations &FFF5 and &FFF6 (&020A for

OSBYTE). OSBYTE is said to ‘indirect’ via &20A. Locations &20A and &20B

contain the address of (or the ‘vector’ to) the routine within the MOS which is

actually executed. This may seem a little complicated, but it does mean (for

example) that OSBYTE’s call address will always be &FFF4, and its indirection

vector will always be at &20A, no matter how much the MOS changes between

different versions.

OSBYTE can be called from within BASIC in two ways, one of these being with

the CALL BASIC keyword. Try typing the following sequence:

A%=0

X%=0

Y%=0

CALL(&FFF4)

You will notice that this has exactly the same effect as the *FX0 command. This

is because a *FX command and an OSBYTE call are very nearly one and the

same thing: the MOS recognises any command beginning *FX as an OSBYTE

call. in general,

*Fxa,x,y

is equivalent to OSBYTE with A=a, X=x and Y=y. A is another register in the

6512 (known as the ‘accumulator’, see chapter 45) whose contents are set equal to

the value read by the BASIC interpreter from the resident integer variable A%.

As another example, the following program would have the same effect as

*FX9,10 (see above):

392

10 MODE2

20 COLOUR 9

30 A%=9

40 X%=10:Y%=0

50 CALL(&FFF4)

Obviously, this is far more ponderous than simply typing *FX9,10 , and indeed

the CALL BASIC keyword is mainly used in conjunction with assembly language

programs (see chapter 45). A far more powerful method of making operating

system calls is through use of the USR BASIC keyword. The above program could

be re-written as

10 MODE2

20 COLOUR 7

30 A%=9

40 X%=10:Y%=0

50 PRINT ~USR(&FFF4)

(Note that the foreground colour has been changed to white – it’s a little difficult

to read the output of this program in flashing red/cyan!). The effect of line 50 is to

set the duration of the first flashing colour as before (which can be confirmed by

using COLOUR to select a flashing colour combination), and also to print the

following on the screen:

30191909

The string of figures are hexadecimal digits, which have come from registers in

the 6512. They have the following meanings (reading from right to left):

09 This has come from register A (the accumulator), which was set up from A%

(it is simply the OSBYTE call number; all OSBYTE calls preserve A).

19 This has come from the X register, and is the previous colour duration

value. In this case the previous value is the default value, 25. (Remember

the digit pairs are hexadecimal, &19=25 decimal).

19 This has come from the Y register, and contains the same value as the X

register.

30 This has come from the P register (the program status register, mainly of

interest to those programming in assembly language).

Of course, all OSBYTE calls do not have the same exit conditions. The next

example performs a totally different function. Note also that the result of the USR

call has been assigned to a set of variables, so that it can be printed out in a more

readable form:

393

 10 REM Uses OSBYTE with A=129 to wait one second

for a key

 15 REM to be pressed.

 20 DIM registers 4

 30 DIM A$(2):A$(0)="A=":A$(1)="X=":A$(2)="Y="

 40 A%=129

 50 X%=100

 60 Y%=0

 70 !registers=USR(&FFF4)

 80 FOR K=0 TO 2

 90 PRINT A$(K);~registers?K

100 NEXT K

This program uses OSBYTE with A=129 to read a key, which must be pressed

within a specified time limit (one second in the example). If it reminds you of

BASIC’s INKEY keyword that’s because INKEY uses the same OSBYTE call. If a

time limit of n centiseconds is required then X and Y should be set up as follows:

X=n AND &FF

Y=n DIV &100

The exit conditions vary according to what happens; if no key is pressed within

the time limit, X is preserved, Y=&FF. If a key is pressed, X returns the

hexadecimal ASCII code of the key character, Y=0.

All the *FX calls and OSBYTE calls available on the BBC Microcomputer are

detailed at the end of this chapter, preceded by a numerical and a functional

summary. Other calls are available to various filing systems which may not be

fitted to your machine; these are noted, but you are referred to the appropriate

filing system user guide for details.

OSBYTE calls from assembly language

This section does not attempt to provide an introduction to assembly language

and how to use it; you are referred to the next chapter for that. For those

unfamiliar with the concept of assembly language, it is safe to assume for now

that it is a sort of ‘half way house’ between BASIC and machine code, which is

what the 6512 microprocessor actually executes. Programs written in assembly

language are more difficult to write than BASIC programs, but they usually take

up less memory and are faster than an equivalent BASIC program, which is why

large, complex programs such as arcade games will always be written in

assembly language.

394

Shown below is an assembly language equivalent of the ‘read a key within one

second’ example which we have already seen in BASIC

 10 OSBYTE=&FFF4

 20 P%=&3500

 30 [

 40 LDA#129

 50 LDX#100

 60 LDY#0

 70 JSR OSBYTE

 80 RTS

 90]

100 CALL &3500

The first thing you will notice about the above program is that lines 10, 20 and

100 seem to be BASIC statements. Indeed they are, the program is really a

‘hybrid’. Line 30 tells BASIC ‘assembly language starts here’, line 90 says

‘assembly language finished’. Line 40 says ‘load the accumulator with decimal

129’. Similarly, lines 50 and 60 load the X register with decimal 100 and the Y

register with 0. Line 70 calls OSBYTE, although the machine code assembled

from lines 40 to 80 is not actually executed until the program reaches line 100.

This description of the program is deliberately brief, but any questions that you

may have will be answered in the next chapter. Try typing the program in and

running it. You will see that six lines of text appear on the screen (more about

that in the next chapter), there is a pause, and then the BASIC prompt

reappears. If you run the program again, but press a key immediately after

pressing RETURN, you will find that the same thing happens, except that the

prompt reappears when you press the key. In both cases the program doesn’t

appear to have done anything! In fact, it has carried out exactly the same

processing as the BASIC example, but it hasn’t printed any results out on the

screen. This illustrates a disadvantage of making an operating system call from

assembly language: there is no direct way of printing out the contents of the 6512

registers. (This isn’t as bad as it sounds because real-life applications of assembly

language programs, arcade games for example, rarely require register contents to

be printed.) The following program gets around this problem (albeit in a limited

and rather unsatisfactory way) by making use of another MOS routine, called

OSWRCH:

 10 OSBYTE=&FFF4

 20 OSWRCH=&FFEE

 30 P%=&3500

 40 [

 50 LDA#129

 60 LDX#100

 70 LDY#0

395

 80 JSR OSBYTE

 90 TXA

100 JSR OSWRCH

110 RTS

120]

130 CALL &3500

Of interest here is line 90, which turns an exit parameter from OSBYTE (in the X

register) into an entry parameter for OSWRCH (supplied in the A register). Try

running the program. If you don’t press a key after RETURN, then the first

character on the last line to be printed out is d, which has decimal ASCII code

100, which was the value loaded into the X register. Pressing a key will cause the

key character to be displayed followed immediately by the the BASIC prompt,

indicating that the program has finished. What has happened is that OSWRCH

has read the value in A, transformed it into a character and printed the character

on the screen (without a line feed or carriage return). More details of OSWRCH

and all the other operating system calls are given in chapter 45.

The foregoing has probably left you somewhat unimpressed by the potentialities

of assembly language programming, but hopefully the next chapter will change

your views!

The *FX commands and OSBYTE calls

This section lists and details all the most useful *FX commands and OSBYTE

calls. There are others which are recognised by the operating system but there is

not sufficient space to document them here. You are referred to the many other

publications which are available concerning the BBC Microcomputer for

descriptions of these other, somewhat esoteric calls. The decimal and

hexadecimal calls which appear in the following tables are the values of a for

*FXa, or the values to be loaded into the accumulator for the related OSBYTE

call.

396

Functional summary (alphabetical)

heading brief description dec hex

flush selected class 15 F

flush selected buffer 21 15

get buffer status 128 80

insert value into buffer 138 8A

get character from buffer 145 91

buffer

examine buffer status 152 98

read from FRED 146 92

write to FRED 147 93

read from JIM 148 94

write to JIM 149 95

read from SHEILA 150 96

bus

write to SHEILA 151 97

enable/disable cursor edit keys 4 4

read text cursor position 134 86

cursor

read character at cursor 135 87

clear ESCAPE condition 124 7C

set ESCAPE condition 125 7D

ESCAPE

acknowledge ESCAPE 126 7E

disable event 13 Devents

enable event 14 E

close *SPOOL and *EXEC files 119 77files

check end of file status 127 7F

select input device 2 2input/output

select output device(s) 3 3

auto-repeat delay 11 B

auto-repeat rate 12 C

keyboard

read CTRL/SHIFT key status 118 76

explode soft character RAM allocation 20 14

select shadow/non-shadow display memory 114 72

read high order address 130 82

read OSHWM address 131 83

read bottom of display RAM address 132 84

memory

read lowest address for particular MODE 133 85

397

operating system print version number 0 0

paged ROM enter language ROM 142 8E

select printer type 5 5

set printer ignore character 6 6

printer

end of user print routine 123 7B

receive baud rate 7 7RS423

transmit baud rate 8 8

serial enable/disable 6850 ACIA IRQ 232 E8

enable/disable cursor edit keys 4 4

reset soft keys 18 12

cancel VDU queue 224 E0

set base number for function key codes 225 E1

set base number for SHIFT function key

codes

226 E2

set base number for CTRL function key

codes

227 E3

soft keys

set base number for SHIFT CTRL function

key codes

228 E4

sound sound on/off 210 D2

read from speech processor 158 9E

write to speech processor 159 9F

speech on/off 209 D1

speech

return presence of speech processor 235 EB

user user OSBYTE call 1 1

VDU read VDU status 117 75

enable/disable user 6522 IRQ 231 E7VIA/6522

enable/disable system 6522 IRQ 233 E9

set flash period of first colour 9 9

set flash period of second colour 10 A

video

wait for field synchronisation 19 13

398

Numerical summary

Decimal Hex Function

0 0 Prints operating system version number.

1 1 Reserved for application programs.

2 2 Selects input device.

3 3 Selects output devices.

4 4 Enable/disable cursor edit keys.

5 5 Select printer type.

6 6 Set printer ignore character.

7 7 Set RS423 receive baud rate.

8 8 Set RS423 transmit baud rate.

9 9 Set flash period of first colour.

10 A Set flash period of second colour.

11 B Set auto-repeat delay.

12 C Set auto-repeat period.

13 D Disable various events.

14 E Enable various events.

15 F Clear all or just input buffer.

16 10 Select number of ADC channels.

17 11 Force start of conversion on ADC channel.

18 12 Reset user defined function keys.

19 13 Wait for field synchronisation.

20 14 Explode soft character RAM allocation.

21 15 Clear selected buffer.

114 72 Control shadow/main memory selection

117 75 Read VDU status byte.

118 76 Read CTRL/SHIFT key status.

119 77 Close *SPOOL and *EXEC files.

123 7B End of user print routine.

124 7C Reset ESCAPE flag.

125 7D Set ESCAPE flag.

126 7E Acknowledge detection of escape condition.

127 7F Check end of file status.

128 80 Read ADC channel/fire buttons/last conversion.

129 81 Read key within time limit.

130 82 Read machine high order address.

131 83 Read top of operating system RAM address.

132 84 Read bottom of display RAM address.

133 85 Read lowest address for particular MODE.

134 86 Read text cursor position.

135 87 Read character at text cursor position.

399

137 89 Turn cassette motor on/off.

138 8A Insert character into specified buffer.

139 8B Set file options.

140 8C Select cassette file system and set speed.

142 8E Select sideways ROM.

144 90 Alter TV display position/interlace.

145 91 Remove character from buffer.

146 92 Read from I/O area FRED.

147 93 Write to I/O area FRED.

148 94 Read from I/O area JIM.

149 95 Write to I/O area JIM.

150 96 Read from I/O area SHEILA.

151 97 Write to I/O area SHEILA.

152 98 Examine specified buffer.

158 9E Read from speech processor.

159 9F Write to speech processor.

209 D1 Speech on/off.

210 D2 Sound on/off.

218 DA Read/write size of VDU queue

239 EF Read/write shadow display mode state

224 E0 Cancel VDU queue.

225 E1 Set base number for function key codes.

226 E2 Set base number for SHIFT function key codes.

227 E3 Set base number for CTRL function key codes.

228 E4 Set base number for SHIFT CTRL function key codes.

229 E5 ESCAPE=&1B.

230 E6 Enable/disable normal ESCAPE key action.

231 E7 Enable/disable user 6522 IRQ.

232 E8 Enable/disable 6850 ACIA IRQ.

233 E9 Enable/disable system 6522 IRQ.

235 EB Return presence of speech processor.

253 FD Last reset type.

255 FF Write start-up option byte.

Each *FX and OSBYTE call is now explained in detail.

*FX0 prints a message giving the version number of the operating system.

*FX1, n sets the user flag to n. See OSBYTE with A=1 for more details.

*FX2 selects the input device from which characters will be retrieved.

*FX2,0 gets characters from the keyboard and disables the RS423 receiver.

*FX2,1 gets characters from the RS423 port, and disables the keyboard.

*FX2,2 gets characters from the keyboard and enables the RS423 receiver.

400

*FX3 is used to select whether output appears (or not) on different output

streams. *FX3 is followed by one number, eg *FX3,4 . The second number should

be considered in its binary form, because the value of each bit determines the

effect of the command. Here is a list of the bits involved, and the effect of each bit

when its value is 1.

bit 0 enable RS423 driver

bit 1 disable VDU driver

bit 2 disable printer driver completely

bit 3 enable printer driver (as long as bit2 at 0)

bit 4 disable SPOOLd output

bit 5 not used

bit 6 disable printer driver unless character preceded by CTRL A or VDU1 (as

long as bit1 and bit2 at 0)

bit 7 not used

Here are some useful values in the table below

Printer Screen RS423

*FX3,0 enabled on off

*FX3,1 enabled on on

*FX3,2 enabled off off

*FX3,3 enabled off on

*FX3,4 off on off

*FX3,5 off on on

*FX3,6 off off off

*FX3,7 off off on

*FX3,8 on on off

*FX3,9 on on on

*FX3,10 on off off

*FX3,11 on off on

*FX3,12 off on off

*FX3,13 off on on

*FX3,14 off off off

*FX3,15 off off on

*FX3,0 to *FX3,3 ‘enable’ the printer, which means that VDU2 (or CTRL B)

will send output to printer. Values from 0 to 3, 8 to 12, 16 to 19 etc are affected by

*FX5 .

Values from 16 to 31 are equivalent to values from 0 to 15, except that *SPOOL

output is turned off.

401

*FX4,0 resets the system so that the cursor editing keys and

COPY perform their normal cursor editing function.

*FX4,1 disables the cursor editing and makes the cursor editing keys generate

normal ASCII codes. The codes are shown below in both decimal and hex

numbers.

COPY 135 &87

136 &88

137 &89

138 &8A

139 &8B

*FX4,2 permits the and COPY keys to be programmed in the same way as the

user defined function keys. In other words they may contain strings. In this case

the *KEY numbers are

COPY 11

12

13

14

15

*FX5 is used to select the printer type.

*FX5,1 selects output to the parallel (Centronics type) output connector.

*FX5,2 selects the serial RS423 output.

*FX5,3 selects a user supplied printer driver (see chapter 38).

Note that none of these will actually cause output to appear on the printer. VDU2

(or CTRL B) must be used to start output going to the selected printer channel.

*FX5,0 can be used to select a ‘printer sink’ where characters can be lost

without the possibility of the system ‘hanging’ with a full printer buffer.

*FX6 is used to set the character which will be suppressed by the printer driver

routines. Some printers do an automatic ‘line feed’ when they receive a ‘carriage

return’. It is therefore useful to be able to prevent the line feed characters from

reaching the printer. The ASCII code for line feed is decimal code 10 so this can

be achieved with the statement

*FX6,10

402

Having set this mode it is still possible to get a line feed through to the printer by

use of the VDU1 (send next character to printer only) statement. The character

following VDU1 is not checked, thus to send a line feed one would use

VDU1,10

*FX6 should always be executed after the printer type has been set by *FX5 .

*FX6,0 provides no character filtering.

Note that the default is that line feed characters are filtered out.

*FX7 is used to select the baud rate to be used when receiving data on the RS423

interface, as follows:

*FX7,1 75 baud receive

*FX7,2 150 baud receive

*FX7,3 300 baud receive

*FX7,4 1200 baud receive

*FX7,5 2400 baud receive

*FX7,6 4800 baud receive

*FX7,7 9600 baud receive

*FX7,8 19200 baud receive (this rate is not guaranteed)

*FX8 is used to select the transmit rate to be used on the RS423 interface.

*FX8,1 75 baud transmit

*FX8,2 150 baud transmit

*FX8,3 300 baud transmit

*FX8,4 1200 baud transmit

*FX8,5 2400 baud transmit

*FX8,6 4800 baud transmit

*FX8,7 9600 baud transmit

*FX8,8 19200 baud transmit (this rate is not guaranteed)

Note: The standard receive/transmit format adopted for RS423 is one start bit,

eight bits, one stop bit.

403

*FX9 and *FX10 are used to set the flash rate of flashing colours. Colours

always flash between one colour and its complement. Thus in MODE 2, COLOUR 9

selects flashing red/cyan.(See chapter 34 for more information on COLOUR.)

*FX9 is followed by a number which gives the duration of the first named colour.

The duration is given in fiftieths of a second. Thus to select one fifth of a second

one would use the statement

*FX9,10

The default is *FX9,25

*FX10 is used to set the period of the second named colour. See the entry above

for *FX9 .

Note that values of 0 for the duration will eventually force the selected state to

occur full time. If neither counter is set to zero then setting the other counter to

zero will immediately force the latter colour to appear.

The default is *FX10,25 .

*FX11 If a key is held depressed then after a short delay (the auto-repeat delay)

the key will repeat automatically every so often. The delay is given in hundredths

of a second.

*FX11 sets the delay before the auto-repeat starts.

*FX11,0 turns off the auto-repeat all together.

*FX11,5 would set the auto-repeat delay to five hundredths of a second, etc.

*FX12 sets the auto-repeat period, that is the amount of time between the

generation of each character.

*FX12,0 resets both the auto-repeat delay and the auto-repeat to their normal

values.

*FX12,10 would set the auto-repeat period to ten hundredths of a second thus

producing ten characters per second.

*FX13 and *FX14 are used to disable and enable certain events. These *FX

calls will only be used by programmers writing in Assembly Language and more

information on events is given in chapter 44. The summary which follows should

be read in conjunction with that chapter.

*FX13,0 disables output buffer empty event.

*FX13,1 disables input buffer full event.

*FX13,2 disables character entering input buffer event.

*FX13,3 disables ADC conversion complete event.

404

*FX13,4 disables start of vertical synchronisation event.

*FX13,5 disables interval timer crossing zero event.

*FX13,6 disables ESCAPE pressed event.

*FX13,7 disables RS423 receive error event.

*FX13,8 disables service/Econet error event.

*FX14,0 enables output buffer empty event.

*FX14,1 enables input buffer full event.

*FX14,2 enables character entering input buffer event.

*FX14,3 enables ADC conversion complete event.

*FX14,4 enables start of vertical synchronisation event.

*FX14,5 enables interval timer crossing zero event.

*FX14,6 enables ESCAPE pressed event.

*FX14,7 enables RS423 receive error event.

*FX14,8 enables service/Econet error event.

The initial condition is that all are disabled.

*FX15 enables various internal buffers to be cleared (or emptied).

*FX15,0 clears all internal buffers.

*FX15,1 clears the currently selected input buffer.

See also *FX2 1.

As an OSBYTE call this typically executes in 370 microseconds.

*FX16 is used to select the number of analogue to digital converter (ADC)

channels that are to be used. Each ADC channel takes 10ms to convert an

analogue voltage into a digital value. Thus if all four ADC channels are enabled

then new values for a particular channel will only be available every 40ms. It is,

therefore, often wise to enable only the number of channels actually required.

*FX16,0 will disable all ADC channels.

*FX16,1 will enable ADC channel 1 only.

*FX16,2 will enable channels 1 and 2.

*FX16,3 will enable channels 1, 2 and 3.

*FX16,4 will enable all four ADC channels.

405

*FX17 forces the ADC converter to start a conversion on the selected channel.

Thus *FX17,1 will start a conversion on channel 1. Channels are numbered 1, 2,

3 and 4. OSBYTE call with A=&80 can be used to determine when the conversion

is complete as can ADVAL(0) .

*FX18 resets the user defined function keys so that they no longer contain

character strings.

*FX19 causes the machine to wait until the start of the next frame of the display

for animation.

*FX20 when the machine starts up, space is allocated at &C00 for the

redefinition of 32 displayed characters using the VDU23 statement.

In the initial state, or after issuing a *FX20,0 command, the character

definitions are said to be ‘imploded’. This means that an attempt to print any

character with ASCII code greater than 128 (&80) will be mapped on to the

characters stored at memory &C00. Initially this will produce garbage. Once a

user defined character has been defined, the effect of the mapping is to produce

the same character for four ASCII codes, each code being offset from its

neighbour by 32 (decimal). Therefore, for example, ASCII codes &80, &A0, &C0

and &E0 will all show the same character. Redefining any one of the above codes

would also identically redefine the other three. Note that code &80 (or &A0. &C0

or &E0) will be mapped to memory location &C00; code &81 (or &A1, C1 or &E1)

will mapped to memory location &C08, etc. Character codes in the range &20 to

&7F can also be redefined, but will map (in the *FX20,0 state) to the same

memory locations, thus overwriting what is already there.

After a *FX20,6 command the character definitions are said to be fully

‘exploded’ and all printing characters (codes &20 to &FF) can be redefined, each

group of 32 characters in the range having its own memory allocation (see below).

However, until any character in a block is redefined, the block will map on to

either the preset ROM (&20 to &7F) or on to memory at &C00 (&80 to &FF). The

memory allocated to each block of ASCII codes in the fully exploded state is:

ASCII code Memory allocation

&20 to &3F OSHWM + &300 to OSHWM + &3FF

&40 to &5F OSHWM + &400 to OSHWM + &4FF

&60 to &7F OSHWM + &500 to OSHWM + &5FF

&80 to &9F &C00 to &CFF

&A0 to &BF OSHWM to OSHWM + &FF

&C0 to &DF OSHWM + &100 to OSHWM + &1FF

&E0 to &FF OSHWM + &200 to OSHWM + &2FF

406

The character definitions may also be partially exploded by using a parameter

between 0 and 6. For example, *FX20,1 will allow character codes &80 to &BF

to be redefined. Each increment in the parameter allocates another page (256

bytes) of memory above OSHWM to the soft character definitions. *FX20,4 will

allow redefinition of character codes &80 to &FF and &20 to &3F.

The following command sequence should serve to make the situation clearer.

(Press RETURN after each line.)

VDU23, &E2,1,3,7,15,31,63,127,255

*FX20,3

VDU23,&E2,255,127,63,31,15,7,3,1

VDU&E2

*FX20,0

VDU&E2

Although the fourth and sixth lines invoke the same character code, a different

character is displayed each time due to the effect of the *FX20 commands. (Note

that *FX20 could be typed in instead of *FX20,0 .)

If this is done, and the programmer redefines characters in the range &20 to

&3F, he or she must leave memory up to OSHWM + &3FF clear of his or her

program. This is done by first finding the value of OSHWM (for the particular

configuration in use) by using OSBYTE call 131 and then setting PAGE to a value

&400 above this value. Of course, if the programmer only wishes to redefine

ASCII codes in the range &80 to &9F (128 to 159) then he or she need not alter

PAGE.

Codes in the range &80 to &9F are of particular importance since the

programmer can generate them directly from the keyboard by holding down

SHIFT at the same time as pressing one of the user definable function keys.

See later in this chapter for more information on Operating System High Water

Mark.

*FX21 allows any internal buffer to be cleared (or flushed).

*FX21,0 flushes the keyboard buffer.

*FX21,1 flushes the RS423 serial input buffer.

*FX21,2 flushes the RS423 serial output buffer.

*FX21,3 flushes the printer output buffer.

*FX21,4 flushes the sound channel number 0 (noise).

*FX21,5 flushes the sound channel number 1.

*FX21,6 flushes the sound channel number 2.

407

*FX21,7 flushes the sound channel number 3.

*FX21,8 flushes the speech synthesis buffer.

See also *FX1 5, OSBYTE &80 and OSBYTE &8A.

*FX114 is used to select shadow/main display memory at the next MODE change.

*FX 114 selects shadow memory, *FX114,1 selects main memory. Note that a

MODE change is required before HIMEM will be reset. (See chapter 42 for more

details of the shadow screen facility.)

*FX119 causes any open files being used as *SPOOLed output or *EXECed input

to be closed.

*FX124 clears the ESCAPE pressed flag (bit 7 of location &FF).

*FX125 sets the ESCAPE pressed flag. It must be set with this call and not

directly. It has a similar effect to pressing the ESCAPE key. (Conditional on any

OSBYTE 229 call.)

*FX126 must be used to acknowledge the detection of an escape condition if the

user is intercepting characters fed into the computer through the OSRDCH

(Operating System Read Character) routine.

*FX142 can be used to select one of the six sideways ROM sockets (note that

only language ROMs can be selected). The sockets are numbered,counting

anticlockwise from the MOS/BASIC socket at the top right, 14/15, 10/11, 8/9, 2/3,

4/5, and 6/7. Each socket is capable of accepting a 32K ROM. The paired socket

numbers correspond to the two 16K ‘logical ROMs’ which may exist within the

single 32K ‘physical ROM’. If a socket contains a 16K ROM then it can be

selected by using either of the two socket numbers. For example, a (16K)

language ROM in the socket immediately to the left of the MOS/BASIC socket

could be selected by typing *FX142,10 or *FX142,11 .

*FX209 will turn speech on or off. *FX209,80 is on, *FX209,1 is off.

*FX210 will turn the sound on or off. *FX210,0 is on, *FX210,1 is off.

*FX218,0,0 will cause the VDU software to forget the bytes it has received so

far as part of an (incomplete) VDU (with parameters) statement.

*FX255 will set the keyboard start-up option byte. This value will only take

effect on a soft reset. Any other sort of reset (hard or power-on) and the value will

be taken direct from the wiring on the keyboard. The links on the keyboard are

all ‘unmade’, which ensures that the RAM location which can be accessed by this

call (&28F) has all its bits set on start-up or by a hard break. The value contained

in &28F and the corresponding keyboard link numbers are as follows:

408

Links 1 and 2 (bits 7 and 6 respectively) are unused.

Links 3 and 4 (bits 5 and 4 respectively) set the disc drive timings. The default

settings give the slowest disc access – this ensures that the computer can be used

with any make of disc drive.

Link 5 (bit 3) selects auto or manual boot on (default setting gives manual boot).

Links 6, 7, and 8 (bits 2, 1, and 0) select the screen MODE (default settings give

MODE 7).

For example, *FX255,203 would give fast discs, manual boot, and MODE 3 on

soft reset.

OSBYTE calls

OSBYTE call with A=&0 (0) Read operating system version number

If X=0 on entry then the operating system version number will be returned as an

error message. If X is non-zero on entry then on exit X will contain the opeating

system series number – for example OS 2.00 would return X=2. On exit A and Y

are preserved, C is undefined.

OSBYTE call with A=&1 (1) Read/write the user flag

On entry, Y=0 for a write operation or Y=&FF for a read operation. For a write

operation, X=new value of user flag. On exit, X=previous user flag value, Y=&FF.

This call uses OSBYTE with A=&F1 (241), and is not used by the operating

system, being left free for user applications. The user flag is stored at location

&281 and has default value 0.

OSBYTE call with A=&2 (2) Select input device

On entry, the value in X determines the input device(s), as follows:

X=0 Keyboard selected, RS423 disabled.

X=1 RS423 selected, keyboard disabled.

X=3 Keyboard selected, RS423 enabled (but not selected.)

On exit, X=0 if previous input was from the keyboard, X=1 if previous input was

from the RS423. A is preserved, Y an C are undefined.

OSBYTE call with A=&3 (3) Select output device

On entry, the value in X determines the output device to be selected, as follows:

Bit 0 set – Enables RS423 driver.

Bit 1 set – Disables VDU driver.

Bit 2 set – Disables printer driver.

Bit 3 set – Enables printer, independently of CTRL B or CTRL C.

409

Bit 4 set – Disables spooled output.

Bit 5 – Not used.

Bit 6 set – Disables printer driver unless the output character is

preceded by a VDU1 command (or equivalent).

Bit 7 – Not used.

The default options (X=0) are:

RS423 disabled

VDU enabled

Printer enabled (if selected by VDU2)

Spooled output enabled (if selected by *SPOOL)

This OSBYTE call uses OSBYTE with A=&EC (236). On exit, A is preserved, X

contains the previous *FX3 status, Y and C are undefined.

OSBYTE call with with A=&4 (4) Enable/disable cursor editing keys

On entry, the value in X determines the editing keys’ status, as follows:

X=0 Cursor editing enabled (default setting).

X=1 Cursor editing disabled. The cursor control keys will return

normal ASCII codes, see *FX4,1 (later in this chapter) for

details.

X=2 Cursor editing disabled. The cursor control keys act as soft

keys with soft key association numbers as detailed under

*FX4,2 (see later in this chapter).

On exit, A is preserved, X contains the previous *FX4 setting, Y and C are

undefined.

OSBYTE call with A=&5 (5) Select printer type/output channel

On entry, the value in X determines the print destination, as follows:

X=0 Printer sink (printer output ignored).

X=1 Parallel printer (default setting).

X=2 Serial printer (RS423 output). This setting will produce the

effect of a printer sink if the RS423 is enabled using OSBYTE

with A=3.

X=3 User supplied printer driver routine, the address of which

should be placed starting at location &222.

X=4 Econet printer.

X=5-255 User supplied printer driver routine (see X=3 above).

On exit, A is preserved, X contains the previous *FX5 setting, Y and C are

undefined. This call enables interrupts, and is not reset to default by a soft break.

410

OSBYTE call with A=&6 (6) Select character to be ignored by printer

On entry, X contains the decimal ASCII code of the character to be ignored. The

effect of this call can be suppressed through the use of an appropriate VDU1

statement. The default setting is X=10 (line feed). On exit, A is preserved, X

contains the previous *FX6 setting, Y and C are undefined.

OSBYTE call with A=&7 (7) Set RS423 receive baud rate

On entry, the value in X determines the baud receive rate, as follows:

X=1 75 baud

X=2 150 baud

X=3 300 baud

X=4 1200 baud

X=5 2400 baud

X=6 4800 baud

X=7 9600 baud

X=8 19200 baud (this rate not guaranteed)

On exit A is preserved, X and Y contain the old serial ULA register contents, C is

undefined.

OSBYTE call with A=&8 (8) Set RS423 transmit baud rate

On entry, the value in X determines the baud transmit rate, as follows:

X=1 75 baud

X=2 150 baud

X=3 300 baud

X=4 1200 baud

X=5 2400 baud

X=6 4800 baud

X=7 9600 baud

X=8 19200 baud (this rate not guaranteed)

On exit A is preserved, X and Y contain the old serial ULA register contents, C is

undefined.

OSBYTE call with A=&9 (9) Set flash rate of flashing colours (first
colour)

On entry, the value in X determines the duration in centiseconds of the first

named colour, X=0 sets the duration to infinity; X=25 is the default setting. On

exit, A is preserved, X and Y contain the value of the previous duration setting, C

is undefined.

OSBYTE call with A=&A (10) Set flash rate of flashing colours (second
colour)

On entry, the value in X determines the duration in centiseconds of the second

named colour. X=0 sets the duration to infinity; X=25 is the default setting.

411

On exit, A is preserved, X and Y contain the value of the previous duration

setting, C is undefined.

OSBYTE call with A=&B (11) Set keyboard auto-repeat delay

On entry, the value in X determines the delay in centiseconds before auto-

repeating starts. X=0 disables the auto-repeat facility; X=50 is the default value.

On exit, A is preserved, X contains the previous setting, Y and C are undefined.

OSBYTE call with A=&C (12) Set keyboard auto-repeat rate

On entry, the value in X determines the auto-repeat periodic interval in

centiseconds. X=0 resets the auto-repeat delay and rate to their default values;

X=8 is the default value. On exit, A is preserved, X contains the previous setting,

Y and C are undefined.

OSBYTE call with A=&D (13) Disable events

On entry, X contains the event code, corresponding to n for the *FX13, n

commands (see later in this chapter). Note that disabling an event means that a

user-supplied event handling routine will not be activated should the disabled

event occur. The default state is all events disabled. See chapter 44 for more

information on events. On exit, A is preserved, X and Y contain the old enable

state (0=disabled), C is undefined.

OSBYTE call with A=&E (14) Enable events

On entry, X contains the event code, corresponding to n for the *FX14 ,n

commands (see later in this chapter). Note that enabling an event means that a

user-supplied event handling routine will be activated should the enabled event

occur. The default state is all events disabled. See chapter 44 for more

information on events. On exit, A is preserved, X and Y contain the old enable

state (>0=disabled), C is undefined.

OSBYTE call with A=&F (15) Flush selected buffer class

On entry, the value in X determines the class of buffer to be flushed, as follows:

X=0 All buffers flushed

X<>0 Input buffer flushed only

On exit, the buffer contents are discarded, A is preserved, X, Y and C are

undefined.

OSBYTE call with A=&10 (16) Select ADC channels which are to be
sampled

On entry, X contains the number of channels to be sampled, corresponding to n

for the *FX16 ,n commands (see later in this chapter). If n=0, sampling is

disabled, if n>4 then n is reset to 4. On exit, A is preserved, X contains the

previous setting, Y and C are undefined.

412

OSBYTE call with A=&11 (17) Force ADC conversion on specified
channel

On entry, X contains the required channel number. If X>4 then X is reset to 4.

See also OSBYTE with A=&80 (128). On exit, A is preserved, X is preserved

unless it is greater than 4 – in which case X is reset to 4, Y and C are undefined.

OSBYTE call with A=&12 (18) Reset soft keys

This call resets the user-defined function keys so that they no longer contain

character strings. There are no entry conditions. On exit, A and Y are preserved,

X and C are undefined.

OSBYTE call with A=&13 (19) Wait for field synchronisation

This call causes the machine to wait until the start of the next frame of the

display. This occurs 50 times per second and can be used for timing or animation.

User trapping of IRQ1 (see chapter 44) may stop this call from working. There

are no entry conditions. On exit, A and Y are preserved, X and C are undefined.

OSBYTE call with A=&14 (20) Explode soft character RAM allocation

This call assigns memory blocks for use by soft character defenitions. On entry,

the value in X determines the memory block(s) to be assigned, corresponding to n

for the *FX20, n commands (see later in this chapter). See also OSBYTE call with

A=&B6 (182). On exit, A is preserved, X contains the new OSHWM (high byte), Y

and C are undefined.

OSBYTE call with A=&15 (21) Flush specified buffer

On entry, the value in X determines the buffer to be flushed, corresponding to n

for the *FX21, n commands (see later in this chapter). See also OSBYTE calls

with A=&0F (15) and &80 128). On exit, A and X are preserved, Y and C are

undefined.

OSBYTE call with A=&72 (114) Control shadow/main memory selection

On entry, X=0 selects the shadow display RAM, X=1 selects the main display

RAM. Note that the value of HIMEM is not reset by this command. On exit, X

contains the previous display memory selection, A is preserved, Y and C are

undefined. (See chapter 42 for details of the shadow screen facility).

413

OSBYTE call with A=&75 (117) Read VDU status byte

This call returns the VDU status byte (which contains various status flags) in the

X register. The bits in X are as follows:

– Bit 0 set if VDU2 sent. Cleared by VDU3.

– Bit 2 set if paged mode on. Cleared if paged mode off.

– Bit 3 set if software scrolling. Cleared if hardware scrolling. (Software scrolling

is used when text windows have been defined whereas hardware scrolls are

used when the whole screen scrolls.)

– Bit 4 set if shadow display mode selected.

– Bit 5 set when cursors are joined by VDU5.

– Bit 7 set if VDU disabled by VDU21.

OSBYTE call with A=&76 (118) Read CTRL/SHIFT key status

This call returns with the carry bit set if the CTRL key is pressed, and with the

negative bit set if the SHIFT key is pressed. Machine code routines may branch

on these conditions.

OSBYTE call with A=&77 (119) Close any SPOOL or EXEC files

This call closes any open files being used as *SPOOLed output or *EXECed input

to be closed. This call also performs a paged ROM call with A=&10. On exit, A is

preserved, X, Y and C are undefined.

OSBYTE call with A=&7B (123) End of user print routine

This call is used by the user print routine to indicate to the MOS that it has

finished its task. (Cancels a *FX5,3 command.)

OSBYTE call with A=&7C (124) Reset ESCAPE flag

This call clears any ESCAPE condition without any further action (ie no buffers

are flushed and no open EXEC files are closed). The Tube (if it is active) is

informed. The ESCAPE flag is stored as the top bit of location &FF, and should

never be interfered with directly. This OSBYTE call can only be usefully entered

from within an assembly language program, since BASIC itself resets the

ESCAPE flag. There are no entry conditions; on exit, A, X and Y are preserved, C

is undefined.

OSBYTE call with A=&7D (125) Simulate ESCAPE condition

This call partially simulates the ESCAPE key being pressed (conditional on any

OSBYTE 229 call). The Tube (if it is active) is informed. An ESCAPE event is not

generated. Note that if this OSBYTE call is made from BASIC, BASIC will reset

the ESCAPE flag (see OSBYTE call A=125). There are no entry conditions; on

exit, A, X and Y are preserved, C is undefined.

414

OSBYTE call with A=&7E (126) Acknowledge detection of an ESCAPE
condition

This call attempts to acknowledge the existence of an ESCAPE condition. It

should be used if you are using OSRDCH (see chapter 44) to intercept characters

being fed into the computer, and it is also useful as part of a user-supplied

ESCAPE condition service routine. If an ESCAPE condition is detected, all active

buffers will be flushed and any open EXEC files will be closed. There are no entry

conditions; on exit, X=255 if the ESCAPE condition existed (X=0 otherwise), A is

preserved, Y and C are undefined.

OSBYTE call with A=&7F (127) (EOF#)

This call returns the end of file status of a file which has been previously opened.

On entry X should contain the channel number allocated to the file. On exit X

will be zero if the end of file has not been reached and X will be non-zero if the

end d

OSBYTE call with A=&80 (128) Read ADC channel (ADVAL)

This call returns the most recent value of a particular analogue to digital

converter channel. It can also be used to detect an end of conversion and to see if

the games fire buttons are pressed.

On entry X contains the channel number to be read. If X is in the range 1 to 4

then the specified channel will be read and on exit the 16 bit value will be

returned in X and Y. Y will contain the eight most significant bits and X the least

significant bits.

If on entry X=0 then on exit Y will contain a number in the range 0 to 4

indicating which channel was the last to complete. Note that *FX16 and *FX17

reset this value to 0. A value of zero indicates that no channel has completed.

Also on exit the two least significant bits of X will indicate the status of the two

fire buttons. The user should always AND X with 3 to mask out high order bits.

If on entry X contains a negative number (in twos complement notation) then the

call will provide information about various input buffers. On entry Y must

contain &FF.

415

X on entry Buffer checked

255 Keyboard buffer

254 RS423 serial input buffer

253 RS423 serial output buffer

252 Printer output buffer

251 Sound channel 0 (noise)

250 Sound channel 1

249 Sound channel 2

248 Sound channel 3

247 Speech buffer

On exit X contains a number giving, for input buffers, the number of characters

in the buffers. For output buffers X contains the number of spaces still free in the

buffer.

OSBYTE call with A = &81 (129) Read key within time limit

The call waits for a character from the current input channel until a time limit

expires or it tests a particular key. The BASIC function INKEY uses this call.

The programmer is reminded that this call will immediately obtain characters if

the user has ‘typed ahead’. It is therefore often necessary to flush the input buffer

with *FX15,1 before using this call.

The maximum time delay is passed to the subroutine in X and Y. The delay is

measured in hundredths of a second and Y contains the most significant byte and

X the least significant byte. The maximum delay is &7FFF hundredths of a

second which is about five and a half minutes.

On exit, Y=0 if a character was detected within the time limit. In this case X

contains the character. Y=&1B indicates that ESCAPE was pressed. This must

be acknowledged with *FX126 . Y=&FF indicates a time-out.

If on entry Y contains a negative number then the routine can be used to check

for a specific key closure. See the BASIC keyword INKEY for more information.

As an OSBYTE call a ‘check for character waiting with zero delay’ takes typically

130 microseconds.

OSBYTE call with A=&82 (130) Read machine high order address

The BBC Microcomputer uses a 6512 processor (a close relative of the 6502)

which requires a 16 bit address. However a number of routines require a 32 bit

address – for example most file system addresses are 32 bits wide to ensure

compatibility with future products. A specific high order address – that is the top

16 bits of the total 32 bit address – is allocated to the present BBC

Microcomputer. The high order address is returned in X and Y with Y containing

the most significant byte and X the least significant byte.

416

OSBYTE call with A=&83 (131) Read top of OS RAM address (OSHWM)

The Machine Operating System uses memory from page zero up to store

operating system variables. The exact amount of RAM needed depends, for

example, on whether or not the disc operating system is in use.

This call is used to return the address of the first free location in memory above

that required for the operating system. The value is returned in X and Y with Y

containing the most significant byte and X containing the least significant byte.

10A%=131

30PRINT ~USR(&FFF4)

>RUN

B10E0083
&0E00 is the value returned, &83 is the OSBYTE code.

OSBYTE call with A=&84 (132) Read bottom of display RAM address

This call returns, in X and Y, the lowest memory address used by the screen

display or by special paged ROMs. It indicates the top of free RAM that BASIC

can safely use. HIMEM is normally set to this value when using the MODE

statement. As usual, Y contains the most significant byte and X the least

significant byte of the result. If this call is made following a *SHADOW command,

&8000 will only be returned following a MODE change. (See chapter 42 for details

of the shadow screen facility).

OSBYTE call with A=&85 (133) Read lowest address for particular
MODE

This call returns, in X and Y, the address of the start of memory that would be

set aside if a particular display MODE were to be selected. Certain paged ROMs

might also affect the value returned. The display MODE to be investigated is

passed in X. This call does not change MODE s, it merely investigates the possible

consequences of doing so. If this call is made following a *SHADOW command, it

will return &8000 without the need for a MODE change. (See chapter 42 for details

of the shadow screen facility).

OSBYTE call with A=&86 (134) Read text cursor position

This call returns in X and Y the X and Y coordinates of the text cursor. A similar

function is performed in BASIC by POS and VPOS. As an OSBYTE call thistakes

typically 100 microseconds.

417

OSBYTE call with A=&87 (135) Read character at text cursor position

On exit X will contain the character at the text cursor’s position and Y will

contain a value representing the current graphics display MODE . If the character

cannot be recognised then X will contain zero.

The following function could be used to read the character at position X,Y in a

BASIC program.

2000 DEF FNREADCH(X,Y)

2010 LOCAL A%, LASTX, LASTY,C

2020 LASTX=POS

2030 LASTY=VPOS

2040 VDU 31,X,Y

2050 A%=135

2060 C=USR(&FFF4)

2070 C=C AND &FFFF

2080 C=C DIV &100

2090 VDU 31, LASTX, LASTY

2100 = CHR$(C)

The call takes typically 120 microseconds.

OSBYTE call with A=&89 (137) Motor control

This call is similar to the *MOTOR statement in BASIC. If only one cassette

recorder is in use then setting

X=0 will turn the motor off

X=1 will turn the motor on

The cassette filing system (CFS) controls the motor using this OSBYTE call and

sets Y as follows:

Y=0 for write operations

Y=1 for read operations

As a result the user can easily implement a dual cassette system by trapping any

OSBYTE call with A=&89 and activating (via his or her own hardware) the

second recorder for, say, all write operations. The normal internal motor control

could then be activated for all read operations.

418

OSBYTE call with A=&8A (138) Insert character into specified buffer

This enables characters to be inserted into any buffer. On entry X contains the

buffer number and Y contains the character to be inserted. Buffer numbers are as

follows:

0 Keyboard buffer

1 RS423 serial input buffer

2 RS423 serial output buffer

3 Printer output buffer

4 Sound channel 0 buffer

5 Sound channel 1 buffer

6 Sound channel 2 buffer

7 Sound channel 3 buffer

8 Speech buffer

Therefore to place the letter R (ASCII code 82) into the keyboard input buffer you

would use

*FX138,0,82

In machine code the X register must contain the buffer number and the Y

register the character, eg

10 DIM GAP 20

20 OSBYTE = &FFF4

30 P%=GAP

40 [

50 LDA #138

60 LDX #0

70 LDY #82

80 JSR OSBYTE

90 RTS

100]

110

120 CALL GAP

>RUN

1B82

1B82 A9 8A LDA #138

1B84 A2 00 LDX #0

1B86 A0 52 LDY #82

1B88 20 F4 FF JSR OSBYTE

1B8B 60 RTS

(see next chapter for more details of machine code and assembly language.)

419

OSBYTE call with A=&8B (139) File options

This call is directly equivalent to *OPT and it controls the computer’s response to

errors during file operations such as LOAD and SAVE. See chapter 35 for more

details.

For example, with the cassette filing system *FX139,1,0 would issue no

messages during file operations.

*FX139,2,2 would make the computer abort if any error were detected.

*FX139,3,5 would result in 0.5 second inter-block gaps.

On entry X contains the option number and Y contains the particular selected

option. Thus

LDA #139

LDX #1

LDY #0

JSR &FFF4

would ensure that no error messages were issued during file operations.

OSBYTE call with A=&8C (140) Tape speed

This call is directly equivalent to *TAPE which selects the cassette file system

and the baud rate to be used. On entry X contains a number to set the baud rate.

X=0 Default rate (1200 baud)

X=3 300 baud

X=12 1200 baud

OSBYTE call with A=&90 (144) TV

This call is functionally equivalent to *TV . The contents of the X register are used

to control the vertical position of the screen display. For example, setting X=2

would move the display two text lines up the screen. Setting X=253 would move

the display three lines down the screen. The contents of Y should be either 0 or 1

on entry. Y=0 gives an interlaced display and Y=1 gives a non-interlaced display.

Note that the offset and interlace mode selected only come into effect at the next

MODE change. The values set stay in force until a hard reset. Interlace is off on

power up.

420

*TV is used as follows.

*TV on its own is equivalent to *TV0,0 and will turn the interlace on at the

next MODE change or BREAK.

*TVx will also turn the interlace on while giving a vertical offset of x. To

maintain interlace off when giving an offset you must use *TVx,1 (interlace on

may make the picture flicker on some TVs or monitors).

OSBYTE call with A=&91 (145) Get character from buffer

This enables characters to be removed from various input buffers. On entry X

indicates the buffer from which the character is to be extracted. On exit Y

contains the character and C=0 if a character was successfully removed. If the

buffer was empty then C will be 1. The buffer numbers are as follows:

X=0 Keyboard buffer

X=1 RS423 input buffer

OSBYTE calls with A=&92 to &97 Read or write to memory mapped
input/output

This group of calls is used to read or write data from or to the various memory

mapped input/output devices. It is vital that users use these routines rather than

attempting to address devices directly. The use of these routines will ensure that

programs will work whether they are executed in the input/output processor (the

BBC Microcomputer) or in a second processor. If the user insists on addressing

I/O ports directly (eg STA &FE60) then he or she will have to rewrite programs

when the system is expanded. Considerable effort has been expended to ensure

that suitable routines are provided to enable the Assembly Language

programmer to expand his or her system painlessly. Please learn to use the

facilities provided!

There are three memory mapped input/output areas and these are named FRED,

JIM and SHEILA. SHEILA contains all the machine’s internal memory mapped

devices, such as the analogue to digital converter, and should be treated with

considerable respect. FRED and JIM, on the other hand, address external units

connected to the 1MHz expansion bus.

421

OSBYTE callName Memory address range

Read Write

FRED &FC00-&FCFF &92(146) &93(147)

JIM &FD00-&FDFF &94(148) &95(149)

SHEILA &FE00-&FEFF &96(150) &97(151)

On entry to the routines A contains the OSBYTE call number and X the offset

within the page. If a byte is to be written it should be in Y.

An application note entitled ‘BBC Microcomputer application note no. 1 – 1MHz

bus’ explains suggested memory allocations for FRED and JIM. It can be

purchased from Acorn Computers. SHEILA addresses the devices with the offsets

shown in the table.

The user should be aware that the computer expects to service interrupts from all

except the user port on the B side of the 6522. The A side is used for the parallel

printer interface. Routines are provided (such as OSBYTE and OSWORD calls,

etc) to handle these devices. The only circuit that the user should need to handle

directly is the 6522 user port. Information about other ports is given for

information only – not to encourage you to access the circuits directly. You would

be well advised to use the numerous routines provided wherever possible.

Further details about some ports are given in the section in chapter 45 which

deals with input/output.

422

 SHEILA addresses (offset from &FE00)

DescriptionHex

offset

Integrated

circuit

Register

destination Write Read

00 6845 CRTC Address register

01 6845 CRTC Register file

08 6850 ACIA Control register Status register

09 6850 ACIA Transmit data register Receive data register

10 Serial ULA Control register

20 Video ULA

21 Video ULA

30 LS161 Paged ROM/RAM ID

34 Shadow RAM select (top

bit)

40 6522 VIA MOS input/output

60 6522 VIA ORB/IRB Output register ‘B’ Input register ‘B’

61 6522 VIA ORA/IRA Output register ‘A’ Input register ‘A’

62 6522 VIA DDRB Data direction register ‘B’

63 6522 VIA DDRA Data direction register ‘A’

6522 VIA T1C-L T1 low-order latches T1 low-order counter

65 6522 VIA T1C-H T1 high-order counter

66 6522 VIA T1L-L T1 low-order latches

67 6522 VIA T1L-H T1 high-order latches

68 6522 VIA T2C-L T2 low-order latches T2 low-order counter

69 6522 VIA T2C-H T2 high-order counter

6A 6522 VIA SR Shift register

6B 6522 VIA ACR Auxiliary control register

6C 6522 VIA PCR Peripheral control register

6D 6522 VIA IFR Interrupt flag register

6E 6522 VIA IER Interrupt enable register

6F 6522 VIA ORA/IRA Same as register 1 except

no ‘handshake’

80 8271 FDC Command register Status register

81 8271 FDC Parameter register Result register

82 8271 FDC Reset register

83 8271 FDC Illegal Illegal

84 8271 FDC Write data Read data

80 1770 FDC Drive select

84 1770 FDC Control Status

85 1770 FDC Track Track

86 1770 FDC Sector Sector

87 1770 FDC Data Data

A0 68B54 ADLC CR1/SR1 Control register 1 Status register 1

A1 68B54 ADLC CR2/SR2 Control register 2/3 Status register 2

A2 68B54 ADLC TxFIFO/

RxFIFO

Transmit FIFO, continue Receive FIFO

A3 68B54 ADLC TxFIFO/

RxFIFO

Transmit FIFO, terminate Receive FIFO

C0 Data latch, A/D start Status

C1

µPD7002

ADC High byte of result

C2

423

A few examples will help to clarify the use of these calls.

*FX147,5,6

would write to FRED+5 (&FC05) the value 6. Similarly

LDA #&97

LDX #&62

LDY #&FF

JSR &FFF4

would write &FF into location &FE62. An OSBYTE call with A=&97 will write to

SHEILA. The base address of SHEILA is &FE00 and to this is added the offset in

X (&62). The value written is contained in Y. The net effect is to write to the 6522

data direction register and to cause all the PB lines to become outputs.

OSBYTE call with A=&98 (152) Examine specified buffer

This call examines a buffer. The buffer number (same as for OSBYTE calls 21

and 138) must be in X, and the call returns as follows:

– Carry bit set if buffer empty.

– Carry bit clear if characters present in buffer.

– Y contains the next character which will be returned if the buffer is read.

(Note that the character in Y has not actually been removed from the buffer.)

OSBYTE call with A=&9E (158) Read from speech processor

See Speech System User Guide.

OSBYTE call with A=&9F (159) Write to speech processor

See Speech System User Guide.

OSBYTE call with A=&D1 (209) Enable/disable speech

This call reads (or writes to) location &261, which contains the value sent to the

speech processor when speech is output. A value of &50 is the default value,

representing speech on. Writing to the location with X=1 will turn speech off. To

write to &261, set X=new value, Y=0. To read the location, set X=0, Y=255. On

exit, X=the contents of location &261 (if reading), or the previous value held (if

writing). The contents of the next location (ie &262) are returned in Y.

OSBYTE with A=&D2 (210) enable/disable sound

This call reads (or writes to) location &262, which contains the sound status. A

value of zero is the default value, representing sound on. Writing to this location

with X=1 will turn sound off. To write to &262, set X=new value,

424

Y=0. To read the location, set X=0, Y=255. On exit, X=the contents of location

&262 (if reading), or the previous value held (if writing). The contents of the next

location (ie &263) are returned in Y.

OSBYTE with A =&DA (218) Read/write number of items in VDU queue

This call reads (or writes) the number of VDU parameters which are still

expected. To read the location containing the value of this parameter (&26A), set

X=0, Y=&FF. To write to the location, set X=new value, Y=0. Setting X=0, Y=0

gives a useful way of abandoning a VDU queue, otherwise writing to &26A is not

recommended. On exit, X contains the 2’s complement negative number of bytes

still required for the execution of a VDU command. The contents of next location

(ie &26B) are returned in Y.

OSBYTE call with A=&E0 (224) Cancel VDU queue

Many VDU codes expect a sequence of bytes. For example, VDU19should be

followed by five bytes. This call signals the VDU software to throw away the

bytes that it has received so far. On entry X and Y must contain zero.

The next group of OSBYTE calls (&E1 to &E8) can be used to read or write

status information. The calls read the current value of the status being

investigated, AND the value with the contents of Y, EOR the result with the

contents of X and then write the value back. If V represents the particular status

in the computer then V becomes (V AND Y) EOR X. This sequence enables V to

be read or be written to and enables any single bit, or group of bits of V, to be set,

cleared or inverted.

If, on entry, X=&00 and Y=&FF the net effect will be to read the value of V into X

without altering V. On the other hand if Y=&00 then the contents of X will be

written into V. To set a single bit of V without altering other bits set all the bits

of Y to 1 except the specified bit. Clear all the bits of X to 0 except the specified

bit. For example, to set bit 0 of V to 1 use Y=&FE and X=&01.

To clear a single bit in V set all the bits of Y to 1 except the specified bit and set

X=0. For example, to clear bit 0 of V use Y=&FE and X=&00. Of course, many

bits may be set, cleared, inverted or examined at the same time.

OSBYTE call with A=&E1 (225) Set base number for function key codes

Normally the red function keys can be programmed to produce strings of

characters by, for example, the statement

*KEY 0 PRINT

425

As an alternative the keys can produce a single ASCII code. The statement

*FX225,240

would set the base value for the function keys to 240 thus causing key f0 to

produce ASCII code 240, f1 to produce 241 and so on to f9 which would produce

249. This enables these keys to produce ASCII codes for user defined characters.

*FX225,1 returns the keys to their normal function of generating strings.

*FX225,0 makes the keys have no effect.

On entry Y must contain zero.

OSBYTE call with A=&E2 (226) Set base number for SHIFT function key
codes

Pressing one of the function keys while the SHIFT key is pressed will normally

produce ASCII codes in the range 128 to 137. These values were chosen with the

Teletext codes in mind.

Shift function key ASCII code Teletext effect

f0 128 Nothing

f1 129 Red alphanumeric

f2 130 Green alphanumeric

f3 131 Yellow alphanumeric

f4 132 Blue alphanumeric

f5 133 Magenta alphanumeric

f6 134 Cyan alphanumeric

f7 135 White alphanumeric

f8 136 Flash

f9 137 Steady

These codes are said to have a ‘base value’ of 128 since key f0 produces a code

128.

If the user wishes, the base value of the ASCII codes can be changed by using

this call:

*FX226,144

This would set the SHIFT function key codes to produce equivalent graphics

color Teletext codes. The default setting is

*FX226,128

On entry Y must contain zero.

426

OSBYTE call with A=E3 (227) Set base number for CTRL function key
codes

See the entry for OSBYTE &E2. The default base value is 144.

OSBYTE call with A=&E4 (228) Set base number for SHIFT CTRL
function key codes

See entry for OSBYTE &E2. The default is that these key combinations have no

effect. Note: Remember that pressing CTRL and SHIFT together stops screen

output while they are pressed.

OSBYTE call with A=&E5 (229) ESCAPE key gives ASCII code

This call can be used to make the ESCAPE key generate an ASCII code (27 or

&1B) instead of interrupting a BASIC program. If X=0 then the ESCAPE key

interrupts the BASIC program (*FX229,0). On the other hand, *FX229,1 (X=1)

causes the key to generate its ASCII code. On entry Y must contain zero.

OSBYTE call with A=&E6 (230) Enable/disable normal ESCAPE key
action

When a BASIC program is interrupted by pressing the ESCAPE key, or by

*FX125 , all internal buffers will be cleared. This call can be used to stop the

flushing of all internal buffers when a program is stopped. On entry Y must

contain zero.

*FX230,0 will permit all buffers to be flushed.

*FX230,1 will ensure that no buffers are flushed.

OSBYTE call with A=&E7 (231) Enable/disable user 6522 IRQ

This call sets a ‘mask’ byte which the operating system uses when servicing IRQs

which may have originated in the 6522 which is used for the parallel printer and

user port. The operating system ANDs the mask byte with the 6522 interrupt

flag register AND the 6522 interrupt enable register. Setting the mask to zero

would prevent the operating system from handling the 6522 interrupts thus

leaving them available to be handled by user supplied routines. Additionally

sideways ROMs may handle (via the operating system) interrupts generated from

the B side of the 6522. The mask byte could hide those interrupts from the

sideways ROMS. The mask byte defaults to &FF.

427

OSBYTE call with A=&E8 (232) Enable/disable 6850 ACIA IRQ

This call sets a ‘mask’ byte which is used by the operating system when servicing

IRQs which may have originated from the 6850 ACIA used for the RS423 and

cassette interfaces. The operating system ANDs the mask byte with the 6850

status register. See the entry above (OSBYTE &E7) for further comments. The

default value is &FF.

OSBYTE call with A=&E9 (233) Enable/disable system 6522 IRQ

As for &E7 but affects the system 6522. The system 6522 is used extensively in

the normal operation of the machine and consequently this call should be used

with extreme care.

OSBYTE call with A=&EB (235) Presence of speech processor

This call returns presence of speech processor.

X=&FF if speech processor present

X=0 if speech processor not present

OSBYTE with A=&EF (239) Read/write shadow mode state

This call reads (or writes to) location &27F, which contains the shadow mode

flag. To read the flag, set X=0, Y=255. To write to &27F, set X=new value, Y=0.

On exit, X=0 if in shadow mode, X=1 otherwise (reading). If writing, X returns

the previous value of the flag. The contents of next location (ie &26C) are

returned in Y. (See chapter 42 for details of the shadow screen facility.)

OSBYTE call with A=&FD (253) Last reset type

This call returns a number indicating what sort of reset last occurred.

Y = 0 Soft break

Y = 1 Power-on break

Y = 2 CTRL BREAK

428

44 An introduction to
assembly language

Machine code and the assembler

The heart of any computer, the part that actually does all the processing, is the

central processor unit (CPU). It is important to realise that no matter what

language is typed in at a computer’s keyboard (sometimes called the source

language), the only language that the CPU understands is machine code. Of

course, the exact form of the machine code depends upon the source language and

also upon the type of CPU, but generally speaking any machine code instruction

would look something like this:

1010100110000001

This hardly looks like an intelligible instruction, and even rewriting it as two

pairs of hexadecimal digits hardly makes it look any better:

A9 81

However, to the BBC Microcomputer’s 6512 microprocessor, A9 means ‘load the

accumulator’, and the whole of the above instruction means ‘load the accumulator

with hexadecimal 81’. (The accumulator is one of six registers which reside in the

6512 microprocessor.) The ‘A9’ part is known as the ‘operation code’ or opcode for

short, and the 81 is the ‘operand’. A few more hex machine code instructions with

their meanings are:

A2 64 ‘load the X register with &64’

A0 00 ‘load the Y register with zero’

20 F4 FF ‘jump to the subroutine at location &FFF4’

You will probably agree that whilst it would be possible to write programs using

opcodes like those shown above, it would be extremely tedious. What’s more,

since the 6512 only carries out one instruction at a time, a sequence of

instructions like that shown above would have to be ‘poked’ into contiguous

locations in RAM. As a final indignity, if you spent a long time writing a machine

code program which turned out not to work, it would be extremely difficult to

trace the errors – unlike BASIC, machine code does not generate error messages

automatically.

Fortunately, the BBC Microcomputer contains a program which will generate

machine code instructions for you. It’s available as part of the BBC BASIC

language, and is known as the assembler. The language that the assembler

understands is simply known as assembly language, or 6502 assembly

429

language in the BBC Microcomputer’s case. (The 6512 is a close relative of the

6502, and uses the same assembly language.)

The assembly language statements which would generate the machine code

statements shown above are:

LDA #129 (=A9 81, ‘load the accumulator with &81)

LDX #100 (=A2 64, ‘load the X register with &64’)

LDY #0 (=A0 00, ‘load the Y register with zero’)

JSR &FFF4 (=20 F4 FF, ‘jump to the subroutine at location

&FFF4’)

Clearly, an instruction like ‘LDX’ looks a lot more like ‘load the X register’ than

‘A2’ does. LDA, LDX, LDY and JSR are all known as ‘assembly code mnemonics’.

6502 assembly language has 56 mnemonics, some of which will be discussed in

detail later in this chapter.

Uses of assembly language

BASIC is a very easy language to use; most of its statements look much like

English, and it is very ‘friendly’, since it gives you helpful messages about

mistakes that you may have made in your program. The price to be paid for this

‘friendliness’ is in memory usage and speed of execution. Assembly language is

used where high speed is vital (such as in an arcade game) or where the

minimum amount of memory must be used. BASIC is used where ease of

programming is more important than either speed or memory usage.

The main features of 6502 assembly language

It is not the purpose of this chapter to teach you how to program in assembly

language; you are referred to the large number of books that have been published

which are concerned with the BBC Microcomputer and how to program it. This

chapter does, however, describe the most important features of assembly

language. Below is an example of a simple hybrid BASIC/assembly language

program, which you may have already seen in the previous chapter:

 10 OSBYTE=&FFF4

 20 P%=&3500

 30 [

 40 LDA #129

 50 LDX #100

 60 LDY #0

 70 JSR OSBYTE

 80 RTS

 90]

100 CALL &3500

430

If you have not already seen this program, then what it does is to wait one second

for a key to be pressed. If no key is pressed within one second then nothing

happens (command mode is returned to). If a key is pressed within one second, its

character is printed on the screen and command mode is returned to

immediately.

Line 10 simply assigns the value &FFF4 to the variable called OSBYTE. If you

are familiar with operating system calls then you will recognise OSBYTE as the

name of a MOS rotine and &FFF4 as its call address. Line 20 assigns the value

&3500 (an address, as it happens) to the resident integer variable P%. When the

program is run, the value in P% is transferred by the machine operating system

(MOS) into a register in the 6512 microprocessor called the ‘program counter’

(abbreviated to PC). The program counter is one of six registers which reside in

the 6512. The registers, their abbreviations and their uses are listed below.

The 6512 registers

Program counter – PC (PCL – low byte, PCH – high byte)

A 16-bit register which contains the address of the next instruction to be

executed. In the example shown above, the initial value of PC is taken from P%.

The contents of the program counter are altered by ‘jump’ and ‘branch’

instructions, thereby diverting the flow of the program.

Accumulator – A

An 8-bit general purpose register used for all arithmetic and logical operations.

X register – X

An 8-bit general purpose register often used to contain entry and exit parameter

values for MOS routine calls, also used to contain the ‘offset’ for indexed

addressing modes (see later), or as a counter.

Y register – Y

An 8-bit general purpose register often used to contain entry and exit parameter

values for MOS routine calls, also used to contain the ‘offset’ for indexed

addressing modes (see later), or as a counter.

431

Program status register – P

An 8-bit register set up and used by the microprocessor itself. Each bit has its

own meaning, concerned with the results of arithmetic and logical operations,

and with interrupt status. A detailed description of this register is beyond the

scope of this manual. Of occasional interest is the state of bit 0, the carry flag

(abbreviated to C). This is set if a carry occurs during an add operation, and is

cleared if a borrow occurs during a subtract operation. Following an operating

system call, the state of C has a significance which varies according to the

particular call involved.

Stack pointer – SP

An 8-bit register which contains the least significant byte of the address of the

next free stack location (the most significant byte is always &01). The stack is a

portion of memory (&100-&1FF) used for the temporary storage of data (such as

return addresses from subroutines). Data is ‘pushed’ onto the stack in sequence,

then removed by ‘pulling’ it off again. The last byte to be pushed on is the first

byte to be pulled off (this is often referred to as a ‘last in, first out’ queue).

The assembler delimiters ‘[’ and ‘]’, and general
assembly language syntax rules

Assembly language statements within a BASIC program must be enclosed

between a pair of square brackets (see lines 30 and 90 in the above example).

When the BASIC program is RUN, the assembly language statements between the

square brackets are assembed into machine code, which is inserted into memory

starting at the address specified by P%. An assembly language program consists

of a number of assembly language statements, separated by new lines or colons

(as in BASIC).

Each assembly language statement consists of an optional label (which must

always be preceded by a dot), followed by an instruction. An instruction consists

of a three letter assembly language mnemonic followed by an operand (or an

address) (both of the latter may be absent depending upon the mnemonic). If a

label is included, it must be separated from the mnemonic by at least one space.

There need not be any spaces between the mnemonic and the operand. Any

character following the operand and separated by at least one space from it will

be ignored by the assembler which will move on to the next colon or line for the

next statement. A comment may be placed after the operand and should be

preceded by a backslash (\). Any text following a backslash in an assembly

language statement will be ignored by the assembler up to the next colon or end-

of-line.

432

Line 40 of the example program could therefore be re-written as:

.start LDA #129 \load accumulator with OSBYTE number

or as

.start LDA#129\load accumulator with OSBYTE number

(Here, the label .start would have no fuction, but would not affect the

processing.)

Addressing modes

Most assembly language instructions require data to work on, which must be

provided in the operand field of the assembly language statement. Often, this

data is an address. The assembler allows several different methods of providing

these addresses or data to be used, these methods being known as addressing

modes. Not all assembly language instructions can use all the addressing modes;

see the table in the appendix for more details.

Implicit addressing

This is the simplest form of addressing, which does not require an address to be

supplied at all; the address is implied by the instruction itself. For example an

RTS instruction (see line 80 above) always causes the processor to jump to the

bottom two bytes of the stack, which contain the return address to the main

program.

Immediate addressing and zero page addressing

Line 40 of the example is

LDA #129

which means ‘load the accumulator with decimal 129’ (hexadecimal 29 could be

loaded by the statement LDA #&29). Here the statement uses the data supplied

in the operand field without having to look for it in memory, hence the name

‘immediate addressing’. The data can be supplied as a variable, hence

LDX #value

would load the X register with the value of the variable value .

The role of the # character in the above examples is important, since it indicates

to the assembler that immediate addressing is to be employed, using the data

supplied immediately to the right of the #. The instruction

LDA 129

means something quite different; it means ‘load the accumulator with the

contents of memory location 129’. The computer’s main memory is divided into

433

256 ‘pages’ each of 256 bytes. Page 0 extends from location 0 to location 255 (ie

any address with the two most significant bytes set to zero), hence the addressing

mode exemplified above is known as ‘zero page addressing’. The assembler will

automatically select zero page addressing mode (if appropriate) when the address

supplied is less than &100 (decimal 256).

Absolute addressing

This addressing mode is very similar to zero page addressing, except that any

address in memory can be specified. For example,

LDA &3456

would load the accumulator with the contents of memory location &3456,

LDA 8200

would load the accumulator with the contents of memory location 8200.

Indirect addressing

This addressing mode uses an address which is stored in memory. Only two

assembly language mnemonics use this mode, ADC and JMP. For example,

JMP (&2010)

means ‘jump to the location whose address is held in &2010 (least significant

byte) and &2011 (most significant byte)’. Note that indirect addressing is

indicated to the assembler by enclosing the address in brackets.

Indexed addressing

This addressing mode exists in several forms, all of which share the common

feature that two addresses are given: a base address and an offset, or index. An

example is shown below:

LDA &1F00,X

This means ‘load the accumulator from the value held at &1F00+X’. X is used

here as the index register; Y could be used in the same way. This form of indexed

addressing is known as absolute indexed addressing. Note that X (or Y) must be

in the range 0-255. Zero page, X indexed addressing is similar except that the

base address must be in page zero. For example,

LDY &74,X

means ‘load the Y register with the contents of (&74+X)’

The assembler automatically uses this mode, if available, if a page zero address is

specified in the operand field. Note that the offset must be supplied in the X

register, except for the LDX mnemonic when the Y register can (and must) be

used. Note that the sum of the base address plus the offset in this mode will

434

always be taken as an address in page zero. If the address moves out of page zero

the processor will perform a ‘wrap-around’ operation to take it back into page

zero – for example an address of &102 would be wrapped around to &002.

Another type of indexed addressing is pre-indexed indirect addresing. An

example of the instruction format is:

LDA (&82,X)

This instruction adds the address in the X register to &82 to give a new address;

the contents of the location at this new address, and the contents of the location

above it, together supply the full 16-bit address from which the accumulator is

loaded. This addressing mode is designed for use with a table of addresses in zero

page locations. For example, if we have

?&70=&00

?&71=&20

?&72=&FF

?&73=&21

then

LDX #0 \ set X to zero

LDA (&70,X) \ A=?&2000, ie address in (&70+X),

(&71+X)

<perform some other operation>

LDX #2 \ set X to 2

LDA (&70,X) \ A=?&21FF, ie address in (&72),

(&73)

Note that the base address, and the base address plus the offset must be in page

zero (the wrap around operation described above still applies). The Y register

cannot be used for this addressing mode. The mode is called pre-indexed because

the index is first added to the base address to give the address of the pair of

locations which hold the address loaded into the accumulator. In post-indexed

indirect addressing, the 16-bit address held in the location pair given by the base

address is extracted first, and the index is then added to this address to give the

address of the location from which the accumulator is loaded. An example of the

instruction format is:

LDA (&80),Y

435

Note that in this addressing mode the Y register is used as the index (X cannot

be). The ‘zero page’ and ‘wraparound’ comments given above still apply. An

example of its use is shown below. The program shown sets 128 memory locations

to &FF, starting at the address contained in locations &80 (low byte) and &81

(high byte):

10 ?&80=&00:?&81=&28

 20 DIM GAP 50

 30 P%=GAP

 40 [

 50 LDY #0 \ set loop index to zero

 60 LDA #&FF \ set value to be loaded

 70 .loop STA (&80),Y \ ?(&2800+Y)=&FF, base addr.

in &80 and &81

 80 INY \ Y=Y+1

 90 CPY #128 \ end of loop reached?

100 BNE loop \ if not, go to loop

110 RTS

120]

130 CALL GAP

(Lines 20, 30 and 130 are explained below.)

Relative addressing

Relative addressing is the addressing mode used by assembly language branch

instructions. In the above example, the mnemonic at line 100 is such an

instruction. If the condition tested at line 100 is not satisfied, ie if Y=128, the

next instruction to be executed will be the one being pointed to by the program

counter – the instruction at line 110. If however the condition is satisfied, ie if

Y<>128, the processor will decrement the program counter so that it points to the

insruction labelled by loop , and this instruction will be the next one to be

executed. In the above case, the program counter has to be decremented by 7

(this will become apparent from a careful study of the machine code printed on

the screen when the above program is RUN). The address of the instruction

labelled by loop is -7, relative to the address held in the program counter. This

relative addressing is carried out by the assembler, and normally goes unnoticied

by the programmer. There are, however, limits to the number of bytes which can

be jumped forward or back; a branch of up to 127 bytes forward or 128 bytes back

from the Program counter value (at the time the branch instruction is being

executed) is allowed. Care should therefore be taken that labels are not too far

from the instructions that branch to them, otherwise an ‘Out of range’ error will

result. (Remember that each instruction may be 1, 2 or 3 bytes long.)

436

Accumulator addressing

Th final addressing mode used by the assembler is known as accumulator

addressing. This is where the accumulator is addressed rather than a memory

location, and is specified by placing A in the operand field. For example:

ASL A

means ‘shift the contents of the accumuator one bit to the left’. Note that this

means that ‘A’ cannot be used as a variable name within an assembly language

program.

Finally, it must be re-emphasised that each assembly language mnemonic can

only use some of the addressing modes detailed above; see the table in the

appendix for the addressing modes used by each instruction.

Placing machine code programs in memory

When the assembler is creating a machine code program the code produced is

placed in memory starting from the address in P% (unless O% is used, see OPT

below). The assembler updates the value in P% as it is assembling, and at the

end of an assembly operation the value in P% represents the address of the first

‘free’ memory location after the machine code program. In the example program

shown above, the value of P% is allocated directly (at line 20). This method of

setting up P% is somewhat dangerous, since you have to be sure that location

&3500 and (in this case) the nine locations beyond &3500 do not contain

anything important. A much safer way of setting up P% is to dimension a block of

memory using a variation of the BASIC DIM keyword. The example program

below illustrates this feature, and other features used with assembly language:

 5 REM Uses assembly code to change to mode 4 and

draw a triangle

 10 OSWRCH=&FFE3

 20 DIM GAP% 100

 30 DIM data &1C

 40 FOR opt%=0 TO 3 STEP 3

 50 P%=GAP%

 60 [

 70 OPT opt%

 80 .entry LDX#0 \ set data block offset to

zero

 90 .loop LDA data,X \ load VDU parameter from

data block

100 JSR OSWRCH \ perform VDU command

110 INX \ increment offset

120 CPX #&1C \ has all data been loaded?

437

130 BNE loop \ if not, load next item

140 RTS \ return to BASIC

150]

160 NEXT opt%

170 !data=&04190416

180 data!4=&00C800C8

190 data!8=&00C80119

200 data!&C=&01190000

210 data!&10=&00ADFF9C

220 data!&14=&FF9C0119

230 data!&18=&0000FF53

240 CALL entry

This program uses OSWRCH to perform operations equivalent to BASIC’s VDU

command, drawing a triangle on the screen in MODE 4. Note the use of indexed

addressing at line 90 to load values from a table. Extensive use is made of

indirection operators (see chapter 39 for details). The first pass of the assembly

language loop is equivalent to

VDU &16,&04 (see line 170, reading from the right)

or VDU 22,4 (ie change to MODE 4).

Note line 20. This use of the DIM statement causes (in this case) 100 bytes of

memory to be reserved, the start address of the block being transferred to the

variable GAP%. The start address will always be greater than the value of TOP

and below the start of screen memory, and so is ‘safe’ (the allocation is made in

the same way as the allocation of a BASIC variable). The value in GAP% is

transferred to P% at line 50, and so gives the address where the machine code

will be assembled. Line 30 uses DIM to reserve 28 memory locations for the data

table to be used by the program, the start address of the table being stored in the

variable data.

Although for most applications machine code will be assembled and run at the

same place in memory, it is possible to assemble code at one location and run it at

another. Setting the resident integer variable O% to an address (and at the same

time setting the pseudo variable OPT to a certain value, see below) will cause the

machine code to be assembled at that address but assembled to run at the

address given by P%; in other words the program counter is still controlled by P%

during assembly. O% can be used, for example, to get a machine code program to

run in the I/O processor which has been assembled in a second processor. See the

description of the OPT keyword below for further details.

438

OPT, forward referencing and two-pass assembly

Take a look at the following program:

 10 DIM GAP 50

 20 P%=GAP

 30 address=&70

 40 [

 50 LDA address \ Load accumulator with

 contents of address

 60 CMP #0 \ Compare accumulator

 contents with zero

 70 BEQ zero \ Jump to label if

 accumulator contents zero

 80 STA address+1 \ Store accumulator

 contents at address+1

 90 .zero RTS

100]

In this program, line 70 is known as a ‘forward reference’, since it refers to a label

which doesn’t appear until line 90. If the above program is run, the error message

No such variable at line 70

will appear. This is because the assembler has not allocated an address to the

label zero yet. The reason for the error message is that a ‘two-pass assembly’ is

required. The first pass allocates addresses to all labels; the second pass can then

jump to the correct memory location when a ‘jump to label’ instruction is

encountered. A two-pass assembly is controlled using the OPT command, as

shown below:

 10 DIM GAP 50

 20 address=&70

 30 FOR pass=0 TO 3 STEP 3

 35 P%=GAP

 40 [

 45 OPT pass

 50 LDA address \ Load accumulator with

 contents of address

 60 CMP #0 \ Compare accumulator

 contents with zero

 70 BEQ zero \ Jump to label if

 accumulator contents zero

 80 STA address+1 \ Store accumulator

 contents at address+1

 90 .zero RTS

439

100]

110 NEXT

120 CALL GAP

Here, the assembly language is enclosed in a loop such that two passes are made,

with the value of OPT as 0 on the first pass and 3 on the second pass. (The same

device is employed in the triangle drawing example above.) The values which are

assigned to OPT have the following effects:

0 Assembler errors suppressed, no listing

1 Assembler errors suppressed, listing

2 Assembler errors reported, no listing

3 Assembler errors reported, listing

So, in the above example, OPT=0 on the first pass so there will be no listing and

no errors reported. This allows the forward referenced label to be identified

without the assembly being interrupted. On the second pass, OPT=3 and so a

listing of the compiled code is produced, along with any programming errors.

Note that the assignment statement P%=GAP must be enclosed within the loop so

that it is reset before each pass. If the above program is RUN, its assembly and

execution should now be successful. (The program is trivial; it merely loads a byte

from the memory location specified by address, and, if the byte is non-zero,

transfers it to the next memory location).

Setting OPT equal to 4, 5, 6 or 7 has the same effect as setting it to 0, 1, 2 or 3

(respectively) except that the code is placed in memory starting at the address

supplied in O%, rather than that in P%.

Note that OPT is not an assembly language mnemonic, but a so-called ‘pseudo-

operation’, or assembler directive. It tells the assembler to do something, but is

not an assembled instruction.

The EQUate facility

EQU is a pseudo-operation, which allows data to be incorporated into the body of

an assembly language program. The EQU operations available are:

EQUB equate byte reserves one byte of memory

EQUW equate word reserves two bytes of memory

EQUD equate double word reserves four bytes of memory

EQUS equate string reserves memory as required

440

These operations set the reserved memory locations to the values specified in the

operand field. The operand field may contain a string (in double quotes) or a

string variable for the EQUS operation, or a number or a numeric variable for the

other EQU operations. The assembler will use the least significant part of the

value if too large a value is specified. As an example of the use of EQUD, lines 30

and 170 to 230 of the triangle drawing example could be replaced with:

141 .data EQUD &04190416

142 EQUD &00C800C8

143 EQUD &00C80119

144 EQUD &01190000

145 EQUD &00ADFF9C

146 EQUD &FF9C0119

147 EQUD &0000FF53

The following example program illustrates the effects of including each of the EQU

pseudo-operations within an assembly language program:

10 P%=&3000

20 A$="stringvar"

30 [

40 EQUS "string"

50 EQUS A$

60 EQUB 180

70 EQUW 12500

80 EQUD 6E6

90]

>RUN

3000

3000 73 74 72

 69 6E 67 EQUS "string"

3006 73 74 72

 69 6E 67

 76 61 72 EQUS A$

300F B4 EQUB 180

3010 D4 30 EQUW 12500

3012 80 8D 5B

 00 EQUD 6E6

The above printout shows that location &3000 contains &73, the hexadecimal

ASCII code for ‘s’, &3001 contains the hexadecimal ASCII code for ‘t’, etc

441

Machine code entry points

The BBC Microcomputer is unusual in a number of respects, not least because of

the care taken to ensure that everything that can be done by programs written in

the input/output processor (the BBC Microcomputer) can also be done in the

second processor which is on the far side of the Tube .

If a piece of machine code alters a particular memory location that controls the

screen display directly, then that same piece of machine code will not work in the

second processor because the screen will not be affected by any memory location

in the second processor.

It is vital that programmers avoid reading and writing to specific memory

locations such as the screen memory, zero page locations used by BASIC, and

memory mapped input/output devices. System calls are provided to enable you to

access all these important locations and use of these system calls will ensure that

your programs interact successfully with the machine. Don’t feel that we are

trying to hide anything from you – on the contrary we are offering you access to

all the I/O routines that BASIC uses! Cultivate the habit of using system calls

and then you will not need to rewrite your code when you move it to the second

processor.

442

45 The operating system calls

Machine code user programs should communicate with the operating system by

calling routines in the address range &FF00 to &FFFF. These routines then call

a specific internal routine whose address may change in different operating

systems. The address of the specific routine is held in RAM between locations

&200 and &2FF. The user may change the address held in these RAM locations

to intercept any operating system call he or she wishes.

Thus the ‘output the character in A’ routine is entered at &FFEE in all

environments. The routine indirects through location &20E in all machines. The

contents of locations &20E and &20F will vary depending on the machine and

the version of the operating system. In one particular machine the address in

&20E and &20F is &E0A4 which is the local internal address of the normal

‘output the character in A’ routine.

Parameters are passed to the routines in various ways using either the 6512 A, X

and Y registers, zero page locations or a parameter block. All routines should be

called with a JSR and with the decimal flag clear (ie in binary mode).

In the detailed descriptions which follow A refers to the accumulator; X and Y

refer to the registers; C, D, N, V and Z refer to the processor flags.

The table on the next page gives a summary of operating system calls and

indirect vectors.

Files

Files are treated as a sequence of eight bit bytes. They can be accessed in one

operation (using OSFILE) or in blocks (using OSGBPB) or a byte at a time (using

OSBGET and OSBPUT). The following attributes may be associated with each

file.

Load address is the address in memory to which the file should normally be

loaded. This can be over-ridden when the file is loaded, if necessary.

Execution address is meaningful only if the file contains executable machine code,

in which case it is the address where execution should start. If the file contains a

high level language program then the execution address is unimportant.

Length is the total number of bytes in the file. It may be zero.

Pointer is an index pointing to the next byte of data that is to be processed. The

value of ‘pointer’ may be read or written (using OSARGS), and it does not

indicate whether the appropriate byte has yet been transferred from file to

memory or vice versa. Pointer is automatically updated by OSBGET and

OSBPUT.

443

OSWRSC

Writes a byte (contained in A) to the screen. The display memory location to be

written should be set up in &D6 (LSB) and &D7 (MSB). Y (on entry) is used to

contain an offset from this address. The effect of this call can be illustrated

(somewhat crudely!) by the program shown below:

10 MODE 7

20 ?&D7=&7C

30 Y%=255:A%=&45

40 FOR J=0 TO 127 STEP 2

50 ?&D6=J

60 CALL(&FFB3)

70 NEXT J

On exit, A, X and Y are preserved, C is undefined.

OSRDSC

Reads a byte from the screen, the display memory location concerned being

contained in &F6 (LSB) and &F7 (MSB). The byte is returned in A. The following

program illustrates the effect of this call:

 10 MODE7

 20 FOR K=1 TO 255

 30 PRINT "E";

 40 NEXT K

 50 ?&F7=&7C

 60 VDU14

 70 FOR J=0 TO 127

 80 ?&F6=J

 90 PRINT ~USR(&FFB9)

100 NEXT J

This routine can also be used to read bytes from paged ROM, with Y (on entry)

set equal to the ROM socket number. In this context, this call has in the past

been referred to as OSRDRM.

OSFIND

Opens a file for writing or reading and writing. The routine is entered at &FFCE

and indirects via &21C. The value in A determines the type of operation.

A=0 Causes a file or files to be closed.

A=&40 Causes a file to be opened for input (reading).

A=&80 Causes a file to be opened for output (writing).

A=&C0 Causes a file to be opened for input and output (random access).

444

Routine Vector

Name Address Name Address

Summary of function

UPTV 222 User print routine

EVNTV 220 Event interrupt

FSCV 21E File system control entry

OSWRSC FFB3 - - Write byte to screen

OSRDSC FFB9 - - Read byte from screen

OSFIND FFCE FINDV 21C Open or close a file

OSGBPB FFD1 GBPBV 21A Load or save a block of memory to

file

OSBPUT FFD4 BPUTV 218 Save a single byte to file from A

OSBGET FFD7 BGETV 216 Load a single byte to A from file

OSARGS FFDA ARGSV 214 Load or save data about a file

OSFILE FFDD FILEV 212 Load or save a complete file

OSRDCH FFE0 RDCHV 210 Read character (from keyboard) to

A

OSASCI FFE3 - - Write a character (to screen) from

A plus LF if (A)=&0D

OSNEWL FFE7 - - Write LF,CR (&0A,&0D) to screen

OSWRCH FFEE WRCHV 20E Write character (to screen) from A

OSWORD FFF1 WORDV 20C Perform miscellaneous OS

operation using control block to

pass parameters

OSBYTE FFF4 BYTEV 20A Perform miscellaneous OS

operation using registers to pass

parameters

OSCLI FFF7 CLIV 208 Interpret the command line given

/IRQ2V 206 Unrecognised IRQ vector

/IRQ1V 204 All IRQ vector

/BRKV 202 Break vector

USERV 200 Reserved

If A=&40, &80 or &C0 then Y (high byte) and X (low byte) must contain the

address of a location in memory which contains the file name terminated with

CR(&0D). On exit A will contain the channel number allocated to the file for all

future operations. If A=0 then the operating system was unable to open the file.

445

If A=0 on entry then a file, or all files, will be closed depending on the value of Y.

Y=0 will close all files, otherwise the file whose channel number is given in Y will

be closed.

On exit C, N, V and Z are undefined and D=0. The interrupt state is preserved,

however interrupts may be enabled during the operation.

OSGBPB

The operating system call to get or put a block of bytes to or from a file which has

been opened with OSFIND. The routine is entered at &FFD1 and vectors via

&21A. This call is not available on the cassette filing system, and is fully

documented in the appropriate disc filing system user guides.

OSBPUT

Writes (puts) the byte in A to the file previously opened using OSFIND. The

routine is entered at &FFD4 which indirects through &218. On entry Y contains

the channel number allocated by OSFIND.

On exit A, X and Y are preserved, N, V and Z are undefined and D=0. The

interrupt state is preserved but interrupts may be enabled during the operation.

OSBGET

Gets (reads) a byte from a file into A. The file must have been previously opened

using OSFIND and the channel number allocated must be in Y. The routine is

entered at &FFD7 which indirects via &216.

On exit C=0 indicates a valid character in A. C=1 indicates an error and A

indicates the type of error, A=&FE indicating an end of file condition. X and Y

are preserved, N, V and Z are undefined and D=0. The interrupt state is

preserved but interrupts may be enabled during the operation.

OSARGS

This routine enables a file’s attributes to be read from file or written to file. The

routine is entered at &FFDA and indirects via &214. On entry X must point to

four locations in zero page and Y contains the channel number.

if Y is non-zero then A will determine the function to be carried out on the file

whose channel number is in Y.

A=0 Read sequential pointer.

A=1 Write sequential pointer.

A=2 Read length

A=&FF Ensure that this file is up to date on the media.

446

If Y is zero then the contents of A will determine the function to be carried out.

A=0 Return, in A, the type of filing system in use. The value of A on exit has the

following significance:

0 No filing system.

1 1200 baud cassette filing system.

2 300 baud cassette filing system.

3 Sideways ROM filing system.

4 Disc filing system.

5 Econet filing system.

6 Teletext filing system

7 IEEE filing system

8 Advanced Disc Filing System

A=1 Return address of the rest of the command line in the zero page locations.

A=&FF Ensure that all open files are up to date on the media.

On exit X and Y are preserved, C, N, V and Z are undefined and D=0. The

interrupt state is preserved but interrupts may be enabled during the operation.

OSFILE

This routine, by itself, allows a whole file to be loaded or saved. The routine is

entered at &FFDD and indirects via &212.

On entry A indicates the function to be performed. X and Y point to an 18 byte

control block anywhere in memory. X contains the low byte of the control block

address and Y the high byte. The control block is structured as follows from the

base address given by X and Y.

447

OSFILE control block

00 Address of file name, which must be

terminated by &0D

LSB

01 MSB

02 LSB

03

04

05

Load address of file

MSB

06 LSB

07

08

09

Execution address of file

MSB

0A LSB

0B

0C

0D

Start address of data for write operations,

or length of file for write operations

MSB

0E LSB

0F

10

11

End address of data, that is byte after last

byte to be written or file attributes

MSB

The table below indicates the function performed by OSFILE for each value of A.

A=0 Save a section of memory as a named file. The file’s catalogue information

is also written.

A=1 Write the catalogue information for the named file (disc only).

A=2 Write the load address (only) for the named file (disc only).

A=3 Write the execution address (only) for the named file (disc only).

A=4 Write the attributes (only) for the named file (disc only).

A=5 Read the named file’s catalogue information. Place the file type in A (disc

only).

A=6 Delete the named file (disc only).

A=&FF Load the named file and read the named file’s catalogue information.

When loading a file the byte at XY+6 (the LSB of the execution address)

determines where the file will be loaded in memory. If it is zero then the file will

he loaded to the address given in the control block. If non-zero then the file will

be loaded to the address stored with the file when it was created.

The file attributes are stored in four bytes. The least significant eight bits have

the following meanings (for the Econet filing system):

448

Bit Meaning

0 Not readable by you

1 Not writable by you

2 Not executable by you

3 Not deletable by you

4 Not readable by others

5 Not writable by others

6 Not executable by others

7 Not deletable by others

File types are as follows:

0 Nothing found

1 File found

2 Directory found

A BRK will occur in the event of an error and this can be trapped if required. See

‘Faults, events and BRK handling’ towards the end of this chapter.

On exit X and Y are preserved, C, N, V and Z are undefined and D=0. The

interrupt state is preserved but interrupts may be enabled during the operation.

OSRDCH

This routine reads a character from the currently selected input stream into A.

The routine is called at location &FFE0 and indirects via &210. The input stream

can be selected by an OSBYTE call with A=2. See chapter 43.

On exit C=0 indicates a successful read and the character will be in A. C=1

indicates an error and the error type is returned in A. If C=1 and A=&1B then an

escape condition has been detected and the user must at least acknowledge this

by performing an OSBYTE call with A=&7E; BASIC will normally do this for

you. X and Y are preserved, N, V and Z are undefined and D=0. The interrupt

state is preserved.

OSASCI

This routine writes the character in A to the currently selected output stream by

using OSWRCH. However, if A contains &0D then OSNEWL is called instead.

The actual code at location &FFE3 is

FFE3 C9 0D OSASCI CMP #&0D

FFE5 D0 07 BNE OSWRCH

FFE7 A9 A0 OSNEWL LDA #&0A

FFE9 20 EEFF JSR OSWRCH

FFEC A9 0D LDA #&0D

FFEE 6C 0E02 OSWRCH JMP (WRCHV)

449

On exit A, X and Y are preserved, C, N, V and Z are undefined and D = 0. The

interrupt state is preserved.

OSNEWL

This call issues an LF CR (line feed, carriage return) to the currently selected

output stream. The routine is entered at &FFE7.

On exit X and Y are preserved, C, N, V and Z are undefined and D = 0. The

interrupt state is preserved.

OSWRCH

This call writes the character in A to the currently selected output stream. The

output stream may be changed using an OSBYTE call with A=3. See chapter 43

for more details. OSWRCH is entered at location &FFEE and indirects via &20E.

On exit A, X and Y are preserved, C, N, V and Z are undefined and D=0. The

interrupt state is preserved but interrupts may be enabled during the operation.

All character output from BASIC, the operating system and anything else uses

this routine. It is, therefore, easy to pass all output to a user provided output

routine by placing the address of the user routine at WRCHV (&20E). However,

the user should note that all control characters have special significance. For

example, &1C is followed by four bytes which define a text window. See chapter

34 on VDU codes for a complete listing of control characters. If the user wishes to

intercept any control characters then his or her routine must check for all control

characters. The routine must arrange to skip however many bytes follow a

particular code since these bytes might, inadvertently, contain a control code. For

example, the BASIC statement

GCOL 1,3

is passed to the operating system as a string of bytes through OSWRCH. In fact,

in this case the bytes would be &12,1,3.

OSWORD

The OSWORD routine invokes a number of miscellaneous operations all of which

require more parameters or produce more results than can be passed in A, X and

Y. As a result, all OSWORD calls use a parameter block somewhere in memory.

The exact location of the parameter block is given in X (low byte) and Y (high

byte). The contents of A determine the exact nature of the OSWORD call.

All OSWORD calls are entered at location &FFF1 which indirects through &20C.

The table below summarises the OSWORD calls.

450

OSWORD summary

A= Summary of function

0 Read a line from the current input stream to memory

1 Read the elapsed time clock

2 Write the elapsed time clock

3 Read interval timer

4 Write interval timer

5 Read a byte in the input/output processor memory

6 Write a byte in the input/output processor memory

7 Generate a sound

8 Define an envelope for use with the SOUND statement

9 Read pixel colour at screen position X,Y

A Read dot pattern of a specific displayable character

B Read the palette value for a given logical colour

OSWORD with A=0

This routine accepts characters from the current input stream and places them at

a specified location in memory. During input the delete code (ASCII 127) deletes

the last character entered, and CTRL U (ASCII 21) deletes the entire line. The

routine ends if RETURN is entered (ASCII 13) or an ESCAPE condition occurs.

The control block contains five bytes:

00 Address of buffer for input line

01 MSB

02 Maximum length of line

03 Minimum acceptable ASCII value

04 Maximum acceptable ASCII value

Characters will only be entered if they are in the range specified by XY+3 and

XY+4.

On exit C=0 indicates that RETURN (CR; ASCII code 13 or &D) ended the line.

C not equal to zero indicates that an escape condition terminated entry. Y is set

to the length of the line, excluding the CR if C=0.

451

OSWORD call with A=1 Read clock

This call is used to read the internal elapsed time clock into the five bytes pointed

to by X and Y. This clock is the one used by BASIC for its TIME function. The

elapsed time clock is reset to zero when the computer is switched on and if a hard

reset is executed. Otherwise it is incremented every hundredth of a second. The

only thing that will cause it to lose time is pressing the BREAK key and keeping

it pressed.

On entry X and Y should point to the memory locations where the result is to be

stored. Y contains the high byte and X the low byte of the address.

On exit X and Y are undefined and the time is given in location XY (LSB) to

XY+4 (MSB). The time is stored in pure binary.

OSWORD call with A=2 Write clock

This call is used to set the internal elapsed time clock from the five bytes pointed

to by XY.

On entry X and Y should point to the memory locations where the new time is

stored. Y contains the high byte and X the low byte of the address. The least

significant byte of the time is stored at the address pointed to by XY and the most

significant byte of the time is stored at address XY+4. A total of five bytes are

required.

OSWORD call with A=3 Read interval timer

In addition to the clock there is an interval timer which is incremented every

hundredth of a second. The interval is stored in five bytes pointed to by X and Y.

See OSWORD with A=1.

OSWORD call with A=4 Write interval timer

On entry X and Y point to five locations which contain the new value to which the

clock is to be set. The interval timer increments and may cause an event when it

reaches zero. Thus setting the timer to &FFFFFFFFFE would cause an event

after two hundredths of a second.

OSWORD call with A=5 Read I/O processor memory

This call enables any program to read a byte in the I/O processor no matter in

which processor the program is executing.

On entry X and Y point to a block of memory as follows:

XY LSB of address to be read

XY+1

XY+2

XY+3 MSB of address to be read

452

On exit the eight bit byte will be stored in XY+4. A further feature is available on

machines fitted with OS 2.00. The feature enables an additional 12K of memory

to be accessed, which exists as sideways RAM at locations &8000-&AFFF. It is

accessed by ROM IDs 128-255 (ie any value with the top bit set), and hence will

not receive service calls. Furthermore, the MOS will not find it to contain a

language. Bytes may be read from the RAM with the top two bytes of the memory

block set to &FFFE. Note: references to this 12K of memory which are made in

this manual are not necessarily applicable to other Acorn products.

OSWORD call with A=6 Write to I/O processor memory

As pointed out previously, programs that are to work through the Tube must not

attempt to access memory locations in the I/O processor directly. This call

provides easy access to locations in the BBC Microcomputer wherever the user’s

program happens to be.

On entry X and Y point to a block of memory initialised as follows:

XY LSB of address to be changed

XY+1

XY+2

XY+3 MSB of address to be changed

XY+4 Byte to be entered at address given

Bytes may be written to the sideways RAM described under OSWORD with A=5

by setting the top two bytes of the memory block to &FFFE. Note that shadow

RAM locations &A000 to &AFFF should only be used for user supplied ‘VDU

driver’ machine code programs. When shadow mode is on, the MOS VDU drivers

will access shadow display RAM, not ‘normal’ display RAM (ie &3000 to &7FFF).

Any access to &3000 – &7FFF by machine code running in &A000 – &AFFF will

automatically be diverted to shadow display RAM. This facility gives faster VDU

access when in shadow mode.

OSWORD call with A=7 Make a sound

This call can be used to generate a sound. The eight bytes pointed to by locations

XY to XY+7 are treated as four two-byte values. These four values determine the

sound effect. See the keyword SOUND for a detailed description.

453

XY Channel LSB 1 01

XY+1 MSB 00

XY+2 Amplitude LSB -15 F1

XY+3 MSB FF

XY+4 Pitch LSB 200 C8

XY+5 MSB 00

XY+6 Duration LSB 20 14

XY+7 MSB 00

The example figures on the right of the table show first the required decimal

value and secondly the two hexadecimal values required. The figures are only

illustrative.

On exit X and Y are undefined.

OSWORD call with A=8 Define an envelope

This call is used to define an envelope which can be used by a SOUND statement

or equivalent OSWORD call. On entry X and Y point to an address in memory

where 14 bytes of data are stored. Y contains the high part of the address and X

the low part. The envelope number is stored at XY and the following 13 locations

contain data for that envelope. See the entry for the ENVELOPE keyword for more

details.

On exit X and Y are undefined.

OSWORD call with A=9 Read a pixel

This call enables the machine code programmer to read the status of a graphics

point at any specified location. On entry X and Y point to a block of five bytes. Y

contains the most significant byte of the address and X the least significant byte.

On entry the first four bytes are set up thus:

XY LSB of X coordinate

XY+1 MSB of X coordinate

XY+2 LSB of Y coordinate

XY+3 MSB of Y coordinate

On exit XY+4 contains the logical colour of the point or &FF if the point is off the

screen. X and Y are undefined.

454

OSWORD call with A=&0A Read character definition

Characters are displayed on the screen as an eight by eight matrix of dots. The

pattern of dots for each character in MODES 0 to 6, including user defined

characters, is stored as eight bytes (see chapter 34). This call enables the eight

bytes to be read into a block of memory starting at an address given in X and Y.

On entry the ASCII code of the character is the first entry on the block.

On exit the block contains data as shown below. X and Y are undefined.

XY Character required

XY+1 Top row of displayed character

XY+2 Second row

.

.

.

XY+8 Bottom row of displayed character

OSWORD call with A=&0B Read palette

The reader will be aware that each logical colour (0 to 15) has an actual (or

displayed) colour associated with it. The actual to logical association can be

changed with VDU19. This OSWORD call enables one to determine the actual

colour currently assigned to each logical colour. On entry the X and Y registers

contain the address of the start of a block of five bytes. The first byte should

contain a value representing the logical colour.

On exit the following four bytes will contain the same four numbers used when

VDU19 assigned an actual colour to the same logical colour. Suppose that logical

colour 2 was in fact set to blue (4) by the statement

VDU 19,2,4,0,0,0

then this call would produce the following result:

XY 2 Logical colour

XY+1 4 Actual colour (blue)

XY+2 0

XY+3 0 }

XY+4 0 }
Padding zeros for future

expansion

455

Command line interpreter (&FFF7)

The machine operating system CLI is usually accessed from a high level

language by starting a statement with an asterisk. For example:

*MOTOR 0,1

The command line itself (excluding the asterisk) is then passed, without any

further processing, to the CLI.

Machine code programs can use all operating system commands by placing the

address of a command line in the X (LSB) and Y (MSB) registers and calling

&FFF7. This routine indirects through location &208.

The command line should not start with an asterisk and must end with an &0D.

In fact any leading asterisk or spaces will be stripped.

The following BASIC program illustrates this:

10 DIM C 20

20 $C="MOTOR 1"

30 X%=C MOD 256

40 Y%=C DIV 256

50 CALL &FFF7

When RUN the cassette motor will turn on. The computer will have allocated a

space for C – perhaps at location &1B0A in which case successive bytes would

contain:

Address Contents

&1B0A 4D (M)

&1B0B 4F (O)

&1B0C 54 (T)

&1B0D 4F (O)

&1B0E 52 (R)

&1B0F 20 (Space)

&1B10 31 (1)

&1B11 0D (Return)

Of course, this particular example would have been easier as a *FX call or

simply as *MOTOR 1. However, complex commands may need this call.

456

Faults, events and BRK handling

It is necessary to provide some means to enable programs to deal with faults such

as Illegal command or Division by zero . BASIC uses the 6502 BRK

instruction when dealing with faults like this and user written programs can also

use the same facility. In BASIC (for example), a BRK instruction is followed by a

sequence of bytes giving the following information:

– BRK instruction, value &00.

– Fault number.

– Fault message (may contain any non-zero character).

– &00 to terminate message.

When the 6512 encounters a BRK instruction the operating system places the

address following the BRK instruction in locations &FD and &FE. Thus these

locations point to the ‘fault number’. The operating system then indirects via

location &202. In other words control is transferred to a routine whose address is

given in locations &202 (low byte) and &203 (high byte). The default routine,

whose address is given at the location, prints the default message.

The BRK handling outline above enables the user to intercept normal procedures

and to generate his or her own special messages and error numbers in user

written machine code routines. The CALL demonstration program towards the

beginning of this chapter shows this in practice. See also IRQ at the end of this

chapter.

While faults are in general, ‘fatal’, there is another class of events, called ‘events’,

which are informative rather than fatal. This class of events includes, for

example, a key being pressed on the keyboard. The user may wish to detect such

an operation or may be happy to ignore it. When the operating system detects an

‘event’ then, if that event is enabled (by using *FX14) it indirects via &220 with

an event code in the accumulator. The contents of X and Y depend on the event.

The event codes in A indicate the following:

Accumulator description

0 Buffer empty X = buffer identity

X = buffer identity1 Buffer full

Y = character that could not be

stored

2 Keyboard interrupt

3 ADC conversion complete

4 Start of TV field pulse (vertical

sync)

5 Interval timer crossing zero

6 ESCAPE condition detected

457

The user supplied event handling routine is entered with interrupts disabled and

it should not enable interrupts. The routine should return (RTS) after a short

period, say one millisecond maximum, and should preserve the processors P, A, X

and Y registers.

Interrupt handling

The whole machine runs under continuous interrupts but nonetheless the user

can easily add his or her own interrupts and handling routines. Because the

machine runs under interrupts, software timing loops should not be used. Several

hardware timers are available to the user and these should be used wherever

possible.

NMI – non-maskable interrupt

In general these should be avoided. When a disc filing system ROM is fitted

NMIs will be handled by the ROM. Again, it should be emphasised that NMI is

reserved for the operating system.

IRQ - interrupt request

When an IRQ is detected the operating system immediately indirects through

location &204 (IRQ1V) to an operating system routine which handles all

anticipated internal IRQS. If the operating system is unable to deal with the IRQ

(because it has come from an unexpected device such as the user 6522), then the

system indirects through &206 (IRQ2V). Thus the user routine for handling IRQs

should normally be indirected via IRQ2V but if top priority is required the user

routine can be indirected via IRQ1V.

In either case the user supplied routine must return control to the operating

system routine to ensure clean handling.

458

The operating system handles BRK and IRQs with the following code.

STA &FC \temporary for A

PLA

PHA \get processor status

AND #&10

BNE BRK

JMP (&0204) \IRQ1V

BRK TXA \BRK handling

PHA \save X

TSX

LDA &103,X \get address low

CLD

SEC

SBC #1

STA &FD

LDA &104,X \get address high

SBC #0

STA FE

Note that A is stored in location &FC so that it can be accessed by user routines.

When the computer indirects through &202 (BRKV), &204 (IRQ1V) and &206

(IRQ2V) X and Y will contain correct values. The user must not enable interrupts

during his or her IRQ service routine.

459

46 Analogue input

The BBC Microcomputer is fitted with a socket at the back marked ‘analogue in’.

Into this socket you can plug paddles and joysticks as well as voltages which the

computer can measure. Paddles usually consist of a box with a knob like a record

player volume control. The computer can tell the position of the paddle and so it

can be used in games and more serious programs to move things around the

screen. Joysticks, on the other hand, can be moved left and right as well as up

and down. As a result you can move an object anywhere on the screen not just up

and down a particular line. Both paddles and joysticks can be fitted with push

buttons and the computer can detect when these buttons are pressed. The BBC

Microcomputer can be connected to four paddles or two joysticks. The BASIC

function ADVAL can be used to detect the position of each control and of the fire

buttons.

A second use for the analogue input is to measure voltages. Note that the

analogue inputs have no built-in protection against excess voltages. You must

therefore be careful not to apply a voltage greater than 1.8 volts or less than 0

volts to any of these inputs. In addition you should keep leads plugged into the

analogue inputs away from devices which produce large static voltages such as

televisions and some other mains equipment. Each of the four inputs can accept

voltages in the range 0 to 1.8V and will produce a corresponding number in the

range 0 to 65520. Since it is possible to use a transducer to produce a voltage

proportional to temperature, light intensity, smoke density, water pressure, gas

concentration etc, it is possible to use the computer to monitor all these things. If

the unit is to be used to measure absolute voltages then it should be calibrated

individually. In practice 1.0V input typically produces a reading of 35168.

Although the unit is fitted with a 12 bit converter, the user should not rely on

more than 10 bit accuracy unless great care is taken with screening and analogue

ground connections.

460

Digital input/ouput using the eight bit user port

The BBC Microcomputer contains an eight bit user port which can be connected

to a wide range of devices such as bit pads and general interfacing boxes. The

user port can be read from or written to in BASIC and in assembly language, but

in either case the user will need to know how to use the 6522 versatile interface

adapter integrated circuit. A 6522 data sheet will be essential and the user will

discover that this extremely versatile chip is also quite difficult to master. What

follows is essential information that you will need to work the chip rather than a

course in using it. Once you have learned to use it you will realise that at least 20

pages would be needed to give a decent introduction to it!

The 6522 lives in the memory map between locations &FE60 and &FE6F. The A

side is used for the parallel printer port and the B side is used for the user port.

The timers and shift register are also available for the user. When writing small

programs the user can address the device directly either in BASIC or in

Assembly Language. However programs that address the device directly will not

work on the far side of the Tube. Machine code calls are provided to address the

device whichever side of the Tube the program is on. Firstly, though, here are

some programs in BASIC and assembly language to read and write to the port.

10 REM Read data in

20 REM Set Data Direction Register B

30 REM for all inputs

40 ?&FE62=0

50 REM read a value in and PRINT it

60 X=?&FE60

70 PRINT X

80 GOTO 60

The next program sets up the 6522 to output to the user port and then transfers

the bottom eight bits of X to the user port. Again the initialisation need only take

place once.

10 REM All outputs

20 ?&FE62=&FF

30 REM now put X out

40 ?&FE60=X

And here are those two programs in assembly language. First to read data into

the accumulator:

100 LDA #0

110 STA &FE62

120 LDA &FE60

461

and secondly to write data out to the user port. This time the program is

presented as two subroutines. The first, called INIT , sets up the 6522 and the

second subroutine, WRITE, actually puts the data out from the accumulator onto

the user port.

200 .INIT LDA #&FF

210 STA &FE62

220 RTS

230 .WRITE STA &FE60

240 RTS

As has been made clear above, these programs will not work from the second

processor. The 6522 is one of the memory input/output devices in the area of

memory referred to as SHEILA. SHEILA controls the section of memory map in

the range &FE00 to &FEFF, and the VIA (versatile interface adaptor) uses

addresses between &FE60 and &FE6F which are therefore SHEILA+&60 to

SHEILA+&6F. Two OSBYTE calls (see chapter 43) are provided to read and

write to SHEILA. Here are the same two routines shown above but written so

that they will work over the Tube.

100 LDA #&97 \OSBYTE to write to SHEILA

110 LDX #&62 \Offset to Data direction reg.

120 LDY #0 \Value to be written

130 JSR &FFF4 \Call OSBYTE

140 LDA #&96 \OSBYTE to read from SHEILA

150 LDX #&60 \Offset to data register

160 JSR &FFF4 \Call OSBYTE to get value

And the next routine to INIT and WRITE to the user port:

200 .INIT LDA #&97 \OSBYTE to write to SHEILA

210 LDX #&62 \Offset to Data direction register

220 LDY #&FF \All outputs

230 JSR &FFF4 \Call OSBYTE

240 RTS

250 .WRITE TAY \Move value to Y

260 LDA #&97 \Write-to-SHEILA code

270 LDX #&60 \Offset to data register

280 JSR &FFF4 \OSBYTE call

290 RTS

In practice the user will often wish to use the handshake lines with data

transfers. For information on this topic you are referred to other books. Space

simply does not permit an adequate explanation here.

462

47 Error messages

If the computer is unable to proceed for some reason then it will report the fact to

you by printing an error message on the screen. The printing of the message can

be suppressed by an ON ERROR statement – for example

ON ERROR PROCerror
ON ERROR may be followed by any statement or multiple statement.

As well as the error message, the computer sets two variables each time an error

occurs.

ERR gives the error number.

ERL gives the number of the line in the program where the error occurred.

REPORT is a command to print the last error message. For example

ON ERROR REPORT:PRINT" at line ";ERL:END

will give the same response that the computer gives without an ON ERROR

statement.

The error messages are listed below in alphabetical order together with their

error numbers.

Accuracy lost 23

If you try to calculate trigonometric functions with very large angles you are

liable to lose a great deal of accuracy in reducing the angle to the range of plus or

minus PI radians. In this case the computer will report Accuracy lost, eg

PRINT SIN(10000000)

Arguments 31

This error indicates that their are too many or too few arguments for a given

function or procedure.

Array 14

This indicates that the computer thinks that an array is to be accessed but does

not know the array in question.

Bad call 30

This indicates that the use of PROC or FN to call a defined procedure or function

is incorrect.

463

Bad DIM 10

Arrays must be dimensioned with a positive number of elements. An error will be

produced, for example, by:

DIM A(-3)

Bad HEX 28

Hex numbers can only include 0 to 9 and A to F. An attempt to form a hex

number with other letters will result in this error, eg

PRINT &y

Bad key 251

An attempt has been made to provide a function key defenition with a key

number greater than 15.

Bad MODE 25

This indicates an attempt to change mode inside a procedure or function, or to

select a mode for which their is insufficient memory.

Bad program 0

There are a number of occasions on which the computer checks to see if the

program that it contains starts and ends in memory. The untrappable and fatal

error Bad program indicates that the computer could not follow a program

through successfully to an end mark in memory. This is caused by a read error or

by loading only part of a program or by overwriting part of a program in some

way. Unless you are prepared to check the contents of memory a byte at a time

there is little that can be done to recover a bad program.

Bad string 253

A string more than ten characters long has been passed with an operating system

command (cassette filing system only).

Block? 218

This is an error generated by the cassette filing system. It indicates that an

unexpected block number was encountered. Rewind the tape a short way and

play it again Sam.

Byte 2

An attempt was made, during an assembly language section, to load a register

with a number requiring more than one byte, eg

LDA #345

464

Can’t match FOR 33

There is no FOR statement corresponding to the NEXT statement.

Channel 222

This error is generated by the cassette filing system if an attempt is made to use

a channel that was not opened.

Data? 216

This an error generated by the cassette filing system and it means that the

computer has found a cyclic redundancy check (CRC) error. The CRC is stored on

tape along with other information. Rewind the tape a short way and play it

again.

DIM space 11

An attempt was made to dimension an array for which there was insufficient

room.

Division by zero 18

Division cannot be done, eg

PRINT 34/0

This error can also be caused by a division within a procedure or function using a

LOCAL variable which has not been set to a new value. When a variable is

declared as LOCAL it is set to zero.

$ range 8

The user may put strings into any place in memory except zero page – that is

locations with addresses lass than &100. Thus this is illegal:

$40="hello"

Eof 223

This error is generated by the cassette filing system when the end of the file is

reached.

Escape 17

The ESCAPE key has been pressed.

465

Exp range 24

The function EXP cannot deal with powers greater than 88. Thus the following is

illegal:

X=EXP(90)

Failed at <line number>

When renumbering a program the computer attempts to look after all references

made by GOTO and GOSUB statements. Thus the program

133 GOTO 170

170 END

would become

10 GOTO 20

20 END

when renumbered. However, the computer will not be able to deal with

133 GOTO 140

200 END

If the user attempts to renumber this program he or she will get the error

message

Failed at line 10

and the renumbered program will be

10 GOTO 140

20 END

File? 219

This error indicates that an unexpected file name was encountered by the

computer.

FOR variable 34

The variable in a FOR...NEXT loop must be a numeric variable. Thus the

following is illegal:

FOR 5=3 TO 10

Header? 217

This an error generated by the cassette filing system and it indicates that a

header cyclic redundancy check error has occurred. Rewind the tape a short way

and play it again.

466

Index 3

This indicates an error in specifying an index mode when using the assembler, eg

LDA Z,Z

Key in use 250

An attempt has been made to define a function key while another function key is

being expanded, eg

*KEY 0 *KEY 1 RUN |M |M

followed by pressing f0 would produce this error message.

LINE space

The computer has no room left to insert the line in the program.

Log range 22

An attempt was made to calculate the LOG of a negative number or of zero, eg

PRINT LOG(-10)

Missing , 5

This error indicates that the computer expected to find a comma in the line, and

didn’t do so, eg

D$=MID$(A$)

Missing ” 9

The computer expected to find a double quote, eg

LOAD "FRED

Missing) 27

The computer expected to find a closing parenthesis, eg

PRINT TAB(10,10

467

Missing # 45

The computer expected to find a #, eg

A=BGET

Mistake 4

This indicates that the computer could not make any sense of the input line.

-ve root 21

An attempt was made to calculate the square root of a negative number, eg

PRINT SQR(-10)

This may also occur with ASN and ACS.

No FN 7

This indicates that the computer detected the end of a function but had not called

a function defenition, eg

=FNlinda

No FOR 32

A NEXT statement was found when no GOSUB statement had been encountered.

No GOSUB 38

A RETURN statement was found when no GOSUB statement had been encountered.

No PROC 13

This indicates that the word ENDPROC was found without there being a

corresponding DEF PROC statement.

No REPEAT 43

The interpreter found an UNTIL statement when no REPEAT statement had

been encountered.

468

No room 0

This untrappable and fatal error indicates that while the computer was running

a program it used up all available memory.

No such FN/PROC 29

If the interpreter meets a name beginning with FN (eg FNfred) or PROC (eg

PROCrob) it expects to find a corresponding function or procedure defenition

somewhere. This error indicates that no matching defenition was found.

No such line 41

The computer was told to GOTO or GOSUB a line number which does not exist.

No such variable 26

All variables must be assigned to or made LOCAL, before they can be accessed in

PRINT statements or before their values can be assigned to other variables. The

initial assignment can simply be, for example, X=0.

No TO 36

A FOR...NEXT loop has been set up with the TO part missing. A correctly

formed line is shown below.

FOR X= 10 TO 55

Not LOCAL 12

This indicates the appearance of LOCAL outside a procedure or function.

ON range 40

The control variable was either less than 1 or greater than the number of entries

in the ON list. For example, if X=3 then the following will fail:

ON X GOTO 100,200

since there are only two destinations.

469

ON syntax 39

The ON...GOTO statement was incorrectly formed. For example, the following is

illegal:

ON X PRINT

The word ON must be followed by a numeric which must in turn be followed by

the word GOTO or GOSUB.

Out of DATA 42

An attempt was made to read more items of DATA than there were in the DATA

list. The word RESTORE can be used to reset the data pointer to the start of the

DATA if required.

Out of range 1

An attempt was made to branch out of range of the branch instruction in an

assembly language program.

Silly

This message will be issued if you attempt to renumber a program or enter AUTO

mode with a step size of 0 or more than 255, eg

AUTO 100,0

Syntax 220

This error is generated by the cassette filing system and indicates that a syntax

error, such as an illegal *OPT statement has occurred.

String to long 19

The maximum length of a string is 255 characters.

Subscript 15

This implies that an attempt was made to access an element of an array less than

zero or greater than the size of the array. For example, these two lines together

will produce this error:

100 DIM A(10)

120 A(15)=3

470

Syntax error 16

A command was terminated wrongly, for example

LIST PRINT

Too big 20

A number was entered or calculated which was too large for the computer to

handle.

Too many FORs 35

An attempt was made to nest too many FOR...NEXT loops. The maximum

nesting allowed is ten. This can sometimes be caused by returning to a FOR

statement without executing a NEXT statement, eg

10 FOR X=1 TO 6

20 GOTO 10

Too many GOSUBs 37

An attempt was made to nest too many GOSUB...RETURN loops. The maximum

nesting allowed is 26. This can somtimes be caused by returning to a GOSUB

statement without executing a RETURN statement, eg

10 PRINT "WRONG"

20 GOSUB 10

Too many REPEATS 44

An attempt was made to nest too many REPEAT...UNTIL loops. The maximum

nesting allowed is 20. This can sometimes be caused by returning to a REPEAT

statement without executing an UNTIL statement, eg

10 REPEAT

20 GOTO 10

Type mismatch 6

This error indicates that a number was expected and a string was offered or vice

versa, eg

10 A$=X

471

Error

number Error message

1 Out of range

2 Byte

3 Index

4 Mistake

5 Missing ,

6 Type mismatch

7 No FN

8 $ range

9 Missing "

10 Bad DIM

11 Dim space

12 Not LOCAL

13 No PROC

14 Array

15 Subscript

16 Syntax error

17 Escape

18 Division by zero

19 String too long

20 Too big

21 -ve root

22 Log range

23 Accuracy lost

24 Exp range

25 Bad MODE

26 No such variable

27 Missing)

28 Bad HEX

29 No such FN/PROC

30 Bad call

31 Arguments

32 No FOR

33 Can't match FOR

34 FOR variable

35 Too many FORs

36 No TO

37 Too many GOSUBs

38 No GOSUB

39 ON syntax

472

40 ON range

41 No such line

42 Out of DATA

43 No REPEAT

44 Too many REPEATs

216 Data?

217 Header?

218 Block?

219 File?

220 Syntax

222 Channel

223 Eof

250 Key in use

251 Bad key

253 Bad string

254 Bad command

Note: disc filing system errors are described in the appropriate disc filing system

user guide .

473

48 Minimum abbreviations

This chapter lists the minimum abbreviations that can be used for BASIC

keywords. The third column lists the hexadecimal number that is used to store

the keyword in memory. This is often referred to as the ‘token’.

Notice that the abbreviation never needs an opening parenthesis because the

token includes the parenthesis

ABS ABS 94 ENDPROC E. E1

ACS ACS 95 ENVELOPE ENV. E2

ADVAL AD. 96 EOR EOR 82

AND A. 80 EOF EOF C5

ASC ASC 97 ERL ERL 9E

ASN ASN 98 ERR ERR 9F

ATN ATN 99 ERROR ERR. 85

AUTO AU. C6 EVAL EV. A0

BGET B. 9A EXP EXP A1

BPUT BP. D5 EXT EXT A2

CALL CA. D6 FALSE FA. A3

CHAIN CH. D7 FN FN A4

CHR$ CHR. BD FOR F. E3

CLEAR CL. D8 GCOL GC. E6

CLG CLG DA GET GET A5

CLOSE CLO. D9 GET$ GE. BE

CLS CLS DB GOSUB GOS. E4

COLOUR C. FB GOTO G. E5

COS COS 9B 93

COUNT COU. 9C

HIMEM H.

(right)

DATA D. DC D3

DEF DEF DD

HIMEM H.

(left)

DEG DEG 9D IF IF E7

DELETE DEL. C7 INKEY INKEY A6

DIM DIM DE INKEY$ INK. BF

DIV DIV 81 INPUT I. E8

DRAW DR. DF INSTR(INS. A7

ELSE EL. 8B INT INT A8

END END E0 LEFT$(LE. C0

LEN LEN A9 CF

LET LET E9

PTR PT.

(left)

LINE LIN. 86 RAD RAD B2

LIST L. C9 READ REA. F3

474

LN LN AA REM REM F4

LOAD LO. C8 RENUMBER REN. CC

LOCAL LOC. EA REPEAT REP. F5

LOG LOG AB REPORT REPO. F6

92 RESTORE RES. F7LOMEM LOM.

(right) RETURN R. F8

D2 RIGHT$(RI. C2LOMEM LOM.

(left) RND RND B3

MID$(M. C1 RUN RUN F9

MOD MOD 83 SAVE SA. CD

MODE MO. EB SGN SGN B4

MOVE MOV. EC SIN SIN B5

NEW NEW CA SOUND SO. D4

NEXT N. ED SPC SPC 89

NOT NOT AC SQR SQR B6

OFF OFF 87 STEP S. 88

OLD O. CB STOP STO. FA

ON ON EE STR$ STR. C3

OPENIN OP. 8E STRING$(STRI. C4

OPENOUT OPENO. AE TAB(TAB(8A

OPENUP OPENUP AD TAN T. B7

OPT OPT THEN TH. 8C

OR OR 84 91

OSCLI OSC. FF

TIME TI.

(right)

90 D1PAGE PA.

(right)

TIME TI.

(left)

D0 TO TO B8PAGE PA.

(left) TRACE TR. FC

PI PI AF TRUE TRUE B9

PLOT PL. F0 UNTIL U. FD

POINT(PO. B0 USR USR BA

POS POS B1 VAL VAL BB

PRINT P. F1 VDU V. EF

PROC PRO. F2 VPOS VP. BC

8F WIDTH W. FEPTR PT.

(right)

475

49 BASIC II

This chapter details differences between BASIC II and the original version of

BBC BASIC, and as such is mainly intended for those who are already familiar

with the latter language.

Two new keywords are introduced by BASIC II: OPENUP and OSCLI. These are

described in chapter 33.

BASIC II makes available the following alterations and extensions to existing

BASIC keywords.

ABS
The unary minus operator may be used, for example

PRINT -ABS(-1)

will give the value -1. In BASIC this gave a Type mismatch error.

COUNT
This has been altered so that COUNT is reset to zero after a change of MODE , as

shown by the following example program:

10 PRINT "Hello";

20 MODE 3

30 PRINT "Goodbye";

40 PRINT COUNT

In BASIC this would leave the screen showing:

Goodbye 12

With BASIC II the following is obtained:

Goodbye 7

ELSE
In BASIC, ON...GOTO...ELSE or ON...GOSUB...ELSE could not be used

inside procedures or functions – only the ON...GOTO (or ON...GOSUB) part was

available. This limitation is not present in BASIC II.

EVAL
In addition to its BASIC functions, in BASIC II EVAL can be used to evaluate the

pseudo-variables COUNT, ERL, ERR, HIMEM, LOMEM, PAGE, TIME and TOP.

476

INPUT
If more than one string or value is to be input at a time then the variable

identifiers have to be separated from each other. In BASIC this was done by

using commas, eg

INPUT NAME$, AGE, HEIGHT

In BASIC II either commas or semicolons may be used, eg

INPUT NAME$, AGE; HEIGHT

When entering numerics however, these should be separated by commas as

before, not semicolons.

INSTR
In BASIC II, INSTR has been extended such that an instruction such as

PRINT INSTR("l","Hello")

will return the value 0. This is useful in that a statement such as

X=INSTR(A$,B$)

can be included inside a procedure or function without having to check that A$ is

longer than B$.

ON ERROR
In BASIC II, the comand ON ERROR GOTO... can be used with any line

number. (In BASIC, ON ERROR GOTO 9999, for example, could not be used).

OPENIN and OPENUP
In both BASIC and BASIC II an existing file can be opened to allow data to be

read or altered, or to allow more data to be added to the end. In BASIC, this

function was performed by the instruction OPENIN. In BASIC II it is done by

OPENUP. Since these keywords give exactly the same result, the token for them

both is &AD. Hence, if a program containing the instruction OPENUP is written

on a BBC Microcomputer containing BASIC II then the instruction will be

tokenised to &AD. If this program is then saved and loaded into a machine

containing BASIC, the program will work in exactly the same way, but when

listed it will display the instruction as OPENIN. This will apply the other way

around as well so existing programs do not need to be altered to run in BASIC II.

477

The keyword OPENIN does exist in BASIC II, but has a different meaning.

BASIC II uses the keyword OPENIN to open a file for read-only operations; this

was not possible in BASIC. Since this is a new facility it has a new token, &8E.

Note that programs written in BASIC II which contain the instruction OPENIN

will not run in BASIC.

The following new features are available to assembly language programmers:

ASC
In BASIC II ASC ":" may be used in the assembler. In the original BASIC this

lead to confusion.

EQUB, EQUD, EQUS, EQUW
These new features are detailed in chapter 44.

OPT
In BASIC II, bit 2 of the OPT statement’s operand is used to determine whether

assembled machine code is placed in memory at the address given by O% (the

code origin) or P% (the program counter). See chapter 44 for full details.

478

Appendix A

Teletext (MODE 7) displayed alphanumeric characters

479

480

Appendix B

Teletext (MODE 7) displayed graphics characters

481

482

Appendix C

ASCII (MODES 0 to 6) displayed character set and
control codes

483

484

Appendix D

Hexadecimal codes

485

Appendix E

Text and graphics planning sheets

486

Graphics planning sheet 1 (grid related to character positions)

487

Graphics planning sheet 2 (decimal)

488

User defined character planning sheet

MODES 0 to 6

489

Appendix F

Keyboard codes

490

Appendix G

Printed circuit board layout for the BBC
Microcomputer

491

Appendix H

External connections at the rear of the BBC
Microcomputer

492

Appendix I

External connections underneath the BBC
Microcomputer.

493

Appendix J

Memory map and memory map assignments

494

Memory map (detail)

495

Memory map assignments

FF00 to FFFF Operating System ROM.

FE00 to FEFF Internal memory mapped input/output (SHEILA).

FD00 to FDFF External memory mapped input/output (JIM).

FC00 to FCFF External memory mapped input/output (FRED).

C000 to FBFF Operating System ROM.

8000 to BFFF One or more sideways ROMs (eg BASIC, VIEW,

BCPL, PASCAL).

0000 to 7FFF Read/write RAM.

1900 to 1AFF Econet filing system workspace (if fitted).

E00 Default setting of PAGE.

E00 to 18FF Disc filing system workspace (if fitted).

E00 to 1CFF Advanced disc filing system workspace (if fitted).

D9F to DFF ROM workspace.

D00 to D9E Used by NMI routine (eg by disc or Econet filing

system).

C00 to CFF User defined character definitions.

B00 to BFF User defined function key (soft key) definitions.

A00 to AFF RS423 receive.

900 to 9FF RS423 transmit, sound and speech workspace.

800 to 8FF Sound and buffer workspace.

400 to 7FF Sideways ROM workspace.

300 to 3FF VDU, cassette and keyboard workspace.

200 to 2FF Operating system workspace and indirection vectors.

100 to 1FF 6512 stack.

000 to 0FF Zero page.

Zero page

FF The top bit is set during an ESCAPE condition.

FD to FE Address following detected BRK instruction.

FC User IRQ routine save slot for A register.

D0 to FB Used by machine operating system.

B0 to CF Allocated to current filing system.

A8 to AF Used by machine operating system.

A0 to A7 Allocated to disc or Econet filing system.

90 to 9F Allocated to Econet filing system.

70 to 8F Free for user routines (in BASIC only).

0 to 6F BASIC language (or currently selected ROM).

Sideways (shadow) RAM

8000 to AFFF Paged RAM

3000 to 7FFF Shadow screen RAM

496

Appendix K

Circuit layouts

Printer, User I/O, 1 MHz Bus and Tube circuits

497

Video outputs

498

RS423 interface

499

500

501

Appendix L

VDU code summary

D
e
c
im

a
l

H
e
x

C
T

R
L

A
S

C
II

a
b

b
r
e
v

ia
ti

o
n

B
y

te
s
 e

x
tr

a

Meaning

0 0 @ NUL 0 Does nothing

1 1 A SOH 1 Send next character to printer only

2 2 B STX 0 Enable printer

3 3 C ETX 0 Disable printer

4 4 D EOT 0 Write text at text cursor

5 5 E ENQ 0 Write text at graphics cursor

6 6 F ACK 0 Enable VDU drivers

7 7 G BEL 0 Make a short bleep

8 8 H BS 0 Backspace cursor one character

9 9 I HT 0 Forwardspace cursor one character

10 A J LF 0 Move cursor down one line

11 B K VT 0 Move cursor up one line

12 C L FF 0 Clear text area

13 D M CR 0 Move cursor to start of current line

14 E N SO 0 Page mode on

15 F O SI 0 Page mode off

16 10 P DLE 0 Clear graphics area

17 11 Q DC1 1 Define text colour

18 12 R DC2 2 Define graphics colour

19 13 S DC3 3 Define logical colour

20 14 T DC4 4 Restore default logical colours

21 15 U NAK 0 Disable VDU drivers or delete current line

22 16 V SYN 1 Select screen mode

23 17 W ETB 9 Reprogram display character

24 18 X CAN 8 Define graphics character

25 19 Y EM 5 PLOT K , x, y

26 1A Z SUB 0 Restore default windows

27 1B [ESC 0 Does nothing

28 1C \ FS 4 Define text window

29 1D] GS 4 Define graphics origin

30 1E ^ RS 0 Home text cursor to top left

31 1F _ US 2 Move text cursor to x, y

127 7F DEL 0 Backspace and delete

502

503

504

Appendix N

*FX and OSBYTE call summary

Decimal Hex Function

0 0 Prints operating system version number.

1 1 Reserved for application programs.

2 2 Selects input device.

3 3 Selects output devices.

4 4 Enable/disable cursor edit keys.

5 5 Select printer type.

6 6 Set printer ignore character.

7 7 Set RS423 receive baud rate.

8 8 Set RS423 transmit baud rate.

9 9 Set flash period of first colour.

10 A Set flash period of second colour.

11 B Set auto-repeat delay.

12 C Set auto-repeat period.

13 D Disable various events.

14 E Enable various events.

15 F Clear all or just input buffer.

16 10 Select number of ADC channels.

17 11 Force start of conversion on ADC channel.

18 12 Reset user defined function keys.

19 13 Wait for field synchronisation.

20 14 Explode soft character RAM allocation.

21 15 Clear selected buffer.

114 72 Control shadow/main memory selection

117 75 Read VDU status byte.

118 76 Read CTRL/SHIFT key status.

119 77 Close *SPOOL and *EXECfiles.

123 7B End of user print routine.

124 7C Reset ESCAPE flag.

125 7D Set ESCAPE flag.

126 7E Acknowledge detection of escape condition.

127 7F Check end of file status.

128 80 Read ADC channel/fire buttons/last conversion.

129 81 Read key within time limit.

130 82 Read machine high order address.

131 83 Read top of operating system RAM address.

132 84 Read bottom of display RAM address.

505

133 85 Read lowest address for particular mode.

134 86 Read text cursor position.

135 87 Read character at text cursor position.

137 89 Turn cassette motor on/off.

138 8A Insert character into specified buffer.

139 8B Set file options.

140 8C Select cassette file system and set speed.

142 8E Select sideways ROM.

144 90 Alter TV display position/interlace.

145 91 Remove character from buffer.

146 92 Read from I/O area FRED.

147 93 Write to I/O area FRED.

148 94 Read from I/O area JIM.

149 95 Write to I/O area JIM.

150 96 Read from I/O area SHEILA.

151 97 Write to I/O area SHEILA.

152 98 Examine specified buffer.

158 9E Read from speech processor.

159 9F Write to speech processor.

209 D1 Speech on/off.

210 D2 Sound on/off.

218 DA Read/write size of VDU queue

239 EF Read/write shadow display mode state

224 E0 Cancel VDU queue.

225 E1 Set base number for function key codes.

226 E2 Set base number for SHIFT function key codes.

227 E3 Set base number for CTRL function key codes.

228 E4 Set base number for SHIFT CTRL function key codes.

229 E5 ESCAPE=&1B.

230 E6 Enable/disable normal ESCAPE key action.

231 E7 Enable/disable user 6522 IRQ.

232 E8 Enable/disable 6850 ACIA IRQ.

233 E9 Enable/disable system 6522 IRQ.

235 EB Return presence of speech processor.

253 FD Last reset type.

255 FF Write start-up option byte.

506

Appendix O

Operating system calls
Routine Vector

Name Address Name Address

Summary of function

UPTV 222 User print routine

EVNTV 220 Event interrupt

FSCV 21E File system control entry

OSWRSC FFB3 – – Write byte to screen

OSRDSC FFB9 – – Read byte from screen

OSFIND FFCE FINDV 21C Open or close a file

OSGBPB FFD1 GBPBV 21A Load or save a block of memory to file

OSBPUT FFD4 BPUTV 2 Save a single byte to file from A

OSBGET FFD7 BGETV 216 Load a single byte to A from file

OSARGS FFDA ARGSV 214 Load or save data about a file

OSFILE FFDD FILEV 212 Load or save a complete file

OSRDCH FFE0 RDCHV 210 Read character (from keyboard) to A

OSASCI FFE3 – – Write a character (to screen) from A plus

LF if (A)=&0D

OSNEWL FFE7 – – Write LF,CR (&0A,&0D) to screen

OSWRCH FFEE WRCHV 20E Write character (to screen) from A

OSWORD FFF1 WORDV 20C Perform miscellaneous OS operation

control block to pass parameters

OSBYTE FFF4 BYTEV 20A Perform miscellaneous OS operation using

registers to pass parameters

OSCLI FFF7 CLIV 208 Interpret the command line given

IRQ2V 206 Unrecognised IRQ vector

IRQ1V 204 All IRQ vector

BRKV 202 Break vector

USERV 200 Reserved

507

Index

Abbreviations for keywords 473
ABS 173
Acknowledge escape conditions 407
ACS 174
Accuracy of calculations 55
Actual colour numbers 141
Addressing modes 432
ADSR envelope 216
ADVAL 175,405,414,459
Aligning columns when printing 57-66
Amplitude envelope 159,216
Analogue input connections 459
Analogue to digital

converter 201,403,414,477
AND 123,178
Animation 145
Appending programs 371
Application note 421
Arc-cosine 172
Arc-sine 181
Arc-tangent 182
Arrays 102,208
ASC 54,180
ASCII 54,180,Appendixes A-D
ASN 181
Assembly language CALL 186,392
Assembly language DIM 208,436
Assembly language

examples 429,435,436,438
Assembly language introduction 428
Assembly language OPT 283,438
Assembly language USR 340,392
ATN 182
Attack Phase 157,217
AUTO 43,183
Automatic line numbers 43,183
Autopaging 30,350
Auto repeat of keys ,403

Background colours 45,50,139
Bad program 463
Base value of function keys 424,425
BASIC II 475
Baud rate selection of cassette 419
Baud rate selection on RS-423 402
BGET# 184
Bitwise AND 178
Boolean types 178
BPUT# 185
Branch instructions 84
BREAK key 13,120

BRIAN 39
BRK 456
Buffer flushing

all 406
input 404
keyboard 406
sound 406

Buffer get character 415,420
Buffer insert character 418
Buffer status 413,414,456

Calendar program 111
CALL 186,392
CAPS LOCK key 11
Cassette

file tape format 369
filing system 167,360
leads 7
loading 261
motor control 360
motor relay on/off 386,417
recordings 366

Catalogue 28,385
Catalogue of cassette tape 28,361
Centronics printer 373
CHAIN 28,188,261
Channels when using files 165
Character counting 198
Character set Appendix A
Character - user defined 146,354
CHR$ 54,189
Circuit board layout Appendix G
Circuit diagrams Appendix K
CLEAR 190
Clear graphics window 49,191
Clearing the screen 193,350
Clearing text window 49,193
CLG 49,191
CLI 455
Clock 6,333,451
Clock program 111
CLOSE# 192
CLS 16,49,193,350
COLOUR 45,49,194,233
Commands 15
Command line interpreter 455
Command mode 21
Comments in assembly language 431
Comments in BASIC programs 43,304
Concatenation of strings 53
Connectors Appendixes H and I

508

Contents of memory 378
Control codes 348
Co-ordinates on screen 46
COPY key 13,71,397
Correcting errors 22
COS 197
Cosine 197
COUNT 198
CTRC register access 355,420
CTRL key 14
CTRL U 1
Cursor control codes 65,66,350
Cursor editing 22
Cursor off 66
Cursor position 294,345,421

Data 107,199
Data files on cassette 365
Data logging 366
Date 111
Decimal places 60,296
Decimal point 15
DEF 202
Defining characters 146,354,405
DEG 206
Degrees from radians 206
DELETE 24,53,207
Delete current entry 389
DELETE key 13
Delete whole line 24,43,234
Demonstration programs
Age 67
BL and Lotus 108
Brian 39
Call 455
Div and Mod 110
Double height Teletext 41
Draw 71
Drinks 164
Fourpnt 35
Geography quiz 200
GOTO 24
Hand mouth ear 237
Hangman 117
Hanoi 300
Hours,mins,sec 111
Hypno 89
H2 64
Leap Years 113
Lunar lander 151
Man 146
Month 107
Monthly 32
People and arrays 103
Persian 37
Polygon 31
Quadrat 33
React 87
Read screen character 417

Reverse string 115
Rocket 148
Role 64
Sine 40
Sine in Teletext 135
Sqr root 37
Stars and stripes 78
Sums in 15 secs 74
Tartan 35
Temperature 97
Too late 70
Windows 51
DIM 121,208,436
Display position, changing 17,443
DIV 122
DRAW 46,49,137,138,211

Econet filing system 370
Editing a line 22
Editing keys 22,71,401
Editing key produced codes 71,401
ELSE 213
Enable screen output 350
END 214,365,413
ENDPROC 215
Entry point in assembly language 441
ENVELOPE 156,216,452
EOF# 220
EOR 123,221
EQUB 439,477
EQUD 439,477
EQUS 439,477
EQUW 439,477
Erasing the screen 50,193,356
ERL 126,222
ERR 126,223
Error codes 126,223
Error handling 125,277,308,367
Error handling in assembly language 438
Error line 126,222
Error messages 462
Error numbers 368,471
Errors, correcting 22
Escape acknowledge 407
Escape detected (assembly language) 457
ESCAPE key 13,407,426
Escape reset 407
EVAL 224
Evaluate a string 224
Event enable 403,404
Event disable 403
Event handling 403
Exclusive OR in BASIC 221
EXP 226
Expansion bus 421
Exponent 15
EXT# 227

509

FALSE 76,85,228
Fault handling 456
Fields 57
Field sync 404,456
Field width 58,71
Filenames 366
Files 190,442
File pointer 301
Filing an area with colour 138
Fire button on game paddles 176,414,459
Flashing colours 141,403
Flash rate selection 403
Flush keyboard buffer 404,406
Flush input buffer 404,406
Flush VDU queue 424
FN 259
FOR...NEXT 77,231,273,325
Foreground colours 45,61,162
FOURPNT 35
Free space left 383
FRED 422
Functions 94,203,230
Function keys 16,119,131,405,424
FX call summary 396,398

Games paddles 176,414,459
GCOL 233,139,57
Geography quiz 200
GET 234
Get character from buffer 70,243,415,420
GET$ 235
Global variables 91
GOSUB 96,236
GOTO 100,238
Graphics 45,137
Graphics origin 358
Graphics planning sheet Appendix E
Graphics windows 47,355

Hard reset 120
Hexadecimal 61
High order address 415
HIMEM 240,383
HYPNO 89

IF THEN ELSE 4,213,242,332
Indirection operators 378
INKEY 243,415,420
INKEY$ 246
INPUT 67,247
INPUT# 249
INPUT LINE 248
INPUT line 469
Input/Output devices 399,459
Input stream selection 399
INSTR 115,250
Instruction set for 6502 Appendix M
INT 251
Integer arithmetic 110,210,267

Integer variables 55,379
Internal file format 299,369
Internal format in memory

of BASIC 473
of Variables 55,56

Interrupts 426,427,457,458
Interval timer 451,457
Inverse colour 143
IRQ handling 426,457,458

JIM 444
Joysticks 175,460

Keyboard 11
Keyboard auto repeat 5,403
Keyboard testing for BASIC 243
Key depressions, detecting 70
Keyword definitions 170
Keywords – details 170
Keywords – summary 473

Leads for cassette 7
Leap year calculation 128
LEFT$ 114,251
LEN 115,254
Length of a file 227
Length of a program 383
Length of a string 115,254
LET 18,256
Line Feed 402
Line numbers 20
LIST 257
LISTO 80,259
List options 80,259
LN 260
LOAD 261
Loading machine code 363
Loading programs 27,363
LOCAL 90,263
LOG 264
Logarithm 264
Logical colour 140
LOMEM 265,383
Loops 74,77
Lunar lander game 151

Machine code 428
Machine operating system 444
Man shaped character 146
Mantissa 55,56
Memory maps Appendix J
Memory pointers 240,265,288,335,383,416
Memory – saving 168
Merging programs 371
MID$ 114,266
Mistake 467
MOD 122
MODE 45,137,194,269
MODE7 128

510

Monitor lead 7
MONTHLY 32
Motor on/off 417,455
MOVE 46,271
Multiple statement lines 44,84
Music 7
Musical notes 156

Natural logarithm 260
NEW 272,275
NEXT 77-83,231,273
NMI 457
Noise generator 317
NOT 274
Note synchronisation 189
Number to string conversion 116,363
Number accuracy 55
Numeric range 55
Numeric variables 56

Old 279
ON ERROR 280
ON GOSUB 100,280
OPENIN 283
OPENOUT 285
OPENUP 286
Opening file for input 283
Opening file for output 285
Opening file for random access 286
Operating system call summary 444
Operating system statements 384
Operator precedence 122
OPT 287,457
OR 123,289
Origin move 357
OSARGS 445
OSASCI 448
OSBGET 445
OSBPUT 445
OSBYTE calls 395,397
OSCLI 290,455
OSFILE 446
OSFIND 443
OSGBPB 445
OSNEWL 450
OSRDCH 448
OSRDSC 443
OSWORD 450
OSWRCH 377,450
OSWRSC 443
Output stream select 400

PAGE 292,383
Page mode 39,350
Panic button 21
Parameters 89
Parameter block in CALL 186
PEEK 378
PERSIAN 37

PI 293
Pitch envelope 182,216
Pling indirection operator 378
PLOT statement 290
PLOT a point 144
POINT 293
Pointers to
memory 240,265,288,335,383,415
POKE 378
POLYGON 31
POS 294
Precedence of operators 122
PRINT 295
PRINT# 299
Printer
Choosing 481
Connections 373
Drivers 377
On/Off 350,377,401
Parallel 373
Serial 375
Print formatting 57
PROC 300
Procedures 87,300
Program deletion 272
Program line renumbering 43,305
Program listing 0,257,259
Program recovery 275
PTR 301

Quadrat 33
Query indirection operator 378
Qume printer 376

RAD 302
Radians from degrees 302
RAM 383
Random numbers 73,308
Range, numeric 55
REACT 87
READ 107,303
Read key 70,234,243,415
Read screen character 416
Read screen point 293,443,472
Real variables 55
Recording programs 26
Red keys 16,119,405,424
Relay on/off 417,455
REM 43,304
Remarks in assembly language 459
Remarks in programs 43,304
Remote control tape recorder 455
RENUMBER 24,54,305
REPEAT … UNTIL 74,307
REPORT 127,307
Report error 127,307
Reserved words 473
Reset 120
Resident integer variables 55

511

RESTORE 108,310
RETURN key 5,13
RETURN 97,310
RIGHT$ 114,311
RND 73,312
Rocket graphics shapes 148
ROM filing system 370
RS232C printers 375
RS423 as input 400,420
RS423 connections 375
RUN 313

SAVE 314
Saving
A section of memory 362
BASIC programs 26,314,360
Data 303
Machine code 363
Memory space 168
Single characters 186
Save format 299
Screen editor 22
Scroll mode 30,350
Sequential access file 163,442
Serial port 375,399,427
Serial printer connections 375
Serial ULA bit meanings 422
Shadow screen mode 387
SHEILA 421
SHIFT key 11
SHIFT LOCK key 11
Sign of a number 315
Significant figures 55
SIN 316
SINE program 40,135
SGN 315
Sockets on computer Appendixes H and I
Soft reset 119
SOUND 155,317,471
Spaces - printing on screen 323
SPC 323
Speeding up programs 168
SQR ROOT 48,324
SQR 324
Squares in graphics 138
Statements 15
Star commands 370,385
Stars and Stripes 78
STEP 325
STOP 325
STR$ 327
STRING$ 135,328
String concatenation 53,328
String functions 94,114
String indirection operator 378
String – length of 115,254
String – multiple copies of 116,328
String – searching for one in
another 115,250

String-to-number conversion 116,342
String variables 53,115,327
Structures in BASIC 382
Subroutines in BASIC 96,236
Syntax explanation 170

TAB 62,330
Tabulation 62
TAN 331
Tangent 331
Tape filing system 163,360,370
TARTAN 35
Telephone book program 167
Teletext 128
Teletext character set 14
Teletext control codes 128,425
Teletext filing system 370
Text colours 45
Temperature conversion program 97
Text planning sheets 485
Text windows 48
THEN 332
TIME 73,333
Tokens 473
TO 334
TOP 335,383
TRACE 336
TRUE 74,85,338
Tuning a TV 3
Types of variables 52

Unplot a point 144
UNTIL 74,339
User defined characters 146
User defined function keys 16,119,405,42
User input/output port addresses 421
User supplied printer driver 377
USR 340,392

VAL 342
Variables 18,52,102
VDU 343,347
VDU summary 348
Version number of operating system 399
VIA user port address 422
Volume settings 360
VPOS 345
V24 port 375

Wait until next frame for animation 405
Welcome cassette 7
Whole number arithmetic 114,210,269
WIDTH 346
Windows 57,350,355-357

XY cursor addressing 62

1 MHz expansion bus 421
6522 address 422

512

*Star commands 370,385
*ADFS 370,385
*CAT 385
*DISC 370,385
*EXEC 386
*FX commands 385
*IEEE 370,386
*KEY 385
*LOAD 385
*MOTOR 386
*NET 370,385
*OPT 385
*ROM 370,386
*RUN 385
*SAVE 385
*SHADOW 386,387
*SPOOL 371,386
*TAPE 370,385
*TAPE3 370,385
*TAPE12 370
*TELESOFT 370,386
*TV 386

+ addition 15,123
- subtraction 15,123
* multiplication 15,122
/ division 15

? Indirection operator 378
! Indirection operator 378
$ Indirection operator 378

< 123
<= 123
= 123
> 123
>= 123

+ concatenation of strings 53,328
: multiple statement 44,84
; in PRINT 21
; in VDU 379
$ for string 53
& Hex number 61
@% Print format 60
immediate 451,458
\ comment in assembly language 431
^ exponentiation 15
() brackets 122,208
[] square brackets 452
” quotation marks 53,199,295
’ apostrophe 295,296,298

\ 14
{ 14
} 14

 22,72,120,401

 22,71,120,401

 22,71,120,401

 22,71,120,401�
 14

| 14
½ 14
¼ 14
¾ 14

