

Published by
SPECTRAVIDEO INTERNATIONAL LTD.

First Edition

First Printing 1983

Printed in Hong Kong

Copyright © 1983 by Spectravideo International Ltd. All rights reserved

Every effort has been made to supply complete and accurate information in this manual. Spectravideo International Ltd.

reserves the right to change Technical Specifications and Characteristics at any time without notice.

No part of this publication may be stored in a retrieval system, transmitted, or reproduced in any way, including but not
limited to photocopy. photograph, magnetic or other record, without the prior agreement and written permission from
Spectravideo International Ltd

SV-902 UM/02

!l

CONTENTS

OO0 hWN=

PAGE

Introduction T 1

. Getting Started —Formatting ADisk 2-3
. Preparing aback-up copy ofthe BASICMASTERDISK 4-7
NamingFiles 89
. Saving and manipulating of BASIC programs with DISKBASIC 10-12
.Sequential DataFiles.ot 1317
. RandomAccessFiles 18-21
APPENDIXA — Disk BASICerrormessages 22-23
APPENDIXB — Technical information for the experienceduser 24-34
APPENDIX C — For users that own a 64K RAM Expansion cartridge 35

APPENDIX D — Content of the SV Extended Disk Basic Diskette . . 36-37

VERY IMPORTANT

Before starting, we recommend that
you “write protect” the original BASIC
MASTER DISK. ““Write protect”
ensures that you do not accidentally
write something on the BASIC
MASTER DISK or erase the vital
information that it contains. The
“write protect notch” is on the right
side of all diskettes. To protect the
disk, simply place the “write protect
tabs’’ (that are supplied in the box of
diskettes from your local computer
dealer) over the ““write protect notch.”

|

DISK BASIC
USER'S GUIDE

Iintroduction

Congratulations! The Spectravideo disk drive is
yourentranceintoan expanding universe of
computer software and programming tools.
The disk drive is light years ahead of the data
cassette recorder in speed and power. Where
the cassette recorder was slow and inaccurate,
the disk drive is fast and secure. This manual is
your guide into this new and exciting world. In
the coming chapters we will show you how to
store and recall your BASIC programs, and how
to create data files on floppy diskettes. Please
read this manual carefully and try all the
programs that we provide as examples.

In theory, the 5-1/4inch floppy disks (we will

use the word "“disk’’ and “‘diskettes”’
interchannyably) that you have purchased from
your computer dealer are manufactured so that
they can be used with any microcomputer.
However, each microcomputer manufacturer
designs his own method or “format” to store
information (data) on a disk. Thatiswhya
program written for one machine is not
necessarily usable on another machine.

Spectravideo, like all other microcomputer
manufacturers, requires a disk to undergo a
process called formatting to prepare the disk to
accept information (sent from the SV-318 or
SV-328 computer to the disk drive). Thisisa
simple and quick procedure and itis described
below. Be careful to type the commands exactly
as they are written.

‘Getting Started —

Formatting A Disk

. Insertinto your disk drive the diskette marked

“DISKBASIC" (we will call this disk the
BASIC MASTER DISK for the remainder of
this guide). If more than one drive is hooked up,
use drive number 1.

. Turnon the Super Expander.
. Turnonyour SV computer.

. When the computer displays the “OK"’

message, type:
Bload ““1:svfrmt”, r ENTER

This willload and run the physical format
program to format (“initialize’’ in computerese)
the diskette. The computer will then ask you:

which drive to format?
1or2orCtoabort:

If you have two disk drives, press the number 2
key. You will then be told to insert the blank disk
to be formatted into drive 2 and press ENTER .
Please do so. If you have only one drive, then
press the number 1 key. You will then be told to
place your blank disk to be formatted into disk 1
and press ENTER . Please do so. After you have
pressed the ENTER key, the computer will
format the disk, printing on the screen the
number of the track thatitis up to.

l

When the computer is finished physically

“formatting the disks, it will then ask you if you
wish to format another disk. If you wish to do
so then repeat the procedure described from
the beginning of step 4. Otherwise press the
CTRL key and while holding it down press the
C key.

. After you have aborted (stopped) the
formatting procedure, the computer will
instruct you to insert the BASIC MASTER
DISK into drive 1 and press any key. After you
hit any key the computer will then reboot
(restart).

. When the computer prints its “OK'’ message
on the screen after it has rebooted, you must
type the following command to complete the
formatting process:

load ““1: format”’, r [ENTER

The computer will then ask you into which
drive you will place the disk to be formatted.
Type either 1 or 2, then insert the blank disk
into the designated drive and press the ENTER
key.

. When the “OK’" message reappears, the
formatting process is over and control of the
computer has been returned to you.

2 " Preparing a |
back-up copy of the
BASIC MASTER

DISK:

Since the BASIC MASTER DISK is the key
to unlocking the power of your Spectravideo
computer, we strongly recommend that you
prepare a back-up copy of the BASIC
MASTER DISK before you continue working
with your computer system. We will explain
how to do this step by step.

1. First format a blank (new) diskette as we
described in the preceding chapter

2. After the disk has been formatted, remove the
disk from drive number 1, turn off the
computer and then insert the BASIC
MASTER DISK into drive number 1. Then
turn on the power on the computer.

3. After the Spectravideo logo has flashed by and
the computer has displayed its “OK"" message
type:

load “1:sysgen.bas”,r

The file named ““sysgen.bas’ that you just told
the computer to load and run will copy the disk
operating instructions from the BASIC
MASTER DISK to your newly formatted disk.
The computer will ask you:

Enter source drive
1,2 orASTOP to quit? &"

I

The “source’ refers to the BASIC MASTER
DISK. Since the BASIC MASTER DISK is in
drive number 1, type a number 1 and then
press ENTER. The computer will ask you:

Enter for destination drive
1,2 or ASTOP to quit? B

The ““destination’’ refers to the drive that
contains the newly formatted disk that will
become the back-up copy of the BASIC
MASTER DISK.

The destination drive will also be drive number
1, so press the number 1 and then press
ENTER.

Insert the BASIC MASTER DISK and press any
key when the computer asks you to:

Insert source disk

in drive 1 press any key
B

The computer will then inform you that itis
reading the system tracks from the BASIC
MASTER DISK, which is still in drive number
1, into the computer’s memory. This will take
approximately four minutes. When this is
completed, you will be instructed to remove the
BASIC MASTER DISK from drive 1 and told
to place the newly formatted disk into drive
number 1. Please do so and then press

ENTER. It will take another four minutes to
write the information onto the disk. Upon
completion of this process you will have a fully
formatted BASIC MASTER DISK that can be
used to boot (start) the system. All that
remains to be done is to copy the original files’
from the original BASIC MASTER DISK to
your new back-up copy.

. Insert the original BASIC MASTER DISK into
drive number 1 and type

files ENTER]

The command ‘“files”” will make the computer
list the names of all the files that are contained
on the disk that is'in the drive (we will explain
everything you need to know about files very
shortly).

Any BASIC program can easily be copied by
loading the program from the original disk,
removing the original from the drive and
inserting the disk you want to copy it onto.

Example:

A. Insert BASIC MASTER DISK.
B. Type:

load ““1:format”

C. Remove the BASIC MASTER DISK and
insert the newly formatted disk.
D. Type:

save’1:format”’ [ENTER]

Machine language programs are more
complicated to copy. A machine language is
listed with an asterisk (*) following the
filename. There is only one machine language
program on the original BASIC MASTER
DISK. To copy the “svfrmt*" program,
follow these steps.

A. Insert the BASIC MASTER DISK.
B. Type:

bload ““1:svfrmt” [ENTER]

C. Remove the BASIC MASTER DISK and
insert the newly fermatted disk.
D. Type:

bsave “1:svfrmt”, &HC400, &HD500
ENTER

After you have finished copying all the files
from the original BASIC MASTER DISK to
the newly formatted disk, you will have a
complete BASIC MASTER DISK back-up

copy.

IMPORTANT

Before continuing, we highly recommend that
you “write protect’”’ the original BASIC
MASTER DISK and your new back up copy
of it. ““Write protection’’ ensures that you do
not accidently write something on the BASIC
MASTER DISK or erase the vital information
that it contains.

The ““write protect notch’ is on the right

side of all diskettes. To protect the disk, simply
place the ““write protect tabs’’ (that are
supplied in the box of diskettes from your local
computer dealer) over the ““write protect
notch’’

Naming Files

Before the computer age, anytime someone
referred to a filing cabinet a picture of a unit of
steel drawers loaded with papers probably
came to mind. Well, even after the dawn of
the computer era, the concept of a file hasn’t
changed much. A file is a collection of ‘
information, kept somewhere other than inside
the computer’'s memory area, that stores
programs. That ““somewhere’’ can be a

. cassette tape or a floppy disk.

To keep order in a filing system —whether it is
a conventional filing cabinet or a floppy disk—
one must organize the files into distinct units.
If one were to label all the files in a drawer with

. merely the name “’bills”’, it would be difficult to

distinguish between bills that have already
been paid and those that are still outstanding.

Similarly, if one were to name all the files he

saved on a diskette in the same way, it would
be difficult to distinguish among the files.

There are two different ways to distinguish
files, break them into categories and label them
properly. One is called a “filename’ and the
other is called a “filenumber.” We will now
describe the criteria for filenames. In chapter 6
we will explain the rules for filenumbers.

Disk filenames can be a maximum of 6 (six)

characters in length with an optional character

extension that is preceded by a decimal point.
For example: - ‘

client.law

|

If a decimal point appears in a filename after
fewer than six characters, the name is blank
filled to six characters and the next three

characters are the extension. For example, if

you typed:
car.new

the computer will list it as

car .new

when you instruct the computer to print the
names of the files (more on this shortly).

If the filename is 6 or fewer characters with no
decimal point, there is no extension. If the
filename is more than 6 characters, BASIC
inserts a decimal point after the sixth character
and uses the next three characters as an
extension. Any additional characters are
ignored.

DISK BASIC contains
several commands
that are used

differently from the -

similar commands
that are used to set
up a filing system on
the data cassette
recorder. The
remainder of this
manual will describe
these commands
and how they are
used.

SAVE

10

Saving and
manipulation of
BASIC programs
with DISK BASIC

The following is a list of commands that allow
you to save and manlpulate any BASIC
program that you write.

We will use the following short program as our
example:

10 print “hello”
20 goto 10

We will first write the general format (syntax)-
of the command and then apply it to our
sample program.

Format: save “1':filename”

If we were to call our little sample program
"hello)’ we would then write:

Example: save “1:hello”

The number 1 in this command and in all
subsequent commands tells the computer
which drive contains the-disk onto which we
want to save the program. If the storage disk
was in drive 2 you would write:

save "“2:hello”

There are two different forms in which your
program can be saved. One is called
““tokenized” form and the other is called
“ASCII” form. When you routinely save a file
as in our example above, your program or data

.is compacted and one symbol or “'token”’

represents each BASIC command that you
use. When your program is tokenized it takes

LOAD

RUN

up less room on the data cassette or floppy
disk than if it was untokenized. Each method
has its advantages and disadvantages. As you
proceed with this tutorial you will see that
certain commands work with one type of file
and not another.

As previously mentioned, when you type the
"save’ command as we did with the “‘hello”’
program, your program is saved as in ,
tokenized form. You have the option of adding
an “a’ to the end of the command to save it as
an ASCII file. For example:

save’1:hello”,a

Format: load “'1:filename”
Example: load ““1:hello”’

The load command loads the specified
program from the disk into the computer’s
memory, and deletes the current contents of
memory. You have the option of adding the
letter “r" to run the program immediately after
itis loaded (as we did in step 4 of chapter 2 of
this guide, which formatted the disk). For
example:

load “1:hello”,r

Format: run “1:filename”’

Example: run “1:hello”

The run command accomplishes the same
thing as: load*’1:hello”, r. It first ioads the
program from the disk into memory and then
executes it.

MERGE

KILL

NAME

FILES

12

Format: merge ““1:filename”
Example: merge “1:hello”

The “merge”” command works differently
than the commands outlined above. If our
“hello”” program was stored as an ‘“ASCII" file,
then we can load it into memory. The program
line numbers are merged with the line numbers
of the program that resided in memory before
the “merge’’ was performed. Merging two
programs may be thought of as inserting the
program loaded from the disk into the program
that currently resides in memory. However, the
merger is not without a victim. If a line of the
current program in memory has the same line-
number as one of the lines of the newly loaded
program being merged, then only the line from
the newly loaded program is retained. After a
merge command is issued, the merged
program resides in memory and control returns
to you.

kill ““1:filename”’

As its name implies, the “kill”” command
deletes a file from the disk. To delete our
sample program type:

kill “1:hello”

name’’1:0ld-filename"’ as
“1:new-filename”

The “name’ command allows you to rename a
file. To rename our “hello’’ program type:
name “1:hello” as “"1:greet”

The “files” command displays the names of
the files residing on a diskette. If you type

files

the computer will display the files residing on
the diskette in drive 1. To display the files on a

diskette in drive 2 type:

files2

There are two
different types of
diskette data files
that may be created
and used by a BASIC
program. Oneis a
"sequential file'" and
the second is a
“random access file"’
Each has its
advantages and
disadvantages, as
discussed below. -

Sequential Data Files

Sequential files are easier to create than
random files, but are limited in speed and
flexibility when it comes to accessing data. As
its name implies, the data is written
sequentially, that is one item after the other, in
the order it is sent to the diskette. It is loaded
back into the computer in the same way.

The following steps must be included in a
program to create and access a sequential file.
The ease of working with data files will be
greatly enhanced if you continually bear in
mind the parallel between a computer data file
and the folder file stored in a filing cabinet. The
following 3 steps are common to both.

. OPEN thé file for output (from the computer .

to the disk drive) or appending (adding to it.)

. WRITE data to the file using the PRINT#

command (or other commands).

. CLOSE the file after you have written to it. To

read data from a file you must OPEN it again
for input (from the disk drive into the
computer).

Note: The above mentioned commands, and
several others that are used to create and access
sequential commands, are illustrated and
explained through the use of sample programs.
Please type the programs carefully and try them
out.

DEMO#1

14

The first demonstration program highlights the
following four fundamental commands:

OPEN

CLOSE
PRINT
INPUT

10 open “1:demo1” for output as #1
20a=10:b=20

30c=30

40 print #1, a;b;c

50 close#1 :

60 open “1:demo1” for input as #1
70 input#1, a,b,c

80 printa,b.c

90 close#1

This program will save the numbers 10, 20, and
30 on the disk then read them and print them
on the screen. Here's why:

Line 10 instructs the computer to OPEN
(create) a file on drive 1 called demo#1 to
which we will output, or write information.
The #1 at the end of line 10 is the filenumber
for the demo#1 file.

As was explained in chapter 3, every data file is
referred to with a filename and filenumber. The
filename is the label that you use to refer to the
file. The filenumber is what the computer uses
to refer to the file. The filenumber is a unique
number that is associated with the physical file
when it is opened. It identifies the route that
the computer uses to send and receive
information with the disk drive. Very rarely will

.you need to access more than one file ata

time. Therefore, use filenumber 1 for those
instances when you are using only one data
file. However, should you wish to open more
than one file at a time, you must specify in
your program how many files you wish to
open. To specify the maximum number of files
you will open at once, use the following
format:

DEMO#2

‘_—-___I.I.I

Format: maxfiles = [number of files]

Example: 10 maxfiles = 2
10 maxfiles = 5

Lines 20 and 30 define the variables the
program will use.

Line 40 is the one that actually instrucws the
computer to write them on the disk, and line 50
closes the demo#1 file (filenumber 1).

On line 60 the computer is instructed to reopen
the file to be able to read the information back
into the computer. Notice that the filenumber
again is #1.

Line 70 causes the computer to read the
information back into the computer, and line
80 prints out the specified variables. Line 90
closes the demo#1 file.

This program illustrates the LINE INPUT#
command.

10 open “1:demo2’ for output as #1
20 a$ = "this is a demonstration”
30 b$ = " this is part of it too””

40 print# 7, a$,b$

50 close #1

60 open”1:demo2” for input as #1
70 line input #1, a$

80 close #1

This program writes the message contained on
lines 20 and 30 on the disk, then reads it back
and prints it on the screen. The new command
line input# appears on line 70. This
.command reads an entire line (up to 254
characters), without delimeters, from a
sequential file to a string variable.

DEMO#3 This program demonstrates how to append
new information to an existing sequential file.

10 open “1:demo 3" for output as #1
20 a$ = "'this is a demonstration”
30 b$ = " this is part of it too”
40 print#1, a$,b$
50 close #1
60 c$ = "'so is this”
70 open’’1:demo3" for append as #1
80 print#1,c$
90 close #17
100 open “1:demo3” for input as #1
110 line input#1, d1$
120 line input #1, c1$
130 print d1$: print c1$
140 close #1

Lines 10-50 are the same as those in the
demo#2 program above. Lines 70-90 reopen
the demo#3 file and write the message
contained in-c$. Then lines 100-140 open data
file demo# 3, then read in d1$ (which consist of
a$ andb$) and c1$ (which consists of ¢$) and.
then printd1$ and c1$. .

DEMO #4 This program demonstrates the last major
] ’ command needed for sequential data file
creation and access. The command is EOF,
which is the abbreviation for ““End Of File!”

10 open’’1:demod” for output as #1
20 fora =0to 50 o
30 print#1,a
40 next a
50 close #1
60 open”1:demod” for input as #1
70 if eof (1) then goto 120
‘80 input#1,a
90 printa
100 goto 70
110 close #1
120 print “all done”

This program writes the numbers 0-50 into a

file and then reads them back and prints them *
on the screen. It prints the message ““all done” -
when it finishes. What is so great about that

16 .

et e e s s s eeass s e e e o

you ask? Well, before we explain the function
of EQF, delete line 70 from the program,
change line 100 to read “‘goto 80" and then
run the program. Did you get this error
message?: .

?nput past end in 80

You probably did, because after the computer
prints the last item in the file-number 50-it
returns to the file looking for more data to read
because line 100 sent it to line-80 which tells it
to read. But since there is no more data left in
the file, you are told that you tried to input
(transfer from disk to computer) past the end
of the file.

So how does the EOF command help? The
EOF function tests to see whether or not the
end of a file is reached. If the end of a file has
been reached (true) then the value that EOF
returns (transmits) to the programis 1 (one). A
0 (zero) will be returned if the end of the file
has not been reached. Now let’s look at line 70
again. Here is how to read it:

If the end of the file has been reached, then

- goto 120. Before each item is read, the EOF
tests to see if the end of file has been reached.
If it has not been reached (the false or zero
condition), the program continues to line 80.
-‘However if the EOF test reports a true (1)
condition then the program jumps to line 120
and prints the “‘alldone’” message rather than
the “input pastend’’ error message.

This brings to a close our discussion of
" sequential data files. Several minor commands
-that can be used when working with sequential
data files have not been demonstrated. They
are:
PRINT# USING LOC

INPUT$: LOF

These commands are described in a valuable
reference work, Spectravideo’s “BASIC
Reference Manual’’ It can be bought where
Spectravideo products are sold.

18

Random Access Files

Creating and accessing random files requires
more programming steps than is the case with
sequential files, but there are advantages to
using random access files. Random files are
stored in the tokenized format while a
sequential file is stored as ASCII characters.

The biggest advantage of random files is that
data can be accessed anywhere on the diskette
(randomly). This means that, unlike sequential
files, it is not necessary to read through all the
files one after another until the file you desire is
found. This is so because the information that
comprises a random file is stored and accessed
in distinct units called “records;’ and each
record is numbered.

The following programming steps are required
to create a random file.

1. OPEN‘a file for random access.

2.

The data must first be moved from the
program area of memory to a‘ random buffer
prior to writing it on a disk. The FIELD
command allocates space for the data in the
random buffer.

. Use the LSET or RSET commands to position

the data in the random buffer.

. Write the data from the buffer to the diskette

using the PUT statement. You need not close
a random file before accessing (reading) the
information back into the computer (as was
the case with sequential files).

l

DEMO#5

B e e e S e T
ERaSaae—

The following programming steps are required
to access a random file.

. OPEN a random file, if it was previously

closed.

. Use the FIELD statement to allocate space in

the random buffer, if the file was previously
closed.

. Use the GET command to move the desired

record into the random buffer.

You need not close a random file before you
read from it. Therefore, we will write the
following demonstration program in two.
different ways. The first way will open, write
and close the random file, then reopen it, read
it, print it and close it. The second way opens,
writes, reads, prints and closes it.

10 input “customer name:"";q$
20 input “city:";r$
30 open”“1:demob’’ as #1
40 field #1, 20 as n$, 10 as a$
50 Iset n$ = q$
60 Iset a$ =r$
"70 put#1,18
80 close #1
90 open”1:demo5’’ as 31
100 field #1, 20 as n$, as a$
110 get #1,18
120 print n$: print a$
130 close #1

This program is the beginning of a database to
hold customer names and their cities. We
could have written it as:

10 input “customer name:"";q$
20 input “city:"";r$
30 open’’1:demob5” as #1
40 field #1, 20 as n$, 10 as a$
50 Iset n$ = gq$ '
60 Iseta$ =r$
70 put #1,18
80 get#1, 18
90 print n$: print a$
100 close #1

DEMO#6

20

Here is how the program works:

Lines 10 and 20 store the customer information
in strings g$ and r$. Line 30 opens demo #5,
Line 40 allocates the space for the information
about the customers in a random buffer. It
allocates 20 positions (bytes) for n$, and 10
positions for a$. n$ and a$ are the string
variables in the string buffer that will hold the
information about the customers that was
originally in g$ and r$.

The LSET commands in lines 50 and 60 move
the data from the g$ and r$ variables and
places it into the string variables, n$ and a$
which are in the random buffer. Line 70 writes
the record (the data) from the random buffer
to the data file. The number 18 is the number

.of the record that we have arbitrarily chosen.

You should be careful when you number your
records because organization is the key to
moving the data around among the program
area, the random buffer and the random file.
The GET command reads the data back into.
the random buffer from a random file.

The LSET command justifies the string variable
to the left, and the RSET command justifies it to
the right. (For a more complete description of
the LSET and RSET commands, see the BASIC
Reference Manual.)

Our previous program (demo #5) used only -
string variables. However, there will probably
be many situations where you need to store
numerical information in a random access file.

-too. Before doing so, you must add on two

extra programming steps. The first step
converts a numeric type value into a string
type value before you write the data to the
diskette. The second extra step converts the
string variable type back into its numeric value.
The following program demonstrates two of
the commands that perform this conversion.

10 input “customer name:”’; cust$
20 input “city:”"; city$
30 input “phone number:’’; tel
40 open “1:demob’’ as 31
50 field #1, 20 as n$, 10 as a$, 8 as t$
60 Iset n$ = cust$
70 Iset a$ = city$:
80 Iset t$ = mkds$(tel)
90 put#1, 18
100 get #1, 18
110 t = cvd(t$)
120 print n$: print a$: print t

This program writes the customer’s name, city
and telephone number on the disk, reads it
back, and prints it on the screen. The new
commands introduced in this program are on
lines 80 and 110. Line 80 uses the MKD$
command to convert the numeric data stored
in ““tel’’ into a string variable called t$. This
allows the telephone number to be written to
the disk along with the other customer
information which was typed in string form by
the user. Later, after the information from the
random file has been read, the CVD command
converts the string variable t$ into a numeric
value which is stored in “‘t’

This brings to a close our discussion of random
access file commands. We have not described
several minor commands. They are:

CvI
CVs
LOC
LOF
MKI$
MKS$

These commands are described in the BASIC
Reference Manual.

Field overflow
Internal error
Bad file number

File not found

File already open
Disk 1/0 error
File already exists

Disk full

input past end

Bad record number

APPENDIX A
DISK BASIC
ERROR MESSAGES

A FIELD statement is attempting to allocate
more bytes than were specified for the record
length of a random file.

An internal malfuction has occurred in DISK
BASIC. Report to Microsoft the conditions
under which the message appeared.

A statement or command references a file with
a file number that is not OPEN or is out of the
range of file numbers specified at initialization.

- ALOAD, KILL or OPEN’ statement references

a file that does not exist on the current disk.

A sequential output mode OPEN is issued for a
file that is already open; or a KILL is given for a
file that is open.

An 1/0 error occurred on a disk 1/ O operation.
Itis a fatal error, i.e., the operating system
cannot recover from the error.

The filename specified in a NAME statement is
_identical to a filename already in use on the
disk.

A disk storage space is in use.

An INPUT statement is executed after all the

~ data in the file has been INPUT, or for a null

(empty) file. To avoid this error, use the EOF
function to detect the end of file.

In a PUT or GET statement, the record number .
is either greater than the maximum allowed
(32767) or equal to zero.

Bad file name

Direct statement in
file

Too many files

=
An illegal form is used for the filename with

LOAD, SAVE, KILL, or OPEN (e.g., afilename
with too many characters).

A direct statement is encountered while
LOADing an ASCII-format file. The LOAD is
terminated.

An attempt is made to create a new file (using
SAVE or OPEN) when all 255 directory entries
are full.

APPENDIX B

TECHNICAL

INFORMATION FOR THE
EXPERIENCED USER

A. For each disk drive that is mounted, the
following information is kept in memory:

Drive

Information

1. Attributes Drive attributes are read from the information
sector when the drive is mounted, and may be
changed with the SET statement. Current
attributes may be examined with the ATTR$
function.

2. Track - This is the current track while the disk is

Number mounted. Otherwise, track number contains

255 as a flag that the disk is not mounted.

3. Modification This counter is incremented whenever an entry
Counter in the File Allocation Table is changed. After a
given number of changes has been made, the
File Allocation Table is written to disk.

4. Number of This is calculated when the drive is
Free Clusters mounted, and updated whenever a file is
deleted or a cluster is allocated.

b. File The File Allocation Table has a one-byte entry
Allocation for every cluster allocated on the disk. If the
Table cluster is free, this entry is 255. If the cluster is

the last one of the file, this entry is 300 (octal)
plus the number of sectors that were used
from this cluster. Otherwise, the entry is a
pointer to the next cluster of the file. The File
Allocation Table is read into memory when the
drive is mounted, and updated:

5.1. When a file is deleted

5.2. When a file is closed

24 T e e e e A B e e]

B.
Directory
Format

C.
File
Block

1.

5.3. When modifications to the table total
twice the number of sectors in a cluster
(this can be changed in custom versions).

5.4. When modifications to the table have
been made and the disk head is on (or
passes) the directory track.

On the diskette, each sector of the directory
track contains eight file entries. Each file entry
is 16 bytes long and formatted as follows:

Bytes Usage

0-8 Filename, 1 to 9 characters. The first
character may not be 0 or 255,

©

Attributed:
Octal
200 Binary file
100 Force read after write check
20 write protected file

Excluding 200, these bits are the
same for the disk attributed byte
which is the first byte of the
information sector.

10 Pointer into File Allocation Table to
the first cluster of the file’s cluster
chain.

11-15 Reserved for future expansion.

If the first byte of a filename is zero, that file
entry slot is free. If the first byte is 255, that
slot is the last occupied slot in the directory,
i.e., this flags the end of the directory.

Each file on the disk has a file block that
contains the following information:

File Mode (byte 0)

This is the first byte (byte 0) of the file block,
and its location may be read with VARPTR
(#filenumber). The location of any other byte in
the file block is relative to the file mode byte.
The file mode byte is one of the following:

26

10.

“
ey
(octal)

1 Inputonly
2 OQutput only
4 File mode
10 Append mode
20 Delete file
200 Binary save

NOTE

It is not recommended that the user attempts to
modify the next four bytes of the File

Allocation Table. Many unforeseen
complications may result.

. Pointer to the File Allocation Table entry for

the first cluster allocated to the file (+ 1)

. Pointer to the File Allocation Table entry last

cluster accessed (+2)

. Last sector accessed (+ 3)
. Disk number of file (+4)

. The size of the last buffer read (+5). This is

128 unless the last sector of the file is not full
(i.e., Control-Z).

. This current position in the buffer (+6). This is

the offset within the buffer for the next print or
input.

. File flag (+7), is one of the following:

octal
100 Read after write check
20 File write protected
10 Buffer changed by PRINT
4 PUT has been done. PRINT/INPUT
are errors until a GET is done.
2 Flags buffer is empty

. Terminal position for TAB function and

comma in PRINT statements (+8).

Beginning of sector buffer (+9), 128 bytes in
length.

R S e e S

D_ 1.Information may be passed from one program
. to another by FIELDING it to an unopened file
Advanced number (not #0). The FIELD buffer is not
cleared as long as the file is not OPENed.
Uses of

File 2.The FIELDed buffer for an unopened file can
also be used to format strings. For example, an

Buffers 80-character string could be placed into a
FIELDed buffer with LSET. The strings could
then be accessed as four 20-character strings
using their FIELDed variable names. For
example:

100 FIELD#1,80 AS A$

200 FIELD #1,20 AS A1$, 20 AS A23,
20 AS A3$, 20 AS A4ds

300 LINE INPUT “CUSTOMER
INFORMATION: “:B$

400 LSET A$=Bs$

500 PRINT “NAME "; A1$,”SSN: “;A2$

3.FIELD#0 may be used as a temporary buffer,
but note that this buffer is cleared after each of
the following commands: FILES, LOAD,
SAVE, MERGE, RUN, DSK$, OPEN.

E With SV Super Extended Disk BASIC, storage
. : * space on the diskette is allocated beginning
DlSk with the cluster closest to the current position

= of the head. (This method is optimized for
A“ocatlon writing. Custom versions can be optimized for
' reading.) Disk allocation information is placed
in memory when the disk is mounted and is
periodically written back to the disk. Because
this allocation information is kept in memory,
there is no need for index blocks for random
files, and there is no need to distinguish
between random and sequential files.

F. ~ The DSKI$ function returns as its value the
first 255 bytes of the sector read.
Double

= The DSKO$ statement does not use the
DenSIty string expression field. The format is: ‘

DSKO$ drive» , track , sector

G.
Filenames

H.
Fil
Format

28

_

In order to specify the data to write with
DSKO$ and to retrieve all 256 bytes of the data
read by DSKI$, the user must FIELD two or
more variables (for a total of 256 bytes) to the
file#0 buffer. The FIELDed variables will be
identical to the data read with DSKI$ and
written with DSKO$. For example:

FIELD#0,128 AS A$, 128 AS B$

The format for disk filenames is:

drive #: filename. extension
The first drive is 1.

Disk filenames are six characters with an
optional three-character extension that is
preceded by a decimal point. If a decimal point
appears in a filename after fewer than six
characters, the name is blank-filled to six
characters and the next three characters are
the extension. If the filename is six or fewer
characters with no decimal point, there is no
extension. If the filename is more than six
characters, BASIC inserts a decimal point after
the sixth character and uses the next three
characters as an extension. (Any additional
characters are ignored.)

Each file requires 137 bytes: 9 bytes plus the
128-byte buffer. Because the File Allocation
Table keeps random access information for all
files, random and sequential files are identical
on the disk. The only distinction is that
sequential files have a Control-z (32 octal) as
the last character of the last sector. When this
sector is read, it is scanned from the end for a
non-zero byte. If this byte is Control-z, the size
of the buffer is set so that a PRINT overwrites

“this byte. If the byte is not Control-z, the size is

set so the last null seen is overwritten.

Any sequential file can be copied in random
mode and remain identical. If a file is written to
disk in random mode (i.e., with PUT instead of
PRINT) and then read in sequential mode, it
will still have proper end of file detection.

i.
Disk
Files

J.
Open
Statement

s e sm s s s e s R o B S
—— e s

The FILES command points the names of the
files residing in a disk. The format is:

[L]1FILES [€ drive number >1]

LFILES outputs to the line printer. In addition
to the filename, the size of each file, in
clusters, is output. A cluster is the minimum
unit of allocation for a file—it is one-half of a
track.

Filenames of files created with OPEN or
ASCIl SAVE are listed with a space between
the name and extension. Filenames of binary
files created with binary SAVE are listed with
a decimal point between the name and
extension.

Files created by the SAVE filenames
command to save the current screen image are
listed with a pound sign (#) between the name
and the extension. The protected file option
with SAVE is not supported in SV Super
Extended Disk BASIC.

The format for the OPEN statement in SV
Super Extended BASIC is:

OPEN <filename? [FOR <mode >] AS
[#] < file number>

where < mode > is one of the following:

INPUT
CUTPUT
APPEND

The mode determines only the initial
positioning within the file and the actions to be
taken if the file does not exist. The action
taken in each mode is:

INPUT Theinitial position is at the start of
the file. An error is returned if the
file is not found.

29

30

R T N R T
e — ——

OUTPUT The initial position is at the start of
the file. A new file is alway
created. :

APPEND The initial position is at the end of
the file. An error is returned if the
file is not found.

If the FOR <mode > clause is omitted, the
initial position is at the start of the file. If the file
is not found, it is created.

Note that variable length records are not
supported in SV Super Extended Disk BASIC.
All records are 128 bytes in length.

When a file is OPENed for APPEND, the

file mode is set to APPEND and the record
number is set to the last record of the file. The
program may subsequently execute disk I/0
statements that move the pointer elsewhere in

- the file. When the last record is read, the file

mode is reset to FILE and the pointer is left at
the end of the file. Then, if you wish to append
another record, execute: ,

GET#n, LOF(n)

This positions the pointer at the end of the file
in preparation for appending.

At any one time, it is possible to have a
particular filename OPEN under more than one.
file number. This allows different attributes to
be used for different purposes. Or, for program
clarity, you may wish to use different file
numbers for different methods of access. Each
file number has a different buffer, so changes
made under one file are not accessible to (or
affected by) the other numbers until the record
is written (e.g., GET#n, LOC(n).

!

K.
SE
Statement

§

The SET statement determines the attributes
of the currently mounted disk drive, a currently
open file, or a file that need not be open. The
format of the SET statement is:

SET < drive> , # < file>
<filename?»,<attribute string>

An “attribute string” is a string of characters
that determines what attributes are set. Any
character other than the followings are
ignored:

R Read after write
P Write protect

Attributes are assigned in the following order:

. SET <drive» <attribute string> Statement

This statement sets the current attributes for
the disk. The attributes are permanently
recorded.

. When afile is created, the permanent file

attributes recorded on the disk will be the same
as the current drive attribute.

. SET <filename> <attribute string> Statement

This statement changes the permanent file
attributes that are stored in the directory entry
for that file. It does not affect the drive
attributes.

. When an existing file is OPENed, the attributes

of the file number are those of the directory
entry.

. SET#<file number > < attribute string>Statement

This statement changes the attributes for that
file number but does not change the directory
entry.

- Examples:

SET 1, “R”
Force read after write checking on all output to
drive 1.

L.
FORMAT
Program

32

e e
e
SET #1, ”R”

Force read after write for all output to file#1
while it is open

SET #1, “P”
Give write protect error if any output is
attempted to file 1

SET “drive #: TEST”, “P"
Protect TEST from deletion and modification

SET1,”"
Turn off all attributes for drive 1

Before mounting a drive with a new diskette,
run BASIC’'s FORMAT program to initialize the
directory (set all bytes to 255), set the
information sector to 0, and set all the File

. Allocation table entries (except the directory

track entry (254) to “‘free’” (255).

The FORMAT program is:

10

20 ° This Program formats a diskette
30 * to be used in disk BASIC.

40 ' Note that this is only a logical

50 ' formatter. l.e. clears directory
60 ’ and file allocation table.

70 ° Physical formating should be

80 ° done by CP/M’s FORMAT Program
90

100 *

110’

120 *

130 CLEAR 800

140 INPUT “Which drive”.D

150 FIELD #0, 128 AS A$, 128 AS B$
160 *

170 © Clear directory entry

180 *

190 LSET A$= STRINGS (128,255)
200 LSET B$= STRINGS (128,255)

“
e e

210 FORS=1TO 13

220 DSKO$ D,20,S

230 NEXT S

240

250 ' Clear Disk allocation table

260

270 LSET A$=STRINGS$ (128,0)

280 LSET B$=STRINGS$ (128,0)

290 DSKO$ D,20,14

300 -

310 * Clear file allocation table

320 '

330 LSET A$ =STRING$(3,254) +
STRING$(17,255) + CHR$(254) +
STRINGS (19,255)

340 DSKOS$ D,20,15

350 DSKO$ D,20,16

360 DSKOs$ D,20,17

317 GOTO 140

After running FORMAT files will be allocated
as usual, i.e., on either side of the directory
track.

M. FPOS
AdvanCEd The FPOS function:

Commands Fros (<file number>)

FPOS returns the number of the physical
sector where < filenumber > is located,

DSKO$
The DSKO$ statement:

DSKO$ < drive> <tracky ,(sectord ,
<string expressiony

writes the string on the specified sector. The
maximum length for the string is 256
characters. A string of fewer than 256
characters is zero-filled at the end to 256
characters.

DSKI$

DSKIS$ is the complementary function to the
DSKOS$ statement. DSKI$ returns the contents
of a sector to a string variable name.

e T e R P S e e ST

IPL

The IPL command instructs Disk BASIC to
immediately execute the program you select
when this disk is booted.

Format: IPL “RUN" + chr$(34)+
» “1;filename”’

DSKI$ (< drive> <track) ,<sector>)

DISK 1/0

GET If the “‘buffer changed”’ flag is set, write the
buffer to disk. Then execute the GET (read the
record into the buffer), and reset the position
for sequential 1/0 to the beginning of the
buffer.

PUT Execute the PUT (write the buffer to the
specified record number), and set the
“sequential I/0 is illegal”” flag until a GET is
done.

INPUTH If the buffer is empty, write it if the “’buffer
changed” flag is set, then read the next buffer.

PRINT # Set the “‘buffer changed”’ flag. If the buffer is

full, write it to disk. Then, if the end of file has
riot been reached, read the next buffer. _

ATTR$ FUNCTION

ATTRS returns a string of the current

attributes for a drive, currently open file, or file

that need not be open. The format of ATTR$

is:

ATTRS (<drive> #«<file number>, <filename>)
Example: ’

SET 1, “R":A$#ATTRS (1):PRINT A$,R
Ok

APPENDIX C

FOR USERS THAT OWN

A 64K RAM EXPANSION
CARTRIDGE

To create a back up copy of your SV Extended
Disk BASIC diskette, follow these steps:

1. Initialize a new diskette for use with the
system as described in chapter 2.

2. Change the switches on your 64K card as
shown in Figure 1. This change is necessary to
run CP/M.

3. Insert the CP/M diskette into drive 1 and
turn the power on for both the expansion box
and the SV-318 or SV-328 computer.

4. Type COPY and press the ENTER key when
the prompt appears. The COPY program will
tell you to put your diskette into drive A (the
original disk BASIC diskette) and the disk that
is to receive the copy in drive B (the newly
formatted diskette).

When the computer is through copying, you
will have a back up copy of your BASIC
Master diskette.

Note: If only one disk drive is available, type
1COPY (instead of COPY) and follow the
instructions that are provided.

ON OFF
N —
oo —2
BK32 L o
BK02 :
Rl —

NORMAL CONFIGURATION TO RUN
CP/M BANK 2 Page 1 and BANK 0 Page 2
Figure 1

§35

APPENDIX D

CONTENTS OF THE
SV EXTENDED DISK

BASIC DISKETTE

This diskette contains a number of useful, entertaining and teaching programs.

They can be used for the utility functions that some of them are designed for or
may be used as programming aids. They can also be used to demonstrate your
system to friends and family.

The programs contained on the diskette are as follows:

svfrmt* This allows you to format a blank diskette for use
as either a CP/M diskette or an SV Extended Disk
Basic Diskette. This must be done prior to using a
blank diskette in either system. For use as an SV
Extended Disk Basic diskette, this operation must
be followed by running the FORMAT program
listed below.

sysgen. bas This allows you to create a diskette that will boot
(or execute when the system is first turned on) and
contains all of the attributes of SV Extended Disk
Basic.

dsktst This is a diagnostic program that will test the
diskette itself to insure that it has no bad sectors
or other problems that might cause a loss of data.
It is a good idea to run this program anytime you
initialize a new diskette.

demo 1 This a demonstration of the graphics capability of
your computer.

demo 2 This is a demonstration of sprites, music, color
. and graphics. :

~demo 3 This is a demonstration of the sound capabilities
of your computer. It contains a melody that has
_been programmed entirely in Basic.

demo 4 This is a demonstration of the colors that are
available on your computer.

36

init

format

plist

SP .dat -

ipl

\\-
This allows you to select a program, that is
contained on the diskette to automatically run

whenever the system is turned on and that
diskette is in Drive 1.

This allows you to format a previously prepared
(using SVFRMT) diskette for use as an SV
Extended Basic diskette. To make this diskette
into an SV Extended Disk Basic System Master
Diskette, you tust now run the SYSGEN program
listed below. .

This allows you to maintain a simple listing of
phone numbers that you wish to keep track of.

This is the data file for the SPRITE.DEM program.
It cannot be run by itself because it does not
contain BASIC statements.

This program will redefine special function
keys as follows:

Key 1 — Files
Key 2 — load ”1:
Key 3 — Save ”1:

Key 4 — List
Key 5 — Run
Key 6 — Colour
Key 7 — Cload
Key 8 — Cont
Key 9 — List
Key 10 — Run

Keys 1, 2 and 3 are commands for disk
operations only.

This program automatically runs when disk
is booted. If you run a different program
and you wish to redefine the keys to the

above configuration just type “RUN"" 1:ipl”

\37

© 1983 SPECTRAVIDEO INTERNATIONAL LTD.
SV 902 UM/02 Printed in Hong Kong

