mh_. ‘ x.f,._r.fd. 2 .“___“,
Pl J..,..L.p .
MEEE SEERNL AN NRE
] A N
f T .

III= SNieH
-1 ~HER

[5
.-. e
... :

fezsay nn“_h....

M Illll .
“l“n. ll N | § l.

ok = ..ll- i ; .

MICROCOMPUTER SYSTEM

uss‘a GUIDE

N g 4 P O ¢

BBC Microcomputer System
User Guide

Original edition written by John Coll, edited by David Allen.
Amendments and corrections to this edition by Acorn Computers Limited

Part no 0433 000
Issue 1
Date October 1984

WARNING: THE COMPUTER MUST BE EARTHED

Important: The wires in the mains lead to the computer are coloured in accordance with the
following code:

Green and yellow Earth
Blue Neutral
Brown Live

As the colours of the wires may not correspond with the coloured markings identifying the
terminals in your plug, proceed as follows:

The wire which is coloured green and yellow must be connected to the terminal in the plug which
is marked by the letter E, or by the safety earth symbol <+ or coloured green, or green and yellow.

The wire which is coloured blue must be connected to the terminal which is marked with the
letter N, or coloured black.

The wire which is coloured brown must be connected to the terminal which is marked with the
letter L, or coloured red.

If the socket outlet available is not suitable for the plug supplied, the plug should be cut off and
the appropriate plug fitted and wired as previously noted. The moulded plug which was cut off
should be disposed of as it could be a potential shock hazard if it were to be plugged in with the
cut off end of the mains cord exposed. The moulded plug must be used with the fuse and fuse
carrier firmly in place. The fuse carrier is of the same basic colour* as the coloured insert in the
base of the plug. Different manufacturers’ plugs and fuse carriers are not interchangeable. In the
event of loss of the fuse carrier, the moulded plug MUST NOT be used. Either replace the
moulded plug with another conventional plug wired as previously described, or obtain a
replacement fuse carrier from an authorised BBC Microcomputer dealer. In the event of the fuse
blowing it should be replaced, after clearing any faults, with a 3 amp fuse that is ASTA approved
to BS1362.

*Not necessarily the same shade of that colour.
Exposure

Like all electronic equipment, the BBC Microcomputer should not be exposed to direct sunlight or
moisture for long periods.

Econet and The Tube are trademarks of Acorn Computers Limited
©The author and the British Broadcasting Corporation 1982

Neither the whole nor any part of the information contained in, or the product described in, this
manual may be adapted or reproduced in any material form except with the prior written
approval of Acorn Computers Limited (Acorn Computers).

The product described in this manual and products for use with it are subject to continuous
development and improvement. All information of a technical nature and particulars of the
product and its use (including the information and particulars in this manual) are given by Acorn
Computers in good faith. However, it is acknowledged that there may be errors or omissions in
this manual. A list of details of any amendments or revisions to this manual can be obtained upon
request from Acorn Computers Technical Enquiries. Acorn Computers welcome comments and
suggestions relating to the product and this manual.

All correspondence should be addressed to:

Technical Enquiries
Acorn Computers Limited
Newmarket Road
Cambridge CB5 8PD

All maintenance and service on the product must be carried out by Acorn Computers’ authorised
dealers. Acorn Computers can accept no liability whatsoever for any loss or damage whatsoever
caused by service or maintenance by unauthorised personnel. This manual is

intended only to assist the reader in the use of the product, and therefore Acorn Computers shall
not be liable for any loss or damage whatsoever arising from the use of any information or
particulars in, or any error or omission in, this manual, or any incorrect use of the product.

First published 1984
Published by the British Broadcasting Corporation
Typeset by Bateman Typesetters, Cambridge

Within this publication the term ‘BBC’ is used as an abbreviation for ‘British Broadcasting
Corporation’.

This book is part of the BBC Computer Literacy Project, prepared in consultation with the BBC
Continuing Education Advisory Council.

The editor of the project is David Allen

Note: If this manual is to be used in conjunction with a BBC Microcomputer which is fitted with
an Operating System with version number lower than 2.00, then the following points should be
borne in mind:

— Chapter 42 and all other references to the ‘shadow screen’ should be ignored.
— Chapter 49 should be ignored (unless the machine with which the manual is to be used is fitted
with BASIC II).

In all other respects this manual is functionally compatible with earlier versions of the BBC
Microcomputer.

Contents

Introduction 1
Equipment required 1
Text conventions used in this manual 1
What this user guide can and can’t do 2
1 Getting started 3
Experimenting 5
Connecting up the cassette recorder 7
Leads 7
Volume 8
Running the WELCOME programs 8
The keyboard 11
Cursor control keys 13
Giving the computer instructions — Part 1
2 Commands 15
3 An introduction to variables 18
4 A simple program 20
Using the screen editor 22
Deleting part of a program 24
Removing a program 25
5 Recording programs on cassette 26
Saving a program on cassette 26
Checking a recording 27
Loading a program from cassette 27
Cataloguing a tape 28
What the numbers mean 28

6 Sample programs 30

7 AUTO, DELETE, REM, RENUMBER 43
8 Introducing graphics 45
Modes, colours, graphics and windows 45
Graphics 46
Windows 47
Making a graphics window 47
Making a text window 48
Changing the colours of text and graphics 50
9 More on variables 52
Numbers and characters 52
String variables 53
How numbers and letters are stored in the computer’s memory 54
Real and integer variables 55
Summary 56
10 PRINT formatting and cursor control 57
Field widths in different screen modes 57
Altering the width of the field and the way in which numbers are printed 60
For the more technically minded 60
TABX) 62
TAB(X,Y) 62
Advanced print positioning 63
Cursor control 65
Cursor on/off 66
11 Input 67
12 GET, INKEY 70
Advanced features 71
13 TIME, RND 73
Structure in BASIC
14 REPEAT...UNTIL, TRUE, FALSE 74

15 FOR..NEXT 77

A note on LISTO 80
16 IF.. THEN...ELSE. More on TRUE and FALSE 84
Multiple statement lines 84
For the slightly more advanced 85
More on TRUE and FALSE 85
17 Procedures 87
Local variables in procedures 90
18 Functions 9
19 GOSUB 96
GOTO 99
20 ON GOTO, ON GOSUB 100

Giving the computer instructions — Part 2

21 Even more on variables 102
Arrays 102
22 READ, DATA, RESTORE 107
23 Integer handling 110
24 String handling 114
25 Programming the red user-defined keys 119
The BREAK key 120
Other keys 120
26 Operator priority 122

27 Error handling 125

28 Teletext control codes and MODE 7 128

To change the colour of the text 129
To make characters flash 129
To produce double-height characters 130
Graphics 132
Graphics codes 133
Making a large shape 133
Teletext graphics codes for the more adventurous 134
29 Advanced graphics 137
How to change the screen display modes 137
How to draw lines 138
How to draw a square in the centre of the screen 138
Changing the colour of the square 138
How to fill in with colour 138
How to change colours 139
How to plot a point on the screen 144
How to remove a point selectively 144
Animation 145
How to make a ball and move it on the screen 145
How to create your own ‘graphics’ characters 146
How to make a character (eg a man) 146
How to make him move 147
How to make a larger character 148
How to make the movement smoother 149
Making a complete lunar landing game 151
Running the program 154
30 Sound 155
The pitch envelope 158
The amplitude envelope 159
Note synchronisation and other effects 161
31 File handling 163

32 Speeding up programs and saving memory spacel68

Reference section

33 BASIC keywords alphabetical summary 170
34 VDU drivers 347
VDU code summary 348
Detailed description 349
35 Cassette files 360
Cassette motor control 360
Recording levels 360
Playback volume and tone 360
Keeping an index of programs 360
Saving a BASIC program 361
Saving a section of memory 362
Loading a BASIC program 362
Loading a machine code program 363
Loading and running a BASIC program 363
Loading and running a machine code program 364
Using a cassette file to provide keyboard input 364
Reading cassette data files 365
Testing for end of file 365
Storing data on tape 366
Recording single characters on tape 366
File names 366
Responses to errors 367
Changing responses to errors 368
Cassette tape format 369
36 Changing filing systems 370
37 How to merge two BASIC programs 371
38 Using printers 373
Connecting the printer to the computer 373
A parallel printer cable 374
Parallel printer connections 375
Telling the computer whether you are using a parallel or serial printer 376
Telling the computer to copy everything to the printer 377
Characters not sent to the printer 377

39 Indirection operators 378
40 HIMEM, LOMEM, TOP and PAGE 383
41 Operating system statements 385
42 The shadow screen 387
Other shadow mode-related commands 388

43 The operating system and how to make use of it 389

What is the operating system? 389
The *FX commands 390
OSBYTE calls from BASIC 391
OSBYTE calls from assembly language 393
The *FX commands and OSBYTE calls 395
Functional summary (alphabetical) 396
Numerical summary 398
44 An introduction to assembly language 428
Machine code and the assembler 428
Uses of assembly language 429
The main features of 6502 assembly language 429
The 6512 registers 430
Program counter 430
Accumulator 430
X register 430
Y register 430
Program status register 431
Stack pointer 431
The assembler delimiters [’ and ‘I, and general assembly language syntax

rules 431
Addressing modes 432
Implicit addressing 432
Immediate addressing and zero page addressing 432
Absolute addressing 433
Indirect addressing 433
Indexed addressing 433
Relative addressing 435
Accumulator addressing 436
Placing machine code programs in memory 436
OPT, forward referencing and two-pass assembly 438
The EQUate facility 439
Machine code entry points 441

45 The operating system calls 442

Files 442
OSWRSC 443
OSRDSC 443
OSFIND 443
OSGBPB 445
OSBPUT 445
OSBGET 445
OSARGS 445
OSFILE 446
OSRDCH 448
OSASCI 448
OSNEWL 449
OSWRCH 449
OSWORD 449
Command line interpreter (&FFF7) 455
Faults, events and BRK handling 456
Accumulator description 456
Interrupt handling 457
NMI — non-maskable interrupt 457
IRQ — interrupt request 457
46 Analogue input 459
Digital input/output using the eight bit user port 460
47 Error messages 462
48 Minimum abbreviations 473
49 BASIC II 475
ABS 475
COUNT 475
ELSE 475
EVAL 475
INPUT 476
INSTR 476
ON ERROR 476
OPENIN and OPENUP 476
ASC 477
EQUB, EQUD, EQUS, EQUW 477

OPT 477

Appendix A 478
Teletext (MODE 7) displayed alphanumeric characters

Appendix B 480
Teletext (MODE 7) displayed graphic characters

Appendix C 482
ASCII (MODES 0 to 6) displayed character set and control codes

Appendix D 484
Hexadecimal ASCII codes

Appendix E 485
Text and graphics planning sheets

Appendix F 489
Keyboard codes

Appendix G 490
Printed circuit board layout for the BBC Microcomputer

Appendix H 491
External connections at the rear of the BBC Microcomputer

Appendix I 492
External connections underneath the BBC Microcomputer

Appendix J 493
Memory map amd memory map assignments

Appendix K 496
Circuit layouts

Appendix L 501
VDU code summary

Appendix M 502

6502 instruction set

Appendix N 504
*FX and OSBYTE call summary
Appendix O 506

Operating system calls

Index

507

Introduction

Equipment required

Before you start using your computer check that you have received the following
in addition to this User Guide:

— A BBC Microcomputer.

— A guarantee registration card.

— An aerial lead about two metres long which connects the computer to your
television.

— The Welcome Package — containing a cassette and an introductory booklet.

If you are short of any of these items then write immediately to your supplier
quoting the number given to you when you placed your order. The number also
appears on the dispatch label.

You will also require a lead to connect your computer to an ordinary cassette tape
recorder. If you ordered the appropriate lead when you placed your order, check
that it has arrived. If you didn’t, take your cassette recorder, the computer and
this book to a dealer and ask if he can supply a lead or make one up for you. In
many cases a standard audio lead will be suitable. The most common, useful type
is a 5-pin DIN to 5-pin DIN (see below). Alternatively, order the appropriate lead
from the supplier of your BBC Microcomputer. Unfortunately, as there are a
large number of different kinds of connections, it has not been possible to supply
a lead to fit every machine.

Text conventions used in this manual

You will notice that the style of printing used to present the text in this manual
varies. This is to help you tell the difference between explanatory text, words
which appear on your monitor screen (including BASIC keywords) and certain
keys on the computer keyboard.

— Ordinary text appears like this, or like this for emphasis.

— Text displayed on the screen (including BASIC keywords) appears like
this.

— Words like RETURN mean that you should press the key marked RETURN
rather than type the letters RE T U R N.

2
What this User Guide can and can’t do

The BBC Microcomputer is a very versatile machine. On its own, connected to
your television set, the computer can respond to programs which you yourself
type in, to produce numbers, words, lines and movement on the screen and
sound. Connect a suitable cassette tape recorder and you can then save your own
programs for future use or run programs which have been written by other
people. The WELCOME cassette which comes with the computer contains a
number of programs specially written for the machine. Other programs are
available in large numbers, including programs linked to hobbies and games, and
programs for use in the home, in business and in education. Languages other
than BASIC (such as LISP, FORTH, BCPL and PASCAL) are available. These
languages are stored in an integrated circuit which has to be plugged into your
BBC Microcomputer. This must be done by your dealer.

The early chapters of this book will show you how to load and save programs
from cassette, how to write simple programs and how to create certain graphics
effects on the screen. There are also some complete programs to type in yourself.
However, this is not a step-by-step course in BASIC programming.

Most of what follows in the later chapters forms a reference guide on how to use
the various commands and keywords of the BBC BASIC language. If you are an
absolute beginner then much of this will not be very easy to understand.
However, as you get more experience of programming, this material will prove
invaluable.

1 Getting started

To get your computer working you will need a television set for a screen. Most
people at home will use their ordinary colour or black and white television to
show the pictures that the BBC Microcomputer produces. You will also need a
cassette recorder if you wish to save and load programs.

If you have a high quality monitor (for example in a school) then it can be
connected directly to one of the sockets at the back of the computer. To connect
the monitor to the computer you will need a special monitor lead.

Assuming that you want to use your normal television set, then you can connect
it to the computer using the aerial lead that is supplied with the computer. One
of the plugs on this lead has a long central prong which fits into the socket on the
back of the computer marked UHF out. The other end of the lead goes into the
back of your television set in place of the normal aerial lead (see figure 1). Don’t
worry about the cassette recorder for the moment.

Next, plug your computer into the mains and switch it on (the On/Off switch is at
the back). It should make a short ‘beep’ and the red light marked caps lock should
come on. Turn the television on too and let it warm up for a moment.

Probably all you will see on the TV screen at this stage is a ‘snow storm’. You will
have to tune the TV so that it can receive the transmissions from the BBC
Microcomputer. When your television is tuned correctly words will appear on the
screen.

Your television probably has some push-buttons which can be used to select
different channels. Often button number 1 is tuned to BBC 1, button number 2 to
BBC2, button number 3 to ITV and so on. It is best to tune a spare channel for
the computer, for example channel 8. You can then use this for the computer
without interfering with the tuning of the normal channels.

Different televisions tune channels in different ways. For some of them, you turn
the same knob that you use to select the channel. For others, there are separate
controls. In either case, you should depress a spare channel button and then
adjust it, or the associated control, until you get a good picture on the screen. A
message similar to

Acorn OS 64K

BASIC

‘aUIyoRW 9Y)
Yy por[ddns st pue UOI3O8UUO0D UOISIAIS) 3} 10] ST UMOYS PBI] 9Y[, "19p10931
9139SSED B 0} PUE UOISIAS[) d13sawiop a3 03 Jandwod ay) Juosuuo))

1 aandry

5

should appear, which should be clear and sharp. Many types of tuning control
indicate the channel number that you are tuning to. The BBC Microcomputer
transmits on channel 36. It will not be too difficult to find the right channel but
you will have to tune the TV carefully to get a really clear picture.

When you have a clear picture, do by all means press every button in sight on the
computer — you can’t do it any harm at all. Usually it just keeps on saying

Mistake
>

whenever you press the large key marked RETURN. Mistake just means that
the computer does not understand your commands. Its fault — not yours!

You will see that if you hold any key down for more than a short time the
character on the key appears on the screen, then there is a short pause, then the
character repeats until you take your finger off again. On the whole, when
pressing keys on the keyboard you should press them briefly — unless you want
this repetition.

Experimenting

Now you are ready to experiment. You might like to try some of the following to
see what the computer can do, but first be sure to press the key marked BREAK.
This will clear the screen and get the computer ready for you.

Type in the following exactly as shown:
MODE 5

and then press the RETURN key. As you will see the command MODE 5 clears
the screen and just leaves the > mark on the screen. > is known as the ‘prompt’
and it means that the computer is ready for your next command.

Pressing the RETURN key tells the computer that you have finished the line you
are typing and that you want it to obey your command. Before you press the
RETURN key you can correct errors by pressing the key marked DELETE.

If the computer says Mistake then press the BREAK key and try again,
starting with MODE 5.

Then type in each of the following lines — but don’t forget to press the RETURN
key at the end of every line. Don’t worry if you make a mistake — it really doesn’t
matter!

DRAW 1000,100

DRAW 0,750

6

GCOoL 0,1

PLOT 85,0,0

If the computer says No such variable then you are probably pressing
the letter O instead of the number 0.

PLOT 86,1000,750
vDU 19,1,4,0,0,0
vDbuU 19,3,2,0,0,0
vbu 19,0,1,0,0,0
DRAW 200,0

DRAW 0,200

As you can see, the DRAW command is used to draw lines while PLOT 85 and
PLOT 86 are used to plot and fill in triangles on the screen. When using the
graphics the points on the screen are numbered from 0 to 1279 (left to right) and
from 0 to 1023 (bottom to top). They are like positions on a piece of graph paper.

Words can also be plotted in colours, as you will have seen. Clear the screen by
typing MODE 5 and then type the following:

COLOUR 1 This selects a red foreground.
COLOUR 2 This selects a yellow foreground.
COLOUR 3 This selects a white foreground.

COLOUR 129 This selects a red background.
COLOUR 0 This selects a black foreground.
COLOUR 130 This selects a yellow background.

The computer can create sound as well. Try typing this in:

SOUND 1,-15,100,200

and then press RETURN.

That gives a simple, crude sound. It is also possible to alter the quality of the
sound. Try this:

ENVELOPE 2,3,2,-4,4,50,50,50,127,0,0,0,126,0

7

(This should be typed in as one line even though it may spill over to the next line
on the screen just as it has on this page. The computer will treat it as being ‘one
line’ when you press RETURN.) Now carry on with:

SOUND 1,2,1,10
SOUND 2,2,100,1
SOUND 3,2,200,1

You will have to press ESCAPE to stop the sound.
Here’s another one:

ENVELOPE 1,1,-26,-36,-45,255,255,255,127,0,0,0,126,0
SOUND 1,1,1,1

There is a whole chapter on sound later on.

Connecting up the cassette recorder

Now get a cassette recorder connected so that you can load the demonstration
programs into the computer from the cassette tape supplied in the WELCOME
pack. For the moment just follow the instructions — we can sort out the ‘whys and
wherefores’ later.

You have to do two things before you can load the programs from the WELCOME
tape: first get the right lead to connect your cassette recorder to the computer
and secondly set the volume control on the cassette recorder to the correct
position.

Leads

There are a number of different kinds of leads (figure 2). The connection to the
computer is through a 7-pin DIN connector; a lead has not been supplied with the
machine because there are so many connections to the many different cassette
recorders in use. In many cases a standard 5-pin DIN to 5-pin DIN lead will be
suitable, provided you do not want to use the motor control. If you want full
motor control, take your cassette recorder to your nearest BBC Microcomputer
dealer who will be able to supply a lead or make one up for you. Alternatively,
take your cassette recorder and this book to a local hi-fi dealer.

Note: Although you may find the ideal cassette lead difficult to buy locally, many
cassette recorders do have a standard 5-pin DIN socket and a standard 5-pin DIN
to 5-pin DIN hi-fi lead will work with the BBC Microcomputer in many cases.

8

Volume

Having got the cassette recorder connected to the computer the only remaining
thing to do is to set the playback volume on the cassette recorder to the correct
level.

With the BBC Microcomputer the cassette volume control setting is not critical.
However, a special procedure for setting the volume control correctly is
incorporated into the first program on the tape.

Running the WELCOME programs

Note: If your machine is fitted with a Disc, Econet, Teletext or IEEE interface
and you wish to use a cassette, you must first select the Cassette Filing System

by typing

*TAPE RETURN

This command should also be typed in (if your machine has one or more of the
above interfaces) directly after use of BREAK or CTRL BREAK. In some cases,

very long cassette programs may not run because of the small amount of extra
memory used by the Disc and Net filing systems. To overcome this, follow the

*TAPE RETURN command by:

PAGE = &E00 RETURN
NEW RETURN

(See chapter 33 for explanations of PAGE and NEW .) If at any time you wish to
return to the Disc or Econet filing systems, press BREAK or CTRL BREAK, or
type:

*DISC RETURN

or

*NET RETURN

Bearing in mind the above note, the WELCOME programs can be run by typing
in

CHAIN "WELCOME"

7 pin DIN to 5 pin DIN
and 2.5mm jack

7 pin DIN to

7 pin DIN to two 3.5mm
jacks and one 2.5mm jack

Figure 2 A range of possible cassette leads

You will need to select a lead with a 7-pin or 5-pin DIN lead at one end. This plugs into the
computer. The other end of the lead must have suitable plugs for your particular recorder.
Note: a standard 5-pin DIN lead will work with many recorders but will not enable you to
make use of the computer’s ability to start and stop the cassette recorder automatically.

10

and then press the RETURN key. Next insert the WELCOME cassette into your
recorder. If your cassette recorder has a tone control then set it to maximum
‘treble’ and leave it there. Now start the cassette recorder playing by pressing the
PLAY button on the recorder. Then adjust the cassette recorder volume control
slowly, until you get the message:

Your volume control is now properly set. Please
wait while the first program is loaded

on the screen. This will give the minimum volume level. You should then increase
the setting a little more. If you need to, you can rewind the tape at any time. If no
message appears rewind the tape and play it again, increasing the volume control
setting in larger steps, or check the cassette leads are correctly plugged in.

The system is very reliable, so if you have problems it may be that your tape
recorder is at fault or that you have a fault in the computer. You are advised to
contact your dealer.

Note: Each computer program is recorded on the tape as a kind of screeching
noise. It’s not meant to be listened to, but some cassette recorders have the
annoying habit of playing the tape through the loudspeaker while the tape is
loading into the computer. Everything depends on what plugs and sockets are
being used. It is possible to stop this on most recorders by inserting a small
(3.5mm) jack plug into the socket on the recorder marked EAR. You could insert
the ear piece supplied with the recorder if that is more convenient. On other
recorders you may have to insert a DIN loudspeaker plug, with no wire
connections, into the socket marked LS to turn off the noise. Don’t try turning the
volume control down because then the computer will not be able to ‘hear’ the tape
either. The important thing to do is to try to disable the loudspeaker as described
above.

Make a note of the volume setting on your cassette recorder and always use that
setting when playing back the WELCOME cassette. You may need to use a
different setting with other tapes that you have purchased or recorded yourself.

On the WELCOME cassette the volume control setting is repeated many times at
the beginning of the tape. With practice it is possible to save time by running the
tape forward by about two minutes (once the volume control is set) and then
begin playing the tape from this point, having first entered the command

CHAIN "WELCOME" RETURN

When the first WELCOME program has loaded into the computer it will clear the
screen and give you instructions.

The WELCOME pack includes a booklet which describes not only how to get the
programs running but also what each of the programs does.

11
The keyboard

Anyone who has used a standard typewriter will be familiar with the positions of
most of the symbols on the keyboard of the BBC Microcomputer. However, there
are a number of special keys which need to be mastered (see figure 3) and these
are described below.

If you are a keyboard novice you may find the layout confusing. Don’t worry —
first of all it is not necessary to be a touch typist to work the computer; secondly,
there is a program on the WELCOME cassette which will help you to practice
finding the various keys, and most people find that with a little practice they
become familiar with them fairly quickly.

Some keys have two symbols engraved on them — we’ll call those on the top
‘upper case’ and those below ‘lower case’ symbols.

CAPS LOCK

When the machine is switched on, the middle light should be on, telling you that
the CAPS LOCK key is on. This gives capital letters and lower case symbols and
is the most useful state for programming because the computer only recognises
commands typed in using capital letters. By pressing the CAPS LOCK key once
you can switch the light off. Now you get lower case letters and lower case
symbols. Press it again and it will be on again.

SHIFT

Whether CAPS LOCK is on or off, if you press either of the SHIFT keys and
hold it down while typing in a character you will get a capital letter or upper case
symbol.

Holding down CTRL and SHIFT together stops the computer ‘writing’ to the
screen. This can be useful if it is writing faster than you can read.

SHIFT LOCK

Pressing this key once gives capital letters and upper case symbols until it is
pressed again. It has its own on/off light.

Practice in the use of these keys is given in one of the first programs in the
introductory pack — the one called KEYBOARD.

SHIFT CAPS LOCK

Depressing and releasing SHIFT and CAPS LOCK in unison reverses the effect
of the SHIFT key, causing a lower case letter to be printed when pressing a
letter key with SHIFT held down. Pressing CAPS LOCK again returns the
keyboard to normal.

12

JHHOIT LHDIT LHOIT

LHOIT LHOIT LHOI'T
MI0T MoH0T1 HOLOW

LAIHS Sdv) dLLIASSYO

sAay Sunipy s£ay uonoduny
pauljep Jasn uaj,

-
-

]

Socket for plug-in
‘ROM’ cartridges

[

13
RETURN

This key is the most commonly used key on the keyboard. When a command or
anything else is typed in, it is not usually acted upon until the RETURN key is
pressed. In other words, this key informs the computer that you have finished
entering a line or a reply. Until you press RETURN, you can add to or delete
what you have typed in.

CURSOR control keys

These enable you to move the flashing cursor around the screen when editing a
program. Pressing any of them makes the computer automatically enter the
‘editing mode’ during which two cursors are shown on the screen (see chapter 4).

DELETE

Pressing this key will cause the last character typed in to be erased from the
screen. If held down, it will then erase further characters until released.

COPY

This key, used in conjunction with the cursor control keys, enables anything on
the screen to be copied — a useful feature when editing a line in a program.

ESCAPE

This key is usually used to stop a program which is running. However, it can be
programmed to do other things when pressed — such as moving you from one part
of a program to another.

BREAK

This key stops the computer no matter what it is doing. The computer forgets
almost everything that it has been set to do. Pressing BREAK also resets the
screen to MODE 7.

Do not get into the habit of using BREAK. The ESCAPE key provides a much
less violent way of escaping from a program! (See chapter 25 for more details on
BREAK).

14

CTRL

This key behaves similarly to the SHIFT key in that it can be used to change the
character generated by other keys. For example, pressing CTRL and G (called
Control G) makes the internal speaker make a short noise. CTRL B is used to
turn a printer on and CTRL C turns it off. CTRL N makes the computer stop
at the bottom of each page, etc, etc. More information on control codes is given in
chapter 34.

TAB

Another key that is useful in special circumstances — like word processing.
~1 | £ i £
AN L L =

These keys can be somewhat confusing because they seem to generate the wrong
characters sometimes. The problem is that there are two international standards
for displayed characters (Teletext and ASCII) and the BBC Microcomputer can
display either. MODE 7 generates the Teletext display characters and MODES
0 to 6 show the ASCII characters. But don’t worry, the computer recognises the
key correctly regardless of what is displayed on the screen. Here is a table
showing all these characters:

Displayed on the screen
On the key in MODE 7 in MODES 0 to 6
A T A
: [:
\ Y2 \
{ Ya {
[— [
} % }
1 — 1

Note that in MODE 7 a zero is shown as a rather pointed 0 whereas in all
other modes, zeros have a slash — 0 — to help to differentiate them from the letter
0. The keyboard is also marked in this way.

15

2 Commands

There are two ways of getting the computer to do something:

1. Give it commands which it can act on immediately. This is what happened
when you typed in the lines in chapter 1.

2. Give it a series of numbered instructions, often called statements, which it can
store in its memory and carry out in sequence when told to do so. A stored series
of instructions is called a program.

Many of the keywords in BASIC can be used both as commands and as
statements in a program.

The rest of this chapter is concerned with ‘command mode’.

PRINT is used to make the computer print something on the screen. Try these
two examples:

PRINT "HELLO"
Don’t forget to press RETURN at the end of each line.
PRINT 3 + 4

In the second example you have given the computer a command to print the sum
of 3 and 4. The computer can very easily do addition, subtraction, multiplication
and division. The addition, subtraction, multiplication and division signs areall
on the right side of the keyboard. If you are interested in doing mathematical or
financial work then you will need to know the symbols that the computer uses for
various mathematical operations. They are:

+ Addition

- Subtraction

* Multiplication
\ Division

~ Exponentiation

Decimal point

If you want to get the + or * then you will have to press the SHIFT key as well
as the key you want. It’s rather like a typewriter: while holding the SHIFT key
down, press the + sign once.

16

Try typing in the following and check that they work — in other words see that
they produce the expected answers.

PRINT 4 + 8
PRINT 18 - 2 * 4
PRINT 131/4

PRINT SQR(2)

The last one will print the square root of 2 which is 1.41421356.
Then try

MODE 5

which will make the computer clear the screen and get it ready to draw lines as
well as text. In this mode

COLOUR 129
will select a red background, and
CLS

will clear the screen to the background colour. In each case you have given the
computer a command and it has obeyed it immediately. Working like this is
called ‘working in command mode’.

While in this mode you might like to learn how to use the bright red user defined
function keys. Each of these keys can be used to store a word or several words.
For example they could be programmed so that each one selects a different
colour. Try this:

*KEY 2 COLOUR 2 |M

The | shown above is produced by a special key. On the keyboard this key is the
third key from the right on the row below the red keys. In MODE 7 this key
produces | on the screen.

Once you have typed that in then every time you press the key marked f2, the
computer will change to COLOUR 2 which gives yellow lettering. In a similar
way you could program some of the other keys like this:

*KEY 0 COLOUR 0 |M
*KEY 1 COLOUR 1 |M
*KEY 3 COLOUR 3 |M

Note the exact position of spaces when you type in a command.

17

Of course red letters don’t show up very well on a red background! You will have
noticed the |M at the end of each line above. That is the code used to get a
RETURN into the user defined function keys.

If the picture on your television screen is either too far up or too far down the
screen, you can move the whole display with the command *TVv.

*TV 255 will move down one line

*TV 254 will move down two lines

*TV 1 will move up one line

*TV 2 will move up two lines

The movements come into effect next time you press BREAK or change mode.

*TV also controls the interlace of the television display. See chapter 43.

3 An introduction to
variables

In the last chapter we made the computer do a number of calculations but it was
never expected to remember any of the results after it had printed them out.
Suppose that you have to calculate the wages for everyone in a company. After
you have worked out each person’s wage, it would be useful to be able to add
them all together, so that in the end you would know the total wage bill. Keeping
track of things that vary during a long calculation is done by using variables.

Try typing this line into the computer:
LET Z=5
And now try typing in each of the following lines:

PRINT Z+6

PRINT Z * 12

As you will have seen, once we have told the computer that Z is 5’ it understands
that every time we use the letter Z in a sum it has to go and have a look to find
out what the value of Z is (5 in this case) and use that number in the arithmetic
that we set it to do. Now type in

LET Z=7
and then try these two lines:

PRINT Z+12

PRINT 2z/3

As you will gather the value of Z has changed from 5 to 7. In computer jargon Z is
called a numeric variable. That means that Z can be used to store any number,
and you can change the value of Z at any time you want to.

The computer is able to store hundreds of different variables and the variables
don’t have to be called something as simple as Z; you can call a variable by as
long a name as you want. For example you could type

MYAGE=30

Notice that MYAGE was written without any spaces between the word

19

MY and AGE. There are only four restrictions about the names that we give to
variables:

1. There must be no spaces in the middle of a variable name.

2. All variable names must start with a letter — however you can add in as many
numbers as you want to later on.

3. You must not use punctuation marks (such as exclamation marks and question
marks) in the variable name but you can use an underline character.

4. Variable names should not begin with BASIC keywords like PRINT and LET.
One that is particularly easy to use by mistake is the keyword To. However it is
permissible to start a variable name with a lower case ‘to’ because upper and
lower case names are different. There is a full list of keywords in chapter 48 and
they are described in detail in chapter 33.

To get lower case characters on the screen, make sure that the CAPS LOCK is
off by depressing it to turn off its light. Now you will get small letters and
numbers. Hold the SHIFT key down if you want to use capital with lower case
letters.

Any of the following variable names are acceptable.

LET AGE=38

LET this year=1984
LET lengthOFrod=18
LET CAR_mileage=13280
LET valueb5=16.1

LET weight4=0.00135
LET chicken2egg3=51.6

However the following variable names are illegal.

LET Football Result=3 (There’s a space.)

LET Who?=6 (There’s a question mark.)
LET 4thvalue=16.3 (Starts with a number.)
LET TODAY=23 (Starts with TO.)

LET PRINT=1234.56 (PRINT is a reserved word.)

You will notice that in all the examples above we have put the word LET before
the variable name. That gives a clear indication of what is actually happening
inside the computer, namely that the numeric variable this_year, in one of the
examples, is being given a new value ‘1984’. The word LET is optional and the
computer will also accept

this_year=1984

This shortened version is more frequently used.

4 A simple program

In the previous chapter we have been giving the computer commands which it
obeys immediately. The problem with this technique is that you have to wait
until the computer has completed one command before you can give it the next
one. If the computer takes a long time to work out one of the problems you have
set it, then you may have to waste an awful lot of time just sitting there waiting
for it. For example if you want your computer to work out the number of £1, £5
and £10 notes that you will need to pay the wages at the end of the week the
computer will take a fair time to calculate all the wages before it can sort out the
notes required.

The same problem comes up when you take a car into a garage to be serviced.
You could for example stand by the mechanic and say ‘First of all I want the oil
changed’ and then you could wait for him to change the oil. When that is
completed you could then say ‘Now I want you to replace the bulb that has blown
in one of the front headlights’ and then you could wait for that job to be done.
And thirdly you might say ‘The exhaust is making a noise, so I want you to put
the car up on the ramp and check it’.

You would spend a great deal of time waiting for the mechanic to complete each
job before assigning the next. There is a far more efficient way of doing things;
when you go into the garage you give the mechanic a whole set of instructions, for
example:

— First of all change the oil.
— Secondly replace the headlight bulb.
— Thirdly stop the noise in the exhaust.

Once you have given your set of instructions and checked that the garage
understands what has to be done, you can walk off and have a cup of coffee and
then go back expecting the job to be finished. Now the same thing applies with a
computer. It is far better to give it a whole set of instructions and let it run while
you wander off and have a cup of coffee. ‘Writing a computer program’ is nothing
more than giving a set of instructions.

If you give the computer a command like
PRINT "HOW ARE YOU"

then the computer will do that immediately. On the other hand, if you give the
computer a statement

10 PRINT "HOW ARE YOU"

21

then the computer will regard that as instruction number 10 and it will not do it
immediately, but expect other instructions to follow. Instruction number 10 is
usually referred to as line 10. Again: if there is a line number then the statement
is part of a program; if there is no line number then it is a command which the
computer must obey immediately.

When you have given the computer a set of instructions and you then want it to
carry them out, you type the word RUN on the keyboard. The computer will then
carry out the instructions that you asked it to do one at a time and in line-
number order. In other words, it will ‘execute’ the program that you have typed
in. Just to check that you have got the idea of what is going on, here is a small
program that you can type in.

10 REPEAT

20 PRINT "GIVE ME A NUMBER";

30 INPUT B

40 PRINT "12 TIMES ";B;" IS ";12*B
50 UNTIL B=0

When you RUN the program line 20 will print the message
GIVE ME A NUMBER
on the screen.

Line 30 will print a question mark on the screen and wait for you to type in a
number (followed by RETURN - as usual). The number you type in will become
the value of the variable ‘B’.

Line 40 will first print the words 12 TIMES followed on the same line by the
number you typed in, followed on the same line by the word IS followed by the
result of the calculation. The semi-colons tell the computer to print the next item
on the same line as the previous one and right up against it.

Line 50 sends the computer back to line 10 unless B=0, when the program will
stop.

Another way of stopping the program is to press the ‘panic button’ which is
marked ESCAPE (it’s at the top left of the keyboard). If the computer seems to
be ignoring you because it’s too busy running a program. You can nearly always
get its attention by pressing the ESCAPE key. When you do that it will stop
running your program and print a > prompt to show that it has stopped the
program and is waiting for your command.

When the computer shows a > it is in command mode. You can change your
program, give it commands for immediate execution, or tell it to RUN the
program (in its memory) again. It doesn’t forget a program when you press
ESCAPE.

22

If the computer is in command mode (in other words if the last thing on the
screen is >) then you can command it to print the program in its memory by

typing
LIST
and pressing RETURN.

The computer will then give a listing of the program on the screen for you to
cheek. If you discover that you have made an error, for example that you have got
something wrong in line 20, then it is easy to correct the error. There are two
ways of correcting major errors:

— Retype the whole line.
— Use the screen editor.

Using the screen editor

There is a group of six keys on the right hand side of the keyboard which can be
used to edit, or alter, program lines that are displayed on the screen. Four of the
keys have arrows on them and are coloured a lighter brown that most of the other
keys. These keys enable you to move a flashing cursor around the screen to a line
that you wish to edit. As soon as you press one of these keys the computer enters
a special ‘editing mode’ where it displays two cursors. The large white block is
called the write cursor and it shows you where anything that you enter will
appear.

The other small, flashing cursor — the read cursor — is the one that can be moved
around by the arrow keys.

Try moving the read cursor, by using the arrow keys, until it is under a letter at
the start of a word and then press the COPY key several times. As you will see
the COPY key copies everything that the read cursor passes under into the new
input line. Halfway through copying a line you can always use

to move the read cursor to some new place on the screen before using COPY
again to copy some other text to your new input line. The DELETE key can
always be used to delete characters from the input line.

You can also type new characters in at any time instead of using the COPY key.
When your new input line is complete just press RETURN in the usual way.

23

Try the following: clear the screen with the command CLS and then LIST the
program. It should include the line

20 PRINT "GIVE ME A NUMBER";

If not, then type that line in so that you can edit it. Suppose that you wanted to
insert the word BIG so that line 20 reads

20 PRINT "GIVE ME A BIG NUMBER";

then all you have to do is to press the up-arrow cursor key until the small
flashing line is positioned under the 2 of 20. Then press the COPY key to copy
the first part of line 20 to a fresh line at the bottom. When the cursor reaches the
space after the A where you want to insert the word BIG, just type it in with a
space in front — it will appear on the bottom line. Then COPY the rest of the line
20. The space after the A becomes the space after BIG. At the end press
RETURN.

Now try changing the program already in the computer once again by doing the
following:

1. List the program by using the LIST command.

2. Practice using the cursor control and COPY keys to alter line 20 so that it
reads:

20 PRINT "NOW GIVE ME A BIG NUMBER";
3. Now add these new lines. Don'’t forget to press RETURN after each one.

5 CLsS

25 REPEAT

35 IF B<1000 THEN PRINT "I SAID A BIG NUMBER"
37 UNTIL B>=1000

Note: It doesn’t matter in what order you type new lines. The computer will
automatically put them into numerical order. You will see that this is true by

typing
LIST RETURN

These extra lines tell the computer to reject any number smaller than 1000 and
to keep on going back to line 30 to ask for a new number until that number is
greater than 1000. The symbol < means ‘is smaller than’, and > means ‘is
greater than’. IF and THEN are self explanatory.

24
4. Now RUN the program.

>RUN

NOW GIVE ME A BIG NUMBER? 16
I SAID A BIG NUMBER

220

I SAID A BIG NUMBER

22000

12 TIMES 2000 IS 24000

NOW GIVE ME A BIG NUMBER?

This program will go on running until you press ESCAPE. If you look you will
see that if you give the value 0 for the number, the program never reaches line
50, so it can never end unless you press the panic button!

Deleting part of a program

Quite often you will want to delete a whole line or group of lines in your program.
This is easy to do but don’t forget that if you type in a new line 20 (for example),
it will automatically remove the old line 20 and replace it with your new one. If
you want to delete a line completely then type in just the line number and press
RETURN:

20 RETURN

To delete a whole set of line numbers, for example, lines 50 to 70 inclusive, you
can type

DELETE 50, 70

You cannot get these lines back once they are deleted — unless you can copy them
off the screen, so use this with care.

After you have deleted several lines — or if you have typed in lots of new lines you
often find that you have a very odd set of line numbers. The command

RENUMBER

will make the computer go through your whole program renumbering all the
lines so that they are given line numbers in a numeric sequence. Here is an
example of terrible programming style — but it will illustrate the RENUMBER
command. Don’t bother to type it in — just look at it.

>LIST
1 REM ** GOTO GOTO GOTO

2 REM WITH ACKNOWLEDGEMENTS TO
3 REM "COMPUTERS IN SCHOOLS"

4 REM THE JOURNAL OF MUSE

15 GOTO 100

16 GOTO 95

40 N=N+1

25

44 END

57 IF N=18 THEN PRINT "GOTO OR NOT TO GOTO"
60 IF N>35 THEN GOTO 110

78 GOTO 40

95 PRINT "**THE GOTO SHOW**": GOTO 40
100 N=0: GOTO 16
105 PRINT "GOT TO GOTO GOTO NOW"
110 GOTO 44
115 PRINT "GOTO OR NOT TO GOTO"; :GOTO 60
>RENUMBER
>LIST

10 REM ** GOTO GOTO GOTO

20 REM WITH ACKNOWLEDGEMENTS TO

30 REM "COMPUTERS IN SCHOOLS"

40 REM THE JOURNAL OF MUSE

50 GOTO 130

60 GOTO 120

70 N=N+1

80 END

90 IF N=18 THEN PRINT "GOTO OR NOT TO GOTO"
100 IF N>35 THEN GOTO 150

110 GOTO 70

120 PRINT "**THE GOTO SHOW**": GOTO 70
130 N=0: GOTO 60

140 PRINT "GOT TO GOTO GOTO NOW"

150 GOTO 80

160 PRINT "GOTO OR NOT TO GOTO"; :GOTO 100
>RUN

THE GOTO SHOW

As you will see, the RENUMBER command has not only renumbered the
references to line numbers which occur within the program itself — namely after
the statements containing the keyword GOTO. (This gives the computer the
instruction to go to a particular line number and carry out the instruction it finds
there.)

Removing a program

If you want to write a new program you will want to remove the old program
from the computer’s memory. This can be done by using the command NEW, or by
pressing the BREAK key. In either case, if you regret having lost your program,
type OLD and press RETURN and, providing you haven’t begun to type in the
new program, the old one should reappear.

You can always check what’s in the memory by typing LIST. Try experimenting
with these various commands on the program you have typed in.

5 Recording programs on
cassette

The WELCOME cassette supplied with your BBC Microcomputer has a number
of programs stored on it. You can store a copy of any program on cassette and
then load it back into the machine at some time in the future. It really is just like
recording music onto a cassette — you can then play the cassette back a few days
later and the music will still be there.

If you decide that you don’t want to keep the computer program that you have
saved on cassette then you can just record a new program over the old one in the
same way that you can re-use a cassette when recording music. And in the same
way that it is very easy to forget where a particular piece of music is recorded on
a cassette, so it’s very easy to forget where on the cassette you have stored a
particular program. It is very strongly suggested that you use the tape counter to
keep an index of where programs are on cassette. Also you must leave gaps
between programs. It is easy to let one program run over the start of the next one
if they are all squashed close together. If programs do overlap then you will
definitely lose one of them. Be warned!

Most short programs will only move the cassette tape counter on 30 or 40
positions but play safe and spread the programs out over the length of the
cassette. If you record the first program at 0000, the second at 0100, the next at
0200 and so on then they will be easy to find and they are unlikely to run over
each other.

Note: don’t make the mistake of trying to record on the clear plastic tape ‘leader’
— wind the tape on by hand until the brown tape itself is exposed.

Saving a program on cassette

If you have typed a program into your microcomputer then all you have to do to
save it is to

1. Insert the cassette into the recorder.

2. Set the tape counter to 0000 when the tape is fully re-wound.
3. Type

SAVE "MYPROG"

on the computer and then press the RETURN key.

4. The message RECORD then RETURN will appear.

27

5. Fast forward the cassette to the place where you want to record the program -
this will be 100 or 200 or 300 etc, on the tape counter.

6. Press the RECORD button on the cassette and then press the RETURN key.
If you want to give up at any time then press the ESCAPE key.

Notice that MYPROG is the name that we happened to give to the program. You
can call your program by any name you like so long as it has no more than ten
characters. For example you could have typed

SAVE "FRED" or
SAVE "GAME3" or
SAVE "picture"

While the program is being saved on cassette the name of the program and some
numbers will appear to tell you that things are happening. When the computer
has finished, the > prompt will re-appear and the tape will stop automatically. If
you don’t have cassette motor control then you will have to stop the recorder
manually after the > prompt re-appears. That’s it.

Checking a recording

If you want to check that you have successfully recorded your program on the
tape then you can use the *CAT command (see below). If your recording failed
for any reason you can always re-record it. See chapter 35 if you have problems.

Loading a program from cassette

Loading a program back into the computer is just like playing a particular piece
of music which has been recorded on the cassette.

1. Type

LOAD "MYPROG"

and then press the RETURN key. The message
Searching

will appear. Of course if your program is called something else then use the right
name, for example

LOAD "GAME3" RETURN

2. Rewind the cassette to just before the start of your program (which will be at
100 or 200 etc.)

3. Check that the volume and tone control settings are correct — see chapter 1 if
you are not sure how to find the correct settings.

4. Start playing the cassette by pressing the PLAY button on the recorder.

28

When the computer finds any program on the cassette it will show the name of
the program on the screen. When it finds the program it is looking for it will print

Loading

to let you know that it is now loading the right program.

When the computer has finished loading the program it will print the
>

prompt. It will also automatically stop the tape if you have automatic motor
control, if not then you will have to stop the tape manually.

The program is now in the computer. You can type
RUN RETURN
to make it work, as usual.

There is one more useful feature to do with loading and saving programs. Instead
of typing

LOAD "MYPROG" RETURN
you can type
CHAIN "MYPROG" RETURN

This not only loads in the program MYPROG but also starts it working as soon
as it has loaded. It is normally more convenient to use CHAIN than LOAD.
Cataloguing a tape

If you forget what programs you have on the tape then you can get a catalogue by
typing

*CAT

and then playing the tape, but you’ll have to wait until the tape has run through
the programs.

What the numbers mean
A typical catalogue looks like this

WELCOME 00 0084
INTRO 08 088E
INDEX OA OABA

KEYBOARD 25 2545

29

The file-name is followed by two ‘hexadecimal’ numbers which give the ‘block
number’. Each program is recorded as a series of ‘blocks’. See chapter 10 for an
explanation of hexadecimal numbers.

The last number on the line gives the ‘length’ of the file.

The action of cataloguing a tape also lets the computer verify the information
recorded. If there are errors in any of the data on the tape it will print a message
and continue.

The ESCAPE key allows you to leave cassette operations whenever you like. If
you leave from the middle of a LOAD operation you will probably get a Bad
Program error. Type NEW to remove this.

More information about cassette formats, loading errors and files is given in
Chapter 35.

6 Sample programs

Most of the rest of this book is concerned with introducing the various parts of
the BBC BASIC language which the computer understands and other features of
the machine. But first, here are a few complete programs which you can try to
type in yourself. They must be typed in accurately and can then be run. If a
program fails to run properly, then you probably typed a line in incorrectly — for
instance, you may have typed ; when you should have typed : or typed O
instead of 0.

Most of the sample programs are too big to fit all of the lines on the screen. If you
LIST a program you have typed in, for example to check that you have made no
mistakes, you may find that the lines you want to look at disappear off the top of
the screen. To prevent this you can specify the range of lines you want to be
listed. For example

LIST 100,200
will only list those lines numbered between 100 and 200.

Alternatively you can enter ‘paged mode’ by pressing CTRL N (hold down CTRL
and press N). In this mode the listing will stop after every ‘page’ and will continue
only when you press the SHIFT key. Paged mode is switched off by pressing
CTRL 0 and you should always remember to do this after you have listed the
program.

Typing in programs will help you to get a feel for the keyboard and, if you save
them on cassette after you are satisfied that they do run properly, will enable you
to start building up a library of them.

Learning to use the computer is a little like learning to drive a car — when you
first start you find that there are an enormous number of things to think about
all at one time. Many of the things you come across from now on will be
bewildering at first, but as you get further into the book and as you gain
experience in using BASIC, the various parts of the jigsaw puzzle should begin to
fall into place. So don’t worry if, for instance, some of the comments about the
following programs are difficult to understand at first.

Note: In the program listings which follow, extra spaces have been inserted
between the line numbers (10,20, etc) and what follows on each line. This is to
improve the readability of the programs. However, although it will do no harm,
there is no reason to type in any spaces after the line number. For example in the
first program, called POLYGON, when entering line 250, all you need to type is

250MOVE 0,0

31
POLYGON

This program draws polygons (many sided shapes) in random colours.

Lines 120 to 180 move to a random place on the screen which will be the centre
(origin) of the next shape. Lines 210 to 290 calculate the X and Y coordinates of
each ‘corner’ of the polygon and store the values in two ‘arrays’ for future use. In
addition the shape is filled with black triangles (lines 260 and 290) that make it
appear that the new polygon is in front of the older ones. Lines 310 to 370 draw
all the lines that make up the polygon.

Lines 50 to 70 set the actual colour of logical colours 1,2 and 3 to red, blue and
yellow. You can change these if you wish to use other colours.

10 REM POLYGON

20 REM JOHN A COLL

30 REM VERSION 1 / 16 NOV 81
40 MODES

50 vpbu 19,1,1,0,0,0
60 vDbU 19,2,4,0,0,0
70 vDU 19,3,3,0,0,0
80 DIM X (10)

90 DIM Y (10)

100

110 FOR C=1 TO 2500

120 xorigin=RND (1200)

130 yorigin=RND(750)

140 VDU29,xorigin;yorigin;
150 radius=RND(300)+50

160 sides=RND(8)+2

170 MOVE radius, 0

180 MOVE 10,10

190

200 GcoOL 0,0

210 FOR SIDE=1 TO sides

220 angle=(SIDE-1)*2*PI/sides
230 X (SIDE)=radius*COS (angle)
240 Y (SIDE)=radius*SIN(angle)
250 MOVEO, O

260 PLOT 85,X(SIDE), Y(SIDE)
270 NEXT SIDE

280 MOVEO, O

290 PLOT 85, radius, 0

300

310 GCOL O0,RND(3)

320 FOR SIDE=1 TO sides

330 FOR line=SIDE TO sides

14

’ ’

32

340
350
360
370
380

MOVE X (SIDE), Y (SIDE)
DRAW X (line), Y (line)
NEXT line

NEXT SIDE

NEXT C

You may like to try this alternative for line 200

200

GCOL 0, RND(4)

MONTHLY

This program plots a set of ‘blocks’ on the screen which might represent prices
over a 12-month period. In this example the height of the bars is randomly
selected at line 170. Lines 180 to 270 then draw a ‘solid’ bar and the edges are
marked in black by lines 290 to 330. Lines 340 and 350 print out one letter
representing the month of the year at the bottom of each bar.

Notice that lines 60 and 70 set up two of the function keys. Key f0 sets the
computer to MODE 7 and then lists the program. Key f9 can be used to run the
program.

10
20
30
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260

REM MONTHLY
REM JOHN A COLL
REM VERSION 1 / 16 NOV 81

*KEY 0 "MODE7 |M LIST |M"
*KEY 9 "RUN |M"
M$="JFMAMJJASOND"

c=0

MODE 2

vDUS5

VvDU 29,0;100;

FOR X=0 TO 1100 STEP 100
GCOL 0,C MOD 7+1
c=C+1

H=RND (400) +200
MOVE X, 0

MOVE X, H

PLOT 85,X+100,0
PLOT 85,X+100,H
MOVE X+70,H+50
MOVE X, H

PLOT 85,X+170,H+50
PLOT 85,X+100,H
PLOT 85,X+170,50

33

270 PLOT 85,X+100,0

280 GCOL,O0

290 MOVEX, H

300 DRAW X+100,H

310 DRAW X+170,H+50

320 MOVE X+100,H

330 DRAW X+100,0

340 MOVE X+10,50

350 PRINT MIDS$ (M$,C,1)

360 NEXT

370

380 GCOL 4,1

390 MOVE 0,450:PRINT "—-—-=—————————————— "
400 VDU4

410 PRINTTAB(3,0)"critical level"

The height of each bar is set randomly by the variable H. If you want to put in
your own values (data), then type the following extra lines. Line 170 must also be
deleted by typing 170 followed by RETURN.

50 DIM data(1l2)

82 FOR J=1 TO 12

84 PRINT "Input data for month "MIDS$ (M$,J,1);
86 INPUT data (J)

88 NEXT J

89 INPUT "CRITICAL LEVEL", level

155 H=data (C+1)

390 MOVE 0,level:PRINT"-—————————————— "

QUADRAT

This program can be used to solve equations of the form
Y=Ax? + Bx + C

The ‘roots of the equation’ are printed to two decimal places.
The number of decimal places is set by line 90.

The main program between lines 110 and 170 uses three procedures — one for
each of the three types of result. The main program is surrounded by

REPEAT

UNTIL FALSE

which keeps the program going for ever — or until the ESCAPE key is pressed.

34

Line 170 PRINT' ' ' prints three blank lines to separate one set of results from
the next.
10 REM QUADRAT
20 REM JOHN A COLL BASED ON A PROGRAM
30 REM BY MAX BRAMER, OPEN UNIVERSITY
40 REM VERSION 1.0 /16 NOV 81
50 REM SOLVES AN EQUATION OF THE FORM
60 REM A*X*2 4+ B*X + C
70 ON ERROR GOTO 350
80 MODE 7
90 @%=2020A
100 REPEAT
110 PRINT "What are the three coefficients ";
120 INPUT A,B,C : IF A=0 THEN 110
130 DISCRIM=B*2-4*A*C
140 IF DISCRIM<0 THEN PROCcomplex
150 IF DISCRIM=0 THEN PROCcoincident
160 IF DISCRIM>0 THEN PROCreal
170 PRINT'''
180 UNTIL FALSE
190 END
200
210 DEF PROCcomplex

220
230
240
250
260
270
280
290
300
310
320
330
340
350

PRINT "Complex roots X=";-B/(2*A);

PRINT " +/- "; ABS(SQR(-DISCRIM)/(2*A)) "i"
ENDPROC
DEF PROCcoincident

PRINT "Co-incident roots X=";B/(2*A)
ENDPROC

DEF PROCreal

X1=(-B+SQR(DISCRIM))/ (2*A)

X=2 (-B-SQR(DISCRIM))/ (2*A)

PRINT "Real distinct roots X=";X1l;" and X=";X2
ENDPROC

@%$=&90A:REPORT:PRINT" at line "ERL

>RUN
What are the three coefficients ?1,-1,-2
Real distinct roots X=2.00 and X=-1.00

What are the three coefficients ?3,3,3
Complex roots X=-0.50 +/- 0.871

35

What are the three coefficients ?1,2,1
Co-incident roots X=1.00

What are the three coefficients ?
Escape at line 120
>

FOURPNT

This program draws a pattern (lines 80 to 140) and then changes foreground and
background colours with a half second pause between each change.

10 REM FOURPNT/DRAWS A PATTERN WITH 4 POINTS
20 REM JOHN A COLL

30 REM VERSION 1 /16 NOV 81
50 MODE 4

60 VDU 29,640;512

70

80 FOR A=0 TO 500 STEP 15
90 MOVE A-500,0

100 DRAW 0,A

110 DRAW 500-2,0

120 DRAW 0, -A

130 DRAW A-500,0

140 NEXT A

150

160 FOR B=0 TO 7 :REM CHANGE THE COLOUR
170 FOR C=1 TO 3

180 T=TIME :REM WAIT A WHILE
190 REPEAT UNTIL TIME-T>50
200 vDbU 19,3,c,0,0,0
210 vbU 19,0,B,0,0,0
220 NEXT C
230 NEXT B

TARTAN

This program builds up a changing pattern by overdrawing lines on the screen.

The main program between lines 90 and 140 loops for ever and calls various
subroutines as necessary. The use of subroutines with implied GOTO (eg line
170) results in a structure which is not easy to follow! It would be better to use
‘structures’ such as procedures (see chapter 17).

10 REM TARTAN
20 REM BASED ON RESEARCH MACHINES DEMO
30 REM VERSION 1.0/16 NOV 81

36

40

50

60

70

80

90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470

MODE 2: REM ALSO WORKS IN MODE 5
R=1: D=1: X=0

Y=RND (800)

MOVE X, Y

REPEAT
ON D GOSUB 160,260,350,430
IF RND(1000)<10 THEN R=D-1
GCOL R, (D*1.7)

DRAW X, Y

UNTIL FALSE

X=X+800-Y

IF X>1000 THEN 220
¥Y=800

D=2

RETURN

Y=800/1000-X
X=1000: D=4
RETURN

¥Y=Y-800+X

IF Y<0 THEN 310
X=1000: D=3
RETURN

X=1000+Y
Y=0: D=1
RETURN

X=X-Y

IF X<0 THEN 400
Y=0: D=4

RETURN

Y=-X: X=0: D=2
RETURN

Y=Y+X

IF Y>800 THEN 480
X=0: D=1

RETURN

480
490
500

37

X=Y-800
Y=804: D=3
RETURN

PERSIAN

This program produces a pattern by drawing hundreds of lines. Random colours
are selected by lines 60 and 70. Line 80 moves the origin (middle) of the picture
to the middle of the screen.

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200

REM PERSIAN

REM ACORN COMPUTERS

REM VERSION 2/16 NOV 81
MODE 1

D%$=4

vDU 19,2,RND(3)+1,0,0,0
vDU 19,3,RND(3)+4,0,0,0
VDU 29,640;400;

J1%=0

FOR K%=400 TO 280 STEP -40
REPEAT J2%=RND (3): UNTIL J2%<>J1%
J1%$=J2%

GCOL 3,J1%

FOR I%$=-K% TO K% STEP D%
MOVE K%, I%

DRAW -K%,-I%

MOVE I%, -K%

DRAW -I%,K%

NEXT

NEXT

SQR ROOT

This program calculates the square root of a number by repeating a simple
operation (line 90 and 200) until the calculated result stays steady. The program
also indicates how long the calculation takes.

This program illustrates an important mathematical technique but of course you
don’t have to work out square roots this way — the function SQR is provided in
BASIC (see chapter 33).

10
20
30
40
50
60

REM ROOT

REM VERSION 1.0 / 16 NOV 81

REM TRADITIONAL ITERATION METHOD
REM TO CALCULATE THE SQUARE ROOT
REM OF A NUMBER TO 3 DECIMAL PLACES
MODE 7

38

70 ON ERROR GOTO 300
80 @%=&2030A
90 REPEAT
100 count=0
110 REPEAT
120 INPUT "What is your number ",N
130 UNTIL N>O0
140 DELTA=N
150 ROOT=N/2
160 T=TIME
170 REPEAT
180 count=count+1l
190 DELTA=(N/ROOT-ROOT) /2
200 ROOT=ROOT+DELTA
210 UNTIL ABS (DELTA) <0.001
220 T=TIME-T
230 PRINT
240 PRINT "Number ",N
250 PRINT "Root ",ROOT
260 PRINT "Iterations", count
270 PRINT "Time",T/100;" seconds"
280 PRINT''
290 UNTIL FALSE
300 R%=&90A:PRINT:REPORT:PRINT
>RUN
What is your number?34

Number 34.000
Root 5.831
Interations 5.000
Time 0.070 seconds

What is your number?125

Number 125.000
Root 11.180
Interations 6.000
Time 0.080 seconds

What is your number?

BRIAN

This program prints a ‘path in the grass’.

39

It is a fine example of a ‘non-structured’ use of BASIC; you might like to try and
‘structure’ it.

90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470

REM BRIAN2

REM (C)

BRIAN R SMITH 1980

REM ROYAL COLLEGE OF ART, LONDON
REM VERSION 1.0 /16 NOV 81

INPUT
INPUT
INPUT
INPUT
CLsS
F=1

"NUMBER OF CYCLES e.g. 1 to 5 ", T
"BACKGROUND SYMBOL e.g. +",D$
"MOTIF (<20 chrs.)",A$

"TEXT AFTER DESIGN",BS

READ A,G,S,C,D,N
H=(D-C) /N

X=0
J=1
X=X+S

Y=SIN (X)
Y1=1+INT((Y-C) /H+0.5)

I=0
I=I+1

IF I=Y1 THEN 310
PRINT DS$;
GOTO 420

Z=Z+F

IF Z>0 THEN 350

F=-F

GOTO 450
IF Z<=LEN(A$) THEN 390

F=-F
z=z2-1

GOTO 310
S$=LEFTS$ (AS$, 2)
PRINT S$;

I=I+2

IF I<40 THEN 270

PRINT

GOTO 230

J=J+1

IF J>T THEN 490

z2=72+1

40

480 GOoTO 310

490 FOR K=1 TO 39

500 PRINT D§$,

510 NEXT K

520 PRINT

530 PRINT BS

540 DATA 0,6.4,0.2,-1,1,20
>RUN

NUMBER OF CYCLES e.g. 1 to 5 ?3
BACKGROUND SYMBOL e.g. +7?2.
MOTIF (<20 chrs.)?Hello David!!
TEXT AFTER DESIGN?That's all folks

SINE

This program draws a sine wave on the screen. The computer can draw dotted
lines and the feature is used to fill in one part of the sine wave (line 130).

The computer can also print letters anywhere on the screen not just on a 40 by 25
grid. Lines 190 to 220 print a message in the shape of another sine curve.

10 REM SINE

20 REM JOHN A COLL

30 REM VERSION 2 / 16 NOV 81

50 MODE 4

60 VDUS5

70 GCOL 0,1

80 vDU19,1,1,0,0,0

90 MOVE 16,400
100
110 FOR X=0 TO 320
120 IF X<150 THEN MOVE 4*X+16,400
130 PLOT 21,4*X+16,300*SIN(X/48)+400
140 NEXT

160 GCOL 0,1

170 A$="SINE WAVES ARE FAR MORE INTERESTING
180

190 FOR X=1 TO 39
200 MOVE X*1280/40,300*SIN(X/6)+500
210 PRINT MIDS (AS$,X,1)
220 NEXT
230
240 VDU4
250 END

41
DOUBLE HEIGHT

Here is an example of an assembly language program embedded within a BASIC
program between the two brackets [and] which enables you to type in double
height letters on the screen.

10 REM DOUBLE HEIGHT IN TELETEXT
20 WIDTH 36: MODE 7

30 vDU 28,0,23,39,0

40 write=!&820E AND &FFFF

50 DIM PROG 100

60 FOR PASS = 0 TO 1

70 P%$= PROG

80 [

90 OPT PASS*3
100 CMP#&D : BNE noter
110 PHA :JSR write
120 LDA#&8D : JSR write
140 LDA#&08 : JSR write
150 LDA#&8D : JSR write

160 PLA : RTS

170 .noter CMP #&20 : BCS legal
180 JMP write

190 .legal PHA : JSR write
200 LDA #$0B : JSR write
210 LDA #&08 : JSR write
220 PLA : PHA : JSR write
230 LDA #&0A : JSR write
240 PLA : RTS
250]
260 NEXT PASS
270 !'&820E=!'&20E AND &FFFFO0000 OR PROG
280 END

Line 270 changes the ‘write character’ routine indirection vector so that all
output is sent to the new routine given above. This routine tests for a ‘return’
code (line 100) and if it finds one it issues Teletext double height control codes on
to the next two lines. Otherwise the routine just prints the characters on two
lines one above the other so as to produce a double height character. This routine
has a quite different effect in non-Teletext modes. Try it. Press BREAK after you
have finished with this program.

Before we leave this section, here are a few points about entering lines into
BASIC.

1. Control characters, for example CTRL B, will only be ‘reflected’ in BASIC and
not entered into any program lines, strings etc.

42

2. Spaces entered in lines will be preserved, including those at the end of the line.
This allows blank lines to be entered eg

10 space RETURN

to separate program sections. Some of the programs above have such blank lines.
Because of this you should avoid using COPY past the true end of a line.

3. Most keywords can be abbreviated using a full stop, eg L. for LIST, SA.
for SAVE. See chapter 48 for a list of abbreviations.

43

7 AUTO, DELETE, REM,
RENUMBER

BASIC provides a number of facilities to help the user enter programs into the
computer and modify programs already there. As you will know by now, it is
usual to use line numbers 10, 20, 30, 40 etc for programs. This leaves gaps where
the user can insert extra lines later on — for example, he or she might insert lines
11, 12, 13 and 14. When typing in a line of program the user types in the line
number first and then the rest of the line. For example:

10 PRINT "THIS IS A PROGRAM"

The command AUTO instructs the computer to ‘assign’ the line numbers
automatically for the user. As an option you can tell the computer to start
assigning lines from any number. Thus AUTO 300 would make the computer
produce line number 300, then 310, then 320, etc. There are other options, too,
which are explained in chapter 33.

The command DELETE allows the user to delete a group of lines from his or her
program. When you are writing a long program you often need to be able to delete
a large section of it. The keyword DELETE is followed by two numbers which
give the first and last lines that you wish to remove.

For example
DELETE 150,330
would delete all the lines with numbers between 150 and 330.

Single lines can be removed by typing in the line number and pressing
RETURN.

REM is a very useful statement. It enables you to put remarks in your program
to remind you (not the computer) what is going on. If you are developing a big
program — or loading a simple program that you have not used for some time it is
very easy to forget how it works or what it does. Normally people place several
REMs at the start of a program to give general information and then put a REM
at major points further down the program.

44

Once you have entered a program you will very often find that the line numbers
are no longer in a numeric sequence. As we have seen the command RENUMBER
makes the computer go through the whole program changing all the line numbers
so that they start at line 10 and increase by 10 for each successive line. When you
have finished a program it is a good idea to RENUMBER it. If you have a
program in the computer try

RENUMBER RETURN
and then LIST the program to see the effect. After that try
RENUMBER 900,100 RETURN

and you will see, when you list the program, that the computer has renumbered
the whole program but the new version has line numbers starting at 900 and this
time increasing by steps of 100.

It is possible to put more than one statement on a line. For example, the two
statements

CLS (clear the screen)
and
PRINT "HELLO"

can be put on one line, as long as the individual statements are separated by
colons, for example:

CLS : PRINT "HELLO"

You can put as many statements on a line as you like as long as the line has less
than about 230 characters. The argument for using ‘multiple statement lines’ is
that it saves some memory space and may make the program work a little faster.
But the argument against is that you will notice it becomes much more difficult
to follow the program when you list it (see chapter 16).

45

8 Introducing graphics

Modes, colours, graphics and windows

The BBC Microcomputer can display text and windows in eight different screen
modes. Only one mode can be used at a time. When the computer is turned on,
and also when the BREAK key is pressed, it is in MODE 7. MODE 7 will
display text (40 columns and 32 rows) and/or graphics. MODE 7 differs from all
the other modes in many ways and a whole chapter (chapter 28) has been
devoted to it. In particular it is not easy to draw lines or triangles in MODE7 and
the colour of the text is changed in a different way. Finally some characters are
displayed on the screen differently in this mode — for example the character [is
displayed as «.

The description that follows assumes that you are in MODE 5. To enter MODE 5
, simply type

MODE 5 RETURN

Note that pressing BREAK will return you to MODE 7 so avoid using BREAK .
The ‘panic button’ is marked ESCAPE. If you press this the computer will stop
what it is doing and return control to you. MODE 5 is a four colour mode which
means that up to four different colours can be shown on the screen at any time.
When you enter MODE 5 two ‘colours’ are displayed — white letters on a black
background. As you will be aware from earlier chapters the colour of the text can
be changed by using the COLOUR statement, and since this is a four colour
mode you can select from:

COLOUR 0 Black
COLOUR 1 Red

COLOUR 2 Yellow
COLOUR 3 White

The same four colours (black, red, yellow and white) may be selected for the
background with the commands:

COLOUR 128 (128+0) Black
COLOUR 129 (128+1) Red

COLOUR 130 (128+2) Yellow
COLOUR 131 (128+3) White

The colour can be used to change the colour of the text foreground and

46

background — but not the colour of any graphics: for that you need to use another
BASIC keyword — GCOL, which stands for Graphics COLour.
Graphics

Now for the graphics: when drawing lines and triangles positions on the screen
are given with two numbers (the X and Y coordinates).

1023
800 .C
[
1/00
Y coordinate 800
500
600 AY=¢
@ ——a/
9 X coordinate 1279

The point A has coordinates 600 across, 0 up. The point B is at position 100,500
and C is at 800,800.

The statement
DRAW 800,800

will draw a line from the last point ‘visited’ to 600,600. If no point has been
visited, the computer will assume that it starts from the point 0,0.

To move without drawing a line use the command MOVE. So to draw a line from
1000,0 to 1000,600 type

MOVE 1000,0 RETURN
DRAW 1000, 600 RETURN

DRAW 100,500 will draw another line, and so on. As well as MOVE and
DRAW there are PLOT commands for other effects. These are described in a
later chapter. The statement GCOL is used to change the graphics colour used
by the DRAW statement. GCOL is followed by two numbers, the first is
normally zero and the second determines the graphics colours, eg:

GCOL 0,0 Black lines
GCOL 0,1 Redlines
GCOL 0,2 Yellow lines

GCOL 0, 3 White lines

47

We'll consider what happens when the first number is not zero later on (chapter
29).

As with the text colours, you can change both foreground and background
colours. However, before that can be illustrated it will be easier to set up two
windows on the screen — one for text and one for graphics so that you are sure
which is which. We will then return to the GCOL statement.

Windows

At the moment the whole screen can be used for text and the whole screen can be
used for graphics. In some modes (eg MODE 5) we can restrict each to a specific
window — or section of the screen. In modes without graphics (MODE 3, 6 and
7) only text windows can be used. Imagine we want to create two windows as
shown below — on the left a graphics window, on the right a text window. Suppose
that the text window stretches from the top of the screen right to the bottom but
the graphics window stops short of the bottom:

Graphics Text
window window

109
)

¢ 300

Making a graphics window

Imagine a graphics window which has its edges a, b, ¢ and d ‘graphics units’ away
from the bottom left hand corner of the screen (which is always the starting point
for graphics).

1023

'}

d
Graphics
window

¢
le— a —»|

K
b
) L 4

[1279

48

The statement VDU 24 is used (with some numbers after it) to set up a
graphics window (VDU stands for Visual Display Unit). For the window shown
above the full statement is

VDU 24,a;b;c;d;

Note: There is a comma after the 24 and a semi-colon after all the other values.
The reason for this punctuation is given in chapter 34. So for our actual graphics
window we would put

VDU 24,0,;100;300;799;

In all screen modes which can support easily defined graphics the range of values
for a, b, ¢ and d is always the same: 0-1023 vertically, 0-1279 horizontally.

Making a text window
Unlike graphics, text ‘starts’ at the top left hand corner of the screen, so text
windows are defined using that point as zero.
Imagine the text window has edges a, b, ¢ and d ‘text units’ away from the top left
of the screen, as shown:

] 19

[

et 2.

Text
window

f——— e @]

le— o

31

The statement VDU 28 is used to set up the window as follows:
VDU 28,a,b,c,d

Note: There is a comma after the 28 and between the other values. There is no
comma at the end.

For the text window we wanted to set up, the statement would be
vDU 28,5,24,19,0
To prove that you now have two separate windows try

COLOUR 129
CLs

49
to fill the text window with red and

GCOL 0,130
CLG

to fill the graphics window with yellow.

Note: In the various different screen modes the number of text characters which
can be accommodated along the screen and down the screen is also different. This
affects the range of values for the horizontal distances a and c as follows:

MODES 0 and 3 (80 characters to a line) 0 to 79
MODEs 1,4,6 and 7 (40 characters to aline) 0 to 39

MODEs 2 and 5 (20 characters to a line) 0 to 19
Similarly the values of b and d depend on the MODE:
MODEs 0,1,2,4 and5 have 32 lines (0 to 31)
MODEs 3,6 and 7 have 25 lines (0 to 24)

To recap, to set up the windows press BREAK then type the following — with
RETURN at the end of each line. You are working in command mode rather
than writing a program, so the computer acts on each instruction as you press
RETURN. It also means that pressing BREAK while you are using windows
would destroy the text and graphics windows and send the computer back to
MODE 7.

MODE 5

VDU 24,0,;100;300;1000;
vDU 28,5,31,19,0

CLS

The command CLS clears the text from the screen. Now try typing the following
lines:

DRAW 0,1000
DRAW 100,1000
DRAW 0,0

DRAW 1000,1000

You will find that text is now only appearing in the text window and that
graphics are only appearing in the graphics window. If you want to clear the text
only, type

cLs RETURN
If you want to clear the graphics only, type
cLéc RETURN

50

(Normally cLsS clears the whole screen, but where independent text and
graphics areas are defined, CLS only clears the text.) You will also notice that
although some of the commands have told the computer to draw in areas of the
screen outside the graphics window, you will not see this on the screen.

Windows may overlap — in fact when you change mode both text and graphics
windows fill the whole screen, and you can move windows without destroying
what is on the screen, although changing mode does clear the screen. To reset
both text and graphics windows to the whole screen, eg in the middle of a
program, use VDU 26.

VDU 5 enables text to be drawn at any position inside a graphics window — see

chapter 34.

Changing the colours of text and graphics

Now back to text and graphics colours. Let us define the text background to be
red and the graphics background to be yellow:

COLOUR 129 Red text background

GCOL 0,130 Yellow graphics background

and then clear the text and graphics areas to their background colours:
cLS Clear text area

CLG Clear graphics area

Now to select the foreground colours for the two areas — for example to obtain
yellow letters (text foreground) type COLOUR 2 and to get black graphics lines

type

GCOL 0,0

Test this out by typing
DRAW 150,500

Although you start up (in MODE 5) with the four colours set to black, red, yellow
and white, you can select other colours (still of course only four at a time) by
using VDU 19, as we saw in chapter 1. See chapter 34 for more details of VDU
19.

So far we have been working in command mode. Next try typing in this program.
You can use MODE 4 to type the program in but nothing will happen until you
run the program. So, press BREAK and then the following:

10 MODE 5

20 vDU 24, 0; O; 500; 1000;
30 vbu 28,10,20,19,5

40 COLOUR 129

50 COLOUR 2

60 GCOL 0,130

70 CLS: CLG

80 FOR N = 1 TO 1000

90 PRINT "LINE"; N

100 GCOL 0, RND(4)

110 DRAW RND(500), RND(1000)
120 NEXT N

>RUN

You might like to try saving this program on cassette as described in chapter 5

51

52

9 More on variables

In an earlier chapter the idea of ‘variables’ was introduced. Variables are a
fundamental concept in computing, and it is not possible to go far without
understanding them.

As we have seen, it is possible to say
LET X = 12

or just

X =12

and the computer knows that it must label a ‘box’ in its memory with the name X
and that the current value of X is 12. With a variable it is possible to alter the
value of what is in the box but not the name of the box itself. The statement

X = 14
simply changes the value of X from 12 to 14. Similarly we can say
X = X+1

which looks unusual — like an equation which does not balance. In fact all that
this is doing is saying to the computer — whatever the value inside your box X,
increase it by 1 from now on.

So far we have considered only numeric variables — that is, variables which
contain numbers and on which arithmetic can be carried out. But the computer
has letters and symbols of various kinds on its keyboard — what about them?

Numbers and characters

Although we can talk of the ‘number’ 22, we can also consider 22 as a pair of
characters — in the same way as A, B, C, ?, $ are characters. In computing it is
important to be able to distinguish between numbers and characters. Arithmetic
can be carried out on numbers but not on characters. To give you an example to
show that this is not such an esoteric idea, consider 22. We can divide 22 by 2
and get 11 if 22 is taken to be a number. But if we talked about a train leaving
‘Platform 22’ the 22 here would be a pair of characters. You cannot, with a great
deal of meaning, divide ‘Platform 22’ by 2 and get ‘Platform 11°.

Next it’s important to have a look at the other major kind of variable used in
computing — one which can hold characters, not numbers. This is called a string
variable.

53

String variables

String variables are used to store ‘strings of characters’ eg words. They can be
recognised easily because they always end with a dollar sign. Here are a few
examples of string variables containing various strings of characters. Note that
these strings must be enclosed by quotation marks.

X$ = "HELLO"
DAY$ = "SUNDAY 3RD JANUARY"
NAMES$ = "ALEX"

In the first example X$ is called a string variable and HELLO is called a string.
Once X$ has been set to contain HELLO we can use statements like

PRINT X$
in just the same way as we said earlier.

Z =5
PRINT Z

String variables can be used to hold any number of characters between zero
(empty) and 255 (full).

X$ = "" will empty X$
X$ = "A" will set X$ to contain one character
Of course you cannot use ordinary arithmetic on string variables. For example

NAMES$ = "SUSAN"
PRINT NAMES$ / 10

does not make sense. You can’t divide Susan’s name into ten parts. While you can
add, subtract, multiply and divide using numeric variables the only similar
operation that can be carried out on string variables is that of ‘addition’. Thus

10 AaS "TODAY IS "
20 BS "SUNDAY"

30 C$ = A$ + BS

40 PRINT CS$

>RUN

TODAY IS SUNDAY

The importance of understanding string variables cannot be over-emphasised.
Later chapters develop this idea.

54

How numbers and letters are stored in the computer’s
memory

Each memory location in the computer can be used to store any number between,
and including, 0 and 255, and yet some way has to be found to store letters and
also very large numbers. A number of codes are used in the computer in much the
same way that different groups of people have used different codes to count. Thus
the number 1984 can be written as

MCMLXXXIV in Roman numerals
or 1984 in decimal Arabic numerals
or 7C0 in hexadecimal Arabic
or 11111000000 in binary

The need to transmit and store letters has produced another set of codes. The
letter ‘J’ is coded in various ways thus

- ——— in Morse

10001010 in ASCII binary

4A in ASCII hexadecimal
74 in ASCII decimal

The ASCII (American Standard Code for Information Interchange) is by far the
most common code used by computers to represent characters. A complete code
table is given in Appendix C.

When you tell the computer
A$ = "HELLO"

it stores the ASCII codes for the letters in the word HELLO in successive
memory locations. The fact that they are stored as ASCII codes is really
irrelevant as far as the user is concerned, it just works. However, there are times
when the user needs to know about the ASCII codes and two functions are
provided to convert between characters and ASCII codes.

The function ASC converts a character into its ASCII code. Thus
PRINT ASC("J")
would print 74.

The reverse function, of converting an ASCII code into a character, is performed
by CHRS.

Thus PRINT CHRS$ (74) would print the letter J. In fact, one quite often
needs to use PRINT CHRS, so there is a further shortened version of that
statement. It is VDU; VDU 74 would also print the letter J.

55

Those doing more complicated programming will need to know the exact way that
the computer stores strings and numerics in memory. Full information is given at
the end of chapter 39.

Real and integer variables

The numeric variables you have met so far are technically known as real
variables. They can be used to store any number between 170 000 000 000 000
000 000 000 000 000 000 000 000 (1.7 X 10®) and 0.000 000 000 000 000 000 000
000 000 000 000 000 001 47 (1.47 x 10™) and can include a decimal point. Of
course a similar range of negative numbers can be stored too. The problem with
real numbers is that they are only stored to nine figure accuracy, although this is
generally accurate enough for most purposes. Note that values can be assigned to
variables in exponent format, which is especially useful with very large or very
small numbers. For example, instead of typing

A=15000000000000000000000000000000,
A=1.5E31

could be typed instead. Another type of numeric variable is an integer variable.
Integer variable names are distinguished by having a percent sign as the last
character of the variable name. They can only store whole numbers between
-2,147,483,648 and +2,147,483,647.

On the other hand integer variables are held with complete accuracy — so
accounting problems can be dealt with the nearest penny in £2M. Arithmetic
calculations with integer variables are significantly faster than with real
variables. (See chapter 32 for other suggestions for speeding up programs.)

The two integer operators MOD and DIV are described in chapter 23.

The variables A% to Z% are special in that they are permanently allocated space
in memory. Typing RUN or NEW does not destroy them. As a result the
variables A% to Z% can be set in one program and then used in another program
later on without losing their values. Of course the values will be lost if the
machine is switched off but otherwise they will remain, even if BREAK is
pressed.

The variables A% to Z% are called the resident integer variables.

56

Summary

Three main types of variables are supported in this version of BASIC; they are
integer, real and string.

Integer Real String
Example 346 9.847 “HELLO”
Typical variable A% A A$
Name SIZE% SIZE SIZE$
Maximum size 2,147,483,647 1.7 x 10® 255 characters
Accuracy 1 digit 9 sig figs -
Stored in 32 bits 40 bits ASCII values

All variable names can contain as many characters as required and all characters
are used to identify the variable. Variable names may contain capital letters,
lower case letters and numbers and the underline character. Variable names
must start with a letter and must not start with a BASIC keyword.

57

10 PRINT formatting and
cursor control

This chapter describes the PRINT statement which is used to put text on the
screen or to a printer. It assumes that you understand that a variable (such as X)
can be used to hold a number and that a string variable (such as A$) can be used
to hold a line of text.

The following program will help to illustrate some of the ideas. Press BREAK
and then type in the following program.

10 X=8
20 A$="HELLO"
30 PRINT X, X, X

When this is RUN it produces this:

>RUN
8 8 8

This shows that commas separating items in the print list (the print list is the
list of things to be printed — X, X, X in this case) will force items to be printed in
columns or “fields” ten characters wide. Numbers are printed at the right hand
side of each column whereas words are printed on the left hand side. You can see
the difference if we add some lines to the program.

10 X=8

20 A$="HELLO"

30 PRINT X,X/2,X/4
40 PRINTAS$,AS$,AS

>RUN
8 4 2
HELLO HELLO HELLO
— field —>
width

Field widths in different screen modes

As we said above, the width of each ‘field’ is automatically set to ten characters
when the computer is switched on.

Since the computer can operate in different screen modes, displaying 20, 40 or 80
characters to the line, clearly the number of fields which can be displayed on

58

the screen will differ depending on the MODE. So try typing in a new line and
running the program above.

5 MODE 5
or

5 MODE 0

80 character modes 40 character modes 20 character modes
(MODES 0 and 3) (MODES 1,4,6 and?7) (MODES 2 and5)

Note: the widths of the fields can be altered by the use of a special command, @ %
(see below).

Commas between items in the print list always put things in columns or ‘fields’.
On the other hand semi-colons between items in the print list cause items to be
printed next to each other, without spaces:

10 X=8

20 AS$S="HELLO"

30 PRINTAS; X; AS$; X; X
>RUN

HELLOSHELLOS8S8

Of course if the first item is a number it will be printed to the right of a ‘field’
unless it is preceded by a semi-colon.

10 X=8
20 A$="HELLO"
30 PRINT X; A$; AS

>RUN
S8HELLOHELLO

or

10 X=8

20 A$="HELLO"

30 PRINT ;X;AS$;A$
>RUN

8HELLOHELLO

59

As well as printing variables and string variables as shown above the computer
can print any characters placed in between double quotes exactly as they have
been typed in, provided they are in a PRINT statement. The next program asks
for your name and remembers it in the string variable N$.

10 PRINT "WHAT IS YOUR NAME";

20 INPUT NS

30 PRINT "HELLO";N$;". HOW ARE YOU?"
>RUN

WHAT IS YOUR NAME ?JOHN

HELLO JOHN. HOW ARE YOU?

Notice the semi-colon at the end of line 10 that makes the computer stay on the
same line while it waits for you to provide it with a value for N$. Without the
semi-colon this happens:

>RUN

WHAT IS YOUR NAME

?JOHN

HELLO JOHN. HOW ARE YOU?

Note also the space after the word HELLO and before the word HOW in line 30.
Without these spaces the words run together to produce

HELLOJOHN.HOW ARE YOU?

It is also legitimate to do calculations in a print list — for example

10 X=4.5
20 PRINT X, X+2,X/3,X*X
>
>RUN
4.5 6.5 1.5 20.25

but look what happens if instead of X=4.5 weputx = 7

10 X=7
20 PRINT X, X+2,X/3,X*X
>RUN
7 92.33333333 49

because X/3 is 2.33333333 it makes the number move left in the field until it
immediately follows the previous field which contains a 9 and appears to give a
result 92.33333333, which is misleading. For this reason, amongst others, the
next section is important if you want to print out a lot of numbers.

60

Altering the width of the field and the way in which
numbers are printed

It is often useful to be able to specify the width of the field when printing columns
of figures or words and also to be able to specify the number of decimal places to
which numbers will be printed.

On the BBC Microcomputer this can be done by setting a special ‘variable’ (called
@%) in a particular way. For the moment this must be treated as a bit of ‘magic’
but, for example, if we write

@%=&20209

then this statement tells the computer to print in a field nine characters wide,
and that number will be printed with a fixed number of decimal places — in this
case, to two decimal places. The following program shows this being used:

5 @%=&20209

10 X=7
20 PRINT X, X+2,X/3,X*X
>RUN
7.00 9.00 2.33 49.00

For the more technically minded

@ % is made up of a number of parts.

& 2 02 09
Means Format number Two decimal Field width
hexadecimal 2 ie fixed places of nine
numbers follow number of characters

decimal places

@%=&20309 would give Format 2, three decimal places and field width of nine
characters.

5 @%=&20309

10 X=7
20 PRINT X,X+2,X/3,X*X
>RUN
7.000 9.000 2.333 49.000

If you want four decimal places and a field width of 12 you would put the
following:

5 @%=&2040C

10 X=7
20 PRINT X,X+2,X/3,X*X

61

>RUN
7.0000 9.0000 2.3333 49.0000

A few points:

1. The maximum number of significant figures is ten.

2. Format 1 gives figures as exponential values

Format 2 gives figures to a fixed number of decimal places.

Format 0 is the ‘normal’ configuration.

3. To set the print format back to its initial value (Format 0 and field width ten),
set @%$=&90A.

The & tells the computer that the numbers which follow are ‘hexadecimal’
numbers — that is, numbers based not on 10s but on 16s. Here is a list of
hexadecimal numbers (which include the letters A to F).

Decimal number Hex number
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9

10 A
11 B
12 C
13 D
14 E
15 F
16 10
17 11
18 12
19 13
20 14

If you want the computer to print a number or variable in hex then you must put
the symbol ~ before it. For example

PRINT ~12

will give C.

62
TAB(X)

As well as controlling the print layout by using the comma and semi-colon you
can use the TAB statement to start printing at a particular place on the screen.
You will remember that there can be 20, 40 or 80 characters to the line
depending on the MODE. MODE 7 has 40 characters. Try this:

10 PRINT "012345678901234567890"
20 F=16

30 REPEAT

40 PRINT TAB(10);F; TAB(15);2*F

50 F=F+1
60 UNTIL F=18
>RUN
012345678901234567890
16 32
17 34

TAB(10) prints the value of F ten spaces from the left and then TAB (15)
prints the value of 2*F 15 spaces from the left, on the same line. Note the semi-
colon after TAB (10) - this causes the computer to begin printing at that point.

Be sure to place an open parenthesis immediately after the word TAB. If you
leave a space between them, thus: TAB (10) the computer will not
understand and will report

No such variable

If you are beyond the place that you tell the computer to tab to, for example in
position 15 with request to TAB (10), then the computer moves to the next line
and then tabs ten spaces.

Type in this replacement line:

40PRINT TAB(15);F; TAB(10); 2*F

>RUN
012345678901234567890
16
32
17
34
TAB(X,Y)

A useful extension of the TAB statement allows print to be placed at any specific
character location anywhere on the screen. You will remember that in MODE 7
the text coordinates are

63

g ———X 39

24

This program counts to 1000, printing as it goes:

5 CLs

10 0=1

20 REPEAT

30 PRINT TAB(18,5);0Q
40 0=0+1

50 UNTIL Q=1000

The two numbers in parentheses after TAB represent the X and Y text
coordinates where printing should start (see also the third program in chapter
23).

Advanced print positioning

Using PRINT TAB (X,Y) allows text etc to be printed in any character ‘cell’
in the appropriate MODE. In MODE 5 there are 20 cells across the screen and
32 cells (lines) down the screen. Sometimes it is useful to be able to position
characters on a much finer grid. The statement VDU5 enables text to be printed
at the exact position of the graphics cursor. The statement MOVE can be used to
position text. Note that this will not work in MODE 7. You will remember that
the graphics screen is addressed as shown below

1023

$ ——————->X 1279 in all modes except MODE 7.

64

Each character cell is 32 graphic units high and, in a 40 character mode such as
MODE 4, 32 units wide. Suppose we want to subscript a letter to produce for
example the chemical formula H,. This can be done as follows

10 MODE 4

20 VDU 5

30 MOVE 500,500
40 PRINT "H";
50 MOVE 532,484
60 PRINT "2"

70 VDU 4

Note that the letter H is positioned with its top left corner at 500,500. The 2 is
then printed one character to the right (532) and a half a character down (484).
Again the top left of 2 is at 532,484.

A neater way of achieving the same effect is to replace line 50 with
PLOT 0,0,-16

One further feature of the BBC Microcomputer which is not normally available
on ‘personal’ computers is the ability to superimpose characters. One obvious use
of this facility is to generate special effects such as accents and true underlining.
The short program below prints the word ré1e with the accent correctly placed.

10 MODE 4

20 VDU 5

30 X=500

40 Y=500

50 MOVE X,Y

60 PRINT "role"
70 MOVE X+32,Y+16
80 PRINT "~"

90 VDU 4

Once in VDU5 mode the screen will not scroll up when you reach the bottom of
the page, instead the writing will start from the top of the screen again. In
addition characters will be superimposed on those already on the screen. When in
VDU5 mode you can only print things in the graphics window and not in the text
window, and colour is selected with the GCOL statement. vDU5 will not work
in text-only modes such as MODES 3,6 and 7.

65

Cursor control

The text cursor is the flashing line on the screen which shows where text will
appear if it is typed in on the keyboard. The text cursor also indicates where text
will be printed on the screen by a PRINT statement. The cursor can be moved
around the screen by a number of special ‘control codes’, some of which are as
follows.

Code Effect

8 Move cursor left

9 Move cursor right
10 Move cursor up
11 Move cursor down

These code numbers can be used with either the VDU command or the PRINT
command — eg to move left four spaces, use either

VvDU 8,8,8,8

or

PRINT CHRS$ (8) ;CHRS$ (8) ;CHRS$ (8); CHRS (8)
Clearly the VDU command is simpler to type in in most cases.

In addition to the codes shown above the user can use the PRINT TAB (X, Y)
statement to move the cursor directly to any character position on the screen. As
we’ve seen in MODE 7 the screen can contain up to 25 lines (numbered 0 to 24)
of up to 40 characters per line.

X
gﬁ 39
[]
Y
\
24

The position marked on the diagram above is 18 positions across and six lines
down. The cursor could be moved directly there with the statement

PRINT TAB(18,6);

Note that the opening parenthesis must immediately follow the word TAB thus
TAB(and not TAB (.

66
Exactly the same effect can be obtained with the statement
VDU 31,18,6

The cursor can be moved to the ‘home’ position at the top left of the screen with
the statement

VDU 30

If the user wishes to clear the screen as well as move the cursor to the home
position then he or she can use the statement

VDU 12

The last of the VDU commands directly to do with cursor control is vDU 127
which moves the cursor left and deletes the character there. If you wish to delete
the next four characters and then return the cursor to its initial place you could
use

vDbuU 9,9,9,9,127,127,127,127

Cursor on/off

In some applications the flashing cursor can be a distraction. The cursor can be
turned off with the statement

vDU 23,1,0;0;0;0;
The cursor can be turned back on with the statement
vDU 23,1,1;0;0;0;

or by changing screen mode using a MODE statement.

67

11 Input

The previous chapter showed how to get information out of the computer and on
to the screen. This chapter deals with getting things from the keyboard into the
computer. When a program is running there will often be a need for it to request
some information from the person at the keyboard.

10 PRINT "HOW OLD ARE YOU"

20 INPUT AGE

30 IF AGE<18 THEN PRINT "YOU ARE TOO YOUNG AT ";

40 IF AGE = 18 THEN PRINT "CONGRATULATIONS ON BEING

.
’

50 IF AGE>18 THEN PRINT "YOU ARE PAST IT IF YOU ARE

.
’

70 PRINT ; AGE

>RUN

HOW OLD ARE YOU

222

YOU ARE PAST IT IF YOU ARE 22

Line 20 of the above program prints a question mark on the screen and then
takes in everything that is typed on the keyboard until RETURN is pressed.
Line 20 says INPUT AGE so the computer is expecting a number since AGE is
a numeric variable rather than a string variable (see chapter 9). If words are
supplied instead of numbers then the computer assumes that the number is zero.

>RUN

HOW OLD ARE YOU

?I DON'T KNOW

YOU ARE TOO YOUNG AT O

Because line 20 said INPUT AGE a number was expected. If you want to
INPUT a string (word or group of words) then you must place a string variable
(eg NAME $) on the input line.

10 PRINT "WHAT IS YOUR NAME"

20 INPUT NAMES

30 PRINT "HELLO ";NAMES$;" HOW ARE YOU?"
>RUN

WHAT IS YOUR NAME

?JOHN

HELLO JOHN HOW ARE YOU?

68

You must follow the word INPUT with a numeric variable if you are expecting a
number and with a string variable if you are expecting a string.

As you will have seen from the examples above you usually need to print a
question on the screen to tell the person at the keyboard what you are waiting
for. In the last example the question was ‘What is your name’. Instead of placing
this in a separate PRINT statement you can include the question on the INPUT
statement.

20 INPUT "WHAT IS YOUR NAME ", NAMES$
30 PRINT "HELLO ";NAMES$;" HOW ARE YOU?"
>RUN

WHAT IS YOUR NAME ? SUSAN
HELLO SUSAN HOW ARE YOU?

Notice the punctuation between the question ‘What is your name’ and the string
variable NAME$. It is a comma. Notice also that the computer printed a question
mark after the question when the program was run. It always prints a question
mark on an INPUT statement if a comma is used to separate the question from
the string variable. If you leave the comma out of the program the computer will
leave the question mark out when the program is RUN.

20 INPUT "WHAT IS YOUR NAME " NAMES

30 PRINT "HELLO ";NAMES$;" HOW ARE YOU?"
>RUN

WHAT IS YOUR NAME STEPHEN ALLEN

HELLO STEPHEN ALLEN HOW ARE YOU?

The INPUT statement, which we have explored above, requires that the user
presses the RETURN key after he or she has entered the reply. Until the
RETURN key is pressed the user can delete errors with the DELETE key or
delete the whole entry so far with CTRL U.

Several inputs can be requested at one time. If you type

10 INPUT A,B
20 PRINT A,B

two numbers will be expected by the computer. They can either be typed in
separated by commas, or both can be followed by RETURN.

The INPUT statement will ignore leading spaces and anything after a comma
unless the reply is inside quotation marks.

10 INPUT AS
20 PRINT AS
>RUN

?ABC, DEF
ABC

69

The INPUT LINE statement can be used in the same way as INPUT, but it
will accept everything that is typed, including leading spaces and commas.
Replace line 10 by

10 INPUT LINE AS
>RUN

?ABC, DEF
ABC, DEF

Of course if you make the program

10 INPUT AS$,BS
20 PRINT AS$,BS

you will get

>RUN
?ABC, DEF
ABC DEF

because now two different inputs are needed in line 10.

12 GET, INKEY

Sometimes it is useful to be able to detect a key as soon as it is pressed without
having to wait for the RETURN key to be pressed. For example most games
react immediately when a key is pressed. There are a group of four functions
which respond to single keystrokes.

GET
GETS$
INKEY
INKEYS$

The GET and GET$ functions wait until a key is pressed; the INKEY and
INKEYS$ pair give up after a while if no key is pressed.

100 A$ = GETS
will wait (for ever) until a key is pressed but
100 A$ = INKEY$(200)

will wait for only two seconds (200 hundredths of a second). If no key is pressed
within two seconds then the computer will move on to the next line of the
program and A$ will be empty. If a key was pressed after say one second then
the computer will immediately move on to the next line of the program and will
put the character typed into AS$.

100 PRINT "DO YOU WANT TO GO ON"

110 PRINT "YOU HAVE 2 SECONDS TO REPLY"

120 AS$=INKEYS$ (200)

130 IF AS$="" THEN PRINT "TOO LATE YOU MISSED IT"
140 IF AS$="Y" THEN PRINT "COURAGEOUS FOOL!"

150 IF A$="N" THEN PRINT "COWARD"

One of the most common uses of GET$ is to wait at the bottom of a page for the
user to press any key when he or she is ready to go on.

100 A$ = GETS

GET and INKEY are very similar to GET$ and INKEY$ but instead of

returning a character which can be put into a string variable they return a
number which is the ASCII code of the character. The ASCII code of Y’ is 89 and
the ASCII code of ‘N’ is 78, so the last program could be re-written as

71

100 PRINT "DO YOU WANT TO GO ON"

110 PRINT "YOU HAVE 2 SECONDS TO REPLY"

120 A=INKEY (200)

130 IF A=-1 THEN PRINT "TOO LATE YOU MISSED IT"
140 IF A=89 THEN PRINT "COURAGEOUS FOOL!"

150 IF A=78 THEN PRINT "COWARD"

You will see that ‘no reply’ returns the value -1 when using INKEY and returns
an empty string when using INKEY $.

Advanced features

Another important use of INKEY and GET is with the group of four direction
keys at the top of the keyboard. Normally these are used for editing, but a special
statement can make these keys produce ASCII codes like all the other keys on
the keyboard. They can then be used by a program for some special purpose — for
example to move a point around the screen. The statement *FX 4,1 makes
the editing keys produce ASCII codes and the statement *FX 4, 0 returns the
keys to their editing function. The keys produce the following codes:

COPY 135 or (&87)
136 or (&88)
137 or (&89)
138 or (&8A)
139 or (&8B)

>« 11

For example:

10 *FX 4,1

20 MODE4

30 X=500

40 Y=500

50 REPEAT

60 PLOT 69,X,Y

70 K=GET

80 IF K=136 THEN X=X-4
90 IF K=137 THEN X=X+4
100 IF K=138 THEN Y=Y-4
110 IF K=139 THEN Y=Y+4
120 UNTIL Y=0
130 *FX 4,0

This program waits at line 70 for a key to be pressed. The program shown above
would often be part of a much larger program in which case you would not want
everything to stop until a key is pressed. Here it would be better to use
K=INKEY (0) atline 70 which will let the computer have a quick look to see if
a key has been pressed but not wait at all.

72

10
20
30
40
50
60
70
80
90
100
110
120
130

*FX 4,1

MODE 4

X=500

Y=500

REPEAT

PLOT 69,X,Y
K=INKEY (0)

IF K=136 THEN
IF K=137 THEN
IF K=138 THEN
IF K=139 THEN
UNTIL Y=0

*FX 4,0

X=X-4
X=X+4
Y=Y-4
Y=Y+4

73

13 TIME, RND

TIME

The BBC Microcomputer contains an ‘elapsed time’ clock. That means that the
clock ticks away at a hundred ticks per second but it does not know the real time.
However, you can set it and read it. Once set it will stay running until you turn
the power off or you do a ‘hard reset’ (see chapter 25). It can be set to any value,
for example 0:

TIME = 0
This program will print a running stopwatch in the middle of the screen:

5 CLs

10 T = TIME

20 PRINT TAB(10,12); (TIME-T)/100;
30 GOTO 20

There is a program to print a 24 hour clock in chapter 23.
RND

When writing games (and simulations), we very often want the computer to make
a random choice — or to pick a random number. The most useful function for this
is RND (X) which picks a random number between 1 and X. The program below
prints out a new random number between 1 and 6 every time a key is pressed —
like throwing a dice.

10 PRINT RND(6)
20 G=GET
30 GOTO 10

and this program draws random triangles in random colours

10 MODES5S

20 PLOT 85,RND(1200) ,RND(1000)
30 GCOL O0,RND(3)

40 GOTO 20

Sometimes it is useful to be able to reset the random number generator to a
known value. That may sound a bit strange but when testing a program it is
sometimes convenient to have a predictable set of ‘random numbers’! To do this
the number in parenthesis after the RND must be a negative number. Thus
X=RND (-8) will ensure that the number sequence resulting from RND is
repeatable.

14 REPEAT...UNTIL, TRUE,
FALSE

Computers are fundamentally pretty stupid things but their power comes from
their ability to repeat things many times — sometimes many millions of times in
one second. In this version of BASIC two types of repeating loops can be used.
They are called REPEAT. . .UNTIL and FOR...NEXT loops. This chapter
explains REPEAT. . .UNTIL loops and the next deals with FOR...NEXT
loops.

Do you remember the story about a man starting with one grain of rice and
doubling it each time he won a bet? How many times would he have to double his
grains of rice to own more than a million grains? In the following program C is a
counter showing how many times the number of grains has doubled and X
represents the number of grains of rice.

10 X=1
20 C=0
30 REPEAT
40 X=X*2
50 C=C+1
60 UNTIL X>1000000
70 PRINT C,X
>RUN
20 1048576

Lines 30 to 60 are called a REPEAT. . .UNTIL loop and everything within the
loop is repeated until X is greater than one million.

The ‘terminating condition’ in this program is that X is greater than 1000000.

The next program terminates after 15 seconds. Line 40 reads the starting time
and the program repeats until the present time minus the starting time is
greater than 1500 hundredths of a second — the internal clock ticks a hundred
times a second.

10 PRINT "SEE HOW MANY SUMS YOU"
20 PRINT "CAN DO IN 15 SECONDS"
30 PRINT

40 STARTTIME=TIME

50 REPEAT

60 F=RND (12)

70 G=RND (12)

80 PRINT
90 INPUT

"WHAT IS ";F;" TIMES "G;
H

75

100 IF H=F*G THEN PRINT "CORRECT" ELSE PRINT "WRONG"

110 PRINT
120 UNTIL
130 PRINT
>RUN

TIME-STARTTIME>1500
"TIME UP"

SEE HOW MANY SUMS YOU

CAN DO IN

WHAT IS 6
WRONG

WHAT IS 1
CORRECT

WHAT IS 9
CORRECT

TIME UP

15 SECONDS

TIMES 9?72

TIMES 47?4

TIMES 87?72

REPEAT. . .UNTIL loops are very useful and should be used frequently. The
next program selects random letters (line 20) and times how long it takes you to
find and press the appropriate key. It uses two REPEAT. . .UNTIL loops. One
of them is used to wait for a particular key to be pressed on the keyboard.

10 REPEAT

20 Z=RND (26)+64

30 PRINT
40 PRINT
50 T=TIME
60 REPEAT
70 PRINT

"PRESS THE KEY MARKED ";CHRS (Z)

UNTIL GET=2Z

"THAT TOOK YOU" (TIME-T)/100" SECONDS"

80 UNTIL Z=0

>RUN

PRESS THE
THAT TOOK

PRESS THE
THAT TOOK

KEY MARKED Y
YOU 1.1 SECONDS

KEY MARKED G
YOU 1.03 SECONDS

Lines 10 and 80 are the main loop and line 60 is a single line REPEAT

loop.

...UNTIL

76

Look at line 80. This will stop the REPEAT. . .UNTIL loop if Z=0. However Z
is calculated in line 20 and will have a value between 65 and 90. It will never

equal zero, so the program will never stop on its own — you have to press the
ESCAPE key.

Line 80 says

80 UNTIL zZ=0

Z=0 will never be ‘true’. Z=0 will always be ‘false’, so line 80 can be replaced with
80 UNTIL FALSE

which just means ‘go on for ever’. This is a far better way of doing things than
using Z=0 because you might decide to change Z next time you looked at the
program. It is also better to use REPEAT. . .UNTIL loops in this way than to
put at line 80

80 GOTO 20

Using REPEAT. . .UNTIL keeps this section of the program well organised.
See chapter 19 for a comment on GOTO.

If you delete line 10, then the computer will meet an UNTIL statement at line
80 with no idea of where the loop is meant to start.

>RUN

PRESS THE KEY MARKED A
THAT TOOK YOU 2.09 SECONDS
No REPEAT at line 80

In summary REPEAT . . . UNTIL should be used for loops which must terminate
on some specific condition.

77

15 FOR..NEXT

This structure makes the computer repeat a number of statements a fixed
number of times. Try the following:

10 FOR X = 8 TO 20
20 PRINT X, X+X
30 NEXT X

>RUN

8 16
9 18
10 20
11 22
12 24
13 26
14 28
15 30
16 32
17 34
18 36
19 38
20 40

You can see that the computer looped through line 20 with X taking on the value
8, then 9, then 10 etc up to 20. Each time through the loop, X increased by 1. The
‘step size’ can be changed easily.

10 FOR X = 8 TO 20 STEP 2.5
20 PRINT X, X+X
30 NEXT X

>RUN
8 16
10.5 21
13 26
15.5 31
18 36

In the two previous examples the value of X (which is called the ‘control variable’)
increased each time through the loop. The ‘control variable’ can be made to
decrease by using a negative step size.

78

10 FOR s = 100 TO 90 STEP -1
20 PRINT S,S/2,8/5

30 NEXT

>RUN
100 50 20
99 49.5 19.8
98 49 19.6
97 48 .5 19.4
96 48 19.2
95 47 .5 19
94 47 18.8
93 46 .5 18.6
92 46 18.4
91 45.5 18.2
90 45 18

Here is a program which uses several FOR. . .NEXT loops. Some are ‘nested’

within each other in the way that one REPEAT. . .UNTIL loop was included
within another.

10 FOR ROW = 1 TO 5

20 FOR STAR = 1 TO 10
30 PRINT"*";

40 NEXT STAR

50 FOR STRIPE = 1 TO 20

60 PRINT "=";
70 NEXT STRIPE
80 PRINT

90 NEXT ROW
100 FOR ROW = 1 TO 6
110 FOR STRIPE = 1 TO 30
120 PRINT"=";
130 NEXT STRIPE
140 PRINT
150 NEXT ROW

79

>RUN
khkkkkkkkkk====================

*kkkkkkkk k=== ============

Ak kA Ak kA kA A== =======

Ak kA Ak kA kAN e =========

*kkkkkkkk k=== ==—==========

The listing shown above is not very easy to follow — try typing
LISTO 2
and then re-listing the program.

>LISTO 2
>LIST
10 FOR ROW = 1 TO 5
20 FOR STAR = 1 TO 10

30 PRINT"*";

40 NEXT STAR

50 FOR STRIPE = 1 TO 20
60 PRINT "=";

70 NEXT STRIPE

80 PRINT

90 NEXT ROW

100 FOR ROW = 1 TO 6

110 FOR STRIPE = 1 TO 30
120 PRINT"=";

130 NEXT STRIPE

140 PRINT

150 NEXT ROW

This causes each of the ‘nested’ FOR. . .NEXT loops to be indented which can
make it easier to follow.

Lines 20 to 40 print out ten stars.

Lines 50 to 70 print out 20 equal signs.

Lines 10 and 90 ensure that the above are repeated five times.
Lines 100 to 150 print out six rows of 30 equal signs.

80
A note on LISTO

LISTO stands for LIST Option and it is followed by a number in the range 0 to
7. Each number has a special effect and details are given in the BASIC keywords
chapter under LISTO. However, the two most useful values are 0 and 7.

LISTO O liststhe program exactly as it is stored in memory.

LISTO 1 lists the program with one space after each line number. Most
programs in this book have been listed like this.

LISTO 7 lists the program with one space after the line number, and two
extra spaces every time a FOR. . . NEXT loop or a REPEAT. . .UNTIL loop is
detected.

If you are using the screen editor then make sure that you list the program with
LISTO 0 or elseyou will copy all those extra spaces into the line!

A few points to watch when using FOR. . . NEXT loops:
1. The loop always executes at least once.

10 FOR X=20 TO O
20 PRINT X
30 NEXT

>RUN
20

The loop finishes with the ‘control variable’ larger than the terminating value. In
the next two examples the terminating value is 10.

10 FOR Z=0 TO 10 STEP 3
20 PRINT 2z

30 NEXT

40 PRINT "OUT OF LOOP"
50 PRINT 2

>
>RUN
0
3
6
9
OUT OF LOOP
12

10 FOR Z=0 TO 10 STEP 5
20 PRINT 2z

81

30 NEXT

40 PRINT "OUT OF LOOP"
50 PRINT 2

>

>RUN
0
5
10
OUT OF LOOP
15

Note that it is not necessary to say NEXT Z in line 30: it is optional, though it
could be argued that it is clearer to put the Z in.

2. You should never jump out of a FOR. . . NEXT loop. It is generally accepted
that this is poor style. If you do this your programs will become extremely
difficult to follow — there are always better alternatives usually involving the use
of a procedure, or setting the control variable to a value greater than the
terminating value for example

10 FOR X=0 TO 1000

15 PRINT

20 PRINT "TYPE IN A SMALL NUMBER"

30 PRINT "OR ENTER -1 TO STOP THE PROGRAM"
40 INPUT J

50 IF J=-1 THEN X= 2000

60 PRINT "12 TIMES ";J;" IS "; 12*J

70 NEXT X

>

>RUN

TYPE IN A SMALL NUMBER

OR ENTER -1 TO STOP THE PROGRAM
?32

12 TIMES 32 IS 384

TYPE IN A SMALL NUMBER

OR ENTER -1 TO STOP THE PROGRAM
?456

12 TIMES 456 IS 5472

TYPE IN A SMALL NUMBER

OR ENTER -1 TO STOP THE PROGRAM
?-1

12 TIMES -1 IS -12

82

The REPEAT. . .UNTIL loop provides a much better way of dealing with this
sort of problem.

3. If you omit the FOR statement an error will be generated. First a correct
program:

10 FOR X=1 TO 5
20 PRINT "HELLO"
30 NEXT

>RUN

HELLO

HELLO

HELLO

HELLO

HELLO

and then the program with line 10 deleted

20 PRINT "HELLO"
30 NEXT

>RUN

HELLO

No FOR at 1line 30

4. Every FOR statement should have a matching NEXT statement. This can be
easily checked by using LISTO 7 (list option 7). If the FOR. . .NEXT loops
are correctly nested then the END in line 50 will line up with the FOR 1in line 5.

5 FOR H=1 TO 4

10 FOR X=1 TO 2

20 PRINT "HELLO" ,H,X

30 NEXT X

40 NEXT H

50 END

>LISTO 7

>LIST

5 FOR H=1 TO 4

10 FOR X=1 TO 2

20 PRINT "HELLO", H,6 X

30 NEXT X

40 NEXT H

50 END

>RUN

HELLO 1 1
HELLO
HELLO 2 1

[y
N

83

HELLO 2 2
HELLO 3 1
HELLO 3 2
HELLO 4 1
HELLO 4 2

If the NEXT X in line 30 is deleted the computer does its best to make sense of
the program.

5 FOR H=1 TO 4
10 FOR X=1 TO 2
20 PRINT "HELLO", H,X
40 NEXT H
50 END
>RUN
HELLO
HELLO
HELLO
HELLO

B WN R
N =

This is not the way to write programs! Mis-nested FOR. . .NEXT loops will
cause problems.

5. In summary FOR. . . NEXT loops should be used when you wish to go through
a loop a fixed number of times.

16 IF.. THEN...ELSE
More on TRUE and FALSE

The IF...THEN statement has been used in several of the programs earlier in
this book — for example, in the program in chapter 14 which checked your
multiplication. Line 100 was

IF H=F*G THEN PRINT "CORRECT" ELSE PRINT "WRONG"

As you will realise, this type of statement enables the computer to make a choice
as it is working its way through the program. The actual choice that it makes will
depend on the values of H, F and G at the time. As a result, the same program
can behave in very different ways in different circumstances.

Multiple statement lines

It was explained earlier (chapter 7) that you can put more than one statement on
a line and this can be particularly useful with the IF...THEN statement.
Take, for example:

10 X=4 : Y=6 : PRINT "HELLO"

20 PRINT ;X + Y : X=X+Y: PRINT ;X+Y
>RUN

HELLO

10

16

which is just the same as

10 X=4

20 Y=6

30 PRINT "HELLO"
40 PRINT ; X+Y

50 X=X+Y

60 PRINT ; X+Y

This helps to understand how the computer treats multiple statement lines using
the IF...THEN statement. In the first example which follows, K=6 and
therefore the computer obeys everything after the word THEN until the word
ELSE. Note that a colon only separates statements — the word ELSE must be
found if you want the other course of action to follow.

85

10 K=6

20 IF K=6 THEN K=9: PRINT "K WAS 6"

ELSE PRINT "K WAS NOT 6": PRINT "END OF LINE"
>RUN

K WAS 6

(Note that line 20 was so long that it overflowed on the printer but it is all part of
line 20.)

Changing line 10 to K=7 causes the computer to execute everything after the
ELSE and as a result it prints

K WAS NOT 6
END OF LINE

IF...THEN is often used with more complicated conditions involving the
words AND, OR and NOT. For example:

IF X=5 AND Y=6 THEN PRINT "GOOD"
IF X=5 OR Y=6 THEN PRINT "TOO LARGE"

The word NOT reverses the effect of a condition, thus
IF NOT (X=6) THEN PRINT "X NOT 6"

These are powerful features which are easy to use.

For the slightly more advanced

It was explained above that you can use multiple statement lines with
IF...THEN but this leads to messy programs. It is far better to use
procedures if you want a whole lot of things to occur. Thus:

100 IF H=F*G THEN PROCGOOD ELSE PROCBAD

This helps to keep the program readable which is very important, not just from
an aesthetic point of view but from the very practical point that a readable
program is much easier to get right!

More on TRUE and FALSE

In chapter 14 the concept of TRUE and FALSE was introduced. A variable can
have a numeric value (eg 6 or 15) or it can be TRUE or FALSE. In fact this is
just playing with words (or perhaps we should say numbers) since the computer
understands TRUE to have the value -1 and FALSE to have the value 0.

10 IF 6=6 THEN PRINT "YES" ELSE PRINT "NO"
>RUN
YES

86

This prints YES because 6=6 is TRUE.

5 H=-1

10 IF H THEN PRINT "YES" ELSE PRINT "NO"
>RUN
YES

The above program prints YES because H is TRUE since it has the value -1.

5 H=0

10 IF H THEN PRINT "YES" ELSE PRINT "NO"
>RUN
NO

This program sets H=FALSE at line 5 so the program prints NO. -1 implies
TRUE and 0 implies FALSE. What about other values of H? In fact all non-zero
values (except non-integers between -1 and +1) are regarded as TRUE, as the
following shows:

5 H=-55

10 IF H THEN PRINT "YES" ELSE PRINT "NO"
>RUN
YES

Here are some other peculiar examples:

10 G= (6=6)
20 PRINT G
>RUN

-1
because (6=6) is TRUE.

10 IF 5-6 THEN PRINT "TRUE"
>RUN
TRUE

This works because (5-6) is -1 which is TRUE.

These tricks are more than academic. They can be very useful — not least when
you are trying to fathom out what on earth the computer thinks it is doing!

87

17 Procedures

The BBC Microcomputer has a very complete version of BASIC — often called
‘Extended BASIC’ and in addition it includes the ability to define and use
procedures and functions. It is probably the first version of BASIC in the world to
allow full procedure and function handling. These extremely powerful features
enable the user to structure his or her programs easily and in addition provide a
real introduction to other computer languages like PASCAL.

A procedure is a group of BASIC statements which can be ‘called by name’ from
any part of a program.

10

20

30

40

50

60

70

80

90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300

REM REACT

REM JOHN A COLL

REM BASED ON AN IDEA BY THEO BARRY, OUNDLE
REM VERSION 1/16 NOV 81

@%=&2020A

ON ERROR GOTO 470

MODE7

PROCINTRO
REPEAT
PROCFIRE
PROCSCORE
UNTIL FNSTOP
END

DEF PROCINTRO

PRINT "This program tests your reactions"
PRINT

PRINT "Press the space bar to continue"
REPEAT UNTIL GET=32

CLS

ENDPROC

DEF PROCFIRE

CLs

PRINT "Press the space bar"

PRINT "as soon as a cross appears"
T=TIME

R=RND (200)+100

REPEAT UNTIL TIME>T+R

88

310 PRINT TAB (17, 10);"+"

320 *FX 15,1

330 REPEAT UNTIL GET=32

340 DELAY=TIME-T-R

350 ENDPROC

360

370 DEF PROCSCORE

380 PRINT TAB(0, 22);

390 PRINT "You took "; DELAY/100;" seconds"
400 ENDPROC

410

420 DEF FNSTOP

430 PRINT "Do you want another go?"
440 REPLYS$=GETS$

450 =(REPLY$="N") OR (REPLY$="n")
460

470 @%=&90A

The program above shows how named procedures and functions can be used. The
main part of the program is between line 90 and line 140.

90 PROCINTRO
100 REPEAT
110 PROCFIRE
120 PROCSCORE
130 UNTIL FNSTOP
140 END

The program tests a person’s reactions by measuring how long it takes him or her
to notice a cross on the screen. As you will see from the section above, line 90
calls a procedure which gives an introduction. The procedure is called
PROCINTRO and it produces the following on the screen.

This program tests your reactions
Press the space bar to continue

Then the program repeats PROCFIRE and PROCSCORE until the user
indicates that he or she does not wish to continue.

PROCFIRE produces this:

Press the space bar
as soon as a cross appears
+

and PROCSCORE produces this:

You took 2.03 seconds

89

It all seems very straightforward and logical — and it is. Using procedures
enables you to split a problem up into a number of small manageable sections
and to use (or call) those sections with a sensible name. The main section of most
programs should be just a number of procedure calls as are lines 90 to 140. The
procedures themselves should be in a separate section — after the END
statement.

Let us examine PROCINTRO more closely.

160 DEF PROCINTRO

170 PRINT "This program tests your reactions"
180 PRINT

190 PRINT "Press the space bar to continue"
200 REPEAT UNTIL GET=32

210 CLs

220 ENDPROC

Notice how it is defined: line 160 is the start of the definition and the procedure
ends at line 220; between those lines are normal BASIC statements. Lines 170,
180 and 190 just print messages on the screen. Line 200 waits until the space bar
is pressed, after which line 210 clears the screen.

There are a number of more complex things that can be done with procedures
and another program will illustrate the use of parameters — variables passed to
the procedure from the main program.

10 REM HYPNO

20 REM TIM DOBSON / ACORN COMPUTERS
30 REM VERSION 2 / 16 NOV 81
40 MODE 5

50 VvDU29,640;512;

60

70 FOR X=510 TO 4 STEP -7
80 GCOLO, X

90 PROCBOX (X)
100 NEXT
110

120 REPEAT

130 GCOL RND(4),RND (4)

140 FOR K=0 TO 500 STEP 8
150 PROCBOX (K)

160 NEXT K

170 GCOL RND (4),RND (4)

180 FOR K=500 TO O STEP -9
190 PROCBOX (K)
200 NEXT K
210 UNTIL FALSE

90

220 END

230

240 DEF PROCBOX (J)
250 MOVE -J,-J
260 DRAW -J,J

270 DRAW J,J

280 DRAW J,-J

290 DRAW -J,-J
300 ENDPROC

The program uses a procedure called PROCBOX which draws a box. The size of
the box is determined by the parameter J in the procedure. However you will see
that in line 90 the procedure is called with the statement PROCBOX (X) . The
initial value of X will be 510 because that is the starting value of the FOR loop
at line 70. This value of X (510)will be passed to the parameter J in the
procedure. As a result the procedure PROCBOX will draw a box of ‘size’ 5 10. J is
called the ‘formal parameter’ for the procedure since it is used in the procedure
itself. However the X in line 90 and the K in line 150 are referred to as actual
parameters. Whatever value K has in line 150 will be transferred to the formal
parameter J.

A procedure may have any number of parameters but there must be exactly the
same number of actual parameters when the procedure is called as there are
formal parameters in the procedure definition. Thus if a procedure was defined
like this

1000 DEF PROCSWITCH(A,B,CS)

1040 ENDPROC

it could not be called with a statement like
150 PROCSWITCH (X,Y)

but this would be acceptable:

150 PROCSWITCH(length, height, NAMES)

Local variables in procedures

10 J=25

20 FOR X=1 TO 5

30 PROCNUM (X)

40 PRINT "OUT OF PROCEDURE J= ";J
50 NEXT X

60 END

70 DEF PROCNUM(J)

91

80 PRINT "IN PROCEDURE J= ";J
90 ENDPROC

>RUN

IN PROCEDURE J= 1

OUT OF PROCEDURE J= 25
IN PROCEDURE J= 2

OUT OF PROCEDURE J= 25
IN PROCEDURE J= 3

OUT OF PROCEDURE J= 25
IN PROCEDURE J= 4

OUT OF PROCEDURE J= 25
IN PROCEDURE J= 5

OUT OF PROCEDURE J= 25

In the program above the variable J is used in two ways. The main program
starts at line 10 and ends at line 60. The procedure is defined between lines 70
and 90. Line 10 declares that J has the value 25 and the value of J is not changed
in the main program. However J is used as the formal parameter in the
procedure. All formal parameters are local to the procedure which means that
their value is not known to the rest of the program. Inside the procedure, J takes
on the value of the actual parameter X, but outside the procedure it has a
different value. The distinction is made between global variables and local
variables. Global variables are known to the whole program, including
procedures, whereas local variables are only known to those procedures in which
they are defined and to procedures within that procedure.

In the program above, X is a global varible and it looks as if J is global too, since
it is defined in line 10 of the main program. In fact that J is global but the use of
the parameter J in the procedure creates another variable J which is local to the
procedure. If a different parameter had been used in the procedure definition
then J would have remained global. Thus in the program below the formal
parameter has been changed to K in line 70, which leaves J as a global variable.

10 J=25

20 FOR X=1 TO 5

30 PROCNUM (X)

40 PRINT "OUT OF PROCEDURE J= ";J
50 NEXT X

60 END

70 DEF PROCNUM (K)

80 PRINT "IN PROCEDURE J= ";J
90 ENDPROC

>RUN

IN PROCEDURE J= 25

92

OUT OF PROCEDURE J= 25
IN PROCEDURE J= 25
OUT OF PROCEDURE J= 25
IN PROCEDURE J= 25
OUT OF PROCEDURE J= 25
IN PROCEDURE J= 25
OUT OF PROCEDURE J= 25
IN PROCEDURE J= 25
OUT OF PROCEDURE J= 25

The program is pointless in its present form for several reasons — mostly because
it doesn’t actually do anything with K in the procedure!

Now that J is global its value could be altered anywhere — including inside the
procedure. Line 75 increases J by 10:

10 J=25

20 FOR X=1 TO 5

30 PROCNUM (X)

40 PRINT "OUT OF PROCEDURE J= ";J
50 NEXT X

60 END

70 DEF PROCNUM (K)

75 J=J+10

80 PRINT "IN PROCEDURE J= ";J
90 ENDPROC

>RUN

IN PROCEDURE J= 35

OUT OF PROCEDURE J= 35
IN PROCEDURE J= 45

OUT OF PROCEDURE J= 45
IN PROCEDURE J= 55

OUT OF PROCEDURE J= 55
IN PROCEDURE J= 65

OUT OF PROCEDURE J= 65
IN PROCEDURE J= 75

OUT OF PROCEDURE J= 75

It has been pointed out that all formal parameters are local to the procedure in
which they are defined (and to inner procedures) but other variables can be
declared as LOCAL if required. We very often use the variable X as a counter for
aFOR.. .NEXT loop and as a result you have to be careful not to use it twice in
the same section of a program. Declaring X as local to a procedure ensures that
its use locally will not affect the value of X outside the procedure.

10 J=25
20 FOR X=1 TO 5

93

30 PROCNUM (X)

40 PRINT "OUT OF PROCEDURE J= ";J
50 NEXT X

60 END

70 DEF PROCNUM (K)

72 LOCAL X

75 FOR X= 1 TO 10

80 J=J + J/X

85 NEXT X

90 ENDPROC

>RUN

OUT OF PROCEDURE J= 275

OUT OF PROCEDURE J= 3025
OUT OF PROCEDURE J= 33275
OUT OF PROCEDURE J= 366025
OUT OF PROCEDURE J= 4026275

In the program above, X is used twice — once in the main program (lines 20 and
50) and secondly, and very differently, as a local variable in the procedure. J
remains global.

It is wise to declare variables as LOCAL in procedures and functions wherever
possible except when the variable is a formal parameter. A formal parameter is
automatically local and therefore does not need to be declared.

18 Functions

Functions are in many ways similar to procedures but there is one major
difference — they always calculate a result which may be a number or a string.
BASIC already contains a number of functions. For example the function SQR
returns the square root of a number. The square root of 16 is 4 so the statements

Y = SQR(16)
and
PRINT SQR(16)

make sense. The first example calculates the square root of 16 and places the
result in Y. Compare this to a procedure — for example the one above, to draw a
box. The procedure makes things happen (a box appears on the screen) but it
does not produce a numeric or a string value. Functions always produce a
numeric or string result.

If you have a reasonable understanding of procedures and parameters then you
can probably cope with this example of a function:

10 PRINT "GIVE ME THREE NUMBERS ";

20 INPUT A,B,C

30 PRINT "THE SUM OF THE NUMBERS IS ";
40 PRINT FNSUM(A,B,C)

50 END

100 DEF FNSUM(X,Y, Z)

105 LOCAL K

110 K=X+Y+2Z

120 =K

>RUN

GIVE ME THREE NUMBERS ?2,4,4

THE SUM OF THE NUMBERS IS 10

Again this program is not of much use — we are using a sledge hammer to crack a
nut — but we had better learn to walk before we run!

The function is defined in lines 100 to 120 and three parameters are passed to
the function. A, B and C are the actual parameters and the numbers in A, B and
C are passed to formal parameters X, Y and Z. For the sake of illustration a local
variable K has been used. Line 110 sets K equal to the sum of X, Y and Z. Line
120 shows the way in which a function is ended. It says that the function FNSUM
has the value of K.

95

The example above was spread out to show how a function can be constructed — it
could have been compressed to

10 PRINT "GIVE ME THREE NUMBERS ";

20 INPUT A,B,C

30 PRINT "THE SUM OF THE NUMBERS IS ";
40 PRINT FNSUM(A,B,C)

50 END
100 DEF FNSUM(X, Y, Z)
120 = X+Y+2Z

or even to the single line function shown below

10 PRINT "GIVE ME THREE NUMBERS ";

20 INPUT A,B,C

30 PRINT "THE SUM OF THE NUMBERS IS ";
40 PRINT FNSUM(A,B,C)

50 END
100 DEF FNSUM(X,Y,Z) = X+Y+Z

Of course we could have managed without a function at all...

10 PRINT "GIVE ME THREE NUMBERS ";

20 INPUT A,B,C

30 PRINT "THE SUM OF THE NUMBERS IS ";
40 PRINT A+B+C

50 END

...and clearly that would have been the right thing to do in this case. However as
soon as your programs reach 40 or 50 lines you should be using procedures
extensively and functions occasionally.

As mentioned at the start of this chapter, functions can be used to calculate a
numeric or a string result. The function which follows returns the middle letter of
a string. The string is passed as a parameter

100 DEF FNMID (A$)
110 LOCAL L

120 L=LEN (A$)

140 =MID$ (A$,L/2,1)

Again, the function is terminated by a statement starting with an equal sign. To
use the above function type in the following additional lines.

10 INPUT Z$
20 PRINT FNMID (Z$)
30 END

Notice that the function is placed after the END statement where it will not be
executed unless it is called by name.

19 GOSUB

This statement allows the program temporarily to divert to another section.
Think about the process of writing a letter. In essence it is really a
straightforward procedure — but in practice while the main aim is to write the
letter there are often several diversions like the need to get another sheet of
paper or answer the phone. These small ‘sub-tasks’ are essential but if we write a
description of every single thing that occurred while writing a letter the reader
would probably be so confused that he or she wouldn’t realise what the overall
aim was. However if the job is described as a series of subroutines or procedures
then the main task will emerge more clearly. The subroutine and the GOSUB
statement were introduced some years ago to help people who write BASIC
programs to break their programs up into recognisable modules. In recent years
more flexible and more easily used tools have become available — namely
procedures and functions — and these two should be used in preference to
GOSUB. None the less, BBC BASIC maintains the GOSUB statement for
compatibility with other versions of BASIC.

A temperature scale conversion program is shown in two forms below. Both
produce exactly the same output on the computer screen but one has been
written using GOSUB and GOTO and the other using procedures.

First with GOSUB and GOTO:

10 REM TEMPERATURE CONVERSION

20 REM WITHOUT STRUCTURED BASIC

30 REM THIS IS NOT THE WAY TO WRITE PROGRAMS!
40 REM JOHN A COLL

50 REM VERSION 1.0 /22 NOV 81

60 MODE 7

70 @%=&2020A

80 PRINT "ENTER THE TEMPERATURE FOLLOWED BY"
90 PRINT "THE FIRST LETTER OF THE TEMPERATURE"
100 PRINT "SCALE. e.g. 100C or 72F or 320K"
110 PRINT
120 PRINT "Enter the temperature ";
130 INPUT REPLYS
140 TEMP = VAL (REPLYS)
150 SCALES$=RIGHTS$ (REPLYS$, 1)
160 GOODSCALE=FALSE
170 IF SCALES$="C" THEN GOSUB 370
180 IF SCALES$="F" THEN GOSUB 390

97

190 IF SCALES$="K" THEN GOSUB 430

200 IF NOT (GOODSCALE AND TEMP>=-273.16) GOTO 260
210 PRINT''

220 PRINT TEMP; " Celsius"

230 PRINT TEMP+273.16; " Kelvin"

240 PRINT TEMP*9/5 + 32;" Fahrenheit"

250 PRINT

260 IF GOODSCALE THEN 310

270 CLs
280 PRINT "You must follow the temperature with"
290 PRINT llthe letter " IICII ll, " IIFII " or " IIKII " "

300 PRINT "and nothing else"

310 IF TEMP>=-273.16 THEN 360

320 CLs

330 PRINT "The temperature you have given is"
340 PRINT "too cold for this universe! Try again"
350 PRINT

360 GOTO 110

370 GOODSCALE=TRUE

380 GOTO 460

390 REM CONVERT TO CELSIUS

400 TEMP= (TEMP-32)*5/9

410 GOODSCALE=TRUE

420 GOTO0460

430 REM CONVERT TO CELSIUS

440 TEMP=TEMP-273.16

450 GOODSCALE=TRUE

460 RETURN

Lines 430 to 460 are referred to as a ‘subroutine’, and these lines of the program
can be called from line 190 by the statement GOSUB 430. Notice that this
statement does not give the reader any idea of the purpose of the subroutine. The
statement RETURN at the end of the subroutine returns it to the statement
after the original GOSUBstatement.

Compare the last program with the one that follows.

10 REM TEMPERATURE CONVERSION

20 REM JOHN A COLL

30 REM VERSION 1.0 /22 NOV 81

40 MODE 7

50 @%=&2020A

60 PRINT "ENTER THE TEMPERATURE FOLLOWED BY"
70 PRINT "THE FIRST LETTER OF THE TEMPERATURE"
80 PRINT "SCALE. e.g. 100C or 72F or 320K"

90 REPEAT

98

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530

PRINT

PRINT "Enter the temperature ";
INPUT REPLYS

TEMP = VAL (REPLYS)
SCALES$=RIGHTS$ (REPLYS$, 1)
GOODSCALE=FALSE

IF SCALES$="C" THEN PROCCENT
IF SCALES$="F" THEN PROCFAHR
IF SCALE$="K" THEN PROCKELVIN
PROCEND

UNTIL FALSE

END

DEF PROCCENT

GOODSCALE=TRUE
ENDPROC

DEF PROCFAHR

REM CONVERT TO CELSIUS
TEMP= (TEMP-32) *5/9
GOODSCALE=TRUE

ENDPROC

DEF PROCKELVIN

REM CONVERT TO CELSIUS
TEMP=TEMP-273.16
GOODSCALE=TRUE

ENDPROC

DEF PROCEND

IF GOODSCALE AND TEMP>=-273.16 THEN PROCRESULTS
IF NOT GOODSCALE THEN PROCILLEGAL_SCALE

IF TEMP< -273.16 THEN PROCILLEGAL_TEMP

ENDPROC

DEF PROCRESULTS

PRINT''

PRINT TEMP; " Celius"

PRINT TEMP+273.16; " Kelvin"

PRINT TEMP*9/5 + 32; " Fahrenheit"
PRINT

ENDPROC

DEF PROCILLEGAL_SCALE

99

540 CLs
550 PRINT "You must follow the temperature with"
560 PRINT llthe letter " IICII ll, " IIFII " or " IIKII " "

570 PRINT "and nothing else"

580 ENDPROC

590

600 DEF PROCILLEGAL_TEMP

610 CLsS

620 PRINT "The temperature you have given is"

630 PRINT "too cold for this universe! Try again"
640 PRINT

650 ENDPROC

Obviously the second version is long (about a third longer) but it is much more
understandable and this is of crucial importance for medium and large programs.

GOTO

You may have noticed the use of the GOTO statement in many of the examples
above. GOTO is a very useful statement which tells the computer to skip to a
particular line number. Beginners in programming find it easy to use. However,
it should be used with care because it can lead to what some people call
‘spaghetti’ programming, a tangle of loops backwards and forwards which makes
it very difficult indeed to follow what is going on. The example at the end of
chapter 4 shows this in an extreme form.

If you are writing short programs then by all means use GOTO. For example, the
following program prints out the ASCII code of any key which is pressed — useful
if you can’t find an ASCII code chart:

10 PRINT GET
20 GOTO 10

It would be taking things too far to expect people to write

10 REPEAT
20 PRINT GET
30 UNTIL FALSE

However, when you write programs of more than, say, 50 lines it is a very good
idea to try to use the ‘structure’ provided instead of GOTO statements. It is
generally accepted that it is still useful to use GOTO statements as a last resort
when handling error conditions. Use whatever techniques make your program (a)
work and (b) easy to follow.

20 ON GOTO, ON GOSUB

There is often a need, in a computer program, to proceed in one of a number of
directions. For example your program might present a ‘menu’ of eight options for
the user to choose from. When the user has made the choice your program will
need to branch off in the appropriate direction. There are a number of ways of
doing this. Here is one in part of a program.

100 MODE 7

110 PROCINTRO

120 REPEAT

130 PROCMENU

140 IF M=1 THEN PROCOscar7

150 IF M=2 THEN PROCOscar8

160 IF M=3 THEN PROCUOSAT

170 IF M=4 THEN PROCorbit

180 IF M=5 THEN PROCtransmit
190 IF M=6 THEN PROCshowfigs
200 IF M=7 THEN PROCMercator
210 IF M=8 THEN PROCLocator

220 IF M=9 THEN PROCgetdatetime
230 UNTIL M=-1

240 END

Lines 140 to 220 provide exits to a number of procedures all of which will
automatically return to the main program. Which procedure is selected depends
on the value of M as selected by the user during the procedure PROCMENU.

The above method is easy to understand and is recommended but there are other
methods which should be noted. The statement ON. . .GOTO also provides a
number of exits.

100 ON M GOTO 1000,1200,1250,1600

would provide an exit to line 1000 of the BASIC program if M=1. If M=2 then
control will pass to line 1200 and so on.

An alternative format is
100 ON M GOSUB 1000,1200,1350

In this case control is passed to the subroutines indicated and then returned to
the next line.

101

Both these techniques are widely used but are less clear than the use of
procedures as indicated at the beginning of this chapter.

ON...GOTO and ON...GOSUB may be used with ELSE to trap an ON
variable which is out of range.

60 ON F$ GOTO 100,210,350 ELSE PROCfind

will perform PROC£find if F% is any value other than 1, 2 or 3.

102

21 Even more on variables

Arrays

Very often we use the computer to store and manipulate sets of data rather than
just a single value. For example, we might want to calculate wages for a group of
people or sort a group of 20 numbers into order. The 20 numbers might well be
associated with 20 names. Arrays make it a lot easier to deal with groups of
names and numbers. To get to a more manageable example let’s consider working
with five names and their associated year of birth. We could store the five names
in five variables like this:

N1$ = "SARDESON"
N2$ = "MATTINSON"
N3$ = "MOIR"
N4$ = "ALLEN"
N5$ = "MOUNT"

That is quite reasonable and it works. If you say
PRINT N2$
the computer will then print out MATTINSON.

However, you cannot tell it to print out the fifth entry or the fourth entry. The
computer doesn’t have any way of knowing that N5$ is the fifth entry. Using
arrays, though, we can pick out the fifth entry in a long list and that is very
useful.

The first thing we have to do is to tell the computer how large an array we are
going to use. This is done with aDIM statement — eg

DIM N$ (5)

creates an array (a table) and we can then say

N$ (1) = "SARDESON"
N$(2) = "MATTINSON"
N$(3) = "MOIR"
N$(4) = "ALLEN"
N$(5) = "MOUNT"

If we follow that with
X =1

and then say

103
PRINT NS$ (X)
the computer will print "SARDESON".
Note that the X was a variable which, in this case, had the value of 1.
Here is a complete program — as far as we have got.

10 DIM N$ (5)

20 N$(1)="SARDESON"

30 N$(2)="MATTINSON"

40 N$ (3)="MOIR"

50 N$ (4)="ALLEN"

60 N$ (5)="MOUNT"

70 PRINT "WHICH ENTRY DO YOU WANT"
80 INPUT X

90 PRINT N$ (X)
100 GOTO 70

We could also define an array to contain the five years of birth:

200 DIM Y (5)
210 Y(1)=1964
220 Y (2)=1960
230 Y (3)=1950
240 Y(4)=1959
250 Y (5)=1962

It would be easy to add lines to this program to make the computer search for
various things. Of course with only five entries it would undoubtedly be quickest
to do the whole thing manually — but with a hundred, a thousand or a million
entries the computer would be faster — and certainly more accurate. A few
examples of extra lines will make the use of these arrays clearer. Delete lines 70
to 100.

To print out everyone born before 1963

300 FOR X=1 TO 5
310 IF Y(X)<1963 THEN PRINT NS$ (X)
320 NEXT X

or to print out everyone whose name contains more than five letters

400 FOR X=1 TO 5

410 J$=NS$ (X)

420 IF LEN (J$)>5 THEN PRINT J$
430 NEXT

104
or to print out everyone whose name begins with M

500 FOR X=1 TO 5

510 J$=N$ (X)

520 IF LEFTS$ (J$,1)="M" THEN PRINT J$
530 NEXT

All these things can only be done if the computer is able to select a position in a
list and it can only do this with arrays.

Note: For an explanation of how the last examples worked, see chapter 22.

You will have noticed that we used the array N$ (X) to store strings (the names
of the people), and array Y (X) to store numbers (the years of birth). Each
element of the array N$ (X) can store as long a name as you want (up to 255
characters) and you can dimension N$ to have as many entries as you want. For
example, DIM N$(1000) would create a string array with space for 1000
different names. N$ (X) is called a ‘string array’ since it is used to store strings.

The array Y (X) is called a ‘numeric array’ and again it can have as many
elements (entries) as you need —eg DIM Y (2000). You can also have ‘integer
numeric arrays’ like DIMJ% (100) .

As usual on the BBC Microcomputer the story doesn’t finish there! There is
another whole group of arrays which we haven’t met yet. The arrays we have met
(both string and numeric) are all ‘single-dimension arrays’ and could be
illustrated by this diagram.

Y1) Y(2) Y(3) Y(4) Y(5)
1964 1960 1950 1959 1962

Now suppose we wanted to store the day and month of the birthday as well as the
year. We need more boxes.

21 12 4 24 19
2 2 2 10 12
1964 1960 1950 1959 1962

A set of data like that is called a ‘56 by 3 array’ and the (empty) boxes can be set
up by the statement

10 DIM (5, 3)

The array could then be filled with the statements
20 Y(1,1)=21

30 Y(1,2)=2

40 Y(1,3)=1964

50 Y(2,1)=12
60 Y (2,2)=2

105
70 Y (2,3)=1960
.. ete.

In practice it would involve a lot less typing, and make the program shorter, if all
the figures were held in DATA statements. You may well need to skip this
section at first and return to it when you have understood chapter 22 which deals
with the keywords READ, DATA and RESTORE.

If you use READ and DATA to fill the above five by three array the program
could look like this:

10 DIM Y (5, 3)

20 FOR COLUMN=1 TO 5
30 FOR ROW=1l TO 3

40 READ Y (COLUMN, ROW)
50 NEXT ROW

60 NEXT COLUMN

500 DATA 21,2,1964
510 DATA 12,2,1960
520 DATA 4,2,1950

530 DATA 24,10,1959
540 DATA 19,12,1962

The program above takes successive numbers from the DATA statements and
inserts them into the array. Once this program has been run the array will be set
up — filled with the figures — and other sections of the program (not shown above)
could search the array as required. The array above is a ‘two-dimensional array’
used to store numbers. The phrase ‘two dimensional’ refers to the fact that there
are five entries in one dimension and three entries in another dimension — a total
of 15 entries. A three-dimensional array could be defined with the statement

DIM W(4,5,6)
and a four-dimensional array with
DIM T(2,2,5,3)

This last array would have 2x2x5x3 (60) individual entries. Actually, array
elements can be numbered from zero instead of one, so an array declared with

DIM V(3)

has, in fact, got four elements which are v (0), V(1), V(2) and Vv (3).
Similarly the array T (2, 2, 5, 3) has 3x3x6x4 (216) elements and will take up
over 1000 bytes of memory. Multi-dimension arrays are voracious memory eaters
— only use them when needed and, if at all possible, use every element that you
set up. There is no limit, other than lack of memory, on the number of dimensions
in an array.

106

At the start of this chapter we set up a string array with the statement DIM
N$(5).

This contains six elements, N$ (0) to N$ (5). The length of each string
element is limited to the usual 255 characters but you can have as many
elements as you wish and as many dimensions — just as for numeric arrays.
String arrays are even more ravenous for memory than numeric arrays — use
them sparingly!

Just to make sure that the various possibilities are clear, here is a program to set
up a string array with first names as well as last names. The program reads
names and dates into two arrays:

10 DIM Y(4,2)

20 DIM N$(4,2)

30 FOR COLUMN=0 TO 4

40 FOR ROW=0 TO 2

50 READ Y (COLUMN, ROW)

60 NEXT ROW

70 FOR ROW=0 TO 2

80 READ N$ (COLUMN, ROW)

90 NEXT ROW

100 NEXT COLUMN

500 DATA 21,2,1964, JAMES,C, SARDESON
510 DATA 12,2,1960,A, MICHAEL, MATTINSON
520 DATA 4,12,1960,CHARLES, C,MOIR
530 DATA 24,10,1959,STEPHEN,R, ALLEN
540 DATA 19,12,1962, GAVIN, ,h MOUNT

107

22 READ, DATA, RESTORE

One very common way of storing a whole set of information along with the
computer program is to use DATA statements. You will remember that computer
programs can be stored on cassette and sets of data can be stored in the program
as well. For example, it might be necessary in a program to convert the month
given as a number into a name. The program below stores the names of the
month as DATA.

5 REPEAT

10 PRINT "GIVE THE MONTH AS A NUMBER"
20 INPUT M

30 UNTIL M>0 AND M<13

40 FOR X=1 TO M

50 READ AS$

60 NEXT X

70 PRINT "THE MONTH IS ";AS$
100 DATA JANUARY, FEBRUARY, MARCH, APRIL
110 DATA MAY, JUNE, JULY, AUGUST, SEPTEMBER
120 DATA OCTOBER,NOVEMBER, DECEMBER
>RUN
GIVE THE MONTH AS A NUMBER
?6
THE MONTH IS JUNE

Lines 10 to 30 repeat until a sensible value for M is entered — it must be between
1 and 12. In the example run a value of 6 was given to M. In this case the
FOR...NEXT loop between lines 40 and 60 will repeat six times. Each time
through it READSs the next piece of DATA into A$ wuntil finally A$ will be left
containing JUNE. It might make it clearer if an extra line is temporarily inserted
at line 55 to print out the value of A$ and X each time through the loop.

>55 PRINT AS$,X
>
>LIST
5 REPEAT
10 PRINT "GIVE THE MONTH AS A NUMBER"
20 INPUT M
30 UNTIL M>0 AND M<13
40 FOR X=1 TO M
50 READ AS

108

55 PRINT AS$,X
60 NEXT X
70 PRINT "THE MONTH IS ";AS$
100 DATA JANUARY, FEBRUARY, MARCH, APRIL
110 DATA MAY, JUNE, JULY,AUGUST, SEPTEMBER
120 DATA OCTOBER, NOVEMBER, DECEMBER
>
>RUN
GIVE THE MONTH AS A NUMBER
?6
JANUARY
FEBRUARY
MARCH
APRIL
MAY
JUNE
THE MONTH IS JUNE

o b WD R

This is one way of getting to the (say) sixth element of a list but there is another
way of using an array.

Sometimes there is more than one set of data and it is useful to be able to set the
‘data pointer’ to a selected set of data. The next program has two sets of data
each containing a set of prices and car names. One set of data refers to British
Leyland cars and the other to Lotus cars.

10 REPEAT

20 PRINT "DO YOU PREFER BL OR LOTUS CARS?"

30 A$=GETS$

40 PRINT AS

50 IF A$="B" THEN RESTORE 170 ELSE RESTORE 270
60 INPUT "HOW MUCH ARE YOU WILLING TO SPEND ",P
80 PRINT "IN THAT CASE, YOU CAN AFFORD THESE:"
90 FOR X=1 TO 8
100 READ NAMES
110 READ PRICE

120 IF PRICE <P THEN PRINT PRICE,TAB(15); NAMES
130 NEXT X

140 PRINT

150 UNTIL FALSE

160

170 REM BRITISH LEYLAND CARS

180 DATA MINI 1000 CITY, 3198

190 DATA METRO HLE, 4699
200 DATA MAESTRO 1.3L, 5419

210
220
230
240
250
260
270
280
290
300

>RUN

DATA
DATA
DATA
DATA
DATA

MONTEGO 1.6, 5660
TRIUMPH ACCLAIM CD, 6239
MAESTRO VANDEN PLAS, 7395
ROVER 2300s, 10264
DAIMLER 4.2, 22995

REM LOTUS CARS

DATA
DATA
DATA

EXCEL, 14990
ESPRIT SERIES 3, 15985
ESPRIT TURBO, 19980

DO YOU PREFER BL OR LOTUS CARS? B
HOW MUCH ARE YOU WILLING TO SPEND ?6000

IN THAT CASE YOU CAN AFFORD THESE:

3198 MINI 1000 CITY
4699 METRO HLE

5419 MAESTRO 1.3L
5660 MONTEGO 1.6

DO YOU PREFER BL OR LOTUS CARS? L
HOW MUCH ARE YOU WILLING TO SPEND °?1900

IN THAT CASE, YOU CAN AFFORD THESE:

Out of DATA at line 100

You will notice that line 50 usees the RESTORE

109

statement to set the data

‘pointer’ to either line 170 where BL data is stored or to line 270 where Lotus

data is stored. This ensures that data is read from the correct list.

Lines 90 to 130 attempt to read off eight sets of data from the data lists, but fail
when Lotus data is selected as only three sets of data are provided. The message

Out of DATA at line 100

indicates the failure to find enough entries in the data table. Methods of
overcoming the problem are given in chapter 27 which deals with error handling.

23 Integer handling

Two special arithmetical functions are provided which produce integer (ie whole
number) results. These integer functions are DIV and MOD (DIVision and
MODulus).

The result of a normal division has two parts — the whole number part and the
remainder. Normally the remainder is quoted as a decimal fraction. Thus

11/4 = 2.75 or 2%

However the functions DIV and MOD enable the whole number part and the
remainder to be calculated separately. Thus

11 DIV 4 = 2

(ie 4 goes into 11 two times) and

11 MOD 4 = 3

(ie the remainder is 3).

A simple division test shows how they can be used.

5 CLS

10 PRINT "Division test!"

20 PRINT "Answer with a whole number, and a" '
"remainder"

30 REPEAT

40 X=RND(100)

50 Y=RND(10)

60 PRINT ' "What is ";X;" divided by ";Y

70 INPUT A

80 INPUT "Remainder? "B

90 IF A=Y DIV Y AND B=X MOD Y THEN PRINT "That's
correct" ELSE PRINT "That's wrong"
100 PRINT ' "Press any key to continue"
110 T=GET
120 UNTIL FALSE

DIV and MOD are used whenever you are trying to convert units — for example
seconds into minutes. Thus 500 seconds is 500 DIV 60 minutes and 500
MOD 60 seconds — that is 8 minutes 20 seconds.

For example this program prints a 24 hour clock

111

5 PRINT "Please input the time"
10 INPUT "Hours ",H
20 INPUT "Minutes ", M
30 TIME=H* 360000 + M* 6000
40 CLS
50 REPEAT
60 SEC=(TIME DIV 100) MOD 60
70 MIN=(TIME DIV 6000) MOD 60
80 HR=(TIME DIV 360000) MOD 24
90 PRINT TAB(7,12) HR;":";MIN;":";SEC;SPC(2)
100 UNTIL FALSE

The clock is improved if you type VDU 23,1,0;0;0; 0; which switches off
the flashing cursor (see chapter 10). The next program would keep time to the
end of the century — if you left the computer switched on that long!

10 lastminute=0

20 MODE7

30 PROCOFF

40 PROGgetdatetime

50 CLs

60 REPEAT

70 PROCshowtime

80 UNTIL FALSE

90 END
100
110 DEF PROCgetdatetime
120 CLS

130 PRINT"Please supply the day, month and year"
140 PRINT "as numbers e.g. 24 10 1984"
150 PRINT

160

170 REPEAT

180 PRINT TAB(5,10); "Day ";
190 INPUT TAB)12,10) ""day
200 UNTIL day>0 AND day<32
210
220 REPEAT
230 PRINT TAB(5,12); "Month ";

240 INPUT TAB(12,12)"" month
250 UNTIL month>0 AND month<1l3
260

270 REPEAT
280 PRINT TAB(5,14);"Year";
290 INPUT TAB(12,14) "" year

112

300 UNTIL year>1799 AND year<2500 OR year>0 AND
year<99

310 IF year<99 THEN year=year+1900
320

330 CLS

340 PRINT"and now the time please"
350 PRINT "using a 24 hour clock"
360

370 REPEAT

380 PRINT TAB(5,10); "Hours ";

390 INPUT hour

400 UNTIL hour>-1 AND hour<24

410

420 REPEAT

430 PRINT TAB(5.12); "Minutes ";
440 INPUT minute

450 UNTIL minute>-1 AND minute<60
460

470 TIME=100*60* (minute+60*hour)
480 ENDPROC

490

500

510 DEF PROCshowtime

520 IF TIME>8640000 THEN
TIME=TIME-8640000

530 hour=TIME DIV 360000 MOD 24
540 minute=TIME DIV (100*60) MOD 60
550 second=TIME DIV 100 MOD 60

560 IF (hour=0 AND minute=0 AND
lastminute=59) THEN PROCincdate
570 lastminute=minute

580 PRINT TAB(0,0);"Date = ";day;" ";
590 RESTORE 600

600 DATA

Jan, Feb,Mar, Apr,May, June, July, Aug, Sept, Oct,Nov, Dec
610 FOR X=1 TO month

620 READ months

630 NEXT X

640 PRINT month$;" ";year;" ";

650 PRINT "GMT = ";

660 IF hour<1l0 THEN PRINT " ";

670 PRINT; hour;" : ";

680 IF minute<l1l0 THEN PRINT " ";
690 PRINT ;minute; " ";

700
710
720
730
740
750
760
770
780
790
800
810
820
FNLE
830
AND
840
850
860
870
880
890
900
910
THEN

113

IF second<1l0 THEN PRINT " ";
PRINT ;second; " "
ENDPROC

DEF PROCOFF
vDbU 23,1,0;0;0;0;
ENDPROC

DEF PROCincdate

day=day+1

IF (month=2) AND (day>29) THEN day=1l:month=3

IF (month=2) AND (day=29) THEN IF NOT

AP (year) THEN day=1l:month=3

IF ((month=4 OR month=6 OR month=9 OR month=11)
(day=31)) THEN day=1: month=month+1l

IF day>31 THEN day=1l:month=month+l

IF month>12 THEN month=1l:year=year+l

ENDPROC

DEF FNLEAP (Y)

REM RETURNS TRU IF Y IS LEAP YEAR

IF Y MOD 4=0 AND (Y MOD 100<>0 OR Y MOD 400=0)
=TRUE ELSE =FALSE

24 String handling

It has been explained that the BBC Microcomputer can store words or other
groups of characters in string variables. There are a number of functions which
can be used with strings. For example if A$= "NOTWITHSTANDING" then
the string function LEFT$ can be used to copy, say, the left three letters of A$
into another string —B$.

10 AS="NOTWITHSTANDING"
20 BS$=LEFTS$ (AS$, 3)

30 PRINT BS$

>RUN

NOT

Similarly MID$ can be used to extract the middle section of a string. Change
line 20 thus:

10 A$S="NOTHWITHSTANDING"
20 B$=MID$ (AS$,4,9)

30 PRINT BS$

>RUN

WITHSTAND

Line 20 can be read as ‘B$ is a copy of the middle of A$ starting at the fourth
letter and continuing for nine letters’. As a result of this flexible use of the word
‘middle’, MID$ can in fact be used to copy any part of a string. Change the
program again:

10 AS="NOTWITHSTANDING"
20 B$=MIDS$ (AS$,1,7)

30 PRINT BS$

>RUN

NOTWITH

As well as LEFT$ and MID$ there is the string function RIGHT$ which
copies the rightmost characters of a string.

10 AS="NOTWITHSTANDING"
20 B$=RIGHTS (A$,4)

30 PRINT BS$

>RUN

DING

115

It is easy to join two strings together to make a long string by using the ‘string
concatenation operator’ which is a plus sign. Its title sounds grand but its
purpose is obvious — but quite different from its arithmetic use.

10 A$="NOTWITHSTANDING"
20 B$=LEFTS$ (A$, 3)

30 C$=" LIKELY"

40 D$=BS$+C$

50 PRINT D$

>RUN

NOT LIKELY

The numeric function LEN can be used to count up the number of characters in
a string — in other words how long it is.

10 A$="NOTWITHSTANDING"
20 X=LEN(A$)
30 PRINT X
>RUN
15

LEN is very useful if you don’t know how long a string is going to be. For
example in this palindrome testing program A$ is copied backwards letter by
letter into BS.

5 REPEAT

7 B$=""

10 INPUT "What would you like to reverse? " 'AS$
20 FOR T=LEN(A$) TO 1 STEP-1

30 B$=B$ + MIDS$(AS$,T,1)

40 NEXT T

50 PRINT '"If you reverse"' A$'" you get" ' BS$
60 UNTIL AS$=""

The numeric function INSTR can be used to see if there is a particular letter (or
group of letters) in another string.

10 A$="NOTWITHSTANDING"
20 B§="T"
30 X=INSTR (A$,B$)
50 PRINT X
>RUN
3

You will notice that it finds that there is a T at position 3 in A$. Sometimes it is
useful to be able to start the search further along the string. To do this you can
add a third parameter which gives that position to start the search.

116

10 A$="NOTWITHSTANDING"
20 B§="T"
30 X=INSTR(A$,BS$,4)
50 PRINT X
>RUN
6

If no match is found then INSTR returns zero.

10 A$="NOTWITHSTANDING"
20 B$="zZ"
30 X=INSTR(A$,B4,4)
50 PRINT X
>RUN
0

This looks like the elements of the game called hangman! But first three more
string related functions. It is possible to make a string containing many copies of
another string by using the string function STRINGS$. So to make a string
containing 20 copies of "ABC” we write:

10 A$="ABC"

20 B$=STRINGS (20,AS$)

30 PRINT BS

>RUN
ABCABCABCABCABCABCABCABCABCABCABCABC
ABCABCABCABCABCABCABCABC

There is also a function STR$ which converts a number into a string.

10 A=45:B=30
20 A$=STRS (A)
30 B$=STRS (B)
40 PRINT A+B
50 PRINT AS$+BS$
>RUN

75
4530
>

ie line 40 treats A and B as numbers and line 50 as string characters.

Note that STR$ is affected by the special variable @% if this has been set (see
chapter 10).

The opposite function is VAL. This extracts the number from the start of the
string, which must start with a plus + or minus — sign or a number. If it

117

doesn’t a zero is returned. Numbers which are embedded in other characters are
ignored. So

10 A$="124ABC56"
20 PRINT VAL (AS)

will print 124.
However, back to the outline of a hangman program.

10 MODE 7
20 W=RND(12): REM 12 WORDS TO CHOOSE FROM
30 FOR X= 1 TO W
40 READ AS
50 NEXT X
60 REM WE HAVE SELECTED A RANDOM WORD
70 REM NOW GIVE THE USER CHANCES TO
80 REM GUESS LETTERS IN THE WORD
90 L=LEN(AS)
100 CORRECT=0
110 TRIES=0
120 PRINT TAB(0,5); "The word has ";L;"letters"
130 PRINT TAB(0,6);"You have ";2*L;"tries"
140 REPEAT
150 PRINT TAB(10,7); "GUESS A LETTER";
160 GS$=GETS
170 PRINTTAB(25,7);G$
180 P=0
190 REPEAT
200 P=INSTR(AS$,GS$,P+1)
210 IF P <>0 THEN PRINT TAB(P+12,15);G$
220 IF P <>0 THEN CORRECT=CORRECT +1
225 IF P=L THEN P=0
230 UNTIL P=0
240 TRIES=TRIES+1
250 PRINT TAB(0,0); "TRIES "; TRIES;
TAB (20, 0) ; "CORRECT "; CORRECT
260 UNTIL (CORRECT=L OR TRIES=2*L)
270 IF CORRECT =L THEN PRINT TAB(10,19);
"Congratulations"
280 IF TRIES=2*L THEN PRINT
TAB(0,16); "The word was ";AS$
290 DATA NOTWITHSTANDING
300 DATA INQUISITION
310 DATA MONUMENTAL
320 DATA PRESCRIPTION

118

330 DATA CARNIVOROUS
340 DATA TENTERHOOK
350 DATA DECOMPRESSION
360 DATA FORTHCOMING
370 DATA NEVERTHELESS
380 DATA POLICEWOMAN.
390 DATA SOPHISTICATED
400 DATA GUESSTIMATE

There are a number of improvements to be made to this program. Its screen
layout is poor and also it lets you guess the same letter twice.

It is possible to use some mathematical operators on strings. For example one can
check to see if two strings are ‘equal’ or if one string is ‘greater’ than another.
Obviously the words ‘equal’ and ‘greater’ have slightly different meanings when
applied to strings. A few examples may help to clarify things. As far as the
computer is concerned, XYZ’ is greater than ‘ABC’ because X is further down the
alphabet than A. Similarly, ‘ABC’ is greater than ‘AB’ because ‘ABC’ is a longer
string.

You can use the following comparisons with strings:
= equal to

<> not equal to

< lessthan

> greater than

<= less than or equal to

>= greater than or equal to

The following are legal statements:

IF A$ = "HELLO" THEN PRINT "HOW ARE YOU"
IF B$ > "FIFTEEN" THEN GOTO 1000

Notice that if B$ contained SIX it would be regarded as ‘greater than’
FIFTEEN because it starts with an S whereas FIFTEEN starts with an F.

10 B$ = "SIX"
20 IF B$ >"EIGHT" THEN STOP

This program would stop because the word SIX begins with an S which is
regarded as ‘greater than’ the letter E.

Strings are compared character by character using ASCII codes. If two strings
start with an identical sequence of letters, for example PIN and PINT then the
longer string is regarded as the larger one.

119

25 Programming the red user
defined keys

At the top of the keyboard is a group of special red keys which are called user
defined keys. Instead of producing a fixed character the user can ‘define’ these
keys to generate any character or string of characters that is required. For
example, to set up key fl so that it produces the word PRINT every time it is
pressed you can type

*KEY 1 PRINT RETURN
To set key f2 to produce the word DATA you enter

*KEY 2 DATA RETURN

If you want to enter more than one word into a user defined key then you can
enclose the words in quotes

*KEY 3 "IF X=" RETURN
though quote marks are not necessary.

When you are developing programs it is very useful to have one of the keys set up
to change to MODE 7 and then LIST the program automatically. If you were
typing in the commands MODE 7 and LIST you would normally follow each
with a RETURN, and you have to include something equivalent to pressing the
RETURN key when you set the key up. In fact to set up key f0 you enter this:

*KEY 0 MODE 7 |M LIST |M

The two characters | and M together are understood to mean the same thing as
pressing the RETURN key. In fact the | in front of any letter makes the
computer generate a control character. You may remember that to enter ‘paging
mode’, where the computer stops at the bottom of every page, you can type CTRL
N. That instruction can be added to the key fO definition as well, if you wish.

*KEY 0 MODE 7 |M |N LIST |M

It is important to remember than any *KEY definition must be the last
statement on a line because once the computer finds a * at the start of a
statement it passes the rest of the line to the Machine Operating System and not
to BASIC. The Machine Operating System does not understand : which BASIC

would understand as a multiple statement separator. The same thing

120
applies to *FX statements — only one is allowed per line.

However, it is acceptable to use colons to separate statements within the key
definition. For example:

*KEY 6 MOVE 0,0 : DRAW X,Y |M

If you want to you can set up the user defined keys in a program in exactly the
same way that they are set up in command mode. Thus

10 *KEY 7 "|B LIST|M |C"

would let key 7 turn the printer on, list the program and then turn the printer
off.

If you wish to include an ASCII code greater than 128 (&80) then you can do this
by using the sequence | ! to add 128 to the value produced. For example:

*KEY 8 "|!|V"

would put a single ‘character’ in key 8 and the ASCII value of the character
would be made up from the two parts. The | ! is worth 128 and the ASCII value
of CTRL v is 22, giving a total value of 150.

The BREAK key

Pressing the BREAK key causes a ‘soft reset’ which does not reset the clock or
clear the definitions of the user defined keys. However, pressing BREAK while
the CTRL key is pressed will cause a ‘hard reset’” which resets everything.
Pressing SHIFT and BREAK together is used on disc and runs a program
without any further instructions.

As you know, when you press the BREAK key the computer is reset and nothing
can change that. Your program will stop and all variables will be lost; even your
program will appear to be lost. However, there are a number of things that can be
done to alter the course of events.

First, a program can be recovered by typing OLD RETURN and then RUN
RETURN. Alternatively, the BREAK key can be ‘redefined’ by using the
expression

*KEY 10 "OLD |M RUN |[M "

which treats the BREAK key as another user definable key.

Other keys

The E”I and COPY keys can also be redefined — they can be

considered to be user defined keys 11 to 15 (see also chapter 43).

11
12

13
14
15

121

122

26 Operator priority

An operator is something like +, /, <, etc, which affects one or more items — for
example comparing them, or adding them.

Mathematical operators are familiar. Most act on two numbers — for example

3+7 addition

2-5 subtraction

4*6 multiplication
1/9 division

7 DIV 4 integer division

7 MOD 4 integer remainder
374 raise to a power

These operators are referred to as binary operators since they require two
operands (ie two things to operate on).

-5

This shows one of the few ‘unary’ operators that we are used to. The — just acts
on the 5 to make it a negative number.

This version of BASIC has a large number of operators and it is very important
that the user is aware of their order of priority. You will remember that in
mathematics multiplication must be completed before addition. The same applies
to other operators — there is a strict hierarchy and you must be aware of it if the
computer is to do what you expect.

The overall order of precedence for operators is as follows.

Group 1 unary minus
unary plus
NOT
functions
parentheses ()
indirection
operators (see
chapter 39)

Group 2 ~ raise to the power
Group 3 * multiplication
/ division
DIV integer division
MOD integer remainder

123

Group 4 + addition

- subtraction
Group 5 = equal to

<> not equal to

< less than

greater than

<= less than or equal to

>= greater than or equal to
Group 6 AND logical and bitwise AND
Group 7 OR logical and bitwise OR

EOR logical and bitwise Exclusive OR

All operators in each group have equal priority and will be dealt with on a left to
right basis — in other words in order in each line.

Some of the operators should be familiar by now, others may need explanation.

Group 1

NOT is most often used to reverse the result of a test, eg

IF NOT (X=5) THEN....

Clearly this example could be written

IF X<>5 THEN

but the operator NOT is often needed when using functions, eg
IF NOT FNVALID THEN. ..

Functions include all the predefined functions such as SQR,SIN,ASC etc and
user defined functions like FNVALID.

Parentheses can be used to ensure that everything within the parentheses is
evaluated before any other calculations take place. Indirection operators are
described in chapter 39.

Group 2

Raise to the power, eg
342=9

3~43=27

Group 3 and Group 4

These contain all the usual arithmetic operators. Nothing unexpected here.

124

Group 5

This contains the relational operators which mean ‘greater than’, less than’, etc.
They are used in expressions such as

IF X>10 THEN...

Group 6

Logical AND is used to ensure that two or more conditions hold true before some
action is taken, eg

IF X>10 AND Y=6 THEN...

For further details see under AND in the chapter on BASIC keywords.

Group 7
Logical OR is also used with multiple conditions, eg
IF X>10 OR Y=6 THEN

The action is taken if one or more of the conditions is true. EOR is normally only
used as a bitwise operator and the user is referred to the BASIC keywords
chapter for details.

125

27 Error handling

If the computer is unable to deal with a situation such as this:
PRINT 3/0

then it will report the fact to you with an ‘error message’ and then stop, waiting
for your next command

>PRINT 3/0

Division by zero

If you are just playing at the keyboard this entry is not a problem — in fact one of
the main virtues of BASIC is that it does try to give you an indication of why it is
unable to proceed. However if you are writing a program for someone else to use,
and you do not want them to be bothered with error messages then you must
take the precautions to deal with every possible error that might arise.

The major tool in error handling is the statement
ON ERROR GOTO 5000
(The 5000 isan example —it could GOTO any line number you like.)

Once the computer has encountered an ON ERROR GOTO statement it will no
longer report errors and stop — instead it will go to line 5000 (or wherever you
have told it to go to). The statement ON ERROR OFF makes the computer
handle errors normally again. The computer has an error number for every error
it may encounter and you can use the error number to enable you to know what
has gone wrong. The error number is stored in the variable ERR. The error
number for an attempt to divide by zero is 18 for example.

10 ON ERROR GOTO 2000
20 PRINT "HELLO"
30 PRINT 3/0
40 PRINT "BYE"
50 END
2000 PRINT ERR
>RUN
HELLO
18

The computer also remembers the line at which it detected the error and this
number is stored in the variable ERL.

126

10 ON ERROR GOTO 2000
20 PRINT "HELLO"
30 PRINT 3/0
40 PRINT "BYE"
50 END
2000 PRINT ERR
2010 PRINT ERL
>RUN
HELLO

18

30

As you will see from the above the computer detected error number 18 in line
number 30. Instead of just printing an error number the computer can be made
to deal with the problem. Look at the next program which will generate an error
when X gets to zero.

100 X=-5

110 PRINT X, 3/X

120 X=X+1

130 IF X<5 THEN GOTO 110

140 END

>RUN
-5 -0.6
-4 0.75
-3 -1
-2 -1.5
-1 -3

0

Division by zero at line 110

If we put in error handling routine we can let the computer deal with the problem
itself.

10 ON ERROR GOTO 1000

100 X=-5

110 PRINT X, 3/X

120 X=X+1

130 IF X<5 THEN GOTO 110
140 END

1000 IF ERR=18 THEN PRINT: GOTO 120
1010 REPORT
>RUN

-5 -0.6

-4 -0.75

-3 -1

127

-2 -1.5
-1 -3
0

1 3
2 1.5
3 1
4 0.75

In the example program above error 18 was dealt with successfully but line 1010
causes it to REPORT other errors in the normal way without trying to deal with
them.

It is usually easy, but tedious, to anticipate all the likely errors but careful
planning is needed if all the error handling is to be effective. In particular you
should be aware that when an error occurs you cannot return into a
FOR...NEXT or REPEAT...UNTIL loop or into a procedure or function or
subroutine. So long as you are aware of these limitations you can program
around them.

128

28 Teletext control codes and
MODE 7

MODE 7 is a Teletext compatible display mode which is very economical in its
use of memory. It can provide a full colour text display with limited, but full
colour, graphics. This mode is strongly recommended for applications which do
not require very fine graphic detail.

MODE 7 uses the standard Teletext control codes to change colours rather than
the BBC BASIC COLOUR and DRAW statements. It cannot be overemphasied
that MODE 7 requires different codes and statements from those available in
MODES 0 to 6. The MODE 7 display consists of 20 lines of 40 characters.
Each line will normally consist of white letters and numbers (text) on a black
background. If the user wishes to change the colour of the text or the background
then a control code must be sent to the screen with a PRINT or VDU
statement. By way of explanation let’s examine one typical line of characters on a
MODE 7 screen.

The screen display consists of 25 lines (numbered 0 to 24) each containing up to
40 characters (0 to 39).

@ Columns 39

'

Lines

24

Let’s examine a typical line and see what is displayed on the screen.
[1 2 3 4 5 6 7 8 9 14 11 12 13 14

allsllell Jolellr] Telml I K][L

) - 2 [J «

White letters Red letters Green letters Blue letters

129
To get this on the screen you will need to type

>MODE 7
>PRINT
"ABC";CHRS$ (129) ; "DEF"; CHR$ (130) ; "GHI"; CHRS (132) ; "JKL"

You will see that there is a space on the screen between the letters ABC and the
letters DEF. That space is in fact occupied by an invisible ‘control code’. The
control code ‘appears’ on the screen as a spce but it affects everything to its right.
The control code at position 3 is code number 129 and that has the effect of
turning all letters and numbers that follow into red. The code at position 7 is
number 130 which produces green alphanumerics (letters and numbers).

Here is a list of a few more control codes

129 Alphanumeric red

130 Alphanumeric green
131 Alphanumeric yellow
132 Alphanumeric blue
133 Alphanumeric magenta
134 Alphanumeric cyan
135 Alphanumeric white

To change the colour of the text
To get these codes on the screen you have to type PRINT CHRS$ (X) just before
the text you want to alter, where X stands for the code you want. Often you will

wish to put the codes in between two words and you do that by placing both the
words and the CHR$ (X) in one long PRINT statement as shown below

10 MODE 7
20 PRINT "WHITE";CHRS$ (131); "YELLOW";CHRS$ (135); "AND
BACK TO WHITE"

To make characters flash
Another code, 136, makes everything that follows on that line flash. Try

10 MODE 7
20 PRINT "HELLO";CHRS$ (136); "FLASHER!"

It must be emphasised that every line starts off in white, non-flashing, normal
height, black background and so on. If you want to print a whole page in red
letters then every line must start with control code 129.

You should by now understand how to put the control codes into a PRINT
statement and now we can see what other effects are available.

130

To change the background colour requires three control codes. Suppose that you
want blue letters on a yellow background then you must use the following
sequence of control codes

131 Yellow alphanumeric
157 New background
132 Blue alphanumeric

10 MODE 7
20 PRINT CHR$ (131);CHR$(157);CHRS$ (132); "BLUE
LETTERS ON YELLOW"

As you will gather to change the background colour you must first select letters of
the desired colour, then declare a new background and then reselect the colour of
the letter. Note that you cannot have a flashing background, so the following
sequence

136 Flash

131 Yellow alphanumeric

157 New background

132 Blue alphanumeric

will produce flashing blue letters on a steady yellow background.

10 MODE 7

20 PRINT

CHR$ (136) ; CHR$ (131) ; CHRS (157) ; CHRS (132) ; "BLUE
LETTERS ON YELLOW"

Flash is turned off with control code 137.

To produce double height characters

It is possible to write characters with double their normal height using control
code 141. Obviously this takes up two of the normal display lines. What is not so
obvious is that you must therefore print exactly the same text on two successive
lines. Try the following:

10 MODE 7
20 PRINT CHR$(141); "THIS IS DOUBLE HEIGHT"

As you will see it only produces the top half of the letters. Add line 30 and it
works properly.

10 MODE 7
20 PRINT CHR$(141); "THIS IS DOUBLE HEIGHT"
30 PRINT CHR$ (141);"THIS IS DOUBLE HEIGHT"

131

Of course you can have (for example) double height, flashing red letters on a
white background

141 Double height
157 New background
129 Red alphanumeric
136 Flashing

10 MODE 7
20 PRINT CHR$ (141);CHR$(157);CHRS$(129);CHRS$(136);
"THE LOT"
30 PRINT CHR$(141);CHR$(157);CHRS$(129);CHR$(136);
"THE LOT"

Double height is turned off with control code 140.

As you can see, it can be very tedious typing in CHRS$ (129) every time you
want a Teletext control code. To make things easier it is possible to use the red
user defined function keys in combination with the SHIFT key to generate these
special codes. While pressing SHIFT the function keys normally produce the
codes shown in the following table.

f0 128 No effect

f1l 129 Alphanumeric red

2 130 Alphanumeric green

f3 131 Alphanumeric yellow
f4 132 Alphanumeric blue

f5 133 Alphanumeric magenta
f6 134 Alphanumeric cyan

7 135 Alphanumeric white

f8 136 Alphanumeric flash on
19 137 Alphanumeric flash off

As you will see f0 is set to produce code 128 and the other keys produce higher
numbers. 128 is said to be the ‘base address’ for the keys. The base address can
be altered with *FX 226 if you wish. See chapter 43 for more details.

Once you have a Teletext control code on the screen you can use the editing keys
(eg COPY) to copy it into another string. This can be very useful.

132

Graphics

In addition to displaying coloured letters it is possible in MODE 7 to do a
certain amount of work with graphics. The graphics available in Teletext mode
are more complicated to use than in other modes but with a little patience very
good effects can be achieved. An additional set of control codes are used to change
lower case letters into small graphic shapes. The shapes are all based on a two by
three grid, the same total size as a large letter.

If you want to use those graphic shapes instead of lower case letters then they
must be preceded with one of the following control codes:

145 Red graphics

146 Green graphics
147 Yellow graphics
148 Blue graphics
149 Magenta graphics
150 Cyan graphics
151 White graphics

Note that upper case letters will still show as letters in the same colour that you
have selected for the graphics. Thus

10 PRINT CHR$ (145); "ABCdefGHIjkl"

will show the following on the screen in red.

AE Cnll GHI Pl

(The full list of graphics shapes is given in Appendix B.)

133

Graphics codes

It is possible to calculate the code for any particular graphics shape in the
following way. Each of the six cells is represented by a specific code number:

1 2
4 8
16 64

In addition you should add in 32 + 128 (ie 160). For example the ASCII code for

is2+8+ 16 + 32 + 128 = 186.

Making a large shape

In the next chapter you can see how to use user defined characters to draw a
space ship. By way of comparison, a similar but cruder space ship can be made in
Teletext mode. Here is the design and the code number for each graphic
character:

250 245
255 2565
191 239

134

To make these display as graphics characters each line must be preceded by (for
example) code 146 (green graphics). So the following codes must be printed on
the screen:

146, 250, 245
146, 255, 255
146, 191, 239

These codes can be sent using PRINT CHR$ () as long as you are careful to
get each code in the correct place, eg

10 MODE 7

20 X=20

30 Y=10

40 PRINT
TAB(X,Y);CHR$ (146) ; CHRS$ (154) ; CHRS (250) ; CHRS (245)
50 PRINT

TAB(X,Y+1) ;CHRS$ (146) ; CHR$ (154) ; CHR$ (255) ; CHRS$ (255)
60 PRINT

TAB (X, Y+2) ; CHRS$ (146) ; CHR$ (154) ; CHR$ (191) ; CHRS (239)

Instead of using PRINT TAB (X, Y) it is probably easier in this case to use
ASCII codes to move the cursor-down one line (code 10) and back four spaces
(code 8 four times). It is probably also easier to use the VDU statement rather
than PRINT CHRS$ (). If these two things are done then the program
becomes

5 MODE 7
6 PRINT TAB(20,10);
10 VDU 146,154,250, 245

20 VDU 10,8,8,8,8

30 VDU 146,154,255,255
40 VDU 10,8,8,8,8

50 VDU 146,154,191,239
100 PRINT

A complete list of the Teletext codes is given in Appemdix A and Appendix B.

Teletext graphics codes for the more adventurous

As you will have realised, the statements MOVE and DRAW are not available in
the Teletext mode(MODE 7). If you wish to draw lines in this mode you will need
to use a suitable procedure — so here is one. It uses a look-up table, called S%, to
remember the numbers corresponding to each of the six pixels (picture elements)
in a Teletext graphics character. The look-up table must be set up at the
beginning of the program:

135

10 DIM S% 7
20 !S%$=&08040201
30 S%!4=64010

(Refer to chapter 39 for an explanation of the above techniques).

Next a row of Teletext control codes must be written down the left hand side of
the screen to convert every line into a graphics display:

40 PROCGR
and the associated procedure is:

200 DEF PROCGR

210 LOCAL Y%

220 VDU 12

230 FOR Y%=0 TO 18
240 VDU 10,13,&97
250 NEXT

260 ENDPROC

The main program — in this case to plot a ‘sine curve’ — follows:

50 FOR X=0 TO 75 STEP 0.25

60 PROCPLOT (X,28+28*SIN(X/10))
70 NEXT

80 END

and lastly here is the procedure to plot the point:

300 DEF PROCPLOT (X%,Y%)

310 LOCAL C%,A%

330 VDU 31,X% DIV2+1l, 19-Y% DIV3

340 C%=S%? ((X% AND 1)+ (2-Y%MOD3) *2)

350 A%=135

360 VDU (USR &FFF4 AND &FFO00) DIV256 OR C% OR 128
370 ENDPROC

There is no need to know how it works but here is an explanation in case you are
interested.

The X and Y coordinates are put into X% and Y% and then line 330 moves the
text cursor to the position X%, ¥%.

Line 340 uses the look-up table (S%) to calculate the ‘value’ (in terms of ASCII
code) of the selected pixel at X%, ¥%.

Setting A$=135 and jumping to the subroutine at s FFF4 returns the ASCII
code of the character which includes the spot X%, ¥Y%. See chapter 43, which
explains this OSBYTE call for a similar example. The character read from the
screen is then ORed with the new pixel (C%) and written with the vDU
statement.

136

The &£97 in line 240 produces white graphic dots. Other values will give other
colours. For example £ 91 would draw a red graph.

Two improvements could be made; first we could test for illegal values of X% and
Y% with

320 IF X%<0 OR X%>75 OR Y%<0 OR Y%>56 THEN ENDPROC

and secondly remember the position of the cursor before we entered the
procedure and restore the cursor to that position at the end of the procedure.

Notice that you do not need to reference actual memory coordinates and this is
vital if your programs are to work via the Tube. You may not think it is
important now but you will find that it is advisable to write programs using the
machine code calls provided and not to get into the habit of addressing the
memory directly.

137

29 Advanced graphics

As we saw earlier, the following keywords can be used in a variety of statements
which produce high resolution graphics effects on the screen:

MODE Selects a particular graphics MODE

GCOL Selects the colour and drawing ‘style’ of any graphics (except
in MODES 3,6,0r7)

DRAW Draws lines (except in MODES 3,6, 0or 7)

MOVE Moves the graphics cursor (except in MODES 3, 6,0r 7)

PLOT Draws lines, dotted lines, points and colours in triangles

(except in MODES 3, 6,0r 7)

These will only become familiar with use. What follows is a description of how to
use some of the keywords to produce a selection of results on the screen.

How to change the screen display modes
The screen mode can be changed at any time by typing MODE X, where X is the
value 0 to 7 from the following list:

MODE 0 Uses two colours with very high resolution and requires 16K of
memory to ‘map’ the screen

MODE 1 Uses four colours with high resolution and requires 16K of
memory

MODE 2 Uses four colours with medium resolution graphics — 16K

MODE 3 Text only — 16K

MODE 4 Two colours and high resolution graphics — 8K

MODE 5 Four colours and medium resolution graphics — 8K

MODE 6 Text only — 8K

MODE 7 Teletext (which is the subject of a separate chapter of this
book)- 8K

In MODES 0,1, 2, 4 and 5 the screen is divided up into imaginary rectangles,
like a piece of graph paper. In MODE 0 there are 640x256 squares; in MODEs 1
and 4 there are 320x256 and in MODEs 2 and 5 there are 160x256 (in other
words, the higher the resolution of the graphics, the smaller the rectangle). The
higher the resolution , the more memory is used up in the process of ‘mapping’
the screen.

138

MODES 128-135 do not use any of main memory, and are the ‘shadow screen’
equivalents of MODES 0-7. See chapter 42 for more details.

How to draw lines

In Appendix E you will find a graphics planning sheet which shows the way the
screen can be thought of as a piece of graph paper, with each point having a
horizontal (X) and a vertical (Y) value. The ‘origin’ is point 0,0 and is at the
bottom left of the screen. Top right is 1279,1023.

How to draw a square in the centre of the screen

1. First set up a screen mode which can support graphics. Use the MOVE
statement to move the graphics ‘cursor’ from its home position (0,0) to a point
where we can start drawing (say 400 units along and 400 units up).

100 MODE 5
110 MOVE 400,400

2. Draw a line horizontally to point 800,400. The DRAW command draws a line
from the last point ‘plotted’ to a point defined in the DRAW statement.

120 DRAW 800,400
3. Finish the box with three more DRAW statements

130 DRAW 800,800
140 DRAW 400,800
150 DRAW 400,400

Run the program.

Changing the colour of the square
The normal colour in MODE 5 is white. Add the following line:

105 GCcoL 0,1

This changes the lines to ‘logical’ colour 1, which in MODE 5 is red. MODE 5
only has four colours. When the machine is switched on they are black, red,
yellow and white. However, logical colours can be changed by using one of the
VDU commands (see later). So, if you know what you are doing, you can select
any four colours in MODES.

How to fill in with colour

PLOT 85,X,Y (see the BASIC keywords chapter) draws and then fills in a
triangle drawn from the last two plotted points to the point defined by X and Y.
The colour is the current graphics foreground colour. Add the following line:

160 PLOT 85,800,800

139
Run the program.
This will fill in one half of the square.
Now add:
170 PLOT 85,800,400

Run the program and the whole square should become red.

How to change colours

At any particular moment the computer can print and draw on the screen using
four colours. This page uses two ‘colours’: a white background colour and a black
foreground colour — that is, black writing on a white background. Similarly, the
computer has a text background colour and a text foreground colour but, in
addition, it is aware of a graphics foreground colour (used to draw lines), and a
graphics background colour. When you change MODE the computer resets all
these colours as follows:

— Text foreground colour: white
— Text background colour: black
— Graphics foreground colour: white
— Graphics background colour: black

The number of colours that can appear on the screen at one time depends on the
MODE selected. In MODES 0, 3,4 and 6 you can only have two colours at any
time and they are normally black and white. In MODEs 1 and 5 you can have
up to four colours at any time and they are normally black, red, yellow and white.
InMODE 2 you can have up to 16 different coloured effects.

Let us consider MODE 5 for a moment and explore the effects that are
available. MODE 5 is a four colour mode and the default colours are black, red,
yellow and white. As you may have gathered, text and graphics are dealt with
separately so to change the colour that will be used for text output type

COLOUR 0 To give black text
COLOUR 1 To give red text
COLOUR 2 To give yellow text
COLOUR 3 To give white text

However, to change the colour used for graphics, for example to produce lines
with the DRAW statement, you use these statements

GCOL 0, 0 Black graphics
GCOL 0,1 Red graphics

GCOL 0,2 Yellow graphics

140
GCOL 0, 3 White graphics

The two groups of statements above change the ‘text foreground’ and ‘graphics
foreground’ colours.

You will have noticed that, so far, 1 represents red, 2 is yellow and so on. To
change the background colours we add 128 to these numbers. Thus COLOUR
129 will give a red text background, and GCOL 0,129 would set the
graphics background colour to red.

For text, for example, to change from white lettering on black, to black lettering
onred in MODE 5, type

MODE 5
COLOUR 129
COLOUR O
CLsS

All text will now be in black and red. Graphics will still appear in white.

To change text colours in the middle of a program simply insert the appropriate
colour statements before the print statements to which they refer.

For graphics use the GCOL statement which stands for ‘Graphics COLours’.
GCOL has two numbers after it (see the BASIC keywords chapter). The second
number refers to the logical colour which is to be used for graphics in the future.
The first number is usually set at 0.

So for example, to get red graphics lines on a yellow background, type

COLOUR 131
GCOL 0,1
CLsS

But suppose that you wanted a blue background in MODE 5. So far the only
available colours have been black, red, yellow and white and there is a limit of
four colours in MODE 5. You can make one of four colours blue if you want to.
You do this with the statement

vbU 19,0,4,0,0,0
and then the four available colours would be blue, red, yellow and white.

In MODE 5, only four colours are available at a time and they are referred to as
‘logical’ colours 0 to 3. In MODE 5 ‘logical’ colour O is normally black, ‘logical’
colour 1 is normally red and so on but you can change the ‘actual colour’ of the
‘logical colours’ easily by using the VDU 19 statement followed by five
numbers, separated by commas.

In a two colour mode such as MODE 4 we can do similar things eg

MODE 4

141
vbuU 19,1,2,0,0,0

changes logical foreground colour 1 (which is initially white) to actual colour 2
which is green, and

vDU19,0,5,0,0,0

changes logical background colour 0 to actual colour 5, which is magenta. (Note:
The zero at the end are for future expansion of the system.) The computer will
now produce these colours until either it is switched off, the BREAK button is
pressed, or the MODE is changed. These instructions to change the colours can
be embedded in a program thus making it possible to alter the colours while a
program is running.

Here is a list of the numbers for each ‘actual colour’ that the computer can
produce.

Actual colour number Displayed colour
0 Black
1 Red
2 Green
3 Yellow
4 Blue
5 Magenta
6 Cyan
7 White
8 Flashing black/white
9 Flashing red/cyan
10 Flashing green/magenta
11 Flashing yellow/blue
12 Flashing blue/yellow
13 Flashing magenta/green
14 Flashing cyan/red
15 Flashing white/black

So ‘actual colour’ numbers are any numbers between 0 and 15. To make logical 3
a flashing red/cyan effect you write

vbu 19,3,9,0,0,0

and here are some other examples

VDU 19,1,2,0,0,0 Logical colour is green
VDU 19,3,5,0,0,0 Logical colour 3 is magenta

VDU 19,0,12,0,0,0 Logical colour 0 is flashing blue/yellow

142

Having set the logical colours up in this way you could then select logical colour 0
(flashing blue/yellow) as the text foreground colour whith COLOUR 0, or as the
graphics foreground colour with GCOL 0, 0. The table shows the set up for each
time you change MODE.

Foreground colour Background colour
Logical Actual colour Logical Actual colour
number number

Modes 0,3,4,6
0 Black (0) 128 Black (0)
1 White (7) 129 White (7)
Modes 1,5
0 Black (0) 128 Black (0)
1 Red (1) 129 Red (1)
2 Yellow (3) 130 Yellow (3)
3 White (7) 131 White (7)
Mode 2
0 Black (0) 128 Black (0)
1 Red (1) 129 Red (1)
2 Green (2) 130 Green (2)
3 Yellow (3) 131 Yellow (3)
4 Blue (4) 132 Blue (4)
5 Magenta (5) 133 Magenta (5)
6 Cyan (6) 134 Cyan (6)
7 White (7) 135 White (7)
8 Flashing black/white (8) 136 Flashing black/white (8)
9 Flashing red/cyan (9) 137 Flashing red/cyan (9)
10 Flashing green/magenta (10) 138 Flashing green/magenta (10)
11 Flashing yellow/blue (11) 139 Flashing yellow/blue (11)
12 Flashing blue/yellow (12) 140 Flashing blue/yellow (12)
13 Flashing magenta/green (13) 141 Flashing magenta/green (13)
14 Flashing cyan/red (14) 142 Flashing cyan/red (14)
15 Flashing white/black (15) 143 Flashing white/black (15)

You should note that the GCOL statement is followed by two numbers.

The first number can be used to control the way that the colour (which is selected
by the second number) is affected by what is already on the screen. The
statement

GCOL 0,3

143

tells the computer that the graphics colour to be used is to be logical colour 3 and
that this is to appear no matter what was on the screen under the new line or
triangle. Values other than 0, for the first number, have other effects. For
example, a value of 4, as in GCOL 4, 0 has the effect of drawing a line which is
the ‘inverse’ logical colour to the colour that it is currently crossing over.

In two colour MODES the inverse of logical colour O is logical colour 1. In four

colour modes the following applies.

Logical colour Inverse
0 3
1 2
2 1
3 0

With ‘default’ actual colour of black, red, yellow and white the inverse colours

would be white, yellow, red and black.

In MODE 2, the 16 colour MODE, all steady colours translate to flashing colours

and vice versa as the next table shows for the default colours.

Logical colour Default displayed colour Inverse
0 Black Flashing white/black
1 Red Flashing cyan/red
2 Green Flashing magenta/green
3 Yellow Flashing blue/yellow
4 Blue Flashing yellow/blue
5 Magenta Flashing green/magenta
6 Cyan Flashing red/cyan
7 White Flashing black/white
8 Flashing black/white White
9 Flashing red/cyan Cyan
10 Flashing green/magenta Magenta
11 Flashing yellow/blue Blue
12 Flashing blue/yellow Yellow
13 Flashing magenta/green Green
14 Flashing cyan/red Red
15 Flashing white/black Black

144

Other values of the first number following GCOL enable the logical colour to be
plotted to be ANDed, ORed or Exclusive-ORed with the logical colour presently
on the screen. The user is referred to the BASIC keywords chapter for a
description of AND, OR and EOR but the following examples may help.

InMODE 5 with the background set to red by the following statements

MODE 5
GCOL 0,129
CLG

an attempt to draw a yellow line ORed with the background colour by using the
statement

GCOL 1,2

would in fact produce a white line since the background logical colour is 1 and the
new line is to be drawn in logical colour (1 OR 2) ie logical colour 3. The same
principles apply to GCOL 2, which ANDs the new colour with the previously
displayed logical colour and to GCOL 3, which Exclusive-ORs the colours
together.

Obviously, an understanding of AND, OR and EOR is required before all the
GCOL statements can be used. The effects which can be produced are very
useful when it comes to producing sophisticated animations.

How to plot a point on the screen

The PLOT command can also be used to plot points.

Type MODE 4 (which is a two colour MODE) and type

PLOT 69,500,500

This will plot a point in white at coordinates X=500, Y=500. Type
PLOT 69,600,500

and another point will appear at X=600, Y=500.

How to remove a point selectively

Typing CLG would clear the whole graphics area. However, instead of CLG ,
type

PLOT 70,500,500

and you will see that one of the points has gone. This is because PLOT 70
prints the ‘inverse’ colour at the given point. This is particularly useful when
‘animating’, for example, a point (see below). In MODE 4 the ‘inverse’ of logical
colour 1 is logical colour 0.

145

Suppose we want, for example, a yellow dot on a blue background. We need to
change the foreground colour from white to yellow and the background colour
from black to blue. To do this, use the VDU 19 command as described earlier:

vbu 19,1,3,0,0,0

This alters logical colour 1 (this means the normal foreground colour) to actual
colour 3 (ie yellow). Now type

vDU 19,0,4,0,0,0

This alters logical colour 0 (which is the normal background colour) to actual
colour 4 (ie blue).

PLOT 69, 500, 500

will now produce the desired effect.
Animation

How to make a ball and move it on the screen

This time we’ll write a program in steps to make a yellow ‘ball’ consisting of four
dots which move on the screen on a red background.

1. Setting up MODE and colours

10 MODE 4
20 vbU 19,1,3,0,0,0
30 vbu 19,0,1,0,0,0

2. Next a ‘procedure’ for creating a ball. This procedure will be ‘called up’
whenever we want to create a ball on the screen at a point (X,Y). It is good
practice to put a procedure like this at the end of a program, so we’ll give it a
high line number. X and Y are the parameters for this procedure.

1000 DEF PROCBALL (X,Y)
1010 PLOT 70,X,Y

1020 PLOT 70,X,Y+4

1030 PLOT 70,X+4,Y
1040 PLOT 70,X+4,Y+4
1050 ENDPROC

We use PLOT 70 rather than PLOT 69 to help the animation which follows.
3. Making the ball travel horizontally at height Y = 500.

40 REM HORIZONTAL MOVEMENT
50 FOR N = 1 TO 1000

60 PROCBALL (N, 500)

70 PROCBALL (N,500)

146

80 NEXT N
90 END

You will see that this prints the ball at the point (N,500) and then ‘unprints’ it
only to print it again one step further on, and so on.

To speed the ball up, alter line 50:

50 FOR N = 1 TO 1000 STEP 10

How to create your own ‘graphics’ characters

Each character which you type in at the keyboard has an associated ASCII code.
When the computer is told to print this character it looks up the code and prints
the appropriate character as an eight by eight matrix of dots. The letter ‘A’, for
example, has the code value 65 and ‘a’ has the value 97. (See Appendix A for the
other codes.) However, certain code values have been left to be defined by the
user. They include values 224 to 255. (See chapter 34 for more details.) They can
be defined by use of the VDU 23 command.

How to make a character (eg a man)
Create the character by planning it on an eight by eight square grid.

oC
O <+ AN ©
—~ O~ PN —

om e oo o

Note the numbers along the top of the grid which start at the right and double at
each column to the left.

To store the character shown above as code number 240, type in
VDU 23,240,28,28,8,127,8,20,34,65

The numbers which follow VDU 23,240 tell the computer the pattern of dots
in each horizontal row. These values are the ‘byte’ patterns corresponding to the
eight cells of each row. They can be calculated in a number of ways and entered
as a decimal or hexadecimal number. The simplest way for the novice is to add up
the values shown in the diagram above. Thus row a consists of 16+8+4=28, row b
is also 28, the third row is 8, the fourth row is 64+32+16+8+4+2+1=127, and so
on. So to create the little man, type the following program:

5 MODE 5

147

10 vDU 23,240,28,28,8,127,8,20,34,65
20 PRINT CHRS$ (240);
30 GOTO 20

Note the last two lines, which print him over and over again.

How to make him move

We have created a character which can be reproduced in any MODE (except
MODE 7). By printing him and then erasing him at successive positions he can
be made to move across the screen in a similar way to the ball. However, since he
exists as a character he is treated as text, not graphics. This means that he is
made to appear by using PRINT - as above — and the position can be defined by
using the TAB statement.

Try this:

5 MODE 4
10 vbu 23,240,28,28,8,127,8,20,34,65
20 PRINT TAB(20,10); CHRS$(240)

The character appears at text position 20,10. This is a 40 character wide MODE
s0 20,10 is roughly in the middle of the screen.

Now try this:

20 FOR X = 1 TO 19
30 PRINT TAB(X,10); CHR$(240)
40 NEXT X

This will print the man 19 times across the screen. Now type these additional
lines:

40 FOR T = 1 TO 100: NEXT T
50 PRINT TAB(X,10) ; ""
60 NEXT X

and he appears to run across the screen.

By alternating lines 30 and 50 so that the value in parentheses is (X,X) he can be
made to move diagonally across the screen.

Note that line 40 acts as a time delay.

148

How to make a larger character

This time, a space ship.

(o o}
CNIHICN
Ol

] 8

J=)
(OO~ |O\—|

Make this 1 28
character
240

Make this
character
241

AN EEEEREEERENE

Make this 62
character 127
242 127

T

Plan this by using several grids.
So we have

5 MODE 4
10 VDU 23,240,8,8,28,28,62,62,62,62

20 VDU 23,241,62,62,62,62,62,62,62,62

30 VDU 23,242,62,62,62,127,127,127,93,93
40 X = 20: Y = 10

50 PRINT TAB(X,Y); CHR$240;

60 PRINT TAB(X,Y+1);CHR$241;

70 PRINT TAB(X,Y+2);CHR$242;

This produces the space ship in the middle of the screen. To make it take off,
change the program by adding these lines:

7 vDbU23,1,0;0;0;0;
35 X=20
40 FOR Y = 24 TO 0 STEP -1

80 FOR T = 1 TO 100: NEXT T
90 PRINT TAB(X,Y); " ";

100 PRINT TAB(X,¥Y+1l); " ";
110 PRINT TAB(X,Y¥+2); " ";

120 NEXT Y

Now add an extra character to produce flames at the bottom of the space ship for
the initial take-off.

149

32 vDU 23,243,28,60,30,60,126,108,162,162
75 IF Y>12 THEN PRINT TAB(X,Y+3);CHR$243;
115 PRINT TAB(X,Y+3); " ";

How to make the movement smoother

The rocket does not appear to move up the screen smoothly but in a series of
jumps. This is because when you use TAB (X, Y) there are only 32 possible
lines you can print on.

The vDU5 statement (see also chapter 10, where it is used for positioning
accents, etc) causes text to be written at the graphics cursor. This means that you
can move to any point on the screen on the normal 12801024 graphics ‘grid’ and
print text or user defined characters. To do this MOVE X, Y is used.

VDU 4 undoes the effect of the vDU 5 statement. It causes text to be written
where the text cursor is.

Then the first character can be printed using PRINT CHRS$ (240); or VDU
240. These two alternatives are equivalent but VDU 240 means less typing!
We now need to backspace one character to our original position and move down
one character cell so we can print the next character. We can’t use TAB (X, Y)
because it won’t work after a VDU 5 statement, so we use two of the four
‘cursor movement commands’ (see chapter 10).

VvDU 8 Backspace cursor one character
vDU 9 Forwardspace cursor one character
VDU 10 Move cursor down one line

VDU 11 Move cursor up one line

Later on we’ll also use VDU 127 which has exactly the same effect as pressing
the DELETE key. All the VDU commands are listed at the back of the book —
there’s no need to remember them all.

We need to use vDU 8 and then VDU 10, or the other way around. You can
string VDU commands together, so we can use

VDU 240,8,10

which will print the first character and then move the cursor into position to
print the next one. To print the whole rocket and flames this is repeated three
times: here it is done in PROCROCKET.

5 MODE 4

7 vDU 23,1,0;0;0;0; :REM turn off cursor
10 vbu 23,240,8,8,28,28,62,62,62,62

20 VDU 23,241,62,62,62,62,62,62,62,62
30 VDU 23,242,62,62,62,127,127,127,93,93

150

32 vDU 23,243,28,60,30,60,126,108,162,162
35 X%=600
37 VDU 5
38 GCOL 4,1
40 FOR Y%=120 TO 1023 STEP 10
50 PROCROCKET: REM draw the rocket
90 PROCROCKET: REM now delete it
120 NEXT Y%
130 END
1010 DEF PROCROCKET
1020 MOVE X%,Y%
1025 VDU 240
1030 vDU 10,8,241
1040 VvDU 10,8,242
1050 IF Y%<500 THEN VDU 10,8,243
1060 ENDPROC

Notice that ‘integer’ variables (followed by a % sign) are used: these make the
program run considerably faster than ‘real’ variables.

The rocket is printed at line 50 by PROCROCKET. Line 90 prints the rocket
again in its inverse colour (as specified in line 38 GCOL 4, 1), and so deletes it.

As an alternative to this, the rocket could be deleted by replacing line 90 with
PROCdelete, deleting line 38, and adding the new procedure

2000 DEF PROCdelete
2010 MOVE X%, Y%
2020 VvDbU 9,127

2030 vDbU 10,9,127
2040 VDU 10,9,127
2050 vbU 10,9,127
2060 ENDPROC

This just deletes the rocket with vDU 127.

We can get smoother movement if we just delete the bottom character every time.
This removes most of the flicker and what remains becomes a good effect. The
price is that the detail at the bottom of the rocket is lost, so this method only
works if your character gets wider at the bottom!

Delete line 90, and type this new procedure:

38 GCOL, 1
40 FOR Y%=120 TO 1023 STEP 4
1010 DEF PROCROCKET
1020 MOVE X%, Y%
1025 VDU 240,10,8
1030 VDU 241,10,8

151

1040 VDU 242
1050 vDU 10,8,243
1055 vDU 127
1060 ENDPROC

If you change one line
1050 IF Y%<500 THEN VDU 10,8,243 ELSE VDU 10

the flames will cut out after take-off again.

Making a complete lunar landing game

Using the procedures we have developed for creating and moving the rocket on
the screen, we can incorporate these into a complete game which can test your
skill at landing a space ship on the moon. This complete program uses a range of
techniques described elsewhere in the book and was written by Jim Murray.
Included are a few notes to explain what is going on.

5 ON ERROR REPORT:GOTO 245
10 MODES
20 vbU 23,240,8,8,28,28,62,62,62,62
30 VDU 23,241,62,62,62,62,62,62,62,62,
40 VDU 23,242,62,62,62,127,127,127,93,93
50 vDU 23,243,28,60,30,60,126,108,162,162
60 VDU 23,1,0;0;0;0;
70 vbUu 19,2,2,0,0,0
80 VDU 28,0,20,14,0
90 @%=&906
110 *FX 11,1

Notes:

Line 70 enables us to use green.

Line 80 sets up a text window.

Line 90 sets @% — so numbers are printed as we want them.

Line 110 sets the auto-repeat delay period to its minimum value.

Line 5 disables the effect of line 110 if you press ESCAPE, otherwise it’s difficult
to type anything again!

120 PROClabels

130 PROCmoon

140 PROCinitialise
150 VDU 5

160 X%=960

165 GCOL 0,3

170 REPEAT

180 burn$=INKEYS$ (0)
185 *FX 15,1

152

190 IF burn$=""THEN burnrate%=0 ELSE
burnrate%=VAL (burn$) *30

200 PROCcalculate

210 PROCdashboard

220 IF Y%>01ldY%$+4 OR Y%<0ld¥Y%$-4 THEN PROCrocket
225 PROCburn

230 UNTIL height=0

240 IF speed>0.004 THEN PROCcrash ELSE PROCfanfare
245 *FX 12,0

247 *FX 15,1

250 END

Notes: Although line 250 says END this is not the end of the program. What
follows are the various procedures which have been called by the program as it
exists so far.

Before we give the procedures, some notes on the earlier lines.

Line 120 PROClabels - sets up the titles

Line 130 PROCmoon - draws moon’s surface.

Line 140 PROCinitialise - sets all the variables to initial values.

Lines 170 to 230 are the main part of the program — a REPEAT. . .UNTIL
loop.

Line 180 — checks to see if any key has been pressed.

Line 185 — clears the key buffer, otherwise the burn continues for a long time
after the key is released.

Line 190 — we use INKEY$ to check if anything has been pressed, but this
returns a string. Line 190 converts it to a number.

Line 200 PROCcalculate - doesthe maths.

Line 210 PROCdashboard - prints up the results.

Line 220 — prints the rocket if Y% (the variable used in MOVE X%, Y%) has gone
up or down by 4. In this MODE the rocket is printed in the same place unless the
change is greater than 4.

Line 225 PROCburn - draws the burning fuel.

Line 240 — crash or good landing? — at less than 15 mph it’s good.

Line 247 — clears keyboard buffer again so you don’t get a string of numbers
printed when the program stops.

700 DEF PROClabels

710 PRINT TAB(0,7) "secs"
720 PRINT TAB(0,9) "miles"
725 PRINT TAB(0,10) "feet"
730 PRINT TAB(0,12) "speed"
740 PRINT TAB(0,14)"fuel"
750 PRINT TAB(0,16) "burn?"
760 ENDPROC

800
805
810
820
830
840
850
860
870
900
910
920
930
935
937
940
950
960
965
970
1100
1105
1110
1120
1130

153

DEF PROCmoon

GCOL 0,2

LOCAL X

FOR X=100 TO 1280 STEP 200
MOVE X, 0

PLOT 85,X,30

PLOT 85,X+100,0

NEXT X

ENDPROC

DEF PROCinitialise
TIME=0:now=0

speed=1 :REM in miles/second
height=46:REM in miles
¥Y$=920

0ld¥Ys$=Y%

gravity=0.001

fuel=16500

totalmass=33000
burnrate%=0

ENDPROC

DEF PROCcalculate

IF fuel<=0 THEN fuel=0:burnrate%$=0
burntime= (TIME-now) /100
now=TIME
slower=(burnrate%/

totalmass) *2*EXP (burnrate%*burntime/totalmass)

1140

height=height-speed*burnttime-

burntime*burntime/2*

(gravity-slower)

1150
1160
1170
1180
1190
1200
1210

1300
1310
1320
1330
1340
1350
1360

speed=speed+burntime* (gravity-slower)
burnt=burnrate%$*burntime
totalmass=totalmass-burnt
fuel=fuel-burnt

IF height<0 THEN height=0
Y$=height*20+32

ENDPROC

DEF PROCdashboard

VvDU4

PRINT TAB(5,7)INT(TIME/100)

PRINT TAB(5,9)INT (height)

PRINT TAB(5,10)INT (height*5280) MOD 5280
PRINT TAB(5,12)INT (speed*3600)

PRINT TAB(5,14)INT (fuel)

154

1370 PRINT TAB(5,16)burnrate%
1375 VvDUS
1380 ENDPROC

5000 DEF PROCcrash
5020 SOUND 4,-15,100,70

5030 FORX=1 TO 100

5040 MOVE 850+RND (200), RND (200)
5045 GCOL, RND (4)

5050 DRAW RND (1280),RND(1024)
5055 NEXT

5060 ENDPROC

6000 DEF PROCfanfare

6010 FOR X=1 TO 11

6015 READ P,D

6017 IF P=999 THEN L=0 ELSE L=-15

6020 SOUND 1,L,P,D

6025 SOUND 1,0,0,3

6030 NEXT

6035 DATA
97,15,97,5,101,5,999,5,101,5,97,5,101,10,97,2,89,5,81
,5,77,10

6040 ENDPROC

8000 DEFPROCburn

8005 GCcoOLO,1

8010 MOVEX%,o0l1ld¥Y$%

8015 IF burnrate%=0 THEN VDU1l0,9,127 ELSE VDU1l0, 243
8025 GCOLO, 3

8030 ENDPROC

10000 DEFPROCrocket

10100 MOVEX%,o01ld¥Y%

io0110 vpDpv©U 10,9,127,11,9,127,11,9,127,11,9,127
10120 MOVE X%,Y%

10140 VDU 242,8,11,241,8,11,240

10150 01dY%=Y%

10160 ENDPROC

Running the program

You start off at a height of 46 miles moving at 1 mile/sec or 3600 mph. You have
fuel of 16500lbs and your weight to start with, including fuel, is 33000 lbs. You
fire the rockets by pressing one of the keys 1-9 and holding it down until you
want to stop burning. The rate of burning is proportional to the number. You
must land at less than 15 mph.

155

30 Sound

The BBC Microcomputer contains integrated circuits specifically designed to
generate musical sounds and noises on four ‘channels’. Two statements control
the generation of musical sounds; they are SOUND and ENVELOPE . For
simple effects the statement SOUND can be used by itself but if the user wishes
to have greater control over the quality of the sounds generated then ENVELOPE
can be used. At its simplest the sound statement is followed by four numbers, eg

SOUND C,A,P,D

C is the channel number 0to3

A is the amplitude or loudness 0to -15
P is the pitch 0 to 255
D is the duration 1 to 255

The channel number C, determines which of the four ‘voices’ is to be used.
Channel 0 produces ‘noise’ (this channel will be explained in detail later) whereas
channels 1, 2 and 3 produce purer notes.

The amplitude, A, can be varied between 0 (off) and -15(loud).

The pitch, P, selects notes in quarter semi-tone intervals. Middle C is produced
when P is set at 52 and other notes are generated with the values of P shown in
the table.

As you can see the computer can produce notes spanning five full octaves. The
values of P are also shown in the table for a stave in key of C but one octave up.

The duration, D, determines the length of the note and is given in twentieths of a
second. Those used to reading music will find that music marked ‘Moderato
d =60’ will sound about right with the following settings for D.

J\5 JIO JZO o W

156

Octave number

Note 1 2 3 4 5 6
B 0 48 96 144 192 240
C 4 *52 100 148 196 244 *middle C
C# 8 56 104 152 200 248
D 12 60 108 156 204 252
D# 16 64 112 160 208

E 20 68 116 164 212

F 24 72 120 168 216

F# 28 76 124 172 220

G 32 80 128 176 224

G# 36 84 132 180 228

A 40 88 136 184 232

A# 44 92 140 188 236

That completes the simple description of the SOUND command.

There are two main areas where the SOUND command can be extended. First,
instead of working with a fixed sound quality, one can select an ‘envelope’ to vary
both the amplitude and the pitch of the note while it is playing; secondly it is
possible to ensure that notes are synchronised so that chords start together. In
addition to these major extensions there are a number of other things that can be
controlled, and these will be described later.

If you wish to use an envelope to vary either the amplitude or the pitch of a note
(or both) then you must first define the envelope and secondly, instead of using a
fixed amplitude in the SOUND statement, you must quote the envelope number
for A. Four envelopes are normally permitted and they are numbered 1 to 4.

Thus
SOUND 1,2,53,20

would produce on channel 1 a note of middle C with a duration of one second and
the amplitude and pitch would be controlled by the envelope number 2.

The statement ENVELOPE is followed by 14 numbers and the following labels
will be used for the 14 parameters.

157

ENVELOPE N, T, PI1, P12, PI3, PN1l, PN2, PN3, AA, AD
,AS, AR, ALA, ALD

A brief description of each parameter follows.

Parameter Range Function

N 1to4 Envelope number

T bits 0-6 0 to 127 Length of each step in hundredths of a second

bit 7 Oorl O=auto-repeat pitch envelope

1=don’t auto-repeat pitch envelope

PI1 -128 to 127 Change of pitch per step in section 1

P12 -128 to 127 Change of pitch per step in section 2

PI3 -128 to 127 Change of pitch per step in section 3

PN1 0 to 255 Number of steps in section 1

PN2 0 to 255 Number of steps in section 2

PN3 0 to 255 Number of step in section 3

AA -127 to 127 Change of amplitude per step during attack
phase

AD -127 to 127 Change of amplitude per step during decay
phase

AS -127to 0 Change of amplitude per step during sustain
phase

AR -127to 0 Change of ampliude per step during release
phase

ALA 0 to 126 Target level at end of attack phase

ALD 0 to 126 Target level at end of decay phase

Note that the pitch can take on a value between 0 and 255. If the pitch is greater
than 255 (eg 257) then 256 will be repeatedly subtracted from it until it is in
range.

The amplitude has a range of 0 to 127 in the ENVELOPE statement whereas it
had a range of 0 to -15 in the SOUND statement. The amplitude cannot be set
outside the range 0 to 127.

Note also that the total duration of the attack, decay and sustain periods (but not
the release period) is determined by the SOUND statement and not the
ENVELOPE statement.

The envelope is divided up into a number of steps — usually a hundredth of a
second each and both the pitch and amplitude can be changed at the end of each
step.

158

The pitch envelope

The pitch of the note can be changed in three sections. For each section you can
specify the change in pitch at each tick of the clock (step) in the section. Suppose
we wish to generate a wailing sound like a police siren. The pitch has to rise and
fall like this:

Pitch
225 1 l

le—— Section 2 ——

1¢¢~/

Section Section
e 1 — e 3

¢

1) 19 2¢ 3¢ 4@ Time in steps
During section 1 the pitch changes +2 units per step and section 1 contains 10
steps. In section 2 the pitch changes -2 units per step and there are 20 steps.
Section 3 contains 10 steps of +2 units. So thus far the ENVELOPE command

looks like
ENVELOPE 2,1,2,-2,2,10,20,10

The next six numbers control the amplitude of the sound and might well be
1,0,0,-1,100,100 (these will be explained in a moment).

So the total program to show the pitch envelope working would be

10 ENVELOPE 2,1,2,-2,2,10,20,10,1,0,0,-1,100,100
20 SOUND 1,2,100,100

Here is another pitch envelope — it plays three notes in succession.
10 ENVELOPE 3,25,16,12,8,1,1,1,10,-10,0,-10,100,50
It reads:

— Envelope number 3.

— Each step is 25/100 ie 1/4 second long.

— The first section of the pitch envelope uses a pitch change of 16 units.
— The second section uses a pitch change of 12 units.

— The third section has a pitch change of 8 units.

— All three sections have only 1 step in each section.

— Now to explain the amplitude envelope.

The amplitude envelope

Suppose that we wish to imitate a car driving towards us getting louder all the
time and then driving past before stopping nearby and then driving away. The
amplitude of the sound against time might well look like this:

159

1
Car Going |Stopped Going
approaching | away | away
Amplitude
109
69
g ' —
¢ 2 4 6 8 1@ Time in seconds

The first phase of the amplitude envelope, where the sound is getting louder is
called the ‘attack phase’.

Amplitude
ALA \
Decay)
ALD Sustain
Attack
Release
'] 2 4 6 8 14 Time in second

The amplitude envelope is specified by giving six parameters. The first (AA) gives
the change of amplitude at the end of each step during the attack phase and it
must be a positive number. Usually the envelope starts with an amplitude of
zero. However it is possible to start with a non-zero amplitude if you have just
interrupted a note on the same channel. The attack phase continues until the
amplitude reaches the level given by the parameter ALA.

160

For reference the six parameters are defined again here.

Parameter Range Function

A -127 to 127 Change of amplitude per step during attack phase
AD -127 to 127 Change of amplitude per step during decay phase
AS -127to 0 Change of amplitude per step during sustain phase
AR -127to 0 Change of amplitude per step during release phase
ALA 0 to 126 Target level at end of attack phase

ALD 0 to 126 Target level at end of decay phase

In our example the attack phase takes four seconds and each step lasts 1/4
seconds so there will be 16 steps. We want these 16 steps to get us from an
amplitude of zero to an amplitude of at least 100 — if we make each step increase
the amplitude by seven we will get there in 16 steps. So parameter AA = 7.

During the decay phase the amplitude must drop from 100 to 60 in two seconds.
During two seconds there are eight steps. So the amplitude drops 40 units (100-
60) in eight steps — so each step must reduce the amplitude by five units. Thus
AD=-5. So far we have determined the following parameters of the amplitude
envelope.

A=T7
AD=-5
ALA=100
ALD=50

In our case the amplitude does not change during the sustain period so we can
set AS = 0. The sound will go on until the sustain phase is ended. The total time
allowed for the attack, decay and sustain phases is given by the duration part of
the SOUND command. The release phase then starts.

Note that the length of the attack and decay phases is set by the values chosen
for AA, AD, ALA and ALD but that the sustain phase can be terminated either by
the amplitude reaching zero or the time set by the duration of the SOUND
statement running out. The duration has to be set with care to ensure that it
doesn’t cut the note off at the wrong moment.

At the end of the sustain period the note enters the release phase where the note
changes in amplitude at the rate set by AR until it reaches zero.

161

As you may have guessed there are many ways for things to go wrong so that a
phase does not complete as expected. For example with ALA set to 100 and ALD
set to 50 and a decay rate (AD) of zero the amplitude will not decay at all during
the decay phase. However the sound will be moved to the release phase when the
duration is reached.

The ENVELOPE statement is very complicated and there is a wide range of
possible effects. You will have to use it a lot before you can accurately predict
what effect you will produce.

Some sample envelopes to try out:

ENVELOPE 1,1,0,0,0,0,0,0,2,0,-10,-5,120,0
ENVELOPE 2,3,0,0,0,0,0,0,121,-10,-5,-2,120,120
ENVELOPE 3,7,2,1,1,1,1,1,121,-10,-5,-2,120,120
ENVELOPE 4,1,0,0,0,0,0,0,61,0,-10,-120,120,0
ENVELOPE 1,8,1,-1,1,1,1,1,121,-10,-5,-2,120,1

Note synchronisation and other effects

The first parameter of the SOUND statement has been considered, up to now, to
control only the channel number. It can in fact control a number of other
features. For this purpose the channel number should be considered as a four
digit hexadecimal number

C=&HSFN

Parameter Range Function

N 0to3 Channel number itself
F Oorl Flush control

S 0to3 Synchronisation control
H Oorl Continuation control

N selects the channel number.

F If F is 0 the sound will be placed in a channel queue if a note is playing on that
channel. If F = 1 then the channel queue will be flushed (emptied) so that the
sound can be generated immediately.

S It is possible to synchronise two or more channels so that they do not start until
all have received a note marked for synchronous production. The value of S
determines how many other channels are to form the chord. Thus for a three note
chord all three channels should be fed a note with S set to 2.

H This parameter allows the previous effect on the channel to continue if it is set
to 1. In this case the amplitude, pitch and duration parameters of the new sound
command have no effect. Because the ‘dummy’ note thus created is added to the
queue in the normal way it can be used to ensure that the release

162

phase of a sound is completed. Normally the release phase is truncated by the
next note on the queue. If H=0 then the note is treated as a ‘real’ note in the
usual way.

Typical values of C are:

C=&201 A note on channel 1 to be synchronised with two others.
C=&12 A note on channel 2 is to be played immediately regardless of what was in
the channel 2 queue.

A more succinct description of SOUND and ENVELOPE is given in the BASIC
keywords chapter.

163

31 File handling

You are probably already aware that as well as storing computer programs on
cassette or disc, you can store ‘data’. By ‘data’ we mean sets of numbers or words.
We might, for example, store a set of names and telephone numbers. This set of
data is called a file. A set of BASIC statements are provided to enable you to read
information from files, to write information to a new file, to update an existing
file, to delete a file, to find out how big a file is, to move to a certain record in a
file, to check if you have reached the end of a file and to obtain a catalogue of all
the files that exist. There are also several other statements for performing other
actions on the files.

One of the major features of the BBC Microcomputer system is that exactly the
same statements are used no matter which ‘filing system’ is in use. A number of
different filing systems are available including cassette, disc and Econet systems.
Programs written to work on a cassette filing system will usually work
unmodified on a disc system. See chapter 36 for details of other filing systems.

First here is a summary of all the file handling statements available in BBC
BASIC.

*CAT Gives a catalogue of all data files and programs on the cassette
or floppy disc. It takes a very long time on a cassette.

OPENIN Opens a file so that it can be read.

OPENOUT Opens a new (empty) file for writing.

OPENUP Opens a file for reading and/or writing. (Not cassette.)
INPUT# Reads data from a file into the computer.

PRINT# Writes data from the computer into a file.

BGET# Reads a single character (byte) from a file.

BPUT# Writes a single character (byte) to a file.

PTR# Can be used either to find out which record we are about to

read (or write) or to move to a specific record. (Not cassette.)
EXT# Indicates how long a file is. (Not cassette.)
EOF# Indicates whether or not the end of a file has been reached.

CLOSE# Indicates to the computer that you have finished with a file.

164

The statement *CAT can be used at any time. However before you can use any
of the other file statements you have to open the file. After you have opened a file
you can read and write to it as much as you wish. When you have finished with
the file you must close it.

An analogy may help to make one or two points clearer. The files are all kept in
one room and your only method of communicating with them is via five telephone
links to five clerks. In addition there is a supervisor who knows which telephone
line to use to communicate with the right clerk. It is the clerk’s job to keep all the
files organised and you really have no idea how he or she looks after the files —
nor does it matter, so long as the method is efficient.

To return to our computer, suppose that we wish to create a file called
"DRINKS" in which we list every drink we have ever tried. First of all we have
to ask the supervisor to allocate a phone line and clerk to us. The statement

X = OPENOUT "DRINKS"

will place the number of the channel (telephone line) allocated to the file into the
variable X. Next we can ask the user for the names of the drinks using

INPUT "WHAT IS THE DRINK CALLED?", D$

and then send the name (held in D$) to the clerk to be entered in the file. Notice
how we have to use the variable X to ensure that it is entered in the correct file.

PRINT#X,D$

We could then repeat this process until the user replied with the word STOP.
The program would look like this:

10 X=OPENOUT "DRINKS"

20 REPEAT

30 INPUT "What is the drink called ", D$
40 PRINT#X, DS

50 UNTIL D$="STOP"

60 CLOSE# X

When run the program will save the data on cassette (if one is connected).

>RUN

What is the drink called?WHISKY

What is the drink called?VODKA

What is the drink called?GIN

What is the drink called?WINE

What is the drink called?CIDER

What is the drink called?TOMATO JUICE
What is the drink called?STOP

165

That has created a file called "DRINKS" which has been stored on cassette.
The program to read the file back in is also straightforward.

10 Y=OPENIN "DRINKS"
20 REPEAT

30 INPUT Y , RS

40 PRINT RS

50 UNTIL R$="STOP"
60 CLOSE# Y

When this is run, the list will appear on the screen as it is read from the cassette.

>RUN

WHISKY

VODKA

GIN

WINE

CIDER

TOMATO JUICE
STOP

For most applications that is all you will need to know about file handling and
you will only use statements like these

*CAT

X=OPENIN "FILENAME"
X=OPENOUT "FILENAME"
PRINT#X,A, B$
INPUT#X,A,BS

CLOSE#X

"FILENAME" is the name of the file which normally consists of up to ten
letters but see chapter 35 for more details.

A and B$ represent any (and as many) numeric and string variables as you
wish to record.

X 1is a numeric variable used to remember the channel number allocated to the
file number.

For more specialised applications a number of other functions and statements are
provided. BGET# and BPUT# enable single characters to be input and output.
They would be used for recording special data, for example, laboratory
experiments.

EXT# and PTR# are used with disc systems where random access files are
required. They cannot be used with cassette systems.

166

EOF# enables a program to detect the end of the file when reading in data. It is
normally used in the following way

10 Y=OPENIN "DRINKS"
20 REPEAT

30 INPUT#Y, AS$

40 PRINT AS

50 UNTIL EOF#Y

60 CLOSE#Y

Telephone book program

One of the programs on the WELCOME cassette can be used to keep a personal
telephone directory. Clearly it should be possible to save a copy of all your entries
on to cassette and to load them back into the computer later. Several
modifications must be made to the program to enable this to happen. These
modifications are shown below. Once you have modified the program you can
then save the corrected version with a new name, for example

SAVE "TELE2"

First, load the program. Don’t RUN it, but type CTRL N then LIST to list the
program in ‘page mode’. To move down the program, press SHIFT. When you
come to a page requiring one of the changes set out below, press ESCAPE and
edit the line in the normal way.

Lines 210 to 280 omit final '
Add new lines:

282 PRINT" 9 - Load data from cassette"
284 PRINT" 0 - Save data to cassette"

Change line 290 to
290 SEL = -1

In line 300 change TAB (3,22) to TAB(3,23)
Line 330 change to

330 IF A<0 OR A>9 THEN 310
Change line 350 to

350 IF SEL> -1 THEN PRINT TAB(2,SEL+3 -
10* (SEL=0)) ; CHRS$ (&89) ;

Change line 360 to
360 PRINT TAB(2,A+3-10* (A=0));CHR$(&88);A;CHRS$ (&89)

Change line 380 to

167
380 IF SEL=-1 THEN 300
Change line 500 to

500 ON SEL + 1 GOTO
505,510,520,530,540,550,560,570,580,590

New lines:

505 PROCSAVE:GOTO 200
590 PROCLOAD:GOTO 200

10000 DEF PROCLOAD

10005 PRINT TAB(0,16); "Play tape and press any key"
10007 Q=GET

10008 PRINT "Please wait"

10010 E%$=OPENIN "DATA"

10020 INPUTH#ES%, X

10030 FOR I%=1 TO X

10032 INPUTH#ES%,NAMES (I%),PHONES (I%)
10034 PROCPACK (I%)

10036 NEXT

10040 CLOSE#ES

10050 ENDPROC

11000 DEF PROCSAVE

11005 PRINT TAB(0,16); "Please press ";
11010 E$=OPENOUT "DATA"

11015 PRINT '"Please wait"

11020 PRINTH#ES, X

11030 FOR I%$=1 TO X

11032 PRINTH#ES%,NAMES (I%),PHONES (I%)
11036 NEXT

11040 CLOSE#ES

11050 ENDPROC

32 Speeding up programs
and saving memory space

For some applications it is important that a program runs as quickly as possible
and a few tips are given here which will, together, substantially increase the
execution speed of programs. In other applications space may be at a premium
and other suggestions are given for saving space. Sometimes there is a trade-off
between the size of a program and speed and the user will have to decide which is
more important.

The most dramatic saving that can be made is in the speed of execution of
programs. The use of integer variables (eg WEIGHT%), and especially of the
resident integer variables A% to Z$%, will result in execution times as little as
50% of those achieved with ‘real’ variables. Again, integer division (DIV) is much
faster than normal division when working with integers. Using integer arrays
rather than real arrays will save 20% of the memory required.

Execution speed can also be increased in the following ways.

1. Allocate variable names with an even spread throughout the alphabet — so
don’t start all your variables with ‘F’, for example.

2. Omit the control variable after the word NEXT - eg say NEXT rather than
NEXT X. This saves a reasonable amount of time.

3. REPEAT.. .UNTIL loops are much faster than IF...THEN...GOTO
loops.

4. Procedures are faster than GOSUBs, and it is faster to pass parameters to a
procedure than to use global variables — ie do use PROCBOX (X, Y, Z) rather
than PROCBOX.

5. If you have a line which contains a lot of ‘integer’ arithmetic and a little ‘real’
arithmetic then, if possible, place the integer work at the start of the line where
it will be executed first.

6. Have as few line numbers as possible — ie use long lines and spread the line
numbers out rather than re-numbering with an interval of 1. An interval of 10 is
good.

As far as space saving is concerned the following can be tried — but both reduce
the readability of programs and should not be used unless it is really necessary.

169

7. Omit spaces wherever possible — but you must keep a space ora $ or $ sign
or some other separator before most keywords to avoid ambiguity. If a variable
FRED is in use then you must write

Y=FRED OR MARY
and not
Y=FREDORMARY

In the latter case the computer will look for the variable FREDORMARY rather
than the two variables FRED and MARY. The space after OR is not required.

8. Omit REM statements.

9. Remember that the whole of user memory can be kept for use by your
programs by using the ‘shadow screen’ facility — see chapter 42 for more details.

33 BASIC keywords

This chapter contains a detailed description of every word that BASIC
understands. These words are called ‘keywords’.

Some parts of the description are intended for the novice user and others for the
person who is familiar with BASIC. Note that your BBC Microcomputer is
supplied with the latest version of BBC BASIC, known as BASIC II. If you are
already familiar with the earlier version, you may wish to refer to chapter 49
before reading this chapter. Chapter 49 lists those BASIC keywords which exist
only in BASIC II. Each keyword is described under a number of headings as
follows:

Keyword

Sometimes followed by a few words explaining the derivation of the word.

Purpose
A plain-English description of what the keyword does. This is intended for the
person who is learning BASIC.

The only technical terms used are ‘string’ and ‘numeric’ — if you don’t understand
those two words then read chapter 9 first. The mathematical functions SIN,
COS, TAN etc are not exlained for the absolute beginner — there just isn’t room
to explain everything!

Examples

This section gives a few one-line examples of the keyword (not complete
programs). Some of the examples have a number at the start of the line. This
number is an ‘example line number’.

The examples are only intended to be illustrative. In some cases a line of BASIC
program may overflow onto the next line as elsewhere in this book.

Description

In this section the keyword is described using normal computer jargon.

Syntax

The syntax of each keyword’s usage is given more by way of helpful explanation
than for its strict accuracy. Purists will, rightly, complain at travesty of Backus-
Naur form. Others may find the entries useful.

171

The following symbols are used as part of the syntax explanation:

{}

[]
I

<num-const>

<num-var>

<numeric>

<string-const>

<string-var>

<string>

<testable condition>

<statement>

<variable name>

Denote possible repetition of the enclosed symbols
zero or more times.

Enclose optional items.

Indicates alternatives from which one should be
chosen.

Means a numeric constant such as ‘4.5’ or ‘127
Means a numeric variable such as X’ or ‘length’

Means either a <num-const> or a <num-var>, or a
combination of these in an expression such as
"4*X+6"

Means a string enclosed in quotation marks, eg
"ROBERT BULL".

Means a string variable such as A$ or NAMES.

Means either a <string-const> or a <string-var>, or an
expression such as AS+"LINDA".

Means something which is either TRUE or FALSE.
Since TRUE and FALSE have values it is possible
to use a <numeric> at any point where a <testable
condition> is required. The distinction between these
two is, in fact, rather unnecessary.

Means any BASIC statement, for example, PRINT
or GOSUB or PROC.

Means any sequence of letters or numbers that obeys
the rules for variables (see chapters 3, 9 and 21).

172

Associated keywords

This section is intended to draw your attention to other keywords which either
have similar functions or which are normally used in conjunction with this
keyword. You will probably find it helpful to read the pages which describe the
associated keywords.

Demonstration program

If appropriate a short program is included to illustrate the use of the keyword.
Parentheses are generally optional where sense is unaffected.

173

ABS absolute value

Purpose

This function turns negative numbers into equivalent positive numbers but
leaves positive numbers alone. For example the absolute value of -9.75 is 9.75
while the absolute value of 4.56 is 4.56.

The ABS function is often used when calculating the difference between two
values if you do not know which is the larger of the two. Thus (K-L) will be
positive if K is greater than L, and will be negative if L is greater than K.

For example, if K =9 and L = 12 then (K - L) would be equal to -3. However the
value of ABS (K-L) will always be positive. In the example given ABS (K-L)
would equal 3.

Examples
205 error=ABS (DIFFERENCE)

100 DIFF=ABS (X2-X1)

PRINT ABS (temp%-50)

Description

A function giving the absolute value of its argument.

Syntax

<num-var>=ABS (<numeric>)

Associated keywords
SGN

174
AC S arc-cosine

Purpose

To calculate an angle whose cosine is known. The calculated angle is in radians
but may be converted to degrees by using the function DEG. See DEG for more
information.

Examples
10 X=ACS (Y)

1205 angle=DEG(ACS(0.5678))
330 OUT=ACS(.234)

PRINT ACS (0.5)

Description

A function giving the arc-cosine of its argument. The result is in radian measure.

Syntax

<num-var>=AC S (<numeric>)

Associated keywords
ASN,ATN, SIN,COS, TAN,RAD, DEG

175

ADVAIJ analogue to digital converter value

Purpose

An analogue signal is one which can have almost any value — including fractional
parts. It is contrasted with a digital signal which is expressed in exact numbers.
The height of the water in a harbour is an analogue quantity whereas the
number of boats it contains is a digital quantity.

Watches always used to have analogue dials — ‘The time is about four fifteen’.
Electronic things usually work with whole numbers; for example

16h : 15m : 23s

There are four ‘analogue to digital’ converters in the BBC Microcomputer. Each
analogue to digital converter in the computer accepts a voltage and gives out a
whole number indicating how large the voltage is. This voltage might be
controlled by, for example, the position of a ‘games paddle’ or Goystick’ control
which is connected to the computer. Alternatively the computer might be
connected to a speed sensor on a piece of machinery or it might measure the
temperature of a room.

The input voltage range is 0 volt to 1.8 volt. When the input is 0 V the converter
produces the number zero. With 1.8 V input the converter produces the number
65520. Why 65520? The circuit in the computer which does the conversion was
designed to give out numbers in the range 0 to 4095. However it may well be that
future converters can give out numbers over a larger range — enabling the
computer to measure things more accurately. In order to ensure that the BBC
Microcomputer can be used in this situation we have specified a large range.

Instead of producing numbers in the 0 to 4095 range it produces a number in the
range 0 to 65520. Therefore instead of numeric results going up in the sequence
0, 1, 2, 3 etc they will go 0, 16, 32, 48, 64 etc. If you prefer the range 0 to 4095
then just divide the value by 16.

There are four analogue input channels provided in the BBC Microcomputer and
the number in parentheses after the keyword ADVAL refers to the channel
whose value you wish to find. The channels are numbered 1, 2, 3, 4.

ADVAL (0) performs a special function in that it can be used to test to see
which of the ‘fire’ buttons is pressed on the games paddles. The value returned
also indicates which ADC channel was the last one to be updated. The following
can be used to extract these two pieces of information from the value returned by
ADVAL(0).

176

X=ADVAL (0)

AND 3

will give a number with the following meaning

X=0 no button pressed

X=1 left side fire button pressed
X=2 right side fire button pressed
X=3 both fire buttons pressed

X=ADVAL (0)

DIV256

will give the number of the last analogue to digital channel to complete
conversion. If the value returned is zero then no channel has yet completed

conversion.

ADVAL with a negative number in the parentheses, eg X=ADVAL (-3), can be
used to see how full any of the internal buffers are. When characters are typed in
on the keyboard they are put into a buffer from which they are extracted with
statements like INPUT and GET. Other buffers are used internally for other
purposes. The exact meaning of the number returned depends on the buffer being

tested.

X=ADVAL (-1)
X=ADVAL (-2)
X=ADVAL (-3)

X=ADVAL (-4)

X=ADVAL (-5)

X=ADVAL (-6)

X=ADVAL (-7)

X=ADVAL (-8)

X=ADVAL (-9)

Returns the number of characters in the keyboard buffer.
Returns the number of characters in the RS423 input buffer.
Returns the number of free spaces in the RS423 output buffer.

Returns the number of free spaces in the printer output
buffer.

Returns the number of free spaces in the sound channel 0
buffer.

Returns the number of free spaces in the sound channel 1
buffer.

Returns the number of free spaces in the sound channel 2
buffer.

Returns the number of free spaces in the sound channel 3
buffer.

Returns the number of free spaces in the speech buffer.

This feature can be used, for example, to ensure that a program never gets stuck
waiting for a sound channel to empty, eg:

IF ADVAL(-7)<> 0 THEN SOUND 2, ...etc

177

Examples
980 X=ADVAL(3)

125 TEMP=ADVAL (X)

intensity=ADVAL (1)

Syntax

<num-var>=ADVAL(<numeric>)

Description

A function which returns the last known value of the analogue to digital channel
given in its argument. There are four channels, each of 10 bit resolution, but the
returned value is scaled to 16 bits.

The analogue to digital converter cycles repeatedly through the selected channels
and keeps a table of the result so that the function ADVAL returns very quickly.
New samples are taken about every ten milliseconds. Therefore with four
channels selected results will be updated every 40ms. See chapter 43 for
information on changing the number of channels selected.

178

AND

Purpose
AND can be used either as a logical operator or as a ‘bit by bit’, or ‘Boolean’
operator.

As a logical operator AND is used to ensure that two conditions are met before
something is done. For example

IF X=9 AND Y=0 THEN PRINT "HELLO"

Logical AND is most often used as part of an IF...AND...THEN. ..
construction.

Boolean AND compares the first bit of one number with the first bit of another
number. If both bits are set to a one (rather than a zero) then the first bit in the
answer is also set to a one. This process is then repeated for the second bit in
each of the two numbers being compared and so on for all 32 bits in the numbers.
For example the result of 14 AND 7 is 6, since in binary

14 is 0000 0000 0000 0000 0000 0000 0000 1110
7 is 0000 0000 0000 0000 0000 0000 0000 0111
6 is 0000 0000 0000 0000 0000 0000 0000 0110

Examples
300 IF length>9 AND wt>9 THEN PRINT "YES"

100 IF X=2 AND cost>5 AND J=12 THEN PRINT "NO!!"

The above example will only print NO ! ! if all three conditions are met.

Description

The operation of Boolean AND between two items. Note that the logical and
Boolean operations are in fact equivalent. This follows since the value of TRUE
is -1 which is represented on this machine by the binary number

11111111 111111111111 1111 1111 1111
Similarly the binary value of FALSE is
0000 0000 0000 0000 0000 0000 0000 0000

Thus PRINT 6=6 would print -1 since 6=6 is TRUE.

179

Syntax

<num-var> = <numeric> AND <numeric>
or

<testable condition> = <testable condition> AND <testable condition>

Associated keywords
EOR, OR,FALSE, TRUE, NOT

180

ASC American Standard Code (ASCII)

Purpose

There are two commonly used methods of talking about characters (things like A,
B, 5, ?, and so on). Obviously they are single characters! So we can say D$="H" -
meaning put the letter H into the box in the computer labelled D$. The computer
understands this but it doesn’t actually put an H into the box, Instead it stores a
number which represents the letter H (in fact the number is 72). Every character
has a unique corresponding number called its ASCII code. (ASCII stands for
American Standard Code for Information Interchange. The abbreviation ASCII
rhymes with ‘Laski’.)

Sometimes it is convenient to find out what number corresponds to a particular
character - that is its ASCII code. You can look it up at the back of this book or
you can say to the computer

PRINT ASC("H")

The function Asc gives the ASCII value of the first letter in the string. Thus
PRINT ASC("Good")

gives 71, the ASCII value of ‘G’.

The reverse process of generating a one-character string from a given ASCII

value is performed by the function CHRS.

Examples
25 X=ASC("Today")

would put the ASCII value of “T" which is 84 into the variable X.

650 value5=ASC (AS)

Description

A function returning the ASCII character value of the first character of the
argument string. If the string is null (empty) then -1 will be returned.

Syntax

<num-var> = ASC(<string>)

Associated keywords
CHRS$, STR$, VAL

181

ASN arc-sine

Purpose

To calculate an angle whose sine is known. The calculated angle is in radians but
may be converted to degrees by using the function DEG. A radian is equal to
about 57 degrees. Mathematicians often prefer to work in radians.

Examples
340 J=ASN(0.3456)

30 angle=DEG(ASN(.7654))

PRINT ASN(.5)

Description

A function giving the arc-sine of its argument. The result is in radian measure.

Syntax

<num-var>=ASN(<numeric>)

Associated keywords
ACS,ATN, SIN,COS, TAN, RAD,DEG

182
ATN arc-tangent

Purpose

To calculate an angle whose tangent is known. The calculated angle is in radians
but may be converted to degrees by using the function DEG.

Examples
1250 X=ATN(Y)

240 value=DEG(ATN(22.31))

Description

A function giving the arc-tangent of its argument. The result is in radian
measure.

Syntax

<num-var>=ATN (<numeric>)

Associated keywords
ACS,ASN, SIN,COS, TAN, RAD,DEG

183

AUTO automatic

Purpose

When typing a BASIC program into the computer it is common to make the first
line of the program line number 10, the second line 20 etc. To save having to type
in the line number each time, the command AUTO can be used to make the
computer ‘offer’ each line number automatically. Used on its own the command
AUTO will offer first line 10 and then lines 20, 30, 40 etc. The command AUTO
455 would instead start the process at line number 455, followed by lines 465,
475, 485 ete.

Another option allows the user to select the step size. Thus the command AUTO
465,2 would cause the computer to offer lines 465, 467, 469, 471 etc. The
larges step size is 255.

To escape from AUTO mode the user must press the key marked ESCAPE.
AUTO mode will be abandoned if the computer tries to generate a line number
greater than 32767.

Examples
AUTO

AUTO 220

AUTO 105,5

Syntax

AUTO [<num-const>[, <num-const>]]

Description

AUTO is a command allowing the user to enter lines without first typing in the
number of the line. Because AUTO is a command it cannot form part of a
multiple statement line. AUTO mode can be left by pressing ESCAPE or
generating a line number exceeding 32767.

AUTO may have up to two arguments. The first optional argument gives the
starting line number and the second optional argument gives the increment
between line numbers.

184
BGET# get a byte from file

Purpose

Numbers and words can be recorded on cassette tape and on disc. The function
BGET# enables a single character or number to be read back into the computer
from the cassette, disc or network. Before using this statement a file must have
been opened using the OPENIN function or else an error will occur (see chapter
31 for more information about ‘files’). When a file is opened, using OPENIN, the
computer will allocate the file a channel number. This number must be used in
all subsequent operations on the file, for example when reading the file or when
writing a new file. Again see the chapter on file handling for more information.

Examples
6000 character=BGET# (channel)

340 next letter%=BGET#C

Description

A function which gets a byte from the file whose channel number is the
argument. The file must have been opened before this statement is executed.

Syntax

<num-var>=BGET # <num-var>

Associated keywords

OPENIN, OPENUP, OPENOUT, CLOSE#, EXT#, PTR#, PRINT#, INPUT#,
BPUT#,EOF #

185

BPUT# put a byte to file

Purpose

To store a byte on cassette or disc. See chapter 31 for a more detailed description
of file handling. The number which is sent to the file can have any value between
0 and 255. If you attempt to store a number that is greater than 255, then 256
will be repeatedly subtracted from the number until it is less than 256. The final
number will then be sent to file. (This statement is used to store single bytes —
not large numbers. Larger numbers can be stored using PRINT#.) As with
BGET# the file must be ‘open’ before this statement can be used.

Examples
30 BPUT# channel, number

700 BPUT#N, 32

450 BPUT# STAFF_FILE, A/256

Description

A statement which puts a byte to the file whose channel number is the first
argument. The second argument’s least significant byte is sent. The file must be
open before this statement is executed.

Syntax

BPUT #<num-var>, <numeric>

Associated keywords

OPENIN, OPENUP, OPENOUT, CLOSE#, EXT#, PTR#, PRINT#, INPUT#,
BGET#,EOF #

186

CAIJL transfer control to a machine code subroutine

Purpose

This statement makes the computer execute a piece of machine code which the
user has previously placed in the computer’s memory. Before using this powerful
statement you should have a good understanding of machine code and assembly
language as incorrect use can destroy a program completely! Unfortunately there
is not enough room in this book to teach assembly language programming but
brief guidance on the principles of 6502 assembly language is given in chapter 44.

Examples

50 rotate=&0270
60 CALL rotate,J,K,L

200 CALL 1234,A$,M,J8

Description

A statement to call a piece of machine code. The number of parameters passed is
variable and may be zero. The parameters are variable parameters and may be
changed on execution of the subroutine. The addresses of parameters are passed
in a parameter block starting at location 0600 hex.

On entry to the subroutine the processor’s A, X, Y registers are initialised to the
least significant bytes of the integer variables A%, X% and Y%. The carry flag is
set to the least significant bit of the C% variable.

On entry a parameter block is set up by the computer and it contains the
following list:

Number of parameters 1 byte

Parameter address 2 bytes
Parameter type 1 byte

Parameter address } Repeated as often
Parameter type as necessary

Parameter types

0 - 8 bit byte (eg ?X)

4 - 32 bit integer variable (eg X or X%)

5 - 40 bit floating point number (eg V)

128 - A string at a defined address (eg $X - terminated by a &0D)
129 - A string variable such as A$

187

In the case of a string variable the parameter address is the address of a siring
information block which gives the start address, number of bytes allocated and
current length of the string in that order.

Syntax

CALL<numeric>{ , <num-var> | <string-var>}

Associated keywords
USR

CHAIN

Purpose

CHAIN enables a program to be split up into a number of small sections.

The CHAIN statement is used to enable one program to LOAD and RUN
another program automatically. For example, one program might enable the user
to enter the number of hours worked by employees and that program might
CHAIN a second program which would print out the payslip. In turn that might

CHAIN a third program which would do a cost per hour analysis on the data
held on the file.

CHAIN is also useful in a game with a lot of instructions. The instructions could
all be stored as one file which would then CHAIN the main game — thus
releasing a lot of the computer’s memory.

CHAIN"" (without the program name) will chain the next program on a
cassette, whatever its file name. This will not work with disc filing systems
where you must give the file name. For that reason it must not be used in
programs which may be used on disc systems.

Examples
900 CHAIN "GAME_1"

1234 CHAIN "NEWPROG"

CHAIN AS

Description

A statement which will load and run the program whose name is specified in the
argument. All variables except @ % and A% to Z% are cleared.

Syntax
CHAIN<string>

Associated keywords
LOAD, SAVE

189

CHR$ character string

Purpose

To generate a character (single letter or number etc) from the number given in
string form. The character generated will be the ASCII character at the position
given in the ASCII table. See the description of ASC and the full ASCII table in
Appendix C.

The statement VDU has a similar effect to PRINT CHR$ and may be more

useful in some applications.

Examples

220 RED$=CHRS$ (129)

1070 PRINT CHRS (8);

makes the cursor move left one position.
PRINT CHRS$ (7)

causes a short note to be emitted by the loudspeaker.

Description

A string function whose value is a single character string containing the ASCII
character specified by the significant byte of the numeric argument. Thus
CHRS$ (-1) would give ASCII character number 255.

Note that the statement VDU is probably more useful when sending characters
to the screen, since it involves less typing. CHR$ is needed when you wish to put
a special character into a string.

Syntax

<string-var>=CHR $ (<numeric>)

Associated keywords
ASC,STR$, VAL, VDU

CLEAR

Purpose

This tells the computer to forget all variables previously in use, including string
variables and arrays but excluding the ‘resident integer variables’ @ % and A% to
Z% which are not affected in any way. See chapter 9 for an explanation of integer
and string variables.

Examples
350 CLEAR

CLEAR

Description

A statement which deletes all variables except the resident integer numeric
variables @ % and A% to Z%

Syntax
CLEAR

Associated keywords

None

191

CLG clear the graphics screen

Purpose

To clear the graphics area of the screen. The graphics area of the screen is left in
the colour selected as the ‘current graphics background colour’. See the keyword
GCOL for more information. The graphics cursor is then moved to its home
position (0,0) which is at the bottom left of the graphics area.

Examples
870 CLG

CLG

Description

Clears the current graphics area of the screen and sets this area to the current
graphics background colour in addition. The statement then moves the graphics
cursor to the graphics origin (0,0).

Syntax
CLG

Associated keywords
CLS, GCOL

CLOSE#

Purpose

To inform the computer that you have completely finished with a particular file.
The computer then transfers any data still in memory to cassette, disc or Econet
as needed. See chapter 31 on file handling for more information.

Example
90 CLOSE#N

Description

A statement used to close a specific disc or cassette file. CLOSE# 0 will close
all files.

Syntax

CLOSE# <numeric>

Associated keywords

OPENIN, OPENUP, OPENOUT, EXT#, PTR#, PRINT#, INPUT#, BGET#,
BPUT#,EOF #

193

CLS clear the text screen

Purpose

To clear the text area of the screen. Any graphics in this area will also be cleared.
The text area will be left in the ‘current text background colour’. The text cursor
will then be moved to its ‘home’ position at the top left of the text area. See the
keyword COLOUR for more information about text background colours.

Examples
560 CLS

CLsS

Description

Clears the current text area and sets this area of the screen to the current text
background colour. The statement then causes the text cursor to move to the text
origin (0,0) at the top of the current text area. CLS resets COUNT.

Syntax
CcLS

Associated keywords
CLG, COLOUR

COLOUR

Purpose

This statement selects the colour in which the computer is to print the text and
also its background. The command has a number of variations which are most
easily explained by example.

Type in the following:

MODE 5

COLOUR 1
COLOUR 2
COLOUR 3

and press RETURN at the end of each line as usual.

As you will have seen, these commands change the colour of the text. This is
often called the ‘text foreground colour’. Now try

COLOUR 129
COLOUR 130
COLOUR 128

These numbers change the ‘text background colour’.

In any two colour MODE (MODE 0, 3,4 or 6) the following normally apply:

Foreground Background Colour
0 128 Black
1 129 White

In any four colour MODE (MODE 1 or 5) the following normally apply:

Foreground Background Colour
0 128 Black

1 129 Red

2 130 Yellow
3 131 White

InMODE 2 the following normally apply:

195

Foreground Background Colour

0 128 Black (normal background)
1 129 Red

2 130 Green

3 131 Yellow

4 132 Blue

5 133 Magenta (blue/red)

6 134 Cyan (blue/green)

7 135 White (normal foreground)
8 136 Flashing black/white

9 137 Flashing red/cyan

10 138 Flashing green/magenta
11 139 Flashing yellow/blue

12 140 Flashing blue/yellow

13 141 Flashing magenta/green
14 142 Flashing cyan/red

15 143 Flashing white/black

If you are not familiar with BASIC then you may already have had too much of
this! Nevertheless, it is possible, for example in a four colour MODE to select any
four colours from the available 16 effects by using another command. Remember
that the colours given above (black, red, yellow, white) will be available as soon
as four colour MODE is selected — but you can then select other colours later.

Try the following:

MODE 5

COLOUR 1

VDU 19,1,4,0,0,0
vDU 19,1,5,0,0,0
COLOUR 2

VDU 19,2,4,0,0,0
vDU 19,1,3,0,0,0

As you will see the statement VDU 19, can be used to change the ‘actual colour’
of colour 1 or 2.

The number which follows the vDU 19, is the number that is referred to by the
COLOUR statement. It is referred to as a ‘logical colour’.

196

The number which follows the ‘logical colour’ is referred to as the ‘actual colour’
and is as follows:

Black

Red

Green

Yellow

Blue

Magenta (blue/red)
Cyan (blue/green)
White

Flashing black/white
Flashing red/cyan
Flashing green/magenta
Flashing yellow/blue
Flashing blue/yellow
Flashing magenta/green
Flashing cyan/red

15 Flashing white/black

© 00 30 Ok W HO

= e e
B W N O

Thus the statement vDU 19, 3,6,0, 0,0 will set logical colour 3 to be cyan.
So if in MODE 4, a two colour MODE, you wanted black letters on a yellow
background you would issue the command:

vpu 19,1,0,0,0,0

vpu 19,0,3,0,0,0

Alternatively, you could string the whole lot together as
vpu 19,1,0,0,0,0,19,0,3,0,0,0

This combination of the COLOUR statement and the VDU 19 statement
enables a very wide range of effects to be obtained. There are also calls which
enable the flash rates of the colours to be altered as well. See chapter 43 on *FX
calls.

Syntax

COLOUR<numeric>

Associated keywords
VDU, GCOL

197

COS cosine

Purpose

To calculate the cosine of an angle. Note that the number in parenthesis (the
angle) is expressed in radians and not in degrees. To convert from degrees to
radians use the function RAD.

Examples
PRINT COS(2.45)

780 X=COS(Y)

655 Number=COS (RAD (45))

Description

A function giving the cosine of its argument. The argument must be given in
radians.

Syntax

<num-var>=CO0 S (<numeric>)

Associated keywords
SIN, TAN,ACS,ASN,ATN,DEG, RAD

COUNT

Purpose

COUNT counts all the characters printed using PRINT, whether to screen,
printer or RS423 output channel. On the other hand POS returns the current
position of the actual text cursor on the screen.

Examples
290 A=COUNT

75 fred=COUNT

PRINT COUNT

Description

A function returning the number of characters printed since the last new line.
COUNT is set to zero if the output stream is changed.

Syntax

<num-var>=COUNT

Associated keywords
POS

Demonstration program

5 REM to print a row of 16 * signs
7 REM this is not the easiest way!
10 X=16

20 REPEAT PRINT "*";

30 UNTIL COUNT=X

199

DATA

Purpose

DATA is used in conjunction with the keyword READ, and sometimes with
RESTORE, to enable you to make available automatically any data (numbers
and words) that will be needed by a program.

For example, if you were writing a geography quiz, you might want to use the
names of five countries and their five capital cities each time you used the
program. The names of the cities and countries can be entered as DATA in the
program and will always be there when the program is run.

Computers using the language BASIC are really clumsy at handling information
like this, as the demonstration program on the next page shows.

In the example program the DATA consists of many words. DATA statements
can just as well contain numbers — or a mixture of words and numbers. In our
example the words were all read into a string array.

It is essential that the DATA contains numbers where numeric variables are to
be filled. Text information, eg hel1lo, will just give 0.

There is no need to put each word in quotes unless leading spaces are important
in the DATA words, for example " four spaces".

If you wish to have leading spaces then these words should be enclosed in quotes.
Since a comma is used to separate items of DATA, if you want a comma in your
DATA, you must enclose the DATA in quotes.

Examples
100 DATA "Allen, Stephen", Stamp dealer, 01-246
8007, 24

130 DATA "TOP OF ROOF", 450, January

Description

A program object which must precede all lists of data intended for use by the
READ statement.

Syntax

DATA<str-const>| <num-const>{ , str-const>| <num-const>}

200

Associated keywords
READ, RESTORE

Demonstration program
10 REM geography quiz
20 DIM city$(5)
30 DIM country$(5)
40 FOR x=1 TO 5
50 READ city$ (x)
60 READ country$ (x)
70 NEXT x
80 right=0
110 FOR x=1 TO 10
120 r=RND(5)
130 PRINT "What city is the capital"
140 PRINT "of "; country$(r)
150 INPUT answer$
160 IF answer$=city$(r) THEN PROCyes ELSE PROCno
170 NEXT x
180 PRINT "You got ";right;
190 PRINT " correct out of 10"
200 END
500 DATA Paris, France, Reykjavik
505 DATA Iceland
510 DATA Moscow, Soviet Union
520 DATA Athens, Greece
530 DATA Spitzbergen, Spitzbergen
600 DEF PROCyes
610 PRINT "Well done!"
620 right=right+l
630 ENDPROC
700 DEF PROCno
710 PRINT "No, the capital of
720 PRINT country$(r);" is ";city$(r)
730 ENDPROC

Line 10 is just a REMark which the computer ignores.

Lines 20 and 30 tell the computer that we are going to use two string arrays —
one to store the names of the five cities and the other to store the names of the
five countries. See chapter 21 for an explanation of arrays.

Line 40 sets up a FOR. . . NEXT loop that will go around five times.

201

Line 50 reads the next word (which will be a city) into the array city$ and
then moves the ‘data pointer’ on to point to the next word (which will be a
country).

Line 60 reads the next piece of DATA into the country$ array.
Line 70 is the end marker of the FOR. . . NEXT loop.

Lines 110 to 170 loop ten times through a ‘question and answer’ quiz.
Lines 500 to 530 contain the DATA wused above.

Lines 600 to 630 are a procedure to deal with correct replies.

Lines 700 to 730 deal with incorrect replies.

]E’]EI[F(hﬂﬁne

Purpose

The word DEF is used to inform the computer that a procedure or function is
about to be defined. Once the computer has been informed that this procedure or
function exists, then the procedure or function can be called by name anywhere
in the program.

Definitions of procedures and functions must not occur in the body of a program.
They should be placed in a separate section which is not executed — for example
after the final END in the program. This also aids readability.

The language BASIC has many predefined functions which the computer already
knows about. For example, the function SQR enables it to calculate the square
root of a number.

Often though, it is useful to be able to define your own functions. For example,
you might want to have a function which calculates the VAT inclusive price of a
product from the basic sale price by multiplying by 1.15.

A function always produces a result so you can write X=FNST. A procedure, on
the other hand, is used to perform a number of actions, but it does not by itself
produce a numerical result. For example, a procedure might be set up to clear the
screen and draw a number of lines on the screen.

You may well feel confused, but do not be put off! The use of procedures and
functions may be difficult to understand at first but it is well worth the effort.
Their use greatly enhances the readability and reliability of programs.

The section below gives a more detailed explanation of the use of procedures and
functions. It should be read in conjunction with the examples which follow.

Both procedures and functions may contain local variables which are declared
using the word LOCAL. In the third example given below, K is declared as a local
variable. This means that although K is used in this procedure its value is
notdefined when the procedure finishes. In fact the variable K might well be used
elsewhere in the program. The variable K, elsewhere within the program, would
not be altered by the use of the local variable K within the procedure. Any
variable which is not declared as LOCAL will be available outside the procedure,
in other words to the rest of the program.

Also, both procedures and functions may have parameters passed to them. Look
at the first example program below: line 1010 says

1010 DEF FNST(g)=1.15%g

203

‘g’ is called a ‘formal parameter’ for the fuction FNST. It tells the computer that
one number is going to be passed to the function when the function is used and
inside the function we have decided to use the letter g to represent the variable.

The procedure is ‘called’ or used like this — for example

230 PRINT "VAT inclusive price ";
236 PRINT FNST(P)

and in this case ‘P’ is the ‘actual parameter’ for the function FNST. Whatever
value ‘P’ has will be used inside the fuction wherever reference is made to teh
formal parameter ‘g’. This is very convenient since you can use any variable
names you like for the parameters inside the procedure. Then you can call the
procedure with a quite different set of parameter names from the outside. Very
often a procedure will be called from many different places in the program — and
the actual parameters may have different names each time the procedure or
function is called.

If a procedure or function is defined with (say) three formal parameters then,
when it is called, three actual parameters must be supplied. See the fifth
example below where three parameters are passed to the function.

The end of the procedure is indicated with the statement ENDPROC. The end of a
multi-line function is indicated by the statement that starts with an = sign. The
function is given the value of the expression to the right of the = sign.

Examples

First example — full program

210 REPEAT

220 INPUT "Basic price ",P

230 PRINT "VAT inclusive price ";
235 PRINT FNST(P)

240 UNTIL P=0

250 END

1000 REM line numeric function
1010 DEF FNST(g)=1.15*g

Second example — program section
Multi-line string function with one string parameter.

1000 DEF FNREVERSE (AS$)

1010 REM reverse the order of the letters in AS$
1015 REM

1020 LOCAL d%,BS$

1030 FOR d%=1 TO LEN (AS$)

204

1040
1050
1060

B$=MIDS$ (A$,d%, 1) +BS
NEXT d%
=B$

Third example — program section

Multi-line procedure with one parameter.

200
210
220
230
240
250
260

DEF PROCbye (X)

REM print bye X times
LOCAL K

FOR K=1 TO X

PRINT "bye"

NEXT K

ENDPROC

Fourth example — program section

This sets the background colour to a new value given in the parameter.

10
20
25
30
40
50
60
70
80

DEF PROCINITSCREEN (X)

REM clear screen and draw border
COLOR 128+X

CLS

DRAW 1279,0

DRAW 1279,799

DRAW 0,799

DRAW 0,0

ENDPROC

Fifth example - full program

110
120
130
140
150
8990
8995
9000

INPUT X,Y,Z
M=FNMEAN (X, Y, Z)

PRINT "The mean of " ,X,Y,2

PRINT "is ";M

END

REM Single line numeric function
REM with three parameters

DEF FNMEAN(A,B,C)=(A+B+C) /3

Description

A program object which must precede declaration of a user function or procedure.
String and numeric functions and procedures may be defined. Multi-line
functions and procedures are allowed. All procedures and functions must be
placed in the program where they will not be executed, eg after the END
statement.

205

Syntax

DEF FN|PROC<variable name>[(<string>| <numeric>
{, <string>| <numeric>})]

Associated keywords
ENDPROC, FN, PROC

206
DEG degrees

Purpose

This function converts angles which are expressed in radians into degrees. A
radian is equal to about 57 degrees.

Examples
100 X=DEG(PI/2)

300 angle=DEG (1.36)

PRINT DEG(PI/2)

Syntax

<num-var>=DEG<numeric>

Description

A function which converts radians to degrees.

Associated keywords
RAD, SIN,COS, TAN,ACS,ASN,ATN

207

DELETE

Purpose

The DELETE command is used to delete a group of lines from a program. It
cannot be used as part of a program. You can specify which lines should be
deleted with a command of the form

DELETE 120, 340
This would remove everything between line 120 and line 340 inclusive.

To delete everything up to a certain line number (for example up to line 290) use
DELETE 0,290.

To delete from line 500 to the last line, use as the last line to be deleted any
number greater than the last line number in the program. Since the largest line
number allowed is 32767

DELETE 500,32767
will do the trick, but will take a long time.
To delete a single line just type the line number and press RETURN. There is no

need to use the DELETE command.

Examples
DELETE 0,540

DELETE 180,753

DELETE 540,32000

Syntax

DELETE<num-const>, <num-const>

Description

A command enabling a range of lines to be deleted from a program. Since
DELETE is a command it cannot be used in a program or as part of a multiple
statement line.

Associated keywords
LIST,OLD, NEW

208
DHVI dimension of an array

Purpose

As well as simple numeric and string variables (such as X’ and ‘name$’) it is
possible to work with ‘arrays’ of variables. These are extremely useful when
working with groups of numbers or words. For example if you wanted to work
with a set of information about the rooms in a hotel with four floors, each with 30
rooms, then an array of four by 230 entries can be created like this:

DIM hotel (4,30)

Having set up an array, one can enter information into each of its ‘elements’. For
example the cost of the room per night might be £26.50

hotel (1,22)=26.50
hotel(4,1)=165.00

In practice the statement DIM hotel (4, 30) produces an array of five by 31
entries since the lowest array element ishotel (0, 0).

All the above arrays are called ‘two dimension numeric arrays’. Another array
could contain the names of guests:

DIM name$ (4, 30)
name$ (1,22)="Fred Smith"
name$(4,1)="The Queen"

That sort of array is called a ‘two dimension string array’.

Arrays may have one or more dimensions. A single dimension array would be
appropriate for all the houses in a road, eg

DIM MainSt (150)

That sort of array is called a ‘single dimension numeric array’. All arrays are
normally dimensioned very early in the program. It is ‘illegal’ to attempt to
change the size of an array by re-dimensioning it later in the program. An array
may have as many dimensions and as many elements in each dimension as the
computer has space for — but you tend to run out of computer memory pretty fast
with large arrays! It is essential that there is no space between the array name
and the first parenthesis. Thus DIM A (10) iscorrectbutDIM A (10) will
not define an array.

209

Examples
100 DIM partnumbers (1000)

3000 DIM employeename$ (35)
240 DIM ALL_hours_in_the_week (24,7)

100 DIM A (X)

Description

A statement which dimensions arrays. Arrays must be predeclared before use.
After dimensioning all elements of arrays are initialised to zero for numeric
arrays or null strings in the case of string arrays. The lowest element in an array
is element zero. Thus DIMX (4) would create an array of five elements (0 to 4
inclusive).

There is a second and quite different use for the DIM statement. It can be used
to reserve bytes in memory for special applications. To reserve 25 bytes, type

DIM X 24

Notice two things about this statement: firstly the space between the variable X
and the (number of bytes minus 1) and secondly the absence of parentheses
around the 24. The address of the start of the group of 25 bytes is given in the
variable X in this example.

Syntax
D IM<num-var> | <str-var>(<numeric>{ , <numeric>})

or

D IM<num-var> <numeric>

Associated keywords

None

210

DIV division of whole numbers

Purpose

See the keyword MOD for a full explanation. DIV is an operator which gives the
whole number part of the result of a division. Thus

PRINT 11 DIV 4

gives 2 (leaving a remainder of 3).

Description

A binary operator performing integer division between its operands. The
operands are truncated to integers before division takes place.

Syntax

<num-var>=<numeric>D I V<numeric>

Associated keywords
MOD

211

DRAW

Purpose

This statement draws lines on the screen in MODEs 0,1, 2,4 and 5. The DRAW
statement is followed by two numbers which are the X and Y coordinates of the
end of the line. The line starting point can either be the end of the last line that
was drawn or else a new point if the MOVE statement has been used before the
statement DRAW.

The screen is addressed as

1280 points wide X-axis, 0-1279
1024 points high Y-axis, 0-1023

regardless of the graphics MODE selected. The origin (position 0,0) is normally at
the bottom left of the screen.

The line is drawn in the current graphics foreground colour. This can be changed

using the GCOL statement.

Examples
780 DRAW X, Y

DRAW 135,200

Description

DRAW X, Y means draw a line to X,Y in the current foreground colour.
DRAW X, Y isequivalenttoPLOT 5,X,Y.

DRAW is one of a large group of line drawing statements. See PLOT for others.

Syntax

DRAW<numeric>, <numeric>

Associated keywords
MODE, PLOT, MOVE, CLG, VDU, GCOL

212

Demonstration program

140 MODE 5

160 REM Red background
170 GCOL 0, 129

175 CLG

180 REM Yellow foreground
190 GCOL 0,2

200 REM draw a box

210 MOVE 100,100

220 DRAW 400,100

230 DRAW 400,400

240 DRAW 100,400

250 DRAW 100,100

213

ELSE

Purpose

To provide an alternative course of action. ELSE can be used following an
IF...THEN statement, an ON...GOTO statement, and an ON...GOSUB
statement. See the pages describing the associated keywords and chapter 16 for
more details.

Examples

560 IF length > 0 THEN PRINT "OK" ELSE PRINT "No
good"

100 IF A<>B THEN C=D ELSE PRINT "Values match"

Description
Part of the IF. .. THEN. . .ELSE structure.

Syntax
IF <testable condition>[THEN]J<statement>[E L SE <statement>]

or
ON<num-var>GOTO<numeric>{ , <numeric>} [ELSE<statement>]
or

ON<num-var>GOSUB<numeric>{ , <numeric>} [ELSE <statement>]

Associated keywords
IF, THEN, ON

END

Purpose

This informs the computer that it has reached the end of the program. END is
optional but may be used as many times as required in a program.

Example
9000 END

Description

Optional end of program which may occur anywhere and as often as is required.
The command END has a special use in that it causes BASIC to search the
program in memory for a valid end program marker. BASIC then updates its
internal pointers. This may be useful after unusual loading procedures. If the

user changes the value of PAGE then internal pointers such as TOP will not be
reset until an END statement or command is met.

Syntax
END

Associated keywords
STOP

215

ENDPROC end procedure

Purpose

This indicates the end of a procedure definition. See the keyword DEF for more
information.

Examples

1000 DEF PROCdash (param)

1010 REM print dashes lots of times

1020 REM in fact "param" dashes in total
1025 REM

1030 LOCAL counter

1040 FOR counter=1 TO param

1050 PRINT"-";

1060 NEXT counter

1070 ENDPROC

2010 DEF PROCtriangle(A,B,C,D,E,F)
2020 REM fill a triangle with colour
2050 MOVE A,B

2060 MOVE C,D

2070 PLOT 85,E,F

2100 ENDPROC

Description
Part of the DEF PROC. . .ENDPROC structure.

Syntax
ENDPROC

Associated keywords
DEF,FN, PROC, LOCAL

ENVELOPE

Purpose

The ENVELOPE statement is used with the SOUND statement to control the
volume and pitch of a sound while it is playing. All natural sounds change in
volume (loudness or amplitude); for example, the sounds from a piano start off
loudly and then fade away. An aircraft flying overhead starts off softly, gets
louder and then fades away.

The variation of amplitude (loudness) for the aircraft, as it flies overhead, looks
something like this:

Loudness
in phons
130
Loudest
o ‘ , Soft
1) 5 19 15 29 Time in seconds

This variation of amplitude with time is described as an ‘amplitude envelope’.

Some sounds change in pitch. For example, a wailing police siren:

3000

Frequency
in Hertz
2000
wl | V]

a@ 62 94 06 08 19 1.2

Time in seconds

This variation of pitch with time is called a ‘pitch envelope’.

The BBC Microcomputer can use both pitch and amplitude envelopes and these
are set up with the ENVELOPE statement.

Example

10 ENVELOPE 1,1,4,-4,4,10,20,10,127,0,0,-5,126,126
20 SOUND 1,1,100,200

217

Description
The ENVELOPE statement is followed by 14 parameters.

ENVELOPE
N,T,PI1,P12,PI3,PN1,PN2,PN3,AA,AD,AS,AR,ALA,ALD

Parameter Range Function

N lto4 Envelope number

T bits 0-6 0 to 127 Length of each step in hundredths of a second

bit 7 Oor1l 0 = auto-repeat pitch envelope

1 = don’t auto-repeat pitch envelope

PI1 -128 to 127 Change of pitch per step in section 1

P12 -128 to 127 Change of pitch per step in section 2

PI3 -128 to 127 Change of pitch per step in section 3

PN1 0 to 255 Number of steps in section 1

PN2 0 to 255 Number of steps in section 2

PN3 0 to 255 Number of steps in section 3

AA -127 to 127 Change of amplitude per step during attack
phase

AD -127 to 127 Change of amplitude per step during decay
phase

AS -127t0 0 Change of amplitude per step during sustain
phase

AR -127t0 0 Change of amplitude per step during release
phase

ALA 0 to 126 Target level at end of attack phase

ALD 0 to 126 Target level at end of decay phase

The N parameter specifies the envelope number that is to be defined. It normally
has a value in the range 1 to 4. If the BASIC statement BPUT# is not being
used then envelope numbers up to and including 16 may be used.

The T parameter determines the length in hundredths of a second of each step of
the pitch and amplitude envelopes. The pitch envelope normally auto-repeats but
this can be suppressed by setting the top bit of T — ie using values of T greater
than 127.

The six parameters PI1, P12, P13, PN1, PN2 and PN3 determine the pitch
envelope. The pitch envelope has three sections and each section is specified with
two parameters: the increment, which may be positive or negative, and the
number of times the increment is to be applied during that section, that is the
number of steps. A typical pitch envelope might look like

218
Pitch
1

69
140
129
109 4
80
60+

401 ;
20| 1st section PN1 PE

-
b

¢

T T T T T T T H T T L] T T T T T T T T 1 1
g 2 4 6 8 1012 14 16 18 20 22 24 26 28 3¢ 32 34 36 38 49 42
Time in centi-seconds

In the above example T = one hundredth of a second.

PI1 =+10 PN1 =12
PI2=-5 PN2 =27
PI3 = +50 PN3 =3

The pitch envelope is added to the pitch parameter (P) given in the SOUND
statement. In the above example it must have been 40 since the pitch starts at
40. If bit 7 of the T parameter is zero then at the end of the pitch envelope, at a
time given by the equation

time = (PN1 + PN2 + PN3)*T hundredths of a second

the pitch envelope will be set to zero and will repeat automatically. Note that the
pitch can only take on values in the range 0 to 255 and values outside this range
are treated as MOD 256 of the value calculated.

The six parameters AA, AD, AS, AR, ALA and ALD determine the amplitude
envelope. Although the current internal sound generator has only 16 amplitude
levels the software is upward compatible with a generator having 128 levels.

The shape of the amplitude envelope is defined in terms of rates (increments)
between levels, and is an extended form of the standard ADSR system of
envelope control. The envelope starts at zero and then climbs at a rate set by AA
(the attack rate) until it reaches the level set by ALA. It then climbs or falls at
the rate set by AD (the decay rate) until it reaches the level set by ALD.
However, if AD is zero the amplitude will stay at the level set by ALA for the
duration (D) of the sound.

The envelope then enters the sustain phase which lasts for the remaining
duration (D) of the sound. The duration is set by the SOUND statement. During
the sustain phase the amplitude will remain the same or fall at a rate set by AS.

219

At the end of the sustain phase the note will be terminated if there is another
note waiting to be played on the selected channel. If no note is waiting then the
amplitude will decay at a rate set by AR until the amplitude reaches zero. If AR
is zero then the note will continue indefinitely, with the pitch envelope auto-
repeating if bit 7 of parameter T is zero.

A typical amplitude envelope might look like

Duration

Release phase

Amplitude :t’ack Deca
ALA-12¢_? Sustain phase
1994

ADA- 891 [-----
60

46+

261

) v T r T

¢ 4 10 14 20 30 34 40 5@

Time in centi-seconds

In the above example T = one hundredth of a second.

ALA =120

ADA =80

AA =30 (120 in four hundredths of a second)
AD = -4 (-40 in 10 hundredths of a second)
AS=0

AR = -5 (-80 in 16 hundredths of a second)

Note that the amplitude cannot be moved outside the range 0 to 126.

Syntax

ENVELOPE <numeric>, <numeric>, <numeric>, <numeric>,
<numeric>, <numeric>, <numeric>, <numeric>, <numeric>,
<numeric>, <numeric>, <numeric>, <numeric>, <numeric>

Associated keywords
ADVAL, SOUND

EOF#

Purpose

This function is used to determine whether the end of the file has been reached or
not. The function returns the value 0 or -1. It returns the value -1 if the end of
the file has been reached. The number following EOF # is the channel number of
the file. Refer to chapter 31 for more information.

Examples
100 X=EOF# (channel)

200 REPEAT UNTIL EOF# (y)

Description

The function used to determine whether the end of the file has been reached or
not.

Syntax

<num-var>=EOF #(<num-var>)

Associated keywords

OPENIN, OPENUP, OPENOUT, EXT#, PTR#, PRINT#, INPUT#, BGET#,
BPUT#,CLOSE#

221

EOR Exclusive-OR

Purpose

This is a special logical operator often used to complement certain bits in a byte
selectively. Refer to the keyword AND for an introduction to the concepts
involved.

The process of Exclusive-OR tests whether the corresponding bits in two numbers
are the same or different. If the corresponding bits in the two numbers are
different then the resultant bit will be a one, if they are the same it will be a zero.

Another way of looking at this process is that it complements (changes 0 to 1 and
1 to 0) those bits in one number which are at logic 1 in the other number. Thus if

Xis 0000 1100 0011 0000 1110 1011
Y is 1011 1111 0000 1010 0010 1000
Then

XEOR Yis 1011 0011 0011 1010 1100 0011
Examples

100 d%= A% EOR &FFFFO0O

200 R= X EOR Y

Description

An operator performing the operation of logical or bitwise Exclusive-OR between
the two operands.

Syntax
<num-var>=<numeric>E OR<numeric>

or

<testable condition>=<testable condition>EOR <testable condition>

Associated keywords
NOT, AND, OR

229
ERL error line number

Purpose

This enables the program to find out the line number where the last error
occurred. See chapter 27 for more information.

Examples
8500 X=ERL

8100 IF ERL=100 THEN PRINT "I didn't understand"

300 IF ERL=10000 THEN CLOSE#0

Description

A function returning the line number of the line where the last error occurred.

Syntax

<num-var>=ERL

Associated keywords
ON ERROR...,ON ERROR OFF,REPORT,ERR

223

]E]]it[glerror

Purpose

If the computer finds an error that it cannot resolve, it may give up and report
the error on the screen. In addition it remembers an ‘error number’. For example,
if you try to calculate with numbers which are too large for the computer it will
report Too big and remember error number 20.

Pressing the ESCAPE key behaves as an error (error number 17) and you can
detect this and act on it if you wish.

It is possible to make the computer deal with most of these errors itself by
writing special sections of the program to deal with the inevitable! These sections
of the program need to know what the error was and where it occurred.

The function ERR enables your program to find the error number of the last
error which occurred. This is generally used to enable the program to respond
helpfully to an error caused by the user.

Examples

1000 wrong=ERR

100 IF ERR=17 THEN PRINT "YOU CAN'T ESCAPE!"
1230 IF ERR=18 THEN PRINT "You can't divide by

zero!"

Description

Returns the error number of the last error which occurred.

Syntax

<num-var>=ERR

Associated keywords
ON ERROR...,ON ERROR OFF,ERL,REPORT

224
EVAL evaluate

Purpose
This function is mainly used to enable the user to type an expression, such as a
mathematical equation, into the computer while a program is running.

For example, suppose that a program has to plot a graph; you need a way of
getting your equation into the computer while a program is running. In most
versions of BASIC this is very difficult to do. With the BBC BASIC the equation
is put into a string and then EVAL is used to tell the computer to work out the
string.

The function is not common in other versions of BASIC so a few more specific
examples are given of instructions which can be evaluated by the statement
EVAL AS.

A$="M*X+C"
A$="SIN(x/120)+COS(x/30)™"
Note that EVAL can be used to evaluate functions (SIN, COS, SQR etc) but

cannot be used to execute a statement like MODE 4.

Examples
100 X=EVAL (A$)

234 value=EVAL (z$)

Description

A statement which applies the interpreter’s expression evaluation program to the
characters held in the argument string. An easy way to pass a function into a
program from a user input.

Syntax
<num-var>=EVAL(<string>)
or

<str-var>=EVAL(<string>)

Associated keywords
VAL, STR$

Demonstration program

10 INPUT AS

20 FOR X=1 TO 5
30 Y=EVAL(AS)
40 PRINT Y

50 NEXT X

>RUN
?5*X
5
10
15
20
25

This second program makes the computer act as a calculator.

5 REPEAT
10 INPUT BS$
20 PRINT EVAL B$
30 UNTIL FALSE
>RUN
?3+4
7
?SIN (RAD (45))

0.707106781
?

225

226
EXP exponent

Purpose

This mathematical function calculates e (2.7183...) raised to any specified power.

Examples

120 Y=EXP (X)
3000 pressure=EXP (height)

Description

A function returning e to the power of its argument.

Syntax

<num-var>=E XP (<numeric>)

Associated keywords
LN, LOG

227

EXF# extent

Purpose

This function finds out how large a particular file is. It only works with disc and
Econet filing systems — not with cassette files. The number returned is the
number of bytes allocated to the file. The file to be investigated must have been
opened during the OPENIN, OPENOUT or OPENUP statements. See chapter
31 for more information on file handling.

Examples
100 X=EXT# (employee)

PRINT EXT# (N)

Description

A function which returns the length in bytes of the file opened on the channel
given in its argument.

Syntax

<num-var>=EXT #(<num-var>)

Associated keywords

CLOSE#, PTR#, INPUT#, PRINT#, BGET#, BPUT#, OPENIN, OPENUP,
OPENOUT,EOF#

FALSE

Purpose

Sometimes the computer has to decide whether or not something is true. For
example:

10 X=12
20 IF X=20 THEN PRINT "X EQUALS 20"

Clearly, in this example, the statement x=20 is false. As program will never
print X EQUALS 20.

100 X=12

110 REPEAT

120 PRINT "HELLO"
130 UNTIL X=20

would repeatedly print HELLO because X will never be anything other than 12.
X=20 is FALSE. The same effect can be achieved by writing

110 REPEAT
120 PRINT "HELLO"
130 UNTIL FALSE

which means repeat for ever.

In fact, the computer has a numerical value of FALSE, which is zero. Thus
PRINT FALSE

will print 0.

Similarly

PRINT 5=4

will also print 0, since 5=4 is false.

It is often useful to say in a program for example

CLOCKSET = FALSE

and then later you can say

IF CLOCKSET THEN PRINT "THE CLOCK IS CORRECT"

Examples
100 oldenough = FALSE

245 UNTIL FALSE

Description

A function returning the value zero.

Syntax

<num-var>=FALSE

Associated keywords
TRUE

229

230
FN function

Purpose

FN preceding a variable name indicates that it is being used as the name of a
function. Both string and numeric functions may be defined. See the keyword
DEF and chapters 17 and 18 for a more detailed description of functions and
procedures.

Since a function always returns a value. It often appears on the right of an equal
sign or in a print statement. Procedures, on the other hand, do not return results.

Example
1000 DEF FNmean2(x,y)=(x+y)/2

Description

A reserved word used at the start of all user defined functions.

Syntax

DEF FN<variable-name>[(<num-var>| <str-var>{ , <num-var> | <str-
var>})]

Associated keywords
ENDPROC, DEF, LOCAL

231

FOR

Purpose

The word FOR is one of the words used in a FOR. . . NEXT loop. This makes
the computer execute a series of statements a specified number of times; for
example

120 FOR X=1 TO 5
130 PRINT X
140 NEXT X

would print out the numbers 1, 2, 3, 4, 5.

The variable X in the above example initially takes on the value 1 and the
program then goes through until it reaches the word NEXT. The program then
returns to the line or statement FOR X=1 TO 5 and X is increased in value
by 1. The program continues the loop, increasing the value of X in steps of 1,
until X reaches 5. After that, the program no longer loops; instead it moves onto
the next statement after the FOR. . . NEXT loop.

As an option the ‘step size’ can be changed. In the example above X increased by
1 each time around the loop. In the next example XYZ increases by 0.3 each
time around the loop.

230 FOR XYzZ=5 TO 6 STEP 0.3
240 PRINT XYZ
250 NEXT XYZ

The above program would print out the numbers

5

(S I 6,
w oW

The value of XYZ on exit from the above program would be 6.2.

The step size may be negative if you wish to make the value of the control
variable decrease each time around the loop.

870 FOR r2d2%=99 TO 60 STEP -12
880 PRINT r2d2%; "Hi there"
890 NEXT r2d2%

232
would print

99Hi there
87Hi there
75Hi there
63Hi there

The FOR. . .NEXT loop always executes once so
FOR D=5 TO 3: PRINT D: NEXT D

would print 5 and then stop.

Examples
300 FOR X=1 TO 16 STEP 0.3: PRINT X: NEXT X

1040 FOR A%=0 TO MAXIMUMS%

560 FOR TEMPERATURE=0 TO 9

Description

A statement initialising a FOR. . . NEXT loop. This structure always executes
at least once. Any assignable numeric item may be used as the control variable
but integer control variables are about three times faster than real variables.
Note that when the step is non-integer, rounding errors may creep in and the
value of the control variable may well diverge significantly from the true
arithmetic value.

Syntax

FOR <num-var>=<numeric>TO<numeric>[S TEP <numeric>]

Associated keywords
TO, STEP, NEXT

233

GCOL

Purpose

This statement sets the colour to be used by all subsequent graphics operations.
In other words it selects the graphics foreground colour and the graphics
background colour. It also specifies how the colour is to be placed on the screen.
The colour can be plotted directly, ANDed, ORed or Exclusive-ORed with the
colour already there, or the colour there can be inverted (reversed).

The first number specifies the mode of action as follows:

0 Plot the colour specified

1 OR the specified colour with that already there

2 AND the specified colour with that already there

3 Exclusive-OR the specified colour with that already there
4 Invert the colour already there

The second number defines the logical colour to be used in future. If the number
is greater than 127 then it defines the graphics background colour. If the number
is less than 128 then it defines the graphics foreground colour. See the keyword
COLOUR for more information.

Examples
100 GCOL 0,2

GCOL 3,129

Description

This statement is used to select the logical colours used by graphics statements.

Syntax

GCOL<numeric>, <numeric>

Associated keywords
CLS,CLG,MODE, COLOUR,PLOT

234

GET

Purpose

This function waits for a key to be pressed on the keyboard and then returns with
the ASCII number of the key pressed. See chapter 9 for a description of ASCII
numbers.

The GET function is used whenever the computer needs to wait for a reply from
the user before continuing.

Note that when using GET the character typed on the keyboard will not appear
on the screen. If you wish it to appear you must then ask the computer to print it.

Examples
1040 keyhit=GET

350 X=GET

Description

A function which waits for the next character from the input stream. The
function then returns the ASCII value of the character.

Syntax

<num-var>=GET

Associated keywords
GETS$, INKEY, INKEY$

235

GETS$

Purpose

The GET$ function waits for a key to be pressed on the keyboard and then
returns with a string containing the character pressed. See the previous keyword,
GET, for a similar function and for further explanation.

For example, at the end of a game program you may wish the computer to ask
the player whether or not he or she wants to go again. The demonstration
program below shows how this can be done.

Note that when using GET$ the character typed on the keyboard will not
appear on the screen. If you wish it to appear you must ask the computer to print
it.

Example
1050 AS$=GETS$

Syntax
<string-var>=GET$

Associated keywords
GET, INKEY, INKEYS

Demonstration program

PRINT "Do you want to play another game";
2120 REM if user presses Y then

2130 REM go to line 100

2140 IF GETS$="Y" THEN GOTO 100

2160 REM if it gets this far then the
2170 REM reply was not "Y" so give up!
2180 STOP

236
GO SUB go to a subroutine

Purpose

Often a group of lines in a program needs to be used in a number of different
places within the main program. Instead of repeating the same piece of program
several times you can make this small sub-section into a separate subroutine.
This subroutine can then be ‘called’ from a number of different places in the main
program by means of the statement GOSUB. The end of a subroutine is indicated
by the word RETURN. This causes the program to return to the statement after
the GOSUB statement.

Beware of a subroutine calling itself too many times: a depth of 26 subroutines is
the maximum that is allowed.

As with GOTO, it is possible to GOSUB to a calculated line number. The same
cautions that apply to GOTO apply to GOSUB in this case.

Example
1020 GOSUB 4000

Description

A statement used to call a section of program as a subroutine. One subroutine
may call another subroutine (or itself) up to a maximum nested depth of 26.

Syntax

GOSUB<numeric>

ON<num-var>GOSUB<numeric>{ , <numeric>} [ELSE <statement>]

Associated keywords
RETURN, ON

Demonstration program

First, here is a program to print out random phrases without using a subroutine:

100 REM AS$ contains 7 words and each word

105 REM contains 5 characters - letters or spaces
110 A$S="hand mouthear leg arm chestelbow"

120 FOR count=1 TO 10

125 REM pick a random number

130 R=RND(7)

237

140 REM and use it to pick a random word
150 B$=MIDS$ (AS,5*%R-4,5)

160 REM print a message

170 PRINT "My ";B$;" hurts"

180 REM get another random word

190 R=RND (7)

200 B$=MIDS$ (AS$,5*R-4,5)

210 REM and print out a second message
220 PRINT "Is your ";B$;" all right?"
230 NEXT count

Now look at the same program using a subroutine and with the REMs (remarks)
removed.

110 A$S="hand mouthear leg arm chestelbow"
120 FOR count=1 TO 10

150 GOSUB 810

170 PRINT "MY ";B$;" hurts"

190 GOSUB 810

220 PRINT "Is your ";B$;" all right?"

230 NEXT count

240 END

810 B$=MIDS$ (AS,5*RND(7)-4,5)

820 RETURN

The 7 in line 810 is there to select one of the seven words in A$. In line 810 both
the 5s are there because each word contains five letters or spaces. It is essential
that all the words contain the same number of characters.

Finally, here is the same program written with a string function, with REMs left
out and generally cleaned up.

110 A$="hand mouthear 1leg arm chestelbow"
120 FOR count=1 TO 10

170 PRINT "My ";FNword;" hurts"

220 PRINT "Is your ";FNword;" all right?"
230 NEXT count

240 END

800 DEF FNword= MIDS$ (A$,5*RND(7)-4,5)

238
GOTO go to a line number

Purpose

This statement makes the computer jump to a specified line number instead of
continuing to the next one in the program. It changes the order in which the
computer executes a program.

Although GOTO is simple to use, do so with caution! It is all too easy to make a
program difficult to follow by using too many GOTOs. Following a program full of
GOTOs is like trying to disentangle a plateful of spaghetti and arrange it in a
straight line!

Adherents of ‘structured programming’ encourage program writers to use
structures like REPEAT. . .UNTIL and FOR...NEXT and to avoid most
(but not all) GOTO statements.

It is possible in this version of BASIC to GOTO a variable. In the following
example the destination variable is called ‘somewhere’:

10 somewhere=1005
20 GOTO somewhere

but this feature must be used with great care since the program cannot be
renumbered using the RENUMBER command.

Note that if the destination line number is to be calculated using a mathematical
expression then that expression must be in parentheses.

GOTO can be used as a command to start a program without destroying the

values assigned to the variables.

Examples
GOTO 330

100 IF X>5 THEN GOTO 2000

100GOTO (starts*55+14)

Description

A statement used to transfer control to a specified or calculated line number
unconditionally.

239

Syntax

GOTO<numeric>

ON<num-var>GOTO<numeric>{ , <numeric>} [ELSE<statement>]

240
H]MEM highest memory location

Purpose

BASIC uses the computer’s random access memory (RAM) to store the user’s
program, all the variables that the program uses, and memory for high-resolution
graphics displays.

In the absence of other instructions the computer divides the available memory
up logically. However there are occasions, particularly when changing display
modes and when writing machine code programs, when you may wish to tell
BASIC how to divide up the available memory.

One way of changing the allocation is by altering the value of the variable
HIMEM. This variable contains the address of the highest memory location that
BASIC uses for your program and variables. It is automatically set to just below
the memory used for the screen when the MODE is selected. Addresses above
HIMEM are not used by BASIC.

If it is manually altered then locations above HIMEM may be used by the
programmer for other things, for example for machine code subroutines.

If you wish to change the value of HIMEM you should normally do so very early
in your program — preferably right at the beginning. The beginning of the
program is also the place to select the display mode that you will be using.

Other important boundaries are PAGE, TOP and LOMEM. The memory map in
Appendix J gives an indication of their relative positions.

Note that in the ‘shadow screen’ mode, HIMEM always returns a value of &8000
(see chapter 42 for more details).

Examples
100 HIMEM=HIMEM-40

100 PRINT HIMEM

100 HIMEM = &2800

Description
HIMEM contains the address of the first byte that BASIC does not use. This
pseudo-variable must not be altered while executing a function or a procedure.

Alter it with great care! When using a second processor, or if the computer is
being used in shadow mode, HIMEM will not be altered when changing MODE.

Syntax

HIMEM=<numeric>
or

<num-var>=HIMEM

Associated keywords
LOMEM, PAGE, TOP

241

242

IF

Purpose

This sets up a test condition which can be used to control the subsequent action
of the computer.

Examples
100 IF month=12 THEN PRINT "December"

100 IF A=1 THEN PRINT "One" ELSE PRINT "Not one"
100 IF answer$="BANANA" THEN PROCfruit

100 IF height<1.94 OR age<18 THEN GOTO 1030

100 IF length <>5 THEN 2140

100 IF RATE=5 THEN Y=6:Z=8 ELSE PRINT "Wrong rate"

100 IF month=11 THEN IF day=5 THEN PRINT "Guy
Fawkes"

100 IF month=1 AND day=1 THEN PRINT "New Year"

100 IF X THEN Y=0

Description

A statement forming part of the IF...THEN. . .ELSE structure. The word
THEN is optional as is the ELSE section.

Syntax

IF <testable
condition>[THEN |]<statement | numeric>[E L SE <statement | numeric>]

Associated keywords
THEN, ELSE

243

INI{EY input the number of the key pressed

Purpose

This function waits for a specified time while constantly testing to see if a key
has been pressed on the keyboard.

If a key is pressed before the time runs out then the ASCII value of the key is
given. If no key is pressed in the given time then -1 is returned and the program
continues. See the keyword ASC for an explanation of ASCII values.

Note that a key can be pressed at any time before INKEY is used. All keys
pressed are stored in a buffer in the computer and a character is removed from
the buffer by, for example, the INPUT statement. You can clear the buffer of all
characters by giving the command

*FX 15,1

The number in parenthesis, after the word INKEY, gives the amount of time that
the computer must wait before giving up. The time is given in hundredths of a
second, and may have any value between 0 and 32767.

In addition, the function INKEY can be used to see if a key is actually pressed
at the instant the function is called. Normally pressing a key once enters the code
for that key into the keyboard buffer. If the key is kept down then it will
normally auto-repeat and further characters will be entered into the buffer.
However, when the buffer is read with INPUT or GET or INKEY, you will
have no idea how long the character has been waiting in the buffer. An
alternative statement is provided which actually tests the keyboard rather than
the buffer.

INKEY with a negative number in the parenthesis, eg INKEY (-27) will
enable you to test to see whether a particular key is pressed at that instant. The
number in parenthesis determines which key you wish to test. The following
table shows the negative number to be used to test any particular key. Thus the
letter L would be tested with PRINT INKEY (-87).

Examples
100 keynumber=INKEY (5)

220 result=INKEY (Y)

X=INKEY (100)

244

Description

A function which waits up to a specified time for a key to be pressed. The function
returns -1 if no key is pressed in the specified time, or the ASCII value of the key
pressed. The argument is the maximum time in hundredths of a second.

Syntax

<num-var>=INKEY(<numeric>)

Associated keywords
GET,GETS$, INKEY$

Key

NHAHXE<OHTILUOZEUERE"IQHHIQE PSS IIARIBRS3

Number

-33
-114
-115
-116
-21
-117
-118
-23
-119
-120
-66
-101

-51

Key

S © 00 IO Ut W -

vl T ® s >

—_ e

/

Space bar
ESCAPE
TAB

CAPS LOCK
CTRL
SHIFT LOCK
SHIFT
DELETE
COPY
RETURN

1

!

245

Number

-49
-50
-18

246
INI{EY$ input the character pressed

Purpose

This function waits for a specified time while constantly testing to see if a key
has been pressed on the keyboard. If a key is pressed before the time runs out
then the letter or number pressed is placed in the string variable. If no key is
pressed in the given time then an empty string is returned and the program
continues.

Note that a key can be pressed at any time before INKEY$ is used. All keys
pressed are stored in a buffer in the computer and a character is removed from
the buffer by, for example, the INPUT statement. You can clear the buffer of all
characters by giving the command

*FX 15,1

The number in parenthesis, after the word INKEY$, gives the amount of time
that the computer must wait before giving up. The time is given in hundredths of
a second.

Examples
120 letter$=INKEYS$ (0)

384 result$=INKEY$(100)

920 X$=INKEYS$ (Y)

Description

A function which waits for a key to be pressed within a specified period of time.
The function returns a null string if no key is pressed in the specified time. If a
key is pressed the string returned consists of the single character pressed. The
argument is the maximum time in hundredths of a second.

Syntax

<string-var>=INKEY $ (<numeric>)

Associated keywords
GET,GETS, INKEY

247

INPUT to put information into the computer

Purpose

When a computer program is running there is often a need to get numbers or
words from the outside world into the computer so that it can do calculations on
these numbers or words. The statement INPUT is used for this purpose. There
are a number of options:

100 INPUT X

will print a question mark on the screen and wait for the user to type in a
number. This is not very ‘friendly’ — often it would be helpful to print a message
on the screen before waiting for the user to type his/her reply. This can be done in
two ways:

340 PRINT "How old are you";
350 INPUT AGE

or more simply
340 INPUT "How old are you",6AGE

If you do not wish the computer automatically to print a question mark then omit
the comma between the message to be printed out and the variable to be filled in.

340 INPUT "How old are you" AGE

Often you may want to input several values one after the other. This can be done
by placing the variables after each other, but separated by commas, thus:

560 INPUT "Pick three numbers",X,Y,Z

When replying the user separates the values entered either with commas or by
pressing the RETURN key after entering each value. The numbers that are
typed in are placed in the appropriate variables — X, ¥ and Z in the example
above.

The above examples all required numbers to be supplied by the user. You can
INPUT words as well.

250 INPUT "What is your name", NAMES
You can INPUT more than one string at a time if you wish by using

200 INPUT "Town" ,AS$,"Country",B$

248

INPUT LINE A$ will accept everything that is typed in including leading
spaces and commas, and will place everything into A $.

INPUT may be used with TAB in the same way that PRINT can be. For
example

300 INPUT TAB(3,12) "number please" X
SPC can be used also, to insert spaces.

A semi-colon can replace a comma. Either a semi-colon or a comma will cause the
computer to print a question mark when waiting for the variable to be filled.

Description

A statement to input values from the current input stream. The question mark
prompt may be suppressed by omitting the comma following the prompt string.
INPUT strips leading spaces off strings.

Syntax

INPUT|[<string-const>][; | , J<num-var>| <string-var>{ , <num-
var> | <string-var>}

Associated keywords
INPUT#, LINE, TAB, SPC

249

]NPUT# put information into the computer from

cassette or disc

Purpose

It is possible to record data (numbers and words) on cassette or disc where they
can be stored for later use. The statement INPUT# is used to read the data
back into the computer from the cassette or disc. See chapter 31 on file handling
for more information.

Examples
1200 INPUT# channel, date, name$, addressS$

3400 INPUT#X,U,V,W$

Description

A statement which reads data in internal format from a file and places the data
in the stated variables.

Syntax

INPUT#<num-var>, <num-var> | <string-var>{ , <num-var> | <string-
var>}

Associated keywords

OPENIN, OPENUP, OPENOUT, EXT#, PTR#, PRINT#, BGET#, BPUT#,
CLOSE#

INSTR in string

Purpose

To search one string for any occurrence of another string, for example to see if
one word contains another specific word.

The search normally starts from the beginning of one string but as an option the
search can start from a specified point along the string.

The number returned is the string position of the second string in the first string.
The leftmost character position is position number 1. If no match is found then
zero is returned. A search for a null string

X=INSTR("Sunday","")

will always return 1.

Examples
240 X=INSTR(A$,BS)

puts the position of B$ in A$ into X.
180 Y=INSTR(AS$,BS, Z)

starts search at position z.

PRINT INSTR("HELLO","L")

would print 3.

Description

A function which returns the position of a sub-string within a string. The starting
position for the search may be specified. There must be no space between INSTR
and the first parenthesis.

Syntax

<num-var>=INSTR(<string>, <string>[, <numeric>])

Associated keywords
LEFT$,MIDS,RIGHTS, LEN$

2561

INT integer part

Purpose

This converts a number with a decimal part to a whole number. This function
always returns a whole number smaller than the number supplied. Thus
INT (23.789) gives 23 whereas INT (-13.3) returns -14.

Examples
200 X = INT(Y)

1050 wholenumber=INT (decimalnumber)
330 pence=INT (cost * markup/quantity)

Description

INT is a function converting a real number to the lower integer.

Syntax

<num-var>=INT<numeric>

LEFT$ left string

Purpose

To copy part of a string starting at the left of the source string. For example if
AS$="CATASTROPHE"

then

PRINT LEFTS$ (A$, 3)

would give CAT, namely the left three characters of A$.

Examples
100 INDEX$=LEFT$ (WHOLEname$, 4)

3000 US=LEFTS$ (H4$,value)

Description

A string function which returns the left n characters from a string. If the source
string is too short then the function returns with as many characters as there are
in the source string. There must be no space between LEFT$ and the first
parenthesis.

Syntax

<string-var>=LEF T $ (<string>, <numeric>)

Associated keywords
RIGHT$,MID$, LEN, INSTR

Demonstration program

This prints out letters in a pattern.

10 PRINT "What is your full name";
20 INPUT name$

30 FOR X = 1 TO LEN (nameS$)

40 PRINT LEFTS (name$, X)

50 NEXT X

>RUN

What

JO
JOH
JOHN
JOHN
JOHN
JOHN
JOHN
JOHN
JOHN
JOHN

is your full

co
COL
COLL

By

name?JOHN A COLL

253

254
LEN length (of a string)

Purpose

This function counts the number of characters in a string. For example
K=LEN ("FRIDAY ")

would give K=7 since there are six letters in "FRIDAY" and it is followed by a
space.

This function is often used with a FOR. . . NEXT loop to do something once for
each letter in a string. For example, we might wish to encode a word by replacing
each letter with its successor in the alphabet so that, for example, "FRIDAY"
would become "GSJEBZ". See the demonstration program.

Examples
100 X=LEN (AS$)

2350 length=LEN (main$)

Description

This function returns the length of the string given as the argument.

Syntax

<num-var>=LEN(<string>)

Associated keywords
LEFTS$,MID$,RIGHT$, INSTR

Demonstration program

300 PRINT "Type in your word";

310 INPUT AS

320 Length=LEN(AS)

325 cs$=""

330 FOR V=1 TO 1length

340 B$=MIDS$ (AS,V,1)

350 C$=CS$+CHRS$ (ASC(BS) +1)

360 NEXT V

370 PRINT "The coded version is ";C$

In the above program each letter is copied one at a time into B$. Then its ASCII

255

value is calculated, 1 is added to the ASCII value and the new ASCII value is
converted back into a character which is then added onto C$. See the keyword
Asc for more information about the ASCII code.

256

LET

Purpose
In BASIC we often write things like

X=6

meaning put 6 into the box labelled X in the computer. The fact that we are
changing the contents of the variable X can be made clearer by writing

LET X=6

The statement X=X+6 is impossible in mathematical terms. How can something
be the same as itself plus 6? In BASIC though it is quite legal to say LET
X=X+6 since the instruction simply means

‘store in the variable X whatever is already there plus 6’, or ‘increase the value of
X by 6.

The word LET is optional, but its use makes the program more readable.

Examples
100 LET length=15

980 LET DAY$ ="Tuesday"

210 IF A=6 THEN LET length=12

Description
LET is an optional assignment statement.
Note: LET may not be used during the assignment of the pseudo-variables

LOMEM, HIMEM, PAGE, PTR#, TIME.

Syntax

[LET]<var>=<expression>

257

LIST

Purpose

This command makes the computer list whatever program it has in its memory.
It is often used before typing RUN to ensure that there aren’t any typing errors
in the program just entered.

You can list a single line

LIST 280

or a range of lines

LIST 100,450

or the whole program

LIST

LIST ,400 willlistall lines up to and including line 400.
LIST 400, willlistall lines beyond line 400.

If you have a very long program you may see the whole listing whiz past before
you have time to read it. To stop it, and to make the computer stop at the bottom
of each page you can type CTRL N (while holding down the key marked CTRL
press the letter N). Then type LIST. This is called ‘page mode’ and the computer
stops at the bottom of each page. The next page will be printed when the SHIFT
key is pressed.

To return to ‘scroll mode’ type CTRL 0 (hold CTRL down while briefly pressing
0). Pressing CTRL and SHIFT together immediately pauses a listing, and
pressing ESCAPE will stop a listing so that corrections can be made to the
program.

If you want a listing on the printer then you can turn the printer on by typing
CTRL B before typing LIST.

To turn the printer off afterwards type CTRL C.

LIST is a command and cannot be used as part of a program or as part of a
multiple statement line.

The layout of programs as listed can be controlled by the command LISTO (see
next entry). As an option, the computer can be instructed to insert spaces for the
duration of all FOR. . .NEXT and REPEAT...UNTIL loops.

258

Examples
LIST

LIST 400
LIST 400,500
LIST ,900

LIST 900,

Description

A command which lists the current program.

Syntax

LIST[, l[<num-const>][, J[<num-const>]

Associated keywords
NEW,OLD,LISTO

259

LISTO list option

Purpose

When a program is listed on the screen or the printer, it is often convenient to
show all loops within the program indented. LISTO can be used to control the
way that the LIST command displays a program on the screen. It can cause the
computer to insert spaces in three situations:

— After the line number.
— During FOR. . .NEXT loops.
— During REPEAT. . .UNTIL loops.

The number following LISTO should be in the range 0 to 7.

0 Implies no inserted spaces.

1 Implies a space after the line number.

2 Implies spaces during FOR. . . NEXT loops.

4 Implies spaces during REPEAT. . .UNTIL loops.

The numbers which select each option (1, 2 or 4) can be added together to select

multiple options. If spaces were required during FOR...NEXT and
REPEAT. . .UNTIL loops then LISTO6 would be selected. LISTO7 puts a
space after the line number and double spaces for FOR...NEXT and

REPEAT...UNTIL loops.
The most common options are LISTO0 and LISTO7.

When editing programs using the cursor editing keys it is strongly advised that
you use the LISTOO0 option or else you will COPY in a lot of extra space.

Description

LISTO affects the print format produced by subsequent LIST commands. Bit
0 of the argument controls the single space after the line number; bit 1 the double
space in FOR. . .NEXT loops; bit 2 the double space in REPEAT. . .UNTIL
loops.

Syntax

LISTO<num-const>

Associated keywords
LIST

260

LN natural logarithm

Purpose

A mathematical function to calculate logarithms to the base e — usually called
‘natural logarithms’.

Examples
100 X=LN(temp)

3000 H5=LN (REDOXpotential)

Description

A function returning the natural logarithm of its argument. Inverse logarithms
(anti-logarithms) can be calculated by using

antilog = EXP (log)

Syntax

<num-var>=LN<numeric>

Associated keywords
LOG, EXP

261

LOAD

Purpose

To load a program into the computer from cassette tape, disc or Econet,
whichever is the current filing system. For example

LOAD "GAME1"

Once the program has been loaded, type RUN to start it.

When you use the word LOAD, the computer forgets any previous program it had
in memory and also the values of all variables.

If you are loading from disc then the file name (enclosed in quotes) must be a
string of not more than seven characters in length (or ten characters for the
Advanced Disc Filing System). If a disc directory is specified then you do this by
putting the directory character before the file name, like this:

LOAD "B.GAME1"

If you wish to load from a drive other than the one currently selected then the
drive number also is included in the quotes preceded by a colon. For example

LOAD ":0.D.GAME1"
will load a file called GAME1 in directory D from drive 0.

If you are loading from cassette, then the computer will show the name of each
section of the program as it finds it on the cassette. The file name (enclosed in
quotes) may be up to ten characters in length. LOAD" " (with no file name) will
load the next program found on cassette, whatever its name. This does not work
on disc or Econet or other filing systems.

LOAD does not run a program. It just loads a file into memory. It clears all
variables except A% to Z% and @%. The command LOAD cannot be used in a
program.

The statement CHAIN can be used in a program (or as a command) to load

another program and to start that program running automatically.

Examples
LOAD "STARWARS"

LOAD "MYPROG"

262

Description

The command LOAD deletes the current program, clears all variables except the
resident integer variables and then loads a new program from the current filing
system. The program to be loaded must be in internal format.

Since LOAD is a command it cannot form part of a multiple statement line.

Syntax
LOAD<string>

Associated keywords
SAVE, CHAIN

263

LOCAL

Purpose

This informs the computer that the named variables are local’ to the procedure
or function in which they occur; their use in this procedure or function in no way
affects their value outside it. See the keyword DEF for more information.

Example
560 LOCAL X,Y,A$,B$

Description

A statement which can only be used inside a procedure or function definition.
LOCAL saves the values of the external variables named and restores these
original values when the function or procedure is completed.

Syntax

LOCAL<string-var> | <num-var>{ , <string-var>| <num-var>}

Demonstration procedure

780 DEF PROCArawTRIANGLE (size)
790 LOCAL X1,X2,Y1,Y2
800 X1=320-size

810 X2=320+size

820 Y1l=256-size

830 Y2=256+size

840 MOVE X1,Y1

850 DRAW X2,Y1

860 DRAW 320,Y2

870 DRAW X1,Y1

880 ENDPROC

Associated keywords
DEF, ENDPROC, FN, PROC

264
LOG ogarithm

Purpose

A mathematical function to calculate the common logarithm of a number to base
10.

Examples
100 Y=LOG (y)

440 pressure=LOG (speed)

Description

A function giving the common logarithm to base 10 of its argument. Inverse
logarithms (anti-logarithms) can be calculated by using

antilog = 10%1log

Syntax

<num-var>=LOG<numeric>

Associated keywords
LN, EXP

265

LOMEM

Purpose

Different sections of the computer’s memory are used for different purposes.
Normally BASIC makes an intelligent decision about where to store the numbers
that the user calls X and Y etc. In fact it stores these variables immediately after
the user’s program. You can change the place where it starts to store these
variables by changing the value of LOMEM, but this must be done right at the
beginning of the program.

The variable LOMEM gives the address of the place in memory above which the
computer stores all its variables (except for the resident integer variables @ % and
A% to Z%.

LOMEM is normally set to be the same as TOP which is the address of the top of
the user program. See the keyword HIMEM and the memory map in Appendix J
for more details.

Do not accidentally move LOMEM in the middle of a program — the interpreter

will lose track of all the variables that you are using.

Examples
100 LOMEM=TOP+&100

PRINT LOMEM
PRINT ~LOMEM

Note: The ~ tells the computer to print the value in hexadecimal.

Description

A pseudo-variable which sets the place in memory above which the BASIC
interpreter stores dynamic variables — those that are created and destroyed as
required. Space is always set aside for the resident variables @ % to Z%. Normally
LOMEM is set equal to TOP which contains the address of the end of the user
program.

Moving LOMEM in the middle of a program will cause loss of all variables.

Syntax

LOMEM=<numeric>
or

<num-var>=LOMEM

Associated keywords
HIMEM, TOP, PAGE

266

MID$

Purpose

To copy part of one string into another string. For example, if
demo$="DOGMATIC"

then the middle part of demo $, starting at position four and going on for three
letters, ie

MIDS (demo$, 4, 3)

would equal MAT. In fact MID$ can be used to copy any part of a string — not
just the middle part. Thus

MIDS (demo$, 1, 3)
would equal DOG and
MIDS (demo$,5, 4)
would be ATIC.

This string function is very useful for selecting one word out of a long line. There
is a demonstration program under the keyword GOSUB and another under the
keyword LEN.

If the last number is omitted then the function returns with the rest of the string.

Example
RESTofLINES=MIDS$ (main$, 10)

Description

A string function which returns a sub-section of the first argument’s string. The
second argument gives the starting position and the third argument gives the
number of characters to be copied. If the source string is too short then the
function returns as many characters as possible from the starting position.

Syntax

<string-var>=MID $ (<string>, <numeric>[, <numeric>])

Associated keywords
LEFTS$,RIGHTS, LEN, INSTR

267

MOD modulus

Purpose

The function MOD gives the remainder after division. When doing division with
whole numbers (I emphasise — with whole numbers) it is sometimes useful to
know the remainder. For example 14 divided by 5 leaves a remainder of 4
(14=2*5+4). Similarly

PRINT 14 MOD 5

would print 4. The whole number part of the above division is given by the
function DIV. Thus

PRINT 14 DIV 5
would print 2.
Notice that the result of both DIV and MOD is always a whole number.

In fact all numbers used in the calculation of the function are first converted to
integers (using internal truncation) before the computer calculates the result.

Thus

14 DIV 5 gives 2
14.6 DIV 5.1 gives2
14 MOD 5 gives 4
14.6 MOD 5.1 gives 4

The second example (14.6 DIV 5.1)isreally the same as the first. However
14.6 DIV 4.9 gives3 and

14.6 MOD 4.9 gives2

are quite different. In effect the computer sees them as

14 DIV 4

14 MOD 4

Examples
100 LET X=A MOD B

PRINT length MOD 12

268

Description

A binary operation giving the signed remainder of an integer division. MOD is
defined such that

A MOD B = A-((A DIV B) *B)

Syntax

<num-var>=<numeric>MOD <numeric>

Associated keywords
DIV

269

MODE graphics mode

Purpose

This statement is used to select which display MODE the computer is about to
use. Changing MODESs clears the screen.

Mode Graphics Colour Text

0 640x256 Two colour display 80x32 text
1 320x256 Four colour display 40x32 text
2 160x256 16 colour display 20x32 text
3 Two colour text only 80x25 text
4 320x256 Two colour display 40x32 text
5 160x256 Four colour display 20x32 text
6 Two colour text only 40x25 text
7 Teletext display 40x25 text

MODE 7 wuses the Teletext standard display characters. These cannot be
changed by the user. Since these characters differ slightly from the standard
ASCII set you will find that a number of characters on the screen do not
correspond to those printed on the keys. For example a left hand square bracket
will be displayed as an arrow.

In MODEs 0 to 6 the character set can be changed by the user. See VDU23 in
chapter 34.

You cannot change MODE inside a procedure or function.

MODEs 128 to 135 are the ‘shadow’ equivalents of MODEs 0-7. See chapter 42
for more details.

Examples
10 MODE 5

MODE 7

Description

A statement used to select the display MODE ,which may not be used in a
procedure or function. MODE resets the value of HIMEM, except when a second
processor is in use, or when the computer is operating in the shadow screen
mode.

270

Syntax
MODE <numeric>

Associated keywords
CLS,CLG, HIMEM

271

MOVE

Purpose

This statement moves the graphics cursor to a particular absolute position
without drawing a line. For example to move to a point 100 points across the
screen and 300 points up the screen one would say

MOVE 100,300

Examples
1050 MOVE 100,300

MOVE X, Y

Description

To move the graphics cursor to a new position without drawing a line. This
statement is identical to PLOTA4.

Syntax

MOVE<numeric>, <numeric>

Associated keywords
DRAW, MODE, GCOL,PLOT

NEW

Purpose

To ‘remove’ a program from the computer’s memory. In fact the program is still
there but the computer has been told to forget about it. If you want to, you can
usually recover the old program by typing OLD. This only works if you have not
entered any part of another program.

NEW is normally used as a command before typing in a new program - to ensure
that the computer has forgotten all its previous instructions.

NEW does not clear any of the resident integer variables A% to Z% or @ %.

Example
NEW

Description

A command which resets internal pointers to ‘delete’ all program statements. The
program may be recovered with OLD provided no new statements have been
entered and no new variables have been created. Since it is a command it cannot
form part of a multiple statement line.

Syntax
NEW

Associated keywords
OLD

273

NEXT

Purpose

This is used in conjunction with FOR to make the computer loop around a set of
statements a number of times.

If the loop is opened with (for example)

FOR speed=10 TO 100

then the NEXT statement would normally be in the form

NEXT speed

but the word speed is optional.

Example

340 length=100

350 FOR X=0 TO 640 STEP 2
360 Y=2*length+250

370 DRAW X, Y

380 NEXT

Description
A statement delimiting FOR. . . NEXT loops. The control variable (X in the last
example) is optional.

If a variable is given after NEXT then the computer will ‘pop’ other
FOR. . .NEXT loops off the ‘stack’ until it finds a matching variable. If none is
found, an error will be reported.

Syntax

NEXT[<num-var>], [<num-var>], ...

Associated keywords
FOR, TO, STEP

274

NOT

Purpose

This is normally used with an IF...THEN statement to reverse the effect of
some test.

Example
680 IF NOT (A=6 AND B=5) THEN PRINT "WRONG"

IfA=6 andB=5 then the computer will not print WRONG.

Description

NOT is a high priority unary operator equivalent to unary minus.
Syntax
<num-var>=NOT <numeric>

or

<testable condition>=NOT (<testable condition>)

275

OLD

Purpose

To recover a program which has been recently deleted by NEW or by pressing the
BREAK key. Programs can only be recovered if no program lines have been
entered and if no new variables have been created since the program was deleted.
If you get the message Bad program, then type NEW again.

Typing NEW or pressing BREAK are quite drastic moves. OLD will do its best
to recover your program but will not always succeed fully. In particular if the
first line number in your program is greater than 255 then it will get that one
line number wrong. The ESCAPE key provides a clean method of stopping a
program. BREAK is much more violent and should be avoided.

Example
OLD

Description
A command which undoes the effect of NEW.

Syntax
OLD

Associated keywords
NEW

276

ON

Purpose

To alter the order in which BASIC executes a program by jumping to one of a
selection of lines depending on the value of a particular variable. The word ON is
used with three other keywords GOTO, GOSUB and ERROR. For example:

ON value GOTO 800,920,100 ELSE 7300
ON result GOSUB 8000,8300,120,7600
ON ERROR GOTO 9000
ON ERROR GOSUB 2001

First:
ON X GOTO 1100,1210,1450,1600,1950

If the value X is equal to 1 then the program will go to line 1100. If X=2 then the
program will go to line 1210. If X=3 then line 1450 and so on.

What is it used for? Suppose that you are counting coins put into a machine and
you want to offer different things if one, two or three coins are put in. The
program which follows illustrates, in outline, how ON GOTO will help.

450 REM the variable COINS gives the number
460 REM of coins inserted

500 ON COINS GOTO 550,600,650

550 PRINT "One coin buys a biscuit"

560 REM gives him a biscuit somehow

590 GOTO 1000

600 PRINT "Two coins can buy tea or coffee"
610 GOTO 1000

650 PRINT "Three coins can buy a piece of cake"
660 REM something else in here as well

690 GOTO 1000

1000 REM all the routines end up here

Secondly:
ON X GOSUB 2200,2300,2400,2500

ON can also be used with GOSUB instead of GOTO. See GOSUB for an
explanation of subroutines.

ON X GOSUB provides a neat way of using different subroutines in different
situations.

277

An ELSE clause can be included at the end of ON GOTO and ON GOSUB to
trap out of range values without causing an error.

Thirdly:

ON ERROR GOTO
ON ERROR OFF

If the computer detects an error in your program or in the disc drives or anything
else that it can’t handle, then it produces an error. In other words it complains
and stops. The complaint takes the form of a message on the screen - for example
Too big.

Sometimes it is vital that the computer looks after such situations without
troubling the user. The statement ON ERROR GOTO 7000 ensures thatifan
error occurs the computer does not complain and does not stop. Instead it goes to
a section of program at line 7000 (in this case) which has been specially written
to get the computer out of the mess it is in. This section of program may have to
give the user instructions like Please enter a smaller number orit
may be able to sort out the problem in some other way.

How well this ‘error trapping’ works depends on the skill of the programmer in
thinking of every possible thing that can go wrong. You will soon re-discover
Murphy’s Law:

‘If anything can go wrong, it will.’

Good error handling is vital in all programs for use by non-specialists - and that
means most people!

The statement ON ERROR OFF lets the computer deal with errors once again
- cancelling the effect of ON ERROR GOTO.

Examples
40 ON ERROR GOTO 9000

50 ON ERROR PRINT "The computer is confused"

10 ON ERROR GOSUB 2000

Description

A statement providing multiple options in changing the order of execution of a
program, and error trapping.

278

Syntax

ON<num-var>GOTO<numeric>{ , <numeric>} [ELSE<statement>]
or

ON<num-var>GOSUB<numeric>{ , <numeric>} [ELSE <statement>]
or

ON ERROR<statement>

or

ON ERROR OFF

Associated keywords
GOTO, GOSUB, ELSE

279

OPENIN open file for input to computer (from

cassette, disc or Econet)

Purpose

To tell the computer that the program wishes to read data (words and numbers).
Reading data in is quite a complicated procedure for the computer and it needs
advance warning when you wish to do so. The advance warning is given by the
OPENIN keyword.

One use of this facility is to store names and addresses on file (eg the cassette or
disc) and to read the file in each time you want to use it. After you have corrected
it you can then transfer it back to disc (using OPENOUT) where it will be saved
for future use. Further information about cassette, disc and Econet files is
provided in chapter 31.

A typical example of the use of OPENIN is
X=OPENIN("cinemas")

This informs the computer that you will shortly want to read data in from a file
which is recorded under the name ‘cinemas’. The file name is ‘cinemas’.

In accepting this instruction the computer allocates a ‘channel’ to this operation.
It is as if it said ‘OK that information will be provided on telephone number 6’. It
makes X=6 (or whatever number it decides). In all future operations on that file
you must refer to it as channel X (channel 6 in this example).

You get the actual data into the computer by using either BGET#X or
INPUT#X as the demonstration program on the next page indicates.

Example
230 file=OPENIN("census")

Description

A function which attempts to open a file for input or random access. In a disc or
Econet environment if a file already exists with the correct name it will be
opened for reading.

The function returns the channel number allocated by the computer’s filing
system. If the file does not exist then zero is returned.

280

Syntax

<num-var>=OPEN IN(<string>)

Associated keywords

OPENOUT, OPENUP, EXT#, PTR#, INPUT#, PRINT#, BGET#, BPUT#,
EOF#,CLOSE#

Demonstration program

10 REM to read in the names of 10 cinemas from
20 REM disc assuming of course that you put
30 REM them there sometime before!

50 REM dimension a string array of 10 slots
60 DIM cine$(10)

90 REM open the file
100 channel=0OPENIN ("CINEMA")
110 REM and read in the ten cinema names
120 FOR X=1 TO 10
130 INPUT# channel, cine$ (X)
140 NEXT X
150 REM that's the information in
160 REM do whatever you want with it!

281

OPENOUT open file for output to cassette, disc

or Econet

Purpose

This opens a cassette or disc file for output. Before you can record data (rather
than programs) you have to open a file. More information about files is given in
chapter 31.

OPENOUT is used to inform the computer that you wish to record data on
cassette or disc. The computer allocates a channel to the operation.

When working with discs or over Econet then if a file already exists with that
name it will be deleted. If no file exists then a new one will be created.

Example
330 X=OPENOUT ("cinemas")

Description
A function which returns the channel number allocated to an output file.

If a file of the same name exists then that file will first be deleted. If no file exists
then one will be created.

Syntax

<num-var>=OPENOUT (<string>)

Associated keywords

OPENIN, OPENUP,PTR#, EXT#, INPUT#, PRINT#, BGET#, BPUT#, EOF#
CLOSE#

282
OPENUP open a file for update

Purpose

This statement can be used with disc or Econet systems to open a file for update
— that is, simultaneous reading and/or writing. With Econet, only one user may
open a file for writing at any one time and therefore OPENUP should only be
used in single user environments.

If a file of the given name exists already then that file will be opened without any
changes taking place to the file. If no file of that name exists then OPENUP will
fail to open the file requested.

OPENUP is normally used with random access files on disc or on the Level 2
Econet filing systems.

Example
500 Y% = OPENUP ("DATA")

Description

A function which returns the channel number allocated to a file opened for both
reading and writing. The file must exist before this function can be used.

Syntax

<num-var>=OPENUP (<string>)

Associated keywords

OPENIN, OPENOUT, PTR#, EXT#, INPUT#, PRINT#, BGET#, BPUT#,
EOF#,CLOSE#

283

OPT option

Purpose

This statement determines what output is produced on the screen when assembly
language routines are processed by the BASIC interpreter. An understanding of
the operation of assemblers is required to understand the following.

During assembly two common errors can occur: Branch out of range
and Unknown label

The latter will occur during pass one for all forward references. It is therefore
often desirable to turn off assembler error messages during pass one.

The statement OPT is followed by a number in the range 0 to 7, with the
following results:

0 Assembler errors suppressed, no listing.
1 Assembler errors suppressed, listing.

2 Assembler errors reported, no listing.

3 Assembler errors reported, listing.

Options 4, 5, 6 and 7 behave exactly as options 0, 1, 2 and 3 except that the code
can be placed at a different location from that at which it is intended to execute.
With options 4 to 7 the variable P% controls the program counter during
assembly, and the variable O% gives the memory location where the code is
placed.

The OPT statement can only occur inside the square brackets which enclose
Assembly Language commands. OPT is set to 3 every time the BASIC interpreter
finds a [. Do not confuse it with *OP T which is described in chapter 43.

Examples
200 OPT 1

350 OPT (pass*2+list)

Description

An assembler pseudo-operation controlling the output during assembly. OPT is
followed by an expression as detailed above.

284

Syntax

OP T<numeric>

Demonstration program

10 oswrch=&FFEE

20 DIM memory$% 100
30 FOR Z=0 TO 3 STEP 3
35 P%=memory$%

40 [OPTZ

50 .start LDA#ASC"!"
60 LDX #40

70 .loop Jjsr oswrch
80 dex:BNE loop

90 rts:] NEXT 2Z

100 CALL start

110 END

285

OR

Purpose

To enable one condition or another condition to determine what happens next.
The OR operator can be used either as a ‘logical OR’ or as a ‘Boolean OR’. See
the keyword AND for details of logical and Boolean operators.

Example
75 IF X=6 OR date>20 THEN PRINT "Good"

Description
An operator performing Boolean integer logical OR between two numerics.

Syntax

<num-var>=<numeric>0OR<numeric>

Associated keywords
AND, EOR, NOT

286

OSCLI operating system command line interpreter

Purpose

It is very useful in a BASIC program to be able to send commands to the
operating system. Such commands might include *FX commands followed by
two numbers. When the program is written you do not always know which
numbers are to follow the *FX statement. However, you cannot substitute
variables such as X and Y directly after the *FX because these variables are not
known to the command line interpreter but are only known to the BASIC
language. Thus the statement

X=5:Y=3:*FX X, Y

would be meaningless to the operating system. The statement OSCLI provides
a neat way of passing variables to the operating system in such cases. OSCLI is
followed by a string variable which is set to contain the values to be passed to the
operating system. Note that numbers must be converted to string form by using
the STR$ function; the above example would work correctly with the following.

10 X=5

20 Y=3

30 A$="FX "+STRS$X+","+STRSY
40 OSCLI AS

Examples

10FN$="XYZ" : REM FILE NAME

20 START%= &4000 : REM START OF CODE

30 FINISH%= &6000 : REM END OF CODE

40 EXECADD%= &5000 : REM EXECUTION ADDRESS
300 OSCLI "SAVE "+FN$+" "+STRS$~ (STARTS)+"
"+STR$~ (FINISH%)+" "+STRS$~ (EXECADDY%)

Note that no * is needed in the string.

Description

A statement which passes its string argument to the operating system command
line interpreter.

287

Syntax
OSCLI<string>

Associated keywords
STRS$, CHRS$

PAGE

Purpose

PAGE is a variable which gives the address in memory where BASIC has stored
(or will store) the user’s program. This is usually automatically set to be the
lowest available address in the computer’s Random Access Memory but can be
changed by the user.

PAGE can be used to enable the computer to store two different programs at the

same time in different areas of memory. Use with care.

Examples
PRINT PAGE

10 PAGE=&5000
20 PRINT ~PAGE

235 PAGE=TOP+1000

Description

A pseudo-variable giving the address used by the interpreter for the start of the
user program. The least significant byte of PAGE is always set to zero by the
computer. In other words user programs always start on a ‘page’ boundary where
one page is 100 bytes hex (256 bytes decimal).

Syntax
PAGE=<numeric>
or

<num-var>=PAGE

Associated keywords
TOP, LOMEM, HIMEM

289

Pl

Purpose

PI has the value 3.14159265. It is used in the example to calculate the area of a
circle radius R.

Examples
100 AREA=PI*R*2

PRINT PI

Description
PI=3.14159265

Syntax

<num-var>=P I

PLOT

Purpose

PLOT

BASIC.

is the multi-purpose point, line and triangle drawing statement in

The first number which follows the keyword PLOT tells the computer what kind
of point, line or triangle it is going to draw. The two following numbers give the X
and Y coordinates to be used in plotting the point or drawing the line or triangle.

PLOT K, X, Y plots to the point at X,Y in a manner determined by the value of
K. The effect of each value of K will be:

0

<N O Ot W N

Move relative to last point.

Draw line relative in the current graphics foreground colour.
Draw line relative in the logical inverse colour.

Draw line relative in the current graphics background colour.
Move to absolute position.

Draw line absolute in the current graphics foreground colour.
Draw line absolute in the logical inverse colour.

Draw line absolute in the current graphics background colour.

Higher values of K have other effects which are related to the effects given by the
values 0 to 7.

8-
16-
24-
32-
64-
72-

80-

15
23
31
63
71
79

87

As 0-7 but with the last point in the line omitted.

As 0-7 but with a dotted line.

As 0-7 but with a dotted line and without the last point on the line.
Reserved.

As 0-7 but only a single point is plotted.

As 0-7 but to draw a horizontal line to the left and right of the point
until a colour other than the current background colour is reached.

As 0-7 but plot and fill a triangle.

When filling solid triangles with colour the computer fills the triangle between
the coordinates given and the last two points visited.

291

88- 95 As 0-7 but to draw a horizontal line to the right until reaching the
current background colour.

96- 255 Reserved for future expansions.

See chapter 34 on VDU drivers for an alternative interpretation of the numbers
given above.

Suppose that in the above example, PLOT K, X, Y, the value of X was 50 and
the value of Y was 80 then ‘draw line relative’ would mean draw a line to the
point on the screen 50 places to the right of the origin and 80 places up from the
origin.

‘Logical inverse colour’ is explained next.

In two colour MODES the logical inverse colour of logical colour 0 is logical colour
1.

In four colour MODESs the following apply:

Logical colour Inverse
0 3
1 2
2 1
3 0

In the 16 colour MODE logical colour O becomes 15, logical colour 1 becomes 14
and so on.

When drawing lines the computer draws a line from the last point X,Y position
given.

Normally the origin is set at the bottom left of the screen, but its position may be
moved to any point by using the VvDU29 statement. See chapter 34 for more
information.

The graphics screen is 1280 points (0-1279) wide and 1024 (0-1023) points high.

The most commonly used PLOT statements are PLOT 4 and PLOT 5, so
these two have been given duplicate keywords; MOVE and DRAW.

To print a string at a specific place on the screen use the TAB (X, Y) statement.
As an alternative one can join the graphics and text cursor together with the
statement VDU5 so that the computer prints text at the graphics cursor
position. Once that has been done then the graphics cursor can be moved with
MOVE,DRAW and PLOT statements.

292

Examples
100 PLOT 3,X,Y

PLOT 6,100,220

Description

A statement controlling the generation of points, lines and triangles on the
screen.

Syntax

PLOT<numeric>, <numeric>, <numeric>

Associated keywords
MODE, CLG, MOVE, DRAW, POINT, VDU, GCOL

293

POINT

Purpose

To find out the colour of a certain position on the screen. Suppose that you are
playing a game involving moving a car around a race track. On the race track are
pools of green oil. To find out if the place where your car is about to move to has
oil on it (so that the car will skid) you need to be able to find out if the screen is
coloured green at that point.

The number returned is the logical colour of the screen at the graphics point
specified. If the selected point is off the screen then the number returned will be
-1. There must not be a space between the word POINT and the opening
parenthesis.

Examples
1340 colour=POINT(X,Y)

100 IF POINT (X,Y)=2 THEN PRINT "SKID!!"

Description

A function returning a number representing the colour on the screen at the
specified coordinates. If the point is off the screen then the function returns -1.

Syntax

<num-var>=P O INT(<numeric>, <numeric>)

Associated keywords
PLOT,DRAW, MOVE, GCOL

294
POS position

Purpose

This function finds out how far across the screen the flashing cursor is. The left
hand side of the screen is position 0 and the right hand side is position 19, 39 or
79 depending on the MODE that has been selected.

Examples
1005 X=POS

320 distance=POS

Description

A function returning the horizontal position of the cursor in the current text
window.

Syntax

<num-var>=POS

Associated keywords
COUNT, TAB, VPOS

Demonstration program

To print spaces on the screen up to a certain horizontal position — for example to
align columns.

100 column=12
110 REPEAT PRINT"";
120 UNTIL POS=column

295

PRINT

Purpose
This does not print anything on paper. It does, however, print words and
numbers on the screen.

Anything enclosed in inverted commas (" ") will be printed exactly as it is.

Things not enclosed in inverted commas will be assumed to be variable names
and the contents of the variable will be printed out. The exact layout of the
numbers and figures on the screen will depend on the punctuation used in the
PRINT statement.

The items following the word PRINT are referred to as the ‘print list’.

The screen display is divided into vertical strips (or fields) which are (initially)
ten characters wide.

A comma after an item in the print list will cause enough spaces to be printed to
ensure that the next item will be printed in the next field.

A semi-colon after an item in the print list will cause the next item to be printed
on the same line and immediately following the previous item.

If the print list does not end with a semi-colon then the next PRINT statement
will print its output on a new line.

PRINT by itself leaves a blank line. A new line can be forced at any stage in the
print list by inserting an apostrophe.

The table below gives examples as they would appear, except that commas have
been inserted where spaces would be to aid counting.

296

Example
Print position
12345678901234567890
PRINT 1,2 1 2
PRINT 10,200 10 200
PRINT;10;200 10200
PRINT
PRINT "Answer";A Answer4d2
PRINT "Answer'"A Answer 42
PRINT "Answer",6A Answer 42
PRINT 1/2 0.5
PRINT 1/3 0.333333333
PRINT 3.3'2.25 3.3

2.5

The printer can be turned on at any time by typing CTRL B or by the statement
VDU2 in a program. The output of all PRINT statements will then appear on
the printer as well as the screen. CTRL C turns the printer output off. See
chapter 38 for more information about the printer.

Considerable flexibility has been built into the interpreter to enable it to print
numbers in several different layouts. There is no need to learn to use these
options at first but they will be invaluable when layout is crucial. A more detailed
explanation of the advanced features is given below.

It is possible to control the overall field width, the total number of figures printed
and the number of decimal places printed.

All these features are set with one variable called @ %. In brief, setting
@%=131594 will give two decimal places

@%=131850 will give three decimal places

@%=&90A will return to the normal output format.

For a detailed understanding of the format it is best to consider @ % as a four byte
number (eg @=&01020903), each byte controlling one aspect of the print
format. The most significant byte will be called B4. It has a value of 01 in the
example above. The least significant byte is called B1 and has the value 03 in the
example above.

B4 is tested by the function STR$ to determine the format of strings created by
that function. If B4=01 then strings will be formatted paying attention to the
setting of @ % otherwise @ % will be ignored by STR$. Initially B4=00.

297
B3 selects the basic format thus:
00 General format (G format)
01 Exponent format (E format)
02 Fixed format (F format)

In G format numbers that are integers will be printed as integers. Numbers in
the range 0.1 to 1 will be printed as 0.1 etc. Numbers less than 0.1 will be printed
in exponent format.

Exponent format will always print numbers in scientific notation; 100 becomes
1E2, 1000 becomes 1E3 and 1200 becomes 1.2E3

Fixed format prints numbers with a fixed number of decimal places. If the
number cannot be fitted into the selected field width it reverts to G format. The
decimal points are aligned vertically which is ideal for scientific and accounting
programs.

B2 controls the total number of digits printed in the selected format. If B2 is too
large or too small for the MODE selected then B2 is taken as 10. The number is
rounded to fit in the B2 digit field.

In G format B2 gives the maximum number of digits that can be printed before
reverting to E format. Range 1-9.

In E format B2 specifies the total number of digits to be printed before and after
the decimal point — but not counting the digits after the E. Another way of
looking at it is to say that (B2-1) digits will follow the decimal point. In E format
three characters or spaces always follow the final E. Range of B2 in E format is 1-
10.

In F format B2 specifies the number of digits to follow the decimal point. Range
0-10.

B1 sets the overall print field width and may have any value in the range 0 to
255 which in hexadecimal is &00 to &FF.

For example accounting purposes would often require fixed format two decimal
places and ten character field width.

The four bytes of @ are built up thus:

@%=& 00 00 00 OO
B4 -zero00

B3 - fixed format 02

B2 - two decimal places 02
B1 - character field 0A

So @%$=&0002020A, the & indicating that the number is in hexadecimal. You
can, of course, omit the leading zeros.

298

Here are some other formats:

Format (G2) (G9) (F2) (E2)
@%=& 0000020A 0000090A 0002020A 0001020A
100 1E2 100 100.00 1.0E2
10 10 10 10.00 1.0E1
1 1 1 1.00 1.0E0
0.1 0.1 0.1 0.10 1.0E-1
0.01 1E-2 1E-2 0.01 1.0E-2
0.0005 5E-3 5E-3 0.01 5.0E-3
0.001 1E-3 1E-3 0.00 1.0E-3
0 0 0 0.00 0.0E0
-10 -10 -10 -10.00 -1.0E1
Description

A statement causing numeric and string values to be printed on the screen.

Syntax
PRINT{['Il, ?; I<string>?<numeric>}['I[;]

Associated keywords
PRINT#, TAB,POS, STR#,WIDTH, INPUT, VDU

299

PRINT#

Purpose

This records numbers and words on cassette or disc. In other words it stores data
on a file. Numbers and strings are stored in a special internal format. Before this
statement is used the file must have been opened using the OPENIN, OPENOUT
or OPENUP statements. See chapter 31 on file handling for more information.

Example
PRINT# file, X,Y,Z,A$, "Monday", 33

Description
A statement which writes data to files. All values are written in a special internal
format:

Integer variables are written as &40 followed by the twos complement
representation of the integer in four bytes, most significant byte first.

Real variables are written as &FF followed by four bytes of mantissa and one
byte exponent. The mantissa is sent lowest significant bit (LSB) first. 31 bits
represent the magnitude of the mantissa and 1 bit the sign. The exponent byte is
in twos complement excess 128 form.

String variables are written as &00 followed by a 1 byte ‘byte count’ followed by

the characters in the string in reverse order.

Syntax

PRINT#<num-var>{ , <numeric>?<string>}

PROC procedure

Purpose

This is used as the first part of a name to indicate that it refers to a procedure.
See the keyword DEF for a fuller description.

Example

10 DEF PROChello (X)

20 LOCAL 2

30 FOR Z=0 TO X

40 PRINT "Hello - how about this for BASIC!"
50 NEXT 2

60 ENDPROC

Description

A reserved word used at the start of all user declared procedures. There must not
be a space between PROC and the rest of the procedure name.

Syntax

DEF PROC<variable-name>[(<string-var>| <num-var>{ , <string-
var> | <num-var>} |
PROC«<variable-name>[(<string-var> | <num-var>{ , <string-var>| <num-

var>}]

Associated keywords
DEF, ENDPROC, LOCAL

Demonstration program

10 REM Tower of Hanoi problem

20 INPUT "Number of disks",F

30 PROChanoi(F,1,2,3)

40 END

50 DEF PROChanoi(A,B,C,D) IF A=0 ENDPROC

60 PROChanoi(A-1,B,D,C)

70 PRINT "Move disk ";A; " from pile ";B; " to pile
"o

80 PROChanoi (A-1,D,C,B)

90 ENDPROC

301

PTR# pointer

Purpose

This statement is not available on cassette based systems. It selects which item
in a long file is to be read or written next. Strings and numbers are stored in a
long line one after the other. Each integer number occupies five bytes, each real
number occupies six bytes and each string takes up the number of letters in the
string plus two. See the keyword PRINT# for more details of the file format.
The file pointer can be moved up and down the file to point to any selected word
or number. Note that you have to keep a careful track of where each word or
number starts to use the function. The number immediately following the
keyword PTR# is the channel number allocated to the file when it was opened.
A file must be opened with the OPENIN and OPENOUT statements. See
chapter 31 for more information on file handling.

Examples
PRINT PTR#X

560 PTR#file=PTR#file+80

85 PTR#channel=0

Description

A statement and function which allows the programmer to move a pointer to a
serial file and thus enables random access.

Syntax

<num-var>=P TR# <num-var>
or

P TR# <num-var>=<numeric>

Associated keywords
INPUT#,PRINT#,BGET#,BPUT#,OPENIN,

OPENUP, OPENOUT,EXT#, EOF #

302

RAD radian

Purpose

To convert an angle measured in degrees to radians. A radian equals
approximately 57 degrees.

Examples
1030 X=RAD (Y)

PRINT RAD (45)

Description

A function converting an angular argument given in degrees to radian measure.

Syntax

<num-var>=RAD <numeric>

Associated keywords
DEG

303

READ

Purpose

To enable numbers or words that are required in a program to be made available
every time the program is run. It does this by reading numbers or words into
numeric or string variables from DATA statements in the program. Most often
the data is read into an array. See the keyword DIM for more information on
arrays. See the keyword DATA for a more detailed description.

Example
100 READ name$ (X),A

Description

A statement which copies the next item from a data list into the variable or
variables which follow the keyword READ. The DATA must contain the correct
sequence of string and numeric data for the string and numeric variables to be
assigned. In other words numeric data must be supplied if a numeric variable is
to be filled.

Syntax

READ<num-var> | <string-var>{ , <num-var> | <string-var>}

Associated keywords
DATA, RESTORE

Demonstration Program

200 INPUT"How much can you spend",AFFORD
210 PRINT"You can afford the following cars"
220 FOR X=1 TO 10:READ NAMES$,PRICE

230 IF PRICE<=AFFORD THEN PRINT NAMES

240 NEXT:END

500 REM British Leyland Cars

510 DATA AUSTIN METRO 1.0 HLE, 4699

520 DATA etc etc

304
REM remark

Purpose

To enable the program writer to put remarks and comments into the program to
help remember what the various parts of the program do. The computer
completely ignores anything that appears after a REM.

When you first start writing small programs you can get away with having no
REMs, but as your programs grow in complexity you will find it necessary to have
them liberally sprinkled over your program. If you come back to a program six
months after you wrote it and find no REMs you will have a real job trying to
remember how it worked and why you used that variable name etc. Use lots of
REMs — it will save you hours of time in the long run.

Examples
10 REM this revision dated 2-8-84

100 REM

550 REM data for British Leyland cars

Description

This statement allows comments to be inserted in a program.

Syntax
REM<anything>

305

RENUMBER

Purpose

When you type in a program you give each instruction a line number. As the
program develops you quite often have to insert extra lines between other lines.
You might well need to insert 25 lines between line numbers 300 and 310 —
difficult!

The RENUMBER command will go through your program and renumber it
automatically. It recalculates things like GOTO 220 - which might well
become GOTO 180 etc. However if your program contains the statement GOTO
100 and there is no line 100 then the RENUMBER command will be unable to
deal with the problem and will say

Failed at line <new line number>

If you renumber a program containing an ON GOTO statement which contains
a calculated line number, eg

ON X GOTO 120,240,2*R,1000,2000

references prior to the calculated line will be renumbered. However it will not
recalculate a calculated line number or other line numbers in the same
statement—ie 2*R, 100 and 2000 in the example given.

The command RENUMBER will renumber your program giving the first line the
number 10, the second 20 and so on.

The command RENUMBER 200 will give the first line of your program the
number 200, the second will become line 210 etc.

The command RENUMBER 200, 4 would renumber starting with line 200 and
then using 204, 208 etc.

RENUMBER is a command: it cannot be used in a program, or as part of a

multiple statement line.

Examples
RENUMBER

RENUMBER 100, 20

RENUMBER 6000

306

Description
RENUMBER is a command which renumbers a user’s program and will correct
most of the cross-references within the program.

Syntax
RENUMBER|[<num-const>[, <num-const>]]

307

REPEAT

Purpose
To make the computer repeat a set of instructions a number of times until some
condition is met.

If you jump out of a REPEAT. . .UNTIL loop with a GOTO statement (which
is bad practice) you must jump back in.

A single REPEAT may have more than one UNTIL.

Example

10 REM print stars for 1 second
20 NOW=TIME

30 REPEAT PRINT

40 UNTIL TIME=NOW+100

Description

A statement which is the start of a REPEAT. . .UNTIL loop. These loops
always execute once and may be nested up to a depth of 20.

Syntax
REPEAT

Associated keywords
UNTIL

REPORT

Purpose

To get the computer to report in words what the last error was.

Example
100 REPORT

Description

REPORT prints the error message appropriate to the last error condition.

Syntax
REPORT

Associated keywords
ERR, ERL, ON ERROR

309

RESTORE

Purpose

Sometimes it is useful to have several sets of data in one program. For example
one might want information on British Leyland cars and on Lotus cars as in the
example given in chapter 22. The RESTORE statement enables the data pointer
to be moved from one set of data to the other.

The word RESTORE Dby itself resets the data pointer to the first set of data in

the program.

Examples
230 RESTORE

100 RESTORE 6500

RESTORE apointer

Description

This statement can be used at any time to reset the data pointer to any selected
line number.

Syntax
RESTORE|[<numeric>]

Associated keywords
READ,DATA

RETURN

Purpose

The word RETURN - not the key marked RETURN - is used in a program a the
end of a subroutine to make the computer return to the place in the program
which originally ‘called’ the subroutine. See GOSUB for more details.

There may be more than one RETURN statement in a subroutine — but
preferably there should be one entry point and one (RETURN) exit point.

You should try very hard to avoid leaving a subroutine with GOTO - you should
always exit with RETURN. Why? Well you will soon discover in reasonable sized
programs that you can get into an awful tangle and lose track of how a program
works if you make the program jump all over the place.

The importance of dividing your programs into clearly defined sections wherever

possible, with one entry point and one exit point, cannot be over emphasised.

Examples
200 RETURN

300 IF X>4 THEN RETURN

Description

A statement which causes the program to branch to the statement after the one
which contained the GOSUB which called the current subroutine.

Syntax
RETURN

Associated keywords
GOSUB,ON GOSUB

311

RIGHTS

Purpose

To copy the right hand part of one string into another string. For example if
ABCDES$="HOW ARE YOU" then

RIGHTS (ABCDES$, 3) would be "YOU" and

RIGHTS (ABCDES$, 7) would be "ARE YOU"

Note that RIGHTS$ (ABCDES$,100) would be "HOW ARE YOU" since there

are only 11 characters in HOW ARE YOU.

Examples
A$=RIGHTS$ (BS$,5)

last$=RIGHTS$ (last$, X)

Description

A string function returning a specified number of characters from the right hand
end of another string.

Syntax

<string-var>=RIGHT $ (<string>, <numeric>)

Associated keywords
LEFTS$,MID$

312

RND random

Purpose

To generate a random number.

What exactly this function does is determined by the number which follows the
word RND.

RND by itself generates a random whole number between -2147483648 and
2147483647.

RND (-X) returns the value -X and resets the random number generator to a
number based on X.

RND (0) repeats the last random number given by RND (1) .
RND (1) generates a random number between 0 and 0.999999.

RND (X) generates a random whole number between (and possibly including) 1
and X.

The parentheses are compulsory and must immediately follow the word RND

with no intervening space.

Examples
PRINT RND (6)

340 largenumber$%$=RND

950 PRINT RND(1)

Description

A function generating a random number. The range of the number generated
depends on the argument (if any).

Syntax

<num-var>=RND [(<numeric>)]

Associated keywords

None

313

RUN

Purpose

To make the computer obey the statements in the program in its memory.

All variables (except the resident integer numeric variables @ % and A% to Z%)
are first deleted and then the program is executed.

RUN is a statement and programs may therefore execute themselves.

If you want to start a program without clearing all the variables then you can use
the statement

GOTO 100

or GOTO whatever line number you wish to start from, instead of RUN.

Examples
RUN

9000 RUN

Description

RUN is a statement causing the computer to execute the current program.

Syntax
RUN

Associated keywords
NEW,OLD,LIST,CHAIN

314

SAVE

Purpose

To save a program that is in the computer’s memory onto cassette or disc. The
program must be given a name — usually called its file name. The file name can
have up to seven letters and numbers for the Disc Filing System, or ten letters
and numbers for the Cassette Filing System and the Advanced Disc Filing
System. The name must start with a letter, and cannot contain spaces or
punctuation marks.

Examples
SAVE "FRED"

SAVE AS

Description

A command which saves the current program area — that is the area between the
address given in the variables PAGE and TOP .

Syntax
SAVE<string>

Associated keywords
LOAD, CHAIN

315

SGN

Purpose
This determines whether a number is positive, zero or negative. The function
returns

-1 for negative number
0 for zero
+1 for positive number

Examples
100 X=SGN(Y)

230 result=SGN(difference)

Description

A function returning -1 for an argument which is negative, +1 for a positive
argument and zero for an argument equal to zero.

Syntax

<num-var>=S GN(<numeric>)

Associated keywords
ABS

316
SIN sine

Purpose

This calculates the sine of an angle. The angle must be expressed in radians
rather than degrees — but you can convert from degrees to radians using the
function RAD.

Examples
120 Y=SIN(RAD (45))

2340 value=SIN (1.56)

Description

A function giving the sine of its argument. The argument must be in radians.

Syntax

<num-var>=S IN(<numeric>)

Associated keywords
COS, TAN,ACS,ASN,ATN, DEG, RAD

Demonstration program

To draw a sine wave on the screen.

10 MODE 4

20 FOR X=0 TO 1280 STEP 4
30 DRAW X,500+500*SIN(X/50)
40 NEXT X

317

SOUND

Purpose

This statement is used to make the computer generate sounds using the internal
loudspeaker. The sound generator is capable of making four sounds at once. Each
of the four sound channels can generate one note. The keyword SOUND must be
followed by four numbers which specify:

— Which sound channel is to be used.

— The loudness of the note (or the envelope number).
— The pitch of the note.

— How long the note is to last.

For example
SOUND 1,-15,52,20

will play a note on sound channel 1, with a loudness of -15 (maximum volume). A
pitch value of 52 gives middle C and a duration of 20 will make the note last for 1
second.

SOUND C,A,P,D

The channel number (C) can be 0, 1, 2 or 3. Channel 0 is a special channel that
can produce various noises, whereas channels 1, 2 and 3 are used to produce
single notes. Other values of C produce special effects which are explained
further on.

The amplitude or loudness (A) can have any whole number value between -15
and 4. Values -15 to 0 produce notes of fixed loudness throughout the whole note.
A value of -15 is the loudest, -7 is half volume and 0 produces silence. Values of 1
to 4 enable the amplitude to be controlled while the note is playing. When you
play a note on the piano the sound gradually fades away. Effects like this are
selected by using one of the four user defined envelopes which are selected by
setting A to be 1, 2, 3 or 4. Envelopes are explained in chapter 30 and under the
keyword ENVELOPE.

The pitch (P) is used to set the pitch or frequency of the note. The pitch can have
any value between 0 and 255. The note A above middle C is selected with a value
of 88. The table in chapter 30 shows the value of P needed to produce a particular
note. You will see that to go up an octave P is increased by 48 and to go up a
perfect 5th P must be increased by 28.

Increasing the value of P by one will increase the note produced by a quarter of a
semi-tone.

318

To play the chord of C major which consists of the notes C, E and G for two
seconds you could enter

100 SOUND 1,-15,52,140
110 SOUND 2,-15,68,40
120 SOUND 3,-15,80,40

However to play a number of notes in succession you would enter

100 SOUND 1,-15,96,10
110 SOUND 1,-15,104,10
120 SOUND 1,-15,88,10
130 SOUND 1,-15,40,10
140 SOUND 1,-15,68,20

which plays a well-known film theme.

The duration (D) can have any value between -1 and 254. Values in the range 0
to 254 give a note duration of that number of twentieths of a second. Thus if
D=40 the note will last for two seconds. Setting D=-1 means that the note will
continue to sound until you actually take steps to stop it. You can either press the
ESCAPE key or stop it by sending another note, to the same channel, which has
‘flush control’ set to 1 — see later in this section.

As was mentioned earlier, channel number 0 produces ‘noises’ rather than notes
and the value of P in the statement

SOUND 0,A,P,D

has a different effect from that described for channels 1, 2 and 3. Here is a
summary of the effects of different values of P on the noise channel:

P Effect

0 High frequency periodic noise.

1 Medium frequency periodic noise.

2 Low frequency periodic noise.

3 Periodic noise of frequency determined by the pitch setting of channel 1.

4 High frequency ‘white’ noise.

5 Medium frequency ‘white’ noise.

6 Low frequency ‘white’ noise.

7 Noise of frequency determined (continuously) by the pitch setting of channel 1.

Values of P between 0 and 3 produce a rasping, harsh note. With P set to 4 the
noise is like that produced by a radio when it is not tuned to a station — a sort of
‘shssh’ effect. P=6 sounds like the interference found on bad telephone calls.
When P is set to 3 or 7 then the frequency of the noise is controlled by the pitch
setting of sound channel number 1. If the pitch of channel 1 is changed while

319

channel 0 is generating noise then the pitch of the noise will also change. The
program below generates a noise on channel 0 and varies the pitch of the noise by
changing the pitch of channel 1. Notice that the amplitude of channel 1 is very
low (-1) so you will hardly hear it — but you will hear the noise on channel 0.

100 SOUND 0,-15,7,150
110 FOR P= 100 TO 250
120 SOUND 1,-1,P,1
130 NEXT P

Notice that we have not yet described how sounds can be affected by a
superimposed envelope. An envelope can affect both the pitch and amplitude of a
note as it is playing. Thus the statement

SOUND 1,-15,255, 255
merely plays a continuous loud note, but

ENVELOPE 1,1,-26,-36,-45,255,255,255,127,0,0, -
127,126,0
SOUND 1,1,255,255

produces a complex sound controlled largely by the envelope
See the keyword ENVELOPE for more details.

As mentioned briefly at the start of the description of the SOUND statement, the
channel number, C, can be given values other than 0,1,2 and 3. You do not need
to understand exactly why the following works to use it!

For C you can write a four figure hexadecimal number to achieve certain effects —
for example:

SOUND &1213,-15,52,40

The first parameter in the above example has the value § 121 3. The ampersand
(&) indicates to the computer that the number is to be treated as a hexadecimal
number. The four figures which follow the ampersand each control one feature.
In this new expanded form the SOUND statement looks like

SOUND &HSFC,A,P,D

and the functions H, S, F and C will be explained in turn. In essence these
numbers enable you to synchronise notes so that you can play chords effectively.

The first number (H) can have the value 0 or 1. If H=1 then instead of playing a
new note on the selected channel, the previous note on that channel is allowed

320

to continue. If a note were gently dying away then it might be abruptly
terminated when its time was up. Setting H=1 allows the note to continue
instead of playing a new note. If H=1 then the note defined by the rest of the
SOUND statement is ignored.

The second number (S) is used to synchronise the playing of a number of notes. If
S=0 then the notes are played as soon as the last note on the selected channel has
completed. (There is a slight simplification here; ‘completed’ means ‘has reached
the start of the release phase’.) The user is referred to the keyword ENVELOPE
for relevant detail.

A non-zero value of S indicates to the computer that this note is not to be played
until you have a corresponding note on another channel ready to be played. A
value of S=1 implies that there is one other note in the group. S=2 implies two
other notes (ie a total of three). If a note was sent to channel 1 with S set to 1
then it would not be played until a note was ready on another channel which also
had S set to 1. For example:

110 SOUND &101,-15,50,200
110 SOUND 2,-15,200,100
120 SOUND &102,-15,100,200

When this program is run the note at line 100 will not play until channel 2 is
free. Line 110 sounds a note immediately on channel 2 — and for five seconds
(duration 100). When the note has completed then both the notes from lines 100
and 120 will sound together.

The third number (F) can have the value 0 or 1. If it is set to 1 then the SOUND
statement in which it occurs flushes (throws away) any other notes waiting in the
queue for a particular channel. It also stops whatever note is being generated on
that channel at present. The SOUND statement in which F=1 then plays its
note. Setting F behaves like an ‘over-ride’. For example:

20 SOUND 2,-15,200,100
25 FOR X=1 TO 500:NEXT X
30 SOUND &12,-15,100,200

In the above situation line 20 will start a sound on channel 2 but this will be
stopped almost immediately by line 30 which will generate a lower and longer
note on channel 2. Line 25 just gives a short delay.

Setting F=1 provides an easy way of stopping an everlasting note! Thus
SOUND&13,0,0,1 stopsthe current note on channel 3 and instead plays one
at zero loudness and of minimum length. This will stop channel 3 immediately.

The last number (C) is the channel number described earlier.

321

Description

The sound generator has four separately controlled synthesis channels. Each can
sound at one of 16 amplitudes, including ‘off’. The audio output is the sum of the
channel outputs. Channels 1-3 each generate a square wave with programmable
frequency. Channel 0 can produce noise (unpitched sound of pseudo-random
structure) or a pulse waveform. The frequency of the pulsewave or period of the
noise can be set to one of the three fixed options, or to the frequency of channel 1.

The BASIC program generates each sound by initiating one or more ‘requests’
each of which may take the form of a musical note or a single effect and is
directed to a specific channel. If the destination channel is idle when a request
requires it, the sound starts playing immediately. If a previous request is still
being handled the new one is placed on a queue, where it waits until the current
event is over (or past a critical stage — see ENVELOPE). If the queue is full, the
program waits. Separate queues are provided for the four channels, each of which
can hold up to four requests, not counting the one currently being executed. The
program can look at the state of any queue and flush any queue, but cannot find
out or alter the state of the current event, except for flushing the whole queue.

The SOUND keyword is followed by four parameters, the first of which consists
of four hexadecimal digits. Thus

SOUND &HSFC,A,P,D

Range Function
H Oorl Continuation
S 0to3 Synchronisation
F Oorl Flush
C 0to3 Channel number
A -15to 4 Amplitude or envelope number
P 0 to 255 Pitch
D 1 to 255 Duration

The ‘H’ parameter allows the previous event on that channel to continue and if
this is 1 the amplitude and pitch parameters of SOUND have no effect. Because
the dummy note is queued in the normal way, it can be used to ensure that the
release segment of sound, which occurs after the duration is over and would
otherwise be truncated by the next sounding event on the same channel, is
allowed to complete.

322

The ‘S’ parameter allows requests to be queued separately and then executed at
the same instant, for chords and multiple voice effects. The value initially
determines the number of other channels that must receive requests with the
same value of S before the group will play. For example, each note of a three note
chord would be generated by a SOUND with the value of 2 for S. The system will
read the value of S from the first one and then wait for two more requests with 2
as the value of S before playing the complete chord. Single requests use 0 for S so
that they play as soon as they reach the end of the channel queue.

The parameter ‘F’ will normally be zero, causing the request to be queued. If it is
1, the channel queue will be flushed first, so the request will sound immediately.

The parameter ‘C’ determines the number of the sound channel to be used.

The ‘A’ parameter controls the amplitude of the sound and can be used in two
ways. Positive values up to 4 select the envelope (1 to 4) to be used. If the RS423
is unused then envelope numbers up to 16 may be defined and used. Zero and
negative integers up to -15 directly set the amplitude of the sound, which is then
fixed at this value for the duration of the note. -15 corresponds to the loudest, and
0 is ‘off.

The ‘P’ parameter determines the pitch of the note. It can take values from 0 to

255.

The ‘D’ parameter determines the total duration of sounds whose amplitude is
determined explicitly by a negative or zero value of the A parameter. The
duration is given in twentieths of a second. If an envelope has been selected, by a
positive value of A, then the duration D determines the total of the attack, decay
and sustain periods - but not of the release phase.

Syntax

SOUND<numeric>, <numeric>, <numeric>, <numeric>

Associated keywords
ENVELOPE, ADVAL

323

SPC space

Purpose

This statement is used to print multiple spaces on the screen. It can only be used
as part of PRINT or INPUT statements. The number in parenthesis gives the
number of spaces to be printed.

Examples
120 PRINT "Name";SPC(6); "Age"; SPC(10); "Hours"

4030 INPUT SPC(10), "Value", V

Description

A statement printing a number of spaces on the screen. Up to 255 spaces may be
printed.

Syntax

PRINT SPC(<numeric>)
or

INPUT SPC(<numeric>)

Associated keywords
TAB,PRINT, INPUT

324
SQR square root

Purpose

This statement is used to calculate the square root of a number.

Examples
10 X=SQR(Y)

300 X=(-B+SQR(B*2-4*A*C))/ (2*A)

Description

A function returning the square root of its argument. An attempt to calculate the
square root of a negative number will produce the error message —ve root
which is error number 21.

Syntax

<num-var>=S QR(<numeric>)

Associated keywords

None

325

STEP

Purpose
This is part of the FOR. . .TO. . .STEP. . .NEXT structure.
In the program shown below, STEP indicates the amount that the variable

cost is to be increased each time around the loop. In this case the cost is to
increase in steps of five units.

The step may be positive or negative.

STEP is optional. If omitted a step size of +1 is assumed — see the keyword FOR.

Example
300 FOR X=100 TO 20 STEP -2.3

Description
Part of the FOR. . . NEXT construct. STEP is optional.

Syntax

FOR<num-var>=<numeric>TO<numeric>[S TEP <numeric>]

Associated keywords
FOR, TO, NEXT

Demonstration program

230 FOR cost=100 TO 200 STEP 5
250 production=FNtaken (cost)
260 PRINT production, cost

270 NEXT cost

STOP

Purpose

This statement interrupts a program which is running and prints the message
STOP at line <line number>
on the screen; otherwise the effect is identical to END.

STOP may occur as many times as is needed in a program.

Examples

2890 STOP
3080 STOP

Description

Causes execution of the program to cease and a message to be printed out.

Syntax
STOP

Associated keywords
END

327

STR$ string

Purpose

This string function converts a number into the equivalent string representation.
Thus STR$ (4.6) wouldgive4.6.

STRS$ is affected by the field width and format constraints imposed by the
variable @ %. The default format is format 0, field width 10 . See chapter 10.

The opposite function of converting a string into a number is performed by the

functions EVAL and VAL.

Examples
20 A$=STRS (X)

5060 num$=STRS$ (size)

10 PRINT STR$~(100)

Description

A string function which returns the string form of the numeric argument as it
would have been printed.

Syntax

<string-var>=S TR $ (<numeric>)

Associated keywords
VAL,PRINT,EVAL, OSCLI

STRINGS

Purpose

This produces a long string consisting of multiple copies of a shorter string.

Thus STRINGS$ (6,"--0") would be --0--0--0--0--0--0. This
function is useful for decorative features. It should be used whenever the user
needs to generate a long string from identical short strings.

It is very important, to avoid wasting memory space, that strings are set to their
maximum length the first time that they are allocated. This can easily be done by
using STRINGS$. For example to set A$ to contain up to 40 characters one could
write

A$=STRINGS (40," ")
A$ can then be set back to empty using A$="" Dbefore use.
Examples

400 AS$S=STRINGS (x,pattern$)
560 B4$=STRINGS (5, "0+")

PRINT STRINGS$ (10, "hello")

Description

A string function returning multiple concatenations of a string.

Syntax

<string-var>=S TRING $ (<numeric>, <string>)

329

TAB tabulation

Purpose

TAB can only be used with the keywords PRINT and INPUT. There are two
versions:

TAB(X) will print spaces up to a certain column position. If the flashing cursor is
beyond the required position then the cursor will move to the next line down and
space across to the required column.

TAB (X, Y) will move the cursor directly to position X,Y on the screen. Note
that once TAB (X, ¥Y) has been used on a line TAB (X) may not move to the
correct position on the line.

The origin (for all text commands) is at the top left of the current text area of the
screen.

The left hand column of the screen is column number 0. The right hand column is
column 19, 39 or 79 depending on the graphics MODE selected.

The top line is line number 0, the bottom line is line number 31 or 24;
If the text scrolling area of the screen is changed then the TAB command will

still work as outlined above.

Examples
340 PRINT TAB(10);name$TAB(30); job$

440 PRINT TAB(20,31);value
230 INPUT TAB(10,20) "How much" cost

875 INPUT TAB(30), "Doctor's name", DOCS

Description

TAB with a single argument prints spaces (and a new line if necessary) to reach
the specified column.

TAB with two arguments moves the cursor directly to the specified coordinates.

330

Syntax
PRINT TAB(<numeric>[, <numeric>])
or

INPUT TAB(<numeric>[, <numeric>])

Associated keywords
POS,VPOS,PRINT, INPUT

331

TAN tangent

Purpose
This mathematical function calculates the tangent of an angle.
The angle must be given in radians but may be converted to radians from degrees

using the function RAD. A radian is about 57 degrees.

Examples
PRINT TAN (RAD (45))

10 Y=TAN (X)

1030 droop=TAN(load)

Description

A function returning the tangent of the argument. The argument must be given
in radians.

Syntax

<num-var>=TAN<numeric>

Associated keywords
COS,SIN,ACS,ATN,DEG, RAD

THEN

Purpose

A keyword used with IF to decide on a course of action as the result of some test.

Examples
780 IF X=6 THEN PRINT "good" ELSE PRINT "bad"

200 IF A$=B$ THEN PROCgood ELSE PROCbad

Description
Optional part of the IF. .. THEN. . .ELSE structure.

Note that it is not optional if used when the condition assigns to a pseudo
variable, eg

300 IF X THEN TIME=0

Syntax
IF <testable condition>[THEN]J<statement>[E L SE <statement>]

Associated keywords
IF,ELSE

333

TIME

Purpose
This can be used to set or read the internal timer.
The timer counts in one hundredth of a second intervals. It is not a clock

providing true time of day readout. However, once set, the internal clock will
keep good time. Pressing the BREAK key does not reset the clock.

To convert TIME to a 24 hour clock use the following routines:

1000 SEC=(TIME DIV 100) MOD 60
1010 MIN=(TIME DIV 6000)MOD 60
1020 HR =(TIME DIV 360000)MOD 24

Examples
205 TIME=(Ho*60+Mi) *60+Se) *100

400 nowtime=TIME

Description

A pseudo-variable which sets or reads the lower four bytes of the internal elapsed
time clock.

Syntax

T IME =<numeric>
or

<num-var>=TIME

Demonstration program

1070 finishtime=TIME+1000
1080 REPEAT

1090 REM wait for 10 seconds
1100 UNTIL TIME>=finishtime

334

TO

Purpose

Part of the FOR. . .TO...STEP...NEXT statement. The final terminating
value of the loop is given after the word TO. See chapter 15 for further
information.

Description
Part of the FOR. . . NEXT construct.

Syntax

FOR<num-var>=<numeric>T O <numeric>[S TEP <numeric>]

Associated keywords
FOR, STEP, NEXT

Demonstration program

10 MODE 5

20 FOR C=1 TO 3

30 GCOL 3,C

40 FOR X=0 TO 1200 STEP 5*C
50 MOVE 600,750

60 DRAW X,0

70 NEXT X

80 NEXT C

335

TOP

Purpose

The function TOP returns the address of the first free memory location afer the
user’s program. The user’s program is normally stored from the bottom of the
available Random Access Memory upwards.

Thus the length of the user’s program in bytes is given by TOP-PAGE.

Examples
PRINT~ (TOP-PAGE) :REM length in hex

2340 PRINT TOP

5460 X=TOP

Description

A function returning the first free location above the user’s program.

Syntax

<num-var>=TOP

Associated keywords
PAGE, HIMEM, LOMEM

TRACE

Purpose

TRACE makes the computer print out the line number of each line of the
program before execution.

There are three forms of TRACE:
TRACE ON Causes the computer to print line numbers.
TRACE OFF Turns off the trace facility.

TRACE 6780 Would cause the computer to report only line numbers below
6780.

With well-structured programs which have subroutines at high line numbers this
will enable the user to trace through the structure of the program without being
bothered with line numbers in procedures, functions and subroutines.

Note that the interpreter does not execute line numbers very often.

10 FOR Z=0 TO 100
20 Q=Q*Z:NEXT 2
30 END

would print [10] [20] [30] but

10 FOR Z=0 TO 100
20 Q=Q*2Z

25 NEXT 2

30 END

would print [10] [20] [25] [25] [25] [25] [25] etc
(Of course in MODE 7 the [appears as < and] appears as — .)

TRACE is also turned off after an error, or by pressing ESCAPE or BREAK.

Examples
TRACE ON

TRACE OFF
TRACE X

TRACE 3000

337

Description

TRACE ON causes the interpreter to print executed line numbers when it
encounters them.

TRACE X sets a limit on the size of line numbers which may be printed out;
only numbers less than X will be printed.

TRACE OFF turns trace mode off.

Syntax
TRACE ON|OFF | <numeric>

TRUE

Purpose

TRUE is represented by the value -1 in this computer.

Examples
PRINT TRUE

300 UNTIL result = TRUE

Description

A function returning -1.

Syntax

<num-var>=TRUE

Associated keywords
FALSE

339

UNTIL

Purpose

Part of the REPEAT. . .UNTIL -construct. See the keyword REPEAT for more
details.

Example
450 UNTIL X<10

Description
A program object signifying the end of a REPEAT .. .UNTIL loop.

Syntax
UNT I L<testable condition>

Associated keywords
REPEAT

340
USR user subroutine

Purpose

The USR function provides the user with a means of calling sections of machine
code program which are designed to return one value. When the machine code
section is called the computer sets the processor’s A, X and Y registers to the
least significant bytes of A%, X% and Y%. The carry flag (C) is set to the least
significant bit of C%. On return from the machine code section, an integer
number is generated from the four registers P, Y, X, A (most significant byte to
least significant byte).

Again it must be emphasised that USR returns a result while CALL does not.
Therefore you must either assign the result to a variable, eg

Registers=USR(&3000)

or print the result, eg

PRINT USR(&3000)

Each individual register may be obtained as follows:

10 DIM registers 3
20 !'registers = USR(address)

After these two lines are executed,

Accumulator = registers?0

X = registers?1

Y = registers?2

Flags = registers?3
Examples

1400 R=USR(&3000)

670 result%$=USR(plot5)

Description

A function allowing machine code to return directly a value for problems which
do not require the flexibility of CALL.

341

Syntax

<num-var>=USR(<numeric>)

Associated keywords
CALL

342
VAIJ value

Purpose

This function takes a string which contains a number and produces the number.
In other words it can convert a number represented by a string (eg A$="+24")
into the number.

The string must start with a plus (+) or minus (-) sign or a number. If not then
the function will return zero.

The opposite function is performed by STRS.

Examples
450 x=VAL (length$)

1560 date=VAL (DATES)

Description

A function which converts a character string representing a number into numeric
form. If the argument is not a signed unary constant then zero will be returned.

Syntax

<num-var>=VAL(<string>)

Associated keywords
STRS$,EVAL

343

VDU

Purpose

The statement vDU is followed by one or more numbers and the ASCII
characters corresponding to these numbers are sent to the screen. The function
CHR$ can generate a single ASCII character from a given number. This
character can be added to a string or printed. VDU on the other hand is used to
generate a sequence of numbers that are then sent to the VDU drivers.

VDU provides an easy way of sending, for example, control characters to the
VDU drivers. See chapter 34 for a detailed list of the VDU control codes.

Two examples will make the purpose of this statement clearer: when defining the
text area of the screen four bytes have to follow the vDU 28 statement. These
four bytes represent the left X, bottom Y, right X and top Y coordinates of the text
area. In MODE 4 the range of X is 0-39 and of Y is 0-31. Thus

vDU 28,0,5,39,0

would define a six line text window at the top of the screen. If a different MODE
is selected then the maximum screen width may be either 19, 39 or 79.

The graphics area of the screen, on the other hand, uses coordinates up to 1279
points horizontally. Thus when defining the graphics area double byte numbers
must be sent to the VDU drivers since the largest number that can be sent as a
single byte is 255.

VDU 24,0;0;1279;830

will define a graphics area at the bottom of the screen and 830 points high. Each
of the four coordinates is sent as a double byte pair. Note that the graphics origin
is bottom left while the text origin is top left and that the graphics screen is
always 1280 by 1024 regardless of MODE.

VDU is equivalent to PRINT CHR$; except that it does not change the value
of COUNT.

Examples
VDU 14 Turn auto-paging mode on.

vDU 15 Turn auto-paging mode off.

vDU 2 Turn printer on.

344

Description

A statement which takes a list of numeric arguments and sends them to the
operating system output character routine (OSWRCH). If the argument is
followed by a semi-colon then that argument will be sent as two bytes. The least
significant byte will be sent first, followed by the most significant byte. This is
the order required by the VDU drivers.

Syntax

VDU <numeric>{, | ; <numeric>}[;]

Associated keywords
CHRS$

345

VPOS vertical position of the cursor

Purpose

VPOS is used to find the vertical position of the text cursor on the screen.

Examples
670 V=VPOS

100 PRINT VPOS

Description

A function returning the vertical position of the text cursor.

Syntax

<num-var>=VPOS

Associated keywords
POS

346

WIDTH

Purpose

WIDTH is used to set the overall ‘page width’ that the computer uses. Initially
this is set to zero which the interpreter interprets as ‘unlimited width’.

WIDTH n will cause the interpreter to force a new line after n characters have
been printed by the PRINT statement.

WIDTH also affects all output to the printer.

Examples
670 WIDTH 60

WIDTH 35

Description

A statement controlling the overall output field width. It is initially set to zero
which disables auto new lines.

Syntax

WIDTH<numeric>

Associated keywords
COUNT

347

34 VDU drivers

The statement VDU X is equivalent to PRINT CHRS$ (X); and the
statement VDU X,Y,2 is equivalent to PRINT
CHRS (X) ; CHRS (Y) ; CHRS (2) ;.

However the VDU statement is used the most when generating ASCII control
codes and a detailed description of the effect of each control code is given in this
chapter. The control codes are interpreted by part of the Machine Operating
System called the VDU driver.

Programmers writing BASIC programs will need to refer to this summary of the
VDU drivers if they want to use some of the more advanced facilities such as
definition of graphics and text windows. Programmers writing other high level
languages or machine code programs will also need to refer to this chapter.

The VDU drivers are part of the Machine Operating System (MOS) software. All
high level languages (including BASIC) use them to print and draw on the
screen. Because they are so extensive and easily accessible to programmers it will
be easy to ensure that all high level languages and smaller assembly language
programs have access to the same graphics facilities. There is no need for the
user to write special routines to handle the screen display.

The BBC Microcomputer is designed so that it can be expanded in many ways.
All expansions will be compatible with the current Machine Operating System
and it is very important that those writing software use the facilities provided. In
a ‘twin-processor’ machine the only access to the screen memory is via the ‘Tube’
and use of these VDU drivers and other Machine Operating System features will
ensure that code will work correctly whether executed in the input/output
processor or in the language processor.

The VDU drivers interpret all 32 ASCII control character codes. Many of the
ASCII control codes are followed by a number of bytes. The number of bytes
which follow depends on the function to be performed. The VDU code table
summarises all the codes and gives the number of bytes which follow the ASCII
control code.

348

VDU code summary

5 e
_ s | B
< S 3
£ 2|58 |8
: 5 IE|82 |2 .
=] B O <’ /@ | Meaning
0|0 @ | NUL 0 | Does nothing
1|1 A | SOH 1 | Send next character to printer only
212 B | STX 0 | Enable printer
313 C | ETX 0 | Disable printer
414 D | EOT 0 | Write text at text cusor
5|5 E | ENQ 0 | Write text at graphics cursor
6|6 F | ACK 0 | Enable VDU drivers
717 G | BEL 0 | Make a short beep
8|8 H | BS 0 | Backspace cursor one character
919 I |HT 0 | Forwardspace cursor one character
10| A J | LF 0 | Move cursor down one line
11| B K |VT 0 | Move cursor up one line
12| C L |FF 0 | Clear text area
13|D | M |CR 0 | Move cusor to start of current line
14| E N | SO 0 | Page mode on
15| F O |SI 0 | Page mode off
16|10 | P | DLE 0 | Clear graphics area
17|11 | Q | DC1 1 | Define text colour
18|12 | R | DC2 2 | Define graphics colour
19(13 | S | DC3 3 | Define logical colour
2014 | T | DC4 4 | Restore default logical colours
21|15 | U | NAK 0 | Disable VDU drivers or delete current line
22116 | V | SYN 1 | Select screen mode
2317 | W | ETB 9 | Reprogram display character
24 18 | X | CAN 8 | Define graphics window
25119 | Y |EM 5 |PLOT k,xy
26| 1A | Z | SUB 0 | Restore default windows
27 1B | [| ESC 0 | Does nothing
28 | 1C | \ |FS 4 | Define text window
291D | 1 |GS 4 | Define graphics origin
30| 1E | ~ | RS 0 | Home cursor to top left
31(1F | _ | US 2 | Move text cursor to x,y
127 | 7F DEL 0 | Backspace and delete

349

Detailed description
0 This code is ignored.

1 This code causes the next character to be sent to the printer only and not to the
screen. The printer must already have been enabled with vDU2. Many printers
use special control characters to change, for example, the size of the printed
output. For example the Epson FX-80 requires a code 14 to place it into double
width print mode. This could be effected with the statement

VDU1, 14

or by pressing CTRL A and then CTRL N. This code also enables the ‘printer
ignore’ character selected by *FX 6 to be sent to the printer.

2 This code turns the printer on which means that all output to the screen will
also be sent to the printer. In a program the statement VvDU2 should be used,
but the same effect can be obtained by typing CTRL B.

3 This code turns the printer off. No further output will be sent to the printer
after the statement vDU3 or after typing CTRL C

4 This code causes text to be written at the text cursor, ie in the normal fashion.
A MODE change selects VDU4, normal operation.

5 This code causes text to be written where the graphics cursor is. The position
of the text cursor is unaffected. Normally the text cursor is controlled with
statements such as

PRINT TAB(5,10);
and the graphics cursor is controlled with statements like
MOVE700,450

Once the statement vDU5 has been given only one cursor is active (the graphics
cursor). This enables text characters to be placed at any position on the screen.
There are a number of other effects: text characters overwrite what is already on
the screen so that characters can be superimposed; text and graphics can only be
written in the graphics window and the colours used for both text and graphics
are the graphics colours. In addition the page no longer scrolls up when at the
bottom of the page. Note however that POS and VPOS still give you the
position of the text cursor. See chapter 29 for more information.

350

6 VDU6 is a complementary code to VDU21l. vDU21 stops any further
characters being printed on the screen and VDU6 re-enables screen output. A
typical use for this facility would be to prevent a password appearing on the
screen as it is being typed in.

7 This code, which can be entered in a program as VDU7 or directly from the
keyboard as CTRL G, causes the computer to make a short ‘beep’. This code is
not normally passed to the printer.

8 This code (vDU8 or CTRL H) moves the text cursor one space to the left. If
the cursor was at the start of a line then it will be moved to the end of the
previous line. It does not delete characters — unlike vDU127.

9 This code (VvDU9 or CTRL I or TAB) moves the cursor forward one
character position.

10 This statement (vDU10 or CTRL J) will move the cursor down one line. If
the cursor is already on the bottom line then the whole display will normally be
moved up one line.

11 This code (vDU11 or CTRL K) moves the text cursor up one line. If the
cursor is at the top of the screen then the whole display will move down a line.

12 This code clears the screen — or at least the text area of the screen. The screen
is cleared to the text background colour which is normally black. The BASIC
statement CLS has exactly the same effect as vDU12, or CTRL L. This code
also moves the text cursor to the top left of the text window.

13 This code is produced by the RETURN key. However, its effect on the screen
display if issued as aVvDU13 or PRINT CHRS$ (13) ;is to move the text cursor
to the left hand edge of the current text line (but within the current text window,
of course).

14 This code makes the screen display wait at the bottom of each page. It is
mainly used when listing long programs to prevent the listing going past so fast
that it is impossible to read. The computer will wait until a SHIFT key is pressed
before continuing. This mode is called ‘paged mode’. Paged mode is turned on
with CTRL N and off with CTRL 0. When the computer is waiting at the
bottom of a page both the shift lock and caps lock lights will be illuminated.

15 This code causes the computer to leave paged mode. See the previous entry
(14) for more details.

3561

16 This code (VvDU16 or CTRL P) clears the graphics area of the screen to the
graphics background colour and the BASIC statement CLG has exactly the same
effect. The graphics background colour starts off as black but may have been
changed with the GCOL statement. VDU1 6 does not move the graphics cursor —
it just clears the graphics area of the screen.

17 vDU17 is used to change the text foreground and background colours. In
BASIC the statement COLOUR is used for an identical purpose. VDU17 is
followed by one number which determines the new colour. See the BASIC
keyword COLOUR for more details.

18 This code allows the definition of the graphics foreground and background
colours. It also specifies how the colour is to be placed on the screen. The colour
can be plotted directly, ANDed, ORed or Exclusive-ORed with the colour already
there, or the colour there can be inverted. In BASIC this is called GCOL.

The first byte specifies the mode of action as follows:

0 Plot the colour specified.

1 OR the specified colour with that already there.

2 AND the specified colour with that already there.

3 Exclusive-OR the specified colour with that already there.
4 Invert the colour already there.

The second byte defines the logical colour to be used in future. If the byte is
greater than 127 then it defines the graphics background colour (modulo the
number of colours available). If the byte is less than 128 then it defines the
graphics foreground colour (modulo the number of colours available).

19 This code is used to select the actual colour that is to be displayed for each
logical colour. The statements COLOUR (and GCOL) are used to select the
logical colour that is to be text (and graphics) in the immediate future. However
the actual colour can be redefined with vDU1 9. For example

MODE 5
COLOUR 1

will print all text in colour 1 which is red by default. However the addition of

vbu 19,1,4,0,0,0 orvDU 19,1,4;0;
will set logical colour 1 to actual colour 4 (blue). The three zeros after the actual
colour in the VvVDU19 statement are for future expansion.

352

In MODE 5 there are four colours (0, 1, 2 and 3). An attempt to set colour 4 will
in fact set colour 0 so the statement

VDU 19,4,4,0,0,0 orvDU 19,4,4;0;
is equivalent to

vbu 19,0,4,0,0,0 orvDU 19,0,4;0;
We say that logical colours are reduced modulo the number of colours available in
any particular MODE.

20 This code (vDU20 or CTRL T) resets text and graphics foreground logical
colours to their default values and also programs default logical to actual colour
relationships. The default values are:

Two colour MODEs

0=Black
1=White

Four colour MODEs

0=Black
1=Red
2=Yellow
3=White

16 colour MODE

0=Black

1=Red

2=Green

3=Yellow

4=Blue

5=Magenta

6=Cyan

7=White

8=Flashing black/white
9=Flashing red/eyan
10=Flashing green/magenta
11=Flashing yellow/blue
12=Flashing blue/yellow
13=Flashing magenta/green
14=Flashing cyan/red
15=Flashing white/black

353

21 This code behaves in two different ways. If entered at the keyboard (as CTRL
U) it can be used to delete the whole of the current line. It is used instead of
pressing the DELETE key many times. If the code is generated from within a
program by either VDU21 or PRINT CHR$ (21); it has the effect of
stopping all further graphics or text output to the screen. The VDU is said to be
disabled. It can be enabled with vDU®6.

22 This VDU code is used to change MODE. It is followed by one number which is
the new MODE. Thus VDU22, 7 is exactly equivalent to MODE 7 (except that
it does not change HIMEM).

23 This code is used to reprogram displayed characters. The ASCII code assigns
code numbers for each displayed letter and number. The normal range of
displayed characters includes all upper and lower case letters, numbers and
punctuation marks as well as some special symbols. These characters occupy
ASCII codes 32 to 126. If the user wishes to define his or her own characters or
shapes then ASCII codes 224 to 255 are left available for this purpose. In fact you
can redefine any character that is displayed, but extra memory must be set aside
if this is done.

ASCII codes 0 to 31 are interpreted as VDU control codes — and this chapter is
explaining the exact function of each. The full ASCII set consists of all the VDU
control codes, all the normal printable characters and a user defined set of
characters.

354

For example if the user wishes to define ASCII code 240 to be a small triangle
then the following statement would have to be executed:

Character to be
redefined
—~—

vbu 23,240,1,3,7,15,31,63,127,255

—

Redefine Eight numbers giving the contents of each
character row of dots that makes up the desired
character

=1
2+1=3
4+2+1=17

8+4+2+1=15

16 +8...=31
=63

=127
= 255

N © b N B]
™ v—(w

~¢
©

128

Note that you cannot define your own characters in MODE 7.
See chapter 29 for a more detailed explanation.

As explained above the user may define any ASCII code in the range 224 to 255.
To display the resultant shape on the screen the user can type

PRINT CHRS$ (240) or
VDU 240

In the unlikely event of the user wishing to define more than the 32 characters
mentioned above (ASCII 224 to 255) it will be necessary to allocate more RAM for
the purpose. This is described in chapter 43.

VDU23,1 can be used to turn the flashing cursor off:
vDU 23,1,0;0;0;0;

will turn the cursor off and

vDU 23,1,1;0;0;0;

will turn it on again.

355

A third use of VDU23 is to permit the advanced programmer to alter the
contents of the 6845 CRTC circuit. If the user wishes to place value X in register
R this can be done with the command

vbpu 23,0,R,X,0,0,0,0,0,0

The user is cautioned not to do this unless he or she understands how to program
the 6845. Note however that when writing to register 7 (vertical synchronisation
position) or register 8 (interlace) of the 6845, any offset that has been set up with
the *TV statement (chapter 43) will be used to adjust the value sent to R7.

24 This code enables the user to define the graphics window — that is, the area of
the screen inside which graphics can be drawn with the DRAW and PLOT
statements. The graphics screen is addressed with the following coordinates.

1023

A

¢

0 X 1279
Thus the coordinates of A would be approximately 1000,200.

When defining a graphics window four coordinates must be given; the left,
bottom, right and top edges of the graphics area. Suppose that we wish to confine
all graphics to the area shown below.

790 ——-
Graphics
area
390 {---- h d
! i
! I
G . 1
) 150 1199

356

The left hand edge of the graphics area has an X value of (about) 150. The bottom
of the area has a Y value of 300. The right hand side has X=1100 and the top has
Y=700. The full statement to set this area is

VDU 24,150;300;1100;700;

Notice that the edges must be given in the order left X, bottom Y, right X, top Y
and that when defining graphics windows the numbers must be followed by a
semi-colon.

For those who wish to know why trailing semi-colons are used the reason is as
follows: X and Y graphics coordinates have to be sent to the VDU software as two
bytes since the values may well be greater than 255. The semi-colon punctuation
in the VDU statement sends the number as a two byte pair with low byte first
followed by the high byte.

25 This VDU code is identical to the BASIC PLOT statement. Only those
writing machine code graphics will need to use it. vDU25 is followed by five
bytes. The first gives the value of K referred to in the explanation of PLOT in
the BASIC keywords chapter. The next two bytes give the X coordinate and the
last two bytes give the Y coordinate. Refer to the entry for vDU24 for an
explanation of the semi-colon syntax used.

For example

VDU 25,4,100;500;

would move to absolute position 100,500.
The above is completely equivalent to
vDU 25,4,100,0,244,1

26 The code vDU26 CTRL 2) returns both the graphics and text windows to
their initial values where they occupy the whole screen. This code repositions the
text cursor at the top left of the screen, the graphics cursor at the bottom left and
sets the graphics origin to the bottom left of the screen. In this state it is possible
to write text and to draw graphics anywhere on the screen.

27 This code does nothing.

357

28 This code (VDU28) is used to set a text window. Initially it is possible to write
text anywhere on the screen but establishing a text window enables the user to
restrict all future text to a specific area of the screen. The format of the

statement is
VDU 28, leftX,bottomY, rightX, topY

where leftX sets the left hand edge of the window
bottomY sets the bottom edge
rightX sets the right hand edge

topY sets the top edge
9 5 30 39
[t T sy
Y2
l Y1
121 ,
4X1~ Text window ;
201 i
X2 .
31

For the example shown the statement would be
vDU 28,5,20,30,12

Note that the units are character positions and the maximum values will depend
on the MODE in use. The example above refers to MODE1 and MODE4. In
MODES 2 and 5 the maximum values would be 19 for X and 24 for Y since

these MODESs have only 20 characters per line.

358

L—

31

29 This code is used to move the graphics origin. The statement VDU29 is
followed by two numbers giving the X and Y coordinates of the new origin. The
graphics screen is addressed as shown below:

1023

p——X 1279
To move the origin to the centre of the screen the statement
VDU 29,640;400;

should be executed. Note that the X and Y values should be followed by semi-
colons. See the entry for vDU24 if you require an explanation of the trailing
semi-colons. Note also that the graphics cursor is not affected by vDU29.

30 This code (vDU30 or CTRL ~) moves the text cursor to the top left of the
text area.

31 The code VvDU31 enables the text cursor to be moved to any character
position on the screen. The statement vDU31 is followed by two numbers which
give the X and Y coordinates of the desired position.

359

To move the text cursor to the centre of the screen in MODE 7 one would
execute the statement

VvDU 31,20,10

Note that the maximum values of X and Y depend on the MODE selected and
that both X and Y are measured from the edges of the current text window not
the edges of the screen.

32-126 These codes generate the full set of letters and numbers in the ASCII set.
See the ASCII codes in the Appendices.

127 This code moves the text cursor back one character and deletes the
character at that position. vVDU127 has exactly the same effect as the DELETE
key.

128-223 These characters are normally undefined and will produce random
shapes (see below and chapter 43).

224-255 These characters may be defined by the user using the statement
vDU2 3. It is thus possible to have 32 user defined shapes such as

& VDU 23,224,8,28,28,107,127,107,8,28
L vDU 23,225,8,28,62,127,62,28,8,0

v vDU 23,226,54,127,127,127,62,28,8,0
@ vbu 23,227,8,28,62,127,127,127,28,62

Note: You can use a *FX command which will then allow you to define
characters 128 to 159 rather than 224 to 255. This has the advantage that you
will then be able to use the new characters easily by holding down the SHIFT
key while pressing one of the user definable (red) keys (see chapter 43).

35 Cassette files

This chapter summarises the facilities available for file handling using a cassette
recorder. Refer to chapter 5 for an introduction to loading and saving BASIC
programs.

Cassette motor control

Some cassette recorders have a ‘remote’ or ‘automatic’ motor control socket. This
can be used with a switch on the microphone to start and stop the tape. If your
recorder is of this type then the computer will be able to start and stop the tape
automatically at the start and end of each BASIC program or section of recorded
data.

If your cassette recorder does not have motor control then you will have to start
and stop the tape manually. A light is provided on the keyboard to tell you when
the tape should be running. This is labelled ‘cassette motor’. When it is on, the
tape should be running.

The description which follows assumes that you have automatic or remote motor
control. If you don’t then you'll have to start and stop the tape manually.

Recording levels

Many cassette recorders employ automatic record level. Recorders of this type do
not have any ‘record level’ controls. If your recorder does not have automatic
record level then you will have to set the record level yourself. Set the control so
that the recording level indicator is slightly below the ‘0dB’ level or the red mark.

Playback volume and tone

It is important that the playback volume is set correctly. You will need to
experiment to find the correct level for your machine. The tone control should
normally be set to ‘maximum’ or ‘high’.

Keeping an index of programs

You will be able to record a large number of BASIC programs on a single
cassette. However it is vital that the programs do not overlap on the tape. If they
do then you will lose one of them. Beware of recording on the blank leader tape —
always wind it on a little first.

361
If you forget what is on a tape then you can always use the command
*CAT

to obtain a ‘catalogue’ of the tape. When you give the command *CAT (and press
the PLAY button on the recorder) the tape will play through, and the computer
will print a catalogue of all the programs onto the screen. The catalogue gives the
program name, the number of blocks (rather like pages in a book) used to record
the program and lastly the length of the program (the number of letters in the
book). It also checks that the recording is readable and reports any errors. As the
catalogue is building up on the screen you will often see something like this

SKETCH 02

This indicates that the computer has found a file called SKETCH and that it is
currently checking block 2 of that file. The block number is given in hexadecimal
not decimal numbers. Press ESCAPE at the end of the tape to get back control of
the computer.

Saving a BASIC program

A program that you have typed into the computer’s memory can be saved onto
cassette tape in the following way:

1. Insert the cassette into the recorder.
2. Type SAVE"PROG" and press RETURN.

PROG is just an example of a file name; file names are explained later in this
chapter.

3. The message
RECORD then RETURN

will appear. Now use the fast forward and reverse buttons to position the tape at
the correct place.

4. Press the RECORD and PLAY buttons on the cassette recorder.

5. Press the RETURN key on the computer to let it know that everything is now
ready.

6. The computer will then record your program.

7. The tape will automatically stop when the computer has finished recording
your program.

You can always abandon this process by pressing ESCAPE.

362

Saving a section of memory

This will not be needed by most people writing BASIC programs. It is most often
used to record sections of machine code programs. The process is very similar to
that employed to record a BASIC program.

1. Insert the cassette in the recorder.

2. Type

*SAVE PROG SSSS FFFF EEEE RRRR

and press RETURN.

3. Continue as for saving a BASIC program, above.

SSSS represents the start address of the data, in hexadecimal (hex).

FFFF represents the end address of the data plus one, in hex. As an option the
format +LLLL can be used in this position. The plus sign is followed by the
length of the data, in hex.

EEEE represents the (hex) execution address of the data. If the program is
reloaded into the computer using the command

*RUN PROG

then once loaded the computer will jump to the specified execution address. The
execution address is optional and if it is omitted the execution address will be
assumed to be equal to the start address.

RRRR represents the (hex) reload address. This is optional, but if used the file
will reload (using * LOAD, see below) at address RRRR. If RRRR is omitted then
the file will reload at address SSSS.

Two examples may make the syntax clearer
*SAVE patch 6000 6200
*SAVE match 4C00+0CE9 2A10 2000

Loading a BASIC program

A BASIC program saved on cassette tape can be loaded into the computer’s
memory in the following way:

1. Insert the cassette in the recorder.
2. Type
LOAD PROG

and press RETURN.

363
3. The message
Searching
will appear.

4. Now use the fast forward and reverse buttons to position the tape at the
correct place.

5. Press the PLAY button on the cassette recorder.

6. The computer will give you the message

Loading

when it finds the correct program. It will then load it into its memory.

7. The tape will automatically stop when the computer has finished loading.

When loading a program the usual catalogue-type display will appear. The
message

Loading
will appear when the correct file is found. If the load should fail for any reason a
message will appear.

Loading a machine code program

This will not be needed by most people using BASIC programs. It is used to load
special purpose programs. The process is identical to that used to load a BASIC
program except that the command is

*LOAD PROG AAAA
AAAA represents the absolute load address. It is optional but, if included, will
force the program to load at the specified address. It therefore over-rides the

reload address given when the program was saved. The program will load but not
run; control will return to BASIC.

Two examples may make the syntax clearer:
*LOAD patch
100 MODE 7: *LOAD match 7E80

Loading and running a BASIC program

The statement CHAIN allows a BASIC program to LOAD and RUN another
program. It is particularly useful when there is a sequence of related programs.

The command is used in exactly the same way as LOAD but with the word
CHAIN substituted for the word LOAD.

364

1. Insert the cassette in the recorder.

2. Type CHAIN PROG and press RETURN.
3. The message

Searching

will appear.

4. Now use the fast forward and reverse buttons to position the tape at the
correct place.

5. Press the PLAY button on the cassette recorder.

6. The computer will give you the message

Loading

when it finds the correct program. It will then load it into its memory.

7. The tape will automatically stop when the computer has finished loading and
the computer will automatically run the program.

Loading and running a machine code program

A machine code program (not a BASIC program) can be loaded and run by using
the statement

*RUN PROG

Using a cassette file to provide keyboard input

It is possible to get the computer to accept input from a cassette file instead of
from the keyboard. In this case the cassette file would contain a set of commands,
or answers to questions which a BASIC program would need. The command to
force the computer to accept input from a file called edit would be:

*EXEC edit

File edit above is known as an EXEC file. EXEC files can contain BASIC
commands or operating system commands (or both). Some operating system
commands are listed in chapter 41. A comment line can be included in an EXEC
file using a BASIC REM statement or by beginning the comment with * | .

To create a suitable cassette file you will need to use the BASIC statement
BPUT# and not PRINT#, since the latter stores things in internal format. The
command *SPOOL also creates suitable files — see chapter 37 for how to use it
to merge programs.

365

Reading cassette data files

Data, as well as programs, may be recorded on cassette tape. This facility enables
the user to keep records of names and addresses (for example) on tape for later
use. Since the cassette tape can be started and stopped by the computer it also
enables it to record results from experiments over many hours.

If the user wishes to read a data file then he or she must first open the file for
input. In the process of opening a file the computer will allocate a channel
number to the operation. If we wished to read in a list of names recorded on a
data file called NAMES then the following statement would get the channel
number into the variable X.

100 X=OPENIN ("NAMES")

Once a file has been opened for input data can be read in from the tape. This can
be done in two ways: a chunk at a time (for example a whole name) or a single
letter at a time.

Data is read in a chunk at a time by using the INPUT#X, A$ statement. This
will read the first entry into AS.

To read a single character in use the function A=BGET# (X) .

Testing for end of file

While reading data in it is useful to test to see if the end of the file has been
reached. This is done with the function EOF #. For example:

100 DIM BS$ (20)
110 Y=1

120 X=OPENIN ("NAMES")
130 REPEAT

140 INPUT#X,A$
150 PRINT A$
160 BS$ (Y)=A$
165 Y=Y+1

170 UNTIL EOF#X
180 CLOSE#X

190 END

The program above reads up to 20 names off tape, prints them on the screen and
then stores them in an array in memory. Of course if there were more than 20
names on file then the program would fail because the array can only hold 20
entries.

366

Storing data on tape

The data in the last example was read into an array in the computer. It could
then be edited and the corrected version could be rerecorded on cassette.

The process of recording the data on the cassette consists of three steps: open the
file for output, write out the data and then close the file. The example program
records 20 entries back to tape from the array in memory.

200 X=OPENOUT ("NEWNAMES")
210 FOR Y=1 TO 20

220 PRINT#X,A$ (Y)

230 NEXT Y

240 CLOSE#X

250 END

Note that line 200 will make the computer issue the message
RECORD then RETURN
as it did when saving a BASIC program.

The CLOSE# statement will record any remaining data and then stop the
recorder automatically.

Recording single characters on tape

Single characters (bytes) can be placed on tape using the command BPUT#. The
following program stores the alphabet on tape. Note that the letter A has an
ASCII value of 65 and the letter Z has an ASCII value of 90.

100 X=OPENOUT ("ALPHABET")
110 FOR D=65 TO 90

120 BPUT#X,D

130 NEXT D

140 CLOSE#X

150 END

File names

File names on cassettes can be up to ten characters long and can include any
character except space.

367

Responses to errors

If an error occurs during any of the following operations

SAVE
LOAD
CHAIN
*SAVE
*LOAD
*RUN

an error message and then the message
Rewind tape

will be printed on the screen. The user must then rewind the tape a short way
and play it again. It is not usually necessary to replay the whole program, but
only far enough to load the blocks causing errors.

If an error is detected during

BGET#
BPUT#
INPUT#
PRINT#
*EXEC
*SPOOL

the tape will stop and an error will be generated. This error can be trapped by
BASIC in the usual way.

The user can escape at any time by pressing the ESCAPE key.
The error numbers generated by the cassette file system are as follows:

216 Data cyclic redundancy check (CRC) error.

217 Header CRC error.

218 An unexpected block number was encountered.

219 An unexpected file name was encountered.

220 Syntax error — for example an illegal *OP T statement.

222 An attempt was made to use a channel which was not opened.
223 End of file reached.

368

Changing responses to errors
If the user wishes to change the way the computer behaves when it detects an

error during a cassette file operation (eg LOAD or SAVE) then this can be done
with the *OPT statement.

*OPT by itself resets error handling and the ‘message switch’ to their default
values. Default values are given later.

*OPT1,X is used to set the message switch which controls the detail of the
message.

X=0 Implies no messages are issued.
X=1 Gives short messages.
X=3 Gives detailed information including load and execution addresses.

*OPT2, X is used to control the action that the computer takes when it detects
an error during a cassette file operation.

X=0 Lets the computer ignore all errors though messages may be given.
X=1 The computer prompts the user to retry by rewinding the cassette.
X=2 The computer aborts the operation by generating an error.

*OPT3, X is used to set the inter-block gap used when recording data using
PRINT# and BPUT#. The gap on SAVE is fixed. The value of X determines
the gap in 1/10 seconds. If X is set to greater than 127 then the gap is set to the
default value.

The default values for the *OPT command are:

For LOAD, SAVE, CHAIN, *SAVE, *LLOAD, *RUN

*OPT, 1 Short messages.
*OPT2,1 Prompt for retry.
*OPT3, 6 0.6 second inter-block gap.

For BGET#, INPUT#,BPUT#,PRINT#
*OPT1,0 No messages.
*OPT2, 2 Abort on error.

*OPT3,25 2.5 second inter-block gap.

Note: The effect of the *OPT command is different for each file system. When
writing programs that are to run on cassette and disc the user must be fully
aware of these different effects. The user is referred to the appropriate Disc
Filing System User Guide.

369

Cassette tape format

The format of each block of data stored on cassette is given here for those
whowish to produce tapes on other machines that may be read into the BBC
Microcomputer.

— Five seconds of 2400Hz tone.

— One synchronisation byte (&2A).

— File name (one to ten characters).

— One end of file name marker byte (&00).

— Load address of file, four bytes, low byte first.
— Execution address of file, four bytes, low byte first.
— Block number, two bytes, low byte first.

— Data block length, two bytes, low byte first.

— Block flag, one byte.

— Spare, four bytes, currently &00.

— CRC on header, two bytes.

— Data, 0 to 256 bytes.

— CRC on data, two bytes.

Notes:

1. Each data block has its own header as shown above.

2. Load and execution addresses should have the top two bytes set to &FF in 8 bit
machines.

3. Bit 7 of the block flag is set on the last block of a file.

4. CRC stands for cyclic redundancy check.

The header CRC acts on all bytes from the file name to the spare bytes inclusive.
The data CRC acts on the data only. CRCs are stored high byte first and are
calculated as follows. In the following C represents the character and H and L
represent the high and low bytes of the CRC.

H=C EOR H

FORX=1TO 8

T=0

IF (bit 7 of H=1) THEN HL=HL EOR &0810:T=1
HL=(HL*2+T) AND &FFFF

NEXT X

The above algorithm is not a BASIC program!

36 Changing filing systems

The previous section dealt in detail with cassette files because the BBC
Microcomputer is fitted with all the circuitry to enable cassette recorders to be
used to store and to retrieve data.

Other filing systems can, of course, be used with the BBC Microcomputer.
However, each of these will require additional hardware which will be
accompanied by its own detailed instructions. Consequently, details are not given
in this guide, for example, of the disc filing system. What is given below,
however, is a list of the commands to enable the user to change from one filing
system to another.

*TAPE Selects the cassette filing system running at the default
speed of 120 characters per second (1200 baud).

*TAPE3 Selects the cassette filing system running at 30
characters per second (300 baud).

*TAPE12 Selects the cassette filing system at 1200 baud.

*DISC This statement selects the disc filing system so that all
future file operations (eg LOAD and SAVE) work to the
floppy disc units.

*ADFS Selects the advanced disc filing system is.

*NET Selects the Econet filing system for all future file
operations.

*ROM Selects the sideways ROM cartridge system.

*IEEE The IEEE 488 interface filing system.

*TELESOFT The Teletext filing system.

71

37 How to merge two BASIC
programs

There are a number of ways of merging two BASIC programs. Two methods are
given below which will work for both disc and cassette. The line numbers in the
two programs should not clash unintentionally.

In order to merge two programs it is necessary to save one of them as an ASCII
file rather than in the usual compressed format. This ASCII version of the
program is then merged into the other program using the command *EXEC.
Suppose we wish to merge the program SHORT into the program LONG. First,
load in one of the programs

LOAD "SHORT"
and then create an ASCII version by typing in the next three lines

*SPOOL SHORT2
LIST
*SPOOL

This produces an ASCII version of the program. The ASCII version is called
SHORT2.

Now load in the big program by typing

LOAD "LONG"

and finally merge in the small program by typing
*EXEC SHORT2

The command

*SPOOL SHORT2

informs the computer that anything that it outputs to the screen is also to be sent
to a file called SHORT2. When the computer lists the file it therefore creates an
ASCII listing. The command *SPOOL without a file name is used to end or close
the spooled file.

372

Having created the ASCII version of SHORT called SHORT2, the user then
loads the file LONG. The command *EXEC "SHORT2" tells the computer to
read in the file SHORT2 as if it were getting characters from the keyboard. If
the file SHORT2 contains line numbers (as it does), then these lines will just be
added to the BASIC program. Of course, a line number read in from SHORT2
will replace any line with an identical line number in LONG, so it is necessary to
renumber the two programs SHORT and LONG so that their line numbers don’t
clash.

A quicker method is given below — but if you use this method you must make
sure that the second program that you loaded in uses larger line numbers than
the first program. You will get surprising results if not.

Firstly load the program (with the lower line numbers) in the normal way. Then
get the computer to print, in hex, the top-of-program address less two by entering

PRINT ~TOP-2
Call the resultant number XXXX. Then enter
*LOAD SHORT XXXX

to load the program SHORT (or whatever you have called it) in above the first
program. Finally type END to get the computer to sort its internal pointers out.
A typical dialog might look like this — assuming that one program is called ONE
and the other is called TWO.

>LOAD "ONE"
>PRINT~TOP-2

195F
>*LOAD TWO 195F
>END

This method is very easy, but you must look after the line numbers.

373

38 Using printers

The BBC Microcomputer can be used with the vast majority of printers available
today. It is not possible, though, to drive old ‘Teletypes’ which operate at ten
characters per second, or printers requiring a 20mA current loop connection. To
use a printer with your BBC Microcomputer you will need to do three things:

— Connect the printer to the computer.

— Tell the computer whether your printer is plugged into the parallel or serial
printer port.

— Tell the computer to copy everything sent to the screen to the printer.

Connect the printer to the computer

As the above implies there are two possible sockets (ports) to which you can
connect the printer. The parallel printer port is often called a Centronics
compatible port. Printers that need to be connected to parallel ports usually have
a 36-way Amphenol socket. To connect the printer to the computer you will need
a cable made up as follows from a 26-way insulation displacement connector,
about one metre of 26-way ribbon cable and one 36-way Amphenol plug.

The 26-way cable should be inserted into the 36-way plug so that pins 1 to 14 and
19 to 32 are connected. The cable should be inserted into the 26-way plug so that
pin 1 of the Amphenol 36-way plug is connected to pin 1 of the 26-way insulation
displacement plug.

374

1c¢coo00v000000000000 0!8

00000000000000000C ©

19

36-way
Amphenol plug

— 26-way
ribbon cable

26-way insulation
displacement plug

A parallel printer cable

Both plugs viewed looking at the pins on the underside of the plug body.

Parallel printer connections

36-way plug
Name pin number

Strobe
Data 0
Data 1
Data 2
Data 3
Data 4
Data 5
Data 6
Data 7
Acknowledge 10

Ground 19 to 32

© 00 IO Ok W -

375

26-way plug
pin number

19
All even numbers (except 26)

The serial printer port is often referred to as an RS232 or V24 port. The standard
connector plug is a Cannon 25-way D type and there is also a standard for the
connections to the plug. Predictably however, different manufacturers disagree
on the interpretation of the standard! The serial port on the BBC Microcomputer
emerges via a 5-pin DIN plug and it will normally be possible to drive a serial
printer with just three wires. The views of the two plugs are shown below from
the outside of the case and looking into the respective sockets.

RTS Data in
(o] o
O/Gnd
(o) 0.

CTS Data out

5-way DIN plug
for computer

13121119 9

00000 (o]
000000000000
2524232221201918171615 14

Data terminal ready
25-way D type plug for printer

376
Proceed as follows:

— Connect a wire between GND and pin 7.

— Connect another wire between data out and pin 3.

— The position of the third wire varies from printer to printer.
— For Qume printers connect CTS to pin 20.

— If that doesn’t work then try CTS to pin 4.

If you require a more complete RS232 connection try the following:

— Data in to pin 2 (transmit data).
— Data out to pin 3 (receive data).
— CTS to pin 4 (clear to send).

— RTS to pin 5 (request to send).
— 5 GND to pin 7 (signal ground).

Telling the computer whether you are using a serial
or parallel printer

*FX5 is used to inform the computer whether it is to send printer output to the
parallel or serial port. Type:

*FX5,1 if you are using a parallel printer
*FX5,2 if you are using a serial printer
*FX5, 4 if you are using the Econet printer

The computer defaults to (assumes unless you tell it otherwise, that you are
using) a parallel printer.

If you have selected a serial printer then you will have to set the baud rate to
match that on the printer. The default setting is 9600 baud but many printers
run at other rates. Select one of

*FX 8,1 75 baud
*FX 8,2 150 baud
*FX 8,3 300 baud
*FX 8,4 1200 baud
*FX 8,5 2400 baud
*FX 8,6 4800 baud
*FX 8,7 9600 baud

*FX 8,8 19200 baud (this rate is not guaranteed)

377

Telling the computer to copy everything to the printer

This is often called turning the printer on — but, of course, we are not referring to
switching the printer on but to enabling and disabling its printing.

To turn it on type CTRL B and to turn it off type CTRL C.
In a BASIC program vDU2 will turn the printer on and vDU3 will turn it off.

Note that all output will now appear on the screen and printer. To send output to
the printer only you can use *FX3.

For disc systems, *TYPE "filename" will print out a data file.

Characters not sent to the printer

Some printers automatically move the paper up one line when they receive a
carrige return. Since the computer also moves the paper up one line (by using a
line feed), the paper may move up two lines instead of one. It is possible to tell
the computer not to send any particular character to the printer. The most
common requirement is to ignore line feed which has an ASCII code of 10.

*FX6,10 will set it to ignore line feeds. *FX6 should be set after *FX5 has
been used to select the printer type. The default is to ignore line feeds.

The complete set-up sequence for a serial printer running at 1200 baud and
which does not require line feeds would be:

*FX 5,2 Serial printer.

*FX 8,4 1200 baud.

*FX 6,10 No line feeds (default so it may be omitted).

A few more detailed points:

Data is transmitted using one start bit, eight data bits and one stop bit.

Receive baud rates may be the same as, or may differ from, transmit baud rates.
Receive baud rates are set by *FX7.

The user may supply his or her own specialist printer driver routine. The address
of the user routine should be placed at location &222 and the user defined routine
can be selected as the printer output routine with *Fx5, 3.

If the user intercepts the operating system write character routine (OSWRCH)
then all the VDU control codes must be dealt with. When a BASIC program
executes DRAW 10,10 a string of six bytes is sent to the VDU driver via
OSWRCH. In this case the bytes would be 25,5,10,0,10, 0, sobeware!

378

39 Indirection operators

Indirection operators are not normally available on personal computers. They
enable the user to read and write to memory in a far more flexible way than by
using PEEK and POKE. They are intended for programmers using the
computer’s assembler or programmers wishing to create their own data
structures. There are three indirection operators:

Name Purpose Number of bytes
affected

? query Byte indirection operator 1

! shriek Word indirection operator 4

$ dollar String indirection operator 1 to 256

For the sake of illustration let us play with the memory around location &2000
(that is 2000 hex — an appreciation of hex numbers is essential. If you don’t
understand hex then you will not need to use indirection operators). Let us set
the variable M to &2000

M= &2000

?M means the contents of memory location M, so to set the contents of &2000 to
40 we write

?M = 40

and to print the contents of memory location &2000 we write
PRINT °?M

Those familiar with other dialects of BASIC will realise that

Y=PEEK(X) becomes Y=?X and

POKE XY becomes ?X=Y

The query operator acts on one byte of memory only. The word indirection
operator (shriek) acts on four successive bytes. For example

IM=&12345678
would set location

&2000=&78
&2001=&56
&2002=&34
&2003=&12

379
and PRINT ~!M (print in hex, shriek M) would give
12345678

Four bytes are used to store integers so the shriek operator can be used to
manipulate integer variables.

The last operator in this group is the string indirection operator called dollar. Do
not confuse $M with M$ as they are quite different. M$ is the usual string
variable. On the other hand $M can be used to read or write a string to memory
starting at memory location M. Remembering that we have set

M = &2000 then

$M="ABCDEF" will place the string ABCDEF and a carriage return (&0D) in
memory from location &2000 on.

Similarly PRINT $M will print
ABCDEF

And one last twist to the use of these operators. We have seen how query, shriek
and dollar can be used as unary operators — that is with only one operand. We
have used M as the operand in the example above — for example

M=&2000
?M=&45
Y=?M
PRINT °?M

'M=&8A124603
Y='M
PRINT!'!'M

$M="HELLO ZAPHOD"
B$=$M
PRINT $M

but in addition both query and shriek can be used as binary operators provided
that the left hand operand is a variable (such as M9) and not a constant.

Thus M?3 means the contents of (memory location M plus 3) — in other words of
location &2003.

There is a simple routine to examine the contents of memory for 12 bytes beyond
&2000.

10 FOR X=0 TO 12
20 PRINT ~M+X, ~M?X
30 NEXT

380

Line 20 reads ‘print in hex (M plus X) and in the, next column, in hex, the
contents of (M plus X). It is easy to write this into one of the user defined
function keys and keep it for debugging — like this

*KEY 0 FOR X=0 TO 12: P. ~M+X, ~M?X:NEXT |M
but don’t forget that in MODE 7 it will be displayed as

*KEY 0 FOR X=0 TO 12: P. =M+X, :M?X:NEXT|M
just to complicate matters!

Here are some illustrations of some of the above.

Set up function key 0 and use it to examine memory beyond &2000.

>*KEY 0 FOR X=0 TO 12:P. ~M+X, ~M?X:N.|M
>M=&2000

>FOR X=0 TO 12:P. ~M+X, ~M?X:N.

2000 FF
2001 FF
2002 FF
2003 FF
2004 FF
2005 FF
2006 FF
2007 FF
2008 FF
2009 FF
200Aa FF
200B FF
200cC FF

Use the byte indirection operator to change one byte.

>M?3=6&33
>FOR X=0 TO 12:P. ~M+X, ~M?X:N.
2000 FF
2001 FF
2002 FF
2003 33
2004 FF
2005 FF
2006 FF

2007 FF

2008
2009
200A
200B
200cC

381

FF
FF
FF
FF
FF

Use the word indirection operator to change four bytes.

>M!12=£12345678
>FOR X=0 TO 12:P.

2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
200A
200B
200cC

~M+X

I4

FF
FF
78
56
34
12
FF
FF
FF
FF
FF
FF
FF

~M?X:N.

Use the string indirection operator to insert a string into a known place in

memory.

>$M="ABCDEFG"

>FOR X=0 TO 12:P.

2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
200A
200B
200cC

~M+X
41
42
43
44
45
46
47
D
FF
FF
FF
FF
FF

I4

~M?X:N.

382

Note that interesting structures can be generated using ! and $. For example
you may need a structure containing a ten character string, a number and a
reference to a similar structure. ! and $ together can do this. If M is the
address of the start of the structure then

$M is the string
M!11 isthe number
M!15 isthe address of the next structure

The tools are therefore provided to enable you to manipulate general tree
structures and lists very easily in BASIC.

383

40 HIMEM, LOMEM, TOP
and PAGE

These four pseudo-variables give the programmer an indication of the way the
computer has allocated the available memory. PAGE and TOP give the bottom
and top of the user’s program so

PRINT TOP-PAGE

can be used to find out how big a program is.
HIMEM gives the top of memory so

PRINT HIMEM-TOP

will indicate how much space is left.

When you run the program the computer will need some space to store variables
so you cannot use up all the available memory just with your program.

Random Access Memory extends from location O to location 32767 (in
hexadecimal that is &7FFF). RAM is normally allocated in MODE 7 as shown
in the diagram. As the user enters more program the program grows, increasing
the value of TOP. Normally the computer stores program variables immediately
above the user program but this can be changed by resetting the variable
LOMEM.

Again the computer normally expects to be able to use all the memory up to that
set aside for the screen, but the user may move the position of the highest
boundary by changing HIMEM.

Note that in the ‘shadow screen’ mode, HIMEM always returns a value of &8000
(see chapter 42 for more details).

The variable TOP is calculated by the computer on request. It does this by
starting at PAGE and working through the program. The user cannot reset the
value of TOP but can reset PAGE, HIMEM and LOMEM if needed for some
special purpose. On a cassette system PAGE will be set to &0E00. On a disc
system (DFS) PAGE would be &1900. On a system with an Econet interface
(NFS) PAGE would be &1200. On a system with both disc and Econet interfaces
fitted PAGE will be set to &1B00. If the Advanced Disc Filing System (ADFS)
fitted, PAGE is &1D00. ADFS with DFS or NFS gives a PAGE value of &1F00,
and ADFS with DFS and NFS gives a PAGE value of &2100.

384

The above notes, and the diagram, refer only to machines without a second
processor fitted.

385

41 Operating system
statements

The BBC Microcomputer includes a large and powerful operating system. This
can be accessed from user written machine code routines or from BASIC. If a
BASIC statement starts with an asterisk then the whole of the rest of the
statement is passed to the operating system directly. Note that the filing systems
listed below can only be accessed if your BBC Microcomputer is fitted with the
appropriate hardware. Full details of each filing system are contained in their
related user guides. The operating system (OS) commands include:

*LOAD Loads a section of memory (not a BASIC program) (see
chapter 35).

*SAVE Saves a section of memory (see chapter 35).

*RUN Loads and executes a machine code program (see
chapter 35).

*CAT Displays a catalogue of files on the cassette, disc or

Econet disc unit (see chapter 35).

*KEY Programs one of the user defined keys (see chapters 25
and 43).
*OPT Determines how the computer reacts to errors during

loading of cassettes and the amount of detail given
during cassette operations.

*FX Enables the user to control a large number of the
computer effects such as flash rate (see chapter 43).

*TAPE Selects the cassette filing system running at 1200 baud.

*TAPE3 Selects the cassette filing system running at 300 baud.

*DISC This statement selects the disc filing system so that all
future file operations (eg LOAD and SAVE) work to the
floppy disc units.

*ADFS Selects the advanced disc filing system for all future file
operations.

*NET Selects the Econet filing system for all future file

operations.

386

*SPOOL Copies all screen output to a named file (see chapter
37).
*EXEC Uses a named file to provide input as if it had been

typed in at the keyboard (see chapters 35 and 37).
*MOTOR Used to turn the cassette motor on or off.

*TV This can be used to move the whole of the displayed
picture up or down the screen and also controls the
picture interlace (see chapter 43). The interlace on the
BBC Microcomputer is off by default.

*ROM Selects the sideways ROM filing system.

*SHADOW Selects the shadow screen on a subsequent MODE
change (see chapter 42).

*IEEE Selects the IEEE 488 interface filing system.
*TELESOFT Selects the Teletext filing system.

All these OS statements may, if required, have the contents of BASIC variables
passed to them as parameters by using OSCLI (see chapter 33).

387

42 The shadow screen

There are two areas of memory in the computer that can be selected for use as
display memory: from &3000 (variable, according to the display MODE selected)
to &8000 in the main memory map, or an area outside the main memory map
known as the ‘shadow RAM’. Using the shadow RAM leaves the whole of user
memory (ie from PAGE to &8000) free for your use.

Display MODEs 128 to 135 use the shadow RAM as the display memory by
default, and are the shadow screen equivalents of MODEs 0 to 7 (respectively).
To enter a shadow display MODE, simply type in its MODE number — for
example:

MODE 135 RETURN

would enter the shadow screen equivalent of MODE 7. Non-shadow mode may be
re-entered by changing to a non-shadow MODE. The following command sequence
illustrates the memory map changes which take place when switching between
shadow and non-shadow MODEs:

MODE 3
P. ~HIMEM

4000
MODE 131

P. ~HIMEM
8000
MODE3

P. ~HIMEM
4000
(The screen would be cleared by each MODE change).

To force the operating system to enter shadow mode on subsequent MODE
changes, (even if a non-shadow MODE is selected) type

*SHADOW RETURN
To return to non-shadow mode type

*SHADOW 1 RETURN

388

followed by a MODE change to a non-shadow MODE. The following command
sequence illustrates the memory map changes which take place when using the
*SHADOW commands:

MODE 3

P. ~HIMEM
4000
*SHADOW
P. ~HIMEM
4000
MODE 3

P. ~HIMEM

8000
MODE 131 would have the same effect as the second MODE 3 command
above, although in that case there would be no need for the preceding * SHADOW
command. Continuing from the above sequence we have:

*SHADOW 1

P. ~HIMEM
8000

MODE 3

P. ~HIMEM
4000
Substituting MODE 131 for MODE 3 above would give:

P. ~HIMEM
8000

The *SHADOW commands are useful when switching between software which

uses shadow RAM and software which doesn’t.

Other shadow mode-related commands
*FX114 produces the same effect as *SHADOW, and *FX114, 1 produces the
same effect as *SHADOW 1.

VDU22, <128+n> (used when in non-shadow mode) will select MODE n; shadow
mode will not be entered and HIMEM will not be reset.

Shadow mode is retained across a soft break, but is reset to non-shadow by a
hard break.

389

43 The operating system and
how to make use of it

What is the operating system?

The operating system (or the machine operating system (MOS) to give it its full
title) is a program which controls the operation of the computer. The MOS for the
BBC Microcomputer lives in ROM, and is activated automatically as soon as the
microcomputer is switched on. The MOS runs constantly, performing repetitive
tasks with such speed that you are not even aware that anything is going on;
indeed, the MOS has already done a tremendous amount of work before you even
press a key! The functions performed by the MOS include scanning the keyboard,
updating the screen, performing analogue-to-digital conversions (for input from
joysticks) and controlling the sound generator.The MOS is a large and complex
machine code program (more about machine code later), consisting of a number of
routines which perform functions such as those listed above. Like all computer
programs, the MOS will not do anything until it is told to (although as already
mentioned, just switching the computer on, and leaving it on, tells the MOS to do
quite a lot). All the functions performed by the MOS can be made available to
other machine code programs, and one machine code program which you will be
familiar with is BASIC. BASIC provides an easy way of using the
microcomputer’s computing power, and it makes constant use of the MOS
routines to get input from the keyboard and reflect that input on the screen. How
ever, the degree of control over the MOS provided by BASIC is limited. For
example, typing

COLOUR 9 RETURN

in MODE 2 will cause subsequent screen display to appear in flashing red/cyan,
the ‘work’ being done by the MOS routines. However, BASIC provides no way of
varying the flash rate. There are three principal ways of achieving fine control of
this kind:

1. Using *FX commands
2. Calling operating system routines from BASIC
3. Calling operating system routines from assembly language

Although the rest of this chapter covers all of the above three topics, you are
referred to the next chapter for a detailed introduction to assembly language.

390

The *FX commands

The *FX commands are a family of operating system commands which act
directly on the MOS, causing its routines to carry out a variety of functions which
are summarised below.

The general form of a *FX command is
*FXa,x,y

where a, x and y are integers. (There can be a space between the X and the a.)
For example, the MOS version number can be printed out on the screen by typing

*FX0 RETURN

Note that in the above command a=0, but x and y are absent. Another example,
(which incidentally solves the ‘flashing colour’ problem which was referred to
earlier) is

*FX9,10

which causes the first named colour (red in our example) to be displayed for ten
fiftieths of a second (*FX9, 20 would display it for twenty fiftieths of a second,
and so on). Note here that the default duration of the first named colour — ie the
time for which it is displayed before a *FX9 command is typed in to change the
time — is half a second, so restoring the default duration could be achieved by
typing

*FxX9,25 RETURN
Incidentally, loading the default duration (plus many other default parameter

values) into RAM is one of the jobs done by the MOS when the microcomputer is
switched on. Typing

*FX9,0 RETURN

would set the duration to infinity, causing the first colour to be displayed
continuously, and the second colour not to be displayed at all. Exactly the same
effect could be achieved by typing

*FX9 RETURN

which illustrates the fact that if the x and y parameters are omitted they are
taken to be equal to zero. As a final example,

*FX144,2,1

would move the display two lines up the screen and turn the interlace off (after
the next MODE change or soft break). A summary of all the *FX commands and
their functions is given later in this chapter.

391

All the *FX commands can be typed in in immediate mode or can be included as
a line of a BASIC program. The values typed in for x and y (if any) are copied by
the MOS into registers known as X and Y, which reside in the microcomputer’s
6512 microprocessor (see next chapter for more details). Some *FX commands
return values in X and Y, but unfortunately the MOS does not copy these
returned values back into X% and Y% (it doesn’t even know’ about X% and Y%).
However, this drawback can be overcome through the use of a certain operating
system call. An operating system call is a means of activating one of the routines
which exist within the MOS. Several operating system calls exist, which perform
a variety of functions (see chapter 45). The operating system call which we will
examine first is OSBYTE.

OSBYTE calls from BASIC

OSBYTE has call address &FFF4, a memory location within the operating
system ROM. This means that when OSBYTE is called, the instruction held in
location &FFF4 is executed. This instruction loads an address which is held in a
RAM location whose address is given in locations &FFF5 and &FFF6 (&020A for
OSBYTE). OSBYTE is said to ‘indirect’ via &20A. Locations &20A and &20B
contain the address of (or the ‘vector’ to) the routine within the MOS which is
actually executed. This may seem a little complicated, but it does mean (for
example) that OSBYTE’s call address will always be &FFF4, and its indirection
vector will always be at &20A, no matter how much the MOS changes between
different versions.

OSBYTE can be called from within BASIC in two ways, one of these being with
the CALL BASIC keyword. Try typing the following sequence:

A%=0
X%$=0
Y$=0
CALL (&FFF4)

You will notice that this has exactly the same effect as the *FX0 command.
This is because a *FX command and an OSBYTE call are very nearly one and
the same thing: the MOS recognises any command beginning *FX as an
OSBYTE call. in general,

*Fxa,x,y

is equivalent to OSBYTE with A=a, X=x and Y=y. A is another register in the
6512 (known as the ‘accumulator’, see chapter 45) whose contents are set equal to
the value read by the BASIC interpreter from the resident integer variable A%.
As another example, the following program would have the same effect as
*FX9,10 (seeabove):

392

10 MODE2

20 COLOUR 9

30 A%=9

40 X%=10:Y¥%=0
50 CALL (&FFF4)

Obviously, this is far more ponderous than simply typing *FX9, 10, and indeed
the caALL BASIC keyword is mainly used in conjunction with assembly
language programs (see chapter 45). A far more powerful method of making
operating system calls is through use of the USR BASIC keyword. The above
program could be re-written as

10 MODE2

20 COLOUR 7

30 A%=9

40 X%=10:Y%=0

50 PRINT ~USR(&FFF4)

(Note that the foreground colour has been changed to white — it’s a little difficult
to read the output of this program in flashing red/cyan!). The effect of line 50 is to
set the duration of the first flashing colour as before (which can be confirmed by
using COLOUR to select a flashing colour combination), and also to print the
following on the screen:

30191909

The string of figures are hexadecimal digits, which have come from registers in
the 6512. They have the following meanings (reading from right to left):

09 This has come from register A (the accumulator), which was set up from A%
(it is simply the OSBYTE call number; all OSBYTE calls preserve A).

19 This has come from the X register, and is the previous colour duration
value. In this case the previous value is the default value, 25. (Remember
the digit pairs are hexadecimal, &19=25 decimal).

19 This has come from the Y register, and contains the same value as the X
register.

30 This has come from the P register (the program status register, mainly of
interest to those programming in assembly language).

Of course, all OSBYTE calls do not have the same exit conditions. The next
example performs a totally different function. Note also that the result of the
USR call has been assigned to a set of variables, so that it can be printed out in
a more readable form:

393

10 REM Uses OSBYTE with A=129 to wait one second
for a key

15 REM to be pressed.

20 DIM registers 4

30 DIM AS$(2):A$(0)="A=":A$(1l)="X=":A$(2)="Y="
40 A%=129

50 X%=100

60 Y%$=0

70 !'registers=USR(&FFF4)

80 FOR K=0 TO 2

90 PRINT AS$(K);~registers?K
100 NEXT K

This program uses OSBYTE with A=129 to read a key, which must be pressed
within a specified time limit (one second in the example). If it reminds you of
BASIC’s INKEY keyword that’s because INKEY uses the same OSBYTE call.
If a time limit of n centiseconds is required then X and Y should be set up as
follows:

X=n AND &FF
Y=n DIV &100

The exit conditions vary according to what happens; if no key is pressed within
the time limit, X is preserved, Y=&FF. If a key is pressed, X returns the
hexadecimal ASCII code of the key character, Y=0.

All the *FX calls and OSBYTE calls available on the BBC Microcomputer are
detailed at the end of this chapter, preceded by a numerical and a functional
summary. Other calls are available to various filing systems which may not be
fitted to your machine; these are noted, but you are referred to the appropriate
filing system user guide for details.

OSBYTE calls from assembly language

This section does not attempt to provide an introduction to assembly language
and how to use it; you are referred to the next chapter for that. For those
unfamiliar with the concept of assembly language, it is safe to assume for now
that it is a sort of ‘half way house’ between BASIC and machine code, which is
what the 6512 microprocessor actually executes. Programs written in assembly
language are more difficult to write than BASIC programs, but they usually take
up less memory and are faster than an equivalent BASIC program, which is why
large, complex programs such as arcade games will always be written in
assembly language.

394

Shown below is an assembly language equivalent of the ‘read a key within one
second’ example which we have already seen in BASIC

10 OSBYTE=&FFF4
20 P%$=&3500

30 [

40 LDA#129

50 LDX#100

60 LDY#0

70 JSR OSBYTE
80 RTS

90]
100 CALL &3500

The first thing you will notice about the above program is that lines 10, 20 and
100 seem to be BASIC statements. Indeed they are, the program is really a
‘hybrid’. Line 30 tells BASIC ‘assembly language starts here’, line 90 says
‘assembly language finished’. Line 40 says ‘load the accumulator with decimal
129°. Similarly, lines 50 and 60 load the X register with decimal 100 and the Y
register with 0. Line 70 calls OSBYTE, although the machine code assembled
from lines 40 to 80 is not actually executed until the program reaches line 100.
This description of the program is deliberately brief, but any questions that you
may have will be answered in the next chapter. Try typing the program in and
running it. You will see that six lines of text appear on the screen (more about
that in the next chapter), there is a pause, and then the BASIC prompt
reappears. If you run the program again, but press a key immediately after
pressing RETURN, you will find that the same thing happens, except that the
prompt reappears when you press the key. In both cases the program doesn’t
appear to have done anything! In fact, it has carried out exactly the same
processing as the BASIC example, but it hasn’t printed any results out on the
screen. This illustrates a disadvantage of making an operating system call from
assembly language: there is no direct way of printing out the contents of the 6512
registers. (This isn’t as bad as it sounds because real-life applications of assembly
language programs, arcade games for example, rarely require register contents to
be printed.) The following program gets around this problem (albeit in a limited
and rather unsatisfactory way) by making use of another MOS routine, called
OSWRCH:

10 OSBYTE=&FFF4
20 OSWRCH=&FFEE
30 P%=&3500

40 [

50 LDA#129

60 LDX#100

70 LDY#0

395

80 JSR OSBYTE
90 TXA
100 JSR OSWRCH
110 RTS
120 1
130 CALL &3500

Of interest here is line 90, which turns an exit parameter from OSBYTE (in the X
register) into an entry parameter for OSWRCH (supplied in the A register). Try
running the program. If you don’t press a key after RETURN, then the first
character on the last line to be printed out is d, which has decimal ASCII code
100, which was the value loaded into the X register. Pressing a key will cause the
key character to be displayed followed immediately by the the BASIC prompt,
indicating that the program has finished. What has happened is that OSWRCH
has read the value in A, transformed it into a character and printed the character
on the screen (without a line feed or carriage return). More details of OSWRCH
and all the other operating system calls are given in chapter 45.

The foregoing has probably left you somewhat unimpressed by the potentialities
of assembly language programming, but hopefully the next chapter will change
your views!

The *FX commands and OSBYTE calls

This section lists and details all the most useful *#X commands and OSBYTE
calls. There are others which are recognised by the operating system but there is
not sufficient space to document them here. You are referred to the many other
publications which are available concerning the BBC Microcomputer for
descriptions of these other, somewhat esoteric calls. The decimal and
hexadecimal calls which appear in the following tables are the values of a for
*FXa, or the values to be loaded into the accumulator for the related OSBYTE
call.

396

Functional summary (alphabetical)

heading
buffer

bus

cursor

ESCAPE

events

files

input/output

keyboard

memory

brief description

flush selected class

flush selected buffer

get buffer status

insert value into buffer
get character from buffer
examine buffer status

read from FRED
write to FRED
read from JIM
write to JIM

read from SHEILA
write to SHEILA

enable/disable cursor edit keys
read text cursor position
read character at cursor

clear ESCAPE condition
set ESCAPE condition
acknowledge ESCAPE

disable event
enable event

close *SPOOL and *EXEC files

check end of file status

select input device
select output device(s)

auto-repeat delay
auto-repeat rate
read CTRL/SHIFT key status

explode soft character RAM allocation
select shadow/non-shadow display memory

read high order address
read OSHWM address

read bottom of display RAM address
read lowest address for particular MODE

dec

15
21
128
138
145
152

146
147
148
149
150
151

134
135

124
125
126

13
14

119
127

11
12
118

20
114
130
131
132
133

hex

15
80
8A
91
98

92
93
94
95
96
97

86
87

7C
7D
7E

77
7F

w

76

14
72
82
83
84
85

operating system
paged ROM

printer

RS423

serial

soft keys

sound

speech

user
VDU
VIA/6522

video

print version number
enter language ROM

select printer type
set printer ignore character
end of user print routine

receive baud rate
transmit baud rate

enable/disable 6850 ACIA IRQ

enable/disable cursor edit keys

reset soft keys

cancel VDU queue

set base number for function key codes

set base number for SHIFT function key
codes

set base number for CTRL function key
codes

set base number for SHIFT CTRL function
key codes

sound on/off

read from speech processor

write to speech processor

speech on/off

return presence of speech processor

user OSBYTE call
read VDU status

enable/disable user 6522 IRQ
enable/disable system 6522 IRQ

set flash period of first colour
set flash period of second colour
wait for field synchronisation

224
225
226

227

228

210

158
159
209
235

117

231
233

10
19

397

398

Numerical summary

Decimal Hex Function

0 0 Prints operating system version number.
1 1 Reserved for application programs.
2 2 Selects input device.
3 3 Selects output devices.
4 4 Enable/disable cursor edit keys.
5 5 Select printer type.
6 6 Set printer ignore character.
7 7 Set RS423 receive baud rate.
8 8 Set RS423 transmit baud rate.
9 9 Set flash period of first colour.
10 A Set flash period of second colour.
11 B Set auto-repeat delay.
12 C Set auto-repeat period.
13 D Disable various events.
14 E Enable various events.
15 F Clear all or just input buffer.
16 10 Select number of ADC channels.
17 11 Force start of conversion on ADC channel.
18 12 Reset user defined function keys.
19 13 Wait for field synchronisation.
20 14 Explode soft character RAM allocation.
21 15 Clear selected buffer.
114 72 Control shadow/main memory selection
117 75 Read VDU status byte.
118 76 Read CTRL/SHIFT key status.
119 77 Close *SPOOL and *EXEC files.
123 7B End of user print routine.
124 7C Reset ESCAPE flag.
125 7D Set ESCAPE flag.
126 TE Acknowledge detection of escape condition.
127 7F Check end of file status.
128 80 Read ADC channel/fire buttons/last conversion.
129 81 Read key within time limit.
130 82 Read machine high order address.
131 83 Read top of operating system RAM address.
132 84 Read bottom of display RAM address.
133 85 Read lowest address for particular MODE.
134 86 Read text cursor position.
135 87 Read character at text cursor position.

137
138
139
140
142
144
145
146
147
148
149
150
151
152
158
159
209
210
218
239
224
225
226
227
228
229
230
231
232
233
235
253
255

89
8A
8B
8C
8E
90
91
92
93
94
95
96
97
98
9E
9F
D1
D2
DA
EF
EO
El
E2
E3
E4
E5
E6
E7
E8
E9
EB
FD
FF

399

Turn cassette motor on/off.

Insert character into specified buffer.

Set file options.

Select cassette file system and set speed.
Select sideways ROM.

Alter TV display position/interlace.

Remove character from buffer.

Read from I/0 area FRED.

Write to I/O area FRED.

Read from I/0 area JIM.

Write to I/O area JIM.

Read from I/O area SHEILA.

Write to I/O area SHEILA.

Examine specified buffer.

Read from speech processor.

Write to speech processor.

Speech on/off.

Sound on/off.

Read/write size of VDU queue

Read/write shadow display mode state
Cancel VDU queue.

Set base number for function key codes.

Set base number for SHIFT function key codes.
Set base number for CTRL function key codes.
Set base number for SHIFT CTRL function key codes.
ESCAPE=&1B.

Enable/disable normal ESCAPE key action.
Enable/disable user 6522 IRQ.
Enable/disable 6850 ACIA IRQ.
Enable/disable system 6522 IRQ.

Return presence of speech processor.

Last reset type.

Write start-up option byte.

Each *FX and OSBYTE call is now explained in detail.

*FX0 prints a message giving the version number of the operating system.

*FX1, n sets the user flag to n. See OSBYTE with A=1 for more details.

*FX2 selects the input device from which characters will be retrieved.

*FX2,0 getscharacters from the keyboard and disables the RS423 receiver.

*FX2,1 getscharacters from the RS423 port, and disables the keyboard.

*FX2,2 gets characters from the keyboard and enables the RS423 receiver.

400

*FX3 1is used to select whether output appears (or not) on different output
streams. *FX3 is followed by one number, eg *FX3, 4. The second number
should be considered in its binary form, because the value of each bit determines
the effect of the command. Here is a list of the bits involved, and the effect of each
bit when its value is 1.

bit 0 enable RS423 driver

bit 1 disable VDU driver

bit 2 disable printer driver completely

bit 3 enable printer driver (as long as bit2 at 0)

bit 4 disable SPOOLd output

bit 5 not used

bit 6 disable printer driver unless character preceded by CTRL A or VvDU1 (as
long as bitl and bit2 at 0)

bit 7 not used

Here are some useful values in the table below

Printer Screen RS423
*FX3,0 enabled on off
*FX3,1 enabled on on
*FX3,2 enabled off off
*FX3,3 enabled off on
*FX3,4 off on off
*FX3,5 off on on
*FX3,6 off off off
*FX3,7 off off on
*FX3,8 on on off
*FX3,9 on on on
*FX3,10 on off off
*FX3,11 on off on
*FX3,12 off on off
*FX3,13 off on on
*FX3,14 off off off
*FX3,15 off off on

*FX3,0 to*FX3,3 ‘enable’ the printer, which means that vDU2 (or CTRL
B) will send output to printer. Values from 0 to 3, 8 to 12, 16 to 19 etc are affected
by *FX5.

Values from 16 to 31 are equivalent to values from 0 to 15, except that *SPOOL
output is turned off.

401

*FX4,0 resets the system so that the cursor editing keys E‘ II and

COPY perform their normal cursor editing function.

*FX4,1 disables the cursor editing and makes the cursor editing keys generate
normal ASCII codes. The codes are shown below in both decimal and hex
numbers.

COPY 135 &87

136 &88
[~] 137 &89
138 &8A
139 &8B

*FX4,2 permits the and COPY keys to be programmed in the same way as the
user defined function keys. In other words they may contain strings. In this case
the *KEY numbers are

COPY 11
12
E 13

*FX5 is used to select the printer type.

*FX5,1 selects output to the parallel (Centronics type) output connector.
*FX5, 2 selects the serial RS423 output.

*FX5, 3 selects a user supplied printer driver (see chapter 38).

Note that none of these will actually cause output to appear on the printer. vVDU2
(or CTRL B) must be used to start output going to the selected printer channel.

*FX5,0 can be used to select a ‘printer sink’ where characters can be lost
without the possibility of the system ‘hanging’ with a full printer buffer.

*FX6 is used to set the character which will be suppressed by the printer driver
routines. Some printers do an automatic ‘line feed’ when they receive a ‘carriage
return’. It is therefore useful to be able to prevent the line feed characters from
reaching the printer. The ASCII code for line feed is decimal code 10 so this can
be achieved with the statement

*FX6,10

402

Having set this mode it is still possible to get a line feed through to the printer by
use of the VDU1 (send next character to printer only) statement. The character
following VDU1 is not checked, thus to send a line feed one would use

VvDU1,10

*FX6 should always be executed after the printer type has been set by *FX5.
*FX6, 0 provides no character filtering.
Note that the default is that line feed characters are filtered out.

*FX7 1is used to select the baud rate to be used when receiving data on the
RS423 interface, as follows:

*FX7,1 75 baud receive
*FX7,2 150 baud receive
*FX7,3 300 baud receive

*FX7,4 1200 baud receive
*FX7,5 2400 baud receive
*FX7,6 4800 baud receive
*FX7,7 9600 baud receive
*FX7,8 19200 baud receive (this rate is not guaranteed)

*FX8 1is used to select the transmit rate to be used on the RS423 interface.

*FX8,1 75 baud transmit
*FX8,2 150 baud transmit
*FX8,3 300 baud transmit

*FX8, 4 1200 baud transmit
*FX8,5 2400 baud transmit
*FX8,6 4800 baud transmit
*FX8,7 9600 baud transmit
*FX8,8 19200 baud transmit (this rate is not guaranteed)

Note: The standard receive/transmit format adopted for RS423 is one start bit,
eight bits, one stop bit.

403

*FX9 and *FX10 are used to set the flash rate of flashing colours. Colours
always flash between one colour and its complement. Thus in MODE 2, COLOUR
9 selects flashing red/cyan.(See chapter 34 for more information on COLOUR.)

*FX9 is followed by a number which gives the duration of the first named
colour. The duration is given in fiftieths of a second. Thus to select one fifth of a
second one would use the statement

*FX9,10
The defaultis *FX9, 25

*FX10 is used to set the period of the second named colour. See the entry above
for *FX9.

Note that values of 0 for the duration will eventually force the selected state to
occur full time. If neither counter is set to zero then setting the other counter to
zero will immediately force the latter colour to appear.

The defaultis *FX10, 25.

*FX11 If a key is held depressed then after a short delay (the auto-repeat
delay) the key will repeat automatically every so often. The delay is given in
hundredths of a second.

*FX11 sets the delay before the auto-repeat starts.
*FX11, 0 turns off the auto-repeat all together.
*FX11,5 would set the auto-repeat delay to five hundredths of a second, etc.

*FX12 sets the auto-repeat period, that is the amount of time between the
generation of each character.

*FX12, 0 resets both the auto-repeat delay and the auto-repeat to their normal
values.

*FX12,10 would set the auto-repeat period to ten hundredths of a second thus
producing ten characters per second.

*FX13 and *FX14 are used to disable and enable certain events. These *FX
calls will only be used by programmers writing in Assembly Language and more
information on events is given in chapter 44. The summary which follows should
be read in conjunction with that chapter.

*FX13, 0 disables output buffer empty event.
*FX13,1 disables input buffer full event.
*FX13, 2 disables character entering input buffer event.

*FX13, 3 disables ADC conversion complete event.

404

*FX13, 4 disables start of vertical synchronisation event.
*FX13,5 disables interval timer crossing zero event.
*FX13, 6 disables ESCAPE pressed event.

*FX13,7 disables RS423 receive error event.

*FX13, 8 disables service/Econet error event.

*FX14,0 enables output buffer empty event.

*FX14,1 enablesinput buffer full event.

*FX14,2 enables character entering input buffer event.
*FX14,3 enables ADC conversion complete event.
*FX14,4 enables start of vertical synchronisation event.
*FX14,5 enablesinterval timer crossing zero event.
*FX14, 6 enables ESCAPE pressed event.

*FX14,7 enables RS423 receive error event.

*FX14, 8 enables service/Econet error event.

The initial condition is that all are disabled.

*FX15 enables various internal buffers to be cleared (or emptied).
*FX15, 0 clears all internal buffers.

*FX15,1 clears the currently selected input buffer.

See also *FX21.

As an OSBYTE call this typically executes in 370 microseconds.

*FX16 1is used to select the number of analogue to digital converter (ADC)
channels that are to be used. Each ADC channel takes 10ms to convert an
analogue voltage into a digital value. Thus if all four ADC channels are enabled
then new values for a particular channel will only be available every 40ms. It is,
therefore, often wise to enable only the number of channels actually required.

*FX16, 0 will disable all ADC channels.
*FX16,1 will enable ADC channel 1 only.
*FX16,2 will enable channels 1 and 2.
*FX16, 3 will enable channels 1, 2 and 3.

*FX16, 4 will enable all four ADC channels.

405

*FX17 forces the ADC converter to start a conversion on the selected channel.
Thus *FX17, 1 will start a conversion on channel 1. Channels are numbered 1,
2, 3 and 4. OSBYTE call with A=&80 can be used to determine when the
conversion is complete as can ADVAL (0) .

*FX18 resets the user defined function keys so that they no longer contain
character strings.

*FX19 causes the machine to wait until the start of the next frame of the
display for animation.

*FX20 when the machine starts up, space is allocated at &CO00 for the
redefinition of 32 displayed characters using the vVDU23 statement.

In the initial state, or after issuing a *FX20,0 command, the character
definitions are said to be ‘imploded’. This means that an attempt to print any
character with ASCII code greater than 128 (&80) will be mapped on to the
characters stored at memory &CO00. Initially this will produce garbage. Once a
user defined character has been defined, the effect of the mapping is to produce
the same character for four ASCII codes, each code being offset from its
neighbour by 32 (decimal). Therefore, for example, ASCII codes &80, &A0, &CO
and &EO will all show the same character. Redefining any one of the above codes
would also identically redefine the other three. Note that code &80 (or &A0. &CO
or &EO0) will be mapped to memory location &CO00; code &81 (or &A1, C1 or &E1)
will mapped to memory location &CO08, etc. Character codes in the range &20 to
&7F can also be redefined, but will map (in the *FX20, 0 state) to the same
memory locations, thus overwriting what is already there.

After a *FX20, 6 command the character definitions are said to be fully
‘exploded’ and all printing characters (codes &20 to &FF) can be redefined, each
group of 32 characters in the range having its own memory allocation (see below).
However, until any character in a block is redefined, the block will map on to
either the preset ROM (&20 to &7F) or on to memory at &CO00 (&80 to &FF). The
memory allocated to each block of ASCII codes in the fully exploded state is:

ASCII code Memory allocation

&20 to &3F OSHWM + &300 to OSHWM + &3FF
&40 to &5F OSHWM + &400 to OSHWM + &4FF
&60 to &7F OSHWM + &500 to OSHWM + &5FF
&80 to &9F &C00 to &CFF

&AO to &BF OSHWM to OSHWM + &FF

&CO0 to &DF OSHWM + &100 to OSHWM + &1FF

&EO to &FF OSHWM + &200 to OSHWM + &2FF

406

The character definitions may also be partially exploded by using a parameter
between 0 and 6. For example, *FX20, 1 will allow character codes &80 to
&BF to be redefined. Each increment in the parameter allocates another page
(256 bytes) of memory above OSHWM to the soft character definitions.
*FX20, 4 will allow redefinition of character codes &80 to &FF and &20 to &3F.

The following command sequence should serve to make the situation clearer.
(Press RETURN after each line.)

vDU23, &E2,1,3,7,15,31,63,127,255
*FX20, 3

vDU23, §E2, 255,127, 63,31,15,7,3,1
VDU&E2

*FX20,0

VDU&E2

Although the fourth and sixth lines invoke the same character code, a different
character is displayed each time due to the effect of the *FX20 commands.
(Note that *FX20 could be typed in instead of *FX20, 0.)

If this is done, and the programmer redefines characters in the range &20 to
&3F, he or she must leave memory up to OSHWM + &3FF clear of his or her
program. This is done by first finding the value of OSHWM (for the particular
configuration in use) by using OSBYTE call 131 and then setting PAGE to a
value &400 above this value. Of course, if the programmer only wishes to
redefine ASCII codes in the range &80 to &9F (128 to 159) then he or she need
not alter PAGE.

Codes in the range &80 to &9F are of particular importance since the
programmer can generate them directly from the keyboard by holding down
SHIFT at the same time as pressing one of the user definable function keys.

See later in this chapter for more information on Operating System High Water
Mark.

*FX21 allows any internal buffer to be cleared (or flushed).
*FX21, 0 flushes the keyboard buffer.

*FX21,1 flushes the RS423 serial input buffer.

*FX21,2 flushes the RS423 serial output buffer.

*FX21, 3 flushes the printer output buffer.

*FX21, 4 flushes the sound channel number 0 (noise).
*FX21,5 flushes the sound channel number 1.

*FX21, 6 flushes the sound channel number 2.

407
*FX21,7 flushes the sound channel number 3.
*FX21, 8 flushes the speech synthesis buffer.
See also *Fx15, OSBYTE &80 and OSBYTE &8A.

*FX114 is used to select shadow/main display memory at the next MODE
change. *FX 114 selects shadow memory, *FX114, 1 selects main memory.
Note that a MODE change is required before HIMEM will be reset. (See chapter
42 for more details of the shadow screen facility.)

*FX119 causes any open files being used as *SPOOLed output or *EXECed
input to be closed.

*FX124 clears the ESCAPE pressed flag (bit 7 of location &FF).

*FX125 sets the ESCAPE pressed flag. It must be set with this call and not
directly. It has a similar effect to pressing the ESCAPE key. (Conditional on any
OSBYTE 229 call.)

*FX126 must be used to acknowledge the detection of an escape condition if
the user is intercepting characters fed into the computer through the OSRDCH
(Operating System Read Character) routine.

*FX142 can be used to select one of the six sideways ROM sockets (note that
only language ROMs can be selected). The sockets are numbered,counting
anticlockwise from the MOS/BASIC socket at the top right, 14/15, 10/11, 8/9, 2/3,
4/5, and 6/7. Each socket is capable of accepting a 32K ROM. The paired socket
numbers correspond to the two 16K ‘logical ROMs’ which may exist within the
single 32K ‘physical ROM’. If a socket contains a 16K ROM then it can be
selected by using either of the two socket numbers. For example, a (16K)
language ROM in the socket immediately to the left of the MOS/BASIC socket
could be selected by typing *FX142,10 or *FX142,11.

*FX209 will turn speech on or off. *FX209, 80 ison, *FX209, 1 is off.
*FX210 will turn the sound on or off. *FX210, 0 ison, *FX210, 1 is off.

*FX218,0,0 will cause the VDU software to forget the bytes it has received
so far as part of an (incomplete) VDU (with parameters) statement.

*FX255 will set the keyboard start-up option byte. This value will only take
effect on a soft reset. Any other sort of reset (hard or power-on) and the value will
be taken direct from the wiring on the keyboard. The links on the keyboard are
all ‘unmade’, which ensures that the RAM location which can be accessed by this
call (&28F) has all its bits set on start-up or by a hard break. The value contained
in &28F and the corresponding keyboard link numbers are as follows:

408

Links 1 and 2 (bits 7 and 6 respectively) are unused.

Links 3 and 4 (bits 5 and 4 respectively) set the disc drive timings. The default
settings give the slowest disc access — this ensures that the computer can be used
with any make of disc drive.

Link 5 (bit 3) selects auto or manual boot on (default setting gives manual boot).
Links 6, 7, and 8 (bits 2, 1, and 0) select the screen MODE (default settings give
MODE 7).

For example, *FX255, 203 would give fast discs, manual boot, and MODE 3
on soft reset.

OSBYTE calls

OSBYTE call with A=&0 (0) Read operating system version number

If X=0 on entry then the operating system version number will be returned as an
error message. If X is non-zero on entry then on exit X will contain the opeating
system series number — for example OS 2.00 would return X=2. On exit A and Y
are preserved, C is undefined.

OSBYTE call with A=&1 (1) Read/write the user flag

On entry, Y=0 for a write operation or Y=&FTF for a read operation. For a write
operation, X=new value of user flag. On exit, X=previous user flag value, Y=&FF.

This call uses OSBYTE with A=&F1 (241), and is not used by the operating
system, being left free for user applications. The user flag is stored at location
&281 and has default value 0.

OSBYTE call with A=&2 (2) Select input device

On entry, the value in X determines the input device(s), as follows:

X=0 Keyboard selected, RS423 disabled.
X=1 RS423 selected, keyboard disabled.
X=3 Keyboard selected, RS423 enabled (but not selected.)

On exit, X=0 if previous input was from the keyboard, X=1 if previous input was
from the RS423. A is preserved, Y an C are undefined.

OSBYTE call with A=&3 (3) Select output device

On entry, the value in X determines the output device to be selected, as follows:

Bit 0 set — Enables RS423 driver.
Bit 1 set —Disables VDU driver.
Bit 2 set — Disables printer driver.

Bit 3 set — Enables printer, independently of CTRL B or CTRL C.

409

Bit 4 set — Disables spooled output.

Bit 5 — Not used.

Bit 6 set —Disables printer driver unless the output character is
preceded by a vDU1l command (or equivalent).

Bit 7 — Not used.

The default options (X=0) are:

RS423 disabled

VDU enabled

Printer enabled (if selected by vDU2)

Spooled output enabled (if selected by * SPOOL)

This OSBYTE call uses OSBYTE with A=&EC (236). On exit, A is preserved, X

contains the previous *FX3 status, Y and C are undefined.

OSBYTE call with with A=&4 (4) Enable/disable cursor editing keys

On entry, the value in X determines the editing keys’ status, as follows:

X=0 Cursor editing enabled (default setting).

X=1 Cursor editing disabled. The cursor control keys will return
normal ASCII codes, see *FX4,1 (later in this chapter) for
details.

X=2 Cursor editing disabled. The cursor control keys act as soft

keys with soft key association numbers as detailed under
*FX4,2 (seelaterin this chapter).
On exit, A is preserved, X contains the previous *FX4 setting, Y and C are
undefined.

OSBYTE call with A=&5 (5) Select printer type/output channel

On entry, the value in X determines the print destination, as follows:

X=0 Printer sink (printer output ignored).

X=1 Parallel printer (default setting).

X=2 Serial printer (RS423 output). This setting will produce the
effect of a printer sink if the RS423 is enabled using OSBYTE
with A=3.

X=3 User supplied printer driver routine, the address of which
should be placed starting at location &222.

X=4 Econet printer.

X=5-255 User supplied printer driver routine (see X=3 above).

On exit, A is preserved, X contains the previous *FX5 setting, Y and C are
undefined. This call enables interrupts, and is not reset to default by a soft break.

410

OSBYTE call with A=&6 (6) Select character to be ignored by printer

On entry, X contains the decimal ASCII code of the character to be ignored. The
effect of this call can be suppressed through the use of an appropriate VDU1
statement. The default setting is X=10 (line feed). On exit, A is preserved, X
contains the previous *FX6 setting, Y and C are undefined.

OSBYTE call with A=&7 (7) Set RS423 receive baud rate

On entry, the value in X determines the baud receive rate, as follows:

X=1 75 baud
X=2 150 baud
X=3 300 baud
X=4 1200 baud
X=5 2400 baud

X=6 4800 baud
X=7 9600 baud
X=8 19200 baud (this rate not guaranteed)

On exit A is preserved, X and Y contain the old serial ULA register contents, C is
undefined.

OSBYTE call with A=&8 (8) Set RS423 transmit baud rate

On entry, the value in X determines the baud transmit rate, as follows:
X=1 75 baud

X=2 150 baud
X=3 300 baud
X=4 1200 baud
X=5 2400 baud
X=6 4800 baud

X=7 9600 baud
X=8 19200 baud (this rate not guaranteed)

On exit A is preserved, X and Y contain the old serial ULA register contents, C is
undefined.

OSBYTE call with A=&9 (9) Set flash rate of flashing colours (first
colour)

On entry, the value in X determines the duration in centiseconds of the first
named colour, X=0 sets the duration to infinity; X=25 is the default setting. On
exit, A is preserved, X and Y contain the value of the previous duration setting, C
is undefined.

OSBYTE call with A=&A (10) Set flash rate of flashing colours (second
colour)

On entry, the value in X determines the duration in centiseconds of the second
named colour. X=0 sets the duration to infinity; X=25 is the default setting.

411

On exit, A is preserved, X and Y contain the value of the previous duration
setting, C is undefined.

OSBYTE call with A=&B (11) Set keyboard auto-repeat delay

On entry, the value in X determines the delay in centiseconds before auto-
repeating starts. X=0 disables the auto-repeat facility; X=50 is the default value.
On exit, A is preserved, X contains the previous setting, Y and C are undefined.

OSBYTE call with A=&C (12) Set keyboard auto-repeat rate

On entry, the value in X determines the auto-repeat periodic interval in
centiseconds. X=0 resets the auto-repeat delay and rate to their default values;
X=8 is the default value. On exit, A is preserved, X contains the previous setting,
Y and C are undefined.

OSBYTE call with A=&D (13) Disable events

On entry, X contains the event code, corresponding to n for the *FX13,n
commands (see later in this chapter). Note that disabling an event means that a
user-supplied event handling routine will not be activated should the disabled
event occur. The default state is all events disabled. See chapter 44 for more
information on events. On exit, A is preserved, X and Y contain the old enable
state (O=disabled), C is undefined.

OSBYTE call with A=&E (14) Enable events

On entry, X contains the event code, corresponding to n for the *FX14,n
commands (see later in this chapter). Note that enabling an event means that a
user-supplied event handling routine will be activated should the enabled event
occur. The default state is all events disabled. See chapter 44 for more
information on events. On exit, A is preserved, X and Y contain the old enable
state (>0=disabled), C is undefined.

OSBYTE call with A=&F (15) Flush selected buffer class
On entry, the value in X determines the class of buffer to be flushed, as follows:

X=0 All buffers flushed
X<>0 Input buffer flushed only

On exit, the buffer contents are discarded, A is preserved, X, Y and C are
undefined.

OSBYTE call with A=&10 (16) Select ADC channels which are to be
sampled

On entry, X contains the number of channels to be sampled, corresponding to n
for the *FX16,n commands (see later in this chapter). If n=0, sampling is
disabled, if n>4 then n is reset to 4. On exit, A is preserved, X contains the
previous setting, Y and C are undefined.

412

OSBYTE call with A=&11 (17) Force ADC conversion on specified
channel

On entry, X contains the required channel number. If X>4 then X is reset to 4.
See also OSBYTE with A=&80 (128). On exit, A is preserved, X is preserved
unless it is greater than 4 — in which case X is reset to 4, Y and C are undefined.

OSBYTE call with A=&12 (18) Reset soft keys

This call resets the user-defined function keys so that they no longer contain
character strings. There are no entry conditions. On exit, A and Y are preserved,
X and C are undefined.

OSBYTE call with A=&13 (19) Wait for field synchronisation

This call causes the machine to wait until the start of the next frame of the
display. This occurs 50 times per second and can be used for timing or animation.
User trapping of IRQ1 (see chapter 44) may stop this call from working. There
are no entry conditions. On exit, A and Y are preserved, X and C are undefined.

OSBYTE call with A=&14 (20) Explode soft character RAM allocation

This call assigns memory blocks for use by soft character defenitions. On entry,
the value in X determines the memory block(s) to be assigned, corresponding to n
for the *FX20, n commands (see later in this chapter). See also OSBYTE call
with A=&B6 (182). On exit, A is preserved, X contains the new OSHWM (high
byte), Y and C are undefined.

OSBYTE call with A=&15 (21) Flush specified buffer

On entry, the value in X determines the buffer to be flushed, corresponding to n
for the *FX21, n commands (see later in this chapter). See also OSBYTE calls
with A=&OF (15) and &80 128). On exit, A and X are preserved, Y and C are
undefined.

OSBYTE call with A=&72 (114) Control shadow/main memory selection
On entry, X=0 selects the shadow display RAM, X=1 selects the main display
RAM. Note that the value of HIMEM is not reset by this command. On exit, X
contains the previous display memory selection, A is preserved, Y and C are
undefined. (See chapter 42 for details of the shadow screen facility).

413

OSBYTE call with A=&75 (117) Read VDU status byte

This call returns the VDU status byte (which contains various status flags) in the
X register. The bits in X are as follows:

—Bit 0 setif vbDu2 sent. Cleared by vDU3.

— Bit 2 set if paged mode on. Cleared if paged mode off.

— Bit 3 set if software scrolling. Cleared if hardware scrolling. (Software scrolling
is used when text windows have been defined whereas hardware scrolls are
used when the whole screen scrolls.)

— Bit 4 set if shadow display mode selected.

— Bit 5 set when cursors are joined by VDUS5.

—Bit 7 set if VDU disabled by vDU21.

OSBYTE call with A=&76 (118) Read CTRL/SHIFT key status

This call returns with the carry bit set if the CTRL key is pressed, and with the
negative bit set if the SHIFT key is pressed. Machine code routines may branch
on these conditions.

OSBYTE call with A=&77 (119) Close any SPOOL or EXEC files

This call closes any open files being used as *SPOOLed output or *EXECed
input to be closed. This call also performs a paged ROM call with A=&10. On exit,
A is preserved, X, Y and C are undefined.

OSBYTE call with A=&7B (123) End of user print routine

This call is used by the user print routine to indicate to the MOS that it has
finished its task. (Cancels a *FX5, 3 command.)

OSBYTE call with A=&7C (124) Reset ESCAPE flag

This call clears any ESCAPE condition without any further action (ie no buffers
are flushed and no open EXEC files are closed). The Tube (if it is active) is
informed. The ESCAPE flag is stored as the top bit of location &FF, and should
never be interfered with directly. This OSBYTE call can only be usefully entered
from within an assembly language program, since BASIC itself resets the
ESCAPE flag. There are no entry conditions; on exit, A, X and Y are preserved, C
is undefined.

OSBYTE call with A=&7D (125) Simulate ESCAPE condition

This call partially simulates the ESCAPE key being pressed (conditional on any
OSBYTE 229 call). The Tube (if it is active) is informed. An ESCAPE event is not
generated. Note that if this OSBYTE call is made from BASIC, BASIC will reset
the ESCAPE flag (see OSBYTE call A=125). There are no entry conditions; on
exit, A, X and Y are preserved, C is undefined.

414

OSBYTE call with A=&7E (126) Acknowledge detection of an ESCAPE
condition

This call attempts to acknowledge the existence of an ESCAPE condition. It
should be used if you are using OSRDCH (see chapter 44) to intercept characters
being fed into the computer, and it is also useful as part of a user-supplied
ESCAPE condition service routine. If an ESCAPE condition is detected, all active
buffers will be flushed and any open EXEC files will be closed. There are no entry
conditions; on exit, X=255 if the ESCAPE condition existed (X=0 otherwise), A is
preserved, Y and C are undefined.

OSBYTE call with A=&7F (127) (EOF#)

This call returns the end of file status of a file which has been previously opened.
On entry X should contain the channel number allocated to the file. On exit X
will be zero if the end of file has not been reached and X will be non-zero if the
end d

OSBYTE call with A=&80 (128) Read ADC channel (ADVAL)

This call returns the most recent value of a particular analogue to digital
converter channel. It can also be used to detect an end of conversion and to see if
the games fire buttons are pressed.

On entry X contains the channel number to be read. If X is in the range 1 to 4
then the specified channel will be read and on exit the 16 bit value will be
returned in X and Y. Y will contain the eight most significant bits and X the least
significant bits.

If on entry X=0 then on exit Y will contain a number in the range 0 to 4
indicating which channel was the last to complete. Note that *FX16 and
*FX17 reset this value to 0. A value of zero indicates that no channel has
completed. Also on exit the two least significant bits of X will indicate the status
of the two fire buttons. The user should always AND X with 3 to mask out high
order bits.

If on entry X contains a negative number (in twos complement notation) then the
call will provide information about various input buffers. On entry Y must
contain &FF.

415

X on entry Buffer checked

255 Keyboard buffer

254 RS423 serial input buffer
253 RS423 serial output buffer
252 Printer output buffer

251 Sound channel 0 (noise)
250 Sound channel 1

249 Sound channel 2

248 Sound channel 3

247 Speech buffer

On exit X contains a number giving, for input buffers, the number of characters
in the buffers. For output buffers X contains the number of spaces still free in the
buffer.

OSBYTE call with A = &81 (129) Read key within time limit

The call waits for a character from the current input channel until a time limit
expires or it tests a particular key. The BASIC function INKEY uses this call.
The programmer is reminded that this call will immediately obtain characters if
the user has ‘typed ahead’. It is therefore often necessary to flush the input buffer
with *FX15, 1 before using this call.

The maximum time delay is passed to the subroutine in X and Y. The delay is
measured in hundredths of a second and Y contains the most significant byte and
X the least significant byte. The maximum delay is &7FFF hundredths of a
second which is about five and a half minutes.

On exit, Y=0 if a character was detected within the time limit. In this case X
contains the character. Y=&1B indicates that ESCAPE was pressed. This must
be acknowledged with *FX12 6. Y=&FF indicates a time-out.

If on entry Y contains a negative number then the routine can be used to check
for a specific key closure. See the BASIC keyword INKEY for more information.

As an OSBYTE call a ‘check for character waiting with zero delay’ takes typically
130 microseconds.

OSBYTE call with A=&82 (130) Read machine high order address

The BBC Microcomputer uses a 6512 processor (a close relative of the 6502)
which requires a 16 bit address. However a number of routines require a 32 bit
address — for example most file system addresses are 32 bits wide to ensure
compatibility with future products. A specific high order address — that is the top
16 bits of the total 32 bit address — is allocated to the present BBC
Microcomputer. The high order address is returned in X and Y with Y containing
the most significant byte and X the least significant byte.

416

OSBYTE call with A=&83 (131) Read top of OS RAM address (OSHWM)

The Machine Operating System uses memory from page zero up to store
operating system variables. The exact amount of RAM needed depends, for
example, on whether or not the disc operating system is in use.

This call is used to return the address of the first free location in memory above
that required for the operating system. The value is returned in X and Y with Y
containing the most significant byte and X containing the least significant byte.

10A%=131

30PRINT ~USR(&FFF4)

>RUN

B10EOOS83

&0EO0O0 is the value returned, 83 is the OSBYTE code.

OSBYTE call with A=&84 (132) Read bottom of display RAM address

This call returns, in X and Y, the lowest memory address used by the screen
display or by special paged ROMs. It indicates the top of free RAM that BASIC
can safely use. HIMEM is normally set to this value when using the MODE
statement. As usual, Y contains the most significant byte and X the least
significant byte of the result. If this call is made following a *SHADOW
command, &8000 will only be returned following a MODE change. (See chapter
42 for details of the shadow screen facility).

OSBYTE call with A=&85 (133) Read lowest address for particular
MODE

This call returns, in X and Y, the address of the start of memory that would be
set aside if a particular display MODE were to be selected. Certain paged ROMs
might also affect the value returned. The display MODE to be investigated is
passed in X. This call does not change MODE s, it merely investigates the
possible consequences of doing so. If this call is made following a *SHADOW
command, it will return &8000 without the need for a MODE change. (See chapter
42 for details of the shadow screen facility).

OSBYTE call with A=&86 (134) Read text cursor position

This call returns in X and Y the X and Y coordinates of the text cursor. A similar
function is performed in BASIC by POsS and VvPOS. As an OSBYTE call
thistakes typically 100 microseconds.

417

OSBYTE call with A=&87 (135) Read character at text cursor position

On exit X will contain the character at the text cursor’s position and Y will
contain a value representing the current graphics display MODE . If the
character cannot be recognised then X will contain zero.

The following function could be used to read the character at position X,Y in a
BASIC program.

2000 DEF FNREADCH (X,Y)
2010 LOCAL A%, LASTX, LASTY,C
2020 LASTX=POS

2030 LASTY=VPOS

2040 VDU 31,X,Y

2050 A%=135

2060 C=USR(&FFF4)

2070 C=C AND &FFFF

2080 C=C DIV &100

2090 VDU 31, LASTX, LASTY
2100 = CHRS$ (C)

The call takes typically 120 microseconds.

OSBYTE call with A=&89 (137) Motor control

This call is similar to the *MOTOR statement in BASIC. If only one cassette
recorder is in use then setting

X=0 will turn the motor off
X=1 will turn the motor on

The cassette filing system (CFS) controls the motor using this OSBYTE call and
sets Y as follows:

Y=0 for write operations
Y=1 for read operations

As a result the user can easily implement a dual cassette system by trapping any
OSBYTE call with A=&89 and activating (via his or her own hardware) the
second recorder for, say, all write operations. The normal internal motor control
could then be activated for all read operations.

418

OSBYTE call with A=&8A (138) Insert character into specified buffer

This enables characters to be inserted into any buffer. On entry X contains the
buffer number and Y contains the character to be inserted. Buffer numbers are as
follows:

(=)

Keyboard buffer

RS423 serial input buffer
RS423 serial output buffer
Printer output buffer
Sound channel 0 buffer
Sound channel 1 buffer
Sound channel 2 buffer
Sound channel 3 buffer
Speech buffer

O 30 Ok WIN M-

Therefore to place the letter R (ASCII code 82) into the keyboard input buffer you
would use

*FX138,0,82

In machine code the X register must contain the buffer number and the Y
register the character, eg

10 DIM GAP 20

20 OSBYTE = &FFF4
30 P%=GAP

40 [

50 LDA #138

60 LDX #0

70 LDY #82

80 JSR OSBYTE

90 RTS

100]

110

120 CALL GAP

>RUN

1B82

1B82 A9 8A LDA #138
1B84 A2 00 LDX #0
1B86 A0 52 LDY #82
1B88 20 F4 FF JSR OSBYTE
1B8B 60 RTS

(see next chapter for more details of machine code and assembly language.)

419

OSBYTE call with A=&8B (139) File options

This call is directly equivalent to *OPT and it controls the computer’s response
to errors during file operations such as LOAD and SAVE. See chapter 35 for
more details.

For example, with the cassette filing system *Fx139,1,0 would issue no
messages during file operations.

*FX139, 2,2 would make the computer abort if any error were detected.
*FX139, 3,5 would result in 0.5 second inter-block gaps.

On entry X contains the option number and Y contains the particular selected
option. Thus

LDA #139
LDX #1
LDY #0
JSR &FFF4

would ensure that no error messages were issued during file operations.

OSBYTE call with A=&8C (140) Tape speed
This call is directly equivalent to * TAPE which selects the cassette file system
and the baud rate to be used. On entry X contains a number to set the baud rate.

X=0 Default rate (1200 baud)
X=3 300 baud
X=12 1200 baud

OSBYTE call with A=&90 (144) TV

This call is functionally equivalent to *TV. The contents of the X register are
used to control the vertical position of the screen display. For example, setting
X=2 would move the display two text lines up the screen. Setting X=253 would
move the display three lines down the screen. The contents of Y should be either
0 or 1 on entry. Y=0 gives an interlaced display and Y=1 gives a non-interlaced
display. Note that the offset and interlace mode selected only come into effect at
the next MODE change. The values set stay in force until a hard reset. Interlace
is off on power up.

420
*TV is used as follows.

*TV on its own is equivalent to *Tv0, 0 and will turn the interlace on at the
next MODE change or BREAK.

*Tvx will also turn the interlace on while giving a vertical offset of x. To
maintain interlace off when giving an offset you must use *Tvx, 1 (interlace on
may make the picture flicker on some TVs or monitors).

OSBYTE call with A=&91 (145) Get character from buffer

This enables characters to be removed from various input buffers. On entry X
indicates the buffer from which the character is to be extracted. On exit Y
contains the character and C=0 if a character was successfully removed. If the
buffer was empty then C will be 1. The buffer numbers are as follows:

X=0 Keyboard buffer
X=1 RS423 input buffer

OSBYTE calls with A=&92 to &97 Read or write to memory mapped
input/output

This group of calls is used to read or write data from or to the various memory
mapped input/output devices. It is vital that users use these routines rather than
attempting to address devices directly. The use of these routines will ensure that
programs will work whether they are executed in the input/output processor (the
BBC Microcomputer) or in a second processor. If the user insists on addressing
I/0 ports directly (eg STA &FE60) then he or she will have to rewrite programs
when the system is expanded. Considerable effort has been expended to ensure
that suitable routines are provided to enable the Assembly Language
programmer to expand his or her system painlessly. Please learn to use the
facilities provided!

There are three memory mapped input/output areas and these are named FRED,
JIM and SHEILA. SHEILA contains all the machine’s internal memory mapped
devices, such as the analogue to digital converter, and should be treated with
considerable respect. FRED and JIM, on the other hand, address external units
connected to the 1IMHz expansion bus.

421

Name Memory address range OSBYTE call
Read Write
FRED &FC00-&FCFF &92(146) &93(147)
JIM &FD00-&FDFF &94(148) &95(149)
SHEILA &FE00-&FEFF &96(150) &97(151)

On entry to the routines A contains the OSBYTE call number and X the offset
within the page. If a byte is to be written it should be in Y.

An application note entitled ‘BBC Microcomputer application note no. 1 — 1MHz
bus’ explains suggested memory allocations for FRED and JIM. It can be
purchased from Acorn Computers. SHEILA addresses the devices with the offsets
shown in the table.

The user should be aware that the computer expects to service interrupts from all
except the user port on the B side of the 6522. The A side is used for the parallel
printer interface. Routines are provided (such as OSBYTE and OSWORD calls,
etc) to handle these devices. The only circuit that the user should need to handle
directly is the 6522 user port. Information about other ports is given for
information only — not to encourage you to access the circuits directly. You would
be well advised to use the numerous routines provided wherever possible.
Further details about some ports are given in the section in chapter 45 which
deals with input/output.

422

SHEILA addresses (offset from &FE00)

Hex Integrated Register Description
offset | circuit destination | Write Read
00 6845 CRTC Address register
01 6845 CRTC Register file
08 6850 ACIA Control register Status register
09 6850 ACIA Transmit data register Receive data register
10 Serial ULA Control register
20 Video ULA
21 Video ULA
30 LS161 Paged ROM/RAM ID
34 Shadow RAM select (top
bit)

40 6522 VIA MOS input/output
60 6522 VIA ORB/IRB Output register ‘B’ Input register ‘B’
61 6522 VIA ORA/IRA Output register ‘A’ Input register ‘A’
62 6522 VIA DDRB Data direction register ‘B’
63 6522 VIA DDRA Data direction register ‘A’

6522 VIA T1C-L T1 low-order latches T1 low-order counter
65 6522 VIA T1C-H T1 high-order counter
66 6522 VIA T1L-L T1 low-order latches
67 6522 VIA T1L-H T1 high-order latches
68 6522 VIA T2C-L T2 low-order latches T2 low-order counter
69 6522 VIA T2C-H T2 high-order counter
6A 6522 VIA SR Shift register
6B 6522 VIA ACR Auxiliary control register
6C 6522 VIA PCR Peripheral control register
6D 6522 VIA IFR Interrupt flag register
6E 6522 VIA IER Interrupt enable register
6F 6522 VIA ORA/IRA Same as register 1 except

no ‘handshake’
80 8271 FDC Command register Status register
81 8271 FDC Parameter register Result register
82 8271 FDC Reset register
83 8271 FDC Illegal Illegal
84 8271 FDC Write data Read data
80 1770 FDC Drive select
84 1770 FDC Control Status
85 1770 FDC Track Track
86 1770 FDC Sector Sector
87 1770 FDC Data Data
A0 68B54 ADLC | CR1/SR1 Control register 1 Status register 1
Al 68B54 ADLC | CR2/SR2 Control register 2/3 Status register 2
A2 68B54 ADLC | TxFIFO/ Transmit FIFO, continue Receive FIFO
RxFIFO
A3 68B54 ADLC | TxFIFO/ Transmit FIFO, terminate Receive FIFO
RxFIFO

Cco uPD7002 Data latch, A/D start Status
C1 ADC High byte of result

C2

423
A few examples will help to clarify the use of these calls.
*FX147,5,6
would write to FRED+5 (&FCO05) the value 6. Similarly

LDA #&97
LDX #&62
LDY #&FF
JSR &FFF4

would write &FF into location &FE62. An OSBYTE call with A=&97 will write to
SHEILA. The base address of SHEILA is &FEO00 and to this is added the offset in
X (&62). The value written is contained in Y. The net effect is to write to the 6522
data direction register and to cause all the PB lines to become outputs.

OSBYTE call with A=&98 (152) Examine specified buffer
This call examines a buffer. The buffer number (same as for OSBYTE calls 21
and 138) must be in X, and the call returns as follows:

— Carry bit set if buffer empty.
— Carry bit clear if characters present in buffer.
—Y contains the next character which will be returned if the buffer is read.

(Note that the character in Y has not actually been removed from the buffer.)

OSBYTE call with A=&9E (158) Read from speech processor
See Speech System User Guide.

OSBYTE call with A=&9F (159) Write to speech processor
See Speech System User Guide.

OSBYTE call with A=&D1 (209) Enable/disable speech

This call reads (or writes to) location &261, which contains the value sent to the
speech processor when speech is output. A value of &50 is the default value,
representing speech on. Writing to the location with X=1 will turn speech off. To
write to &261, set X=new value, Y=0. To read the location, set X=0, Y=255. On
exit, X=the contents of location &261 (if reading), or the previous value held (@if
writing). The contents of the next location (ie &262) are returned in Y.

OSBYTE with A=&D2 (210) enable/disable sound

This call reads (or writes to) location &262, which contains the sound status. A
value of zero is the default value, representing sound on. Writing to this location
with X=1 will turn sound off. To write to &262, set X=new value,

424

Y=0. To read the location, set X=0, Y=255. On exit, X=the contents of location
&262 (if reading), or the previous value held (if writing). The contents of the next
location (ie &263) are returned in Y.

OSBYTE with A =&DA (218) Read/write number of items in VDU queue

This call reads (or writes) the number of VDU parameters which are still
expected. To read the location containing the value of this parameter (&26A), set
X=0, Y=&FF. To write to the location, set X=new value, Y=0. Setting X=0, Y=0
gives a useful way of abandoning a VDU queue, otherwise writing to &26A is not
recommended. On exit, X contains the 2’s complement negative number of bytes
still required for the execution of a VDU command. The contents of next location
(ie &26B) are returned in Y.

OSBYTE call with A=&E0 (224) Cancel VDU queue

Many VDU codes expect a sequence of bytes. For example, vDU1 9should be
followed by five bytes. This call signals the VDU software to throw away the
bytes that it has received so far. On entry X and Y must contain zero.

The next group of OSBYTE calls (&E1 to &E8) can be used to read or write
status information. The calls read the current value of the status being
investigated, AND the value with the contents of Y, EOR the result with the
contents of X and then write the value back. If V represents the particular status
in the computer then V becomes (V AND Y) EOR X. This sequence enables V to
be read or be written to and enables any single bit, or group of bits of V, to be set,
cleared or inverted.

If, on entry, X=&00 and Y=&FF the net effect will be to read the value of V into X
without altering V. On the other hand if Y=&00 then the contents of X will be
written into V. To set a single bit of V without altering other bits set all the bits
of Y to 1 except the specified bit. Clear all the bits of X to 0 except the specified
bit. For example, to set bit 0 of V to 1 use Y=&FE and X=&01.

To clear a single bit in V set all the bits of Y to 1 except the specified bit and set
X=0. For example, to clear bit 0 of V use Y=&FE and X=&00. Of course, many
bits may be set, cleared, inverted or examined at the same time.

OSBYTE call with A=&E1 (225) Set base number for function key codes

Normally the red function keys can be programmed to produce strings of
characters by, for example, the statement

*KEY 0 PRINT

425
As an alternative the keys can produce a single ASCII code. The statement
*FX225,240

would set the base value for the function keys to 240 thus causing key f0 to
produce ASCII code 240, f1 to produce 241 and so on to f9 which would produce
249. This enables these keys to produce ASCII codes for user defined characters.

*FX225, 1 returns the keys to their normal function of generating strings.
*FX225, 0 makes the keys have no effect.
On entry Y must contain zero.

OSBYTE call with A=&E2 (226) Set base number for SHIFT function key
codes

Pressing one of the function keys while the SHIFT key is pressed will normally
produce ASCII codes in the range 128 to 137. These values were chosen with the
Teletext codes in mind.

Shift function key ASCII code Teletext effect

fo 128 Nothing

f1l 129 Red alphanumeric
f2 130 Green alphanumeric
f3 131 Yellow alphanumeric
f4 132 Blue alphanumeric
f5 133 Magenta alphanumeric
f6 134 Cyan alphanumeric
7 135 White alphanumeric
f8 136 Flash

9 137 Steady

These codes are said to have a ‘base value’ of 128 since key fO produces a code
128.

If the user wishes, the base value of the ASCII codes can be changed by using
this call:

*FX226,144

This would set the SHIFT function key codes to produce equivalent graphics
color Teletext codes. The default setting is

*FX226,128

On entry Y must contain zero.

426

OSBYTE call with A=E3 (227) Set base number for CTRL function key
codes

See the entry for OSBYTE &E2. The default base value is 144.

OSBYTE call with A=&E4 (228) Set base number for SHIFT CTRL
function key codes

See entry for OSBYTE &E2. The default is that these key combinations have no
effect. Note: Remember that pressing CTRL and SHIFT together stops screen
output while they are pressed.

OSBYTE call with A=&E5 (229) ESCAPE key gives ASCII code

This call can be used to make the ESCAPE key generate an ASCII code (27 or
&1B) instead of interrupting a BASIC program. If X=0 then the ESCAPE key
interrupts the BASIC program (*FX229,0). On the other hand,
*FX229, 1(X=1) causes the key to generate its ASCII code. On entry Y must
contain zero.

OSBYTE call with A=&E6 (230) Enable/disable normal ESCAPE key
action

When a BASIC program is interrupted by pressing the ESCAPE key, or by
*FX125, all internal buffers will be cleared. This call can be used to stop the
flushing of all internal buffers when a program is stopped. On entry Y must
contain zero.

*FX230, 0will permit all buffers to be flushed.

*FX230, 1will ensure that no buffers are flushed.

OSBYTE call with A=&E7 (231) Enable/disable user 6522 IRQ

This call sets a ‘mask’ byte which the operating system uses when servicing IRQs
which may have originated in the 6522 which is used for the parallel printer and
user port. The operating system ANDs the mask byte with the 6522 interrupt
flag register AND the 6522 interrupt enable register. Setting the mask to zero
would prevent the operating system from handling the 6522 interrupts thus
leaving them available to be handled by user supplied routines. Additionally
sideways ROMs may handle (via the operating system) interrupts generated from
the B side of the 6522. The mask byte could hide those interrupts from the
sideways ROMS. The mask byte defaults to &FF.

427

OSBYTE call with A=&ES8 (232) Enable/disable 6850 ACIA IRQ

This call sets a ‘mask’ byte which is used by the operating system when servicing
IRQs which may have originated from the 6850 ACIA used for the RS423 and
cassette interfaces. The operating system ANDs the mask byte with the 6850
status register. See the entry above (OSBYTE &E7) for further comments. The
default value is &FF.

OSBYTE call with A=&E9 (233) Enable/disable system 6522 IRQ

As for &E7 but affects the system 6522. The system 6522 is used extensively in
the normal operation of the machine and consequently this call should be used
with extreme care.

OSBYTE call with A=&EB (235) Presence of speech processor

This call returns presence of speech processor.
X=&FF if speech processor present
X=0 if speech processor not present

OSBYTE with A=&EF (239) Read/write shadow mode state

This call reads (or writes to) location &27F, which contains the shadow mode
flag. To read the flag, set X=0, Y=255. To write to &27F, set X=new value, Y=0.
On exit, X=0 if in shadow mode, X=1 otherwise (reading). If writing, X returns
the previous value of the flag. The contents of next location (ie &26C) are
returned in Y. (See chapter 42 for details of the shadow screen facility.)

OSBYTE call with A=&FD (253) Last reset type
This call returns a number indicating what sort of reset last occurred.
Y = 0 Soft break

Y = 1 Power-on break
Y = 2 CTRL BREAK

44 An introduction to
assembly language

Machine code and the assembler

The heart of any computer, the part that actually does all the processing, is the
central processor unit (CPU). It is important to realise that no matter what
language is typed in at a computer’s keyboard (sometimes called the source
language), the only language that the CPU understands is machine code. Of
course, the exact form of the machine code depends upon the source language and
also upon the type of CPU, but generally speaking any machine code instruction
would look something like this:

1010100110000001

This hardly looks like an intelligible instruction, and even rewriting it as two
pairs of hexadecimal digits hardly makes it look any better:

A9 81

However, to the BBC Microcomputer’s 6512 microprocessor, A9 means ‘load the
accumulator’, and the whole of the above instruction means ‘load the accumulator
with hexadecimal 81’. (The accumulator is one of six registers which reside in the
6512 microprocessor.) The ‘A9’ part is known as the ‘operation code’ or opcode for
short, and the 81 is the ‘operand’. A few more hex machine code instructions with
their meanings are:

A2 64 ‘load the X register with &64’
A0 00 ‘load the Y register with zero’
20 F4 FF ump to the subroutine at location &FFF4’

You will probably agree that whilst it would be possible to write programs using
opcodes like those shown above, it would be extremely tedious. What’s more,
since the 6512 only carries out one instruction at a time, a sequence of
instructions like that shown above would have to be ‘poked’ into contiguous
locations in RAM. As a final indignity, if you spent a long time writing a machine
code program which turned out not to work, it would be extremely difficult to
trace the errors — unlike BASIC, machine code does not generate error messages
automatically.

Fortunately, the BBC Microcomputer contains a program which will generate
machine code instructions for you. It’s available as part of the BBC BASIC
language, and is known as the assembler. The language that the assembler
understands is simply known as assembly language, or 6502 assembly

429

language in the BBC Microcomputer’s case. (The 6512 is a close relative of the
6502, and uses the same assembly language.)

The assembly language statements which would generate the machine code
statements shown above are:

LDA #129 (=A9 81, ‘load the accumulator with &81)

LDX #100 (=A2 64, ‘load the X register with &64’)

LDY #0 (=A0 00, ‘load the Y register with zero’)

JSR &FFF4 (=20 F4 FF, jump to the subroutine at location
&FFF4’)

Clearly, an instruction like ‘LDX’ looks a lot more like ‘load the X register’ than
‘A2’ does. LDA, LDX, LDY and JSR are all known as ‘assembly code mnemonics’.
6502 assembly language has 56 mnemonics, some of which will be discussed in
detail later in this chapter.

Uses of assembly language

BASIC is a very easy language to use; most of its statements look much like
English, and it is very ‘friendly’, since it gives you helpful messages about
mistakes that you may have made in your program. The price to be paid for this
‘friendliness’ is in memory usage and speed of execution. Assembly language is
used where high speed is vital (such as in an arcade game) or where the
minimum amount of memory must be used. BASIC is used where ease of
programming is more important than either speed or memory usage.

The main features of 6502 assembly language

It is not the purpose of this chapter to teach you how to program in assembly
language; you are referred to the large number of books that have been published
which are concerned with the BBC Microcomputer and how to program it. This
chapter does, however, describe the most important features of assembly
language. Below is an example of a simple hybrid BASIC/assembly language
program, which you may have already seen in the previous chapter:

10 OSBYTE=&FFF4
20 P%$=&3500

30 [

40 LDA #129

50 LDX #100

60 LDY #0

70 JSR OSBYTE
80 RTS

90 1]
100 CALL &3500

430

If you have not already seen this program, then what it does is to wait one second
for a key to be pressed. If no key is pressed within one second then nothing
happens (command mode is returned to). If a key is pressed within one second, its
character is printed on the screen and command mode is returned to
immediately.

Line 10 simply assigns the value &FFF4 to the variable called OSBYTE. If you
are familiar with operating system calls then you will recognise OSBYTE as the
name of a MOS rotine and &FFF4 as its call address. Line 20 assigns the value
&3500 (an address, as it happens) to the resident integer variable P%. When the
program is run, the value in P% is transferred by the machine operating system
(MOS) into a register in the 6512 microprocessor called the ‘program counter’
(abbreviated to PC). The program counter is one of six registers which reside in
the 6512. The registers, their abbreviations and their uses are listed below.

The 6512 registers
Program counter - PC (PCL - low byte, PCH - high byte)

A 16-bit register which contains the address of the next instruction to be
executed. In the example shown above, the initial value of PC is taken from P%.
The contents of the program counter are altered by §ump’ and ‘branch’
instructions, thereby diverting the flow of the program.

Accumulator - A

An 8-bit general purpose register used for all arithmetic and logical operations.

X register - X

An 8-bit general purpose register often used to contain entry and exit parameter
values for MOS routine calls, also used to contain the ‘offset’ for indexed
addressing modes (see later), or as a counter.

Y register -Y

An 8-bit general purpose register often used to contain entry and exit parameter
values for MOS routine calls, also used to contain the ‘offset’ for indexed
addressing modes (see later), or as a counter.

431

Program status register - P

An 8-bit register set up and used by the microprocessor itself. Each bit has its
own meaning, concerned with the results of arithmetic and logical operations,
and with interrupt status. A detailed description of this register is beyond the
scope of this manual. Of occasional interest is the state of bit 0, the carry flag
(abbreviated to C). This is set if a carry occurs during an add operation, and is
cleared if a borrow occurs during a subtract operation. Following an operating
system call, the state of C has a significance which varies according to the
particular call involved.

Stack pointer - SP

An 8-bit register which contains the least significant byte of the address of the
next free stack location (the most significant byte is always &01). The stack is a
portion of memory (&100-&1FF) used for the temporary storage of data (such as
return addresses from subroutines). Data is ‘pushed’ onto the stack in sequence,
then removed by ‘pulling’ it off again. The last byte to be pushed on is the first
byte to be pulled off (this is often referred to as a ‘last in, first out’ queue).

The assembler delimiters ‘[’ and ‘]’, and general
assembly language syntax rules

Assembly language statements within a BASIC program must be enclosed
between a pair of square brackets (see lines 30 and 90 in the above example).
When the BASIC program is RUN, the assembly language statements between
the square brackets are assembed into machine code, which is inserted into
memory starting at the address specified by P%. An assembly language program
consists of a number of assembly language statements, separated by new lines or
colons (as in BASIC).

Each assembly language statement consists of an optional label (which must
always be preceded by a dot), followed by an instruction. An instruction consists
of a three letter assembly language mnemonic followed by an operand (or an
address) (both of the latter may be absent depending upon the mnemonic). If a
label is included, it must be separated from the mnemonic by at least one space.
There need not be any spaces between the mnemonic and the operand. Any
character following the operand and separated by at least one space from it will
be ignored by the assembler which will move on to the next colon or line for the
next statement. A comment may be placed after the operand and should be
preceded by a backslash (\). Any text following a backslash in an assembly
language statement will be ignored by the assembler up to the next colon or end-
of-line.

432

Line 40 of the example program could therefore be re-written as:

.start LDA #129 \load accumulator with OSBYTE number
or as

.start LDA#129\load accumulator with OSBYTE number

(Here, the label .start would have no fuction, but would not affect the
processing.)

Addressing modes

Most assembly language instructions require data to work on, which must be
provided in the operand field of the assembly language statement. Often, this
data is an address. The assembler allows several different methods of providing
these addresses or data to be used, these methods being known as addressing
modes. Not all assembly language instructions can use all the addressing modes;
see the table in the appendix for more details.

Implicit addressing

This is the simplest form of addressing, which does not require an address to be
supplied at all; the address is implied by the instruction itself. For example an
RTS instruction (see line 80 above) always causes the processor to jump to the
bottom two bytes of the stack, which contain the return address to the main
program.

Immediate addressing and zero page addressing
Line 40 of the example is

LDA #129

which means ‘load the accumulator with decimal 129’ (hexadecimal 29 could be
loaded by the statement LDA #&29). Here the statement uses the data supplied
in the operand field without having to look for it in memory, hence the name
‘immediate addressing’. The data can be supplied as a variable, hence

LDX #value
would load the X register with the value of the variable value.

The role of the # character in the above examples is important, since it indicates
to the assembler that immediate addressing is to be employed, using the data
supplied immediately to the right of the #. The instruction

LDA 129

means something quite different; it means ‘load the accumulator with the
contents of memory location 129’. The computer’s main memory is divided into

433

256 ‘pages’ each of 256 bytes. Page 0 extends from location 0 to location 255 (ie
any address with the two most significant bytes set to zero), hence the addressing
mode exemplified above is known as ‘zero page addressing’. The assembler will
automatically select zero page addressing mode (if appropriate) when the address
supplied is less than &100 (decimal 256).

Absolute addressing

This addressing mode is very similar to zero page addressing, except that any
address in memory can be specified. For example,

LDA &3456
would load the accumulator with the contents of memory location &3456,
LDA 8200

would load the accumulator with the contents of memory location 8200.

Indirect addressing

This addressing mode uses an address which is stored in memory. Only two
assembly language mnemonics use this mode, ADC and JMP. For example,

JMP (&2010)

means jump to the location whose address is held in &2010 (least significant
byte) and &2011 (most significant byte). Note that indirect addressing is
indicated to the assembler by enclosing the address in brackets.

Indexed addressing

This addressing mode exists in several forms, all of which share the common
feature that two addresses are given: a base address and an offset, or index. An
example is shown below:

LDA &1F00,X

This means ‘load the accumulator from the value held at &1F00+X’. X is used
here as the index register; Y could be used in the same way. This form of indexed
addressing is known as absolute indexed addressing. Note that X (or Y) must be
in the range 0-255. Zero page, X indexed addressing is similar except that the
base address must be in page zero. For example,

LDY &74,X
means ‘load the Y register with the contents of (&74+X)’

The assembler automatically uses this mode, if available, if a page zero address is
specified in the operand field. Note that the offset must be supplied in the X
register, except for the LDX mnemonic when the Y register can (and must) be
used. Note that the sum of the base address plus the offset in this mode will

434

always be taken as an address in page zero. If the address moves out of page zero
the processor will perform a ‘wrap-around’ operation to take it back into page
zero — for example an address of &102 would be wrapped around to &002.

Another type of indexed addressing is pre-indexed indirect addresing. An
example of the instruction format is:

LDA (&82,X)

This instruction adds the address in the X register to &82 to give a new address;
the contents of the location at this new address, and the contents of the location
above it, together supply the full 16-bit address from which the accumulator is
loaded. This addressing mode is designed for use with a table of addresses in zero
page locations. For example, if we have

?&70=&00
?&71=&20
?&72=&FF
?&73=&21

then

LDX #0 \ set X to zero
LDA (&70,X) \ A=?&2000, ie address in (&70+X),
(&71+X)

<perform some other operation>

LDX #2 \ set X to 2
LDA (&70,X) \ A=?&21FF, ie address in (&72),
(&73)

Note that the base address, and the base address plus the offset must be in page
zero (the wrap around operation described above still applies). The Y register
cannot be used for this addressing mode. The mode is called pre-indexed because
the index is first added to the base address to give the address of the pair of
locations which hold the address loaded into the accumulator. In post-indexed
indirect addressing, the 16-bit address held in the location pair given by the base
address is extracted first, and the index is then added to this address to give the
address of the location from which the accumulator is loaded. An example of the
instruction format is:

LDA (&80),Y

435

Note that in this addressing mode the Y register is used as the index (X cannot
be). The ‘zero page’ and ‘wraparound’ comments given above still apply. An
example of its use is shown below. The program shown sets 128 memory locations
to &FF, starting at the address contained in locations &80 (low byte) and &81
(high byte):

10 ?&80=&00:?&81=&28
20 DIM GAP 50
30 P%$=GAP

40 [
50 LDY #0 \ set loop index to zero
60 LDA #&FF \ set value to be loaded

70 .loop STA (&80),Y \ ?(&2800+Y)=&FF, base addr.
in &80 and &81

80 INY \ Y=Y+1

20 CPY #128 \ end of loop reached?
100 BNE loop \ if not, go to loop
110 RTS

120]

130 CALL GAP

(Lines 20, 30 and 130 are explained below.)

Relative addressing

Relative addressing is the addressing mode used by assembly language branch
instructions. In the above example, the mnemonic at line 100 is such an
instruction. If the condition tested at line 100 is not satisfied, ie if Y=128, the
next instruction to be executed will be the one being pointed to by the program
counter — the instruction at line 110. If however the condition is satisfied, ie if
Y<>128, the processor will decrement the program counter so that it points to the
insruction labelled by loop, and this instruction will be the next one to be
executed. In the above case, the program counter has to be decremented by 7
(this will become apparent from a careful study of the machine code printed on
the screen when the above program is RUN). The address of the instruction
labelled by 1oop is -7, relative to the address held in the program counter. This
relative addressing is carried out by the assembler, and normally goes unnoticied
by the programmer. There are, however, limits to the number of bytes which can
be jumped forward or back; a branch of up to 127 bytes forward or 128 bytes back
from the Program counter value (at the time the branch instruction is being
executed) is allowed. Care should therefore be taken that labels are not too far
from the instructions that branch to them, otherwise an ‘Out of range’ error will
result. (Remember that each instruction may be 1, 2 or 3 bytes long.)

436

Accumulator addressing

Th final addressing mode used by the assembler is known as accumulator
addressing. This is where the accumulator is addressed rather than a memory
location, and is specified by placing A in the operand field. For example:

ASL A

means ‘shift the contents of the accumuator one bit to the left’. Note that this
means that ‘A’ cannot be used as a variable name within an assembly language
program.

Finally, it must be re-emphasised that each assembly language mnemonic can
only use some of the addressing modes detailed above; see the table in the
appendix for the addressing modes used by each instruction.

Placing machine code programs in memory

When the assembler is creating a machine code program the code produced is
placed in memory starting from the address in P% (unless O% is used, see OPT
below). The assembler updates the value in P% as it is assembling, and at the
end of an assembly operation the value in P% represents the address of the first
‘free’ memory location after the machine code program. In the example program
shown above, the value of P% is allocated directly (at line 20). This method of
setting up P% is somewhat dangerous, since you have to be sure that location
&3500 and (in this case) the nine locations beyond &3500 do not contain
anything important. A much safer way of setting up P% is to dimension a block of
memory using a variation of the BASIC DIM keyword. The example program
below illustrates this feature, and other features used with assembly language:

5 REM Uses assembly code to change to mode 4 and
draw a triangle

10 OSWRCH=&FFE3

20 DIM GAP% 100

30 DIM data &1C

40 FOR opt%=0 TO 3 STEP 3

50 P%$=GAPS%

60 [

70 OPT opt%

80 .entry LDX#0 \ set data block offset to
zero

90 .loop LDA data,X \ load VDU parameter from
data block
100 JSR OSWRCH \ perform VDU command
110 INX \ increment offset
120 CPX #&l1C \ has all data been loaded?

437

130 BNE loop \ if not, load next item
140 RTS \ return to BASIC
150]

160 NEXT opt$%

170 !data=&04190416
180 data'!4=&00C800CS8
190 data!8=&00C80119
200 data!&C=&01190000
210 data!&10=&00ADFFI9C
220 data!&l4=&FF9CO0119
230 data!&18=&0000FF53
240 CALL entry

This program uses OSWRCH to perform operations equivalent to BASIC’s vDU
command, drawing a triangle on the screen in MODE 4. Note the use of indexed
addressing at line 90 to load values from a table. Extensive use is made of
indirection operators (see chapter 39 for details). The first pass of the assembly
language loop is equivalent to

VDU &16,&04 (seeline 170, reading from the right)
or VDU 22,4 (ie change to MODE 4).

Note line 20. This use of the DIM statement causes (in this case) 100 bytes of
memory to be reserved, the start address of the block being transferred to the
variable GAP %. The start address will always be greater than the value of TOP
and below the start of screen memory, and so is ‘safe’ (the allocation is made in
the same way as the allocation of a BASIC variable). The value in GAP% is
transferred to P% at line 50, and so gives the address where the machine code
will be assembled. Line 30 uses DIM to reserve 28 memory locations for the data
table to be used by the program, the start address of the table being stored in the
variable data.

Although for most applications machine code will be assembled and run at the
same place in memory, it is possible to assemble code at one location and run it at
another. Setting the resident integer variable O% to an address (and at the same
time setting the pseudo variable OPT to a certain value, see below) will cause
the machine code to be assembled at that address but assembled to run at the
address given by P%; in other words the program counter is still controlled by P%
during assembly. O% can be used, for example, to get a machine code program to
run in the I/O processor which has been assembled in a second processor. See the
description of the OPT keyword below for further details.

438

OPT, forward referencing and two-pass assembly
Take a look at the following program:

10
20
30
40
50

60

70

80

90
100

In this program, line 70 is known as a ‘forward reference’, since it refers to a label
which doesn’t appear until line 90. If the above program is run, the error message

DIM GAP 50

P%$=GAP

address=&70

[

LDA address \ Load accumulator with
contents of address

CMP #0 \ Compare accumulator
contents with zero

BEQ zero \ Jump to label if
accumulator contents zero

STA address+l \ Store accumulator
contents at address+1

.zero RTS

1

No such variable at line 70

will appear. This is because the assembler has not allocated an address to the
label zero yet. The reason for the error message is that a ‘two-pass assembly’ is
required. The first pass allocates addresses to all labels; the second pass can then
jump to the correct memory location when a jump to label’ instruction is
encountered. A two-pass assembly is controlled using the OPT command, as

shown below:

10
20
30
35
40
45
50

60

70

80

90

DIM GAP 50
address=&70
FOR pass=0 TO 3 STEP 3

P%$=GAP

[

OPT pass

LDA address \ Load accumulator with
contents of address

CMP #0 \ Compare accumulator
contents with zero

BEQ zero \ Jump to label if

accumulator contents zero

STA address+l \ Store accumulator
contents at address+1

.zero RTS

439

100 1]
110 NEXT
120 CALL GAP

Here, the assembly language is enclosed in a loop such that two passes are made,
with the value of OPT as 0 on the first pass and 3 on the second pass. (The same
device is employed in the triangle drawing example above.) The values which are
assigned to OPT have the following effects:

0 Assembler errors suppressed, no listing
1 Assembler errors suppressed, listing

2 Assembler errors reported, no listing

3 Assembler errors reported, listing

So, in the above example, OPT=0 on the first pass so there will be no listing and
no errors reported. This allows the forward referenced label to be identified
without the assembly being interrupted. On the second pass, OPT=3 and so a
listing of the compiled code is produced, along with any programming errors.
Note that the assignment statement P$=GAP must be enclosed within the loop
so that it is reset before each pass. If the above program is RUN, its assembly and
execution should now be successful. (The program is trivial; it merely loads a byte
from the memory location specified by address, and, if the byte is non-zero,
transfers it to the next memory location).

Setting OPT equal to 4, 5, 6 or 7 has the same effect as setting it to 0, 1, 2 or 3
(respectively) except that the code is placed in memory starting at the address
supplied in O%, rather than that in P%.

Note that OPT is not an assembly language mnemonic, but a so-called ‘pseudo-
operation’, or assembler directive. It tells the assembler to do something, but is
not an assembled instruction.

The EQUate facility

EQU is a pseudo-operation, which allows data to be incorporated into the body of
an assembly language program. The EQU operations available are:

EQUB equate byte reserves one byte of memory
EQUW equate word reserves two bytes of memory
EQUD equate double word reserves four bytes of memory

EQUS equate string reserves memory as required

440

These operations set the reserved memory locations to the values specified in the
operand field. The operand field may contain a string (in double quotes) or a
string variable for the EQUS operation, or a number or a numeric variable for
the other EQU operations. The assembler will use the least significant part of
the value if too large a value is specified. As an example of the use of EQUD, lines
30 and 170 to 230 of the triangle drawing example could be replaced with:

141 .data EQUD &04190416

142 EQUD &00C800CS8
143 EQUD &00C80119
144 EQUD &01190000
145 EQUD &0O0ADFFOC
146 EQUD &FF9CO0119
147 EQUD &00O0OFF53

The following example program illustrates the effects of including each of the
EQU pseudo-operations within an assembly language program:

10 P%$=&3000
20 A$="stringvar"
30 [
40 EQUS "string"
50 EQUS AS
60 EQUB 180
70 EQUW 12500
80 EQUD 6E6
90 1]
>RUN
3000
3000 73 74 72
69 6E 67 EQUS "string"
3006 73 74 72
69 6E 67
76 61 72 EQUS AS
300F B4 EQUB 180
3010 D4 30 EQUW 12500
3012 80 8D 5B
00 EQUD 6E6

The above printout shows that location &3000 contains &73, the hexadecimal
ASCII code for ‘s’, &3001 contains the hexadecimal ASCII code for ‘t’, etc

441

Machine code entry points

The BBC Microcomputer is unusual in a number of respects, not least because of
the care taken to ensure that everything that can be done by programs written in
the input/output processor (the BBC Microcomputer) can also be done in the
second processor which is on the far side of the Tube .

If a piece of machine code alters a particular memory location that controls the
screen display directly, then that same piece of machine code will not work in the
second processor because the screen will not be affected by any memory location
in the second processor.

It is vital that programmers avoid reading and writing to specific memory
locations such as the screen memory, zero page locations used by BASIC, and
memory mapped input/output devices. System calls are provided to enable you to
access all these important locations and use of these system calls will ensure that
your programs interact successfully with the machine. Don’t feel that we are
trying to hide anything from you — on the contrary we are offering you access to
all the I/0O routines that BASIC uses! Cultivate the habit of using system calls
and then you will not need to rewrite your code when you move it to the second
processor.

442

45 The operating system calls

Machine code user programs should communicate with the operating system by
calling routines in the address range &FF00 to &FFFF. These routines then call
a specific internal routine whose address may change in different operating
systems. The address of the specific routine is held in RAM between locations
&200 and &2FF. The user may change the address held in these RAM locations
to intercept any operating system call he or she wishes.

Thus the ‘output the character in A’ routine is entered at &FFEE in all
environments. The routine indirects through location &20E in all machines. The
contents of locations &20E and &20F will vary depending on the machine and
the version of the operating system. In one particular machine the address in
&20E and &20F is &E0A4 which is the local internal address of the normal
‘output the character in A’ routine.

Parameters are passed to the routines in various ways using either the 6512 A, X
and Y registers, zero page locations or a parameter block. All routines should be
called with a ISR and with the decimal flag clear (ie in binary mode).

In the detailed descriptions which follow A refers to the accumulator; X and Y
refer to the registers; C, D, N, V and Z refer to the processor flags.

The table on the next page gives a summary of operating system calls and
indirect vectors.

Files

Files are treated as a sequence of eight bit bytes. They can be accessed in one
operation (using OSFILE) or in blocks (using OSGBPB) or a byte at a time (using
OSBGET and OSBPUT). The following attributes may be associated with each
file.

Load address is the address in memory to which the file should normally be
loaded. This can be over-ridden when the file is loaded, if necessary.

Execution address is meaningful only if the file contains executable machine code,
in which case it is the address where execution should start. If the file contains a
high level language program then the execution address is unimportant.

Length is the total number of bytes in the file. It may be zero.

Pointer is an index pointing to the next byte of data that is to be processed. The
value of ‘pointer’ may be read or written (using OSARGS), and it does not
indicate whether the appropriate byte has yet been transferred from file to
memory or vice versa. Pointer is automatically updated by OSBGET and
OSBPUT.

443
OSWRSC

Writes a byte (contained in A) to the screen. The display memory location to be
written should be set up in &D6 (LSB) and &D7 (MSB). Y (on entry) is used to
contain an offset from this address. The effect of this call can be illustrated
(somewhat crudely!) by the program shown below:

10 MODE 7

20 ?&D7=&7C

30 Y$=255:A%=&45

40 FOR J=0 TO 127 STEP 2
50 ?&D6=J

60 CALL (&FFB3)

70 NEXT J

On exit, A, X and Y are preserved, C is undefined.

OSRDSC

Reads a byte from the screen, the display memory location concerned being
contained in &F6 (LSB) and &F7 (MSB). The byte is returned in A. The following
program illustrates the effect of this call:

10 MODE7Y

20 FOR K=1 TO 255

30 PRINT "E";

40 NEXT K

50 ?&F7=&7C

60 VDU1l4

70 FOR J=0 TO 127

80 ?&F6=J

90 PRINT ~USR(&FFBY)
100 NEXT J

This routine can also be used to read bytes from paged ROM, with Y (on entry)
set equal to the ROM socket number. In this context, this call has in the past
been referred to as OSRDRM.

OSFIND

Opens a file for writing or reading and writing. The routine is entered at &FFCE
and indirects via &21C. The value in A determines the type of operation.

A=0 Causes a file or files to be closed.
A=&40 Causes a file to be opened for input (reading).
A=&80 Causes a file to be opened for output (writing).

A=&CO0 Causes a file to be opened for input and output (random access).

444

Routine Vector Summary of function
Name Address| Name Address
UPTV 222 User print routine
EVNTV 220 Event interrupt
FSCV 21E File system control entry
OSWRSC FFB3 - - Write byte to screen
OSRDSC FFB9 - - Read byte from screen
OSFIND FFCE FINDV 21C Open or close a file
OSGBPB FFD1 GBPBV 21A Load or save a block of memory to
file
OSBPUT FFD4 BPUTV 218 Save a single byte to file from A
OSBGET FFD7 BGETV 216 Load a single byte to A from file
OSARGS FFDA | ARGSV 214 Load or save data about a file
OSFILE FFDD | FILEV 212 Load or save a complete file
OSRDCH FFEO RDCHV 210 Read character (from keyboard) to
A
OSASCI FFE3 - - Write a character (to screen) from
A plus LF if (A)=&0D
OSNEWL FFE7 - - Write LF,CR (&0A,&0D) to screen
OSWRCH FFEE WRCHV 20E Write character (to screen) from A
OSWORD FFF1 WORDV 20C Perform miscellaneous OS
operation using control block to
pass parameters
OSBYTE FFF4 BYTEV 20A Perform miscellaneous OS
operation using registers to pass
parameters
OSCLI FFF7 CLIV 208 Interpret the command line given
/TRQ2V 206 Unrecognised IRQ vector
/MRQ1V 204 All TIRQ vector
/BRKV 202 Break vector
USERV 200 Reserved

If A=&40, &80 or &CO then Y (high byte) and X (low byte) must contain the
address of a location in memory which contains the file name terminated with
CR(&0D). On exit A will contain the channel number allocated to the file for all
future operations. If A=0 then the operating system was unable to open the file.

445

If A=0 on entry then a file, or all files, will be closed depending on the value of Y.
Y=0 will close all files, otherwise the file whose channel number is given in Y will
be closed.

On exit C, N, V and Z are undefined and D=0. The interrupt state is preserved,
however interrupts may be enabled during the operation.

OSGBPB

The operating system call to get or put a block of bytes to or from a file which has
been opened with OSFIND. The routine is entered at &FFD1 and vectors via
&21A. This call is not available on the cassette filing system, and is fully
documented in the appropriate disc filing system user guides.

OSBPUT

Writes (puts) the byte in A to the file previously opened using OSFIND. The
routine is entered at &FFD4 which indirects through &218. On entry Y contains
the channel number allocated by OSFIND.

On exit A, X and Y are preserved, N, V and Z are undefined and D=0. The
interrupt state is preserved but interrupts may be enabled during the operation.

OSBGET

Gets (reads) a byte from a file into A. The file must have been previously opened
using OSFIND and the channel number allocated must be in Y. The routine is
entered at &FFD7 which indirects via &216.

On exit C=0 indicates a valid character in A. C=1 indicates an error and A
indicates the type of error, A=&FE indicating an end of file condition. X and Y
are preserved, N, V and Z are undefined and D=0. The interrupt state is
preserved but interrupts may be enabled during the operation.

OSARGS

This routine enables a file’s attributes to be read from file or written to file. The
routine is entered at &FFDA and indirects via &214. On entry X must point to
four locations in zero page and Y contains the channel number.

if Y is non-zero then A will determine the function to be carried out on the file
whose channel number is in Y.

A=0 Read sequential pointer.

A=1 Write sequential pointer.

A=2 Read length

A=&FF Ensure that this file is up to date on the media.

446
IfY is zero then the contents of A will determine the function to be carried out.

A=0 Return, in A, the type of filing system in use. The value of A on exit has the
following significance:

No filing system.

1200 baud cassette filing system.
300 baud cassette filing system.
Sideways ROM filing system.
Disc filing system.

Econet filing system.

Teletext filing system

IEEE filing system

Advanced Disc Filing System

03O0 ULk WNH-=O

A=1 Return address of the rest of the command line in the zero page locations.
A=&FF Ensure that all open files are up to date on the media.

On exit X and Y are preserved, C, N, V and Z are undefined and D=0. The
interrupt state is preserved but interrupts may be enabled during the operation.

OSFILE

This routine, by itself, allows a whole file to be loaded or saved. The routine is
entered at &FFDD and indirects via &212.

On entry A indicates the function to be performed. X and Y point to an 18 byte
control block anywhere in memory. X contains the low byte of the control block
address and Y the high byte. The control block is structured as follows from the
base address given by X and Y.

447

OSFILE control block

00 Address of file name, which must be LSB
terminated by &0D

01 MSB
02 Load address of file LSB
03
04
05 MSB
06 Execution address of file LSB
07
08
09 MSB
0A Start address of data for write operations, LSB
0B or length of file for write operations
0C
0D MSB
OE End address of data, that is byte after last LSB
OF byte to be written or file attributes
10
11 MSB

The table below indicates the function performed by OSFILE for each value of A.

A=0

A=1
A=2
A=3
A=4
A=5

A=6

Save a section of memory as a named file. The file’s catalogue information

is also written.

Write the catalogue information for the named file (disc only).
Write the load address (only) for the named file (disc only).

Write the execution address (only) for the named file (disc only).

Write the attributes (only) for the named file (disc only).

Read the named file’s catalogue information. Place the file type in A (disc

only).

Delete the named file (disc only).

A=&FF Load the named file and read the named file’s catalogue information.

When loading a file the byte at XY+6 (the LSB of the execution address)
determines where the file will be loaded in memory. If it is zero then the file will
he loaded to the address given in the control block. If non-zero then the file will

be loaded to the address stored with the file when it was created.

The file attributes are stored in four bytes. The least significant eight bits have
the following meanings (for the Econet filing system):

448

Bit Meaning

Not readable by you

Not writable by you

Not executable by you
Not deletable by you
Not readable by others
Not writable by others
Not executable by others
Not deletable by others

O Ol W= O

File types are as follows:

0 Nothing found
1 File found
2 Directory found

A BRK will occur in the event of an error and this can be trapped if required. See
‘Faults, events and BRK handling’ towards the end of this chapter.

On exit X and Y are preserved, C, N, V and Z are undefined and D=0. The
interrupt state is preserved but interrupts may be enabled during the operation.

OSRDCH

This routine reads a character from the currently selected input stream into A.
The routine is called at location &FFEO and indirects via &210. The input stream
can be selected by an OSBYTE call with A=2. See chapter 43.

On exit C=0 indicates a successful read and the character will be in A. C=1
indicates an error and the error type is returned in A. If C=1 and A=&1B then an
escape condition has been detected and the user must at least acknowledge this
by performing an OSBYTE call with A=&7E; BASIC will normally do this for
you. X and Y are preserved, N, V and Z are undefined and D=0. The interrupt
state is preserved.

OSASCI

This routine writes the character in A to the currently selected output stream by
using OSWRCH. However, if A contains &0D then OSNEWL is called instead.
The actual code at location &FFE3 is

FFE3 (03°) 0D OSASCI CMP #&0D
FFES DO 07 BNE OSWRCH
FFE7 A9 AQ OSNEWL LDA #&0A
FFE9 20 EEFF JSR OSWRCH
FFEC A9 0D LDA #&0D

FFEE 6C O0EO02 OSWRCH JMP (WRCHYV)

449

On exit A, X and Y are preserved, C, N, V and Z are undefined and D = 0. The
interrupt state is preserved.

OSNEWL

This call issues an LF CR (line feed, carriage return) to the currently selected
output stream. The routine is entered at &FFE7.

On exit X and Y are preserved, C, N, V and Z are undefined and D = 0. The
interrupt state is preserved.

OSWRCH

This call writes the character in A to the currently selected output stream. The
output stream may be changed using an OSBYTE call with A=3. See chapter 43
for more details. OSWRCH is entered at location &FFEE and indirects via &20E.

On exit A, X and Y are preserved, C, N, V and Z are undefined and D=0. The
interrupt state is preserved but interrupts may be enabled during the operation.

All character output from BASIC, the operating system and anything else uses
this routine. It is, therefore, easy to pass all output to a user provided output
routine by placing the address of the user routine at WRCHYV (&20E). However,
the user should note that all control characters have special significance. For
example, &1C is followed by four bytes which define a text window. See chapter
34 on VDU codes for a complete listing of control characters. If the user wishes to
intercept any control characters then his or her routine must check for all control
characters. The routine must arrange to skip however many bytes follow a
particular code since these bytes might, inadvertently, contain a control code. For
example, the BASIC statement

GCOL 1,3

is passed to the operating system as a string of bytes through OSWRCH. In fact,
in this case the bytes would be &12,1,3.

OSWORD

The OSWORD routine invokes a number of miscellaneous operations all of which
require more parameters or produce more results than can be passed in A, X and
Y. As a result, all OSWORD calls use a parameter block somewhere in memory.
The exact location of the parameter block is given in X (low byte) and Y (high
byte). The contents of A determine the exact nature of the OSWORD call.

All OSWORD calls are entered at location &FFF1 which indirects through &20C.
The table below summarises the OSWORD calls.

450

OSWORD summary

Summary of function

I

Read a line from the current input stream to memory
Read the elapsed time clock

Write the elapsed time clock

Read interval timer

Write interval timer

Read a byte in the input/output processor memory
Write a byte in the input/output processor memory
Generate a sound

Define an envelope for use with the SOUND statement
Read pixel colour at screen position X,Y

Read dot pattern of a specific displayable character
Read the palette value for a given logical colour

OSWORD with A=0

This routine accepts characters from the current input stream and places them at
a specified location in memory. During input the delete code (ASCII 127) deletes
the last character entered, and CTRL U (ASCII 21) deletes the entire line. The
routine ends if RETURN is entered (ASCII 13) or an ESCAPE condition occurs.

The control block contains five bytes:

00 Address of buffer for input line

01 MSB

02 Maximum length of line

03 Minimum acceptable ASCII value
04 Maximum acceptable ASCII value

Characters will only be entered if they are in the range specified by XY+3 and
XY+4.

On exit C=0 indicates that RETURN (CR; ASCII code 13 or &D) ended the line.
C not equal to zero indicates that an escape condition terminated entry. Y is set

to the length of the line, excluding the CR if C=0.

451

OSWORD call with A=1 Read clock

This call is used to read the internal elapsed time clock into the five bytes pointed
to by X and Y. This clock is the one used by BASIC for its TIME function. The
elapsed time clock is reset to zero when the computer is switched on and if a hard
reset is executed. Otherwise it is incremented every hundredth of a second. The
only thing that will cause it to lose time is pressing the BREAK key and keeping
it pressed.

On entry X and Y should point to the memory locations where the result is to be
stored. Y contains the high byte and X the low byte of the address.

On exit X and Y are undefined and the time is given in location XY (LSB) to
XY+4 (MSB). The time is stored in pure binary.

OSWORD call with A=2 Write clock

This call is used to set the internal elapsed time clock from the five bytes pointed
to by XY.

On entry X and Y should point to the memory locations where the new time is
stored. Y contains the high byte and X the low byte of the address. The least
significant byte of the time is stored at the address pointed to by XY and the most
significant byte of the time is stored at address XY+4. A total of five bytes are
required.

OSWORD call with A=3 Read interval timer

In addition to the clock there is an interval timer which is incremented every
hundredth of a second. The interval is stored in five bytes pointed to by X and Y.
See OSWORD with A=1.

OSWORD call with A=4 Write interval timer

On entry X and Y point to five locations which contain the new value to which the
clock is to be set. The interval timer increments and may cause an event when it
reaches zero. Thus setting the timer to &FFFFFFFFFE would cause an event
after two hundredths of a second.

OSWORD call with A=5 Read I/O processor memory

This call enables any program to read a byte in the I/O processor no matter in
which processor the program is executing.

On entry X and Y point to a block of memory as follows:

XY LSB of address to be read
XY+1
XY+2
XY+3 MSB of address to be read

452

On exit the eight bit byte will be stored in XY+4. A further feature is available on
machines fitted with OS 2.00. The feature enables an additional 12K of memory
to be accessed, which exists as sideways RAM at locations &8000-&AFFF. It is
accessed by ROM IDs 128-255 (ie any value with the top bit set), and hence will
not receive service calls. Furthermore, the MOS will not find it to contain a
language. Bytes may be read from the RAM with the top two bytes of the memory
block set to &FFFE. Note: references to this 12K of memory which are made in
this manual are not necessarily applicable to other Acorn products.

OSWORD call with A=6 Write to I/O processor memory

As pointed out previously, programs that are to work through the Tube must not
attempt to access memory locations in the I/O processor directly. This call
provides easy access to locations in the BBC Microcomputer wherever the user’s
program happens to be.

On entry X and Y point to a block of memory initialised as follows:

XY LSB of address to be changed
XY+1

XY+2

XY+3 MSB of address to be changed
XY+4 Byte to be entered at address given

Bytes may be written to the sideways RAM described under OSWORD with A=5
by setting the top two bytes of the memory block to &FFFE. Note that shadow
RAM locations &A000 to &AFFF should only be used for user supplied VDU
driver’ machine code programs. When shadow mode is on, the MOS VDU drivers
will access shadow display RAM, not ‘normal’ display RAM (ie &3000 to &7FFF).
Any access to &3000 — &7FFF by machine code running in &A000 — &AFFF will
automatically be diverted to shadow display RAM. This facility gives faster VDU
access when in shadow mode.

OSWORD call with A=7 Make a sound

This call can be used to generate a sound. The eight bytes pointed to by locations
XY to XY+7 are treated as four two-byte values. These four values determine the
sound effect. See the keyword SOUND for a detailed description.

453

XY Channel LSB 1 01
XY+1 MSB 00
XY+2 Amplitude LSB -15 F1
XY+3 MSB FF
XY+4 Pitch LSB 200 C8
XY+5 MSB 00
XY+6 Duration LSB 20 14
XY+7 MSB 00

The example figures on the right of the table show first the required decimal
value and secondly the two hexadecimal values required. The figures are only
illustrative.

On exit X and Y are undefined.

OSWORD call with A=8 Define an envelope

This call is used to define an envelope which can be used by a SOUND statement
or equivalent OSWORD call. On entry X and Y point to an address in memory
where 14 bytes of data are stored. Y contains the high part of the address and X
the low part. The envelope number is stored at XY and the following 13 locations
contain data for that envelope. See the entry for the ENVELOPE keyword for
more details.

On exit X and Y are undefined.

OSWORD call with A=9 Read a pixel

This call enables the machine code programmer to read the status of a graphics
point at any specified location. On entry X and Y point to a block of five bytes. Y
contains the most significant byte of the address and X the least significant byte.
On entry the first four bytes are set up thus:

XY LSB of X coordinate
XY+1 MSB of X coordinate
XY+2 LSB of Y coordinate
XY+3 MSB of Y coordinate

On exit XY+4 contains the logical colour of the point or &FF if the point is off the
screen. X and Y are undefined.

454

OSWORD call with A=&0A Read character definition

Characters are displayed on the screen as an eight by eight matrix of dots. The
pattern of dots for each character in MODES 0 to 6, including user defined
characters, is stored as eight bytes (see chapter 34). This call enables the eight
bytes to be read into a block of memory starting at an address given in X and Y.

On entry the ASCII code of the character is the first entry on the block.
On exit the block contains data as shown below. X and Y are undefined.

XY Character required
XY+1 Top row of displayed character
XY+2 Second row

XY+8 Bottom row of displayed character

OSWORD call with A=&0B Read palette

The reader will be aware that each logical colour (0 to 15) has an actual (or
displayed) colour associated with it. The actual to logical association can be
changed with vDU19. This OSWORD call enables one to determine the actual
colour currently assigned to each logical colour. On entry the X and Y registers
contain the address of the start of a block of five bytes. The first byte should
contain a value representing the logical colour.

On exit the following four bytes will contain the same four numbers used when
VDU19 assigned an actual colour to the same logical colour. Suppose that
logical colour 2 was in fact set to blue (4) by the statement

vDU 19,2,4,0,0,0

then this call would produce the following result:

XY 2 Logical colour

XY+1 4 Actual colour (blue)
XY+2 0

XY+3 0 } Padding zeros for future
XY+4 0 } expansion

455

Command line interpreter (&FFF7)

The machine operating system CLI is usually accessed from a high level
language by starting a statement with an asterisk. For example:

*MOTOR 0,1

The command line itself (excluding the asterisk) is then passed, without any
further processing, to the CLI.

Machine code programs can use all operating system commands by placing the
address of a command line in the X (LSB) and Y (MSB) registers and calling
&FFF7. This routine indirects through location &208.

The command line should not start with an asterisk and must end with an &0D.
In fact any leading asterisk or spaces will be stripped.

The following BASIC program illustrates this:

10 DIM C 20

20 $C="MOTOR 1"
30 X%=C MOD 256
40 Y%$=C DIV 256
50 CALL &FFF7

When RUN the cassette motor will turn on. The computer will have allocated a
space for C — perhaps at location &1BOA in which case successive bytes would
contain:

Address Contents

&1BOA 4D M)
&1BOB 4F 0)
&1BOC 54 Uy
&1BOD 4F 0)
&1BOE 52 ®R)
&1BOF 20 (Space)
&1B10 31 1)
&1B11 0D (Return)

Of course, this particular example would have been easier as a *FX call or
simply as *MOTOR 1. However, complex commands may need this call.

456
Faults, events and BRK handling

It is necessary to provide some means to enable programs to deal with faults such
as Illegal command or Division by zero. BASIC uses the 6502
BRK instruction when dealing with faults like this and user written programs
can also use the same facility. In BASIC (for example), a BRK instruction is
followed by a sequence of bytes giving the following information:

— BRK instruction, value &00.

— Fault number.

— Fault message (may contain any non-zero character).
— &00 to terminate message.

When the 6512 encounters a BRK instruction the operating system places the
address following the BRK instruction in locations &FD and &FE. Thus these
locations point to the ‘fault number’. The operating system then indirects via
location &202. In other words control is transferred to a routine whose address is
given in locations &202 (low byte) and &203 (high byte). The default routine,
whose address is given at the location, prints the default message.

The BRK handling outline above enables the user to intercept normal procedures
and to generate his or her own special messages and error numbers in user
written machine code routines. The CALL demonstration program towards the
beginning of this chapter shows this in practice. See also IRQ at the end of this
chapter.

While faults are in general, ‘fatal’, there is another class of events, called ‘events’,
which are informative rather than fatal. This class of events includes, for
example, a key being pressed on the keyboard. The user may wish to detect such
an operation or may be happy to ignore it. When the operating system detects an
‘event’ then, if that event is enabled (by using *FX14) it indirects via &220 with
an event code in the accumulator. The contents of X and Y depend on the event.
The event codes in A indicate the following:

Accumulator description

0 Buffer empty X = buffer identity
1 Buffer full X = buffer identity
Y = character that could not be
stored
2 Keyboard interrupt
3 ADC conversion complete
4 Start of TV field pulse (vertical
sync)
5 Interval timer crossing zero

6 ESCAPE condition detected

457

The user supplied event handling routine is entered with interrupts disabled and
it should not enable interrupts. The routine should return (RTS) after a short
period, say one millisecond maximum, and should preserve the processors P, A, X
and Y registers.

Interrupt handling

The whole machine runs under continuous interrupts but nonetheless the user
can easily add his or her own interrupts and handling routines. Because the
machine runs under interrupts, software timing loops should not be used. Several
hardware timers are available to the user and these should be used wherever
possible.

NMI - non-maskable interrupt

In general these should be avoided. When a disc filing system ROM is fitted
NMIs will be handled by the ROM. Again, it should be emphasised that NMI is
reserved for the operating system.

IRQ - interrupt request

When an IRQ is detected the operating system immediately indirects through
location &204 (IRQ1V) to an operating system routine which handles all
anticipated internal IRQS. If the operating system is unable to deal with the IRQ
(because it has come from an unexpected device such as the user 6522), then the
system indirects through &206 (IRQ2V). Thus the user routine for handling IRQs
should normally be indirected via IRQ2V but if top priority is required the user
routine can be indirected via IRQ1V.

In either case the user supplied routine must return control to the operating
system routine to ensure clean handling.

458
The operating system handles BRK and IRQs with the following code.

STA &FC \temporary for A
PLA
PHA \get processor status
AND #&10
BNE BRK
JMP (&0204) \IRQ1V
BRK TXA \BRK handling
PHA \save X
TSX
LDA &§103,X \get address low
CLD
SEC
SBC #1
STA &FD
LDA £§104,X \get address high
SBC #0
STA FE

Note that A is stored in location &FC so that it can be accessed by user routines.
When the computer indirects through &202 (BRKV), &204 (IRQ1V) and &206
(IRQ2V) X and Y will contain correct values. The user must not enable interrupts
during his or her IRQ service routine.

459

46 Analogue input

The BBC Microcomputer is fitted with a socket at the back marked ‘analogue in’.
Into this socket you can plug paddles and joysticks as well as voltages which the
computer can measure. Paddles usually consist of a box with a knob like a record
player volume control. The computer can tell the position of the paddle and so it
can be used in games and more serious programs to move things around the
screen. Joysticks, on the other hand, can be moved left and right as well as up
and down. As a result you can move an object anywhere on the screen not just up
and down a particular line. Both paddles and joysticks can be fitted with push
buttons and the computer can detect when these buttons are pressed. The BBC
Microcomputer can be connected to four paddles or two joysticks. The BASIC
function ADVAL can be used to detect the position of each control and of the fire
buttons.

A second use for the analogue input is to measure voltages. Note that the
analogue inputs have no built-in protection against excess voltages. You must
therefore be careful not to apply a voltage greater than 1.8 volts or less than 0
volts to any of these inputs. In addition you should keep leads plugged into the
analogue inputs away from devices which produce large static voltages such as
televisions and some other mains equipment. Each of the four inputs can accept
voltages in the range 0 to 1.8V and will produce a corresponding number in the
range 0 to 65520. Since it is possible to use a transducer to produce a voltage
proportional to temperature, light intensity, smoke density, water pressure, gas
concentration etc, it is possible to use the computer to monitor all these things. If
the unit is to be used to measure absolute voltages then it should be calibrated
individually. In practice 1.0V input typically produces a reading of 35168.
Although the unit is fitted with a 12 bit converter, the user should not rely on
more than 10 bit accuracy unless great care is taken with screening and analogue
ground connections.

460

Digital input/ouput using the eight bit user port

The BBC Microcomputer contains an eight bit user port which can be connected
to a wide range of devices such as bit pads and general interfacing boxes. The
user port can be read from or written to in BASIC and in assembly language, but
in either case the user will need to know how to use the 6522 versatile interface
adapter integrated circuit. A 6522 data sheet will be essential and the user will
discover that this extremely versatile chip is also quite difficult to master. What
follows is essential information that you will need to work the chip rather than a
course in using it. Once you have learned to use it you will realise that at least 20
pages would be needed to give a decent introduction to it!

The 6522 lives in the memory map between locations &FE60 and &FE6F. The A
side is used for the parallel printer port and the B side is used for the user port.
The timers and shift register are also available for the user. When writing small
programs the user can address the device directly either in BASIC or in
Assembly Language. However programs that address the device directly will not
work on the far side of the Tube. Machine code calls are provided to address the
device whichever side of the Tube the program is on. Firstly, though, here are
some programs in BASIC and assembly language to read and write to the port.

10 REM Read data in

20 REM Set Data Direction Register B
30 REM for all inputs

40 ?&FE62=0

50 REM read a value in and PRINT it
60 X=?&FE60

70 PRINT X

80 GOTO 60

The next program sets up the 6522 to output to the user port and then transfers
the bottom eight bits of X to the user port. Again the initialisation need only take
place once.

10 REM All outputs
20 ?&FE62=&FF

30 REM now put X out
40 ?&FE60=X

And here are those two programs in assembly language. First to read data into
the accumulator:

100 LDA #0
110 STA &FE62
120 LDA &FEG60

461

and secondly to write data out to the user port. This time the program is
presented as two subroutines. The first, called INIT, sets up the 6522 and the
second subroutine, WRITE, actually puts the data out from the accumulator onto
the user port.

200 .INIT LDA #&FF
210 STA &FE62

220 RTS

230 .WRITE STA &FEG60
240 RTS

As has been made clear above, these programs will not work from the second
processor. The 6522 is one of the memory input/output devices in the area of
memory referred to as SHEILA. SHEILA controls the section of memory map in
the range &FEO00 to &FEFF, and the VIA (versatile interface adaptor) uses
addresses between &FE60 and &FE6F which are therefore SHEILA+&60 to
SHEILA+&6F. Two OSBYTE calls (see chapter 43) are provided to read and
write to SHEILA. Here are the same two routines shown above but written so
that they will work over the Tube.

100 LDA #&97 \OSBYTE to write to SHEILA
110 LDX #&62 \Offset to Data direction reg.
120 LDY #0 \Value to be written

130 JSR &FFF4 \Call OSBYTE

140 LDA #&96 \OSBYTE to read from SHEILA
150 LDX #&60 \Offset to data register

160 JSR &FFF4 \Call OSBYTE to get value

And the next routine to INIT and WRITE to the user port:

200 .INIT LDA #&97 \OSBYTE to write to SHEILA
210 LDX #&62 \Offset to Data direction register
220 LDY #&FF \All outputs

230 JSR &FFF4 \Call OSBYTE

240 RTS

250 .WRITE TAY \Move value to Y

260 LDA #&97 \Write-to-SHEILA code

270 LDX #&60 \Offset to data register

280 JSR &FFF4 \OSBYTE call

290 RTS

In practice the user will often wish to use the handshake lines with data
transfers. For information on this topic you are referred to other books. Space
simply does not permit an adequate explanation here.

462

47 Error messages

If the computer is unable to proceed for some reason then it will report the fact to
you by printing an error message on the screen. The printing of the message can
be suppressed by an ON ERROR statement - for example

ON ERROR PROCerror
ON ERROR may be followed by any statement or multiple statement.

As well as the error message, the computer sets two variables each time an error
occurs.

ERR gives the error number.

ERL gives the number of the line in the program where the error occurred.
REPORT is a command to print the last error message. For example

ON ERROR REPORT:PRINT" at line ";ERL:END

will give the same response that the computer gives without an ON ERROR
statement.

The error messages are listed below in alphabetical order together with their
error numbers.

Accuracy lost 23

If you try to calculate trigonometric functions with very large angles you are
liable to lose a great deal of accuracy in reducing the angle to the range of plus or
minus PI radians. In this case the computer will report Accuracy lost, eg

PRINT SIN(10000000)

Arguments 31

This error indicates that their are too many or too few arguments for a given
function or procedure.

Array 14

This indicates that the computer thinks that an array is to be accessed but does
not know the array in question.

Bad call 30

This indicates that the use of PROC or FN to call a defined procedure or
function is incorrect.

463

Bad DIM 10
Arrays must be dimensioned with a positive number of elements. An error will be

produced, for example, by:

DIM A(-3)

Bad HEX 28
Hex numbers can only include 0 to 9 and A to F. An attempt to form a hex

number with other letters will result in this error, eg

PRINT &y

Bad key 251

An attempt has been made to provide a function key defenition with a key
number greater than 15.

Bad MODE 25

This indicates an attempt to change mode inside a procedure or function, or to
select a mode for which their is insufficient memory.

Bad program 0
There are a number of occasions on which the computer checks to see if the
program that it contains starts and ends in memory. The untrappable and fatal
error Bad program indicates that the computer could not follow a program
through successfully to an end mark in memory. This is caused by a read error or
by loading only part of a program or by overwriting part of a program in some
way. Unless you are prepared to check the contents of memory a byte at a time
there is little that can be done to recover a bad program.

Bad string 253

A string more than ten characters long has been passed with an operating system
command (cassette filing system only).

Block? 218

This is an error generated by the cassette filing system. It indicates that an
unexpected block number was encountered. Rewind the tape a short way and
play it again Sam.

Byte 2

An attempt was made, during an assembly language section, to load a register
with a number requiring more than one byte, eg

LDA #345

464

Can’t match FOR 33

There is no FOR statement corresponding to the NEXT statement.

Channel 222

This error is generated by the cassette filing system if an attempt is made to use
a channel that was not opened.

Data? 216

This an error generated by the cassette filing system and it means that the
computer has found a cyclic redundancy check (CRC) error. The CRC is stored on
tape along with other information. Rewind the tape a short way and play it
again.

DIM space 11

An attempt was made to dimension an array for which there was insufficient
room.

Division by zero 18

Division cannot be done, eg
PRINT 34/0

This error can also be caused by a division within a procedure or function using a
LOCAL variable which has not been set to a new value. When a variable is
declared as LOCAL it is set to zero.

$ range 8

The user may put strings into any place in memory except zero page — that is
locations with addresses lass than &100. Thus this is illegal:

$40="hello"

Eof 223

This error is generated by the cassette filing system when the end of the file is
reached.

Escape 17
The ESCAPE key has been pressed.

465

Exp range 24

The function EXP cannot deal with powers greater than 88. Thus the following is
illegal:

X=EXP (90)

Failed at <line number>

When renumbering a program the computer attempts to look after all references
made by GOTO and GOSUB statements. Thus the program

133 GOTO 170
170 END

would become

10 GOTO 20
20 END

when renumbered. However, the computer will not be able to deal with

133 GOTO 140
200 END

If the user attempts to renumber this program he or she will get the error
message

Failed at line 10
and the renumbered program will be
10 GOTO 140

20 END

File? 219

This error indicates that an unexpected file name was encountered by the
computer.

FOR variable 34

The variable in a FOR. . .NEXT loop must be a numeric variable. Thus the
following is illegal:

FOR 5=3 TO 10

Header? 217

This an error generated by the cassette filing system and it indicates that a
header cyclic redundancy check error has occurred. Rewind the tape a short way
and play it again.

466

Index 3
This indicates an error in specifying an index mode when using the assembler, eg
LDA Z, 12

Key in use 250

An attempt has been made to define a function key while another function key is
being expanded, eg

*KEY 0 *KEY 1 RUN |M |M

followed by pressing f0 would produce this error message.

LINE space

The computer has no room left to insert the line in the program.

Log range 22

An attempt was made to calculate the LOG of a negative number or of zero, eg

PRINT LOG(-10)

Missing , 5

This error indicates that the computer expected to find a comma in the line, and
didn’t do so, eg

D$=MIDS$ (AS)

Missing ” 9
The computer expected to find a double quote, eg

LOAD "FRED

Missing) 27

The computer expected to find a closing parenthesis, eg

PRINT TAB(10,10

467

Missing # 45
The computer expected to find a #, eg

A=BGET

Mistake 4

This indicates that the computer could not make any sense of the input line.

-ve root 21

An attempt was made to calculate the square root of a negative number, eg
PRINT SQR(-10)

This may also occur with ASN and ACS.

No FN 7

This indicates that the computer detected the end of a function but had not called
a function defenition, eg

=FNlinda

No FOR 32

A NEXT statement was found when no GOSUB statement had been encountered.

No GOSUB 38

A RETURN statement was found when no GOSUB statement had been
encountered.

No PROC 13

This indicates that the word ENDPROC was found without there being a
corresponding DEF PROC statement.

No REPEAT 43

The interpreter found an UNTIL statement when no REPEAT statement had
been encountered.

468

No room 0

This untrappable and fatal error indicates that while the computer was running
a program it used up all available memory.

No such FN/PROC 29

If the interpreter meets a name beginning with FN (eg FNfred) or PROC (eg
PROCrob) it expects to find a corresponding function or procedure defenition
somewhere. This error indicates that no matching defenition was found.

No such line 41

The computer was told to GOTO or GOSUB a line number which does not exist.

No such variable 26

All variables must be assigned to or made LOCAL, before they can be accessed in
PRINT statements or before their values can be assigned to other variables.
The initial assignment can simply be, for example, X=0.

No TO 36

A FOR...NEXT loop has been set up with the TO part missing. A correctly
formed line is shown below.

FOR X= 10 TO 55

Not LOCAL 12

This indicates the appearance of LOCAL outside a procedure or function.

ON range 40

The control variable was either less than 1 or greater than the number of entries
in the ON list. For example, if X=3 then the following will fail:

ON X GOTO 100,200

since there are only two destinations.

469

ON syntax 39
The ON. . .GOTO statement was incorrectly formed. For example, the following
is illegal:

ON X PRINT

The word ON must be followed by a numeric which must in turn be followed by
the word GOTO or GOSUB.

Out of DATA 42

An attempt was made to read more items of DATA than there were in the DATA
list. The word RESTORE can be used to reset the data pointer to the start of the
DATA ifrequired.

Out of range 1

An attempt was made to branch out of range of the branch instruction in an
assembly language program.

Silly
This message will be issued if you attempt to renumber a program or enter AUTO
mode with a step size of 0 or more than 255, eg

AUTO 100,0

Syntax 220

This error is generated by the cassette filing system and indicates that a syntax
error, such as an illegal *OPT statement has occurred.

String to long 19

The maximum length of a string is 255 characters.

Subscript 15

This implies that an attempt was made to access an element of an array less than
zero or greater than the size of the array. For example, these two lines together
will produce this error:

100 DIM A(10)
120 A(15)=3

470

Syntax error 16

A command was terminated wrongly, for example

LIST PRINT

Too big 20

A number was entered or calculated which was too large for the computer to
handle.

Too many FORs 35

An attempt was made to nest too many FOR. . .NEXT loops. The maximum
nesting allowed is ten. This can sometimes be caused by returning to a FOR
statement without executing a NEXT statement, eg

10 FOR X=1 TO 6
20 GOTO 10

Too many GOSUBs 37

An attempt was made to nest too many GOSUB...RETURN loops. The
maximum nesting allowed is 26. This can somtimes be caused by returning to a
GOSUB statement without executing a RETURN statement, eg

10 PRINT "WRONG"
20 GOSUB 10

Too many REPEATS 44

An attempt was made to nest too many REPEAT...UNTIL loops. The
maximum nesting allowed is 20. This can sometimes be caused by returning to a
REPEAT statement without executing an UNTIL statement, eg

10 REPEAT
20 GOTO 10

Type mismatch 6

This error indicates that a number was expected and a string was offered or vice
versa, eg

10 A$=X

Error
number

© 00 30 Ut WN K

QOO W W W W W W W CWNDNDDNDDDNDDDNDDNDNDDND =
O© 0 IO UK WNHOOWWINUK WNHFOWWOOW=1IO0U kK wWNhHOO

471

Error message

Out of range
Byte

Index

Mistake

Missing ,

Type mismatch
No FN

$ range

Missing "

Bad DIM

Dim space

Not LOCAL

No PROC

Array

Subscript
Syntax error
Escape

Division by zero
String too long
Too big

-ve root

Log range
Accuracy lost
Exp range

Bad MODE

No such variable
Missing)

Bad HEX

No such FN/PROC
Bad call
Arguments

No FOR

Can't match FOR
FOR variable
Too many FORs
No TO

Too many GOSUBs
No GOSUB

ON syntax

472

40 ON range

41 No such line
42 Out of DATA
43 No REPEAT

44 Too many REPEATs
216 Data?

217 Header?

218 Block?

219 File?

220 Syntax

222 Channel

223 Eof

250 Key in use
251 Bad key

253 Bad string
254 Bad command

Note: disc filing system errors are described in the appropriate disc filing system
user guide .

473

48 Minimum abbreviations

This chapter lists the minimum abbreviations that can be used for BASIC
keywords. The third column lists the hexadecimal number that is used to store
the keyword in memory. This is often referred to as the ‘token’.

Notice that the abbreviation never needs an opening parenthesis because the
token includes the parenthesis

ABS ABS 94 ENDPROC E. E1l
ACS ACS 95 ENVELOPE ENV. E2
ADVAL AD. 96 EOR EOR 82
AND A. 80 EOF EOF C5
ASC ASC 97 ERL ERL 9E
ASN ASN 98 ERR ERR 9F
ATN ATN 99 ERROR ERR. 85
AUTO AU. Cé6 EVAL EV. A0
BGET B. 9A EXP EXP Al
BPUT BP. D5 EXT EXT A2
CALL CA. D6 FALSE FA. A3
CHAIN CH. D7 FN FN A4
CHRS$ CHR. BD FOR F. E3
CLEAR CL. D8 GCOL GC. E6
CLG CLG DA GET GET A5
CLOSE CLO. D9 GETS GE. BE
CLS CLS DB GOSUB GOS. E4
COLOUR C. FB GOTO G. E5
cos cos 9B HIMEM H. 93
COUNT cou. 9C (right)
DATA D. DC HIMEM H. D3
DEF DEF DD (left)
DEG DEG 9D IF IF E7
DELETE DEL. C7 INKEY INKEY A6
DIM DIM DE INKEYS INK. BF
DIV DIV 81 INPUT I. E8
DRAW DR. DF INSTR (INS. A7
ELSE EL. 8B INT INT A8
END END EO LEFTS (LE. Co
LEN LEN A9 PTR PT. CF
LET LET E9 (left)
LINE LIN. 86 RAD RAD B2

LIST L. C9 READ REA. F3

474

LN
LOAD
LOCAL
LOG
LOMEM

LOMEM

MIDS (
MOD
MODE
MOVE
NEW
NEXT
NOT
OFF
OLD

ON
OPENIN
OPENOUT
OPENUP
OPT

OR
OSCLI
PAGE

PAGE

PI
PLOT
POINT (
POS
PRINT
PROC
PTR

LN
LO.
LOC.
LOG
LOM.

LOM.

MOD
MO.
MOV.
NEW

NOT
OFF

0.

ON

OP.
OPENO.
OPENUP
OPT
OR
oscC.
PA.

PA.

PI

PL.
PO.
POS

PRO.
PT.

AA
C8
EA
AB
92
(right)
D2
(left)
C1
83
EB
EC
CA
ED
AC
87
CB
EE

8E
AE
AD

84

FF

90
(right)
DO
(left)
AF

Fo

BO

B1

F1

F2

8F
(right)

REM
RENUMBER
REPEAT
REPORT
RESTORE
RETURN
RIGHTS (
RND

RUN
SAVE
SGN

SIN
SOUND
SPC

SQR
STEP
STOP
STRS
STRINGS (
TAB (
TAN
THEN
TIME

TIME

TO
TRACE
TRUE
UNTIL
USR
VAL
VDU
VPOS
WIDTH

REM
REN.
REP.

REPO.

RES.

RND
RUN
SA.

SGN
SIN
SO.

SPC
SQR

STO.
STR.

STRI.

TAB (

TH.
TI.

TI.
TO
TR.

TRUE

USR
VAL

VP.

F4
CC
F5
F6
F7
F8
C2
B3
F9
CD
B4
B5
D4
89
B6
88
FA
C3
C4
8A
B7
8C
91
(right)
D1
(left)
B8
FC
B9
FD
BA
BB
EF
BC
FE

475

49 BASIC 1T

This chapter details differences between BASIC II and the original version of
BBC BASIC, and as such is mainly intended for those who are already familiar
with the latter language.

Two new keywords are introduced by BASIC II: OPENUP and OSCLI. These
are described in chapter 33.

BASIC II makes available the following alterations and extensions to existing
BASIC keywords.

ABS
The unary minus operator may be used, for example
PRINT -ABS (-1)

will give the value -1. In BASIC this gave a Type mismatch error.
COUNT

This has been altered so that COUNT is reset to zero after a change of MODE |
as shown by the following example program:

10 PRINT "Hello";
20 MODE 3

30 PRINT "Goodbye";
40 PRINT COUNT

In BASIC this would leave the screen showing:
Goodbye 12

With BASIC II the following is obtained:

Goodbye 7

ELSE

In BASIC, ON...GOTO...ELSE or ON...GOSUB...ELSE could
not be used inside procedures or functions — only the ON..GOTO (or
ON. . .GOSUB) part was available. This limitation is not present in BASIC II.
EVAL

In addition to its BASIC functions, in BASIC II EVAL can be used to evaluate
the pseudo-variables COUNT, ERL, ERR, HIMEM, LOMEM, PAGE, TIME and
TOP.

476
INPUT

If more than one string or value is to be input at a time then the variable
identifiers have to be separated from each other. In BASIC this was done by
using commas, eg

INPUT NAMES$, AGE, HEIGHT
In BASIC II either commas or semicolons may be used, eg
INPUT NAMES$, AGE; HEIGHT

When entering numerics however, these should be separated by commas as
before, not semicolons.

INSTR

In BASICII, INSTR has been extended such that an instruction such as
PRINT INSTR("1", "Hello")

will return the value 0. This is useful in that a statement such as
X=INSTR (AS$, B$)

can be included inside a procedure or function without having to check that A$
is longer than BS.

ON ERROR

In BASIC II, the comand ON ERROR GOTO... can be used with any line
number. (In BASIC, ON ERROR GOTO 9999, for example, could not be used).
OPENIN and OPENUP

In both BASIC and BASIC II an existing file can be opened to allow data to be
read or altered, or to allow more data to be added to the end. In BASIC, this
function was performed by the instruction OPENIN. In BASIC II it is done by
OPENUP. Since these keywords give exactly the same result, the token for them
both is &AD. Hence, if a program containing the instruction OPENUP is written
on a BBC Microcomputer containing BASIC II then the instruction will be
tokenised to &AD. If this program is then saved and loaded into a machine
containing BASIC, the program will work in exactly the same way, but when
listed it will display the instruction as OPENIN. This will apply the other way
around as well so existing programs do not need to be altered to run in BASIC II.

477

The keyword OPENIN does exist in BASIC II, but has a different meaning.
BASIC II uses the keyword OPENIN to open a file for read-only operations; this
was not possible in BASIC. Since this is a new facility it has a new token, &8E.
Note that programs written in BASIC II which contain the instruction OPENIN
will not run in BASIC.

The following new features are available to assembly language programmers:

ASC

In BASIC IT Asc ":" may be used in the assembler. In the original BASIC
this lead to confusion.

EQUB, EQUD, EQUS, EQUW

These new features are detailed in chapter 44.

OPT

In BASIC II, bit 2 of the OPT statement’s operand is used to determine whether
assembled machine code is placed in memory at the address given by O% (the
code origin) or P% (the program counter). See chapter 44 for full details.

Appendix A

Teletext (MODE 7) displayed alphanumeric characters

N Y) o I I S AN ad
Nothing Down Nothing Move - . L
cursor '—
[to 09
Next to Up Disable Move ——
1 | printer VDU cursor H B E E E E E E E
Start Clear Select o
2 printer screen mode . .* ﬂ E W ﬁ E E
Stop Start of Reprogram
3 printer line characters u [~ ﬁ E E E E E
Nothing Paged Nothing e —
! o H ! I..- E ! ﬁ E m
Nothing Scroll Nothing " .
° e E i ﬁ E }.- E = E E
Enable Nothing Nothing ;
Beep Nothing Nothing - Back
7 ' l. | space and
E ﬁ E E E w E " delete
Back Nothing Nothing Nothing
Lo
Forward Nothing Nothing Alpha

graphics

N W o SRR SN B B

Alpha Normal * | Graphic . ..
o e o l '* E B E ﬁ E E
Alpha .Double Graphic _ __
e e e u E E ﬁ H E B E E E
Alpha Nothing Conceal - =
e vl H ! |_ E ! " E E m
Alpha Nothing Contiguous — " n -
magenta graphics * E i n E ":. E =a E E
Alpha Nothing Separated _ =
o Fraphis E I E E L. ﬁ = n H E
Alpha * Graphic Nothing _ -]
e e E ﬁ E E E m E E E L
Flash Graphic Black * _

o peksround ﬁ E l E E ﬁ E u H
Steady * Graphic New —

yellow background I ! = E ﬁ E m E
Nothing Graphic Hold -

blue graphics E E a E E E E E
Nothing Graphie Release * -

- E E E E E‘ E E E !

* every line starts with these options

479

Appendix B

Teletext MODE 7) displayed graphics characters

® R 0% o P T TS YR BN S,)
Nothing Down Nothing Move . —_
cursor F F' -~
[to 99 B
Next to Up Disable Move .
1 | printer vDU cursor E i l} lJ' W = E m E
Start Clear Select
2 | printer screen mode . n u m F_l E E B E]
Stop Start of Reprogram . .
3 | printer line characters i E ﬂ D u H E B B
Nothing Paged Nothing :
4 mode B SaEEUEDRs O
_ | Nothing Scroll Nothing 5
" Ui QoEEEER= o
Enable Nothing Nothing
1 EEEOFCGRNE
Beep Nothing Nothing - Back
7 u E ﬂ E space and
delete
Back Nothing Nothing _ Nothing
8 U ANERREDS
Forward Nothing Nothing _ Alpha
9 L | A 0 8

Each character has a code. Thus H is code 72 since it is in column 70 row 2.

481

Steady * Graphic New
yellow background

Nothing Graphic Hold
blue graphics

]

=~Ri=" Ni- 10Y- -H}= "N} |

| I |)| = | B

Nothing Graphic Release
magenta graphies *

L

& KU & RN U N I S R R R
Alpha Normal * | Graphic
green height cyan . u u D W El E E E E
Alpha Double * | Graphic A
yellow height white i E [I D H E E E B B
Alpha - i Nothing Conceal
biue display Hnﬁ@ﬂ EED
Alpha Nothing Contiguous o . " :
magenta graphics * E u G H ﬁ H " B E D
Alpha Nothing Separated T
SN EHECF R E
Alpha * Graphic Nothing Back
white red u D g space|
and
elet
Flash Graphic Black *
green background E ! B ﬁ n B
ER S 4]l
B DEE R RUR

* every line starts with these options

Appendix C

ASCII (MODES 0 to 6) displayed character set and
control codes

\.
N X XY iy QY @ T S SN)
Nothing Down Default ove
logical exi
4 colour cursor
(o]
Next to Up Disable ve
1 | printer DU ex
Start Clear Select
o | printer text mode
Stop tart of Reprog
printe li charact
3
I 1 Paged Defi
mode graph
4 are
1 Scroll Plot
(((((((((((((de
5
Enabl Clear Default
VD graphi text/
6 graphi
aaaaa
Beep Define Nothing
7 text
colour
Back Defin Define
graphics text
8 colour are;
Forward Define Define
9 logical graphics
colour origin

483

RN N

! —
1

undefined initially

mlﬂl All characters

—

484

Appen

D

Hexadecimal codes

33a[ap pus ° . 0 . / & ‘X 03 J081nd
aouds yeg ¢ 1X3) 3A0N 130 apows paded o 1
#'9 03 JosInd
~ u \ N < 1X93 AOIN uo spow paded o et
w _ uduo
{ [n - - oyydesd amga(q unjal ageLLre) wu
| [\ 1 > ‘ BaJE 1X3) aulja(] 83IB JX3) 18D 0 #o11
] 1] Y ¢ + SunyoN dn d et
seate
z £ Z r . uaaIds JnBJa(] umo(] v 8181
£ ! A I 6 { »ld piemtog 6 lept
BaIe
x y X H 8) sowydead suya(] yoeg 8 8881
$19)0818Y0
m 3) O L . weiSoaday dasg Lo
A 3 A 1 9 » apow 199[3§ Naa aqsuy 9 o118
NAA 21qssip
n 8 n g § b 10 auy| aseS sI08and utop g 1810
anood
3 p 1 a ¥ $ [e2180] J[nejaq s1081n0 ajesedag ¥ 0019
mojod
s 2 8 2 & # {eoido] auya(Jauud doyg g 110
. Janojod
1 q o q 4 “ owydeid auya(g uud ung G 0169
b 8 b \/ 1 ; amojod 1x33 auljag 193uud 03 IXaN 1 1008
d BaIe
3 d D) [soydeid 18a]) SuiqioN | it
L 9 S 4 € 14 1 [481
d C a 2 d \4 6 8 SN

485

Appendix E

Text and graphics planning sheets

[oad
o~

60

o w

10
15
20
25
30

Text planning sheet

486

AN 7
i 0 = 1
-] <t © [o)
o~ S © ~¥ — o0 jrel =
= @© - © 0 ™ N =

Graphics planning sheet 1 (grid related to character positions)

128¢

1129

96¢

800

640

48¢

320

160

1924
1409
9g¢
80¢
790
600
50¢

Graphics planning sheet 2 (decimal)

40¢

30¢

209

190

48

1209 1280 3

20¢ 3¢9 400 5¢¢ 600 700 849 ¢¢ 10666 1190

106

i S

User defined character planning sheet
MODES 0 to 6

489

F

Appen

Keyboard codes

"X 4% Q3w pajqeud J1 sapod donpoud Auo skay Sunips sy,
[eWIo8peXaY Ul 88 SIaquInu [[y

yigsiz

VeR sl Z

VI% SUZ RETH]
SNY,J, "9P0OO 3SBI JaMO[9} Jaqunu

I9mO] 9y} pue apoo ased Jaddn 8yj ST Jaquunu s[pplut ay,J, ‘passaadap
Asnoauejrnuuts st Aoy RRTRY 8Y2 J1 paonpoad apod a3 strequinu doj sy,

"£9Y] §2Ba I0J WMOUS aIe 959y} puB $8pod aaxy3 sanpoad ued sKa) 1SOJN

9
v
¢
S
S
S

490

Appen

G

t board layout for the BBC

ircui

Printed ¢

Microcomputer

ECONET INTERFACE

MOS /BASIC

5 x 28 PIN
ROM SOCKETS

Zhl [Zy
z35 N—h
58|58

Q
& 55
Em ws
8! 44
v Y a

SOUND

n—n-—

ANALOGUE IN
CASSETTE cass. || Rs 423|| ReB
INPUT / OUTPUT UHF
MODULATOR
wn>
ns VIDEO
8 =< m 3¥ PAL
« < S<l 17
g8 |8 ®| 82
8 26 RS 423
[:4
w
-
< g
] PAL SE
2y 2z
24 “©o
@ o
w
=}
>
/
g3
KEVBOARD CONNECTOR &5
]
=
5 8 DRAMS
[
o
6522 <
VERSATILE &3
INTERFACE g
ADAPTORS S
3
3
bisc _mé.mz USER TuBE
INTERFACE BUFFER
PRINTER NPT STRUT 1 MHz BUS TUBE

491

H

Appen

External connections at the rear of the BBC

Microcomputer

JBU00Y ur Sosuy 21398680) £Z¥SH a4
6 @111 21 €T %1 GI
2 1,70 H
v«\oy,n A Nﬁoyvv
14 ¢ ofle T 2 ¢ 9% ¢ 9 L 8 vo o o of o
/ I S
< pus Sopuy § v ./ol\ kt w‘\
@HO <1 THO L
g JHHA ¥1 aore® 8
gdd €1 puD dopeuy ¢ 1m0 anjg
meq \\o MV,,_SG ZHD 21 EHD ¥ weq o oRSLO wootny 130 Nyeuss
meale oH yoop YA 11 " ¢ Ao\oow (Cr2)
1dd o1 Ag 2 ut By R, 7' s1d PoY \>s
41847 6 ag+ 1 v S
N0 0apip
19u00g ut Sopsuy wqeess) ¢ZySH gOM ¢ 00 4HA

9]q80 SUIBJA N\
|
£

asn] yo

s 000 ¢

uﬂwm \ O

Appendix I

External connections underneath the BBC
Microcomputer.

-
.

Tube

1MH2z bus

O
[
5
bl £
: &
M 2
-. °
: ’#—»b
. =
. . a,
. ss
M Y
[}
3
-
L]
: S
1l
al""ﬂ
H =%
|
N
—
i
|2
a1 0
-
RS
™

Appendix J

493

Memory map and memory map assignments

Hex Decimal

Operating system ROM

&FFFF 65535
&FF3P 65280

Memory mapped input/output

&FCO0 64512

Operating system ROM

Four paged ROMs eg BASIC

&COg9 49152

&AFFF 45055 — —

RAM used for high resolution
graphics

BASIC stack t

!

Paged RAM (12K)

&8099 32768 ~—

Movable boundary

&4099 16384

&3000 12288 — — —

Shadow screen (20K)

M, ble b 4

User’s BASIC program area

Y

&2009 8192

&HEPP 3584

Reserved for operating
system use

Memory map
e
HIMEM —»
32K RAM
to &809¢
LOMEM —»
TOP —»
PAGE —»{

&0800 ¢
&0800

494

Reserved

User defined character definitions

User defined function key definitions

Various buffers

Various buffers

Miscellaneous workspace

Language ROM workspace

Miscellaneous workspace

Operating system workspace

6512 stack

Zero page

Memory map (detail)

&E @9
&D@¢
&Cd¢
&B@¢
&ABY
&99¢

&3¢9

&40¢
&3¢0
&200

&10¢

&0000

3584
3328
3¢72
2816
2560
2304

2048

1924
768
512

256

¢

495

Memory map assignments

FFO0O to FFFF
FEOO to FEFF
FDOO to FDFF
FCO00 to FCFF
C000 to FBFF
8000 to BFFF

0000 to 7FFF
1900 to 1AFF
EO00

EO00 to 18FF
EO00 to 1CFF
DOF to DFF
D00 to D9E

C00 to CFF
B0O to BFF
A00 to AFF
900 to 9FF
800 to 8FF
400 to 7FF
300 to 3FF
200 to 2FF
100 to 1FF
000 to OFF

Zero page
FF

FD to FE
FC

DO to FB
BO to CF
A8 to AF
A0 to A7
90 to 9F
70 to 8F
0 to 6F

Operating System ROM.

Internal memory mapped input/output (SHEILA).
External memory mapped input/output (JIM).
External memory mapped input/output (FRED).
Operating System ROM.

One or more sideways ROMs (eg BASIC, VIEW,
BCPL, PASCAL).

Read/write RAM.

Econet filing system workspace (if fitted).

Default setting of PAGE.

Disc filing system workspace (if fitted).

Advanced disc filing system workspace (if fitted).
ROM workspace.

Used by NMI routine (eg by disc or Econet filing
system).

User defined character definitions.

User defined function key (soft key) definitions.
RS423 receive.

RS423 transmit, sound and speech workspace.
Sound and buffer workspace.

Sideways ROM workspace.

VDU, cassette and keyboard workspace.

Operating system workspace and indirection vectors.
6512 stack.

Zero page.

The top bit is set during an ESCAPE condition.
Address following detected BRK instruction.
User IRQ routine save slot for A register.

Used by machine operating system.

Allocated to current filing system.

Used by machine operating system.

Allocated to disc or Econet filing system.
Allocated to Econet filing system.

Free for user routines (in BASIC only).

BASIC language (or currently selected ROM).

Sideways (shadow) RAM

8000 to AFFF
3000 to 7FFF

Paged RAM
Shadow screen RAM

496

Appendix K

Circuit layouts

%]

PRINTER CONNECTOR

¥

o Jun few |0

1c6
7615244

DATA BUS

07

06

0%

9
L7

3] 17,

l sia 8

03

€12
7415245

D2

D\/

2O

IMHz EXTENSION BUS

o fee [fonjon o fo |

EDUEOUOD
SREBIRIFIRIS

TUBE CONNECTOR

oL 2E Ry
K

o R/W

Printer, User I/0, 1 MHz Bus and Tube circuits

497

BLUE R128
— RGB
68R CONNECTOR
GREEN R129
| SE—
58R
RED R130
o -
68R
82 [|res [r93 10 [lrios []Ri08
ks | | ke | fkz || 3K
R131
[L 4 L { }
®
+5Y
—_— < o
526
R4 R105
68R 1K T
)
Q6
BC309
R102
c36 470R
150pF
- - - +5V VIDEQ SK2
*— out
R153 i
C48 alm 10R o
470pF
R107 Ri3s [russ
1K if;iF 27 | ks 33/47nF o
c60
R139 4THFT
3K9
UM 1233
-E36

Video outputs

498

.5V RS 423
_I"— CONNECTOR
' s
3 F . 2
21 : Cab
| '16 47pF
I DS 3691N '—‘“—‘

1C95 |9 I

@ |3
T
o
5Q
©
_nu‘l

ov

R144
2K2

-

5V R124 [
‘T 1r_15_I,1_‘15 r 2K2

7t / 14
]]
1 \ '
6/0588LS120N13

| IC%%
1

9: / 112
10' I3
\ _l E)NF (BNF []Rﬁﬁ 152

Cc3 C35 Tz 3K3 3K3

2n2F 2n2F TSZ" Iszs
I -&- *—

ov ov

RS423 interface

499

9NS

dO1IJ3NNOD
N3d LHOIN
3
37aavd

syndur andofeuy

78 21
2004

AO AO
- \.J_ j J”II'WDZ@
o ={oNov
o
S [z1l?
o !
o—=_ ! 2,
91 1 1
o 9o 4¢ €HD
o—2! g PHaso
£l] L L ¢
o i Zjauo
oS - 12
a4 |_l 9
g 1 Juge
o _ 4 n_u 620
o—=t 1 o 1
0l 1 Y
o EES)
: _ 81547
o
Lo
~ - -J
%Ol Yol
sl | oziy

AG+

500

AO
aoeIANUI 9))9SSB)
8YIYNL

810 .

.I..lv

34028 4Ly

652 11272
W

4d0z9
850

8719 N|
ia

AG+
NOl
1Sy

6€Z2 08
L0

SMS
¥OLI3NNOD a3
3113SSV2 8917 NI SSVD
A0 ‘ 913G
T P
R
AS+

Appendix L

501

VDU code summary

£z
- = |8
« i 5]
£ a3l 9 |»
A |E |[O|<® |@ |Meaning
0 0| @| NUL| 0 |Does nothing
1 1| A| SOH| 1 |Send next character to printer only
2 2| B STX | 0 | Enable printer
3 3| C| ETX| 0 |Disable printer
4 4| D| EOT| 0 |Write text at text cursor
5 5| E| ENQ| O |Write text at graphics cursor
6 6| F| ACK| 0 |Enable VDU drivers
7 7|1 G| BEL| 0 | Make a short bleep
8 8| H BS| 0 | Backspace cursor one character
9 9| I HT | 0 | Forwardspace cursor one character
10 Al J LF| 0 | Move cursor down one line
11 B| K VT | 0 | Move cursor up one line
12 C| L FF| 0 | Clear text area
13 DM CR| 0 | Move cursor to start of current line
14 E| N SO | 0 |Page mode on
15 F| O SI| 0 |Page mode off
16| 10| P| DLE| 0 |Clear graphics area
17| 11| Q| DC1| 1 |Define text colour
18| 12| R| DC2| 2 |Define graphics colour
19| 13| S| DC3| 3 |Define logical colour
20| 14| T| DC4| 4 |Restore default logical colours
21| 15| U| NAK| 0 |Disable VDU drivers or delete current line
22| 16| V| SYN| 1 |Select screen mode
23| 17| W| ETB| 9 |Reprogram display character
24| 18| X| CAN| 8 |Define graphics window
25 19| Y EM| 5 |PLOT K, x,y
26| 1A| Z| SUB| 0 |Restore default windows
27| 1B| [| ESC| 0 |Does nothing
28| 1C| \ FS| 4 | Define text window
29| 1D| 1] GS | 4 |Define graphics origin
30| 1E| A RS | 0 | Home text cursor to top left
31 1F| _ US| 2 | Move text cursor to x, y
127| 7F DEL | 0 | Backspace and delete

502

CRTR B R LN L] rlant: R [T v | Tlefev o fefav[c [o]ev]in (2] vanr
IS E . . e w ANs Nt nsi
At {0 e e ..] vfauor XY MIN OLIWNNI ani
[N LEEN N R ICTRNY AN
ANt e 7. . * A b K& X1 X XN |
LRI A LN SRS K “ NS KGR O B2 K Welv i INT
LELR I KPR LN afufrio)t w s | LN I Shofer e fe]ar]e) e Y-WAY o1
w 14 LI) N MR LS e Y Aza
NERTIN RV (N e [T xia
JREUE B * N . Ll v fea defer]e fefy Wl W Yia
Cady fy 7. . LEEN NEES 30 T LN R3T K 2 A W A4
Ny Yy soe . CEEN N ES KN I K3 2R W x X4
Ay |y s . NN || riaat:) y el N KN TSN I KX 1121 0 5 NS W-v AW
[N RSN I v e HE] A= A
RN R . M [T 1)
1Y fe oo e . Tgwma a—o als
LR BN TR .. T - Y1
DT R .. z e [t} 12 A NOHONYE sA4
YAM | e e LI e [w 1= ANQHONYNE At
IEEN B .. fw Xving LRL
(] LRI LI t w [N N NOHINVEE Id4Q
Y PR .. 7 oa [t 1= NOHINVEE iNg
[R .. 14 o @ 1= NOHOKVYE W
[N KRR W LN b AW N K N nyy 1ta
O | o+ o . . 4] 5} 1-Z NO HINVYH 038
Com feoe e s .. z od o 1= INOHONVNE 3]
DT R .. 14 "% o W= INOHINYEE Y}
sy Voo N v} vt [I R B R A U RS I) o %y 15V
(TR RV RN scfu]tjanfe “ cfn vl o] frfafe || s ve-nvv| anv
Yax |y o . (RN (2 1% K2 1 I % « LN At e [rlavfz |o] » v-yrwev | ooavy

| HNOmINN _w A w .._ .w .., L sl sliaofe 40 dOfe Julao] e a Ll B4 u a0 viao e (u]ao] e |viao|e |vjao]e |u] a0 NOUVEIC 0N

A o) anum N PVIONTT | UMOSN | UGN SNOUIWLSH

198 UOT)ONYSUI ZOGY

N xTpuaddy

503

WOIAISNINA HTINIOJI NIVLS ¥Ad ABONIK SN 17NS3¥ OW3IZ YO4 AINIAMD 38 LSOW MOLVINWNDIY

~ QITVANISI OV14 Z IO0ON TYNIDAA NI 41 w

muuﬂ”»un W” “ Q““v ss3oay w)rerL“whﬂwu‘OZv“wud d MOTION = 10N ANMYD €}

9110 IOWIN 9N Lvalns AX3aNt - A ol M NOL [aay @

L1 AMOWAN (N aav XXION) X AISSOUI S| AUVANNOR FDV 4.N & 1AAY [
vi) Je 7 ¢ o o & N 7| veA VAl
axt s e v e e . z{ve Sx sx1
vxg1 |e 2 o 0 v e N 7| vex VX1
NI PP R IS z{ve x-S XS
AV L N T jev A=v Avil
vl |e 7 ¢« -~ N T fvv xX—v xXVvi
[N D Y . t " T]on » W—A AlLS
N P . ' ™ e]w E™ WX XLS
LAUTC R R B . 6 fc f v {ae t ez |ofef o s |5 o Wy vis
vas e oo e e . 2w -1 13s
i 1. - - 1 - . B 2 fat a-1 ass
vae e e e e . R K -1 >3s
LN CL P A [N 0 O K K tledefefu v | e |ss @ [E1 R0 Y- I-N-Y o4s
I « e v e . v ANS NAWLd s1d
R 1OMOISIN sfm ININNLY 11y
Y oe e e e N o] ¥ velz Jsi{w il o - 3Oy
Y2 oroe e e b vl n LR S viji |« |® k4 Padl [3 T0¥
CHROISINY [R4 Pl §=+5 PRE]
N N riw v §=1+§ vid
P . 1w §—1-5 Wl JHJ
P . . e §-1-§ SW—Y YHJ
L N stfufrim tlaf] n vlw | a “ VWA Y \ 2 X
e e e e . v NOUVHIJOON dON
Yoo oe e e o o f Wlw velo fs o I >0 =0 ¥s
A N NEIR] t|m N RS Ead v avj A Aa1
AR N + | EC] N v vjw X—W x a1

Appendix N

*FX and OSBYTE call summary

Decimal Hex Function

0 0 Prints operating system version number.
1 1 Reserved for application programs.
2 2 Selects input device.
3 3 Selects output devices.
4 4 Enable/disable cursor edit keys.
5 5 Select printer type.
6 6 Set printer ignore character.
7 7 Set RS423 receive baud rate.
8 8 Set RS423 transmit baud rate.
9 9 Set flash period of first colour.
10 A Set flash period of second colour.
11 B Set auto-repeat delay.
12 C Set auto-repeat period.
13 D Disable various events.
14 E Enable various events.
15 F Clear all or just input buffer.
16 10 Select number of ADC channels.
17 11 Force start of conversion on ADC channel.
18 12 Reset user defined function keys.
19 13 Wait for field synchronisation.
20 14 Explode soft character RAM allocation.
21 15 Clear selected buffer.
114 72 Control shadow/main memory selection
117 75 Read VDU status byte.
118 76 Read CTRL/SHIFT key status.
119 77 Close *SPOOL and *EXECfiles.
123 7B End of user print routine.
124 7C Reset ESCAPE flag.
125 7D Set ESCAPE flag.
126 TE Acknowledge detection of escape condition.
127 7F Check end of file status.
128 80 Read ADC channel/fire buttons/last conversion.
129 81 Read key within time limit.
130 82 Read machine high order address.
131 83 Read top of operating system RAM address.
132 84 Read bottom of display RAM address.

133
134
135
137
138
139
140
142
144
145
146
147
148
149
150
151
152
158
159
209
210
218
239
224
225
226
227
228
229
230
231
232
233
235
253
255

85
86
87
89
8A
8B
8C
8E
90
91
92
93
94
95
96
97
98
9E
9F
D1
D2
DA
EF
EO
El
E2
E3
E4
E5
E6
E7
E8
E9
EB
FD
FF

Read lowest address for particular mode.

Read text cursor position.

Read character at text cursor position.
Turn cassette motor on/off.

Insert character into specified buffer.
Set file options.

Select cassette file system and set speed.

Select sideways ROM.

Alter TV display position/interlace.
Remove character from buffer.

Read from I/0 area FRED.

Write to I/O area FRED.

Read from I/0O area JIM.

Write to I/O area JIM.

Read from I/O area SHEILA.

Write to I/O area SHEILA.

Examine specified buffer.

Read from speech processor.

Write to speech processor.

Speech on/off.

Sound on/off.

Read/write size of VDU queue
Read/write shadow display mode state
Cancel VDU queue.

Set base number for function key codes.

Set base number for SHIFT function key codes.
Set base number for CTRL function key codes.
Set base number for SHIFT CTRL function key codes.

ESCAPE=&1B.

Enable/disable normal ESCAPE key action.

Enable/disable user 6522 IRQ.
Enable/disable 6850 ACIA IRQ.
Enable/disable system 6522 IRQ.
Return presence of speech processor.
Last reset type.

Write start-up option byte.

505

Appendix O

Operating system calls

Routine Vector Summary of function
Name Address Name Address
UPTV 222 User print routine
EVNTV 220 Event interrupt
FSCV 21E File system control entry
OSWRSC FFB3 - - Write byte to screen
OSRDSC FFB9 - - Read byte from screen
OSFIND FFCE FINDV 21C Open or close a file
OSGBPB FFD1 GBPBV 21A Load or save a block of memory to file
OSBPUT FFD4 BPUTV 2 Save a single byte to file from A
OSBGET FFD7 BGETV 216 Load a single byte to A from file
OSARGS FFDA ARGSV 214 Load or save data about a file
OSFILE FFDD FILEV 212 Load or save a complete file
OSRDCH FFEO RDCHV | 210 Read character (from keyboard) to A
OSASCI FFE3 - - Write a character (to screen) from A plus
LF if (A)=&0D
OSNEWL FFE7 - - Write LF,CR (&0A,&0D) to screen
OSWRCH FFEE WRCHV | 20E Write character (to screen) from A
OSWORD FFF1 WORDV | 20C Perform miscellaneous OS operation
control block to pass parameters
OSBYTE FFF4 BYTEV 20A Perform miscellaneous OS operation using
registers to pass parameters
OSCLI FFF7 CLIV 208 Interpret the command line given
IRQ2V 206 Unrecognised IRQ vector
IRQ1V 204 All IRQ vector
BRKV 202 Break vector
USERV 200 Reserved

Index

507

Abbreviations for keywords 473
ABS 173
Acknowledge escape conditions 407
ACS 174
Accuracy of calculations 55
Actual colour numbers 141
Addressing modes 432
ADSR envelope 216
ADVAL 175,405,414,459
Aligning columns when printing 57-66
Amplitude envelope 159,216
Analogue input connections 459
Analogue to digital

converter 201,403,414,477
AND 123,178
Animation 145
Appending programs 371
Application note 421
Arc-cosine 172
Arc-sine 181
Arc-tangent 182
Arrays 102,208
ASC 54,180
ASCII 54,180,Appendixes A-D
ASN 181
Assembly language CALL 186,392
Assembly language DIM 208,436
Assembly language

examples 429,435,436,438
Assembly language introduction 428
Assembly language OPT 283,438
Assembly language USR 340,392
ATN 182
Attack Phase 157,217
AUTO 43,183
Automatic line numbers 43,183
Autopaging 30,350
Auto repeat of keys ,403

Background colours 45,50,139
Bad program 463

Base value of function keys 424,425
BASICII 475

Baud rate selection of cassette 419
Baud rate selection on RS-423 402
BGET# 184

Bitwise AND 178

Boolean types 178

BPUT# 185

Branch instructions 84

BREAK key 13,120

BRIAN 39
BRK 456
Buffer flushing

all 406

input 404

keyboard 406

sound 406
Buffer get character 415,420
Buffer insert character 418
Buffer status 413,414,456

Calendar program 111
CALL 186,392
CAPS LOCK key 11
Cassette

file tape format 369

filing system 167,360

leads 7

loading 261

motor control 360

motor relay on/off 386,417

recordings 366
Catalogue 28,385
Catalogue of cassette tape 28,361
Centronics printer 373
CHAIN 28,188,261
Channels when using files 165
Character counting 198
Character set Appendix A
Character - user defined 146,354
CHR$ 54,189
Circuit board layout Appendix G
Circuit diagrams Appendix K
CLEAR 190
Clear graphics window 49,191
Clearing the screen 193,350
Clearing text window 49,193
CLG 49,191
CLI 455
Clock 6,333,451
Clock program 111
CLOSE# 192
CLS 16,49,193,350
COLOUR 45,49,194,233
Commands 15
Command line interpreter 455
Command mode 21
Comments in assembly language 431
Comments in BASIC programs 43,304
Concatenation of strings 53
Connectors Appendixes H and I

508

Contents of memory 378 Reverse string 115
Control codes 348 Rocket 148
Co-ordinates on screen 46 Role 64

COPY key 13,71,397 Sine 40

Correcting errors 22 Sine in Teletext 135
COS 197 Sqr root 37

Cosine 197 Stars and stripes 78
COUNT 198 Sums in 15 secs 74
CTRC register access 355,420 Tartan 35

CTRL key 14 Temperature 97
CTRLU 1 Too late 70

Cursor control codes 65,66,350 Windows 51
Cursor editing 22 DIM 121,208,436
Cursor off 66 Display position, changing 17,443
Cursor position 294,345,421 DIV 122

DRAW 46,49,137,138,211
Data 107,199

Data files on cassette 365 Econet filing system 370

Data logging 366 Editing a line 22

Date 111 Editing keys 22,71,401
Decimal places 60,296 Editing key produced codes 71,401
Decimal point 15 ELSE 213

DEF 202 Enable screen output 350
Defining characters 146,354,405 END 214,365,413

DEG 206 ENDPROC 215

Degrees from radians 206 Entry point in assembly language 441
DELETE 24,53,207 ENVELOPE 156,216,452
Delete current entry 389 EOF# 220

DELETE key 13 EOR 123,221

Delete whole line 24,43,234 EQUB 439,477

Demonstration programs EQUD 439,477

Age 67 EQUS 439477

BL and Lotus 108 EQUW 439,477

Brian 39 Erasing the screen 50,193,356
Call 455 ERL 126,222

Div and Mod 110 ERR 126,223

Double height Teletext 41 Error codes 126,223

Draw 71 Error handling 125,277,308,367
Drinks 164 Error handling in assembly language 438
Fourpnt 35 Error line 126,222

Geography quiz 200 Error messages 462

GOTO 24 Error numbers 368,471

Hand mouth ear 237 Errors, correcting 22

Hangman 117 Escape acknowledge 407
Hanoi 300 Escape detected (assembly language) 457
Hours,mins,sec 111 ESCAPE key 13,407,426
Hypno 89 Escape reset 407

H2 64 EVAL 224

Leap Years 113 Evaluate a string 224

Lunar lander 151 Event enable 403,404

Man 146 Event disable 403

Month 107 Event handling 403

Monthly 32 Exclusive OR in BASIC 221
People and arrays 103 EXP 226

Persian 37 Expansion bus 421

Polygon 31 Exponent 15

Quadrat 33 EXT# 227

React 87

Read screen character 417

FALSE 76,85,228

Fault handling 456

Fields 57

Field sync 404,456

Field width 58,71

Filenames 366

Files 190,442

File pointer 301

Filing an area with colour 138
Fire button on game paddles 176,414,459
Flashing colours 141,403
Flash rate selection 403

Flush keyboard buffer 404,406
Flush input buffer 404,406
Flush VDU queue 424

FN 259

FOR..NEXT 77,231,273,325
Foreground colours 45,61,162
FOURPNT 35

Free space left 383

FRED 422

Functions 94,203,230
Function keys 16,119,131,405,424
FX call summary 396,398

Games paddles 176,414,459

GCOL 233,139,57

Geography quiz 200

GET 234

Get character from buffer 70,243,415,420
GET$ 235

Global variables 91

GOSUB 96,236

GOTO 100,238

Graphics 45,137

Graphics origin 358

Graphics planning sheet Appendix E
Graphics windows 47,355

Hard reset 120
Hexadecimal 61

High order address 415
HIMEM 240,383
HYPNO 89

IF THEN ELSE 4,213,242,332
Indirection operators 378
INKEY 243,415,420

INKEY$ 246

INPUT 67,247

INPUT# 249

INPUT LINE 248

INPUT line 469

Input/Output devices 399,459
Input stream selection 399
INSTR 115,250

Instruction set for 6502 Appendix M
INT 251

Integer arithmetic 110,210,267

509

Integer variables 55,379
Internal file format 299,369
Internal format in memory
of BASIC 473
of Variables 55,56
Interrupts 426,427,457,458
Interval timer 451,457
Inverse colour 143
IRQ handling 426,457,458

JIM 444
Joysticks 175,460

Keyboard 11

Keyboard auto repeat 5,403
Keyboard testing for BASIC 243
Key depressions, detecting 70
Keyword definitions 170
Keywords — details 170
Keywords — summary 473

Leads for cassette 7

Leap year calculation 128
LEFT$ 114,251

LEN 115,254

Length of a file 227
Length of a program 383
Length of a string 115,254
LET 18,256

Line Feed 402

Line numbers 20

LIST 257

LISTO 80,259

List options 80,259

LN 260

LOAD 261

Loading machine code 363
Loading programs 27,363
LOCAL 90,263

LOG 264

Logarithm 264

Logical colour 140
LOMEM 265,383

Loops 74,77

Lunar lander game 151

Machine code 428

Machine operating system 444
Man shaped character 146
Mantissa 55,56

Memory maps Appendix J
Memory pointers 240,265,288,335,383,416
Memory — saving 168

Merging programs 371

MID$ 114,266

Mistake 467

MOD 122

MODE 45,137,194,269
MODE7 128

510

Monitor lead 7

MONTHLY 32

Motor on/off 417,455

MOVE 46,271

Multiple statement lines 44,84
Music 7

Musical notes 156

Natural logarithm 260
NEW 272,275

NEXT 77-83,231,273
NMI 457

Noise generator 317
NOT 274

Note synchronisation 189
Number to string conversion 116,363
Number accuracy 55
Numeric range 55
Numeric variables 56

0Old 279

ON ERROR 280

ON GOSUB 100,280
OPENIN 283

OPENOUT 285

OPENUP 286

Opening file for input 283
Opening file for output 285
Opening file for random access 286
Operating system call summary 444
Operating system statements 384
Operator precedence 122
OPT 287,457

OR 123,289

Origin move 357

OSARGS 445

OSASCI 448

OSBGET 445

OSBPUT 445

OSBYTE calls 395,397
OSCLI 290,455

OSFILE 446

OSFIND 443

OSGBPB 445

OSNEWL 450

OSRDCH 448

OSRDSC 443

OSWORD 450

OSWRCH 377,450
OSWRSC 443

Output stream select 400

PAGE 292,383

Page mode 39,350

Panic button 21

Parameters 89

Parameter block in CALL 186
PEEK 378

PERSIAN 37

PI 293

Pitch envelope 182,216

Pling indirection operator 378
PLOT statement 290

PLOT a point 144

POINT 293

Pointers to

memory 240,265,288,335,383,415
POKE 378

POLYGON 31

POS 294

Precedence of operators 122
PRINT 295

PRINT# 299

Printer

Choosing 481

Connections 373

Drivers 377

On/Off 350,377,401

Parallel 373

Serial 375

Print formatting 57

PROC 300

Procedures 87,300

Program deletion 272
Program line renumbering 43,305
Program listing 0,257,259
Program recovery 275

PTR 301

Quadrat 33
Query indirection operator 378
Qume printer 376

RAD 302

Radians from degrees 302
RAM 383

Random numbers 73,308
Range, numeric 55

REACT 87

READ 107,303

Read key 70,234,243,415
Read screen character 416
Read screen point 293,443,472
Real variables 55

Recording programs 26

Red keys 16,119,405,424
Relay on/off 417,455

REM 43,304

Remarks in assembly language 459
Remarks in programs 43,304
Remote control tape recorder 455
RENUMBER 24,54,305
REPEAT ... UNTIL 74,307
REPORT 127,307

Report error 127,307
Reserved words 473

Reset 120

Resident integer variables 55

RESTORE 108,310
RETURN key 5,13
RETURN 97,310
RIGHT$ 114,311

RND 73,312

Rocket graphics shapes 148
ROM filing system 370
RS232C printers 375
RS423 as input 400,420
RS423 connections 375
RUN 313

SAVE 314

Saving

A section of memory 362
BASIC programs 26,314,360
Data 303

Machine code 363

Memory space 168

Single characters 186

Save format 299

Screen editor 22

Scroll mode 30,350
Sequential access file 163,442
Serial port 375,399,427
Serial printer connections 375
Serial ULA bit meanings 422
Shadow screen mode 387
SHEILA 421

SHIFT key 11

SHIFT LOCK key 11

Sign of a number 315
Significant figures 55

SIN 316

SINE program 40,135

SGN 315

Sockets on computer Appendixes H and I
Soft reset 119

SOUND 155,317,471

Spaces - printing on screen 323
SPC 323

Speeding up programs 168
SQR ROOT 48,324

SQR 324

Squares in graphics 138
Statements 15

Star commands 370,385
Stars and Stripes 78

STEP 325

STOP 325

STR$ 327

STRING$ 135,328

String concatenation 53,328
String functions 94,114
String indirection operator 378
String — length of 115,254
String — multiple copies of 116,328
String — searching for one in
another 115,250

511

String-to-number conversion 116,342
String variables 53,115,327
Structures in BASIC 382
Subroutines in BASIC 96,236
Syntax explanation 170

TAB 62,330

Tabulation 62

TAN 331

Tangent 331

Tape filing system 163,360,370
TARTAN 35

Telephone book program 167
Teletext 128

Teletext character set 14
Teletext control codes 128,425
Teletext filing system 370
Text colours 45

Temperature conversion program 97
Text planning sheets 485
Text windows 48

THEN 332

TIME 73,333

Tokens 473

TO 334

TOP 335,383

TRACE 336

TRUE 74,85,338

Tuning a TV 3

Types of variables 52

Unplot a point 144

UNTIL 74,339

User defined characters 146

User defined function keys 16,119,405,42
User input/output port addresses 421
User supplied printer driver 377

USR 340,392

VAL 342

Variables 18,52,102

VDU 343,347

VDU summary 348

Version number of operating system 399
VIA user port address 422

Volume settings 360

VPOS 345

V24 port 375

Wait until next frame for animation 405
Welcome cassette 7

Whole number arithmetic 114,210,269
WIDTH 346

Windows 57,350,355-357

XY cursor addressing 62

1 MHz expansion bus 421
6522 address 422

512

*Star commands 370,385
*ADFS 370,385
*CAT 385

*DISC 370,385
*EXEC 386

*FX commands 385
*IEEE 370,386
*KEY 385

*LOAD 385
*MOTOR 386
*NET 370,385
*OPT 385

*ROM 370,386
*RUN 385

*SAVE 385
*SHADOW 386,387
*SPOOL 371,386
*TAPE 370,385
*TAPE3 370,385
*TAPE12 370
*TELESOFT 370,386
*TV 386

+ addition 15,123

- subtraction 15,123

* multiplication 15,122
/ division 15

? Indirection operator 378
! Indirection operator 378
$ Indirection operator 378

< 123
<= 123
= 123
> 123
>= 123

+ concatenation of strings 53,328
: multiple statement 44,84

;in PRINT 21

;in VDU 379

$ for string 53

& Hex number 61

@% Print format 60

immediate 451,458

\ comment in assembly language 431
A exponentiation 15

() brackets 122,208

[1 square brackets 452

” quotation marks 53,199,295

” apostrophe 295,296,298

\ 14
{ 14
} 14

[~]
22,72,120,401
22,71,120,401
22,71,120,401
22,71,120,401

| 14

| 14
Y% 14
Y4 14
% 14

	Cover

	Contents

	Giving the computer instructions – Part 1
	Structure in BASIC

	Giving the computer instructions – Part 2
	Reference section
	Appendices

	Introduction
	Equipment required
	Text conventions used in this manual
	What this User Guide can and can’t do

	 1 Getting started
	Experimenting
	Connecting up the cassette recorder
	Leads
	Volume
	
Running the WELCOME programs
	The keyboard
	CURSOR control keys

	Giving the computer instructions – Part 1
	
 2 Commands
	 3 An introduction to variables
	 4 A simple program
	Using the screen editor
	Deleting part of a program
	Removing a program

	 5 Recording programs on cassette
	Saving a program on cassette
	Checking a recording
	Loading a program from cassette
	Cataloguing a tape
	What the numbers mean

	 6 Sample programs
	POLYGON
	MONTHLY
	QUADRAT
	FOURPNT
	TARTAN
	PERSIAN
	SQR ROOT
	BRIAN
	SINE
	DOUBLE HEIGHT

	 7 AUTO, DELETE, REM,RENUMBER
	 8 Introducing graphics
	Modes, colours, graphics and windows
	Graphics
	Windows
	Making a graphics window
	Making a text window

	Changing the colours of text and graphics

	 9 More on variables
	Numbers and characters
	String variables
	How numbers and letters are stored in the computer’s memory

	Real and integer variables
	Summary

	 10 PRINT formatting and cursor control
	Field widths in different screen modes
	Altering the width of the field and the way in which
numbers are printed
	For the more technically minded

	TAB(X)
	TAB(X,Y)
	Advanced print positioning
	Cursor control
	Cursor on/off

	 11 Input
	 12 GET, INKEY
	Advanced features

	 13 TIME, RND
	Structure in BASIC
	 14 REPEAT...UNTIL, TRUE,FALSE
	 15 FOR...NEXT
	A note on LISTO

	 16 IF...THEN...ELSE More on TRUE and FALSE
	Multiple statement lines
	For the slightly more advanced

	More on TRUE and FALSE

	 17 Procedures
	Local variables in procedures

	 18 Functions
	 19 GOSUB
	GOTO

	 20 ON GOTO, ON GOSUB
	Giving the computer instructions – Part 2
	 21 Even more on variables
	Arrays

	 22 READ, DATA, RESTORE
	 23 Integer handling
	 24 String handling
	 25 Programming the red user defined keys
	The BREAK key
	Other keys

	 26 Operator priority
	 27 Error handling
	 28 Teletext control codes and MODE 7
	To change the colour of the text
	To make characters flash
	To produce double height characters
	Graphics
	Graphics codes
	Making a large shape
	Teletext graphics codes for the more adventurous

	 29 Advanced graphics
	How to change the screen display modes
	How to draw lines
	How to draw a square in the centre of the screen
	Changing the colour of the square
	How to fill in with colour
	How to change colours
	How to plot a point on the screen
	How to remove a point selectively
	Animation
	How to make a ball and move it on the screen

	How to create your own ‘graphics’ characters
	How to make a character (eg a man)
	How to make him move

	How to make a larger character
	How to make the movement smoother
	Making a complete lunar landing game
	Running the program

	 30 Sound
	The pitch envelope
	The amplitude envelope
	Note synchronisation and other effects

	 31 File handling
	 32 Speeding up programs and saving memory space
	Reference section

	 33 BASIC keywords
	ABS absolute value
	ACS arc-cosine
	ADVAL analogue to digital converter value
	AND
	ASC American Standard Code (ASCII)
	ASN arc-sine
	ATN arc-tangent
	AUTO automatic
	BGET# get a byte from file
	BPUT# put a byte to file
	CALL transfer control to a machine code subroutine
	CHAIN
	CHR$ character string
	CLEAR
	CLG clear the graphics screen
	CLOSE#
	CLS clear the text screen
	COLOUR
	COS cosine
	COUNT
	DATA
	DEF define
	DEG degrees
	DELETE
	DIM dimension of an array
	DIV division of whole numbers
	DRAW
	ELSE
	END
	ENDPROC end procedure
	ENVELOPE
	EOF#
	EOR Exclusive-OR
	ERL error line number
	ERR error
	EVAL evaluate
	EXP exponent
	EXT# extent
	FALSE
	FN function
	FOR
	GCOL
	GET
	GET$
	GOSUB go to a subroutine
	GOTO go to a line number
	HIMEM highest memory location
	IF
	INKEY input the number of the key pressed
	INKEY$ input the character pressed
	INPUT to put information into the computer
	INPUT# put information into the computer from cassette or disc
	INSTR in string
	INT integer part
	LEFT$ left string
	LEN length (of a string)
	LET
	LIST
	LISTO list option
	LN natural logarithm
	LOAD
	LOCAL
	LOG logarithm
	LOMEM
	MID$
	MOD modulus
	MODE graphics mode
	MOVE
	NEW
	NEXT
	NOT
	OLD
	ON
	OPENIN open file for input to computer (from cassette, disc or Econet)
	OPENOUT open file for output to cassette, disc or Econet
	OPENUP open a file for update
	OPT option
	OR
	OSCLI operating system command line interpreter
	PAGE
	PI
	PLOT
	POINT
	POS position
	PRINT
	PRINT#
	PROC procedure
	PTR# pointer
	RAD radian
	READ
	REM remark
	RENUMBER
	REPEAT
	REPORT
	RESTORE
	RETURN
	RIGHT$
	RND random
	RUN
	SAVE
	SGN
	SIN sine
	SOUND
	SPC space
	SQR square root
	STEP
	STOP
	STR$ string
	STRING$
	TAB tabulation
	TAN tangent
	THEN
	TIME
	TO
	TOP
	TRACE
	TRUE
	UNTIL
	USR user subroutine
	VAL value
	VDU
	VPOS vertical position of the cursor
	WIDTH

	 34 VDU drivers
	VDU code summary
	Detailed description

	 35 Cassette files
	Cassette motor control
	Recording levels
	Playback volume and tone
	Keeping an index of programs
	Saving a BASIC program
	Saving a section of memory
	Loading a BASIC program
	Loading a machine code program
	Loading and running a BASIC program
	Loading and running a machine code program
	Using a cassette file to provide keyboard input
	Reading cassette data files
	Testing for end of file
	Storing data on tape
	Recording single characters on tape
	File names
	Responses to errors
	Changing responses to errors
	Cassette tape format

	 36 Changing filing systems
	 37 How to merge two BASIC programs
	 38 Using printers
	Connect the printer to the computer
	A parallel printer cable
	Parallel printer connections

	Telling the computer whether you are using a serial
or parallel printer
	Telling the computer to copy everything to the printer
	Characters not sent to the printer

	 39 Indirection operators
	 40 HIMEM, LOMEM, TOP and PAGE
	 41 Operating system statements
	 42 The shadow screen
	Other shadow mode-related commands

	 43 The operating system and how to make use of it
	What is the operating system?
	The *FX commands
	OSBYTE calls from BASIC
	OSBYTE calls from assembly language
	The *FX commands and OSBYTE calls
	Functional summary (alphabetical)
	Numerical summary

	 44 An introduction to assembly language
	Machine code and the assembler
	Uses of assembly language
	The main features of 6502 assembly language
	The 6512 registers
	Program counter
	Accumulator
	X register
	Y register
	Program status register
	Stack pointer

	The assembler delimiters ‘[’ and ‘]’, and general
assembly language syntax rules
	Addressing modes
	Implicit addressing
	Immediate addressing and zero page addressing
	Absolute addressing
	Indirect addressing
	Indexed addressing
	Relative addressing
	Accumulator addressing

	Placing machine code programs in memory
	OPT, forward referencing and two-pass assembly
	The EQUate facility
	Machine code entry points

	 45 The operating system calls
	Files
	OSWRSC
	OSRDSC
	OSFIND
	OSGBPB
	OSBPUT
	OSBGET
	OSARGS
	OSFILE
	OSRDCH
	OSASCI
	OSNEWL
	OSWRCH
	OSWORD
	Command line interpreter (&FFF7)
	Faults, events and BRK handling
	Accumulator description

	Interrupt handling
	NMI – non-maskable interrupt
	IRQ - interrupt request

	 46 Analogue input
	Digital input/ouput using the eight bit user port

	 47 Error messages
	 48 Minimum abbreviations
	 49 BASIC II
	ABS
	COUNT
	ELSE
	EVAL
	INPUT
	INSTR
	ON ERROR
	OPENIN and OPENUP
	ASC
	EQUB, EQUD, EQUS, EQUW
	OPT

	Appendix A - Teletext (MODE 7) displayed alphanumeric characters
	Appendix B - Teletext (MODE 7) displayed graphics characters
	Appendix C - ASCII (MODES 0 to 6) displayed character set andcontrol codes
	Appendix D - Hexadecimal codes
	Appendix E - Text and graphics planning sheets
	Appendix F - Keyboard codes
	Appendix G - Printed circuit board layout
	Appendix H - External connections at the rear

	Appendix I -
External connections underneath
	Appendix J -
Memory map and memory map assignments
	Appendix K -
Circuit layouts
	Appendix L - VDU code summary
	Appendix M - 6502 instruction set

	Appendix N -
*FX and OSBYTE call summary
	Appendix O -
Operating system calls
	Index

