ADVANCED
REFERENCE MANUAL
for the BBC MASTER

The Advanced

Reference Manual
For The BBC Master 128 Microcomputer

Published by Watford Electronics

1

Published in the United Kingdom by
Watford Electronics

Jessa House

250 Lower High Street

Watford

WD1 2AN

England

Telephone 0923 37774
Telex 8956095
Fax 01 950 8989

ISBN 0 948663 05 7
Copyright © 1988 Watford Electronics

All rights reserved. This book is copyright. No part of this book can be copied or
stored by any means whatsoever whether mechanical, photographical or electronic
except for private study use as defined in the Copyright Act. All enquiries should be
addressed to the publishers.

While every precaution has been taken in the preparation of this book, the publisher
assumes no responsibility for errors or omissions. Neither is any liability assumed
for damages resulting from the information contained herein.

Please note that within this text, the terms :-

Tube and Econet are registered trade marks of Acorn Computers Limited.
View and Viewsheet are registered trade marks of Acornsoft Limited.

DOS Plus, Concurrent DOS and CP/M are the registered trademark of Digital
Research Inc.

All references in this book to the BBC Microcomputer refer to the computer
produced for the British Broadcasting Corporation by Acorn Computers Limited.
This book was computer typeset by lan Bishop-Laggett,

Ideal Software Consultants, 11 Hathaway Close, Luton, Bedfordshire.
Remastered by dv8 in 2020

Second revision, April 2023

The latest revision is available at: stardot.org.uk/forums/viewtopic.php?t=21734

Acknowledgements

Thanks to David Bell, Roger Cullis, Dave Futcher, Adrian Bishop-Laggett and all
those people who made the publication of this manual possible.

https://stardot.org.uk/forums/viewtopic.php?t=21734

CONTENTS

1. Master Series architecture
Introduction
Core Machine
Internal 1/0
External I/O
Internal Input/Output
Slow peripherals
Sound Generator
Real time clock with RAM
Configuration Status
Clock
1MHz Internal I/O
System VIA
2MHz Internal I/0O
External Input/Output
1MHz External 1/0
Analogue Port
Light Pen
2MHz External 1/0
External Second Processor

2. Circuit description
Detailed Circuit Operation

3. Memory organisation
Memory Map
Random-Access Memory
ROMSEL
Overlaid RAM in ROM area
DRAM timing

4. Slow data bus
Memory Locations
Slow Data Control Port
Keyboard
Sound Generator
Real-time clock/CMOS RAM
CMOS RAM Allocation
Real Time Alarm Functions
RTCRAM Access Restrictions

5. Keyboard controller

Keyboard Operation
KBDENC connections
Free running mode
Column scan mode
Row scan mode
Keyboard Matrix
INKEY numbers

6. Screen display

Screen Output
High Resolution Modes
Teletext
Hardware Scroll
Video Output
Video Processor
Control Registers
Miscellaneous Functions Control Register
Palette Control Register
Cathode Ray Tube Controller
CRTC Multiplexer
Internal Timing
Hardware Scroll
Refresh Control
Multiplexing
VDU driver

7. User Port

Timers

User Port Data Register

User Port Data Direction Register
Timer 1 Low Order Counter/Latch (R/W)
Timer 1 High Order Counter (R/W)
Timer 1 Low Order Latch (R/W)

Timer 1 High Order Latch (R/W)

Timer 2 Low Order Counter/Latch (R/W)
Timer 2 High Order Counter (R/W)

Shift Register

Auxiliary Control Register (R/W)
Peripheral Control Register
Independent Mode

Interrupt Flag Register

Interrupt Enable Register

Example of motor control

8. Serial Processor

UART

SERPROC

Buffer Components
Control Register Settings

9. Peripheral bus controller

Internal Timing

Buffer Control

Timer

1/0O Definition

AC Parametric Test Information - Timing Specifications
SA data latching point

SL data latching point

C Bus Drive Waveforms

B Bus Drive Waveforms

E bus drive waveforms

10. 1IMHz Bus

Signal definitions
Hardware requirements for 1IMHz expansion bus peripherals
Derivation of valid Page signals
Address space allocation
Page FC
Page FD
Timing requirements

11. Machine Operating System

Address space map
Page 0
Pages &1 to &D
Pages &E to &7F
Pages &80 to &BF
Pages &CO0 to &DF and page &FF
Page &FC
Page &FD
The Second 32K of RAM
VDU Workspace
VDU workspace allocations
Extending the MOS
Time-Independent Functions
Vectors in co-processors
Vectors in Sideways ROM/RAM
MOS Function Vector Table
Entry pointed vectors
Vectors without MOS entry points

EVNTV

BRK instruction
BRK instruction in single processor systems
BRK instruction in co-processor systems

USERV

KEYV

VDUV

UPTV

FSCV

INSV

REMV

CNPV

NETV

INDirect Vectors

Time-dependent functions

EVNTV

12. Dual processor systems

Second processor architecture
The Tube
Tube Architecture
Tube Protocols
Operating System Usage
Filing System Usage
Parasite Protocols
Vectors
Hardware Dependency
Host Hardware
Parasite Hardware
Non-Interrupt protocols
OSWRCH
OSRDCH
OSCLI
OSBYTE
OSWORD
OSBPUT
OSBGET
OSFIND
OSARGS
OSFILE
OSGBPB
Interrupt driven operations
Startup protocol
Register Addresses
Tube protocols
Host Protocols
Check for presence of the Tube

6

Claiming the Tube 114

Initiating data transfer 115
Transferring data 116
Releasing the Tube 116
Register Locations 116
Tube/filing system interface 117
LOAD/SAVE addresses 117

Use of the Non-Maskable Interrupt 118
Claiming NMI workspace 118
Hardware access to the NMI 119
13. Z80 Second processor 120
Operating system calls 120
Faults and events 121
6502 Faults 121

Z80 Faults 121
Events 121
Escape processing 122
Interrupt handling 122
NMI Non-maskable interrupt 122

INT Interrupt request 122

Z80 Monitor 122
Z80 OSWORD call 123
1/0 Processor Memory Usage 124
Screen Control 125
BBC Microcomputer Control Codes 125
Terminal Emulator Control Codes 125

GSX Functions 126
Character I/0 under CP/M 126
Device assignments 126

The IOBYTE facility 127
Device characteristics 129

The System Patch Area 130
14. 80186 coprocessor 131
Operating System Calls 131
OSFIND 132
OSGBPB 132
OSBPUT 132
OSBGET 132
OSARGS 133
OSFILE 133
OSRDCH 133
OSASCI 133
OSNEWL 133
OSWRCH 134

OSWORD
OSBYTE
OSCLI
Error Handling by the 80186 Monitor
Error Handling by stand-alone languages or applications
80186 Error Messages
Escape Processing
80186 Monitor
80186 OSWORD call

15. Disc filing systems
DFS
ADFS
CP/M Disc Format

16. Advanced Network Filing System
Local buffering
Operating System Commands
*HELP
*CDIR
*FLIP
*FS
*I AM
*LCAT
*LEX
*PASS
*WIPE
Extra Utils star commands incorporated in the ROM
*POLLPS
*PROT
*UNPROT
*PS
*WDUMP
*CONFIGURE commands.
*STATUS commands
Extra *OPT commands
Printing
Extra interfaces
Enhancements to the filing system interface
Write only files
OSFILE
OSARGS
Error messages
User Root Directory Reference Point
Compatibility with DFS based software
Additional library functionality

134
134
134
135
135
136
138
138
142

145
145
146
147

148
148
149
149
149
149
150
150
150
150
150
151
151
151
151
152
152
152
152
153
153
154
154
154
154
155
155
155
156
157
157

Time and Date

I/0O processor address space

Automatic Bootstrapping

Re-tries

File server / Bridge net number translation
Detection of wrong versions and ANFS
Entry of hexadecimal numbers

Events on reception

17. Terminal emulator
OSBYTE 96,x
Terminal File Transfer

18. Editor
Buffer Transfer
From the language to Editor
From Editor to the language

19. VIEW and VIEWSheet format
Reserved Characters and File Format
VIEW formatting characters
Memory Format
Number Registers
VIEWSHEET data representation

APPENDICES
Appendix 1 - Differences between Model B+ and Model B
Appendix 2 - Differences between Master 128 and Model B/B+
Appendix 3 - Differences between Compact and Master 128
Appendix 4 - Differences between ANFS and NFS
Appendix 5 - Changes introduced in BASIC 4
Appendix 6 - PCB selection links and test points
Appendix 7 - Cartridge interface
Appendix 8 - 65C12 Instruction set

INDEX

157
157
157
158
158
158
159
159

160
160
160

161
161
161
161

162
162
162
163
164
164

165
171
190
200
203
205
210
215

283

10

INTRODUCTION

This book is intended for peripheral hardware designers and software writers and
expands the information given in Reference Manuals Parts 1 and 2.

It contains software and hardware reference material, with application guidelines
which anyone who is attempting a major project for the first time will find particularly
useful. The remaining chapters contain information on the Acorn-designed semi-
custom chips and a number of detailed appendices highlight the differences
between the Master 128 and other Acorn models including the Compact and the
Electron.

It has been assumed that the reader has a good understanding of basic electronics
and computer terminology.

11

1 THE MASTER SERIES’
ARCHITECTURE

Introduction

The Master Series is based on and extends the architecture of the Acorn BBC
Model B microcomputer. The heart of the computer is a comprehensive machine
operating system (MOS) which controls and organises the communications
between a central processing unit (CPU) and applications software, peripheral
devices, such as video displays and printers, and filing systems which act as
sources and stores for data. Language interpreters and compilers may be provided
to convert high level languages into a format usable by the MOS. Alternatively, the
applications may be in object code which runs directly on the CPU.

The simplest version of the computer (the Master 128) has a single processor which
performs all of these executive functions. In other computers of the series,
responsibility is split between a base processor which handles input/output (I/O)
operations and a language processor, which performs the calculations and other
data operations associated with the applications’ tasks. In general, the language
processor will be selected for its suitability for a particular application and will be
different from the base processor.

Core Machine

All input/output (1/0O) computing is performed by a 65C12 CPU with its principal
ancillary components.

128 Kbyte of dynamic random access memory (DRAM)
Special expansion options allow a further expansion of 64 Kbyte.
Dedicated hardware can be used to expand this almost indefinitely.

128 Kbyte of read-only memory (ROM)
Special expansion options allow a further expansion of approximately
half a megabyte of ROM. Plug in cartridges are available which accept
up to 256 Kbyte of ROM.

12

Internal 1/0

Internal versatile interface adapter (VIA)
This services a 93-contact keyboard with two-key rollover, a three-channel
sound generator with additional noise channel and a battery-backed real-time
clock with fifty bytes of RAM.

External versatile interface adapter (VIA)
This services the parallel printer port and the user port.

Co-processors
These consist of an additional CPU with associated memory. They depend
entirely on the main processor for all I/O operations.

External 1/0

Video display
A 6845 CRT controller formats the output for RGB, composite video and
PAL/NTSC connectors.

Analogue to Digital Converter
A four-channel A-D converter provides ten-bit binary conversions in 5ms. The
absolute accuracy will depend on the conditions of use.

Tape Interface
Facilities to both save and retrieve data from audio cassettes.

Disc Interface
Facilities to both save and retrieve data from standard Shugart connected
media. Filing systems data encoded in FM or MFM format.

Network Interface
Connection to ECONET is provided by a 68B54 advanced data link controller.
This is fitted on a daughter board and may be an optional extra (standard on
the ET machine).

1MHz Bus
Standard BBC computer 1MHz bus.

External Second Processor
An external second processor may be connected. Selection of either internal
co-processor or external second processor is performed by software. Only
one second or co-processor can be active at a time.

Centronics Printer Port
Connection for a standard parallel printer.

User Port
The user port is an eight-bit bidirectional bus with two extra
handshaking/serial lines. These are unbuffered.

RS423
A serial RS423 port. This is an enhanced version of the RS232C
specification.

13

Audio Output
The output from the sound generator is amplified to a speaker and provided at
a phono-style connector. Sound transfer to and from the modem.

Modem
Connection for a modem with both dial pulse and dual tone multi-frequency
dialling.

Internal Input/Output

Slow peripherals

These are subsystems which are provided with data from port A of the system VIA.
This data is stable until next programmed by the CPU.

Sound Generator

The sound generator is an SN7694A device, which generates three sound channels
plus one pseudo random noise channel. The full description of it is found in the
manufacturers data sheet. It receives a reference clock of 4MHz from central
timing. The output can be connected by screened cable to the optional modem.
This output is mixed on the modem board to generate dialling tones for DTMF
exchanges where the modem hardware does not provide such tones itself.

Real time clock with RAM

A 146818 RTC and RAM chip is provided with battery-backed supply. The chip
operation is described in the manufacturers data sheet. There are three AA size
batteries which normally keep the RAM backed-up for at least a year (depending on
how much the machine is NOT used).

The keyboard mounted lithium battery fitted to early issue 1 machines is charged
whilst the computer is running from the mains supply. An over-charge prevention
circuit is provided with the following action:-

a) Upon switch on, charging current of about 30mA is applied.

b) After approximately 15 minutes the charging current falls to 1mA.

c) “Trickle” charging continues at 1mA for as long as mains power is

applied.

The minimum charge burst is designed to provide battery back-up over a weekend
after just a few minutes operation.

A 100pF capacitor is connected across the clock chip supply connections to prevent
loss of data in the event of accidental battery disconnection.

14

Configuration Status

Fifty bytes of CMOS RAM are available within the chip. Twenty of these are used
by the operating and filing systems for initial configuration of the hardware. Of the
remainder, ten are reserved for future use by ACORN, ten are for ‘third party’ use
and the remainder are for the user.

Clock

The clock operates from a 32.768KHz crystal oscillator. A trimming capacitor is
provided as is a test point with the buffered clock output. Year, month, day, hour,
minute and second information is provided with automatic leap year (but not
automatic leap century) correction. An alarm is also included within the chip, but
there is no operating system support for this facility. An optional nIRQ connection
can be made to the CPU from the clock chip, enabling the alarm to change program
flow.

Operation of the clock chip in this manner involves direct manipulation of the chip
control signals and should only be attempted by competent programmers. Acorn
Computers are not responsible for incorrect programming by the user/software
supplier.

If power is removed during an access to this chip, the chip select will become
invalid, with the possibility of write accesses being corrupted. This is avoided by
inverting the chip select with a transistor whose collector resistor is connected to the
battery backed supply. As power fails to the main circuitry, the transistor base
current reduces and the transistor switches off, deselecting the chip.

1MHz Internal 1/0

Various devices operate at a 1MHz bus rate. Only one internal I/O component
works at this speed - the system VIA.

System VIA

A 6522 allows several sources to create maskable interrupts. The sources are:-
a) CRTC vertical synchronisation.
b) A-D converter; end of conversion signal.
C) CRTC light pen strobe.
d) Keyboard key detect.

It also provides the slow data bus.
Port B on this device generates and reads a number of internal hardware strobes.

15

These are :-

Port B Data Strobe Active Level

Port B Data Strobe Active Level

D7 DO

DX XXXZXXZX Clock Address H
XDXXXXZXX Clock chip enable H

X XDXXXZXZX ‘Fire’ button 2 Input

X X XDXXZXZX ‘Fire’ button 1 Input
XXXXDOOO Sound chip select L
XXXXDOO1 Clock R/'W Q H=read
XX XXDO0O1O Clock Data H

X XXXDO0O11 Keyboard enable Q H=auto-scan
XXXXD10O0 C0 1 Screen control Q
XXXXD101 C1 J signals Q
XXXXD110 Caps Lock indicator L

XXX XD111 Shift Lock indicator L

Note: Q is the value of D after the port write operation is completed

2MHz Internal I/O

Only one internal /O component operates at this clock rate, the internal second
processor TUBE. Its data bus is connected directly to the CPU data bus. The
second processor interface will only be specified as a hardware data transfer
definition. In this way, the actual second processor used will not be constrained by
this specification.

The interface is a parallel port providing the following data access signals:-

i) D0 to D7 A bi-directional bus to TTL levels.
ii) A0 to A2 A unidirectional bus to CMOS levels.

The following control and timing signals are provided:-

Host CPU phi2 CMOS levels

System Reset TTL levels

Host CPU nIRQ This must be an 'open collector' node with
an active low TTL level

8MHz timing reference TTL levels

TUBE chip select CMOS levels

Read/Write TTL levels

16

External Input/Output

1MHz External I/O
Analogue Port

This 15-way D-type connector provides access to an NEC mPD7002 four-channel,
ten-bit analogue-to-digital converter. The sampled input is compared to a 1.8V
reference derived from three small signal diodes in series.

A tracked link may be cut to deselect this reference. The user may then solder in a
two-pin precision reference in the holes provided or supply an external reference.
Any user supplied reference should have a maximum voltage of 2.5V.

An input voltage on any one of the four channels will be digitised when the A/D
control register is so instructed. Conversions are in the range 0 to 1.8V.

The voltage reference is made available at the connector. Provision is made on the
board for an additional high stability reference, if required. A link will have to be
made for the additional reference to be used. Conversions take place in 5ms and
the “end of conversion” pulse causes an IRQ to be generated by the system VIA.

Two “fire buttons” are provided for with the connections 10 and I1. These are
connected to the system VIA and cause interrupts (as IRQ) to be generated.

Light Pen

A light pen may be connected to the signal LPSTB. This also causes the system
VIA to generate an IRQ (if enabled). It also causes the 6845 CRTC to latch the
address of the currently selected video data byte. This may not be the same as the
displayed byte and some software correction may be necessary. Factors such as
phosphor characteristics, light pen response and the angle at which the pen is
used, may all affect the correction needed.

2MHz External I/O

Two peripheral devices operate at 2MHz. These are the external second processor
connection and the ECONET connection.

External Second Processor
This interface has a buffered data bus via the Peripheral Bus Controller (PBC). The

EXbus on this component provides for good data set up and hold times. Together
with a limited degree of line matching, this ensures reliable high speed data transfer

17

with unspecified cable lengths. A maximum cable length of one metre is suggested
to prevent noise problems.

The interface operates at 2MHz. This means that if a 1MHz bus peripheral is also
connected, then the address and data buses on this connector will appear to
perform both 1 and 2MHz cycles.

The connections are:-

DO to D7 Data Bus CMOS levels

AO to A7 Address Bus TTL levels

IRQ Interrupt Request Open collector
TTL levels

nTUBE Parasite chip select TTL levels

Supply +5V

Ground ov

18

2 CIRCUIT DESCRIPTION

This chapter should be read in conjunction with the circuit diagram at the rear of this
manual.

The microprocessor used in the Master 128 is a 65SC12 running at either one or
two megahertz clock rate. Most processing is done at 2MHz, including accesses to
the Random Access Memory and Read-Only Memory. The processor slows down
to 1MHz when addressing slow devices such as the 1MHz Extension Bus, the
Analogue to Digital Converter and the Versatile Interface. A 16MHz crystal oscillator
provides clock signals for the microprocessor in conjunction with divider circuitry on
the video processor (VIDPROC) uncommitted logic array chip (IC42) which
produces 8, 4, 2 and 1MHz signals.

Random Access Memory on the microcomputer is provided by four 4464 dynamic
memory devices (ICs 17,18,23,26). Row-address and column address strobe
signals for these RAMs are generated from the 8, 4 and 2MHz clock signals. These
RAMSs are cycled constantly at 4MHz. Two devices may have control of the RAM
address lines, one is the 65SC12 microprocessor and the other is the 6845 Cathode
Ray Tube Controller chip (1C22).

The CRTC generates the raster scan signals for the video display, together with the
address for each memory-mapped byte of information in the RAMs which is
required to refresh the display. An MSI CRTC multiplexer (IC31) switches control of
the RAM address lines between the microprocessor and the CRTC.

The 65SC12 microprocessor is particularly suitable for this kind of application,
because it runs from a constant clock, ¢2, and so its requirements for memory
access are predictable. Every 250ns, control of the RAM address lines is switched
between the microprocessor and the CRTC. Thus, in a one microsecond period,
the microprocessor has two RAM accesses and the CRTC has two RAM accesses.
Because the CRTC generates a sequence of addresses in order to refresh the
display, the row address lines of the RAMs are constantly cycled. Careful design of
the addressing methods in each screen mode ensures that the dynamic RAMs are
also refreshed by the sequential CRTC accesses.

Using this technique, two bytes of information are available per microsecond for
refreshing the raster scanned video display. With each horizontal line having a
period of 64ms, a 40ms active display area is usual. Thus, 640 bits of information
per horizontal line are produced from the memory-mapped display. The video
processor VIDPROC (IC42) is a custom Uncommitted Logic Array developed by
Acorn. At the end of each CRTC 250ns access period, it latches the byte from the

19

RAM and, according to the display mode in operation, serialises the byte into a one-
bit stream of eight bits or a two-bit stream of four bits etc. In this way, display
modes varying from 640 pixels in 2 colours to 160 pixels in eight colours, which may
be flashing, can be produced.

The video processor also contains a high speed block of static random access
memory called a palette. This memory can be programmed to define the
relationship between the logical colour produced by the RAM and the physical
colour which will appear on the display. Thus, in a 640 pixel mode, the two colours
to appear on the display need not be black and white, they may be, say, red and
blue. The information in the RAM is unchanged by the palette; it is its interpretation
into physical colours which changes.

Modes 0-6 in the microcomputer use software-generated characters, that is to say,
the character font to be produced on the screen is held in the memory mapped
display area of the RAM and graphics or characters may be held. This method of
producing characters is expensive in memory, involving a minimum of eight
kilobytes for the display memory.

Display Mode 7 is a Teletext mode implemented by an SAA5050 (IC32) Teletext
character generator. IC21 latches the information coming from the RAM prior to the
SAA5050. When using this mode, only 1K of RAM is devoted to the display
memory and the characters are held within it as ASCII bytes. The SAA5050 then
translates these bytes into a standard Teletext/Prestel format display.

The red, green and blue logic signals produced by the video processor are buffered
by MSI CHROMA chip (IC40) and fed out together with a composite sync signal to
the RGB connector. This output is suitable for feeding straight to the gun drives of
RGB monitors. The red, green and blue lines are summed by binary weighted
resistors to feed Q13 which produces a 1v composite video signal suitable for
feeding to monochrome monitors, on which the different colours will appear as
different shades of grey.

A modulator provides a UHF TV signal on channel 36, suitable for feeding to the
aerial input of a domestic television receiver. Colour is derived from a PAL (phase
alternating line) encoder circuit which modulates the colour information on to the
colour subcarrier frequency. A 17.7345MHz oscillator circuit is divided by a ring
counter (IC43) giving an output at the colour subcarrier frequency of
4.43361875MHz which is fed to IC40. This selects different phases of the ‘U’ and
‘V’ signals according to whether a red, green, blue, cyan, magenta, yellow or white
colour is to be produced. These signals produce the colour subcarrier signal which
is added to the monochrome output from Q11 by the buffer Q12. A reference colour
burst is provided at the beginning of each line for the receiving television to interpret
the colour information.

20

The PAL signal may be added to the 1v video connector by the insertion of a 470pF
capacitor between the emitter of Q12 and the base of Q13.

Resistors R132-4 adjust the luminance balance of the colours.

Memory provision comprises four 4464 dynamic RAM chips (IC17, 18, 23, 26)
which give 128 kilobytes of storage and a one megabit ROM (IC24) mapped as
eight 16K blocks.

Input/output is under the control of an MSI I/O controller IC15. This is connected
directly to the control lines of the executive chips responsible for peripheral access.

One 6522 VIA device (IC8) is devoted to internal system operation. Port B drives
an addressable latch which is used to provide read and write strobe signals for the
RTC/CMOS chip, the keyboard and the sound generator chip. Also coming from
this latch (IC10) are control lines CO and C1 which indicate the amount of RAM
devoted to the display memory to be 16K, 8K, 10K or 20K. Pins 6 and 7 of the
addressable latch drive the caps lock and shift lock LEDs on the keyboard.

The rest of Port B on the internal system VIA is used to input the two ‘fire button’
signals from the analogue to digital converter interface and to control a real-time
clock/CMOS RAM chip. Each time the system VIA is written to, any changes on
Port B which should affect the addressable latch are strobed into the latch by a flip
flop which is triggered from the 1MHz clock signal. Port A of the system VIA (IC8)
is a slow data bus which connects to the keyboard, the RTC/CMOS RAM chip and
the sound generator.

IC12 is a four channel sound generator chip which may be programmed to give
varying frequency and varying attenuation on each channel. An extra analogue
input from the 1MHz extension bus is added to the sound generator signal and then
filtered by a quad operational amplifier (IC9). IC13 provides audio power
amplification to drive a speaker.

Two forms of serial interface are provided, one is an audio cassette at either 300 or
1200 baud and the other is RS423, over a whole range of baud rates. (RS423 is
electrically compatible with RS232C in most applications.)

A 6850 asynchronous communications interface adaptor (IC45) is used to buffer and
serialise or deserialise the data. A second ULA (SERPROC) is used in the serial
interface (IC48). Contained within this ULA is a programmable baud rate generator,
a cassette data/clock separator and switching to select either RS423 or cassette
operations. 1C40 divides the main board 16MHz clock by 13 and this signal is
divided further within the serial interface ULA to produce the 1200 Hz cassette
signal.

21

Automatic motor control of an audio cassette recorder is achieved by a small relay
driven by a transistor from the serial interface ULA. The signal out of the cassette is
buffered and the incoming signal is suitably filtered and shaped by a three stage
amplifier. This is a quad operational amplifier (IC46). The RS423 data in and out
signals and request-to-send and clear-to-send signals are interfaced by ICs 50 and
51 which translate between TTL and standard RS423/232 signal levels. This is one
of the few sections of circuitry on the Microcomputer which requires an additional
5v supply to be present.

A four-channel analogue to digital converter facility is provided by a mPD7002 1C49.
This device connects straight to the microcomputer’s data bus and it is a dual slope
converter with its voltage reference being provided by the three diodes, D17, D18
and D19.

Connection is made to the ECONET by a five way DIN connector mounted on the
main circuit board. The interface electronics including the 68B54, line drivers,
receivers and chatter disconnect components are mounted on a separate circuit
board. This board has two connectors:-

a) A 5-way connector which has a one-to-one connection with the DIN
connector.

b) A 15-way connector provides the CPU data bus together with address,
timing reference, chip select and interrupt signals. The main pcb has
two further address connections for future expansion.

A 6854 Advanced Data Link Controller circuit handles the Econet protocol. Data to
be transmitted onto the network is fed from the ADLC to the line driver circuit which
produces a differential signal drive to the Econet cables. Received data is detected
and converted to a logic signal by one half of IC5 which is a dual compare circuit
type LM319. The received data is then fed back to the data link controller circuit.

An Econet installation has a external master clock station which controls the timing
for the network. This clock signal is transmitted around the network as a second
differential line signal and it is used to clock the data in and out of the data link
controller circuits. The network clock is also detected using one half of the LM319
comparator IC5 and the detected clock is then fed to both receive clock and
transmit clock inputs on the 6854. In the presence of a network clock, the
monostable circuit, IC2 is permanently triggered and this provides a data carrier
detect signal for the data link controller chip. Once the network clock is removed,
the monostable immediately drops out and the data carrier is no longer detected.

Econet is a broadcast network system on which a number of stations may attempt
to transmit their data over the network at any given time. In this case, a collision
can occur; the transmitting station detects the collision and backs off before
attempting to try again to transmit over the network. Collision arbitration software is

22

included in the Econet system. Collisions on the network data lines result in the
differential signal on the two data wires being reduced and this condition is detected
by IC6 which is another dual comparator circuit.

When there is a good differential data signal on the network one output of IC6 or
the other will be low, in which case the output of IC2 Pin 6 will be high, indicating
no collision. When there are no collisions on the network, and the network clock is
detected by the clock monostable, the data link controller is clear to send data over
the network.

When there is a collision on the network both outputs of IC2 will go high and the
clear to send condition will cease. Note that when the computer is not connected to
the network a collision-like situation results, in which case again the data link
controller will not get a clear to send condition.

Each Econet system requires termination at the two extreme ends of the network

with network terminator boxes. It also requires an external network clock box. The
network clock generates a 6MHz signal which is divided by two to produce 3MHz

and other clock rates down to 75KHz. The setting of this clock signal depends on

the length of the network, with the longer networks requiring a slower clock.

Up to 255 stations may be connected to each Econet with each station being
identified by a unique station identification number. This station ID is programmed
into the battery-backed CMOS RAM. The data link controller circuit produces
interrupts which are fed to the central processor NMI line. These interrupts are
enabled every time the station ID is read. Once in the data link controller interrupt
service routine the DTR output of the ADLC goes low in order to remove the
interrupt.

IC3is a WD1770 or WD1772 floppy disc drive controller circuit which is used to
interface to one or two single or double sided 5 or 8 inch floppy disc drives. Logic
signals from the controller to the disc drive are buffered by IC1.

IC6 is a versatile interface adaptor. Port A is used to provide a centronics
standard parallel printer interface, with the octal buffer IC5 being used to buffer the
data lines. Port B is left uncommitted and is free for use by the user for input or
output purposes.

23

The address and data lines AO-A7 and DO-D7, together with some page select lines
are available as the 1MHz extension bus to which various peripheral devices, such
as Teletext interface, may be connected. All accesses to this bus will be at 1MHz
processor speed. The octal buffer IC7 and the Peripheral Bus Controller IC21 are
used to interface these signals to the internal data address bus.

Selected address and data lines are available on the Tube connector which is used
to connect second language processors into the system.

Keyboard

Ninety-three keys are provided, ninety-two of which are in a modified 8x13 matrix.

A keyboard encoder, KBDENC (IC16) is used to scan the keyboard. During idle
(free run) mode, pressing any key will cause an IRQ to be generated via the system
6522. A connection is provided from IC16 to a 6522 ‘CA’ type connection. Hence
the interrupts thus generated are controlled by the 6522 control register. Depression
of either of the shift keys, or the control key does not generate an interrupt.

The power supply unit produces 5 volts at around 2 amps and -5 volts at around
50mA for use on the main circuit board. Auxiliary power for accessories is available
on an external connector.

DETAILED CIRCUIT OPERATION

In this section, certain parts of the circuit will be described.

Pins 4, 5, 6, and 7 of the video processor (IC42) produce 1, 2, 4 and 8MHz clocks in
phase. The 1MHz signal from the ULA is passed through a D-type flip flop (half of
IC28) in order to produce the system 1MHz clock. A 2MHz signal of suitable phase
is produced at the output of 74S00 (IC34) producing the normal 2MHz clock input to
the microprocessor. Switching the CPU down to 1MHz from the 2MHz it is normally
running at when accessing a slow peripheral, as required in the A, B and B+
models, doesn't happen in the Master. Instead, the Peripheral Bus Controller (IC21)
takes care of this, dividing the bus into fast and slow sections.

At the appropriate time, as governed by the 2MHz clock, one of the 2MHz clock
cycles is marked off by the D-type (half of IC28) and when this happens the D-type
that remembered that a request had been made is cleared.

A 6MHz clock signal is required for the Teletext character generator (IC32). This
signal is produced by knocking a reset flip flop (two quarters of IC39) backwards
and forwards from 8MHz and 4MHz clock signals. The resulting flip flop output is
then itself inverted according to the state of the 2MHz clock signal by an exclusive
OR gate (of IC25). Glitches on this output are removed by R59 and C30 to
produce the 6MHz clock signal at Pin B of IC25.

24

The dynamic RAMs are constantly cycled by a row address strobe signal which is
produced by the CRTC multiplexer (IC31). The column address strobe is produced
by part of two 74S00 (ICs 34 and 38). Two devices may have control of the RAM
address lines: the 65C12 CPU (IC14) and the 6845 CRTC (1C22). Selecting which
of these two devices control the DRAM address lines is done through the CRTC
multiplexer (IC31) and address multiplexers (ICs 29, 30 and 33).

The video processor uncommitted logic array takes data bytes from the RAM at the
rate of sixteen bits per microsecond and then serialises them according to the
display mode required. The bit streams for serialisation are then fed through a
block of high speed palette RAM which relates the logical colour from the serialiser
to the physical colour to be produced on the display. The palette drive is 16x4 bits
with the four bits representing red, green and blue drives, together with a flash bit.
The data bus input to the video processor is also used to access the mode control
register when the device is chip selected. In the Teletext display mode, RGB
information is fed straight into the video processor from the SAA5050 for the cursor
control to be added.

VDU throughput is much enhanced by the use of hardware scroll. A register in the
CRTC is used to store the start of screen address in the screen memory. Thus, in
order to scroll the screen, it is only necessary to increment this register by the
number of characters per line and then write to the memory address where the last
screen data was and where the new screen line data now needs to go.

The number of address lines from the CRTC used to address the screen memory
has to be sufficient to cater for the biggest screen, which is 20 kilobytes, therefore,
sufficient addresses to satisfy 32 kilobytes of screen memory are used. By the
hardware scrolling technique the picture rolls around in 32 kilobytes. For example,
with a scroll of eight kilobytes in a 20 kilobyte screen, the original start of screen for
the 20 kilobyte mode was &3000. After the eight kilobyte scroll, the current start of
screen address is &5000 with the end of the screen as viewed by the CRTC at
&5000 plus 20 kilobytes, that is &A000.

The address &A000 is not physically in the RAM and it is therefore necessary to
modify this address in order to move it to the original start of the screen. This is
done by adding 12 kilobytes to get the required physical address. In this way, the
physical memory addresses are kept within the required range. For the different
screen modes we need to add different numbers as their start of screen addresses
are different.

25

The following table shows this:-

Modes | Screen Size

Start of Screen Address

Number to be added

0,1,2 20K
3 16K
4,5 10K
6 8K

&3000
84000
&5800 (or &1800)
&6000 (or &2000)

12K
16K
22K
24K

The number to be added to the start screen address in order to keep the hardware
scrolling within the correct physical memory address range is defined by the control
lines CO and C1 from 74LS259 (IC10). This number is then computed with the
result being added to the higher CRTC refresh address lines by the CTRC

multiplexer (IC31).

26

3 MEMORY ORGANISATION

Operation of the RAM and ROM is controlled by the Memory Controller integrated
circuit. The principal function of this device is to control the memory paging
structure.

Memory Map

The 65C12 can directly address 64K locations. As over 1/2 Mbyte may be resident,
a paging scheme is implemented.

&FFFF
ROM
&FF00
1/0 or ROM Memory Mapped I/O
&FEQ0
ROM
&E000
ROM/RAM (Region b)
&C000
ROM/Sideways RAM
&9000
ROM/RAM
&8000
ROM/RAM (Region a)
&3000
RAM
&0000

Machine memory map

The current memory map is dictated by the contents of the two latches. ROM
SELect and ACCess CONtrol located at &FE30 and &FE34 respectively. The
contents of these two latches are:-

d7 dé d5 d4 d3 d2 di do
(&FE30) | RAM 0 0 0 PM3 [PM2 |PM1 PMO
(&FE34) | IRR TST IFJ ITU Y X E D

The contents of ROMSEL dictate the selection of memory which resides from
&8000 to &BFFF.

27

The contents of ACCCON principally dictate the activity of two regions of memory:
(a) &3000 to &7FFF
(b) &C000 to &DFFF

Random-Access Memory

RAM is functionally split up into two regions. The main region supports the
language workspaces, buffers etc. and provides the bit-mapped screen. The
second region provides four 16K “Sideways” RAM segments. These are link-
selected into ROM locations 4,5,6 and 7. They may be deselected, reinstating the
ROM sockets in blocks of 32 Kbytes.

Within the main 64 Kbyte region, the lower 32K is used within the &0000 to &7FFF
region of the CPU memory map. The 64K of DRAM is distributed as follows:-

Bits in ACCCON

N &FFFF &7FFF N
With
Eor X
active
&3000
&B000 &DFFF
With
Y active
Ram &C000 CPU
Address 39000 &8FFF ADDRESS
RAM
active
&8000 &8000
v &0000 &0000 v

Summary of RAM memory map
The upper 32K is split up into three, self-contiguous regions. The largest portion of
this is a 20Kbyte region designated LYNNE. This can be overlayed on the region (a)
of main memory.

When bit D in ACCCON is set, the CRT controller will display the contents of
LYNNE. When bit D is cleared, the region (a) of main memory will be displayed.

28

When bit E in ACCCON is set, if the address range is &3000 to &7FFF the CPU will
read/write Lynne according to the flow shown below

1

Wait until end
of CPU clock cycle

Y

Was the last
cycle an opcode No
fetch (SYNC=1)

from &C000 to |

&DFFF in RAM .
Access main |
Read/Write Lynne + Yes memory
Is this cycle an Yes |

opcode fetch ?

+No

This system allows for the screen bit map to be removed from the main CPU
memory map of which it occupies a significant proportion. It will, however, only
work if the screen is being accessed by opcodes from a known region - i.e. the
MOS VDU drivers.

A mechanism is also provided to permit ‘illegal’ screen access. Bit X in ACCCON,
when set, causes all accesses to region (a) to be re-directed to LYNNE. This
occurs irrespective of the opcode address, hence considerable care must be
exercised in its use. When cleared the memory map returns to its usual format.

In the same way that the BASIC variable HIMEM will always have the value &8000
when LYNNE is used, it is desirable for the variable PAGE to have the value &EOQ0,
irrespective of the current filing system. This is achieved by providing a filing
system workspace. Bit Y in ACCCON when set, causes 8Kbyte of RAM, referred to
as HAZEL, to be overlayed on the MOS VDU drivers, i.e. from &C000 to &DFFF.
When this bit has been set, no calls may be made to the MOS for VDU operation.
The code which performs this paging operation is responsible for resetting the Y bit,
as no hardware is provided for this purpose.

The remaining bits in ACCCON are used to control various peripheral systems.
ITU, when set, enables the CPU to access the internal second processor
rather than the external one.

IRR is InterRupt Request. When set, this bit causes an open drain output to
pull the CPU NIRQ pin down to Vss.

29

ROMSEL

The contents of ROMSEL determine the paging of memory in the 16K region &8000
to &BFFF. One of sixteen 16Kbyte ROM memory segments may be selected. One
additional 4Kbyte RAM segment may be selected from &8000 to &8FFF.

Eight of the segments are assumed to be in four 32Kbyte ROMs where the least
significant bit of ROMSEL selects between the upper and lower segments. Seven
of the segments exist together with a ROM which is active from &C000 to &FFFF
within a 128Kbyte ROM. This ROM is connected via a separate data bus. The four
32Kbyte devices and one 16Kbyte device are connected in a matrixing scheme.

Segments 8 7,6 5,4 ..., Chip Selects
o o o or RAM enabling
I I I
Output [o) + + +
Enable | | |
I I
Cartridge o + +
ROMs | |
Chip Select | |
o o
Segments 3,2 1,6 ... Output enables

In this way, fewer connections to the controller logic are required to select a given
ROM, although the power dissipation will be increased if all the ROMs in one
column are inserted. A chip select will be driven low if an access to one of the
segments (4 to 8) is required. If a cartridge ROM is required, then the Cartridge
ROM chip select will be driven high. All chip selects are a decode of the CPU
address most significant nibble. An output enable is turned active low during the
CPU d2 period depending on which segment is required. The segment to be
selected is determined by the binary number held within the least significant nibble
of ROMSEL.

Overlaid RAM in ROM area

When the bit RAM is set in ROMSEL, accesses to the region &8000 to &8FFF are
redirected from the currently selected ROM to a region of RAM referred to as
ANDY. It is the responsibility of the code which set RAM to clear it after accessing
ANDY. This is necessary to ensure correct operation of software in ROM.

A further 64 Kbyte of RAM is available as four pages of 16 Kbyte from &8000 to

&BFFF. The ROM slots 4,5,6 and 7 are not active when this RAM is link-selected
to be active.

30

/ \ / \
2MHz _/ \ / __
\ / \ / \ /
RAS \ / / \ /
_ | »|le20ns o
/ \ / \ / \ /
CAS _/ \ / I / \ /
|
> ons»| |« |
I_Jl I <——>I2 60ns
WAV NN\ L N/ NALSSAVARY ARRNNNNY
ADDRESS /N_/\ /\Rﬂﬂ/\ coul /\Rﬂd/\ cot /
[T 1T =z tched oF
5| [e> 20ns buffers switched off
VI;U CIV’U
DRAM timing

RAS is generated from 4M and 8M by the D-type I1C28 pin 9. CAS for the main
DRAMs is generated from 2M, inverted by a NAND in IC34 to give phi2 IN, gated
with DRAMEN which enables the main RAM, and finally gated with 4M through

another NAND in IC34.

31

4 SLOW DATA BUS

Several internal components need to work with access cycles slower than the
CPU’s normal 1 or 2 MHz rates. These are:

1) Keyboard

2) Sound Generator

3) Real Time Clock/RAM

Direct access of these devices is not recommended, as their operation may be
subtly related to other functions, or be time-critical, or could cause malfunction if not
performed correctly. The same functions may be provided by completely different
hardware in earlier or subsequent products. For those who need direct access,
rather than using the MOS, it is advisable to disable interrupts whilst accessing any
of these devices because the MOS may change some of the settings whilst
servicing an interrupt from another source.

Memory Locations

All these devices are accessed through the System VIA located at &FE40-9. The
Slow Data Bus is connected to the 8-bit A port at &FE41. This is referred to as
PA[0:7]. The B port at &FEA40 is the control bus.

Slow Data Control Port (&FE40)

Writing the following values will have the indicated effect:

PB[7] DxxxX xxxX - RTC/RAM Address strobe : Active high

PB[6] xDxX xxxX - RTC/RAM Chip select : Active high
PB[0:3] xxxX D111 - Shift lock : Active low
PB[0:3] xxxX D110 - Caps lock : Active low

PB[0:3] xxxX D101 - Hardware Scroll 1 (HS1)
PB[0:3] xxxX D100 - Hardware Scroll 0 (HSO)
PB[0:3] xxxX D011 - Keyboard Enable (KBEN)

PB[0:3] xxxXx D010 - RTC/RAM Data Strobe : Active high
PB[0:3] xxxX D001 - RTC/RAM Read Write : High for Read
PB[0:3] xxxX D000 - Sound Generator write : Active low

D is set high or low as needed.
The hardware scroll bits HS[0:1] are used in VDU control.

32

Keyboard

The keyboard is accessed as a matrix of 8 rows by 13 columns. To access any
particular key, it is necessary to assert KBEN and set the column and row
addresses of that key on port A thus:

PA[3:0] (outputs) are the column address

PA[6:4] (outputs) are the row address

PA[7] (input) is the key output - active low if pressed.
An interrupt will be caused by CA2 via R13[0] (bit 0 of &FE4D) whenever a key is
pressed.

Sound Generator

Within the MASTER 128, the sound generator chip is write-only. The write strobe
must be asserted low for the data PA[0:7] to be written into it. Data must be stable
during the 8ms in which the write strobe must be low.

Real-time clock/CMOS RAM

Fifty bytes of battery-backed CMOS RAM are available within the real-time clock
chip. Twenty bytes are used to store the system configuration, ten are reserved for
future use by Acorn, ten are reserved for use by third-party manufacturers and ten
are available for use by the user. Extreme care should be taken in the direct
control of this device to ensure integrity of the computer’s configuration status. The
MOS should be used for the normal reading/writing of the RAM. FX calls 161 and
162 (OSBYTES &A1,&A2) are used to access the RAM. OSWORDs 14 and 15
should be used to read/write the time.

CMOS RAM Allocation

Address (offset) Function
0 Station Number
1 File server station number
2 File server bridge number
3 Printer server station number
4 Printer server bridge number
5 Default filing system/language
6-7 ROM frugal bits (set/cleared by *INSERT/*UNPLUG)

8 EDIT start-up settings
9 reserved for telecommunications applications

10 VDU Mode and *TV settings

33

11 ADFS start-up options and floppy drive parameters

12 Keyboard auto-repeat delay

13 Keyboard auto-repeat rate

14 Printer ignore character

15 Default printer type, serial baud rate, ignore status
and TUBE select

16 Default serial data format, auto boot option,
internal/external TUBE use, BELL amplitude

17 ANFS configuration control (on hard reset)

bit 0 : Claim two static workspace pages
bit 1 : Findlib bootstrap option

bit 2 : Static workspace at &0B00/&0EQ0Q
bit 3 : User/Application

bit 4 : User/Application

bit 5 : User/Application

bit 6 : Reserved for ANFS protection

mechanisms
bit 7 : Display version messages
18-19 Master Compact century, joystick and country
20-29 Reserved for future use by Acorn
30-45 For ROMs 0-15 (one per ROM)
46-49 Available for user applications

Note that the station number cannot be written to, and has to be accessed by code
similar to that listed in the RTC alarm section.

Real Time Alarm Functions

The MOS does not provide control of the device’s alarm facilities as these are only
available on a daily basis, i.e. the alarm cannot be programmed to operate on a
specific date. The alarm operates by generating an interrupt when the real time
counters are equal to the alarm time registers.

The connection of the clock chip to the system interrupt line is via a shorting bar on
Link 4. This would have to be fitted by the user. For the user willing to reserve
some of the other battery-backed RAM for the target date, the following routine
should be used to access the alarm and control registers. It is similar to those
within the MOS and obeys the rules for reliable operation. It is in the style of BBC
BASIC assembler.

pbg=s&FE40 :REM Port B

pag=&FE41 :REM Port A

ddrag=&FE43 :REM Port B data direction register
:REM "1" = Output
:REM "0" = Input

34

EQUB &02:EQUB pbqg DS active

EQUB &82:EQUB pbg Address strobe inactive
EQUB &FF:EQUB ddraq Outputs

EQUB &OE:EQUB pag slow bus address (see note 1)
EQUB &C2:EQUB pbqg chip select active

EQUB &42:EQUB pbqg Latch address

EQUB &41:EQUB pbg Select write mode

EQUB &FF:EQUB ddraq Outputs

EQUB &4A:EQUB pbqg Data strobe active

EQUB &00:EQUB paq Write the data (see note 2)
EQUB &42:EQUB pbg Data strobe inactive

EQUB &02:EQUB pbg Chip select inactive

EQUB &00:EQUB ddrag Inputs again

Note 1 This address should be made variable as it will be
necessary to access one of a number of registers.

Note 2 Separate sequences may be necessary for read and
write operations, depending on personal preferences.

RTCRAM Access Restrictions

The real-time clock section of the chip is updated from the real-time counters once
every second. It is important that the user program does not try to access them at
the same time as this will give erroneous results. There are three ways that the
chip gives notice that it is in the process of updating the registers. These are
documented in the manufacturers data sheet. Where possible it is recommended
that an alternative approach be used which ensures user access. This is to set the
SET (bit 7) flag in Register &B (the control register). It prevents the chip from
updating the registers but does not affect the “counted” time. When the SET bit is
reset, the registers will be reset to the current time approximately within the next
second. Avoidance of this critical region, or the overriding of it, must be done
whenever the real time or alarm registers are written.

The code should be assembled to operate in sideways RAM (ie in the region &8000
to &BFFF). The program is essentially in two parts:

a) To set the alarm time, an OSCLI command which will not conflict with any other
in the machine, eg ““SETALARM hh:mm:ss” should be devised. This involves
recognising Service Call &04 (Offer Command). The program should interpret
the given time string as appropriate and load it into the alarm registers then re-
enable the counter-register transfers and finally enable the alarm interrupt by
setting the AIE (bit 5) flag in Register &B.

35

b) To respond to the alarm, the code should respond to Service Call &05
(Unknown Interrupt). The alarm flag - AF (bit 5) in Register &C should be
examined to ascertain whether the alarm has occurred or not. If so, the
appropriate action should be taken and the call should be claimed, otherwise

the call should not be claimed. The interrupt will be cleared by reading register
&C.

36

5 KEYBOARD CONTROLLER

Keyboard Operation

During free run mode, the keyboard column lines are continually scanned by
incrementing a counter, decoding its outputs and pulling low a column line. Any key
depressed will cause the interrupt to be generated. A signal, KeyBoard ENable is
generated to stop free running mode. The counter contents are then loaded by
CPU operation to determine on which row the key was pressed. The rows are then
individually selected to determine which key was pressed. KBDENC is supplied
with data from the slow data bus:-

PAO to PAG6 (slow bus connections):- PAO to PA3 are the column select inputs
and PA4 to PAG are the row select inputs. PA7 is a three-state connection which is
driven active low when a row/column combination describes a depressed key.

PA7 (row data bit output):- This 3-state output provides the ROW data signal to
the host system. it is enabled by the nKBEN signal and its output is high if the row
address set up on PA4-PA6 points to a row which is at logic low.

RO to R7:- The keyboard row input connections are normally held high by internal
pull-up resistors. If a key is depressed it will cause the appropriate row connection
to be pulled low when its column is selected.

CO0 to C14:- These open collector column driving outputs are sequentially taken
active low in auto scan mode at a rate of 1MHz. In polled mode (nKBEN active
low), the slow bus inputs PAO to PA3 determine which output will be low. The
selected column output is a direct decode of these inputs.

CA2:- Connected to the system VIA, this output will cause the VIA to generate an
nIRQ. The line will be active low when an active key is detected.

nKBEN:- Generated by the system VIA, this line is taken active low to enable the
row and column addresses to be determined by the Operating System.

MHZ1:- Timing reference for the positive edge triggered counter and the reset
generator circuit.

SWTI (switch input):- A transition from 5v to Ov or Ov to 5v on this input will cause
an active low pulse of 200ms to be generated on pin 22 (RSTO).

37

RSTO (reset output):- This open-drain output is triggered by a transition on the
Switch Input pin SWTI and provides a logic low output pulse of at least 200ms. For
example if SWTI is taken from Ov to 5v via a mechanical switch, the output will
immediately fall to Ov, hold low for 200ms after switch bounce and then rise to 5v
again.

VCC1 VCC2 (positive supply):- These pins must both be connected to the positive
pole of a suitable power supply.

GND1, GND2 (ground):- These pins must both be connected to the power supply
GND or RETURN line.

1 RO VCCA1 40
2 R6 MHZA1 39
3 R7 nKBEN 38
4 R2 PA4 37
5 R1 PA5 36
6 C11 PA6 35
7 C10 PAO 34
8 C12 PA1 33
9 Co PA2 32
10 GND2 PA3 31
11 Cc2 VCC2 30
12 C9 PA7 29
13 C4 CA2 28
14 C5 R5 27
15 C6 R4 26
16 C8 R3 25
17 c7 C13 24
18 C3 C14 23
19 C1 RSTO 22
20 GND1 SWTI 21

KBDENC connections

The keyboard encoder scans the keyboard matrix, interrupting the CPU when a key
is pressed. The MOS then puts the device in manual mode and scans the columns
until it finds one where a key has been pressed. It then scans the rows until it finds
one where a key has been pressed. It then goes on to check other columns and
rows to find out if any other keys have been pressed. This continues at 10ms
intervals (under the control of the system timer) until no keys are pressed, at which
point the MOS switches the device back to automatic scanning. The operation of
this circuit can be split into three modes.

38

Mode 1 - Free run

This is the state assumed during normal operating periods with no key pressed.
The keyboard is constantly scanned, with no intervention from the CPU, until a key
is pressed. A four-bit counter, clocked by a 1MHz signal drives a four-to-fifteen line
decoder. This causes a logic low to ripple through CO to C14. Should any key be
pressed, the column in question will be connected to the relevant row, which will
pull one of the inputs to the 7NAND gate low. As the other six inputs are all pulled
high, the NAND output will go high and thus generate an interrupt signal on pin
CA2.

Mode 2 - Column detection

The interrupt signal is registered in the host system which then takes a closer look
at the keyboard. The Operating System keyboard scan routine is entered and
individual addresses may be set up on PAO to PA3. These are synchronously
loaded into the counter while nKBEN is low, thus causing each keyboard column to
be individually scanned. The interrupt CA2 may be examined after each counter
load to see if the correct column has been reached. If this is so then the column
address is held on the counter and stored for future reference, if not then the next
address is loaded into the counter.

Mode 3 - Row detection

Having discovered and held the column address, the host may now set up
addresses on PA4 to PA6. These are fed to an eight-way data selector and cause
one of the eight rows to become available on the W output in an inverted state.
Should the correct row be found, W will go high and the current address will be
stored.

39

Keyboard Matrix

The keys are physically arranged as a QWERTY type keyboard with ten function
keys, four cursor control keys and a nineteen-key numeric keypad.

INKEY number

co Ccl |c2 |c3 |c4 |c5 |cé |c7 |c8 |c9 |ciofc1ii|c12
|
R7 ESC £1 |£2 |£3 |£5 |[f6 [£8 |f9 \ |RGT| 4 5 2
< | > ?
R6 TAB Z |spc| Vv B M , . / |CPY| O 1 3
SHIFT 4 }
R5 | LOCK s|lclGec|H]|N]|L ;] |DEL| # * p
CAPS *
R4 | LOCK AlxX|F|lY|J]|K|®@ : |RET| / |DEL
! " & {
R3 1 2 DR |6 |J]U]|]O]|P [|up | + - |RET
1) £
R2 f0 wlE | T]|7 I 9 o | _ |powN| 8 9
$ % (=1~
R1 Q 3 4 5 |f4 8 |£7 ~ |LET| 6 7
RO SHIFT | CTL
key INKEY number key
fo &DF -33 ESCAPE &8F
f1 &8E -114 TAB &9F
f2 &8D -115 CAPS LOCK &BF
3 &8C -116 SHIFT LOCK &AF
f4 &EB -21 CTRL &FE
5 &8B -117 SHIFT &FF
f6 &8A -118 SPACE &9D
7 &E9 -23 DELETE &A6
8 &89 -119 RETURN &B6
f9 &88 -120 COPY &96

40

-113
-97
-65
-81
-2
-1
-99
-90
-74
-106

key INKEY number key INKEY number

A &BE -66 uUpP &C6 -58
B &9B -101 LEFT &E6 -26
C &AD -83 RIGHT &86 -122
D &CD -51 DOWN &D6 42
E &DD -35 , &99 -103
F &BC -68 - &E8 -24
G &AC -84 . &98 -104
H &AB -85 / &97 -105
I &DA -38 [&C7 -57
J &BA -70 \ &87 -121
K &B9 -71] &A7 -89
L &A9 -87 A &E7 -25
M &A -102 _ &D7 41
N &AA -86 : &B7 -73
(0] &C9 -55 ; &A8 -88
P &C8 -56 @ &B8 -72
Q &EF 17 keypad 0 &95 -107
R &CC -52 keypad 1 &94 -108
S &AE -82 keypad 2 &83 -125
T &DC -36 keypad 3 &93 -109
U &CA -54 keypad 4 &85 -123
\Y &9C -100 keypad 5 &84 -124
w &DE -34 keypad 6 &E5 -27
X &BD -67 keypad 7 &E4 -28
Y &BB -69 keypad 8 &D5 43
z &9E -98 keypad 9 &D4 44
0 &D8 -40 keypad . &B3 -77
1 &CF -49 keypad , &A3 -93
2 &CE -50 keypad # &A5 -91
3 &EE -18 keypad + &C5 -59
4 &D -19 keypad - &C4 -60
5 &EC -20 keypad / &B5 -75
6 &CB -53 keypad * &A4 -92
7 &DbB -37 keypad RETURN &C3 -61
8 &EA -22 keypad DELETE &B4 -76
9 &D9 -39

41

6 SCREEN DISPLAY

Screen Output

Three chips are primarily responsible for providing the screen output:-

a) Acorn VIDPROC ULA chip
b) 6845 Cathode Ray Tube Controller
c¢) Acorn CHROMA MSI video matrixing chip

The video processor takes a byte-wide data stream from memory, serialises it
according to the screen mode in use, passes it through a palette to provide logical
to physical colour transformation and on to the RGB outputs. From here the video
data is buffered for connection to an RGB monitor and mixed for use with the
composite video and colour television outputs.

High Resolution Modes

The 6845 generates a linear memory address sequence which increments every
0.5ms or 1ms, depending on the video bandwidth selected and video data format.
The amount of memory reserved for screen use is also varied. The available
options are

Video Data Formats

“Mode” Format Reserved Memory
Pixels/Byte Bytes

0 8 20K

1 4 20K

2 2 20K

3 8 16K

4 8 10K

5 4 10K

6 8 8K

7 Teletext 1K

128 8 20K 9

129 4 20K

130 2 20K

131 8 20K } Reserved
132 8 20K in LYNNE
133 4 20K

134 8 20K

135 Teletext 20K 4

42

All modes except 7 and 135 display a bit-mapped image of the reserved memory.
The 6845 may be re-programmed to display any arbitrary section of memory. If this
is done, however, the hardware scrolling will not work correctly, as it assumes that
the screen memory is in its usual location. The screen always ends at &7FFF and
starts 1,8,10,16 or 20K below, depending on the selected mode. The selection of
video bandwidth and data format is performed by programming the VIDPROC. The
cursor size and position is also controllable by VIDPROC. Special measures have
been taken to ensure correct cursor operation in the Teletext modes.

Teletext

The Teletext modes do not generate a bit mapped display, but a character cell one.
The character/graphics ROM within a SAA5050 device generates RGB signals
according to the desired character/graphics information within the reserved memory
space. Each byte of memory is therefore just a definition of the character/graphics
symbol required.

Other SAA505X devices may be used when different languages are required. Only
1 Kbyte of memory is needed for either of the Teletext modes, although 20K is
reserved for it in mode 135. The MOS uses the spare 19K to speed up inter-filing
system file transfers but the user may use this memory if no such transfers are to
be done. VIDPROC has to be re-programmed to use the SAA5050 RGB outputs.
The 6845 is still used to generate the cursor. As a delay of 2.75 ms will occur
between reading a character from RAM and outputting the appropriate RGB
signals, the 6845 has to be programmed accordingly. The “start” of screen signal is
given a 1.5-byte time offset and the SAA5050 has a further one-byte time offset to
restore the correct cursor/data phase.

VIDPROC has further adjustment which allows for the cursor to be adjusted to pixel
accuracy.

Hardware Scroll

Scrolling may be achieved in any mode by re-programming the 6845 start of screen
address to an integral number of video lines further down the memory map than the
nominal start of screen. This causes the linear address generator to attempt to
display an end of screen, which is out of the reserved video area. To overcome this
effect, hardware scrolling is provided with a variable address wrap-around. When
the address generator would otherwise attempt to access out-of-screen RAM, its
addresses are modified to point to the gap between the original start of screen and
scrolled start of screen. When this is done, only the end of screen needs to be
written over in RAM. (If this is not done, the entire screen appears to “roll-over”).
The amount of modification to be used is controlled by two nodes; CO and C1.

43

Video Output

Three outputs are provided for displaying video data. These are:

a) PAL/NTSC encoded, UHF carrier. On channel 36 with 1.5mV into 75 ohm.
b) Composite video. This is a 1v peak-to-peak signal.
c) Digital Red-Green-Blue (RGB) - these are approximately 75 ohm outputs.

For use with NTSC, the modulator has to be changed from UM1233/E36 to a VHF
equivalent. Provision is made for selection of either one of two channels with VHF.
A Molex type link has to be inserted for this.

DATA BUS IN

[1

CONTROL REGISTER L SERIALISER
Shift
A
Write
Load
Displ:
PALETTE — T

_ (64 bit RAM)

Write

A4

A0 TIMING

6845
clock
F RGBin

MULTIPLEXER

tid

Select,

16MHz —| CLOCK GENERATOR
| 4— Cursor
> NTROL
Cursor width CURSOR CONTRO [¢—— Display
invert
8MHz 2MHz
4MHz 1MHz

R,G,B out

Block Diagram of the Video Processor

44

Control Registers

There are two control registers. The first contains miscellaneous control functions,
the other dictates the contents of the palette.

Miscellaneous functions control register (write only)

bit # function parameters
0 select flash colour 0 - first colour
1 - second colour
1 teletext/high res 0 - palette output
1 - teletext output
2-3 bits/pixel 00 - 10 chars/line 16 colours
01 - 20 chars/line 16 colours
10 - 40 chars/line 4 colours
11 - 80 chars/line 2 colours
4 6845 clock rate 0 - 1MHz (Modes 4-7)
1 - 2MHz (Modes 0-3)
5-6 cursor width 00 - 1 byte
01 - not used
10 - 2 bytes (Modes 1,5, and 7)
11 - 4 bytes (Mode 2)
7 main cursor width 0 - small
1 - large
Notes
bit 0 is re-programmed by the MOS at intervals to cause physical flashing
colour to alternate between its standard values and the (binary) logical
complement.
bit 1 dictates whether the RGB signal supplied to the external buffers comes
from the palette output or the Teletext character generator.
bits 5-6 The cursor is “on” for a number of byte-times, depending on the screen

mode.

45

Palette Control Register (write only)

bits 0-3 - physical colour
bits 4-7 - logical colour

These are programmed together so that a certain physical colour is associated with
a particular logical colour.

In two colour modes, bit 7 dictates the colour

- Eight locations must be programmed for each logical colour.
In four colour modes, bits 7 and 5 dictate the colour

- Four locations must be programmed for each logical colour.
In eight colour modes, Bits 7 to 4 dictate the colour

- One location must be programmed for each logical colour.

The principle is that the remaining locations must be set to the same value as the
selected logical colour. If bits 7 and 5 in a four colour mode were “0,1” and physical
colour “0,1,1,1” was to be written to this location, then “0,1,1,1” must be written to all
logical colour locations obtained with the four combinations of bits 6 and 4 while 7
and 5 are held as “0,1”.

The Cathode Ray Tube Controller

The Cathode Ray Tube Controller (CRTC) is the heart of the microcomputer’s video
display circuitry. Its primary function is to display all video data in the memory on a
raster scan display device i.e. a television or a monitor.

The CRTC chip used in the Master Series of microcomputers has sixteen registers,
which can all be accessed by the command VDU 23,0. The manufacturer’s data
sheet gives the exact effect of the registers, and only the default values for each
screen mode and the two control bits HSO and HS1 in the slow bus control latch are
listed here. The bits HS0 and HS1 affect the scrolling function by extending the
maximum address in the display memory map, as seen by the CRTC. Note all the
numbers are in Hexadecimal.

46

CRTC chip registers

6845 Screen MODEs Note
Registers 0(128)(1(129)|2(130)|3(131)|4(132)|5(133)|6(134)|7(135)
RO TF TF TF TF 3F 3F 3F 3F
R1 50 50 50 50 28 28 28 28
R2 62 62 62 62 31 31 31 33
R3 (H sync) 08 08 08 08 04 04 04 04
R3(V sync) 02 02 02 02 02 02 02 02
R4 26 26 26 1E 26 26 1E 1E
R5 00 00 00 02 00 00 02 02 (1)
R6 20 20 20 19 20 20 19 19
R7 22 22 22 1B 22 22 1B 1B
R8 (Int'lace) 01 01 01 01 01 01 01 03 (2)
R8 (Disp del) 00 00 00 00 00 00 00 01
R8 (Curs del) 00 00 00 00 00 00 00 02
R9 07 07 07 09 07 07 09 12
R10 67 67 67 67 67 67 67 72
R11 08 08 08 09 08 08 09 13
R12,13 3000 3000 3000 4000 5800 5800 6000 7C00 (3)
R14,15 XX XX XX XX XX XX XX XX (4)
R16,R17 ————————— Light Pen Position registers-------------
HSO0,HS1 0,1 0,1 0,1 0,0 1,1 1,1 1,0 N/A
Screen End TEFF TEFF TEFF TETF TEFF TFFF TE3F TFE7
Address
Light pen 0606 0606 0606 0806 0B04 0B04 0Cco04 2808 (5)
offset
Light pen 1 2 4 1 1 2 1 1 (5)
cell mod.
Bytes per ** 280 280 280 280 140 140 140 28 (6)
text line
Text Lines 20 20 20 19 20 20 19 19
per screen
VIDPROC ctrl 9C D8 F4 9C 88 c4 88 4B (7)
register
Notes

1) These only apply if the screen position has not been modified by *CONFIGURE, or
a subsequent *TV command.

2) These only apply if the interlace has been turned on by *CONFIGURE, or a
subsequent *TV command.

3) These values are only valid before hardware scrolling has been used.

4) On reset, these registers are set to the screen start address, but the actual position
will depend on how much screen output has been generated by languages, filing

systems etc.

47

5) Light pens can be connected either to the Analogue Port at the rear of the
machine, or to either of the Cartridge Sockets just behind the keyboard. A “low”
pulse on any of these connections to the light pen strobe will cause the current
scan position to be latched in the light pen position registers, R16 and R17. The
accuracy of the measurement will depend on the sensitivity of the light pen. The
figures given should be subtracted from the R16,R17 contents to yield the actual
screen position, assuming ideal optical conditions. The adjustment arises out of
the different screen start addresses. The final X,Y coordinates are:

X = ((R16,17 - Offset) DIV (characters per line))/Light Pen Cell Modifier
Y = (R16,17 — Offset) MOD (characters per line)

These offsets are only valid before hardware scrolling has been used. For this
reason it is often advisable to restrict light pen use to text or graphics using
graphics mode. The Light Pen Cell Modifiers are necessary as the 6845 is
clocked at different clock speeds in different modes, so in a given time, the 6845
“sees” a different number of character cells from the one the viewer sees. The
modifiers allow this to be taken into account.

6) Each character cell is eight bytes deep as the 6845 imposes this format on the
memory map; so each entry in this line of the table is the number of character
positions multiplied by eight. This figure can be used to establish the start and
end address of any scan row, given the screen’s start address.

7) The VIDeo PROCessor (VIDPROC) control register’s least significant bit is
changed in all modes except Mode 7 to cause the colours to flash.

CRTC Multiplexer

The CRTC Multiplexer converts the CRTC’s eighteen-bit address into two eight-bit
addresses for the row and column parts of the DRAM’s video cycle. It also provides
the hardware scroll logic to keep the addressed memory within the screen’s
20Kbyte boundaries.

48

Internal Timing

The device uses a slightly delayed version of the DRAMs’ nRAS strobe to select
between the row and column parts of the address.

Hardware Scroll

The hardware scroll address modification as described in the section on 6845
register values (MOS chapter) is performed by logic within this device. Some of the
CRTC address lines are used in a non-standard way. The MA13 line is used as a
“Bit-Mapped or Teletext” mode indicator and is used to modify the address scan
accordingly.

Refresh Control

In the bit-mapped modes, the memory is scanned often enough to render explicit
refresh unnecessary. In the Teletext modes, the addresses of non-displayed
locations (as accessed in the 24ms per line when the display is inactive) are
modified to produce sequential scanning and hence maintain the refresh.

Multiplexing

The address is output, one half at a time for each of the Row and Column
addresses. One of four eight bit fields may be selected:

1) Bit mapped display - low order address
2) Bit mapped display - high order address
3) Teletext display - low order address

4) Teletext display - high order address

The VDU driver

The VDU Driver is extensively covered in Part 1 of the Reference Manual.
However, by programming in machine code, the hardware may be accessed
directly to give additional display modes, such as a 640x512 MODE. This is a two-
colour mode which uses both the main and shadow screen memories to store
alternate half-frames of an interlaced synchronisation and video picture. The
method used is as follows:

49

. Select MODE 0

. Program the CRTC for interlaced sync. and video.

. Set the EVNTYV vector to point to your code.

. Enable the vertical synchronisation event.

. Use OSBYTE &70 (X=1) (*FX 112,1) to select the half-frame to be drawn.

. Draw the half-frame.

. Use OSBYTE &70 (X=2) (*FX 112,2) to select the second half-frame.

. Draw the second half-frame.

. Use OSBYTE &71 (X=1,X=2) (*FX 113,1 and *FX 113,2) to select alternate
screens on alternate vertical synchronisation events.

©CoOoONOOOAWN =

The program will alternate the half-frames correctly but should provide the facility to
reverse the display sequence as the hardware may present the two half-frames in
the incorrect phase.

The display may be distorted if any software disables the vertical synchronisation
event.

50

OSBYTE &75 (117) is used to read the VDU status byte, and puts its current value
into the X register. The bits in the result have the following meanings.

VDU status -

bit 0
bit 1
bit 2
bit 3

bit 4
bit 5
bit 6
bit 7

printer output enabled

scrolling disabled

paged software scrolling enabled

text window is currently defined

this is set up by VDU 28 and cleared by VDU 26
shadow screen selected

printing at graphics cursor enabled

cursor editing mode enabled

VDU is disabled via VDU 21

51

7 THE USER PORT

The User Port provides the following facilities:

Eight-bit bi-directional data port with optional handshaking
Programmable pulse generator

Programmable frequency generator

Pulse counter

Synchronous/asynchronous SIPO/PISO shift register

It appears as a set of memory-mapped locations and is accessed using OSBYTEs
&96,&97 (150,151). As the parallel printer port is controlled by the same 6522
versatile interface adapter (VIA) chip, care should be taken to avoid conflicts
between the two applications. The 6522 registers that control the User Port are
described here, bit-by-bit. DO is the least significant bit, D7 is the most significant
bit. The User 6522 VIA has a base address of &FE60

Timers

Two sixteen-bit counter/timers are provided. They are designated T1 and T2. Each
consists of a sixteen-bit decrementing counter, one or two eight-bit latches and
some control logic. The latches are used to store the values that will be loaded into
their respective counters when a particular event occurs. The modes of operation
are determined by the Auxiliary Control Register.

User VIA Address Mapping
Offset Function

1] User Port Data Register

2 User Port Data Direction Register

4 T1 - Low Order Counter/Latch (R/W)
5 T1 - High Order Counter (R/W)

6 T1 - Low Order Latch (R/W)

7 T1 - High Order Latch (R/W)

8 T2 - Low Order Counter/Latch (R/W)
9 T2 - High Order Counter (R/W)

10 Shift Register

12 Peripheral Control Register
13 Interrupt Flag Register

14 Interrupt Enable Register

52

User Port Data Register

User Port access. Bit PBO on the User Port corresponds to the data bit DO whilst
PB7 corresponds to D7. Control lines CB1 and CB2 can be programmed to behave
as handshake lines. CB1 acts as Data Acknowledge. CB2 acts as Data Ready.

For example, if the following connections are made between two Master Series
computers (A and B)

Computer A Computer B
PBI[0:7] to PBI[0:7]
CB1 to CB2
cB2 to CB1
Ground to Ground

when the interrupts are enabled, writing a byte to the User Port in A will cause an
interrupt to be generated in B. When B reads the data from its User Port, A will be
interrupted to indicate that the data has been taken. The data traffic will also work
in the other direction.

The manufacturer’s data sheet should be consulted for detailed timing information.

User Port Data Direction Register

Each bit in this register acts as a flag for the corresponding User Port bit. If set it
will be an output, if clear an input.

Timer 1 Low Order Counter/Latch (R/W)

Read - the T1 low order counter is read and the T1 interrupt flag (in the Interrupt
Flag Register) is cleared.

Write - the data written into this latch is transferred to the T1 low order counter after
either the T1 high order counter is written to, or the T2 counter underflows through
zero in the free-run mode.

Timer 1 High Order Counter (R/W)

Read - the T1 high order counter is read, but the T1 interrupt status is not affected.
Write - the data written into the latch is stored and transferred into the T2 High
Order counter at the next system 1MHz high transition. T1 low order latch is
transferred to T1 low order counter at the same time. This action effectively starts
the counter and the T1 interrupt flag is cleared accordingly.

53

Timer 1 Low Order Latch (R/W)

Read - the value in the T1 low order latch is read. T1 interrupt status is not affected.
Write - equivalent to writing to Offset 4.

Timer 1 High Order Latch (R/W)

Read - the last value written is read back.
Write - the value written is stored, but is only transferred to the T1 high order
counter when T1 underflows in free-run mode.

Timer 2 Low Order Counter/Latch (R/W)

Read - T2 low order counter is read and the T2 interrupt is cleared.
Write - the data written is stored in the T2 low order latch.

Timer 2 High Order Counter (R/W)

Read - T2 high order counter is read.

Write - the data is written directly into the T2 high order counter. This causes the
value in the T2 low order latch to be transferred into the T2 low order counter and
the T2 interrupt is cleared.

Shift Register

A multi-function register controlled by the Auxiliary Control Register at Offset 11. It
is a left-shift, circulating register, i.e. data is shifted in from bit O towards bit 7 and
when shifting out, has bit 7 connected to the input of bit 0. It has eight modes of
operation which are in no way related to the screen modes.

Mode 0 - Static Shift Register
Read - the value shifted into the shift register is read.
Write - the shift register will contain the value written.

Shift - the data on CB2 will be shifted in on CB1 positive transitions.
Interrupts - the shift register interrupt is disabled.

Mode 1 - Data Shifted in by T2

Read - the value shifted into the shift register is read. Shifting will start.
Write - the shift register will contain the value written. Shifting will start.

54

Shift - data is shifted in on CB2
a) after a read/write operation with the SR interrupt clear.
b) after T2 times out following a read/write with SR interrupt SET. Shifting
will occur for eight T2 time-outs.
Interrupts - the SR interrupt will occur after eight T2 time-outs.

Note: In this mode CB1 is clocked with the T2 time-out. This is to provide a clock
for the external device providing the data. Data is shifted in on the CB1 negative
edge, but is sampled (latched) on the CB1 positive edge. For this reason, the
external device should be clocked on the CB1 negative edge. Shifting stops after
the eighth shift.

Mode 2 - Data Shifted in by the system 1MHz clock

This is similar to Mode 1 except that CB1 clock is the system 1MHz clock, divided
by two.

Mode 3 - Data Shifted in by externally provided CB1 clock

This mode is used when data is provided by an asynchronous source from which a
clock is derived.

Read - the value shifted into the shift register is read.

Write - the shift register will contain the value written.

Shift - data is shifted in on CB2 at the system 1MHz pulse after the CB1 positive
transition.

Interrupts - the shift register interrupt is set after 8 data bits have been shifted in. It
is reset at the next read/write of the shift register.

Note. Due to the shift-in timing, it is recommended that the incoming data rate
should not exceed 250kHz, thereby allowing for the asynchronism between the
transmitting and receiving units. The actual data rate is more likely to be limited by
the speed with which the “register full” interrupt is serviced; the shift register keeps
shifting whether or not it is serviced, so data may be lost if the user’s program does
not respond in time.

Modes 4 and 5 - Data Shifted out by T2

Read - the current shift register value is read. Shifting will start.
Write - the shift register will contain the value written. Shifting will start.
Shift - data is shifted out on CB2
a) after a read/write operation with the SR interrupt clear.
b) after T2 times-out following a read/write with SR interrupt set. In Mode 4,
shifting occurs at every T2 time-out. In Mode 5, shifting will occur for eight
T2 time-outs and then stop until the interrupt is serviced and new data is
loaded.
Interrupts - the SR interrupt will occur after eight T2 time-outs.

55

Note: In this mode CB1 is clocked with the T2 time-out. This is to provide a clock
for the external device sampling the data. Data is shifted on the CB1 positive edge,
but should be sampled by the external device on the CB1 negative edge. For this
reason, the external device should be clocked on the CB1 negative edge. Shifting
stops after the eighth shift in Mode 5 but is continuous in Mode 4.

Mode 6 - Data Shifted out by the system 1MHz clock

This is the shift out equivalent of Mode 2.

Mode 7 - Data Shifted out by externally provided CB1 clock

This is the shift out equivalent of Mode 3. The same restrictions to data rate apply.

Auxiliary Control Register (R/W)

Controls the shift register mode, Timer 1, Timer 2 and the Port A B latching. It is
divided into three fields

(1) Port Latching
Bit 0 enables/disables latching of the Printer port. This bit must be
maintained at all times.
Bit 1 enables/disables latching of the User Port. A logic 1 will enable
latching. CB1 acts as a strobe to latch the data.

(2) Shift Register Control

Bits 4,3,2 Function
000 Mode 0
001 Mode 1
010 Mode 2
011 Mode 3
100 Mode 4
101 Mode 5
110 Mode 6
111 Mode 7

(3) Timer 2 Control
Bit 5 O - interrupt when T2 decremented to zero
1 - decrement T2 with each pulse input to PB6. Interrupt when T2=0,
then re-load and continue counting, so generating an interrupt stream.
T2 high order counter must be written after every T2 interrupt to enable
the next interrupt

56

(3) Timer 1 Control

Bits 6,7 Operation

00 After loading T1, it will generate a single interrupt after
decrementing to zero.

01 After loading T1, it will generate a stream of interrupts; one
whenever it counts down to zero.

10 As 00 but output a single pulse on PB7 as well as the
interrupt.

11 As 01 but generate a stream of output pulses as well as the
interrupts.

Note: When Timer 1 mode 11 is selected, PB7 will change polarity every time T1
counts down to zero. This means that it will output a waveform of frequency:
PB7frequency=1/(<T1latches>*2)

Peripheral Control Register

The most significant nibble dictates the function of the CB1, CB2 control lines,
whilst the least significant nibble controls CA1, CA2. The latter should not be
touched as it may interfere with correct parallel printer operation. Whenever writing
to this register, ensure that the least significant nibble is preserved.

CB1 Interrupt Control
Bit 4 0 - generate an interrupt on a CB1 negative edge.
1 - generate an interrupt on a CB1 positive edge.

CB2 Control
Bits 5,6,7 Operation

000 CB2 will generate an interrupt on its negative edge
001 CB2 as above, independent mode
010 CB2 will generate an interrupt on its positive edge
011 CB2 as above, independent mode
100 CB2 provides the “Data Ready” handshake output.
101 CB2 provides a single high-going pulse.
110 CB2 goestoa 0
111 CB2 goestoa i

Independent Mode

Whilst reading the User Port Data Register would normally clear the interrupt
request that transitions on CB2 have created, in the “independent modes” these
interrupts have to be cleared by directly clearing the appropriate bits in the Interrupt
Flag Register.

Note that the bits 0,1,2,3 perform a similar function for CA1 and CA2.

57

Interrupt Flag Register

The CPU has to be able to determine which function of the User Port is generating
an interrupt. This register has a bit representing each of the functions that can do
this. Even if an interrupt source has been disabled using the Interrupt Enable
Register, it can still set its appropriate flag in this register. A set bit indicates that
the function is trying to generate an interrupt.

Register bit set when... cleared when...

0 CA2 active edge occurs Printer port is accessed

1 CA1 active edge occurs Printer port is accessed

2 Shift Register completes Shift Register is accessed

8 shifts

3 CB2 active edge occurs User Port Data is accessed

4 CB1 active edge occurs User Port Data is accessed

5 T2 times-out Read T2 low order OR
Write T2 high order

6 T1 times-out Read T1 low order OR
Write T1 high order

7 Any interrupt is set All interrupts are clear

Note that bit 7 is designed to enable fast interrupt control. It is only necessary to
test bit 7 to find out if any of the functions are generating an interrupt request. The
CPU’s BIT operation will cause its negative status bit to be set if bit 7 is set in this
register.

Interrupt Enable Register

For each bit in the Interrupt Flag Register to cause an interrupt, the corresponding
bit in the this register must be set.

Register bit Enables the interrupt from
CA2
CA1
Shift Register
CcB2
CB1
Timer 2
Timer 1
Global

NOOTRrWN—=O

If the Global bit is clear, then every set bit in the register disables the corresponding
interrupt request. If it is set then every set bit in the register enables the
corresponding interrupt request.

When this register is read, Bit 7 will be set and other bits will be as written.

58

Example of motor control

For example, to control a three axis machine which uses stepper motors, Timer 1
frequency generator output may be used to provide stepping pulses to motor phase
sequence generators. Other PB lines can provide forward/backward control and
move/hold controls. This means that all three motors can be rotating at once. The
Timer 2 pulse counter can be used to count the number of pulses that have been
applied to the motors. Every time a T2 interrupt is generated, those motors which
are enabled will have their positions (as stored in memory) updated by the CPU.
Limit switches on each axis can be connected to override the 6522 outputs and
logically ORed to generate an interrupt so that if any motor tries to go “off the end”
the CPU will detect this and so prevent the occurrence of any damage. The PB
lines can then be used as inputs to determine which motor has gone to its end stop.

Method
Assign the User Port pins :

CB1 will be the global alarm (overrun) input.
PB7 is the frequency generator output.

PB6 is the pulse counter.

PB5 is the Z axis enable/fault indicator.

PB4 is the Z axis direction control/fault indicator.
PB3 is the Y axis enable/fault indicator.

PB2 is the Y axis direction control/fault indicator.
PB1 is the X axis enable/fault indicator.

PBO is the X axis direction control/fault indicator.

Ze=2020T8

=

= =

To run the motors:

PB7 must be a frequency output
PB6 must be a counter input
PB[0:5] must be outputs

Thus:

Location Contents Comments
7 0

&FE6C 00000000 CB1 negative interrupt
&FE6B 11loo000 Set up the timer controls
&FEGE lolooooo Enable the T2 interrupt
&FEB2 10111111 Enable the outputs
&FE60 XXDDDDDD Operate the motors

o is the old contents D is the desired action

59

Timer 1 should be programmed with the value for the required operating frequency.
To find out which motor has overrun:

PB[0:5] should be inputs
PB7 should be switched off whilst the overrun is checked.

Thus:
Location Contents Comments
7 0
&FE6B 00looooo Switch off Timer 1
&FEB2 10000000 Inputs to read the switches
&FE60 XXDDDDDD Read the switches

o is the old contents D is the desired action

Operation can now be returned to “Running Mode”.

60

8 THE SERIAL PROCESSOR

The serial processor (SERPROC) is used in conjunction with the 6850 UART to
provide the RS423 and cassette tape interfaces. It contains a baud rate generator,
channel multiplexer and tone generator.

UART

The device responsible for providing most of the serial port functions is a 6850
UART. This has all the receive/transmit and data formatting/error checking that is
necessary for both systems. It is fully described in the March 1983 edition of the
Hitachi Microcomputer Databook.

SERPROC

The ACORN proprietary part, SERPROC is effectively a multiplexer and baud rate
generator for the 6850. It also generates the phase-continuous transmission
circuitry for use with the cassette interface.

Buffer Components

The RS423 transmit data and CTS lines are buffered by an AM26LS30 or
equivalent. This provides a single ended transmission with slew rate limited output.
RS423 receive data and RTS is buffered by a mA9637AC or equivalent. Both
buffers are connected with single-ended input configurations.

Cassette data output from the SERPROC is buffered by a single, non-inverting

operational amplifier with a simple single pole filter, a.c. coupling capacitor and
current limiting output resistor.

61

Control Register Settings

Bit # Function Parameters
msb

0-2 Transmit Baud Rate 000 : 19200
100 : 9600
010 : 4800
110 : 2400
001 : 1200
101 : 300
011 150
111 : 75

3-5 Receive Baud Rate 000 : 19200
100 : 9600
010 : 4800
110 : 2400
001 : 1200
101 300
011 : 150
111 : 75

6 Channel Select 0 : Select Tape

1 : Select RS423

7 Cassette Motor Relay 0 : Open
1 : Closed

Note. The Transmit and Receive baud rates both assume that the 6850 has its
clock divider set to divide by 64.

Receive baud rate not used in cassette mode, but Bit 3 may control inversion of the
Transmit data (VTI version of SERPROC)

62

9 THE PERIPHERAL BUS
CONTROLLER

The peripheral bus controller buffers data between the 65C12 CPU (on the “CD”
bus) and the internal peripherals on the “BD” bus, the external “1MHz Bus” and the
external “Tube” interfaces (both on the “ED” bus). It also contains a timer to
generate a long delay after power-up.

Internal Timing

All the necessary timing is synthesised from the system 8MHz and 1MHz signals.

Buffer Control

The selected buffer path is determined by the RDY and FIT signals, as described
for the I/O Controller, together with the system R/W signal.

Timer

The timer is an eight-bit counter with an external oscillator, which is also used as
the timer’s output. The oscillator output is used to charge/discharge a timing
capacitor. The use of a charge time constant which is 1% of the discharge time
constant causes the output (CHRG) to be low most of the time. When the input
(TICK) crosses the threshold during an oscillation, the counter is incremented.
When the terminal count is reached, the output is fixed high. The counter can only
be reset by switching the power off. This timer was originally designed to support
the boost charge of nickel-cadmium batteries for the Real Time Clock.

63

I1/0 Definition

Pin Name | No I/0 Input Buffer Type Output Buffer Type
TICK 4 I CMOS SCHMITT

NFIT 5 I CMOS

R/W 6 I CMOS

RDY 11 I CMOS

NPRST 1 I TTL -

DEN 2 I TTL -

M1 29 I TTL -

M8 31 I TTL -

CHRG 3 0 - standard

BRNW 7 o] - standard

EMI1E 8 o] - standard

ER/W 9 0 - standard

ED7 12 I/0 TTL standard + tristate
ED6 13 I/0 TTL standard + tristate
EDS 14 I/0 TTL standard + tristate
ED4 15 I/0 TTL standard + tristate
ED3 16 I/0 TTL standard + tristate
ED2 17 I/0 TTL standard + tristate
ED1 18 I/0 TTL standard + tristate
EDO 19 I/0 TTL standard + tristate
CD7 28 I/0 TTL standard + tristate
CD6 27 I/0 TTL standard + tristate
CD5 26 I/0 TTL standard + tristate
CD4 25 I/0 TTL standard + tristate
CD3 24 I/0 TTL standard + tristate
CD2 23 I/0 TTL standard + tristate
CD1 22 I/0 TTL standard + tristate
CDO 21 I/0 TTL standard + tristate
BD7 40 I/0 TTL standard + tristate
BD6 39 I/0 TTL standard + tristate
BD5 38 I/0 TTL standard + tristate
BD4 37 I/0 TTL standard + tristate
BD3 36 I/0 TTL standard + tristate
BD2 35 I/0 TTL standard + tristate
BD1 34 I/0 TTL standard + tristate
BDO 33 I/0 TTL standard + tristate
vCC 30 Vcc connection (low inductance)
GND1 10 Primary GND connection (low inductance)
GND2 32 Secondary GND connection (low inductance)
GND3 20 Secondary GND connection

64

AC Parametric Test Information - Timing Specifications

Timing | Point-to-Point Parametric Specification | Time (ns) | Output | Load
Symbol measured at Vcc= Min Tamb= Max Min Max | I/face | Value
Tl M1 (LH/HL) Jjitter wrt M8 (HL) -30 +4
Td1l EMIE (LH/HL) from M8 (HL) 0 60 | TTL A
Td2 ER/W (LH/HL) from RNW (LH/HL) 0 80 | TTL A
Td3 ER/W (LH/HL) from M8 (HL) 0 70 | TTL A
Td4 BR/W (LH/HL) from R/W (LH/HL) 0 50 | TTL B
Td5 CD7..0 stable data from NFIT (HL) 0 85 TTL C
Te2 BD7..0 (ZH/ZL) from M8 (LH) 0 90 | TTL B
Tz2 BD7..0 (HZ/LZ) from M8 (HL) 0 72 Z B
Td6 B Bus , SA to SL data, from M8 (HL) 0 75 TTL B
Td7 B Bus , SL to SA data, from M8 (LH) 0 90 TTL B
Te3 ED7..0 (ZH/ZL) from NFIT (HL) 0 90 | TTL A
Tz3 ED7..0 (HZ/LZ) from M8 (HL) 0 105 Z A
Tz4 ED7..0 (HZ/LZ) from NFIT (LH) 0 105 Z A
Tds CD7..0 (LH/HL) from BD7..0 (LH/HL) 0 70 | TTL C
Td9 CD7..0 (LH/HL) from ED7..0 (LH/HL) 0 70 | TTL C
Td10 | ED7..0 (LH/HL) from CD7..0 (LH/HL) 0 60 | TTL A
Tdll | BD7..0 (LH/HL) from CD7..0 (LH/HL) 0 70 | TTL B
Load circuit component values Load Value C (pF) R (ohms)
For details of load circuit s o e
see AC measurement definition c 170 1000
R/W (latched)
R/W | I
- A O A O U O O S
Td3 | |« Td3 -] |e
ER/W | |
R/W (transparent)
R/W | |
Td4 »| |« Td4 »| |«
BR/W |
Td2 »| |e Td2 »| |«
ER/W | E

65

SA data latching point

The video data for the SAA5050 Teletext Display device is time division multiplexed
with the internal 1MHz peripheral data (as distinct from the external 1MHz Bus).
This data is latched at the point X in the timing illustrated below.

X

M1 |

EM1E | |

M8

CD7..0 \/ SA \/
input /\ /\
||

Thl -| |«

SL data latching point

Data for 1MHz internal peripherals is latched at the point Y on the timing diagram
below.

\%
|
M1
EM1E | |
1 N O A O O Y O O W
|
Ts2 | |«
[
CD7..0 / SL \ /
input \ / \
Th2 -] |«

66

C Bus Drive Waveforms

The peripheral bus controller drives the CPU data bus (the C Bus) on the following
occasions: a) Reading from internal peripherals

b) Reading from the external 1MHz Bus

c¢) Reading from the external Tube
Because these events may or may not be in phase with the CPU cycle, the PBC
withholds the data until the correct time.

M1 [

EM1E] |l]

2 O A U A A A

| | | |
I | | I
| | | |
Case 1 | | | |

Reading from the 1MHz Bus or an internal 1MHz peripheral. EM1E is in phase.

ER/W []
NFIT |] |]
Td5 -] |« | |
| | | |
sl e Tz1 |
Tel | |« |
[
cb7..0 _ _ _ _ _ _ _ _ _ _ ___ / E _ _ _ o ____
output \ /
| |
| | |
Case 2

Reading from the 1MHz Bus or an internal 1MHz peripheral. EM1E is early.

ER/W
RDY |
NFIT | |
| | |
Note:- NFIT = @ for E only | Teil | e |
|
Tzl -| | s |eTz1
[|
cb7..0 _ _ _ _ _ _ _ _ _ _ _ _ _ /E/B____/JE/B________
output \ / \ /*

B Bus Drive Waveforms

The B Bus contains both the internal 1MHz peripheral data and the SAA5050 video
data. This bus is used by the Modem connector, so it is important to observe the
timing constraints.

M1

EM1E [[|

S T A T

Case 1
No internal peripheral access

ER/W
Te2 »| |« S| e Tz2 Te2 »| |« sl e Tz2

BD7..0 _ _ _ _ _ _ _ _ _ / SA _ _ / SA __ _
output \ / \ /

| | | |

| | | |

| | | |

| | | |
Case 2 | | | |

An internal 1MHz access is interleaved with the SAA5050 video data.

ER/W |
RDY | | |
1
Te2 -| |« s |« Tdé Td2 »| |«
s e Tz2
BD7..0 _ _ _ _ _ _ _ _ _ / SA \/ SL \/ SA \
output \ /\ /\ /*

68

E bus drive waveforms

The E Bus operates at either 1MHz or 2MHz under the control of the CPU READY
line, which it samples. This signal is driven by the 1/0 controller with a logic low to
slow the CPU down to 1MHz when a slow access is made. The PBC extends its
bus cycle time in much the same way as the CPU. In this way the 1MHz Bus and
Tube connectors can be driven by the same buffer. It is important that 1MHz Bus
peripherals using any significant length of ribbon cable (greater than 30cm) use 2k2
pull up/down resistors to minimise line reflections to the Tube.

M1 [| |
EM1E | | |
M8 1L

Case 1 - Writing to the Tube

ERNW [|
NFIT |7|
| |
Te3 | |« sl e Tz4
ED7..0 _ _ _ _ _ _ _ _ _ _ _ _ ____ / SL _ _ _ o _____
output \ /

Case 2 - Writing to the 1MHz Bus

Both of the two possible timing relationships are shown. The data has a nominal
250ns data setup time before the rising edge and a minimum hold time of 125ns
after the falling edge of EM1E (measured at the PBC). The address set up is also
shown. This is generated by a latch clocked at 4MHz and so presents a minimum
address set up time of 250ns and a minimum address hold time of 250ns.

ER/W | | |

RDY | |

NFIT | |

Te3 »| |« Tz3 |

ED7..0 / SL

Address X X

69

10 THE 1MHz BUS

This chapter describes the signals available on the 1MHz Bus, the circuitry required
to utilise them, and the way in which they are connected to the Acorn Expansion
Box. The expansion memory map is also defined. When interfacing designs to the
1MHz Bus, it is vital to ensure compatibility with Acorn standards, to prevent
problems when using several pieces of equipment on the bus simultaneously.

The standards cover both hardware and software protocols. It is as important for
the software to follow these guidelines as it is for the hardware, otherwise
simultaneous operations of several peripherals may not be possible. The standards
described allow up to 64K of paged address space to be accessed as well as 255
bytes of direct access ports.

Signal definitions

The following lines are available on the 1MHz Expansion Connector:

AO - A7 The low eight address lines from the 6502, buffered by a
74LS373 (IC 7) permanently enabled.

DO - D7 A bi-directional data bus connected to the CPU through
IC 21, Peripheral Bus Controller. The direction of data is
determined by the system Read-not-Write (R/W) line. The
buffer is only enabled if NPGFC or nPGFD is low (see
below).

Analogue in An input to the BBC Microcomputer audio circuitry. Input
impedance is 9K. A signal of 3volts RMS will produce a
saturated signal at the loudspeaker (full volume), though
signals this large will cause distortion if the on-board sound
or speech is used at the same time.

nRST Not Reset. This is an OUTPUT ONLY for the system reset
line (active low). It may be used to initialise peripherals on
power-up and when the “BREAK” key is pressed.

nPGFC & nPGFD “Not page FC” and “Not page FD”. Page select signals
decoded from the top eight address bits of the system data
bus. These signals are active low. Pages FC and FD (i.e.
&FCO00 to &FCFF and &FDO00 to &FDFF) are the only
pages available for general expansion. However, the

70

nlRQ

nNMI

1MHzE

ov

paging register described in Section 5 allows a much larger
address space to be accessed.

Not Interrupt Request (active low). The system IRQ line
which is open collector (i.e. “wired-or’) and may be
asserted by devices attached to the extension bus. The
pull-up resistor on this line is 3K3. IRQ is level triggered
and it is absolutely essential for correct operation of the
machine that interrupts do not occur until the software is
capable of dealing with them. Interrupts on the 1MHz bus
should therefore be disabled on power-up and reset
conditions. Significant use of interrupt service time may
affect other machine functions. In particular, masking
interrupts for more than 10ms will affect the real time
clock.

Not Non-Maskable Interrupt (active low). The system NMI
line which is open collector (i.e.“wired-or”) and may be
asserted by devices attached to the extension bus. The
pull-up resistor on this line is also 3K3. It should be
remembered that NMI is negative-edge triggered and that
both the disc and net chips on the main board use this line.
Caution must be exercised to avoid masking other
interrupts by holding the line low. Use of NMI facilities on
the BBC machine requires an advanced knowledge of
6502 programming techniques and the Operating System
Protocols.

A system clock timing signal which is a 1MHz 50% duty-
cycle square wave. During access to 1MHz peripherals
and to the extension bus the processor clock (normally
2MHz) is stretched so that the trailing edges of 1MHzE and
processor clock are coincident.

The system Read-Not-Write signal which is derived from
the CPU R/W signal through two 74LS04 inverters.

System 0V, i.e. GND wires, dispersed so as to interleave
with asynchronous groups of signals in a flat ribbon cable.

71

Hardware requirements for
1MHz expansion bus peripherals

No power may be drawn from the BBC Microcomputer. Each peripheral should
have its own integral power supply, although a separate power unit may be used.

Not more than one low-power Schottky TTL load may be presented to any bus line
by each peripheral.

A 1MHz Bus feed-through connector should be provided. Connection to the BBC
Microcomputer should be via 600mm of 34-way ribbon cable terminated with a 34-
way IDC socket, and fitted with strain relief. Please note that copying the Teletext
Adapter’s layout is not possible, because this has been given the special status of
the last box in the chain.

Optional bus termination should be provided on all bus lines except NRST, NNMI
and NIRQ. The recommended termination is a 2K2 resistor to +5V and a 2K2
resistor to ground for each line.

Further requirements for equipment to be
approved by Acorn Computers

Address space within page &FC must be allocated by the Research and
Development Department of Acorn Computers Ltd.

The dimensions of any peripheral and its associated integral power supplies should
allow it to be fitted into the BBC Microcomputer Expansion Box.

When housed in the Expansion Box, the equipment should meet BS415 Class 1
specifications for electrical safety.

Further details of the requirements and procedures for gaining approval should be

obtained from Acorn. The information included here is for guidance only and is not
intended to be a full specification for approval.

72

Derivation of valid Page signals

1MHz peripherals are clocked by a 1MHz 50% duty cycle square wave (chosen to
allow chips such as the 6522 to use their timing elements reliably). The Master
Series 65C12 normally operates with a 2MHz clock, but with a slow-down circuit
which has the effect of stretching the “clock high” period immediately following the
detection of a valid 1MHz peripheral address.

There are two problems as a result of this. First, addresses will change and may
momentarily become 1MHz addresses while the 2MHz CPU clock is low, but while
the 1MHZzE signal is high. This could give rise to a spurious pulse on the chip
select. Second, if the CPU deliberately addresses a 1MHz peripheral during the
time that 1MHZzE is high, the device will be addressed immediately, and then again
when 1MHZzE is next high: this is because the CPU clock will be held “high” by the
stretching circuit until the next coincident falling edge of the 1MHz and 2MHz
clocks. This double access is not usually a problem except when reading from or
writing to a location twice has some additional effect: an example of this is an
interrupt flag which is cleared by reading it.

These effects mean that the 1MHzE Bus cannot be used as a conventional
“address valid” signal. However, addresses will always be valid on the rising edge
of TMHZzE. If the chip select lines are latched by 1MHzE, the clean signal CNPGFC
(or CNPGFD) will be generated.

Address space allocation

Page FC

Page FC is reserved for peripherals with small memory requirements. Only one
peripheral will be allocated to each group of addresses. Further allocations must be
agreed with the R & D department of Acorn Computers Ltd.

Initial allocations are:

FCO00 to FCOF Test Hardware

FC10to FC13 Teletext

FC14 to FC1F Prestel

FC20 to FC27 |EEE 488 Interface

FC28 to FC2F Acorn Expansion: spare
FC30to FC3F Cambridge Ring Interface
FC40 to FC47 Winchester Disc Interface
FC48 to FC7F Acorn Expansion: spare
FC80 to FC8F Test Hardware

73

FC90 to FCBF Acorn Expansion: spare
FCCO to FCFE User Applications
FCFF Paging Register

Page FD

Page FD is used in conjunction with the paging register to provide a 64K address
space, accessed one page at a time. Data latched into the paging register will
provide the top eight address bits to every expansion unit. These top address
bits are referred to as the ‘Extended Page Number’. Any peripheral designed to
locate in page FD must latch and decode the paging address information.

To make this facility as easy to use as possible, nPGFD (a hazard-free version of
the signal available from PL12) will be connected to the back plane pin 24b, ‘Not
Valid Memory Address’, and also OR-ed with the top four extended page address
lines as a link selectable option to pin 31a ‘BLKO’. (the other option on this pin will
be nPGFC).

Extended pages &00 to &7F are reserved for Acorn use, pages &80 to &FF may be
freely used by special applications. The paging register will be reset to &00 on
power-up and BREAK.

Since the paging register is a write-only latch, location &00EE in the zero page of
the BBC machine address map has been allocated as a RAM image of the register.
Note that this location will remain in the I/O processor’'s memory map if a second
processor is fitted.

The importance of this image is that it allows interrupt routines to change the paging
register and restore it again afterwards.

It is vital to change location &00EE BEFORE changing the paging register itself. If
you don’t, then an interrupt may occur before you change the RAM image and this
will restore the paging register to the old value of &EE.

A suitable sequence is
LDA # new value
STA &EE
STA &FCFF

User routines should save the contents of &EE before changing the paging register
and restore both &EE and &FCFF to this value before returning from the interrupt.

74

1MHZE \ f \ /
tas %I .H tah H‘ F
Address and " !
R/W lines ' ! Lo
tcs %I .H tch H‘ F
NPGFC/NPGFD \ i ! /

Data (WR) >< ; X
tdsr — %i
—i): F tdhr
Data (RD) Lo
Timing requirements
Parameter Symbol Min. Max.
Address Set-up time tas 300 1000
(& R/W Set-up time)
Address Hold Time tah 30
(& R/W Hold Time)
NPGFC & NPGFD Set-up Time tcs 250 1000
NPGFC & NPGFD Hold Time tch 30
Write Data Set-up Time t dsw 150
Write Data Hold Time t dhw 50
Read Data Set-up Time t dsr 200
Read Data Hold Time tdhr 30

Note: The above timings are based on only one peripheral attached to the

Expansion Bus. Heavy loading may slow the rise and fall times of 1MHzE with

possible adverse effects on timings.

75

R-S flip-flop with gated input which allows ‘clean select’ to be set low only if 1MHzE
is low. An alternative circuit using transparent flip-flops is shown on the circuit
diagram for the Expansion Box back plane (Drawing 107,000)

1MHzE

Clean
NPGFC — NPGFC
or NPGFD or NPGFD

76

11 THE MACHINE
OPERATING SYSTEM

This section explains how to extend the MOS facilities of the microcomputer, such
as the VDU driver and the TUBE interface. It includes a full address map (which
has indicators showing where the MASTER 128 and the MASTER Econet Terminal
differ from the earlier BBC machines), the vector allocations (which are given in full)
and details on the use of vectors with interrupts and the Tube.

It may be helpful to refer to the chapter on the MOS in Part 1 of the Reference
Manual for additional information.

Address space map

The address space map, which shows the address allocations and the areas of
memory used by the computer, indicates to a programmer which areas of the
memory are available for him to use. However, it does not show individual
input/output allocations as they have already been documented in Part 1 of the
Reference Manual.

Although this section explains how to use areas of memory which are normally
reserved for specific purposes, Acorn does not condone the practice, as it may lead
to software incompatibility when used on a machine other than the one on which it
was written or if the configuration of the machine is changed.

Page 0

&0000-&008F: current language workspace - some languages e.g. BASIC, allow
other programs to use areas of free memory,

&0090-&009F: ECONET private workspace - not available for any other use.

&00A0-&00A7: Non-Maskable Interrupts (NMI) workspace - may be used only
after NMI has been claimed. The source of the NMI has a filing
system number allocated to it (rather than a ROM number) and it
must be able to service the calls &0B and &0C (which indicates
that it is either in the “sideways” region &8000 to &BFFF, or that it
can intercept OSBYTE &8F). NMls should not change any
locations unless they are specifically allowed to or unless it is
their own workspace.

77

&00A8-&00AF:

&00B0-&00BF:

&00C0-&00CF:

&00D0-&00FF:

MOS scratch space. It is not necessary for this space to be
preserved between MOS system calls and therefore may be used
by other programs during this time. However, it is not
recommended for general use because the integrity of the space
will not be preserved across MOS calls.

filing system scratch space - like the MOS scratch space it is not
preserved between system calls. During this time other programs
may use it although this practice is not recommended because
they will not be preserved across filing system calls. “Hidden”
filing system calls e.g. those produced by OSWRCH if the
command *SPOOL has been used also use this space.

current filing system workspace - under no circumstances must
this area be used because it may be corrupted at any time

MOS workspace - not available for use by other programs. The
VDU driver is fully explained in section E of Part 1 of the
Reference Manual.

In previous BBC microcomputers this area contained various
pointers and flags for I/O operations. This is not the case with the
Master Series.

Pages 1 to &D

&0100-&01FF:

&0200-&0235:

&0236-&028F:
&0290-&02FF:

&0300-&037F:

processor stack and error messages buffer. The stack follows
normal 6502 practice and works as a LIFO buffer at the top of the
page. Error messages are stored temporarily at the bottom of the

page.

vector addresses. For more details of this area please refer to
the section on Extending the MOS.

main MOS variables - not recommended for any other purpose.
MOS workspace - not available for other purposes.

VDU variables. It is only possible to us this area for graphics
routines, more details on the use of these are available in
sections D, E and F of the Reference Manual Part 1. In earlier

BBC microcomputers some of the variables had different
functions, details of which are given in the Appendices.

78

&0380-&03DF:

&03E0-&03FF:

&0400-&07FF:

&0800-&087F:

&0880-&08BF:

&08CO0-&08FF:

&0900-&09BF:

&09C0-&09FF:

&0A00-&0AFF:

&0B00-&0CFF:

&0D00-&0D5F:

Cassette Filing System workspace - available only if the CFS is
not used.

keyboard input buffer - available only if the keyboard buffer has
been replaced.

language workspace - may be used if the current language
allows (e.g. BASIC). It is also used for the relocation of the host
communications routines with second processors.

sound workspace - its use is not recommended as this may
cause the generation of spurious sounds.

printer buffer - may be used for other purposes if printing is not
required.

workspace for the sound envelopes 1 to 4 - available for other
purposes if the envelopes are not used.

RS423 output buffer, cassette output buffer for access to the first
part of sequential files or workspace for sound envelopes 5 to 16
- otherwise available for other purposes.

Speech buffer or cassette output buffer for access to the second
part of sequential files - available to users if not required for these
purposes.

RS423 input buffer or the cassette input buffer for access to
sequential files - available for other uses if not required for these
purposes.

ECONET workspace - may not be used for any other purpose if
at any time the computer will be connected to an ECONET
system. In previous BBC microcomputers this area was used for
the soft key buffer and the upper 32 characters of the exploded
font. This means that previous routines for writing a soft key
definition directly into the memory can no longer be used.
Correct operation on the Master Series and on the earlier BBC
machines can be achieved by using the OSCLI interface.

NMI routine workspace. In order to make use of this area for
other uses NMIs must be claimed (paged ROM service call
&0C). The same restrictions apply to the use of this area as to
&00A0-&00A7 which is described above. On earlier BBC
microcomputers this region extended to &0D9E.

79

&0D60-&0D7F: ECONET workspace - it may be used for other purposes if the
machine is not going to be connected to an ECONET system.

&0D80-&0D91: available for user programs.

&0D92-&0D9E: Reserved for a Trackerball or Mouse. It is necessary for these
devices to have immediate access to non-paged memory in order
to service the interrupts from their reference phase signals. This
area has been reserved for fast updating of their counters.

&0D9F-&0DEF: extended vector address set, more details of which can be found
in the section on extending the MOS.

&0DF0-&0DFF: paged ROM workspace. Usually one byte for each ROM is used
for the high byte of the private workspace address. Some ROMs,
such as the DNFS also use it to indicate that they are not active
by resetting bit 7. The reason for the inactivity may be, for
example, that essential hardware is not present or that a
particular filing system is dormant.

Pages &E to &7F

The allocation of this area of the memory is variable. Some of the pages at the
lower addresses may be used by the paged ROMs or by programs that raise the
Operating System High Water Mark (OSHWM). Some pages at the higher
addresses may be allocated to the screen, if it is not in shadow mode. The
remaining memory is allocated to user memory, i.e. language workspace.

In the Master Series soft character definitions are held in RAM at &8900, whereas
earlier BBC microcomputers stored them in RAM above &0EO00, raising OSHWM.

Pages &80 to &BF

At any one time, one of sixteen images resides in the memory pages &80 to &BF.
These images may be in ROM, RAM, or EPROM and include parts of the operating
system, the sideways MOS ROM (ROM &F and the top 1.5k of the ROM &E).

The MOS makes the paged ROM code in the address range &8000 to &8FFF
unavailable during graphics and soft-key calls by setting the high bit of the ROM
select latch high. This swaps in 4k from a further 32k of RAM. Paged ROMs which
need to use this area can do so by calling routines given in the VDU drivers
specification section of Part 1 of the Reference Manual. Note great care must be
taken when laying out these ROMs to avoid attempts to execute ROM code within
the overlaid area.

80

Sideways ROM numbers 0,1,2 and 3 are allocated to the cartridges and a further
“vertical” paging mechanism may be used with these. When using the “vertical”
paging mechanism some 1Mbit and 512Kbit EPROMSs are arranged as sixteen and
eight pages of 16K bits respectively. When these devices are plugged into the
cartridge slots they will appear as a 16K byte image, but any one of the remaining
seven (for the 1Mbit) or three (for the 512Kbit) images may be obtained by writing to
the EPROM with the vertical page number. This is a major departure from standard
EPROMs and allows 512K bytes to be fitted into four EPROMs and yet only use
16K of the computer’s address space. This is illustrated below.

To insert the paged EPROM into the memory map of the computer the value of the
EPROM is written to address &FE30. The required vertical image is then selected
by writing to any location in the range &8000 to &BFFF. Note this selection is
maintained even if through a hard break (e.g. CTRL-BREAK). The next access to
these sideways EPROMs will be from the new image. On power-up the special
EPROMs default to vertical page 0. To use this facility include a standard ROM
header line for each vertical page. An example of a typical paged EPROM is the
27513, which is four pages of 16K bytes.

81

Pages &CO0 to &DF and page &FF

The main MOS ROM resides in the areas &CO0 to &DF and &FF. However, in the
standard configuration pages &CO0 to &DF of the MOS are not directly readable,
because the filing system RAM is switched into this area. This part of the MOS
contains the graphics routines and is enabled when needed. Another feature which
should be noted is that access by instructions in the area &CO0 to &DF to data in the
locations &3000 to &7FFF are automatically mapped into either the main memory or
the “shadow” screen memory depending on the current screen mode. The state of
the memory map is determined by the ROM select latch at &FE30 and the memory
access latch at &FE34. If these registers have been changed, then the memory
map may not behave as described above.

Page &FC

Page &FC is mapped to either the external 1MHz Bus or the cartridges via the
signal INFC (INternal FC). The cartridges will be accessed when bit IFJ is set in the
register at &FE34. This page is intended to be used for memory mapped hardware.

Page &FD

This page is also mapped to the external 1MHz Bus or the cartridges by the signal
INFD. This page will access the cartridges when the IFJ bit of the register &FE34 is
set. The page &FD is intended to be used for accessing the remote memory. Note
that location &FCFF is reserved as a paging register to allow up to 64K bytes to be
accessed through this page.

The Second 32K of RAM

The second 32k of RAM does not occupy one contiguous block of addresses, but is
allocated as follows:-

&3000-&7FFF: shadow screen memory - any part of it not required by the current
screen mode is available for user programs. Access is gained by
manipulating the memory map latch. However, note that the
command *MOVE will use this area if one of the non-shadow
modes or a shadow mode occupying less than 20K bytes, is
being used.

&8000-&83FF: soft-key expansion buffer - not available for any other purpose.

82

&8400-&88FF:

&8900-&8FFF:

&C000-&DBFF:

&DC00-&DCFF:

&DDO00-&DEFF:

&DF00-&DFFF:

VDU workspace which can only be used for VDU routines that
require large amounts of workspace, e.g. flood filling. Care must
be taken to avoid conflicts between different routines of this sort.
Commercial software should avoid using these areas.

character definitions.

paged ROM workspace. The ROMs use service calls to claim
the area. This is a similar procedure to the one used to claim
space above &E00. Static workspace in this area or above &E00
should only be used by filing systems although any ROM may
have private workspace.

MOS CLI buffer - this area is corrupted by all * commands, and
its use for other programs is therefore not recommended.

transient utility workspace and it is available for user written
* commands and the *MOVE command.

MOS workspace only. It may not be used for any other
programs.

VDU Workspace

&00D0-&00D9:

&00DA-&00E1:

&0300-&037F:

&8400-&87FF:

non-transient VDU variables and should not be used by any other
program.

VDU scratch space and not available for other purposes.

VDU workspace. There are two forms of graphics coordinate,
internal and external. The external graphics coordinate is the
one used by the BASIC PLOT command. The internal graphics
coordinate is derived from the external by taking into account the
graphics origin and scaling so that it is measured in pixels, both
horizontally and vertically. Graphics coordinates are stored in
four bytes, with the low byte of the X coordinate first.

VDU workspace in the shadow RAM used as scratch space for
flood filling. If the flood fill is active, one of the values
0,1,2,3,4,5,6,7,8,9 or A will appear in the location &8601.
Therefore any routines that need to use this space must have
one or more values allocated to them by Acorn Services and
Training Department. If a routine in the set changes any byte in
the VDU workspace, it must leave one of its values in the location

83

&8601. If the workspace is assumed to contain any valid data, it
must check that location &8601 contains a suitable value. If
location &8601 does not contain a valid value then the routine
must take the appropriate action.

VDU workspace allocations

&8400-&87FF: scratch space e.g. flood fill.

&8800-&882F: non-transient VDU variables.

&8830-&88BF: VDU scratch space.

&88C0-&88FF: reserved for future use by non-transient VDU variables.
&8900-&8FFF: current character definitions.

Earlier BBC Microcomputers and the Acorn Electron

&00D0-&00D9: VDU variables. These are not transient and should only be
altered in keeping with their function.

&00DA-&00DF: VDU scratch space - it does not need to be preserved between
VDU calls, and is not preserved across them.

&00E0-&00E1: non-transient VDU variables.

&0300-&0327: non-transient VDU variables.

&0328-&0349: With the exception of &338, which when in teletext mode is a
non-transient variable, this area is a VDU scratch space.

&034A-&037F: non-transient variables.

Extending the MOS

There are occasions when the standard MOS facilities do not meet the
requirements of a particular application e.g. when additional hardware has been
included in the system. For such situations it is possible to extend or in some cases
replace most of the MOS functions with user defined ones. It is possible to make
extensions to both the time-dependent and the time-independent functions. It is
recommended that users become familiar with the time-independent functions
before changing the time-dependent functions which are more complex.

Time-Independent Functions

Time-independent functions may be invoked at any time. The main MOS functions
are entered by calling a subroutine (JSR) at the appropriate entry point. (For
example, OSWORD is entered at &FFF1.) The actual entry point for the start of the
function is stored in a vector table. The routine is accessed by an indirect Jump
(JMP) command located at the entry point. In the previous example of OSWORD,

84

the vector address is &20C and the MOS code at the OSWORD entry point is JMP
(&20C). The vectors are stored as a lookup table in RAM at addresses &200-235.
The table is initialised on RESET and by substituting vectors which point to user-
supplied code it is possible to change the MOS functions.

Vectors in co-processors

Most of the MOS calls are available in the operating system of a co-processor.
However, it should be borne in mind that although re-directing a vector in the co-
processor will only affect the co-processor, re-directing a vector in the host will
affect both the co-processor and the host. For example, intercepting the OSWRCH
command with WRCHYV in the host in order to change all lower case characters to
upper case will change all the output from the host and the co-processor. However,
if the intercept takes place in the co-processor then only the output from the current
application will be changed, anything from the filing systems which operate only in
the host will remain unchanged.

Vectors in Sideways ROM/RAM

Extended vectors may be used to point to sideways memory rather than a location
in non-paged memory. This allows the user to specify the ROM (or RAM) slot
number as well as the target address. The procedure is shown below.

a) Using OSBYTE 168, read the start of the extended vector
space (<evs start>).
b) Starting at (<evs start> + 3*<vector>), place the following data into
memory:
<entry point in ROM (least significant byte>.
<entry point in ROM (most significant byte)>.
<ROM slot numbers.
c) the relevant vector is then changed to:
&FFO0 + (<vector>-&0200)*3/2

The vector’s location (<vector>) is selected from the table shown below. The
number (<vector>-&0200)/2 is called the vector number.

85

MOS Function Vector Table

Function Entry point | Vector name Vector location
Main MOS Functions
OSBYTE &FFF4 BYTEV &20A
OSWORD &FFF1 WORDV &20C
OSCLI &FFF7 CLIV &208
OSRDCH &FFEO RDCHV &210
OSWRCH &FFEE WRCHV &20E
OSEVEN Via Vector EVNTV &220
Error (BRK) vector BRKV &202
User vector USERV &200
Input control
keyboard operation KEYV &228
Output control
unknown plot codes VDUV &226
user print vector UPTV &222
Buffer control
buffer insert vector INSV &22A
buffer remove vector REMV &22C
buffer control CNPV &22E
Filing system functions
OSFIND &FFCE FINDV &21C
OSGPBP &FFD1 GPBPV &21A
OSBPUT &FFD4 BPUTV &218
OSBGET &FFD7 BGETV &216
OSARGS &FFDA ARGSV &214
OSFILE &FFDD FILEV &212
Filing system control FSCV &21E
ECONET vector NETV &224
Spare (indirect) vectors
IND1V &230
IND2V &232
IND3V &234
Interrupt request vectors
high priority devices IRQ1V &204
low priority devices IRQ2V &206

Notes

1) OSRDSC, OSWRSC, OSNEWL, OSASCI, GSINIT and GSREAD are not
vectored because they have very specific functions, details of which are in the
Reference Manuals Parts 1 and 2.

86

2) It is only possible to access functions without entry points by using vectors. User
code must call the function indirectly by JMP (<location>), rather than directly by
JMP <location>.

3) OSEVEN has been included in this section because although it is often used as a
means of simulating real-time events its use is not restricted to this.

4) USERYV has been included in the MOS sub-section because it is used to pass the
unknown OSWORDs &EO0-&FF to the user.

5) The time-dependent functions use the IRQ vectors and are included here for
completeness.

Entry pointed vectors

The entry pointed vectors are used for most of the MOS routines. Part 1 of the
Reference Manual fully describes the entry and exit conditions.

Vectors without MOS entry points

These are mainly user defined which means that MOS entry points cannot be
defined.

EVNTV

System events may be simulated by using OSEVEN. OSEVEN is called with X
being the event to which the routine is to be passed. A and Y are then transposed
and X is preserved. The user’s routine must preserve all the registers when passed
on through EVNTV.

On entry Y corresponds to the event. The following table lists the values for Y and
their corresponding events. The values for X and Y are event specific.

Event 0 - output buffer empty
X - buffer number Y - unused.

keyboard

RS423 input

RS423 output

printer

sound channel 0

sound channel 1

sound channel 2

sound channel 3

speech

ONOOPAWN=O

87

Event 1 - input buffer full
X - buffer number (as event 0) Y - overflow character

Event 2 - character entering buffer
X - unused Y - most-recent character

Event 3 - ADC conversion complete
X - unused Y - ADC channel measured

Event 4 - start of vertical sync. (retrace)
X - unused Y - unused
indicates a retrace has started

Event 5 - interval timer crossing zero
X - unused Y - unused
system VIA interval decremented to zero

Event 6 - ESCAPE has been pressed
X - unused Y - unused
Escape condition will not be generated or transmitted to parasite

Event 7 - RS423 error
X - 6850 status shifted right Y - char received

Event 8 - network event
X -lIsb Y - msb of remotely requested procedure

Event 9 - user event
conditions are user-defined

Event &FE - network receive
This event is enabled by *FX52,150 ctrl blck # and disabled by *FX52,100. It is
not affected by *FX13 and *FX14.

Note an escape condition will not be transmitted to the parasite when the ESCAPE
key is pressed if an escape condition has not been generated by changing bits 6
and 7 in location &00FF.

BRK instruction

The instruction BRK is the software equivalent of the 65C12 processor to a
hardware Interrupt ReQuest (IRQ). BRK fetches the next instruction from the
address stored in &FFFE and & FFFF, which is the address of the IRQ routine in the
MOS. The IRQ routine sets up the stack as described below and then via BRKV
performs a JMP.

88

The BBC microcomputers use this mechanism to indicate an unrecoverable
software fault and use the vector to implement error routines. For example,
languages use the vector to point to their error handlers. The user routines pointed
to by the BRKV command should exit via the old contents of the vector because the
stack will have been modified.

The command ReTurn from Interrupt (RTI) should not be used as it may cause the
program to jump into the stack where the error message might be.

On entry A, X, and Y will remain set up as they were before the BRK command.

An RTI instruction will be set to return the stack pointer to the location two bytes
after the BRK command. RTI should only be used if special user code has been
sent after the BRK instruction as opposed to the error structure described next.

The locations &00FD and &00FE are a pointer, placed by the MOS, to the location
after the BRK.

The current stack pointer will be contained in location &00FO.

The slot number of the ROM that was active when the BRK instruction was issued
can be read by OSBYTE &BA.

The following structure should be placed after the BRK.

BRK
<pointer> <error number>
<first byte of error message>

<last byte of error message>
&00

The null is a recognised means of ending a message. The handler should interpret
it accordingly.

BRK instruction in single processor systems
The Entry Structure is set up as shown above, but Service Call 6 (BRK) is

performed before the vector indirection is performed so that the filing systems, or
any other service ROM, can take the appropriate action.

89

BRK instruction in co-processor systems

If the BRK is executed in the host, the above structure is set up in the co-processor
but terminated with an IRQ. This causes the Tube Operating System (TOS) to
make a copy of the BRK and error string in its own memory. The BRK is then
executed,; it is treated as if the BRK had originated in the co-processor. If the BRK
is originally executed in the co-processor, the error pointer is calculated as normal,
interrupts are re-enabled and BRKYV is used. Service Call 6 is not issued.

USERV

The USERYV instructions cause program flow to be directed via USERV. This may
be used for user-defined OSWORD calls. Entry to routines via the *CODE and
*LINE commands is simplified by using the USERV vector.

Entry condition:

A=0 *CODE has been entered.

A=1 *LINE has been entered. For further information, refer to the
Reference Manual part 1.

A=&EO0-&FF the indicated Unknown OSWORD has been called.

On Exit: A, X and Y should be the same as on entry and the user routine should

end with an RTS instruction.

KEYV

The instruction KEYV is used to read the keyboard and it is this instruction that
informs the MOS just how much work to do on the keyboard. The required
operation is indicated by the status bits C (carry) and V (overflow). Normally these
are set and serviced by the MOS. However, by redirecting this vector the user can
invoke, supplement, or replace the normal MOS keyboard scanning, for example, to
add an alternative keyboard. The vector can also be used to allow keyboard
scanning when the interrupts have been switched off.

On entry:

If C=0 and V=0 then the SHIFT and CTRL keys will be read, returning N=1 if CTRL
is pressed and V=1 if SHIFT is pressed.

If C=1 and V=0 the keyboard is scanned as described by OSBYTE &79.

If C=0 and V=1 the key-pressed interrupt is serviced. This causes OSBYTE &78 to
be performed which reads the character corresponding to the pressed key into
memory.

If C=1 and V=1 normal keyboard scanning will take place unless OSBYTE &C9 has
been used to disable it. This entry is made once every 10ms until all key
depressions have been removed. This processing includes SHIFT, SHIFT LOCK,
CAPS LOCK and CTRL.

90

VDUV

A number of VDU control sequences are “unknown” to the MOS, this means that
the MOS has no internal routines to which they correspond and therefore it passes
control via VDUV to another code that may be able to deal with it. Those listed
below are not the only unknown VDU codes but are merely those not previously
assigned to other purposes. The Reference Manual Part 1 has a full list of the
assignments.

VDU 23, <28 to 31>: This is used to provide up to 8 further parameters all of which
must be supplied, even if they are zero.

VDU 25, <240 to 255>: These are the unknown graphics plot commands. If a VDU
25 command is made in a non-graphics area VDUV will be used.

VDU 25, <208 to 231>: Currently these are undefined.
All unknown VDU calls are indicated by the C (carry) flag.
On Entry:

C=0: Unknown PLOT (VDU 25) command. The parameters are stored in VDU
variables 31 to 35 and can be read by OSBYTE &AO.

VDU variable Contents
31 command number
32 X coordinate least significant byte
33 X coordinate most significant byte
34 Y coordinate least significant byte
35 Y coordinate most significant byte

The coordinates will already be scaled into internal pixel coordinates.

C=1: User defined ASCII command. A= the command number, the remaining eight
variables are in VDU variables 27 to 35.

In non-graphics modes the parameters will be stored as in C=0 given above. The
coordinates will not be scaled to internal coordinates in text modes because they
have no meaning.

On Exit:
If the code is unknown to you the program flow should be returned via the OLD
contents of VDUV, otherwise use an RTS to terminate the code.

91

UPTV

The User Print Vector (UPTV) is provided for user printer routines. There are two
ways of enabling this vector, by using *FX5,3 or by default using the *CONFIGURE
PRINT 3. UPTV is re-directed to point to user printer control routines. This facility
is especially useful if the printer has special features which cannot be accessed by
the standard printer drivers. Printers often have their more powerful features
invoked by sending an <ESCAPE> character followed by a number of characters
which specify the parameters to be used. The substitute printer driver can translate
the special characters into the required command sequences. The following figure
shows the flow of data under these circumstances.

Is character a special | N°
highlight character?

+ yes

Look up code/codes
to substitute with
highlight code

+ Send character
straight to printer

more Send code to printer
and loop back for
next until no more

X

Return to routine

Printer data flow

UPTYV can be called when another printer driver is active, as shown below. If this is
the case control should be returned via the old contents of UPTV rather than
terminating with RTS.

In the following cases, when UPTV is used, it is the responsibility of the printer
driver to manipulate the computer’s parallel printer port directly or to output serial
data via the RS423 stream. The A-register notifies the printer of the required
operation and on exit the carry flag is used to indicate a result.

92

Entry

condition

A=0

A=1
A=2

A
A
A

[l
(3, I)

the driver is entered this way once every 10ms, unless it has indicated that it
is dormant, which is described below. The driver should ensure that the
ACKnowledge line of the printer is active (high) and read a character from the
buffer using OSBYTE &91. After any necessary translation the character is
sent to the printer.

On exit the driver should declare itself dormant if the buffer is empty by using
OSBYTE &7B followed by an RTS. This enables the printer driver to be
changed if necessary and prevents the MOS from wasting time by sending
10ms calls to an empty buffer.

the driver has previously been dormant and one or more characters had been
placed in the buffer. The reading and printing of the characters is as for A=0.
On exit, the carry flag signals the buffer state to the MOS (C=1 shows that the
buffer is empty).

ASCII code 2 (Ctrl-B) has been sent to the driver. Except in shared systems
where it is used to claim a remote printer, the driver should be made to ignore
this code.

ASCII code 3 (Ctrl-C) has been sent to the driver.

not used.

the printer type has been redefined using OSBYTE 5. The new printer driver
number is in X.

FSCV

The vector FSCV provides access to a number of miscellaneous filing system
functions. The required function is indicated by a reason code in the accumulator.
Unless indicated, the registers are not defined and interrupts may be enabled
during the call.

Entry

Condition

A=0
A=1

A=2

A=3

A *OPT command has been issued with X and Y as parameters.

check for End Of File (EOF) - file handle in X-register.

If on exit EOF is true X=&FF, otherwise X=0.

*/<FILENAME> command has been issued. The filing system should try to
*RUN the file named after the / symbol.

attempt to *RUN specified file. X and Y contain the Isb and msb respectively
of the address of the ASCII string containing the name of the file. This call
originates when a * command has been rejected by all ROMs. If the file
cannot be *RUN, the message “BAD COMMAND” will be issued rather than
“FILE NOT FOUND”".

93

A=4 X and Y point to the name of a file to be *RUN.

A=5 X and Y point to a string containing the parameters of a *CAT command that
has just been issued.

A=6 another filing system is being invoked so *SPOOL and *EXEC files should be
closed and other open files should be ensured.

A=7 the filing system is being interrogated to supply its range of file handles. On
Exit X= the lowest handle, Y= the highest.

A=8 an OSCLI command has been issued. This call permits filing systems to
ensure the integrity of their media.

A=9 a *EX command has been issued and the information is sent to the output
stream.

A=10 *INFO command has been issued. The information is sent to the output
stream.

A=11*RUN a file via LIBFS.

A=12 *RENAME command has been issued.

INSV

The INSV Vector can be used to invoke a custom routine to insert characters into a
specified buffer or to provide a much larger buffer.

On entry A=<character> and X=<buffer number>.

On exit C=1 if the buffer is full. (The MOS will abort or retry in response to this.)

REMV

The REMV vector may be used to invoke a routine to remove a character from the
buffer or simply to examine the character.

On entry X= the buffer number, V=0 to remove the next character from the buffer or
V=1 simply to examine the next character.

On exit C=1 if the buffer was empty, X is preserved, Y is the character to be
removed, or A=the character that was examined.

CNPV

The CNPV vector points to a routine to count the number of characters in a buffer or
to flush that buffer.

On entry X = the buffer number. To count the characters set V and C to 0 and to
count the spaces set V to 0 and C to 1. To flush the buffer set V to 1.

On exit the values of V and C are preserved. If a count has been made, X= count
least significant byte and Y= count most significant byte.

94

NETV

The NETV vector usually points to the routine which initialises the Advanced
Network Filing System (ANFS) and thus permits the use of utilities like *VIEW and
*REMOTE. The NETV facility can be used by user code for this purpose or to
restrict the ECONET access to a particular part of the system by filtering out
unwanted commands. On entry the function to be performed is contained in A.

Entry
condition

A=0-3,5 printer commands, same as for UPTV. The number for the ECONET
printer driver is 4.

A=4 OSWRCH has been called.
On exit the character will be output if C=0, otherwise C=1.
A=6 OSRDCH has been called.
On exit the network should put the character into A.
A=7 OSBYTE has been called. The values of A, X, and Y are stored at
&00EF to &00F1.
If on exit the call is passed to OSWORD then V=0, otherwise V=1.
A=8 a line has been read by OSWORD 0. ANFS can now take over
OSRDCH.
INDirect Vectors

There are three indirect vectors available, these are IND1V, IND2V and IND3V.
The indirect vectors are used to access sideways ROMs and the Terminal Emulator
uses IND1V and IND2V.

Note on the entry points for these vectors

These routines are not provided with entry points, but the MOS versions of them
terminate with an RTS. They should be called by:

JSR <callroutine>

.callroutine JMP (<vector>)

This performs a Jump to Subroutine and then an indirect Jump.

95

Time-dependent functions

In the previous section on time-independent functions some functions which might
have been expected to be time-dependent were described. This was because
software routines may be used to simulate tasks which are normally dictated by
external events, a technique which is frequently used to develop real time software.
Real time events usually occur at a high frequency compared with the time taken to
run the service software and also they may occur fairly quickly in relation to other
events.

Real time events are initiated by hardware, either internal or external, which passes
an interrupt request (IRQ) to the CPU. An IRQ is generated by pulling the IRQ pin
of the CPU low. As all devices are connected to this pin, the MOS has to
interrogate them to determine which device was the source of the interrupt. When
the source device has been identified the MOS will service it and perform a
vectored subroutine call via EVNTYV to pass on the information.

If the CPU cannot determine the source of the interrupt it offers it to each of the
sideways ROMs or RAMs. In this way hardware which uses interrupts (for
example, on the 1MHz bus) may be accommodated. Whichever page the controller
software is in, it will ultimately be notified of the interrupt.

The time this takes may result in data being lost. In order to alleviate this problem
the computer can be set up to give the user the chance of identifying an interrupt
before it is passed round the computer, or back to the MOS.

EVNTV

The entry parameters for EVNTV are detailed in the previous section. If any extra
hardware has been added to the computer, it will generate an interrupt to cause the
MOS to pass control via EVNTV with A=9, if it has not been able to determine the
source of the interrupt itself. Note this only happens if the USER Event has been
enabled with OSBYTE &E,9.

In order to process the IRQs quickly, it may be necessary to process them before
they are passed round the sideways ROMs, or in some cases before the MOS
services them. Two vectors IRQ1V and IRQ2V are provided for this purpose.

Function vector name location
To access the highest IRQ1V &204
priority devices.

To pass the event IRQ2V &206

round paged ROMs

96

All the user interrupt routines should be as short as possible, the recommended
maximum is 0.5ms. This is particularly important when using IRQ1V because this
services the interrupt before the MOS. As an example consider the operation of
RS423 at 19,200 baud, which corresponds to one byte being transmitted every
416ms. As all interrupts would have to pass through user code pointed to by
IRQ1V before the MOS could deal with them, a 2ms service routine would occupy
the time for 4.8 bytes. This would lower the average speed to about 4000 baud.
When the MOS is selected by IRQ1V (which is usually the case), it examines
devices in the following order.

1. The 6850 ACIA which controls the RS423 interface and the cassette data.

2. The System Versatile Interface Adapter (VIA) which controls the vertical
synchronisation, the interrupts, the light pen (if included in the system), the
A/D converter, the system timer, the sound system, the keyboard and the real
time clock.

3. The User VIA which controls the User Port and the Parallel Printer Port.

Note the manufacturers data sheets for these devices should be consulted for
details of the interrupt status registers of these devices.

97

12 DUAL PROCESSOR
SYSTEMS

Second processor architecture

To enhance the computing power of the BBC microcomputer, Acorn has adopted a
two-processor architecture. The base, or host, processor performs most of the /O
routines, such as communicating with the keyboard and filing systems, whilst the
language, or parasite, processor provides the raw computing power to perform
applications.

The host processor is a 6502 in the Model B and a 65C12 in the B+ and Master
Series. Acorn language processors range from the 8-bit 65C02 and Z80, through
the 16/32-bit 80186 to the 32-bit 32016 and Acorn RISC Machine. Third-party
manufacturers supply Z80, 6809 and 68000 systems. (The ARM second processor
architecture is slightly different from that of the other language processors as it is
provided with its own peripheral controller chips and communicates directly with the
video and audio outputs. However, filing and other I/O operations still take place
through the host.)

Each processor runs independently of the other and is provided with its own clock
and memory chips. The two systems communicate with one another over a 2MHz
asynchronous bus, known as the Tube, which is controlled at each end by a custom
interface.

Since the language processor does not need to control complex peripherals
directly, it can manage with only a rudimentary operating system. This MOS is
required simply to initialise the system on RESET and to implement calls such as
OSBYTE and OSWORD. The base processor then performs the required
operations and returns the result to the language processor.

Not all the MOS calls are fully implemented. For example, filing system control is
carried out by the base processor, so FSCV is not required and, in the Master
Turbo for example, points to a “Bad” error routine; the default setting of EVNTV and
the user-set vectors point to an RTS opcode. Whilst the operation is being carried
out, the language processor can continue executing its application.

Operating system calls are implemented by transferring the call and its parameters

to the base processor, which performs the desired operation and sends a response
back via the Tube. To speed matters up, only the the minimum required number of

98

parameters is transferred. For instance, with OSBYTE calls 0-&7F, the Y-
parameter is omitted. For those calls in which the carry status is a significant part of
the result, it is transferred across the Tube by performing a shift operation in the
source processor and a complementary shift operation to prime the carry flag in the
destination processor.

Data transfers are achieved by generating interrupts in the second processor.
Different routines are provided for different operations, the appropriate one being
selected by resetting the NMI vector (which is feasible, since after RESET all READ
operations are directed to RAM).

Usually the language processor is provided with a clear block of contiguous
read/write memory. Its boot operating system is in ROM which is mapped into the
top of the processor’s address range. On RESET the MOS is copied from ROM

into RAM and awaits initialisation via the Tube. Processors such as the 80186,
which run industry standard operating systems, have a ROM-based startup but load
the remainder in from disc.

When functioning as an 1/O processor, the base processor installs Tube
communications routines in the regions of low memory which are normally allocated
to the active language (addresses &0016-&005C in Page 0 and Pages 4-7).

These communications routines have language and service entry points similar to
those of paged ROMs and also a data entry point which is used once the Tube has
been initialised.

If the second processor is added externally it is referred to as a “Second Processor”
and one added internally as a “Co-Processor’. Except where indicated, references
to a co-processor apply equally to a second processor.

The Tube

The Tube provides the means for the language and I/O processors to communicate
with each other. The Tube comprises a pair of proprietary chips coupled to the
respective processors and communicating with one another over a 2MHz
asynchronous bus.

The Tube chip is a semi-custom integrated circuit designed to overcome the
problems of interfacing between processors running at different instruction and bus
cycle rates. The language processors have different clock rates from that of the
base processor and may also have incompatible instruction sets, which prevents
the possibility of direct (synchronous) coupling between them. The Tube chip is
therefore provided with the buffers and latches necessary to implement
asynchronous coupling.

99

Tube Architecture

The Tube has two one-byte wide ports. One port is for the host and the other for
the parasite. The ports provide access for the host and the parasite to a number of
registers.

The Tube chip is located on the language processor circuit board and is connected
to the host by a byte wide bus.

The Tube protocols allow the language processor to have full access to the filing
system, the VDU Driver, the RS423 or any other I/O devices connected to the
microcomputer.

The protocol is a set of software rules for passing data across the Tube chip. The

Tube protocols are partly held in the MOS and partly in the language processor.
Data is referred to as being passed “across the Tube”.

100

Tube Protocols

The protocols are sequences of read/write operations to the Tube chip that have to
be performed in order to pass data between the host and parasite. Some
sequences enable an application in the parasite to control the host, request data
and transmit it to the outside world and are usually initiated by firmware routines in
the parasite. These in turn will have been called by the applications program
running in the language processor RAM.

Other sequences are used to pass events, errors and affect low-level block
transfers; these are initiated by the host. There are sixteen different sequences,
each designed for a specific task. Note that there are two calls which are only
designed for use in the host to ensure compatibility with previous BBC
Microcomputers. Three others are not intended to work “across the Tube” and are
only mentioned here for completeness. The full list of sequence names and their
purpose follows:

OSBYTE Execute a MOS routine requiring up to a three byte argument.

OSWORD Execute a MOS routine requiring a parameter block.

OSCLI Interpret a *<text> command.

OSRDCH Read a character from the input stream (e.g. RS423, keyboard).

OSRDSC Read from the screen. (not available to language processors)

OSWRCH Write a character to the output stream (e.g. RS423, screen).

OSNEWL Write LF followed by CR to the output stream.

OSASCI Write a character to the output stream, or LF followed by CR if the
character is CR.

OSWRSC Write to the screen. (not available to language processors)

OSFIND Open or close a file for byte access.

OSFILE Load or save a file.

OSARGS Load or save data about a file (e.g. sequential pointer, extent).

OSGBPB Load or save part of a file.

OSBPUT Save a byte to a file.

OSBGET Load a byte from a file.

OSEVEN Generate an event. (not available to language processors)

GSINIT Initialise GSREAD string. (not available to language processors)

GSREAD Read a byte from a string. (not available to language processors)

The names are for reference only. The form of parameter(s) used by each
sequence is listed in the Reference Manual, Part 1. Whatever microprocessor is
used in the parasite, a given sequence with given parameters will always work in
the same way.

101

In this text, “H=P” indicates the passage of data from the host to the parasite and
“P=H” shows the passage of data from the parasite to the host.

Each protocol consists of read/write accesses to the Tube registers, conditional
branching based on the register contents, and the copying of the contents into
memory. The Tube chip appears, to both the host and the parasite, as a collection
of memory or I/O mapped registers. There are four independent bi-directional
communication paths, each of which consists of a one byte control register and a
one byte data register (which may have a one-byte buffering). The roles of the
respective registers are described below:

Operating System Usage

Registers R1STATUS, R1DATA, R2STATUS and R2DATA are mainly for MOS
data and command transfer under polled or parasite IRQ operation.

Register 1 status (R1STATUS)

The status of R1DATA is indicated by this byte:

Bit 7 6 5 4 3 2 1

DA1 | NF1 P \ M J I Q

When set to logic 1:
DA1 - Data Available in data register 1
NF1 - Data register 1 is Not Full

P - Set parasite reset active low

\Y, - Enable two byte FIFO operation of R3DATA
M - Enable parasite NMI from R3DATA

J - Enable parasite IRQ from R4DATA

I

- Enable parasite IRQ from R1DATA
Q - Enable host IRQ from R4DATA (Not Used)

Register 1 data (R1DATA)
H=P
A 1-byte buffer is used by events in the host to generate IRQs to the parasite.

Writing to this register will cause the parasite IRQ to be active low. It is also used to
pass on the ESCAPE condition.

102

P=H

This is a 24-byte FIFO buffer and carries the parameters for OSWRCH. Note that
OSWRCH only uses a 10-byte parameter block, so a language processor can enter
a full plot command without having to wait for the host to remove each byte in turn.
Although the Tube chip circuitry is designed to be able to interrupt the host if the
parasite writes to this register, this facility is not used on the host, which will
normally poll R1STATUS until the data becomes available.

Register 2 status (R2STATUS)

The status of R2DATA is indicated by this read only byte.

Bit 7 6 5 4 3 2 1 0

DA2 | NF2 1 1 1 1 1 1

When set to logic 1:
DA2 - Data Available in data register 2
NF2 - Data register 2 is Not Full

Register 2 data (R2DATA)

Register 2 initiates MOS calls which may take a long time or must not interrupt host
tasks.

H=P
The host returns data as appropriate.

P=H
The parasite requests the task and then passes data as appropriate.

Filing System Usage

Registers RBSTATUS, R3DATA, R4STATUS and R4DATA are mainly used by filing
systems for fast transfer under NMls - may be used for high speed protocols by
“claiming” the Tube (see section on the Host Protocols).

Register 3 status (R3STATUS)

The status of R3DATA is indicated by this read only byte.

Bit 7 6 5 4 3 2 1 0

DA3 | NF3 1 1 1 1 1 1

103

When set to logic 1:
DA3 - Data Available in R3DATA/Parasite NMI generated
NF3 - Data register 3 is Not Full
Register 3 data (R3DATA)
H=P; P=H
This is used for the fast data transfers. Note that the host can program it to operate
in a two byte mode.

R3DATA and R3STATUS are used for the block transfers as a background task.
For higher performance applications this register may interface to a DMA controller.

Register 4 status (R4STATUS)

The status of R4DATA is indicated by this read only byte.

Bit 7 6 5 4 3 2 1 0

DA4 | NF4 1 1 1 1 1 1

When set to logic 1:
DA4 - Data Available in R4ADATA/Parasite IRQ generated
NF4 - Data register 4 is Not Full

Register 4 data (R4DATA)

H=-P
Writing to R4DATA sets the parasite IRQ. Reading R4DATA clears the IRQ.

The Host interrupts the second processor by writing a byte describing the required
action into R4DATA. The two machines then co-operate in passing data across
register 4 until the job is done.

The register set is also used to initiate the passing of an error string from Host to
Parasite. The Host interrupts the Parasite by writing an error code into R4DATA,
the two machines then co-operate in passing the error string across R2DATA.

P=H
R4DATA is used as a control channel to request block transfers through R3DATA.

104

Parasite Protocols

From the point of view of the language processor, the Tube protocols are presented
in the following generalised form:

<PROTOCOL NAME>

Wait until ready then...
[Wait until [CONDITION 1] TRUE] 4
[Wait until [CONDITION 2] TRUE]

Synchronising phase

[Wait until [CONDITION n] TRUE] \4

THEN
[Perform Task 1] A

[Perform Task 2]

[Perform Task m]
ELSE Execution phase
[Perform Task a]
[Perform Task Db]

[Perform Task z] v

THEN
[Wait until [CONDITION A] TRUE] A

[Wait until [CONDITION B] TRUE]

Completion Phase

[Wait until [CONDITION Z] TRUE]

RETURN FROM PROTOCOL

Vectors

Each Acorn-supplied second processor has a simple operating system which
contains all of the routines necessary to implement the Tube communications
protocols. This operating system is ROM-based and is copied across into RAM
when the second processor is reset.

105

As the Master 128 65C12 and the Master Turbo 65C102 co-processor are opcode
compatible, the entry points and vectors for a given OS call are the same in each.
This also applies to the 6502 second processor.

Hardware Dependency

Host Hardware

Hardware dependent calls should not be redirected, as user code in the language
processor cannot access the hardware (unless the user has set up a program in the
host to intercept, say, a standard OSFILE call and turn it into a user-defined
OSWORD).

Note that with the exception of the “1MHz Bus”, Cartridge Bus and User Port, Acorn
does not support direct user control of hardware.

Parasite Hardware

The only hardware available to a program in the parasite is the CPU, memory and
Tube. Redirecting, say, a VDU operation is of limited use. The exception to this is
if the user is running the program in a specially constructed (external) second
processor which has perhaps its own ultra-high resolution graphics circuitry, or a
signal processing system to which the host does not have access.

Non-Interrupt protocols

OSWRCH
Wait until R1DATA not full, write character into R1IDATA

OSRDCH
Wait until R2DATA not full, write RDCHNO (=&00) to R2DATA
Wait for data in R2DATA, top bit of R2DATA is 65C12 C-flag (validity bit)
Wait for data in R2DATA, R2DATA is 65C12 A register (character read).

OSCLI
Wait until R2DATA not full, write CLINO (=&02) to R2DATA
FOR all characters in the command string (including terminating <cr>)
DO [Wait until R2DATA not full, write character to R2DATA]
Wait for data in R2DATA and read it
IF this byte=&80 then code has been loaded into the language processor
store as a result of the command and it should be entered at the address
given by the last R4 protocol type 4 address. This means that another
protocol has been invoked by this one and has already finished.

106

OSBYTE
IF osbyteno < &80 THEN
Wait until R2DATA not full, write OSBYTNO (=&04) to R2DATA
Wait until R2DATA not full, write parameter for 65C12-X to R2DATA
Wait until R2DATA not full, write osbyte number to R2DATA
Wait for data in R2DATA, read R2DATA which is 65C12-X register
ELSEIF osbyteno = &82 THEN
result is machine high order address
ELSEIF osbyteno = &83 THEN
result is low memory value
ELSEIF osbyteno = &84 THEN
result is high memory value
ELSE
Wait until R2DATA not full, write BYTENO (=&06) to R2DATA
Wait until R2DATA not full, write parameter for 65C12-X to R2DATA
Wait until R2DATA not full, write parameter for 65C12-Y to R2DATA
Wait until R2DATA not full, write osbyteno to R2DATA
IF osbyteno=&9D THEN RETURN from protocol (no reply)
(Note: this is why OSBYTE &9D is faster than OSBPUT)
Wait for data in R2DATA, bit 7 of byte read is from 65C12-C
Wait for data in R2DATA, byte read is 65C12-Y
Wait for data in R2DATA, byte read is 65C12-X

OSWORD

IF oswordno = &00 THEN (Note: Doing readline)
Wait until R2DATA not full, write RDLNNO (=&0A) to R2DATA
Wait until R2DATA not full, write upper bound char to R2DATA
Wait until R2DATA not full, write lower bound char to R2DATA
Wait until R2DATA not full, write length allowed to R2DATA
Wait until R2DATA not full, write &07 to R2DATA
Wait until R2DATA not full, write &00 to R2DATA
Wait for data in R2DATA $ response
IF response > &7F THEN RETURN from protocol (escape was pressed)
Read a <cr> terminated string from R2DATA

ELSE
Wait until R2DATA not full, write WORDNO (=&08) to R2DATA
Wait until R2DATA not full, write oswordno to R2DATA
Wait until R2DATA not full, write number of params to send to R2DATA
Write parameter block to R2DATA, last byte first
Wait until R2DATA not full, write number of parameters to receive to
R2DATA
Read bytes back from R2DATA into parameter block, last byte first

107

The number of parameters to send/receive is determined by:

IF oswordno < &15
THEN [Determine the number of parameters from following table:]

OSWORD number Parameters to send Parameters to receive
1 (&1) 0 5
2 (&2) 5 0
3 (&3) 0 5
4 (&4) 5 0
5 (&5) 2 5
6 (&6) 5 0
7 (&7) 8 0
8 (&8) 14 0
9 (&9) 4 5
10 (&A) 1 9
11 (&B) 1 5
12 (&C) 5 0
13 (&D) 0 8
14 (&E) 1 24
15 (&F) 32 0
16 (&10) 16 1
17 (&11) 13 13
18 (&12) 0 128
19 (&13) 8 8
20 (&14) 128 128

ELSEIF oswordno < &80 THEN
Number of parameters to send=16
Number of parameters to receive=16
ELSE
Number of parameters determined in call specific manner (e.g. by
embedding in transfer block)

OSBPUT
Wait until R2DATA not full, write BPUTNO (=&10) to R2DATA
Wait until R2DATA not full, Y to R2DATA (file handle)
Wait until R2DATA not full, A to R2DATA (byte to write)
Wait for data from R2DATA, discard it

108

OSBGET
Wait until R2DATA not full, write BGETNO (=&0E) to R2DATA
Wait until R2DATA not full, write file handle to R2DATA
Wait for data in R2DATA, top bit of byte is 65C12-C (validity bit)
Wait for data in R2DATA, read R2DATA which is byte read from file.

OSFIND

Wait until R2DATA not full, write FINDNO (=&12) to R2DATA

Wait until R2DATA not full, write type of open to R2DATA

IF type=0 THEN
Wait until R2DATA not full, write file handle to R2DATA
Wait for data in R2DATA, read result

ELSE
Waiting for R2DATA not full, write filename to R2DATA (including <cr>)
Wait for data in R2DATA, read handle from R2DATA

OSARGS
Wait until R2DATA not full, write ARGSNO (=&0C) to R2DATA
Wait until R2DATA not full, write file handle to R2DATA
Waiting for R2DATA not full, [write 4 bytes osarg-data to R2DATA] (most
significant byte first)
Wait until R2DATA not full, write operation code to R2DATA
Wait for data in R2DATA, read fs type from R2DATA
Waiting for R2DATA, [read 4 bytes osarg-data from R2DATA] (msb first)

Note: osarg-data is the file sequential pointer or length depending on the type of
OSARGS call.

OSFILE
Wait until R2DATA not full, write FILENO (=&14) to R2DATA
Waiting for R2DATA not full, [write 16-byte OSFILE control block to R2DATA]
(last byte of block is written first)
Waiting for R2DATA not full, write filename to R2DATA (including <cr>)
Wait until R2DATA not full, write type of transfer to R2DATA (Any transfer is
completed under interrupt using R3, R4)
Wait for data in R2DATA, read R2DATA AND &7F = Filing system type
Waiting for data in R2DATA, [read back 16-byte control block from R2DATA]
(last byte of block is read first)

Note: The 16-byte control block has the format:

0 Load address * The contents of these
- fields depend on the call
Execution address type e.g. Cata|ogue
8 Data start address or length * information, file addresses.
- See the Reference Manual,
12 End address or attributes * Part 1.

109

OSGBPB
Wait until R2DATA not full, write GBPBNO (=&16) to R2DATA
Wait until R2DATA not full, [write 13-byte OSGBPB control block to
R2DATA] (last byte of block is written first)
Wait until R2DATA not full, write type of transfer to R2DATA
Waiting for data in R2DATA, [read back 13-byte control block from R2DATA]
(last byte of block is read first)
Wait for data in R2DATA, read R2DATA bit 7 is 65C12-C bit
Wait for data in R2DATA, read R2DATA which is 65C12-A register

Interrupt driven operations

In addition to these parasite-initiated activities the parasite is also required to
respond to interrupts from registers 1, 3 and 4.

To determine the source of an interrupt it is important to follow the following order:

a) Check for register 4 interrupt
b) Check for register 1 interrupt

Register 1 interrupts

Register 1 interrupts occur only in the host-to-parasite direction. The interrupt
service sequence is:
Read type byte from R1DATA
IF type <0 THEN ; Escape flag update
Replace the escape flag with bit 6 or type
RETURN from servicing interrupt
ELSE ; Event signal
Interrupt-R1DATA-read 65C12 Y-event parameter
Interrupt-R1DATA-read 65C12 X-event parameter
Interrupt-R1DATA-read 65C12 A-event parameter
; Host machine will now continue processing
; any other actions to service event can be taken

Where Interrupt-R1DATA-read is:
UNTIL data-ready-in-R1 DO
[IF data-ready-in-R4 THEN CALL R4-interrupt-service]
RETURN read R1DATA

110

Register 4 Interrupts

Read Type byte from R4DATA
IF TYPE <0 THEN ; HOST machine is reporting an error
Wait for data in R2DATA, read and discard it
Wait for data in R2DATA, Read error number from R2DATA
Read a zero byte terminated string from R2DATA
ELSE [;Type is a command to initialise for Register 3 block transfer
Wait for data in register 4, read claimer’s identity from R4DATA (See Note 4)

CASE Type OF
0- Single byte transfer Parasite to Host.
Read 4-byte base address for transfer from R4DATA msb first.
Set NMI routine for this transfer type.
Wait for & remove synchronising byte from R4DATA
1- Single byte transfer Host to Parasite.
Read 4-byte base address for transfer from R4DATA msb first.
Set NMI routine for this transfer type.
Wait for & remove synchronising byte from R4DATA
2- Double byte transfer Parasite to Host.
Read 4-byte base address for transfer from R4DATA msb first.
Set NMI routine for this transfer type.
Wait for and remove synchronising byte from R4DATA
3 - Double byte transfer Host to Parasite.
Read 4-byte base address for transfer from R4DATA msb first.
Set NMI routine for this transfer type.
Wait for & remove synchronising byte from R4DATA
4 - No transfer (Pass address Host to Parasite only).
Read 4-byte address from R4DATA msb first.
Wait for data in R4DATA, discard it.
5- No transfer (Filing system release)
6 - 256-byte transfer Parasite to Host without interrupt.
Read 4-byte base address for transfer from R4DATA msb first.
Wait for data in Register 4, discard it.
Transfer 256 bytes to Host via R3DATA.
Write a byte into R4DATA ;To stop unwanted interrupts on Host
7 - 256-byte transfer Host to Parasite without interrupt.
Read 4-byte base address for transfer from R4DATA msb first.
Wait for data in Register 4, discard it.
Transfer 256 bytes from Host via R3DATA.

] RETURN ; From the interrupt

111

Notes:

1) Synchronising Bytes for types 0-3: As soon as the synchronising byte is
removed, Register 3 transfer requests (NMIs) will start to occur. The data in a
synchronising byte has no meaning; it is merely a handshake signal. When the
interrupt occurs 1 or 2 bytes are transferred (depending on the current mode).

2) Filing System releases NMI ownership. A release (type 5) is a guarantee that no
more Register 3 NMIs will occur for the current transfer.

3) Interrupt Service Time. The interrupts are caused by some external peripheral
(e.g. discs or the ECONET) which cannot be slowed down, so the transfers must
take place within the following times:

Type Maximum allowed Time for Maximum permissible service time

NMI service routine from sync byte to first transfer NMI
0 24 ms per byte 24 ms
1 24 ms per byte 24 ms
2 26 ms per pair of bytes 24 ms
3 26 ms per pair of bytes 24 ms
6 10 ms per byte 19 ms
7 10 ms per byte 19 ms

4) Filing System claimer identities

When a filing system claims the R3/R4 resource in the host its identity is passed to
the second processor as part of the R4 startup protocol. The identity codes, which
are six-bit numbers, are not related to filing system or ROM slot numbers. They are
arbitrary assignments made by ACORN.

Filing System Claim identity used

Tape

DFS

NFS (Low Level)

NFS (Filing System)

ADFS

TFS (Telesoft Filing System)
Reserved for Acorn Use
VFS (Video filing system)
SRM (SRAM Utilities)

Z80 (For CP/M usage)

O©CoONOOTRARWN—=O

The Identity “&F” has been used by an independent manufacturer.

112

Startup protocol

The startup sequence for a language processor (e.g. when power is switched on,
or Reset is pressed) is:
Use the OSWRCH mechanism to write out a startup message.
Send a zero byte to Host via R1DATA to terminate it.
Wait for data in R2DATA. ; during this wait a load may occur from the Host
; using R4/R3 block transfer protocols
IF byte=&80 THEN execute from the address given in the R4 type 4 transfer.

Notes:

1) The host operates the Tube by polling the registers, i.e. not by interrupts.

2) In all the transactions which may generate errors it is important to realise that if
the error is reported by the BBC machine under interrupt (i.e. it was generated by a
65C12 BRK sequence), the protocol which generated the error is abandoned.

Register Addresses

The Tube can be put anywhere in the parasite memory map that is convenient to
the language processor designer. In the 65C102 Co-processor and 6502 Second
Processor, for example:

Register Address in Parasite memory map
R1STATUS &FEF8
R1DATA &FEF9
R2STATUS &FEFA
R2DATA &FEFB
R3STATUS &FEFC
R3DATA &FEFD
R4STATUS &FEFE
R4DATA &FEFF

Tube protocols

Host Protocols

The host protocols obtain or distribute data which the parasite has requested or
transmitted. Normally it is the MOS which responds, as the majority of OSBYTE
and OSWORD calls are concerned with accessing hardware or flow control
parameters stored in RAM. However, when data has to be passed quickly or in
bulk, this is usually done by filing systems working under NMls. The user has

113

access to the same facilities as filing systems (via Register sets 3 and 4) and can
load a program into the host which may take advantage of these.

The procedure has five phases:

1) Check that the Tube is present
2) Claim the Tube

3) Initiate the data transfer

4) Transfer data

5) Release the Tube

Check for presence of the Tube

As a file intended for a parasite may be loaded into the host when the Tube is not
present, it is a good practice to check for the presence of the Tube by calling
OSBYTE 234 (&EA) with X=0, Y=255. On return, X=0 if the Tube is not present,
otherwise X=255.

Claiming the Tube

For the user to gain control of the Tube permission is requested by calling the MOS
Tube entry point at &0406 with a unique “reason code” in the 65C12 accumulator.
The reason code is a six-bit number logically ORed with &CO, thus setting the top
two bits. For example, (in BBC BASIC assembler):

reason% LDA #(&CO0 OR <unique identifier>)
The Accumulator now holds the reason code

The <unique identifiers> already in use are listed above. For third party software
writers, they are allocated by Acorn Customers Services to prevent clashes with
other proprietary software.

When the call returns, the CPU carry bit will indicate if the call was successful or
not:

C=1: The call was successful

C=0: The call failed

If the call failed, this is because some other program had control of the Tube. The
call should be repeated until successful:

reason% JSR &0406 ;Call Tube code
BCC reason% ;Try to claim the Tube
;try again if failed
RTS

Registers (A, X, Y as appropriate) should be saved as they may be corrupted on
return.

114

Initiating data transfer

Once the Tube has been successfully claimed, a control block must be set up in the
host indicating the address of the first byte in the target area in the parasite. This in
its turn is pointed at by loading the CPU’s X and Y registers with the high byte and
low byte respectively of the control block’s address:

n+3 Target address high byte

n+2 Target address high byte-1

n+1 Target address low byte+1 A

n Target address low byte (Y*&100 + X)

When the control block is set up, the same entry point (&0406) is used to initiate
data transfer. Once again a reason code in the accumulator is used, this time to
indicate what action is required:

Reason code Description Delay (a) Delay (b)
0 Multiple byte transfer P=H 24ms 24ms/byte
1 Multiple byte transfer H=P 0 24ms/byte

These transfer any number of bytes. Terminate by releasing the Tube or starting
another protocol.

2 Multiple pairs of bytes P=H 26ms 26ms/pair

3 Multiple pairs of bytes H=P 0 26ms/pair
These transfer an even number of bytes and are faster than the above two
protocols as they use R3DATA in its two byte mode. Terminate by releasing the
Tube or starting another protocol.

4 Execute
Execution starts at the address pointed to by the control block (see below). This
option has an implied release of the Tube and does not return to the user’s
program.

5 Reserved

This option is used in handling MOS calls which are passed across the Tube.
6 256-byte transfer P=H 19ms 10ms/byte
7 256-byte transfer H=P 0 10ms/byte

These will transfer exactly 256 bytes. Only after completion can the Tube be
released or another protocol started.

Note that the reason codes and functions are the same as the parasite side
R4DATA transfers.

115

Transferring data

After the instruction has been passed to the system, the user program can start the
transfer after the delay specified above. In the P=H direction the delay (a) allows
the parasite CPU to service the initiating NMI and “prepare itself’ before the data
starts. In the H=P direction this will already have been done as it would have been
the parasite which issued the call asking the host to fetch the data.

Once transfer has started, the delay (b) must be allowed between bytes (or pairs of
bytes as indicated above) to allow sufficient time for the parasite RSDATA NMI code

to complete. In the P=H direction, the host must service each byte (or pair) within
the indicated time.

Releasing the Tube
When the transfer is complete, the Tube must be released so that another program
can use it. The procedure is to call the MOS Tube entry point, again with a reason
code in the accumulator, this time using:
release% LDA # (&80 OR <unique identifier>)

JSR &0406

RTS

Once again, CPU registers must be saved as appropriate.

Register Locations

The Tube registers have the following locations in host memory map:

Register Location
R1STATUS &FEEO
R1DATA &FEE1
R2STATUS &FEE2
R2DATA &FEE3
R3STATUS &FEE4
R3DATA &FEE5
R4STATUS &FEE6
R4DATA &FEE7

In practice, R3DATA is the register of prime interest as this is the data channel for
the transfers described above, that is:

A H=P transfer : LDA data-source
STA R3DATA

116

A P=H transfer : LDA R3DATA
STA safe-place

Tube/filing system interface

Part 1 of the Reference Manual describes in some detail the format of the filing
system interface (OSFILE, OSARGS etc.). The following information is intended to
assist in the writing of filing systems which must be compatible with the Tube.

LOAD/SAVE addresses

It is necessary to indicate to a filing system whether a file’s target address is in the
host or the parasite address space. This is done by treating the address as a four-
byte (32-bit) number where the two most significant bytes indicate the relevant side
of the Tube:

&FFFF<0 to FFFE> indicates the host memory
WARNING When the Tube is active , its
communications code is in
&FFFF0400 to &FFFFO7FF
&FFFFFFFF indicates that the named program is to be EXECed
&FFFE<3000 to 7FFF> indicates the “shadow” screen memory in the host

This does not apply to CFS, TFS and RFS.
&JKLM<O0 to FFFF> indicates the parasite memory

This means that parasites can have memory from &00000000 to &BFFFFFFF. For
a program in the parasite to set up a utility program (say, an interrupt handler), it
should do either of the following:

Using OSWORD
1) Transfer a small routine to disable interrupts, then modify the
interrupt vector and re-enable interrupts.
Using *RUN
1) Issue a *RUN <utility name> FFFF<host target address>.
In this case, the utility will be loaded and JuMPed into at the entry point stored
on the filing media (e.g. disc). The utility should then:-
2) Modify the relevant vector itself to point to the “real” entry point and
then do an RTS to cause the parasite protocol to be terminated.

117

Use of the Non-Maskable Interrupt

To avoid slowing the computer down with polling loops, programs which have to
interface at high speed with the real world use interrupts. The MOS provides and
maintains a flexible and powerful IRQ-based “event” structure. Any program, be it
in RAM, sideways ROM or sideways RAM can couple to this structure by purpose-
designed OSBYTE calls and vector redirection.

The penalty for this flexibility is the time it takes to let all interested parties know that
an IRQ has happened. Usually this is not important. However, where a filing

system is reading floppy discs, for example, there is insufficient time to call a routine
in the MOS and then let it tell all the other systems until it eventually reaches the
filing system. For this reason the Non-Maskable Interrupt (NMI) is used for critical
data transfers.

To ensure that the NMI is serviced quickly enough, the MOS exercises no control
over it. Not even a vector is used as its redirection would take 2ms. To distribute
this valuable resource, the MOS maintains an arbitration system to ensure that only
one program at a time is trying to use the NMI.

Claiming NMI workspace

(&0DO00 to &0D5F and &00A0 to &00A7)

Even if an IRQ and NMI are made to the CPU at exactly the same time, the NMI will
take priority. The CPU will JMP via an address stored at a fixed location in ROM to
the start of a region in RAM which is reserved for use as NMI Workspace. When
the computer is reset, this location is loaded with an RTI so that spurious interrupts
will not cause the computer to “crash”. For a program to make use of NMls, it must
put a short routine into memory from &0DO00. This should:

a) Do the minimum to ensure integrity of the previous routine (i.e. saving

registers on the stack).

b) Service the interrupt as efficiently as possible.

c) Return
It is important that programs do not try to use the NMI workspace before the MOS
has given permission for this. Otherwise it could interfere with another program
(such as a filing system) which was already using NMis.

The NMI workspace and hence NMls are claimed as follows:
a) Issue a service request to claim the NMI (OSBYTE 143 (&8F); X=&0C).
b) When the service request comes round, any NMI owner should “switch off”
its NMI usage. NMis will be allocated to another program. This call must not
be claimed, but passed on to the next sideways program. On return, the Y
register should be saved as it will contain the identity of the previous owner.
This call should only be issued if the current owner is the Network software or

118

none at all. If it is issued whilst ADFS (or DFS) is active, data or even
directories may be lost.

When the NMIs are no longer needed, they should be released thus:
a) Issue a service request to release the NMI (OSBYTE 143, X=&0B,
Y=<previous owner>)
NMIs should be released by synchronous systems (such as the disc interfaces)
when a given task is complete. It will then be claimed by an asynchronous system
(such as the Network) until such time as it is needed again by a synchronous one.

Hardware access to the NMI

The following interfaces have a connection to the NMI signal:

1) Disc interface

2) Econet adapter

3) TMHz Bus

4) The Cartridges

5) The Modem Cavity

The disc and net interfaces are not directly connected to the CPU NMI pin for the
following reasons:

The Disc Interface
The WD1770 series disc controllers have two interrupting outputs. One
indicates that a new byte has to be read from/written to the disc; the other
indicates that the last command has been completed. Both of these signals
have active high totem pole outputs whilst the system uses an open collector,
active low system. The two interrupts are logically open collector NORed in
the 1/O controller.
Note that some machines are fitted with the WD1772 in place of the WD1770.

The Network Adapter
This uses a 68B54 Advanced Data Link Controller and will generate an
interrupt for every data byte assembled from the ECONET. As net traffic
may be generated by other users, it is desirable to prevent the 68B54
from generating NMIs when the ANFS is not the NMI owner. As the
68B54 does not have an interrupt mask, logic, again in the 1/0
controller, performs this function.

Suggestions of uses for NMlIs other than the disc and net interfaces are:
Infra-red data transfer cartridge, for example, fibre optic
Compact Disc filing systems (CD-ROMs)
Video Disc filing systems, for example, BBC Domesday Project
High speed modems

119

13 THE Z80 SECOND
PROCESSOR

Operating system calls

The operating system calls of the host processor can be accessed from the Z80 in a
similar manner to the BBC Microcomputer itself. Operating system calls can be
made via a jump table starting at address FFCEh. The entry point for each routine
corresponds with the equivalent address on the 6502, e.g. the WRCH routine is
entered at FFEEh. All operating system calls (apart from OSARGS - see below)
take parameters in Z80 registers A, H and L corresponding to A, Y and X on the
6502. For all calls that use the carry flag on the 6502 this still applies on the Z80.
For example:

LD A,41h ;Character to be written in A
CALL OFFEEh ;Call OSWRCH to write character

and
LD A,5 ;*FX 5,2 => A set to 5
LD L,2 ;L set to 2
CALL OFFF4h ;Call OSBYTE routine equivalent to *FX 5,2

Interception of any operating system call can be achieved by simply changing the
address field of the relevant jump to point to the required user routine.

The new memory map is shown below

Address (Hex) Purpose

FFFE INT vector reserved for the Z80 operating system

FFFC Event vector

FFFA BRK vector

FFF7 OSCLI - H,L point to command line

FFF4 OSBYTE - A =0SBYTE number H,L are parameters

FFF1 OSWORD - A=0SWORD number H,L point to control
block

FFEE OSWRCH - A =character

FFE7 OSNEWL - Write linefeed, carriage return to screen

FFE3 OSASCI - Write character in A to screen plus line feed if
A =0Dh

120

FFEO OSRDCH - A = character

FFDD OSFILE - A = Operation type H,L point to control block

FFDA OSARGS - A = Operation type E = Handle H,L point to
control block

FFD7 OSBGET - A = Byte H = File handle

FFD4 OSBPUT - A = Byte H = File handle

FFD1 OSGBPB - A = Operation type H,L point to control block

FFCE OSFIND - A = Operation type H,L point to filename
(A=0) H = file handle

FFC8 TERM - A=0 Switch off terminal mode (default)

A=1 Switch on terminal mode
A=FFh Test terminal mode

FF82 Fault pointer

FF80 Escape flag - top bit set if escape condition exists

Faults and events

6502 Faults

When a fault is generated by the 6502 host processor the Z80 is interrupted and the
fault number and string are passed across the Tube and placed in a fault buffer.
The pointer at FF82h is then set to point to the fault number and the Z80 operating
system indirects through the BRK vector at FFFAh.

Z80 Faults

Faults can also be generated on the Z80 using the RST 38h instruction. All Z80-
generated faults should adhere to the following convention:

RST 38h Value FFh

Fault number Fault string

Terminator Value 00h
Events

When an event is detected by the 6502 operating system the event parameters A,
Y and X are passed across the Tube to Z80 registers A, H and L respectively. The
Z80 operating system then indirects through the event vector at FFFCh which is
initialised to point to a Z80 RET instruction.

121

Escape processing

When the escape code is detected from the keyboard the top bit of the escape flag
at FF80h is set. An escape condition should be detected by testing this bit and
acknowledged by OSBYTE call 7Eh. The escape flag should be reset or set using
OSBYTE calls 7Ch or 7Dh.

Interrupt handling

NMI Non-maskable interrupt

This interrupt is reserved for use by the Z80 operating system and cannot be
intercepted by the user.

INT Interrupt request

When an INT is detected the Z80 operating system indirects through location
FFFEh. All unrecognised interrupts are passed to a user INT routine at FFBOh in
the jump table. The address field at FFB1h should be changed to point to the
required user INT routine. This routine must preserve all registers and return using
instructions:

El enable interrupts
RETI return from maskable interrupt routine

Z80 Monitor

After turning on the Z80 and pressing BREAK the following display appears:-
Acorn TUBE Z80 64K n.nn
Acorn DF'S
BASIC

*

where n.nn is the version number of the Z80 ROM. The * prompt indicates that the
Z80 Monitor is running and at this stage all the standard * commands can be
entered i.e *HELP, *FX4 etc. The Z80 Monitor will also recognise the following
additional commands which allow memory to be examined, changed and small
machine code programs to be entered directly and tested.

122

CPM

D <start address> <end address>
GO <address>

S <start address>

In these commands <address> refers to a hexadecimal address which can entered
as 1 to 4 digits i.e. 3F can be entered as 3F, 03F or 003F. If more than 4 hex digits
are entered the most significant digits will be truncated i.e. 12345 will be treated as
2345. If no address is specified the most recently specified address will be used
instead. For all commands any leading spaces or asterisks and trailing spaces will
be ignored.

CPM - allows the CP/M system to be loaded without resetting any previously
entered * commands which would occur if CP/M was loaded using CTRL BREAK.
i.e. typing

*KEY0 DIR|M

*KEY1 STAT *.*|M

*KEY2 ERA

*CPM

would allow the function keys to be defined before starting up CP/M (These key
definitions would have been reset if CTRL BREAK had been used to load CP/M).

D (Dump) - gives a memory dump with character interpretation between the two
specified addresses. At least one space is expected between the start and end
addresses but no space is necessary before the first address. A dump can be
terminated at any time by pressing ESCAPE.

GO - causes a jump to the specified address

S (Set) - allows memory to be entered and altered from the specified start address.
No space is needed between the command and the address. The displayed
memory location can be altered by entering valid hex digits which are shifted in from
the right. The command can be terminated by entering any non hex character.

To alter more than one location the UP and DOWN cursor keys can be used to
increment or decrement the memory location.

Z80 OSWORD call

The Z80 provides an additional OSWORD call with A = OFFh, to read or write
blocks of I/O processor memory. On entry HL point to the following control block :-

123

HL+O Number of OSWORD parameters sent to 1/0O processor - 0Dh

HL + 1 Number of OSWORD parameters read from 1/O processor - 01h
HL +2 LSB of I/O processor address

HL+3 .

HL + 4 .

HL+5 MSB of I/O processor address

HL + 6 LSB of Z80 processor address

HL+7 .

HL + 8 .

HL+9 MSB of Z80 processor address

HL + A LSB of number of bytes to read/write

HL +B MSB of number of bytes to read/write
HL+C Operation type - 0 to write to I/O processor

1 to read from I/O processor

The first two bytes are used by the Z80 operating system and must not be changed.
If the I/O processor uses sixteen-bit addresses only the first two least significant
bytes need to be specified.

For example, to read I/O processor screen memory (mode 0) into Z80 memory at
08000h

LD A, QFFh ;OSWORD call OFFh
LD HL,BLOCK ;Set up HL to point to control block
CALL OFFF1lh
BLOCK:DEFB 0Dh
DEFB 0lh
DEFW 03000h ;start of screen memory in I/0O processor
DEFW 0 ;set high word to zero
DEFW 08000h ;start of transfer address in Z80
DEFW 0
DEFW 05000h ;size of screen memory (20K)
DEFB 1 ;read operation

I/0 Processor Memory Usage

The following areas of I/O processor memory are reserved and should not be
corrupted by any user programs

2500h - 25FFh Reserved for use by Z80 OS

2600h - 2FFFh Reserved for use by CP/M
0070h - 0078h Reserved for use by Z80 OS

124

Screen Control

There are three techniques that a CP/M application program can use to control the
BBC Microcomputer’s screen:

BBC Microcomputer Control Codes

Terminal Emulator Control Codes
GSX Functions

BBC Microcomputer Control Codes

All of the functions of the BBC Microcomputer normally accessed via the VDU
command can be accessed through CP/M by sending an appropriate control code.
These are explained in chapter 34 of the BBC Microcomputer User Guide and are

summarised on page 378. For example, sending the sequence (as hexadecimal
bytes) 1F 10 04 would position the cursor to cell x=16, y=4.

Terminal Emulator Control Codes

To allow existing CP/M applications to use basic terminal functions in a simple way,
a terminal interface has been defined. This is by default disabled, but can be
enabled, disabled or tested by assembler programs as follows:

To enable terminal mode

LD A, 1
CALL OFFC8H

To disable terminal mode

LD A,0
CALL OFFC8H

To test terminal mode

LD A, OFFH
CALL OFFC8H

In all cases, the state of the terminal mode prior to the call is returned in A:

A =0 terminal mode was disabled
A =1 terminal mode was enabled

125

An extra program is provided on the utilities disc: TERM.COM. This turns terminal
mode on or off from the CCP.

TERM ON to enable terminal mode
TERM OFF to disable terminal mode

when the terminal mode is enabled, the following control codes and escape
sequences can be used to control the screen. All numbers are hexadecimal.

07 Bleep

08 Move left one character
09 Move right one character
0A Move down one line

0B Move up one line

oC Clear screen

oD Carriage return

1B 3D YY XX Position cursor to (XX-20, YY-20)
1B 3E ?...7 00 Send sequence of bytes X...X to the screen, where each
byte X sent = ?-20

1B 3F Clear to end of screen
1B 40 Clear to end of line
1E Home cursor

Notes:

To send escape (1B) to the screen with the terminal emulator enabled, the
sequence 1B 3E 3B 00 should be sent.

The clear to end of line and clear to end of screen functions are intended for
80-column screens of full dimensions, and will work in screen modes 0 and 3 only.
They will reset the text window to the full screen.

GSX Functions

Refer to Digital Research Programmers’ Manual
Character I/O under CP/M

Device assignments
The object of this implementation is to allow the user to redirect I/O either with the

IOBYTE as on a normal CP/M system, or with OSBYTE calls as on a normal BBC
machine. The following logical devices are present on a CP/M system.

126

CON: the user console
LST: the printer

RDR: the paper tape reader
PUN: the paper tape punch

These logical devices can be assigned to the following physical devices:

UC1: the user defined console device

CRT: the screen and keyboard

TTY: the RS423 serial lines

LPT: the printer

BAT: batch mode (input from RDR: and output to LST:)
PTR: paper tape reader - reassigned as the keyboard
PTP: paper tape punch - reassigned as the screen

CP/M also has the following physical devices which are all defined as null devices
in this implementation:

UR1:
UR2:
UP1:
UP2:
UL1:

Null devices discard any output and return End-Of-File (1Ah) on input.
The default setting of IOBYTE has the following assignments:

CON: is UC1:

LST: is LPT:

RDR: isTTY:
PUN: isTTY:

The IOBYTE facility

The CP/M operating system allows the user to redirect the input and output of its
logical devices to particular physical devices. As an example the CP/M system
could be used with a remote terminal by assigning the physical device TTY: (the
RS423 serial port) to the logical device CON: (the system console).

The use of the IOBYTE to reassign the physical devices is covered in the Digital
Research CP/M Operating System Manual.

Care has been taken however to allow the user familiar with the BBC Micro to use
OSBYTE calls to redirect input and output as required. This has been done by

127

providing the physical device UC1: which uses the normal BBC micro I/O streams.
These can be altered as required. The default setting of the IOBYTE assigns the
UC1: device to CON: so the system console behaves like a normal BBC micro.

The CP/M logical devices are as follows:-

CON:

LST:
PUN:

RDR:

is the principal interactive console that communicates with the operator
and is accessed through CP/M calls to the Console.

is the principal listing device, usually a printer.

is the tape punching device - the name is a leftover from the days when
computers used paper tape.

is the tape reading device. As with PUN: above it is inherited from the
early versions of CP/M.

The Acorn CP/M system implements the following physical devices which are used
in conjunction with the above logical devices:

UC1:

CRT:

TTY:

LPT:

NUL:

UR1:,UR2:,
UP1:,UP2:

is the normal BBC micro I/O channel. This allows the user familiar with
the BBC to redirect I/O without using the CP/M IOBYTE. It also
supports the terminal emulation facility described elsewhere.

provides direct access to the BBC screen and keyboard. Unlike the
UCH: device, input and output cannot by redirected by OSBYTE calls.
Input always comes from the keyboard and output always goes to the
screen. It does not support the terminal emulation facility.

is the RS423 serial port. The default baud rate is 9600. It can be used
for both input and output. Please note that the user should not disable
the RS423 input if using the TTY: input device. The default setting is
input enabled.

is the standard BBC micro printer device. This is a Centronics with no
printer ignore character as a default but can be changed using OSBYTE
calls. If a printer is not present then attempts to send characters to the
printer will cause a message ‘Printer off line’ to appear. The user may
then connect a printer and carry on. Alternatively if a printer is not
available after a short time the message ‘SPACE starts Printer Sink’
appears and the user can press the SPACE bar to throw away the
printer output. The printer sink is detailed in the BBC Micro Users
Guide. Characters sent to the printer will continue to be ignored until
the user selects another printer type with a *FX5 call. UC1: is the same
as the LPT: device except no messages appear if the printer isn’t
connected. The system will simply stop.

is a device which throws away all output and returns 1Ah on input,
indicating End of File. This is present to prevent the system hanging if
an unimplemented physical device is selected.

are all equivalent to the NUL: device.

128

The default value for the IOBYTE in the Acorn CP/M system is 83h. This assigns
UCH1: to CON:, LPT: to LST:, TTY: to RDR:, and TTY: to PUN.. It can be changed
by applications programs or by the STAT command.

Device characteristics
The physical devices have the following characteristics:
UC1: the user-defined console device.

Default console device. It is also the fastest of the console devices since it uses the
standard BBC input and output streams. These streams can be altered by using
OSBYTE calls in the normal BBC manner, so the machine’s I/O can be treated as
that of a normal BBC machine, using the STAR command to avoid using the
IOBYTE facility.

CRT: the screen and keyboard.

Input is taken from the keyboard and output is sent to the screen. The
characteristics of this device cannot be changed with OSBYTE calls.

TTY: the RS423 serial lines.

The RS423 serial lines can be accessed using this device. The default baud rate
setting for the TTY: is 9600 baud and may be changed by the appropriate OSBYTE
call. No events are generated by ESCAPE characters, and non-ASCII codes
cannot be programmed on the function keys. The normal BBC handshaking using
CTS/RTS is implemented. The cassette driver should not be enabled nor the
RS423 input disabled while using this device. Although a serial printer can be
driven by this device, it bypasses the normal printer functions, such as setting an
ignore character or handshaking . It is therefore better to use the LPT: device and
set it to a serial printer with the appropriate OSBYTE call.

LPT: the printer.

Standard BBC printer driver. It can be changed to suit the particular printer in use.
The default setting is the parallel printer, ignoring line feeds. It is recommended
that when connecting a serial printer the IOBYTE be left unchanged and the LPT:
device altered with the appropriate OSBYTE call. The alternative is to use the
IOBYTE to select the TTY: driver but this does not carry out any of the standard
printer functions.

BAT: batch mode (input from RDR: and output to LST:).
This device takes its input from the logical device RDR: This can in turn be

assigned to any of the relevant physical devices. The output goes to the logical
device LST: which can in turn be reassigned to the relevant physical device.

129

PTR: paper tape reader - reassigned as the keyboard.
In the absence of a paper tape reader this device is the keyboard.
PTP: paper tape punch - reassigned as the screen.

In the absence of a paper tape punch this device is the screen.

The System Patch Area

To allow temporary patches to be made to the Acorn CP/M system an area has
been reserved in the BIOS. It starts immediately after the STARTUP entry point in
the CP/M BIOS jump table and is 60h bytes long. This is EA33h to EA92h inclusive
in the current Acorn CP/M system.

Patching should only be attempted by those familiar with the CP/M system.

There are two main types of patch. The first is to add special initialisation code.
The instruction at EA33h is a RET. This location is called at cold start which allows
a special subroutine to be inserted in place of the ROM. This could for example
select a serial printer as default. The other use is to patch in temporary additions to
the system. Certain application programs do so. Please note that patches of this
sort may be overwritten by other programs. As a result they can only form
temporary additions to the system and they should ‘tidy up’ on termination. i.e. any
changes made to other parts of the operating system should be reversed after the
patch has done its job.

130

14 THE 80186 SECOND
PROCESSOR

Operating System Calls

The operating system calls of the Master 128 may be accessed from the 80186
coprocessor by using the 80186 software interrupts. 256 software interrupts are
supported and each one has a corresponding four-byte vector in the first kilobyte of
memory. Interrupts 040h - 04Ch are reserved for the thirteen MOS calls supported
on the co-processor. All operating system calls take parameters in 80186 registers
al,bh,bl corresponding to 6502 registers A,Y and X (except OSARGS - see below).

Address

0100h
0104h
0108h
010Ch
0110h
0114h
0118h
011Ch
0120h
0124h
0128h
012Ch
0130h

Interrupt

040h
041h
042h
043h
044h
045h
046h
047h
048h
049h
04Ah
04Bh
04Ch

Routine

OSFIND
OSGBPB
OSBPUT
OSBGET
OSARGS
OSFILE
OSRDCH
OSASCI
OSNEWL
OSWRCH
OSWORD
OSBYTE
OSCLI

Function

Open or close a file
Read/Write part of a file
Write single byte to file
Read single byte from file
Read/Write file data
Read/Write a complete file
Read character from keyboard
Write character (plus LF)
Write CR,LF to screen
Write character to screen
Various using control block
Various using registers
Interpret command line

MOS calls OSRDSC, OSWRSC, OSEVEN, GSINIT and GSREAD are not
supported by the 80186 but OSWORD with al=0FAh provides the functions of
OSRDSC and OSWRSC.

131

OSFIND

Opens a file for reading or writing

Entry parameters al operation type
ds:bx point to filename terminated by CR
(al <> 0)
ah file handle (al = 0)
Exit parameters al file handle
(0 = file could not be opened)
Flag status undefined
Preserved registers ds, bx
OSGBPB
Read/write block of bytes from/to specified open file
Entry parameters al operation type
ds:bx point to control block
Exit parameters al=0 operation attempted
al unchanged = not supported in this fs
Flag status cf clear = transfer completed ok
cf set = end of file reached before

transfer completed
Preserved registers ds, bx

OSBPUT

Write single byte to specified open file

Entry parameters al byte to write to file
bh file handle

Exit parameters none

Flag status undefined

Preserved registers all

OSBGET

Read single byte from specified open file

Entry parameters bh file handle

Exit parameters al byte read from file

Flags status cf set if attempt made to read past end

of file

Preserved registers bx

132

OSARGS

Read/write file attributes

Entry parameters al operation type
ah file handle
ds:bx points to 4-byte attribute block
Exit parameters al filing system number
bx points to 4-byte attribute block
Flags status undefined
Preserved registers ds, bx
OSFILE
Read/Write complete file or catalogue information
Entry parameters al operation type
ds:bx point to control block
Exit parameters al or (bx) dependent on operation
Flags status undefined
Preserved registers all
OSRDCH

Read a character from currently selected input stream

Entry parameters none

Exit parameters al character

Flags status cf clear = valid character read
set = error condition, type in al

Preserved registers ah, bx

OSASCI

IF character <> CR do OSWRCH ELSE do OSNEWL
Entry parameters al character

Exit parameters none

Flags status undefined

Preserved registers ah, bx

OSNEWL

Write LF,CR to currently selected output stream
Entry parameters none

Exit parameters none

Flags status undefined

Preserved registers bx

133

OSWRCH

Write character to currently selected output stream

Entry parameters al character to write
Exit parameters none
Flags status undefined
Preserved registers bx
OSWORD
Various functions using control block
Entry parameters al OSWORD type
ds:bx points to control block
Exit parameters (bx) parameters returned in control block are
call dependent
Flags status undefined
Preserved registers all
OSBYTE
Various functions using registers
Entry parameters al OSBYTE type
bl OSBYTE parameter
bh OSBYTE parameter (only if al > 07Fh)
Exit parameters bl return parameter
bh return parameter (only if al > 07Fh)
Flags status cf status call dependent
Preserved registers al
OSCLI
Send command to Command Line Interpreter
Entry parameters ds:bx point to command line
Exit parameters none
Flags status undefined

Preserved registers all

134

Error Handling by the 80186 Monitor

When an error is generated by the 65C12 host processor the error number and
string are passed across the TUBE to the 80186 under interrupt. The error number
and string are then placed in an error buffer on the 80186 and a pointer is initialised
to point to the error number. The error string is terminated by a null byte (00h). The
80186 TUBE code then jumps to the error handler, prints out the error and returns
control to the 80186 monitor (see below).

The locations of the error handler vector and error pointer are given below:

0000:05F4h error pointer - offset
0000:05F6h error pointer - segment

0000:05F8h error handler vector - offset
0000:05FAh error handler vector - segment

Error Handling by stand-alone languages or
applications

The error handling provided by the 80186 monitor is not suitable for stand-alone
languages (i.e. languages using only MOS functions and host filing systems - not
DOS+ or Concurrent DOS) as control is returned to the monitor by the default error
handler. When the language is started up it should initialise the error handler vector
to point to its own error handler which can handle the error in an appropriate way
and return control to a suitable point within the language.

An example is now given to illustrate a typical error handler. This assumes that the
language is running at 0000:8000h. The example is written in Digital Research
RASMB86 assembler format.

cseg 0
org 08000h

osnewl equ 048h
oswrch equ 049h

error pointer offset equ .05F4h
error pointer segment equ .05F6h
error handler vec offset equ .05F8h
error handler vec segment equ .05FAh

135

;initialise error handler vector to point to my error handler

sub ax,ax

mov ds, ax ;set ds=0 to access system data
mov ax,offset my error handler

mov error handler vec offset,ax

mov ax,seg my error handler

mov error handler vec segment,ax

my error handler:
;set up ds:si to point to error

lds si,dword ptr error pointer offset
int osnewl ;new line
inc si ;skip error number
cld ;set forward direction
my error loop:
lodsb ;get error string from buffer
int oswrch ;and write it out
test al,al ;end of string ?
jnz my error loop ;no - get next character
Jmp my command loop ;yes - jump to command loop

80186 Error Messages

Errors can also be generated by the 80186 using interrupt 04Fh and following it with
the error number and error string terminated with a null byte. The error pointer will
be initialised as for 65C12 errors and the error handler given by the error handler
vector will be used.

The following example illustrates the use of 80186 errors. In this a test is being
made for the presence of a file before attempting to load it. The file name is
assumed to be in the current data segment.

;some interrupt numbers

error equ 04Fh ;the error interrupt number
osfind equ 040h

136

;osfind parameters

open for input equ 040h

;error numbers

not found error equ 06Dh
;some misc equates

cr equ 13

cseg

look for file:

mov al,open for input

mov bx,offset my file name

int osfind

or al,al ;al=0 implies file not found
jnz load the file

;file not present - give error message

int error
db not found error, cannot find file, O

;note no return after writing out error
;file loaded here if present

load the file:

dseg

my file name:
db 'S.myfile',cr

137

Escape Processing

When an escape condition is detected by the 65C12 the top bit of the escape flag at
0000:05F2h on the 80186 is set under interrupt. An escape condition should be
tested for by checking this escape flag. If an escape condition exists the escape
must be acknowledged using OSBYTE with al=07Eh and optionally an 80186 error
message can be generated. The escape flag should not be set or reset directly as
the change will not be reflected on the host processor side. OSBYTE calls with

al = 07Ch or 07Dh should be used to clear or set the escape condition respectively.

80186 Monitor

After enabling the co-processor and pressing BREAK the following display should
appear:

Acorn TUBE 80186 512K
Acorn ADFS
BASIC

*

The * prompt indicates that the 80186 monitor has been entered and is waiting for
commands to send to the Command Line Interpreter on the 80186 or the 65C12.

In addition to the standard MOS and filing system commands the 80186 recognises
the following monitor commands:

name function

D memory dump in hex and ASCII

DOS boot dos from hard disc if present else boot from floppy
F fill memory with byte or word constant

GO jump to specified address

MON enter Monitor

S set memory with hex or ASCII

SR search memory for specified text string

TFER transfer blocks of memory between 80186 and 65C12

Where <offset> is used below it refers to a hexadecimal offset address which can
be entered as 1 to 4 digits - leading zeros can be omitted i.e. 7A can be entered
as 7A, 07A or 007A. If more than 4 hex digits are entered the most significant
digits will be truncated i.e. 12345 will be treated as 2345. Where <segment> is

138

used it refers to a 80186 segment address which can also be entered as 1 to 4 hex
digits but must be followed immediately by a colon (:) to indicate that it is a segment
value. In all relevant commands below if no segment address is specified the most
recently specified value is used or 0 if no previous value has been specified. For all
commands any leading spaces or asterisks or trailing spaces will be ignored. ltems
enclosed in <> brackets indicate parameters that the command uses, items also
enclosed in () brackets indicate optional parameters that do not have to be
specified. All commands can be entered in upper or lower case (or both).

D - memory dump

Syntax - *D (<segment>:) (<start offset>) (<end offset>)

Gives a memory dump between the specified addresses in hex and ASCII showing
the addresses in segment:offset form. Characters outside the ASCII range 20h -
7Eh are shown as a full stop. All the parameters in the above commands are
optional. If the segment address is omitted the last value will be used. If the start
and end offsets are omitted the last end address + 010h is used as the start
address and the last end address + 080h is used as the end address. If the end
address is omitted the start address + 080h is used. The dump operation can be
terminated at any time by pressing ESCAPE.

DOS - boot DOS
Syntax - *DOS
Allows DOS to be booted without CTRL BREAK i.e. from stand-alone languages or

applications. DOS will be booted from the hard disc if present (and correctly
initialised for use with DOS) else it will be booted from floppy.

F - fill memory with constant
Syntax - *F (<segment>:) <start offset> <end offset> <fill byte/word>
Fills memory with a constant value between the specified addresses. The constant
used can be specified as a byte or word value. The end offset specified is the end
address + 1 used by the fill command i.e.
*f 1000 1010 55
will fill bytes 1000h - 100Fh inclusive with the value 55h
*f 1000 1010 1234
will fill bytes 1000h - 100Fh inclusive with the word 1234h with the Isb written first.

An end offset of 0 can be used to specify a fill operation to the last address in the
specified segment

139

GO - jump to address

Syntax - *GO (<segment>:) <offset>

Transfers control to the specified address. Should be used with care as jumping to
an address which does not contain any executable code could have undesirable
consequences!

MON - enter 80186 monitor

Syntax - *"MON
Allows the monitor to be re-entered from stand-alone languages or applications
without pressing BREAK.

S - set memory contents

Syntax - *S (<segment>:) <start offset>

Allows memory contents to be examined and altered if required. A line of sixteen
bytes of memory is displayed in hexadecimal and ASCII formats, initially with the
cursor under the least significant digit of the first byte specified. Cursor movement
and data entry is controlled using the following keys:

LEFT move cursor left, if at far left display previous 16 bytes
RIGHT move cursor right, if at far right display next 16 bytes
upP display previous 16 bytes

DOWN display next 16 bytes

SHIFT LEFT move cursor to far left of current field

SHIFT RIGHT move cursor to far right of current field

COPY toggle between hex field and ASCII field

The display consists of two 16-byte fields - a hexadecimal display and an ASCII
display. The COPY key is used to switch between the two. While the cursor is in
the hex field, data is entered in hex digits, each digit being shifted in from the right.
To advance to the next field the normal cursor keys are used. SHIFTed cursor keys
are used to move to the far left or right of the current field. If the cursor is in the
ASCII field, data is entered as ASCII bytes. The cursor is automatically advanced to
the next field to allow text to be typed in directly. When text is entered at the far
right of the field the next 16 bytes are automatically displayed to allow typing to
continue over 16-byte boundaries.

The *S command is terminated by pressing ESCAPE

140

SR - search memory for string

Syntax - *SR (<segment>:) <start offset> <end offset> <“string”>

Search memory for specified text string reporting all occurrences in segment:offset
form. The address given is of the first byte of the matching string. The search

string must be enclosed in double quotes (") and can be up to 72 characters in
length. (Maximum length for complete command line is 80 characters). The end
offset specified is the end address + 1 of the search area so to allow the search to
continue right up to the end of a segment. An end address of 0 can be specified i.e.

*sr 4000 0 "eric"

will search from 04000h up to OFFFFh inclusive. The condition for a string to be
found is that it must be completely contained within the search area, i.e. if string
“eric” lives at 03FFDh then

*sr 0 4000 "eric"

will not report it but if the string “eric” lives at 03FFCh then the above search will
find it. Any 8-bit character string can be sought using escape sequences to allow
control codes and characters above 07Fh to be specified. (N.B. these are
compatible with the MOS escape sequences). The | character is used to denote
an escape sequence. The following table shows how all the characters are
specified.

String hex byte

“1@” 0
“la” or “|IA” 1
to to

“z” or “1Z” 1A

“I” 1B

to to

“ 1F

“ 20

to to

L 7E

except for following two special cases

e 22

“I” 7C

“?7” 7F
“ll<char>” 80-FF

where <char> is any of above 7 bit chars

141

Any escape arguments not recognised are reduced to the argument alone i.e. “|1”
is reduced to “1” etc.

and any surplus redundant “|!"” operators are ignored
i.e “Nl@” is reduced to “ll@”

Any string not terminated by a " character or containing an odd number of "
characters will be reported as bad strings i.e.

String Error

"abc No terminating "

"ab"" Single quote character in string
"ab"""c" As above

A Bad String error will also be generated if no argument is supplied for the escape
character | or if a null string or equivalent is specified i.e.

String Error
"al" No escape argument
Null string

" Reduced to null string hence as above
The search operation can be terminated at any time by pressing ESCAPE.
TFER - transfer blocks of memory between 80186 and 65C12

Syntax - *TFER <I/O addr> (<segment>:) <offset> <length> <r/w>

Allows fast block transfer of memory between 80186 and 65C12. The direction of
transfer is specified by the final parameter which must be r or w: r indicates a read
from 65C12 memory to 80186 memory, w indicates a write to 65C12 memory from
80186 memory. The transfer is implemented using OSWORD 0FAh (described
below) and is optimised to use fast transfer types 6 and 7 (10ms/byte) where
possible. If the transfer length is not a multiple of 256 bytes any remaining bytes
are transferred using types 0 and 1 (24ms/byte).

80186 OSWORD call

The 80186 ROM implements an additional OSWORD call with al = OFAh to allow
efficient transfer of blocks of data between the 80186 and the host 65C12
processor. The OSWORD call is used by setting up the following control block
which must be pointed to by ds:bx.

142

bx + 0 Number of parameters sent to I/O processor (0Dh or OEh)
bx + 1 Number of parameters read from 1/O processor (01h)
bx +2 LSB of I/O processor address

bx+3 e

bx+4 e

bx+5 MSB of I/O processor address

bx +6 LSB of 80186 offset address

bx +7 MSB of 80186 offset address

bx +8 LSB of 80186 segment address

bx+9 MSB of 80186 segment address

bx + A LSB of length of transfer

bx + B MSB of length of transfer

bx + C Operation type

bx + D 65C12 memory access control

The operation type specifies the type of transfer used as follows:
write to 65C12 (24 ms/byte)

read from 65C12 (24 ms/byte)

write to 65C12 (26 ms/pair of bytes)

read from 65C12 (26 ms/pair of bytes)

write to 65C12 (10 ms/byte 256 transfer)

read from 65C12 (10 ms/byte 256 transfer)

NOWwN =2 O

The memory access control byte allows access to the paged ROMs, paged RAM
and shadow RAM in the host machine and is laid out as follows:

Bit 7 6 5 4 3 2 1 0

X sm m/s c pr3 pr2 pri prO

where the bits have the following functions:

X unused

sm if 3000h <= I/O address < 8000h, sm=1 = use screen memory
regardless of state of *shadow
(NB - this overrides bit 5 if a conflict arises)

m/s 0 = use main screen memory if screen address specified
1 = use shadow screen memory if screen address specified
c if 8000h <= I/O address < 0000h 0 = use specified ROM number

1 = use currently selected ROM
pr3-pr0 paged ROM number 0-15

The memory access byte is only used if the first byte of the control block is set to

OEh - it is ignored otherwise. Use of the memory access byte allows paged ROM
software to be copied and therefore access may be restricted to system use. This,

143

however, would prevent access to the shadow RAM which is not used by the
system and cannot be legally accessed by other means.

The following example of the call assumes that the control block has been set up
correctly and is located in the first 64K segment.

A contiguous 36-Kbyte area of memory is being used as a buffer for data written
from 2000:1000 in the 80186. The host buffer starts at 3000h and extends to
BFFFh. 3000h - 7FFFh is specified as shadow screen memory and 8000h - BFFFh
is specified as paged RAM in socket #5.

osword equ 04Ah
transfer osword equ OFAh
sub ax,ax ;point ds:bx at control
;block
mov ds, ax
mov bx,offset transfer block
mov al,transfer osword ;set up osword type
int osword ;do the call
transfer block db OEh
db 0lh
dw 03000h,0 ;base address in 65C12
dw 01000h, 02000h ;base address in 80186
dw 09000h ;length = 36k
db 6 ;fast 256 byte transfer
db 025h ;use shadow, paged ram

144

15 DISC FILING SYSTEMS

Introduction

The Reference Manual, Part 1 gives much detailed information on the two disc filing
systems within the system ROM. Extra information is provided here for those
wishing to use their own filing systems, or needing a specification of ANFS.

The track format is described by detailing the data to be written to format a disc :

DFS

Description Value to be written Number of bytes Comments

Post index gap

(Gap 1) FF 40
The bracketed field is repeated 16 times
Sector ID field 00 6 PIl lock-up
F5 3 (Note 1) 1
FE 1 (Note 2) 1
00 to 27 (40 track)
OR 1 track ID
00 to 4F (80 track)
00 (on side 0)
OR 1 head ID
01 (on side 1)
00 to OF 1 sector number
01 1
F7 1 (Note 3)
Sector ID/Data gap 4E 10
(Gap 2)
00 4 PIl lock-up
F5 3 (Note 1)
Data field FB/F8 1 (Note 4)
5A 256 Data
F7 1 (Note 3)
Post data Gap 3 FF 10
Runout (Gap 4) FF Until next index hole

The first sector on every track is offset by 7 from the previous sector.

145

DFS supports both 40- and 80-track drives. It manages the sides of a disc
separately. The WD1770 FDC is operated in its single density mode (FM) using ten
256-byte sectors per track with a data transfer rate of 1 byte every 32ms.

ADFS

Description Value to be written Number of bytes Comments

Post index gap

(Gap 1) 4E 60
The bracketed field is repeated 16 times
Sector ID field 00 12 PIl lock-up
F5 3 (Note 1) 1
FE 1 (Note 2) 1
00 to 27 (40 track)
OR 1 track ID
00 to 4F (80 track)
00 (on side 0)
OR 1 head ID
01 (on side 1)
00 to OF 1 sector number
01 1
F7 1 (Note 3)
Sector ID/Data gap 4E 22
(Gap 2)
00 12 PIl lock-up
F5 3 (Note 1)
Data field FB 1 (Note 4)
5A 256 Data
F7 1 (Note 3)
Post data Gap 3 4E 43
Runout (Gap 4) 4E Until next index hole

The first sector on every track is offset by 7 from the previous sector.

ADFS supports both 40- and 80-track drives. It manages both sides of a disc as a
single volume. The WD1770 FDC is operated in its double density mode (MFM)
using sixteen 256-byte sectors per track with a data transfer rate of 1 byte every
32ms.

Notes:

1) This causes three synchronisation bytes to be recorded.
2) This causes an ID data marker to be recorded.

3) This causes 2 CRC bytes to be recorded.

4) This causes a data marker to be recorded.

146

CP/M Disc Format

Acorn CP/M uses the following double-sided disc format:-

80 tracks / surface
10 sectors / track
256 bytes / sector

A double sided disc is regarded by CP/M as a single logical disc with 160 tracks
numbered from 0 to 159. In order to obtain the best disc performance the following
logical to physical track mapping is performed.

Logical CP/M Physical track

track
0-79 0-79 (top surface)
80 - 159 79 - 0 (bottom surface)

The first 3 tracks on the top surface are reserved for the CP/M system.

The CP/M directory starts at track 3 sector 0 and uses 4Kbytes to allow up to 128
directory entries per disc. This leaves 388 Kbytes per disc available for user
programs and data.

Acorn CP/M uses deblocking to allow the physical disc sector size to be larger than
the logical CP/M record size of 128 bytes. Although a 256-byte sector size is used
the effective sector size is 512 bytes as all disc operations read or write 2 sectors at
a time using an appropriate sector skew. The following table defines the logical
record to physical sector relationship:

Logical CP/M Logical disc Physical disc Logical CP/M Logical disc Physical disc

record sector sector record sector sector
(128 bytes) (512 bytes) (256 bytes) (128 bytes) (512 bytes) (256 bytes)
0 0 0 10 2 9
1 0 0 11 2 9
2 0 1 12 3 2
3 0 1 13 3 2
4 1 4 14 3 3
5 1 4 15 3 3
6 1 5 16 4 6
7 1 5 17 4 6
8 2 8 18 4 7
9 2 8 19 4 7

147

16 ADVANCED NETWORK
FILING SYSTEM

This chapter covers the specification for the Master 128 and Econet Terminal
implementations of ANFS. The specification includes differences between ANFS,
for Master microcomputers and earlier BBC Model B machines. The computer is
type five for machine peek operations.

Local buffering

ANFS will buffer data from all open files in RAM. This buffer is in the 1/O processor
in both single processor and second processor installations. This means that of all
OSBGET and OSBPUT calls, only a small proportion (2%) will actually need to
communicate over the network with the file server. The buffering code uses 256-
byte buffers on a “dynamic” basis. There may be more than one buffer allocated
per file channel. Up to sixteen channels may be active, which means that higher
performance file servers can be implemented without any changes to the ANFS.
The limit of sixteen also permits the user to maintain valid context and open files on
more than one file server at once. Older file servers and the original NFS for use on
earlier BBC Microcomputers can accommodate only eight channels.

When opening files, buffers are allocated dynamically. The number of buffers
allocated is variable. If there were sixteen buffers and only a single file were
opened, the first sixteen pages of the file would be read sequentially into the
buffers. If these pages are then referenced, they are instantly available. When the
seventeenth page is requested, the page that was referred to least recently is
overwritten. This causes ANFS and the buffers to function as a cache. If two files
are open then the buffers are shared according to the amount each file is used. If
one file is used twice as much as the other then it is allocated about twice as many
buffers.

The number of buffers is set to five initially. If there is space available then up to
sixteen buffers can be allocated and this is very likely in most circumstances. The
algorithm for marking buffers “Least Recently Used” (LRU) is as follows.

a) If the buffer has nothing in it then it will become LRU

b) If there are no empty buffers then the buffer adjacent to the buffer being

accessed will be LRU if it is full. (This prevents the “leading edge” of a file being
overwritten).

148

c) If multiple files are open and if one file is being heavily used, then it may have
extra buffers allocated to it.

The translation of user handles to file server handles is more complex than in NFS,
so the OSWORD call to set the context handles works in a slightly different way. If
the user handle is not open or is not a directory then no change will occur to the
handle being written. When this happens, rather than issuing a channel error, the
reason code in the OSWORD block will be changed to zero to indicate failure. An
OSARGS call is available to return the file server handle (and number) for a given
user handle.

Operating System Commands

*HELP

The *HELP command shows the current version number and the station number
identical to that displayed after BREAK. There are now two subcategories, “Net”
for those commands which are part of the network filing system, and “Utils” for filing
system independent utilities and commands.

There is a facility for large help texts (provided by users) to be accessed by the
*HELP command. If the first argument given to the *HELP command is the word
“on” then the remainder of the line will be used as a series of flenames. These
filenames will be used to access Help texts stored on the file server. An example
would be:

>*HELP on users and stations

This would attempt to *TYPE the files “users”, “and”, and “stations” on the screen.
Obviously there should not be a file called “and”, but the files “stations” and “users”
could contain useful information relevant to the user’s own installation. Provision of
these help texts would be made by the network manager.

*CDIR <dir> (<hnumber>)

Where the <number> is quoted in entries, a directory big enough to hold that many
entries will be created. The <number> may range from 1 to 245. Any number
outside this range will give an error. If the optional parameter is not given then the
default of 19 will be used. This creates a directory of length &200.

*FLIP

The FLIP command will simply exchange the currently selected directory (CSD) and
the currently selected library (CSL). This is a way of selecting the library as your

149

CSD and it is particularly useful when files which must be LOADed (via the OSFILE
mechanism) are to be made public, and software must be able to access them
easily. It is unwise to use the *DIR or *LIB commands in the “Flipped” state: the
user should FLIP back first.

*FS (<station id.>)

The FS command will change the file server number. This allows a user to be
logged on to two or more file servers at one time and to change between them. Any
open files will be ensured to the current file server before the number is changed. If
no argument is given, i.e. just *FS [RETURN] is typed, then the current file server
number will be reported.

*I AM (<station id.>) <user id.> ((:[RETURN])<password>)

This command is essentially unchanged from NFS but now accepts [DELETE] and
CTRL-U during the “invisible” part and will delete either the last character typed or
the entire “invisible” part respectively. It is possible for this command to display the
warning message “Data Lost” if data which had been written to a file was still
buffered and was not able to be written to the file server. This could be caused by
the file server having been restarted.

*LCAT (<dir>)

Catalogue the current library. This can also take an optional argument for a path
from the currently selected library, e.g. *LCAT fonts [RETURN] will catalogue a
directory called “fonts” in the currently selected library (CSL). This is useful
because a command such as *FONTS.italics is looked up in the currently selected
library.

*LEX (<dir>)
Examine the current library. This can take an optional argument, see *LCAT.

*PASS (:[RETURN]) <old password> <new password>

This accepts a “.” in the middle of the command like “*I AM ”, so that passwords
may be hidden. It should be noted that although the “.” may appear anywhere in

the line it would be most useful to have it before both the old and new passwords.
Whilst the “invisible” part is being typed CTRL-U deletes the entire invisible part and

[DELETE] deletes the last character.

150

*WIPE (<dir>)

*WIPE will offer each unlocked file or directory in the specified directory for deletion
with a (Y/N/?) prompt. If “?” is typed the full object information will be printed
followed by (Y/N). If “Y” is typed then the file or directory will be deleted. If anything
else is typed the object will not be deleted.

Extra Utils star commands incorporated in
the ROM

These commands may be issued when the ANFS is not the current filing system.

*POLLPS (<station id.>(,<ps type>))

The POLLPS command shows the currently selected printer server number and the
currently selected printer type, for example,
>*POLLPS
Printer server is 235 "PRINT"
235 is ready

Following the printer server number will be a list of all the printers on the network
and the current status of each. The possible status conditions are :

“ready” which means the printer is ready for use or has timed out the current user
“busy” which means the station shown is currently using that printer

“jammed” which means that the printer server has characters in its buffer but has
been unable to send characters out to its printer for some period of time. This
would usually be caused by the printer being off-line or unable to accept characters
for some reason.

It should be noted that *POLLPS does not alter the printer server number, the state
of FX5, or the state of FX6.

If the command is followed by a station number then only the status of that station
will be shown. No status will be shown if the station is not operating as a printer
server. The command can also have a textual argument e.g. “DAISY”, “LINE”,
“DRAFT”, or “LASER?”. If this textual argument is supplied then only printers of that
type will have their status listed. This allows users to examine only the status of
printers in which they are interested.

*PROT (<prot type>) ...

With no argument supplied this will protect against all operations. If any arguments
are given then only those types of operations will be protected against. Note that
this can have multiple arguments, e.g. “PROT PEEK POKE [RETURN].

151

*UNPROT (<prot type>) ...

With no argument supplied this will unprotect all operations. If any arguments are
given then only those types of operations will be unprotected. Note that this can
have multiple arguments e.g. *UNPROT POKE JSR [RETURN].

*PS (<station id.> <ps type>)

The command *PS followed by a number behaves in the same way as the loaded
transient command PS in NFS (and File servers), that is it sets the printer server
station number to the one supplied. If a textual argument is given then the printer
server will be set to the number of the first printer of that type to be found “ready”.
If no printer is found to be ready then the printer server number will remain
unchanged. If no argument at all is supplied then the printer server number will be
set to the first “ready” printer. When a textual argument is supplied it will become
the currently selected printer type, and this type will be used when *PS issued with
no argument.

Note the power-up default type is “PRINT” to which all printer servers respond. The
command *POLLPS with no argument also uses this currently selected type. If
printing is taking place when the PS command is issued then the error message

“Printer busy” will be issued and the printer server number will not change. Again it
should be noted that this command does not affect the states of FX5 and FX®é.

*WDUMP <filename> (<offset> (<address>))
This dumps the file in hex and ASCII in a format suitable for screen widths of 80
characters. The optional offset parameter is the number of bytes (in hex) to skip

before starting to dump. The address parameter is the address (in hex) of the first
byte in the file to be displayed. The default value for this is the file’s load address.

*CONFIGURE commands
The following commands are used as arguments to the *CONFIGURE command:
FS <station id.>

This sets the file server station number stored in CMOS RAM. This station number
is used as the default at a hard BREAK.

PS <station id.>

This sets the printer server station number stored in CMOS RAM. This station
number is used as the default at a hard BREAK.

152

SPACE / NOSPACE

This feature is enabled by “SPACE” and disabled by “NOSPACE”. Its purpose is to
provide compatibility for those users who have networks consisting of BBC
machines and Master Series machines. This is achieved by ensuring that “PAGE”
in the 1/0O processor is at least &1000. This is required for transparent use of some
network commands, e.g. *VIEW, *NOTIFY, etc.

*STATUS commands
The following commands are used as arguments to the *STATUS command:
FS

This displays the file server station number as stored in CMOS RAM. This station
number is used as the default at a hard BREAK.

PS

This will display the printer server station number as stored in CMOS RAM. This
station number is used as the default at a hard BREAK.

SPACE

This will display the state of this feature, either “No Space” or “Space”.

Extra *OPT commands

The setting of “OPT5 controls a level of bootstrapping only available on Master
Series. This bootstrap is the “RUNning of a file called “FindLib”. If this utility is run
it can be used to select a Master Series compatible library.

To enable operation with old software which has used the network workspace, there
is a switch which controls the location of network private space. Normally this

space is in pages &B and &C in the I/O processor. By setting *OPT6,1 then this
space will be “claimed ” in the normal way. Note that this will increase the value of
PAGE by &200. Setting *OPT6,0 will restore this claiming area to its correct

location of &B and &C.

Both these commands are stored in CMOS RAM and must only be issued when
ANFS is the current filing system.

153

Printing

After a *FX5,4 has been issued, a VDU2 or CTRL-B will cause the status of the
current printer server to be examined. If this status is “jammed” or “busy” then an
error (BRK) will be generated to that effect and the VDU2 will be cancelled. If any
type of error occurs during transmission or reception from the printer server then an
error will be generated but the VDU2 will not be cancelled. For more information
see the section on errors. Issuing a VDUS whilst not printing will have no effect.
Issuing a VDUS3 whilst printing will send to the printer any data which is in the local
printer buffer. This will work even if there is no data to send. This is most useful
since this act of transmitting to the printer server will reset its timeout. If the
[BREAK] key is pressed whilst printing is taking place then all characters in the
printer buffer will be sent and the printing will be terminated: a VDU3 will be
simulated.

Extra interfaces

An OSWORD call is available for reading and writing the default printer server type.
This <type> is a six character ASCII string. If <type> is shorter than six characters,
it is padded to six with spaces. Other extensions will permit the reading of the
handle associated with the last error, if there was one. There are extensions to
read how many characters are in the network printer buffer, to determine the local
network number, and to translate external station addresses to local ones.

Enhancements to the filing system interface

Write only files

File servers support the notion of files which are write only with public access.
These files have access strings such as “WR/W” or “LWR/W” to support simple
“mail” schemes with some privacy. Write only files should be opened for update
and will give an error if an attempt is made to read data (either with OSBGET or
OSGBPB). It should be noted that there is no buffering of write only files.

Note that this function requires file servers of the following version numbers or
above:

“Level 2 Version 1.05” or “Version 1V.05”.

154

OSFILE

The interface is “create”, and behaves as “save” except that no data is transferred.
This means that large files can be created without the necessity of transferring large
amounts of data. This is useful where the creation of a file of &10000 bytes would
otherwise have required a “save”, e.g. *SAVE FILENAME 0 10000 [RETURN]. This
would “crash” the computer because the process of saving would read some “read
sensitive” locations. These include data transfer registers of some 1/O devices, eqg,
Tube, ADLC, and FDC. Direct access to this function is provided by the MOS
command *CREATE. Note that this function requires file servers of the following
version numbers or above:

“Level 2 Version 1.02” or “Version 1V.03".

OSARGS

All calls to “ensure” files save the relevant buffers of an open file to the file server,
and then close the file. OSARGS with A=0 returns the same filing system number
as NFS 3.40 and NFS 3.60.

A new function, expressed in BASIC as EXT#= is implemented. This can either
increase or decrease the length of a file. Note that this function requires file servers
of the following version numbers or above:

“Level 2 Version 1.02” or “Version IV.03".

The amount of disc space allocated to a file can now be read. This value is greater
than or equal to the current extent. An interface has also been provided for Z80-
based software (CP/M): the file server handle for a particular file. Users are
advised NOT to use this handle since its use could result in lost data.

Error messages

Both the “Not listening” and “No reply” error messages have the station
number added to them to become: “Station nnn not listening” and “No
reply from station nnn”. The “Channel” error is followed by the channel
that was found to be in error, e.g. “Channel 99”. If any sort of error occurs during
a “random access” operation (OSBGET, OSBPUT, OSARGS, OSFILE, and
OSGBPB) then information regarding the channel that had the error will be
appended to the error message. For example, if the file server was very busy a
message such as “Station 254 not listening on channel 32” might be
caused. It should be noted that the channel associated with the error may not have
been the channel on which the operation was attempted. If an OSBPUT is
attempted then a buffer may be required. If this means that the previous contents
of the buffer need to be written back to the file server then the error may occur on
the channel associated with that buffer.

155

The fatal error caused by the OSWORD call in BBC Model B computers now
produces the message “Remoted’ and may have channel information added if the
error occurred during a “random access” operation.

There are eleven more errors than those produced by the BBC Model B:

“No.” occurs when an attempt is made to *RUN a file with a load address of
&FFFFFFxx and an execute address which is not &FFFFFFFF.

The expanded printer interface now has the extra errors “Printer busy”,
“Printer jammed’, and “Station not present’.

There is an error “Syntax” for commands which are recognised but have the
wrong syntax (missing parameters).

The ANFS maintains a checksum on its private workspace and this is checked
before any random access operation and the new error “Bad net sum’ may be
generated. If a file is opened on a particular file server then it can be accessed only
when using that file server. If an attempt is made to use the file whilst logged on to
another file server then the error “Channel nnn not on this file server”’
will be issued.

The “Bad hex” and “Bad number” errors occur if a number was expected and
non-hexadecimal or numeric characters were encountered.

The errors “Bad station number”’ and “Bad net number” are issued from, for
instance, the *I| AM command.

“Bad parameter” will be caused if a numeric argument is out of range. “Write
only” is the error from attempting to read a write only file.

“No more FCBs” will be given if an attempt is made to open more than 16 objects
at one time.

A User Root Directory (URD) reference point

Any object reference that starts with “&” is assumed to refer to a pathway from the
URD not the CSD. This is compatible with the ADFS since ADFS interprets “&” as
“$” and makes access to files in non-local parts of the user’s directory structure
easier.

156

Compatibility with DFS based software

If an object reference starts with “:0.”, i.e. an explicit disc reference then it is
translated to “&.0.”. This means that disc software which references specific files
can be made to work under the ANFS by creating directories “0” and “1” in the
user’s root directory, but prevents the use of single character titles for discs.

Additional library functionality

To be compatible with the ADFS, ANFS adopts the convention that any file which is
*RUN <filename>, */<filename>, or *<filename> will be treated as *EXEC
<filename> rather than *RUN <filename> if it has an exec address of &FFFFFFFF.
This means that EXEC files for commonly used sequences can be stored in the
library. There is also a “User Library” which is searched after the CSD and before
the CSL. This user library can therefore be used to override normal library
functions as well as to extend the user’s personal library. The main advantage is
that users who need non-standard libraries no longer need to duplicate sections of
the main library. This “User Library” is “&.Library”, so the users should create a
directory called “Library” in their root directory to take advantage of this facility.

Time and Date

The time and the date maintained by the file server have always been readable by
the user, via the OSWORD call. There now exists a second OSWORD call which
reads the same information in two new (standard) formats. One format returns the
information in BCD rather than packed binary, the other returns it as a string. Note
that *TIME will return the time and date from the computer’s battery-backed clock.
OSWORD has to be re-vectored to enable ANFS to reply to this call.

I/0 processor address space

The 1/O processor is normally accessed using addresses between &FFFF0000 and
&FFFFFFFF. The ANFS will use addresses between &FFFF0000 and &FFFFFFFF
to refer to the user's RAM, and addresses between &FFFE0000 and &FFFEFFFF to
refer to the memory which is the current screen. Note that if a screen is saved
using, say, &FFFE3000 to & FFFE7FFF then this will reload correctly on a BBC
microcomputer or an Electron microcomputer fitted with ANFS.

Automatic Bootstrapping

During a log-on the normal course is to establish the user’s startup option and act
on it. Any action which otherwise may have taken place will be suppressed if the

157

[CONTROL] key is held depressed during the boot sequence. Note that this
suppression does not occur if the log-on is a result of a [SHIFT] [BREAK].

Re-tries

The defaults for the number of re-tries for several operations are now “user
adjustable”. The number of transmit retries is adjustable from 1 to 255. If zero is
used then transmit will try “for ever”. Since some operations are normally
inESCapable after 255 tries, the operation becomes ESCapable. The default for
transmit is 255. The operation *| AM <user id.> and VDU2 have a prior “machine
peek” to determine the existence of the destination station. For this type of transmit
the default is ten. When waiting for a reception the receive block is checked some
number of times and if the reception has not occurred then the “No reply” error is
issued. The default number of check operations is 40. These values are accessed
via the OSWORD call.

File server / Bridge net number translation

To support the use of bridges there is a call to translate a net number given by a
remote station to one relative to the current station. This is via OSWORD. This
means that *VIEW, *REMOTE, and *NOTIFY will work for all cases in multi-net
configurations. The same OSWORD also returns the local net number. If this call
should fail for some reason the error will be indicated in the data returned to the
user.

If a full station number, including network number is given when using the
commands *I AM, *FS, and *PS then the network number is compared to the local
net number. If the net number given is the same as the local net number then the
network number will be treated as zero. This allows the use of global numbering.

Detection of wrong versions and ANFS

Since there is more than one version of the ANFS (e.g. for BBC Model B), a method
has been devised to prevent the incorrect version from running in any machine.
This is done by checking the version of the operating system. If the wrong

operating system is detected the ANFS ROM prints “Bad ROM nn” and then the
machine will start up in the normal way and will completely ignore the bad ROM.

It may be necessary for software to detect that the network software is ANFS rather
than NFS, if the software is intended to work on BBC Model B microcomputers. To
do this the following is recommended:

158

In BBC BASIC

DEF FNIsThisANFS

LOCAL A%, X%, Y%, Value$%

DIM X% 3:Y%=X% DIV 256:A%=19

X%$?0=15 :REM Read re-try count for ANFS, Read error
number for NFS

CALL OSWORD

Value%=X%?2 :REM This byte written by ANFS but not by NFS

X%$?2=X%?2 EOR 255 :REM Invert all bits

CALL OSWORD :REM If NFS is present X%?2 will remain
inverted

=(Value% = X%?2)

In 6502 assembler (MASM format)
IsANFS ROUT ; Returns "EQ" for ANFS "NE" for NFS
LDXIM :LSB: Block
LDYIM :MSB: Block
LDAIM 15
STA Block
LDAIM 19
JSR OSWORD
LDA Block + 2

PHA

EORIM 255

STA Block + 2
LDAIM 19

JSR OSWORD
PLA

CMP Block + 2
RTS

Entry of hexadecimal numbers

Where a decimal number is expected, a hexadecimal number may be entered if it is
preceded by the “&” character. This is the same format as BASIC uses to enter
hexadecimal. Note that where an entry in hexadecimal is expected the “&”
character should not be used.

Events on reception

Event number 254 is the Econet receive event. This event is enabled with
*FX52,150 and disabled with *FX52,100. When enabled an event will be generated
by the completion of a successful reception.

159

17 TERMINAL EMULATOR

The Terminal Emulator operates both as a language and a service facility. There
are two key functions which the language has to ask the service code to perform -
actuating its own buffer control and enabling XON/XOFF flow control as
appropriate. OSBYTE 96 is used for this purpose.

OSBYTE 96,X

X=&40: Turn on RFC (Receive Flow Control)
X=&41: Turn off RFC

X=&62: Turn on TFC (Transmit Flow Control)
X=&63: Turn off TFC

X=&81: Set up intercept on vectors INSV and REMV
X=&80: Remove intercept.

Terminal File Transfer

Transferring a file either into or out of the MASTER 128 in Terminal mode is most
elegantly done with an APC (Application Program Control) sequence to trap
OSRDCH or OSWRCH and use OSGBPB to transfer the local buffer accordingly.
In many cases however, a more trivial solution will suffice for the transmission of
text files.

1) Type *SPOOL Dump-File [RETURN] in Terminal LOCAL mode.

2) Select Terminal LINE mode.

3) Type *TYPE My-File [RETURN] This will cause the file to be transmitted to
the remote computer. Only if that computer echoes it back, will it appear on
the screen.

4) Select Terminal LOCAL mode when the remote computer indicates
completion (it must print a prompt of some description on the screen on
detecting the appropriate End-Of-File delimiter).

5) Type *SPOOL [RETURN].

The file will now have been transferred into the other computer. It is its
responsibility to ensure that the data has been saved as appropriate. Note that
non-text files can be transmitted but the only trivial solution to this is to use *PRINT,
rather than *TYPE in the above sequence. This will cause control characters and
“top bit set” characters to be encoded in GSREAD format which will need to be
translated in the remote machine, which may not always be practicable. There is a
special problem with the backslash. In some files this is encoded as character &60
and is translated by the Terminal Emulator to &BB. A received character &BB is not
converted back to &60.

160

18 THE EDITOR

Buffer Transfer

The Editor can be invoked by any language which can implement the following
protocol. This enables it to be used as a general language editor, freeing code
space for the language itself.

From the language to Editor

Editor puts text in the memory from &EOQ0 up to &7FFF, assuming a shadow screen
mode is in use. Text before the cursor is located from &EO0 upwards, and that after
the cursor, from &7FFF downwards. The language should leave its program at the
high end of this space, i.e. without any split, as the editor will, on entry, put the
cursor at the first character of the buffer. It should then call the buffer with a
command line of:

*EDIT <start pointer> <end pointer> [RETURN]
The pointers must be in page zero. <start pointer> points to the first location in the

buffer. <end pointer> points to the first location after the last character in the buffer.
All addresses must be in hexadecimal.

From Editor to the language

The Editor will leave a pointer to the start of text, in location &0000. Text is
terminated by a NULL (&00).

Using “Return To Language”, the language will be invoked by:
*<language name> @[RETURN]

This method is dictated by BASIC which has no service entry point.

161

19 THE VIEW AND
VIEWSHEET FORMATS

The VIEW Word Processor represents text as 7-bit ASCII codes, using certain
codes for special control functions. This chapter describes the codes and the
overall structure of text both in the computer's memory and in disc files.

Reserved Characters and File Format

VIEW normally only permits the use of characters with ASCII codes &20-&7F (32-
127) as text. This allows codes &80 (128) to &FF (255) to be used for control
functions, although not all of these are used.

In the Master Compact version of VIEW, only the codes &80 to &86 are used by
VIEW, the remaining values, &87 to &FF are available for use as printable
characters. The 8-bit function key codes are recognised by the presence of a null
character provided by the MOS.

VIEW formatting characters

&09 TAB - As used in tabulation

&0B Left Margin TAB - To set the left margin

&0D CARRIAGE RETURN - End of line

&1A Soft space character - Inserted between words for formatting
&1C Highlight (one) - (Underscore indication)

&1D Highlight (two) - (Emboldening indication)

&80 Stored command - The first character of a stored command
&81 Ruler - The character preceding a ruler

&80 Printer highlight zero

&86 Printer highlight six

TABs are inserted into the text when the TAB key is pressed.

Left Margin Tabs are inserted into the text by VIEW when the left margin is active.
In stored files they separate text in the left margin, e.g. stored commands, from the
main body of the text. Where there is no left margin text, the line will begin with a
Left Margin Tab.

Carriage returns are at the end of each line. The maximum line length is 132
characters excluding the carriage return.

162

Soft space characters are added between words to justify a line.

Highlight codes (one) and (two) are placed in the text, corresponding to the
appropriate Highlight function key. They are translated into printer highlights when
the text is printed.

The stored command lead-in character only appears as the first character of a line
and is immediately followed by the two ASCII characters of the command.
Parameters follow the command directly. Spaces appearing on the screen between
the command and the parameters are placed there by VIEW.

Similarly, the ruler lead-in character will only appear as the first character on a line.
The syntax for a ruler is

<Ruler lead-in character>“..”<Ruler as ASCII text><Carriage Return>

The printer highlight characters do not appear in the body of the text or in the stored
file. They are only sent to a printer for control purposes.

Memory Format

Text is stored as a contiguous block. Unlike EDIT, there is no split at the cursor.
Text starts with a <CARRIAGE RETURN> and ends with a <NULL>. The NULL
must be preceded by a <CARRIAGE RETURN> which will be the end of the last
line.

There are three pointers to locate the start, finish and validity of the text.

1) A two byte pointer at &000B indicates the Start of Text.

2) Atwo byte pointer at &000D points to the NULL after the text.
3) A two byte pointer at &000F points to the End of Text

&0D - Beginning

- Start of Text
Text
Memory
&0D - End of Text
&00 - End

163

VIEW uses a memory consistency check of the following:
1) &AA stored at &000A

2) &AA stored at (&001F)

3) &0D stored at &05CE

4) &0D stored at (&000B)-1

5) &0D,&00 stored at (&000D)

Number Registers

The number registers are stored as two bytes each. The registers are only
available and valid during printing and the printer driver can access these if
required. The location of each number register is

&798 + 2*n (where n=0 to 25 for registers A to Z).

VIEWSHEET

The data representation of VIEWSHEET is based on dynamic allocation and as
such is less straight forward to interface with. Anyone wishing to produce a product
to interface with VIEWSHEET should in the first instance contact Acorn Customer
Services.

164

APPENDIX 1

FUNCTIONAL DIFFERENCES
BETWEEN MODEL B+

AND MODEL B

Operating system New Series 2 for the 64K machine (Current version is 2.00)

Memory map

Additional 32K of RAM positioned as follows:
Shadow Screen (20K) &3000 - &7FFF (Sideways)
Paged RAM (12K) &8000 - &AFFF (Sideways)

The use of shadow screen memory for screen display releases memory in the main
memory area for program use. Modes 128 through 135 are shadow screen
equivalents of Modes 0 through 7. The 12K of Paged RAM should not be used for
applications that may need to be compatible with future Acorn products.

Shadow Screen

*SHADOW (0 or NIL parameter) selects shadow mode regardless of mode number.
*SHADOW 1 selects non-shadow mode as the default state, but Modes 128 to 135,
when selected, cause entry into a temporary Shadow state. BREAK preserves (or
sets queued) Mode/Shadow option. CTRL + BREAK sets default state (non-
shadow).

OSBYTE changes

OSBYTE/FX 0 - Read/Display MOS version

(with BRK if X=0)
If X<>0, then value returned in X is:

X=0 - OS 1.00 (BBC Model A/B or Electron)
X=1 - OS 1.20 (BBC Model A/B or USA Version)
X=2 - 0S 2.00 (BBC Model B+)

165

To display the full MOS version number, use OSBYTE with A=0 & X=0 or use *FX0
a BRK instruction precedes the displayed value.
(See also OSBYTE 129 below)

OSBYTE/FX 114 (&72) - set shadow mode state

On entry, X=0 selects shadow, X=1 selects non-shadow.

On exit, X contains previous state, A is preserved, Y and C are undefined.
(This FX call is identical to *SHADOW, and is implemented at the next Mode
change or soft BREAK.)

OSBYTE 117 (&75) - Read VDU status

Bit 4 is now used in this call to define actual (not pending) shadow state. Bit 4 is set
for shadow state.

OSBYTE 129 (&81) - Read display MOS version

(Special case of INKEY)
On entry, X=0 & Y=255. The value returned in X is:

X=0 - BBC Model A/B version 0.1
X=1 - Electron
X=250 -ABC

X =251 - BBC Model B+ version 2.00

X =252 - Reserved

X =253 - Reserved

X =254 -BBC Micro USA version

X =255 -BBC Model A/B version 1.0 or 1.2
Note that BASIC INKEY (-256) performs the same function except that -1 is
returned for BBC Model A/B version 1.0 or 1.2 not 255.

OSBYTE 132 (&84) - Read bottom of display RAM address
This returns &8000 in X and Y if Shadow is in operation (not pending).

OSBYTE 133 (&85) - Read bottom of display

RAM address for a specified mode. This returns &8000 in X and Y if shadow is in
operation (or pending). It responds similarly if a mode number >127 is in operation
(or pending).

166

OSBYTE 135 (&87) - Read character at cursor text position

This call has not changed at all and can be used to read the currently set Mode.
Note that, as before, only the lower three Mode bits are returned hence it cannot be
used to determine whether Modes 128-135 are set.

OSBYTE 239 (&EF) - Read/Write shadow mode state

Read/Write location &27F which contains shadow mode flag. This may be a
pending status.

To read, X=0, Y=255.

On exit X=0 for shadow, or X=1 for non-shadow.

To write, X=New value, Y=0.

On exit X=Previous value, and Y=contents of &280.

N.B. MOS 1.2 returns X=0 for its only (non-shadow) mode. An application program
must therefore find out which operating system is fitted (i.e. whether it is a 32K or
64K machine) if it is to use this call.

OSWRSC (&FFB3) - Write screen

Writes byte in A to the screen. The display location should be set up in &D6 (LSB)
and &D7 (MSB).

On entry, Y contains the address offset. This offset feature may not be valid in
future machines.

On exit, A, X and Y are preserved. C is undefined.

N.B. Sideways RAM in the range &8000-&AFFF is not written to with this call.
Shadow RAM, if selected, will be written to, regardless of screen mode selected,
down to &3000. Below &3000, main memory is written to. This call does not work
across the TUBE.

OSRDSC (&FFB9) - Read Screen/ROM

(Renamed call - was OSRDRM)

Reads byte from screen into A. The display location should be in &F6 (LSB) and
&F7 (MSB). If the address is below &8000, then the entry value of Y is irrelevant
(this is the new OSRDSC use). If the address is &8000 or above, then the ROM
number in Y on entry is read (this is the original OSRDRM use).

i.e. Address > &7FFF Reads ROM always.
> &2FFF but < &8000 Reads screen selected by
shadow/mode command.
< &3000 Reads main RAM.

This call does not work across the TUBE.

167

OSWORD changes

OSWORD A=&5 - Read I/O Processor memory

The additional 12K of memory between &8000 and &AFFF can be accessed by
ROM IDs 128-255 (i.e. with the top bit set) and hence will not receive service calls.
This area can not contain sideways ROMs because the MOS does not switch it in
as part of the ROM handling routines. Bytes may be read from the RAM with the
top of the memory block set to &FFFExxxx.

The 4K of memory between &B000 and &BFFF is read from the ROM with the
equivalent ROM ID Modulo 16.

e.g. Select Paged ROM 135 (128+7):
Reads RAM between &8000 and &AFFF
Reads ROM 7 between &B000 and &BFFF

Note: This OSWORD call cannot be used to read shadow screen with memory
block set below &8000.

OSWORD A=&6 - Write I/O Processor memory

Bytes may be written to RAM between &8000 and &AFFF by setting the top of the
memory block to &FFFExxxx. User VDU Driver machine code should be placed
between &A000 and &AFFF to allow diversion to the appropriate screen (i.e. writing
to &3000-&7FFF by machine code in &A000-&AFFF will automatically divert to
shadow display RAM if shadow is active).

Note: This OSWORD call cannot be used to write to shadow screen with memory
block set below &8000.

Hardware control locations

&FE30 - Paged ROM/RAM select
Bits 0 to 3 select appropriate ROM number.
Bit 7 set selects paged RAM.

There is a RAM copy of &FE30 at &F4.

168

Sideways ROM layout and selection

The ROM sockets are arranged as two rows of three sockets near the top left of the
PCB. ROM selection numbers are as follows:

MOS +

BASIC
8,9 10,11 14,15

(opt 0,1)
2,3 4,5 6,7

BASIC is normally at ROM numbers 14 and 15. It can be set optionally to 0 and 1.
Link setting is:

S13 North - BASIC is ROM 0 and 1

S13 South - BASIC is ROM 14 and 15
ROM numbers 12 and 13 are not decoded. As in the Model B, high ROM position
numbers have priority at reset.

For 16K ROMs, links $9,11,12,15,18,19 for ICs 35,44,57,62,68,71 respectively are
set West. For 32K ROMs set the appropriate link East. Priority for 32K ROM is
same as 16K for ‘lower’ 16K, ‘top’ 16K has one priority lower.

Disk Filing System

When fitted, the Disk Filing System (DFS) is largely compatible with that used in the
Model B. The Floppy Disk Controller chip, however, is normally a Western Digital
1770 in the Model B+ rather than the Intel 8271 fitted to the Model B. When the
1770 is used, the screen display shows “Acorn 1770 DFS”. This DFS has a few
additional commands, including Format and Verify utilities in the ROM. When
creating disk software protection routines, software writers should not make any
assumptions as to the FDC hardware fitted in the micro. Disks that have in the past
accessed the 8271 directly through memory-mapped I/O for protection will probably
not work with the 1770 DFS.

Second Processors

The 1770 DFS ROM contains the TUBE code necessary when a second processor
is fitted. If a second processor is used with a non-disc Model B+, then either a 1770
DFS ROM, or the DNFS ROM supplied with the second processor will need to be
fitted to provide the TUBE code.

169

Compatibility with Aries B32 and similar
Model B “Add-Ons”

Aries B32 and similar memory extensions typically run, by default, in an equivalent
mode to SHADOW on. A good degree of compatibility can be obtained by the use
of “Mode 1xx” (i.e. Top Bit set) in an application program where the extra memory is
required. Aries B32 (i.e. the Model B base machine) will ignore the top bit of the
Mode command, but will typically already be in a SHADOW state. The Model B+
will respond and enter the SHADOW state.

Where compatibility is required across the range of products, the use of the OS
calls which determine the memory currently available (i.e. HIMEM position), or the
memory which will be available in a certain Mode, are the preferred route. Calls to
the OS to determine if a Model B+ is the environment will, of course, not provide the
complete story if a Model B is being used with an Aries B32 or similar extension, as
the Operating System will not know of their existence.

170

APPENDIXTWO
FUNCTIONAL DIFFERENCES
BETWEEN MASTER 128 AND
MODELS B AND B+

Operating System version

New Series 3 OS for the Master 128/512/Sc/Turbo
New Series 4 OS for the Master Econet Terminal.

Operating System changes

As version 1.2 with following extensions:

Shadow Screen - Use of MODE 128 to 135 instead of MODE 0 to 7 results in the
use of a section of memory for the screen separate from the main area of RAM.
This allows more room for user programs.

Real-time clock - the status of a Real-time clock can be called from the MOS. The
OSWORD calls &0E and &0F Read & Write the clock in BCD or text formats.

Default command line interpreter if no language present or *GO used.

Configure CMOS RAM commands - the state of the CMOS RAM can be set for
both reserved and unreserved bits. Reserved Bits include:

MODE <0-7,128-135> Start-up mode
FS <0-255[.0-255]> File-Server station number
PS <0-255[.0-255]> Printer-Server station number Transient

Command - Econet station ID (Must be set by
Net Manager) FS & PS status bits operational
only when ANFS fitted

LANG <ROM> Start-up language ROM number

FILE <ROM> Start-up filing system ROM number
TV [<Dec>[,<Dec>] *TV position & Interlace state
DELAY <0-255> Auto-repeat delay

REPEAT <0-255> Auto-repeat rate

PRINT <0-255> Default printer (*FX5 type)

171

IGNORE <0-255> Print ignore character (no param=no ignore)

EXTUBE/INTUBE Tube selected (Internal/External) (Looks for
internal Tube if no external fitted)

NOTUBE/TUBE Tube ON/OFF (TUBE defaults to I/O Proc if no
co-processor fitted)

BAUD <1-8> Serial baud rate (Both ways)

DATA <0-7> Serial data format

BOOT/NOBOOT Boot status - (Reverses BRK and SHIFT + BRK
action)

SCROLL/NOSCROLL Scroll state (on/off)

FDRIVE <0-3> Floppy-Drive params (speed etc) (Use low

number for highest step rate
0 has MFM pre-compensation
1 is same speed but no compensation)

FLOPPY/HARD Floppy or Winchester start-up (with HARD,
floppy is selected if no Winchester fitted)

DIR/NODIR ADFS or FADFS as default (FADFS does not
mount disc automatically)

LOUD/QUIET Bell character volume

CAPS/NOCAPS/SHCAPS Caps lock on/off

Configuration is set using *CONFIGURE <param> or read using *STATUS <param>
or just *STATUS to read all.

Soft characters fully exploded
Improved soft-char structure with more buffer area.

New resident Operating System commands:

*APPEND functions as BUILD but appends to end of file.

*BUILD as DFS but control codes input by | mechanism.

*CLOSE closes open files on current filing system.

*CONFIGURE to set start-up options.

*CREATE creates empty file using *SAVE params.

*DELETE as DFS delete.

*DUMP <start in file> <start address on output>.

*EX examine files in specified directory.

*EXEC take input from file rather than keyboard.

*GO to enter address in language or 1/O processor.

*GOIo to enter program at address in I/O processor.

*IGNORE as *FXe.

*INFO as *EX, but for single files or Wildcard use.

*INSERT inserts ROM number n into ROM map from reset.

*LIST list file in GSREAD format (*TYPE with line nos.)

*LIBFS define FS where LIB is from current FS.

*MOVE copies files from one place to another including between
filing systems.

*PRINT as TYPE but gets/processes vdu codes.

*REMOVE as DELETE but no error message if not found.

172

*ROMS lists ROM names, sockets, versions & UNPLUG/PLUG.

*SHADOW with O or no parameter, gives shadow on next mode.
with 1, drops shadow on next mode.

*SHOW displays soft-key contents.

*SHUT close open files on all filing systems.

*SRDATA reserve Sideways RAM for data use.

*SREAD copy Sideways RAM to main RAM.

*SRROM reserve Sideways RAM for direct addressing.

*SRWRITE copy main RAM to Sideways RAM.

*SPOOL direct screen output to named file.

*SPOOLON functions as SPOOL but appends to end of file.

*STATUS lists status of start-up options.

*TIME displays time from Real-time clock.

*TYPE list file with control codes displayed as | @ etc.

*UNPLUG removes ROM number n from ROM map from reset.

Numeric keypad - options to set base for range of values returned and set whether
SHIFT/CTRL etc affect codes.

Cassette filing system upgraded to do OSGBPB (calls 1 & 3) in those cases
where it is to write to or read from the current pointer.

OSFSC extended for CFS to provide call 7 so that it returns legal file handle range.
CFS will perform *EX (but not *INFO).

CFS can be reselected by *FX143,18,<n> where n=1 (1200 baud), n=2 (300 baud),
n=3 (ROM filing system).

Multifiling system capability

Name of filing system can be prefixed to the file name itself.

Files may be opened and kept open across several filing systems.

Filing names currently defined include CFS (or TAPE), ROM, DFS, ADFS, NET.

Extended graphics facilities:

Extended Fill commands using checkerboard pattern/stipple.
Mark-to-space ratio of dotted line.

New triangle algorithm for correct plotting under all conditions.
Parallelogram - Solid fill.

Rectangle - Solid fill.

Circle - Outline.

Circle - Solid fill.

Arc - Line fill.

Arc - Solid fill (Pie shape).

Arc - Solid fill (Chord segment).

Ellipse - Outline.

Ellipse - Solid fill.

Fill enclosing shape outline (flood-fill).

173

Enhanced speed of all fill operations.
Move/copy rectangle.
Extended horizontal line fill.

Extension text:

Improved character draw speed (especially VDUS5).

Clear block of text window.

Output character with no cursor move (dead key).
Advance left/right after drawing character.

Pending scroll to allow bottom right character to be drawn.
Cursor options held across mode changes.

Direct window scroll - left/right/up/down.

Extra 128 standard characters in ASCII range 128 to 255.

OSBYTE calls

&0 (0)
&14 (20)

&16 (22)
&17 (23)

&6B (107)

&6C (108)

&6D (109)
&70 (112)

&71 (113)

&72 (114)

Enter with X<>0, Returns X=3 for Master 128

Entering with X=0, (or *FXO0) displays MOS version

parameters for *FX20 are now ignored and *FX20 resets standard
exploded font. Software writers must add parameters as required for
Model B & B+

Increment ROM polling semaphore. Used to request MOS polling with
service call 21 every 10ms (polling with semaphore non-zero)
Decrement ROM polling semaphore. Used to stop MOS polling with
service call 21 every 10ms

Switch Internal/External 1MHz Bus

*FX107,0 - Select external bus (default)

*FX107,1 - Select internal (cartridge) bus

Switch Main/Shadow, memory into main map (&3000-&7FFF)
*FX108,0 - Switch Main memory into main map area (immediate)
*FX108,1 - Switch Shadow memory into main map area (immediate)
Make temporary filing system permanent

Write to Main/Shadow memory

*FX112,0 - Write to memory specified by mode change

*FX112,1 - Write to main memory (immediate)

*FX112,2 - Write to shadow memory (immediate)

Display Main/Shadow memory

*FX113,0 - Display memory specified by mode change

*FX113,1 - Display main memory (immediate)

*FX113,2 - Display shadow memory (immediate)

Write to/Display Main/Shadow memory (*SHADOW)

*FX114,0 - Use shadow memory at next mode change

*FX114,n - Use mode defined at next mode change (where n is 1-255)

174

&81 (129)

Now extended to return new MOS version
Enter with X=0 & Y=255. Returns X=253 for OS 3.x, X=247 for OS 4.x,
X=245 for Master Compact OS 5.x

&84 (132) Read top of user RAM (was display RAM start)

&85 (133) Read top of user RAM for a given mode (was display RAM start for a
given mode)

&A1 (161) Read CMOS RAM
Enter with X=n, where n is the RAM location number (30-49)
Returns with result in Y
Use *STATUS for locations 0-29

&A2 (162) Write CMOS RAM
Enter with X=n, where n is new RAM location number (30-49)
*FX162 can be used. Use *CONFIGURE for locations 1-29.
Location 0 is protected

&A4 (164) Check processor type

&A5 (165) Read output cursor position

&B3 (179) Read/Write ROM polling semaphore (was Read/Write OSHWM)
A=179, X=n, Y=0 reads semaphore into X and sets state to n. Setting
state directly with this call will interfere with OSBYTE 22 & 23 use.
A=179, X=0, Y=255 reads semaphore into X

&B6 (182) Read NOIGNORE state (was Read font explosion)

&EE (238) Changes numeric pad base
*FX238,<base> with base from 0-255 will alter key characters to their
ASCII value -48+<base>

&FA (250) Read memory area used for writing to

&FB (251) Read memory area used for reading from

&FE (254) Controls effect of SHIFT on numeric pad
*FX254,0 - makes SHIFT have effect
*FX254,<1-255> - deletes effect of SHIFT
(Note: This call returned RAM size in Model B & B+)

OSWORD calls

&E (14) Read CMOS clock

&F (15) Write to CMOS clock

New Service calls to Sideways ROMs

&15 (21)
&18 (24)

Polling interrupt. Made 100 times per sec. if OSBYTE 22 issued
Interactive HELP. Made by MOS when it executes a *HELP command,
after service call 9. MOS offers CLI text following a *HELP to a ROM
participating in the interactive help system

175

&21 (33)

&22 (34)

&23 (35)
&24 (36)

&25 (37)
&26 (38)

&27 (39)

&28 (40)

&29 (41)
&2A (42)

Offer Static Workspace in Hidden RAM. Call is made on a Reset.
Workspace starts at &C000 in Hidden RAM and can only be used by a
Filing System, and only one at a time. Workspace has an upper limit of
&DBFF. Call analogous to &01, but uses hidden RAM

Offer Dynamic Workspace in Hidden RAM. ROMs should ideally ignore
Call &02, which takes workspace in main memory

Tells ROMs location of top of Static Workspace in Hidden RAM
Dynamic Workspace requirements. ROMs should indicate how much
memory they will each claim through Call 34. Y contains current bottom
of dynamic allocation and should be decremented by required number
of pages

Inform MOS of filing system name and info

(See Reference Manual 1 for detailed information on this call)

Close all files. Issued at a Reset. Filing systems should select
themselves, close open files and then de-select. Used by *SHUT
Reset has occurred. Call made after hard reset. Mainly for Econet
Filing system so that it can claim NMIs. This call is now required since
the MOS no longer offers workspace on a soft BREAK. A Sideways
ROM should therefore re-initialise itself

Unknown CONFIGURE option. Used to extend range of commands. A
Sideways ROM having a claim on CMOS RAM may use this command
to update its configuration information

Unknown STATUS option. Used to provide extra commands. See &28.
ROM-based language starting up. This enables languages, such as the
TERMINAL, to remove their interception of buffering functions etc. prior
to the next language taking control

VDU commands

VDU18,m,c - Define graphics colour

m=0to4 same as MOS 1.2

m=5 Leave screen colour unchanged
For each of n = 1,2,3,4 (ecf pattern numbers):
m=16n Overwrite the colour on the screen
m=16n+ 1 OR the colour of the screen
m=16n+2 AND the colour of the screen
m=16n+3 EOR the colour of the screen
m=16n+4 Invert the colour of the screen
m=16n+5 Leave screen colour unchanged

VDU22,m - Select screen mode

m=0to7 As MOS 1.2
m=128to 135 covers shadow screen modes

176

vbu23,0,r,v,0,0,0,0,0,0 - Control 6845 CRTC directly
As MOS 1.2 i.e. writes value of v to 6845 register r

vDU23,1,n,0,0,0,0,0,0,0 - Turn cursor on/off
As MOS 1.2 (but with additions of n=2 & n=3):

n=0 Stops cursor appearing

n=1 Cursor appears on screen (Default case)

n=2 Cursor is steady

n=3 Cursor flashes at approx 1.5 times/sec (Default)
Flash rate is doubled in cursor edit mode

VDU23,2-5,a,b,c,d,e.f,g,h - Set ecf pattern
ecf patterns can be set to pixel groups of 8*8, 4*8 or 8*8 if mode has 2,
4 or 16 colours respectively. VDU23,2 to VDU23,5 sets patterns 1 to 4
respectively.
Integers a to h define pattern rows from top to bottom. If the integer is
derived from stuvwxyz in binary, then: For 2 colour mode, logical
colours from left to right are: s, t, u, v, w, X, y, z
For 4 colour mode, logical colours from left to right are: sw, tx, uy, vz
For 16 colour mode, logical colours from left to right are: suwy, tvxz

VvDU23,6,n,0,0,0,0,0,0,0 - Set dotted lines pattern
n=&FF Solid line
n=&AA Dotted line as in MOS 1.2 (Default, reset on mode change)
n=&EE Dashed line (dot-dot-dot-space repeated)
n=&E4 Dash-dotted line (dot-dot-dot-spc-spc-dot-spc-spc repeated)

vDU23,7,m,d,z,0,0,0,0,0 - Scroll window directly
Allows text window or arbitrary rectangle to be scrolled without cursor
movement:
m=0 Scroll text window
Scroll entire screen
Scroll right
Scroll left
Scroll down
Scroll up
Scroll in positive X direction (defined by VDU23,16, etc.)
Scroll in negative X direction (defined by VDU23,16, etc.)
Scroll in positive Y direction (defined by VDU23,16, etc.)
Scroll in negative Y direction (defined by VDU23,16, etc.)
Scroll by 1 character cell
Scroll by 1 character cell vertically, 1 byte horizontally
i.e. 8 Pixels in 2-colour modes, 4 in 4-colour modes, 2 in 16-colour
modes, and 1 character in mode 7). This is the minimum distance that
can be scrolled to enable a hardware scroll if the full screen is scrolled.

NNOoOOOOOOOOSZI
L | | | | | [| R
- ONOGOPAWN—=LO_,

P

177

vDU23,8,t1,t2,x1,y1,x2,y2,0,0 - Clear block of text window
This causes a block of the text window to be cleared to the text
background colour. The parameters indicate where the two ends of the
block (i.e. string start & string finish) are, with t1,x1 and y1 relating to the
start of the block and t2,x2 and y2 to the end of the block. In each case,
it indicates a base position (ti), to which (xi,yi) is added to get the true
position. The character position at the start of the block is generally
included in the clear, but that at the end is not.

ti=0 Base position is “top left of window”

ti=1 Base position is “top of cursor column”
ti=2 Base position is “off top right of window”
ti=4 Base position is “left end of cursor line”
ti=5 Base position is cursor position

ti=6 Base position is “off right end of cursor line”
ti=8 Base position is “bottom left of window”
ti=9 Base position is “bottom of cursor column”

ti=10 Base position is “off bottom right of window”

Other values of ti have undefined effects.

(The quotes are to indicate that all of these positions are calculated
taking the cursor movement control set by VDU23,16 into account e.g.
after VDU23,16,2,0,0,0,0,0,0,0, “left” above right etc.)

The results of this function are undefined if the absolute values of the
coordinates of the two ends go outside the range -128 to 127. This is
best avoided by not using values of xi and yi outside the range -128 to
47. Should the end point of the block lie before the start point, no
clearing will be done.

VDU23,9,n,0,0,0,0,0,0,0 - Set 1st flash time
Same spec as *FX9 in MOS 1.2

vDU23,10,n,0,0,0,0,0,0,0 - Set 2nd flash time
Same spec as *FX10 in MOS 1.2

vDU23,11,0,0,0,0,0,0,0,0 - Set default ecf patterns

Mode Pattern Colour VDU23,2-5 type definition
0 1 Dark grey &Cc, &00, &CC, &00, &CC, &00, &CC, &00
2 Grey &CC, &33,&CC, &33, &CC, &33, &CC, &33
3 Light grey &FF, &33,&FF, &33, &FF, &33, &FF, &33
4 Hatching &03,&0C, &30, &C0,&03,&0C, &30, &CO
1,5 1 Red-orange &AS5, &0F, &A5, &0F, &A5, &0F, &A5, &0F
2 Orange &A5, &5A, &A5, &5A, &A5, &5A, &§A5, &5A
3 Yellow-orange &F0, &5A, &F0, &5A, &F0, &5A, &F0, &5A
4 Cream &F5, &FA, &F5, &FA, &F5, &FA, &F5, &FA

178

2 1 Orange &0B, &07,&0B,&07,&0B,&07, &0B, &07
2 Pink &23,6&13,&23,&13,623,&13,&23,6&13
3 Yellow-green &0E, &0D, &0E, &0D, &0E, &0D, &0E, &0D
4 Cream &1F, &2F, &1F, &2F, &1F, &2F, &1F, &2F
4 1 Dark grey &AA, &00, &AA, &00, &AA, &00, &AA, &00
2 Grey &AA, &55, &AA, &55, &ARA, &55, &AA, &55
3 Light grey &FF, &55, &FF, &55, &FF, &55, &FF, &55
4 Hatching &11,&22,6&44,888,&11,8&22,8&44,4688

Mode 0 patterns are different from 4 to avoid TV effects.

VDU23,12-15,a,b,c,d,e,f,g,h - Set simple ecf pattern
This sets a simple 2*4 (or double for mode 0) pattern. Patterns 1 to 4
are set by VDU23,12 to VDU23,15 respectively. The logical colours
from left to right are:
Toprow -ab
nextrow -cd
nextrow -ef
last row -g,h
Mode 0 has double pixels to avoid TV patterning.

vDU23,16,x,y,0,0,0,0,0,0 - Cursor movement control
Allows control of cursor after a character has been printed. This control
sequence replaces the current flag byte as follows:
((current byte) AND y) EOR x

If the byte flag is abcdefgh in binary, then:

a=0 Normal

a=1 Undefined

b=0 In VDU 5 mode, cursor movement outside a window
causes special actions i.e. Carriage returns generated

b=1 In VDU 5 mode, cursor movement outside a window does
not cause special actions

c=0 Cursor moves in positive direction. d & h define action if
cursor moves outside a window

c=1 Cursor does not move

d=0 If Y movement would go outside a window, window is

scrolled in VDU 4 mode; in VDU 5 mode it moves to
opposite edge of the window.

d= As above but cursor always moves to opposite edge

efg=000 Text X direction is right, Y direction is down

efg=001 Text X direction is left, Y direction is down

efg=010 Text X direction is right, Y direction is up

efg=011 Text X direction is left, Y direction is up

efg=100 Text X direction is down, Y direction is right

efg=101 Text X direction is down, Y direction is left

efg=110 Text X direction is up, Y direction is right

efg=111 Text X direction is up, Y direction is left

179

h=0 If movement would go outside a window, cursor moves to
negative edge and one step in positive Y direction. If this
goes outside a window, d defines behaviour. This is ‘80’
column mode

h=1 If movement would go outside a window, a ‘pending cursor
movement’ is generated. It is released before next
character is printed (or another control code). This is ‘81’
column mode

VDU23,17-26,a,b,c,d,e,f,g,h - Unassigned (but reserved)
VDU23,27,a,b,c,d,e,f,g,h - Acornsoft sprites

VDU23,28-31,a,b,c,d,e,f,g,h - Unassigned (for user application programs)
Reserved for use by application programs. Results in a call to the
unknown Plot codes vector &226,&227. Call can be recognised as
follows:

C =1 on entry to the vector.

A contains the VDU23 code (i.e. the first number following 23).

All of the sequence except the 23 can be found in ascending order
starting at the location: (Start of VDU variables) + &1B, i.e. at &31B in
MOS version 1.2

VDU23,32-255,a,b,c,d,e,f,g,h - Define character
Spec as MOS 1.2

VDU24,11,1h,bl,bh,rl,rh,tl,th - Set graphics window
Spec as MOS 1.2

VDU25,p,xl,xh,yl,yh - Plot

VDU25,0-63 - Plot line
Spec as MOS 1.2, but some improvements

VDU25,64-71 - Plot point
Same as MOS 1.2

VDU25,72-79 - Horizontal line fill
Spec as MOS 1.2

VDU25,80-87 - Plot triangle
Spec as MOS 1.2

VDU25,88-95 - Horizontal line fill
Spec as MOS 1.2

180

VDU25,96-103 - Plot rectangle
Plots a filled axis aligned rectangle with opposite corners at the current
graphics cursor and the new point.

VDU25,104-111 - Horizontal line fill
Similar to VDU25,72-79..., with the difference that the word
“non-background” should be replaced by “foreground”

VDU25,112-119 - Plot parallelogram
Plots a filled parallelogram with vertices at the old graphics cursor, the
current graphics cursor, the new point, and at (new point)-(current
graphics cursor)+(old graphics cursor) in cyclic order. The fourth point
is calculated in terms of internal pixel coordinates to ensure that the
sides are parallel.

VDU25,120-127 - Horizontal line fill
Similar to VDU25,88-95..., with the difference that the word
“background” should be replaced by “non-foreground”

VDU25,128-143 - Flood fill
This flood fills the screen starting from the new point and continuing until
non-background (plot codes 128-135) or foreground (plot codes 136-
143) pixels are found. These sequences make use of soft-key 11-15
buffers (they will reset soft keys to empty strings and will fail to do
anything if these soft keys are being expanded. Sequences may fail if
the area to be filled is too complicated, the colour being used to fill can
itself be filled or an escape occurs

VDU25,144-159 - Plot circle
Plots a circle outline (plot codes 144-151) or a filled circle (plot codes
152-159) with its centre at the current graphics cursor and the new point
on its boundary.

VDU25,160-183 - Plot circular arc
Plots a circular arc (plot codes 160-167) the filled chord segment
between a circular arc and the chord joining its end points (plot codes
168-175) or the filled pie sector between a circular arc and the two radii
joining its end points to the centre of the circle (plot codes 176-183). In
all three cases, the centre of the circle is at the old graphics cursor, the
first endpoint of the arc is at the current graphics cursor the second
endpoint of the arc is on the circle and in the same direction from the
centre of the circle as the new point is, and the circular arc is taken to
be the arc going clockwise from the first end point to the second one.

181

VDU25,184-191 - Move/copy rectangle
Causes the axis-aligned rectangle with opposite corners at the old and
current graphics cursors to be moved (plot codes 185,189) or copied
(plot codes 186,187,190,191) so that its new bottom left hand point is at
the new point (plot codes 184 and 188 simply move the graphics cursor
to the new point, like other plot codes which are 0 MOD 4).
Any part of the source rectangle which lies outside the current graphics
window is assumed to contain the current graphics background colour
for the purposes of the copy or move. The difference between copying
and moving is that moving sets any part of the source rectangle which
lies outside the destination rectangle to background, whereas copying
leaves such parts of the source rectangle unchanged

VDU25,192-207 - Plot ellipse
Plots an ellipse outline (plot codes 192-199) or a filled ellipse (plot
codes 200-207). The centre of the ellipse is at the old graphics cursor.

VDU25,208-231 - Unassigned
Not reserved for application programs

VDU25,232-239,xl,xh,yl,yh - Acornsoft sprites

VDU25,240-255 - User program calls
Reserved for application programs. Will result in a call to the unknown
plot codes vector (&226,&227). Call recognised by:
C=0 on entry
Computer is in a graphics mode (can test location (start of VDU
variables) + &61, i.e. &361 on MOS 1.2 This contains
(number of pixels/byte)-1 (i.e. 1,3 or 7) in graphics modes, and 0 in
non-graphics modes).
A contains the VDU25 code (i.e. the first number following the 25). The
coordinates can be found in ascending order starting at the location
(start of VDU variables) + &20 i.e. &320 on MOS 1.2

VDU26 - Restore default windows
Spec as MOS 1.2

VDU27 - Null
Spec as MOS 1.2

VDU28,Ix,by,rx,ty - Define text window
Spec as MOS 1.2

VDU29,xl,xh,yl,yh - Define graphics origin
Spec as MOS 1.2

182

VDU30 - Home cursor
Spec as MOS 1.2

VDU31,x,y - Tab cursor
Spec as MOS 1.2

VDU32-126 - Print a character
Spec as MOS 1.2

VDU127 - Backspace and delete
Spec as MOS 1.2

VDU128-255 - Print a character
Prints characters from the extended character set in a similar manner to
VDU32-126

EDITOR

Text file editing with ability to go to defined line numbers.

Includes a formatter to provide reasonable presentation on printed documents.
Can display on-screen help info. State of this HELP info is kept in CMOS RAM.
Cursor keys used to move cursor around screen, with screen scrolling up or down
as necessary.

Shift mode Action
NONE + up/down arrow cursor moves one line
NONE + left/right " " " " character
SHIFT + up/down arrow " " " screen
SHIFT + left/right " " " " word
CTRL + up/down arrow " " top/bottom doc
CTRL + left/right " " " start/end line

ESCAPE safely abandons most operations.
Function key operations:

f0 - Goto specified line number
SHIFT {0 - Toggles between invisible display of carriage returns (default) and
small reverse video ‘M’s, thus easily controlling trailing spaces.
f1 - Access to OSCLI e.g. <f[1>CAT for Disc Catalogue.
SHIFT f1 - Toggles entry mode between insert (default) and overtype.
State is displayed at bottom left of screen.
f2 - Load text from named file.
SHIFT 2 - Insert text from named file at the cursor position.
f3 - Save text to named file.
SHIFT {3 - Remove top and bottom scroll margins.

183

SHIFT

SHIFT

SHIFT

f4

f4

5

5
6

6

- Enter interactive find and replace option. A prompt of
FIND/REPLACE will appear at bottom of the screen. The text until
the next / or RETURN is the string to be searched for.
Some characters represent powerful operators:

$ - Carriage return.

. - ANY character except carriage return.

- Adigit0to 9.

@ - An alphabetic (a to z, A to Z) or digit.

~ - ‘NOT the following character

* - Any number of the following character.

A - As many as possible of the following character.

\ - An escape to allow special characters to be
introduced.

- - Signifies a range e.g. a-z matches a lower case
character.

[1 - Is a set of options for this character e.g. [0123] would

allow 0,1,2, or 3.

| - Control characters as MOS e.g. IJ is CTRL + J.
If the string is ended in a RETURN i.e. no /, then the string will be
found (if possible) and a prompt of R(eplace), C(ontinue) or
ESCAPE will be displayed. C moves on to the next occurrence, R
replaces and moves on, ESCAPE stops altogether. The text after
the second 7 is the string which may replace the found string. If
there is no / then you may type in the text and move on when R is
used. There are special characters here:

$ - Again represents carriage return.
\ - As find string.

| - As find string.

& - Represents the found string.

%n - (nis 0to 9) represents the nth wild section of the
found string.

- Return to language, text being replaced into language. Clear text
buffer.

- Global replace. Syntax exactly as find string. Displays the
number of found objects after working. Will operate either over
whole file or from mark to cursor.

- Set HELP display mode.

- Mark position. When present, the character that the cursor is on
will be replaced by an inverted 1 or 2 and the number of marks
displayed at the bottom left of the screen will be increased.
Marked positions can be used to delete blocks of text, copy and
move them, and perform restricted searches. Up to two marked
positions may be set; an attempt to set a third will produce an
error message. No editing may be done while marks are set.

- Remove all marks.

184

f7 - Copy text delimited by two marks to where the cursor is now.
The marks are not cleared so the operation can be repeated. The
cursor must not be in the marked area.

SHIFT {7 - Move text delimited by two marks to where the cursor is now.
The marks are cleared. The cursor must not be in the marked
area.

f8 - Print out text

SHIFT 8 - Delete text between single marked position and current cursor
position. An error message will occur if there is not exactly one
mark present.

f9 - Get old text back. Works if SHIFT f9 has just been pressed or
EDITOR has been broken out of and re-entered.
SHIFT {9 - Delete all text.

Miscellaneous changes

Sideways ROM headers which have been “illegal” previously on Models B & B+,
but accepted by the MOS, may not be accepted by this MOS version.

The screen Paged Mode algorithm has been improved in this MOS, resulting in
slight differences in the number of displayed lines in some modes compared with
Model B & B+.

In the Econet Terminal, the User VIA chip (6522) is not normally fitted. Application
software intended for Econet use should not use the VIA timer.

The RAM latch at &FE34 has some changes and additions to the use of each bit.

The machine start-up mode & language are now easily reconfigured. Software
should always have an auto-boot file which sets the language and screen mode,
without assuming a default state. (The machine may NOT be in Mode 7 or in
BASIC at disk Boot-up).

Software should not use “abbreviation” due to the risk of clashes with other fitted
ROMs with similar “‘commands. In particular, *D. no longer selects the DFS, but
selects *DUMP.

Software should NEVER assume the position of PAGE. If it needs to know it should
ask the operating system where OSHWM is.

To provide conversion compatibility across DFS & ADFS, note the following:

*DRIVE ADFS does not support this. Use *DIR :X.Y, which is a format
common to both filing systems.

185

*DIR ADFS does not support moves directly from one directory to
another, arbitrarily across the structure. Use the full pathname
where relevant in DFS to support ADFS.

Programs should never define soft characters by directly loading into the soft-char
definition area (&C00-&CFF).

Memory map changes

The Shadow screen in the Model B+ from &3000 - &7FFF (Sideways) is present in
the Master 128 machine. The 12K of additional Paged RAM in Model B+ is
implemented differently in the Master 128 machine and is reserved for operating
and filing system use as “Private RAM” (see below).

The minimum machine configuration is 128K, where 64K is allocated to sideways
RAM (4 by 16K pages) in a similar way to the 128K Model B+. Use of internally
fitted ROMs in two of the three sockets will require changes to the link settings
which will remove access to some of the sideways RAM. (They are ROM locations
456 &7).

Memory map below OSHWM

with changes from Model B/B+ indicated

Page zero - &00-&FF

&00-&8F Language workspace. BASIC allows &70-&8F for the user.

&90-&9F ECONET workspace. Do not use.

&A0-&A7 NMI workspace. It must be claimed before use.

The owner must
1) have a Filing System number allocated to it. Note the error in the
Advanced User Guide (Bray, Dickens & Holmes) on page 323. The
NMI ID passed around by Service Calls &0B and &0C are Filing System
numbers not ROM numbers.
2) be able to process ROM Service Calls &0B and &0C i.e. they must
be ROMs or intercept OSBYTE &8F.

&A8-&AF MOS scratch space.

&BO0-&BF Filing System scratch space. Watch out for “hidden” filing system

calls i.e. those produced by OSWRCH if *SPOOL used.
&CO0-&CF Current Filing System PRIVATE workspace.
&D0-&FF MOS workspace only

Page one - &100-&1FF
Machine stack and error message buffer.

186

Page two - &200-&2FF

&200-&235 Vectors.
&236-&28F Main MOS variables.
&290-&2FF MOS workspace (for MOS only).

Page three - &300-&3FF
&300-&37F VDU variables (for use by graphics routines only).

In the Model B, B+ and this machine, Page three is used for VDU workspace.
Most variables are the same, with the following exceptions:

Model B & B+ Master
&359 Foreground graphics colour Plotting foreground/background
&35A Background graphics colour Current graphics plot mode
&366 Mode 7 cursor Cursor control flags (VDU 23,16)
&367 Exploded font flag Dotted line pattern (VDU 23,6)
&368 Exploded font location bytes Current dotted line state
&369 Plot colour (0-solid,Not 0-pattern)
&36A F/grnd col. (0-solid,Not 0-pattern)
&36B B/grnd col. (0-solid,Not 0-pattern)
&36C Col. 81 flag (top bit set pending)
&36D Foreground graphics colour
&36E Background graphics colour

&380-&3DF Cassette Filing System workspace (do not use).
&3EO0-&3FF Keyboard input buffer (do not use unless replacing).

Page four, five, six and seven - &400-7FF
Language workspace. Do not use unless you are the current language or the
current language has allowed you to use it.

Page eight - &800-&8FF

&800-&87F Sound workspace. DO NOT USE (unless you want strange
noises!).
&880-&8BF Printer buffer. Useable if, and only if, no printing needed.

&8C0-&8FF Sound workspace (envelopes 1-4). Useable if, and only if,
envelopes not needed.

Page nine - &900-&9FF
&900-&9BF RS423 O/P buffer, or cassette O/P buffer (1st part), or
sound workspace (envelopes 5-16). Do not use for
anything else, as this area could be re-allocated.
&9C0-&9FF Speech buffer, or cassette O/P buffer (2nd part). Do not
use for anything else, as this area could be re-allocated.

187

Page ten - &A00-&AFF
RS 423 I/P buffer, or cassette I/P buffer. Do not use for anything else, as this
area could be re-allocated.

Page eleven - &B00-&BFF
ECONET workspace. Do not use.
In the Model B & B+ this is used for the soft key buffer. In this machine, the
soft key buffer resides in the Private 12K RAM and should not be accessed by
the user. Programs directly accessing Page eleven on the Model B & B+ for
soft-key purposes will be incompatible with this machine
Note: Initial Page states are:
Model B, B+: &B00-&BFF - &10
This machine: &B00-&BFF - &00

Page twelve - &C00-&CFF
ECONET workspace. Do not use.
In the Model B & B+ this is used for user defined characters in the range
ASCII 224-255. In this machine, all characters up to ASCII 255 are defined
with a standard font. This definition resides in the Private RAM area and
should not be accessed by the user (the user can, however, re-define all of
them as before with VDU23). Programs directly accessing Page twelve on
the Model B & B+ for user defined characters will be incompatible with this
machine.
Note: Initial Page states are:
Model B, B+: &CO00 - &0D &C01 -&CFF - &00
This machine: &C00-&CFF - &00

Page thirteen - &D00-&DFF
&D00-&D5F NMI routine and workspace. NMIs must be claimed to use
this area.
&D60-&D9E ECONET private workspace. Do not use.
&D9F-&DEF Expanded vector set.
&DFO0-&DFF Paged ROM workspace, one byte per ROM.

12K Private RAM
&8000-&83FF Soft-key buffer. Do not use directly.
&8400-&87FF VDU workspace. Reserved for routines that need a large

area, such as flood-fill. Do not use directly.

&8800-&88FF VDU variables and workspace. Do not use direcily.
&8900-&8FFF Character definitions. Do not use directly.
&C000-&DCFF Paged ROM workspace, claimed via a Service Call.
&DDO00-&DFFF MOS workspace. Do not use.

188

PCB Link settings

Fitted links

Link 1
Link 4
Link 12
Link 18
Link 19
Link 21

Link 60/61

Audio to TMHz bus. Normally set for input. Can be changed to audio
output.

Allocated for advanced software use. Enables real-time clock Alarm
facility to be used. Not normally fitted.

Composite Sync output to Cartridge. Normally set to B (East). Set to A
(West) for Composite Sync out to Cartridge.

Set East for ROM socket IC 41 active. Normally set West for sideways
RAM active.

Set East for ROM socket IC 37 active. Normally set West for sideways
RAM active.

Not normally fitted. Links Light pen strobe into the inter-cartridge link
pin 10. Can be used for Genlock sync via LPSTB.

Normally AB only linked. Link CD in addition for 8MHz output to
cartridges. Link DB only (not AC) for external clock input to computer
e.g. Genlock etc.

Non-fitted link positions

Link 2
Link 5
Link 7
Link 9

Link 10
Link 11
Link 13

Link 14
Link 15
Link 16

Not used.

Invert Sync output.

Invert Video.

IC 24 pin 22 connected to GND when 1/2 Mbit MOS fitted as in
Econet Terminal machine.

Used to select Channel 3 or 4 on VHF modulators.

Chroma on video output (issue 2 board only).

Change Link when fitting a different reference diode on the A/D input.
This diode should be fitted at position PR1.

Used for Divide-by-13 circuit when chroma MSI chip not fitted.
Select PAL or NTSC TV system encoding.

Not used.

Cartridge sockets

The cartridge socket specification is a superset of the Electron Plus-1 specification.
All Electron Cartridges should work in this machine, but may run faster. The
converse may not be true unless a specification sub-set is used.

189

APPENDIX THREE
FUNCTIONAL DIFFERENCES
BETWEEN MASTER 128 AND
MASTER COMPACT

Hardware

Interfaces present on the Master 128 which are deleted or changed

Cassette Connector and internal hardware deleted.

Tube Connector and internal hardware deleted.

1MHz bus Connector deleted.

User /O port Connector deleted. The internal 6522 User VIA
connections to the original 20-pin connector are split as
follows:

Joystick/mouse - PBO-PB4 + 2 control bits.
Expansion port - PB5-PB7

Disc 25-pin D-type socket. Note that there is no hardware
support for a third drive.

Printer 24-pin Delta-ribbon socket.

RS 423 Now optional and RS 232 specification. The upgrade
consists of plugging in four ICs (5, 9, 13 and 14).

AtoD Connector and internal hardware deleted.

Audio (external) Connector and internal hardware deleted.

Composite Video Monochrome only, cannot be colour.

TV Connector and internal hardware deleted.

Cartridge sockets Connectors deleted. Potential capability through the
expansion port.

Internal modem Internal connector deleted.

Aux power out Connector deleted. No PSU in computer case.

Interfaces added:
Joystick/Mouse Suitable for one digital joystick (Atari compatible) or mouse

with suitable pinning. A Trackerball can also be used.
+5V DC Power input to the computer.

190

Expansion Port

Functions

This interface is similar, but not identical to a Master 128
Cartridge socket. It can support Sideways ROM’s 0 & 1
when link PL11 is set North. A 2MHz bus is provided by this
port as in the Master 128. The port must be used with care
as lines are not necessarily buffered. Only a limited amount
of +5V power is available, and demand should be kept
below 200mA total for this connector, the RGB connector
and the Joystick/Mouse port.

In addition to the functional changes implied by the interface changes mentioned

above, also note:

Real-time clock
CMOS RAM

Sideways ROMs

System ROM

Links (misc)

Deleted.

Deleted. Function replaced by an EEPROM device which
does not need battery back-up. This device is socketed and
has a maximum number of 1000 write cycles per location.
In addition to the system ROM, there are four 28 pin
sockets. Three take 16K ROMs (ICs 23, 17, 29 - ROM
number 2, 3, 8 resp.) and one takes a 16K or 32K (IC 38,
ROM numbers 0 & 1). The latter socket must be enabled by
setting link PL11 South. It is normally set for the “external”
ROM(s) to be active for test purposes. Note that “Paged”
EPROMSs such as the 27513 and 27011 cannot be used.
Link PL12 is set North for a 64K ROM and South for a 128K
ROM.

Inverse Video PL9 (not fitted) is normally tracked East.

Inverse Sync PL10 (not fitted) is normally tracked East
Sound volume VR1 (10K) may be fitted.

191

Expansion Port pinout

SOLDER SIDE COMPONENT SIDE
PIN M-COMPACT M-128 PIN M-COMPACT M-128
1a SCREEN (0V) +5V 1b SCREEN (0V) +5V
2a +5V AT13 2b +5V A10
3a AT13 (neg)RST 3b A10 CD3
4a (neg)RST AA15 4b CD3 A1
5a AA15 A8 5b Al1 A9
6a A8 A13 6b A9 CDh7
7a A13 A12 7b CDh7 CD6
8a A12 PHI 2 out 8b CD6 CD5
9a PHI 2 out -5V 9b CD5 CD4
10a N/C (neg) CSYNC/O 10b CD4 LPSTB
11a N/C BR/(neg)W 11b LPSTB BA7
12a BR/(neg)W (neg)NMI 12b BA7 BA6
13a (neg)NMI (neg)IRQ 13b BA6 BA5
14a (neg)IRQ (neg)INFC 14b BA5 BA4
15a (neg)INFC (neg)INFD 15b BA4 BA3
16a (neg)INFD AA14 16b BA3 BA2
17a AA14 (neg)8/16MHz 17b BA2 BA1
18a (neg)8MHz CRTC(neg)RST 18b BA1 BAO
19a ov ANOUT 19b BAO CDo
20a PB7 USER GND 20b CDo CD2
21a PB6 USER SPEECH 21b CD2 CD1
22a PB5 USER ov 22b CD1 ov
POLARISATION SLOT POLARISATION SLOT
24a ov 24b ov
25a SCREEN (0V) 25b SCREEN (0V)
Firmware
ADFS

*DRIVE has been added to the ADFS to assist with compatibility in file conversions
from DFS. *DRIVE n is equivalent to *DIR :n

As ADFS only has two drives, if n<4 it is forced to drive 4 or 5. If n>5 it is rejected.
(*DRIVE should not be used in new applications.)

*COPY/*COMPACT/*BACKUP use shadow RAM if available, and will not corrupt
user workspace. If shadow RAM is not available, the utilities will first consider using
unclaimed Filing system RAM, and then finally will force Mode135. The commands
force *FX112,0 to avoid overwriting their own buffer.

192

*COMPACT no longer takes parameters and ADFS will issue an error message to
remind the user that the memory specified will not be used.

*FORMAT/*VERIFY/*BACKUP are contained within the ROM.

*FORMAT takes parameters <drv> <siz> where <drv> is the drive number (O or 1, 4
or 5), and <siz> is S,M or L for 40-track, 80-track single-sided and 80-track double-
sided respectively. 40-track is provided for use only where a 5.25" single-sided 40-
track drive is fitted. The user must ensure that the syntax chosen is suitable for the
drive type being used. The use of *FORMAT does not corrupt user workspace i.e. it
uses 2 pages of utility workspace at &DDO00. Sector skew is now 4 (it was 9 in the
Master 128). This results in slightly faster disk performance with the 3.5" drive fitted
as standard.

OSGBPB calls 6 & 7 return a zero byte after the CSD name or library name to be
compatible with the ownership byte returned by the Net Filing System.

CLOSE#0 no longer produces “Channel on Channel 57” when following an EXEC
sequence.

Modifications have been made to the floppy driver software in ROM which results in
a noticeable speed-up in disk operation compared with the Master 128.

*CONFIGURE FDRIVE now uses write pre-compensation on all four parameter
values. This is applied to tracks 32-79 and 112-160. The four FDRIVE step rates
are

0-6ms

1-12ms

2-2ms

3-3ms

The 40 track limitation which caused OSWORD &72 (*LOAD/SAVE etc) to generate
an error when an attempt was made to read the last track of a 40-track disk has
been removed.

The TUBE and Winchester support code has been removed to provide space for
the utilities.

A head settle has been added to cover the situation when doing a *BACKUP
between two 5.25" drives and the head is on the right track, the other drive has just
been used and the motor is still on. A disk error 48 might otherwise be issued.
*BYE now closes all files when in a “No directory” state.

*RENAME wildcards are always rejected.

193

MOS

The Operating System is effectively compatible with that of the Master 128. All of
the extended graphics features are available as for the Master 128.

The Real-time clock is not present, and calls to this will return a year of “1999” i.e.
“Fri,31 Dec 1999.23:59:59”.

The Configuration system is similar for *CONFIGURE and *STATUS, but the latter
lists in alpha order. References to Tube/Notube/Extube/Intube have been deleted
and new keywords for the joystick have been added as follows:

SWITCHED makes stick default to switched mode
(0/&7FFF/&FFFF). Currently affects bit &20 of default
*FX190 value.

PROPORTIONAL makes stick give values in the range 0 thru &FFFF.
Currently affects bit &20 of default *FX190 value.

STICK <decimal> makes stick have speed <decimal>. Currently affects
bits &1F of default *FX190 value. The default takes
effect after power-up, CTRL + BREAK or BREAK.

An EEPROM is used instead of the Master 128 CMOS RAM. This is normally 128
bytes, but a 256-byte version may be fitted later.

OSBYTE call with A = 161, X = 255 yields the following:

Y=0 indicates no EEPROM present.
Y=&7F 128 byte EEPROM present.
Y=&FF 256 byte EEPROM present.

Writes to EEPROM address 128 using *FX162 will be ignored. A read from 128 is
allowed.

The A to D port is not present, and hence analogue joysticks cannot be used. The
new digital Joystick/Mouse port is introduced, and this is a sub-set of the previous
User Port connections. The User Port is no longer present as such. The
connections for this 9 way D-type connector are:

Joystick D-type pins: 6522 connections:
1 Up (-ve true) (PB3)

2 Down (-ve true) (PB2)

3 Left (-ve true) (PB1)

4 Right (-ve true) (PB4)

5 No joystick connection (CB1)

6 Fire (PBO)

7 +5V

8 oV

9 No joystick connection (CB2)

194

On power-up, CB1 and CB2 interrupts are enabled. A sideways ROM that can
process these interrupts must be present if a mouse or trackerball are fitted. When
such an interrupt is confirmed, the sideways ROM can set the top bit of OSBYTE
190’s X parameter to disable MOS processing of ADVAL values, then every clock
tick, service call &2C is offered sideways. In the Y register is an offset from &0200
to the following workspace:

+0 ADVAL lo-byte (ADVAL hi-byte from OSBYTE var 188)
+1 Xlo-coord (x-coord returned as ADVALT1)

+2 Xhi-coord

+3 Ylo-coord (y-coord returned as ADVAL2)

+4 Yhi-coord

+5 spare

+6

OSBYTE 188 and 189 have their normal meanings.

If the top bit of OSBYTE 190’s X parameter is set, the MOS will not update ADVAL
values from the digital joystick or cursor keys. This is designed only for external
ROM’s wishing to control ADVAL values e.g. mouse/trackerball software. Note that
by just setting the top bit of this option, the old value may conveniently be restored
by simply resetting the top bit.

*FX190,64 This option enters a key into the keyboard buffer according to bits set in
ADVALO (lo-byte). The character “typed” is as follows (in order of priority):

bit 7 &80 (right) cursor right
bit 6 &40 (up) cursor up
bit 5 &20 (down) cursor down
bit 4 &10 (left) cursor left
bit 3 &08 delete key
bit 2 &04 return key
bit 1 &02 copy key
bit 0 &01 (fire) copy key

The characters are typed with (almost) the same effect as typing them at the
keyboard (i.e. within a centisecond or two). Auto-repeat is supported. In this mode
ADVAL1 and ADVAL2 will not reflect the state of the “joystick” position. Bits &08,
&04 and &02 are never set by the digital joystick, but may be set if a
mouse/trackerball is supported.

*FX190,32 affects the digital joystick and ADVAL. It is designed for games that
used the analogue joystick as switches and has the following effect:

ADVALA1 Xleft s FFFF Xcentre s 7FFF Xright £0000

ADVAL2 Ydown 0000 Ycentre s 7FFF Yup &FFFF

195

*FX190,1 (or,2,3,4,5,6,7) - an experimental feature by which the speed of the
analogue simulation of the joystick may be adjusted.

*FX190,1 make left/right & up/down sweeps slow.
(*FX190,2 or ,3,4,5,6 are progressively faster).
*FX190,7 make left/right & up/down sweeps fast.

“Standard” settings *FX190,0, *FX190,8 and *FX190,12 use the speed selected by
*FX190,3

*FX4,3
The *FX4,3 option makes the cursor keys have joystick-like effects:
left cursor moves joystick left
right cursor moves joystick right
up cursor moves joystick up
down cursor moves joystick down
copy key makes joystick fire

The state of the real joystick and cursor keys (in this mode) are read together. This
has the primary advantage that either the real joystick or the cursor keys may be
used to affect ADVAL values. When this option is selected, pressing a cursor key
does not enter a code into the keyboard buffer. If a value is “poked” into the
keyboard buffer, RDCH will assume the code to represent a soft key (rather like
*FX4,2). If a mouse or trackerball is connected, this option has no effect (the
mouse/trackerball takes priority). (See BASIC section below for ADVAL
implications).

Some TUBE code has been removed, but:

The TUBE flag is accessible from OSBYTE 234 remains and indicates NOTUBE.
Service call &FE remains.

The command *X (which controls an external Tube splitter) has been removed.
SRAM utils and Ellipse code are now within the MOS ROM area. A bug with long,
thin ellipses has been fixed. A facility to load an SRAM image and update the MOS
ROM type table has been added. An “I” should be added to the *SRLOAD
command.

*BUILD/*APPEND now allow top bit set characters to be input.

The keyboard layout has been changed as follows:

The “@” character has been moved to the “Shifted-0” position as for the Electron.
SHIFT+0 gives “@” (&40), and CTRL+0 gives NUL (&00).

196

The key position previously used for the “@” character is now used for “CODE”
input and is marked with two squares (set vertically). The use of
CTRL+SHIFT+CODE preceding any ONE key stroke will cause that key stroke
character to be entered with the top bit set. Top bit set characters must not be
used within file names.

The first call of JSR BREAK in the MOS to allow break indirection has been
changed to preserve ROMID.

INKEY-256 now returns 245 (&F5).

*FX16,0 suppresses ADVAL support as usual, and reduces interrupt processing
overhead accordingly. The default number of channels has been altered to 2.

Key interpretations set by *FX 221 thru 228 have been extended. Options 0 and 1
of *FX 22x remain as before. The meaning of value 2 has been changed. It used to
mean “use 2 as a base”. It now means “return a code representing the key
preceded by a NUL”. For example:

After *FX225,2 set NUL &80 means f0

After *FX225,2 set NUL &89 means 9

After *FX226,2 set NUL &91 means SHIFT + 1

After *FX227,2 set NUL &A3 means CTRL + {3

After *FX228,2 set NUL &B6 means SHIFT + CTRL + 6

Values other than 0,1 and 2 remain unchanged.
Note that when a NUL is entered at the keyboard it is supplied as NUL NUL.

This extension of the *FX calls enables applications (such as the revised version of
VIEW in the machine) to continue using function keys extensively but also handle
characters with the top bit set.

Operation of the keyboard is transparent to the MOS RDCH routine. For example,
pressing CTRL+0 on the keyboard results in a NUL being returned to RDCH.
Similarly entering a top bit set code results in the return of that single byte through
RDCH.

Keyboard buffer input and output changes (the use of NUL in the two operations
is two completely separate uses and they should not be confused)

Keyboard buffer input rules (via *FX138 etc.):
normal codes &01 thru &7F are entered using 1 byte (as normal).
special keys (e.g. function & cursor keys) are entered using 1 byte (as normal).
extended printable codes (&80 thru &FF) are entered as 2 bytes i.e. NUL
followed by extended (top bit set) code.

197

A NUL must be entered using 2 bytes NUL NUL.

Note that when CTRL+0 is entered into the keyboard, the MOS automatically
supplies NUL NUL to the keyboard buffer.

RDCH automatically converts codes leaving the buffer as follows:
normal codes &01 thru &7F are remove as 1 byte (as normal).
special keys have their usual special effects e.g. key expansion (as normal).

Extended printable codes are returned in a SINGLE byte. a NUL NUL is
returned as a single NUL (as normal).

This means that legal calls continue to work as before, except NULs poked into the
keyboard buffer may have strange effects.

When the new *FX22x,2 is in operation
special keys may expand to 2 bytes (NUL followed by &80 thru &BF).
NUL is returned as 2 bytes (NUL NUL).

Previously the VDU drivers made calls to the user printer vector and the
extension vector, without allowing for the possibility that these may page-in the
FSRAM. This has been corrected.

*ROMS now indicates whether a slot is ROM or RAM.

*TAPE and *MOTOR commands are supported, but have no effect. “-CFS-" and
“-TAPE-" are not supported.

To provide for additional fonts in the future (e.g. the ISO font), an additional
parameter value 8 has been added to *FX25 specifically to select the Master 128
fonti.e:

*FX25,8 forces the Master (Series) font.

*FX25,0 continues to reselect the default font.

’

*TIME will attempt to get the time from the Network if the ANFS is in use. The “day
will be filled with three SPACE characters.

A fix to prevent spurious 1770 NMIs has been added.
*BUILD/*APPEND now allow 8-bit characters to be entered.

*SHOW without a parameter now displays all soft keys.

198

BASIC

The version of BASIC fitted is IV, with improvements to accuracy and speed of
transcendental functions.

ADVAL is implemented via the digital joystick port as follows:

ADVAL returns:
Hi-byte of 16-bit value - last channel to convert now totally bogus but
provided for compatibility.
Lo-byte of 16-bit value - bits (msb to Isb) are:
PB4 PB3 PB2 PB1 0 0 0 FIRE
ADVAL1 ADVAL3 ADVALS return:
x coordinate in range &0000 thru &FFFF
ADVAL2 ADVAL4 ADVALSG return:
y coordinate in range &0000 thru &FFFF

The x and y coordinates are supported in an Acorn-compatible fashion i.e:

Left - X value increases
Right - X value decreases
Up - y value increases
Down - y value decreases

ADC events are still supported.

TIMES$ returns the dummy time “Fri,31 Dec 1999.23:59:59”, unless ANFS is present
and active, in which case an attempt will be made to get the time from the Network.

*BASIC uses *FX142 to change language.

199

APPENDIX FOUR
FUNCTIONAL DIFFERENCES
BETWEEN NFS AND ANFS

The Advanced Network Filing System contains the features of the NFS with the
following additions:

Local file buffering. All open files will be buffered in RAM in the 1/0O Processor. All
uses of OSBGET and OSBPUT calls will be significantly faster. Up to 16 buffers
are allocated dynamically. If only one file is open, for example, sixteen pages of
data are buffered on that file.

New machine entry points for automatic retries of packets.

File-server extensions.

Extra commands in ROM

ANFS:

*CDIR <Dir> (<Number>) creates directory. Number can be between 1 & 245
entries, with 19 as default.

*FS (<stn. id.>) changes file server number. Enables user to be
logged on to more than one FS.

*FLIP exchanges CSD and CSL. Useful when files which
are to be LOADed, via OSFILE, are to be made
public.

*HELP has sublevels ANFS & UTILS.

*LCAT (<Dir>) catalogue the current library, or pathname

*LEX (<Dir>) examine the current library, or pathname

*WIPE (<Dir>) deletes files or directories also.

*I AM (<stn.id.>) <user id> ((:<CR>)<password>)
now accepts [DELETE] and [CTRL-U] during
invisible input.

*PASS (:<CR>)<old password><new password>

Now accepts a “.” within the line to allow invisible
passwords.

200

UTILS:

These now work when ANFS is the currently selected FS or not:

*POLLPS (<stn. id>:<ps type>) shows CSPS number and type. Also lists all
network printers and their state.

*PROT (<prot type>)... protects against some/all ops
*PS (<stn. id.>:<ps type>) selects PS.

*UNPROT (<prot type>)... converse of PROTECT.
*WDUMP <filename> (<offset> (<address>))
CONFIGURE:

*FS <stn. id.> selects File Server.

*PS <stn. id.> selects Printer Server.

*SPACE <number> moves OSHWM to use old FS utilities.
*NOSPACE <number> converse of SPACE.

STATUS:

*FS returns File Server station id.

*PS returns Printer Server station id.
*SPACE returns “Space” or “NoSpace”.

Extra filing system interfaces:

*OPT5 additional bootstrap by “RUNning ‘FindLib’. For FS Library
compatible with this machine. CMOS RAM bit.

*OPT6 - OPT6,1 claims &200 space instead of using &B and &C. OPT6,0
reverts to normal CMOS RAM bit.

OSFILE with A = &7 on entry, a file is created. This behaves

similarly to ‘save’ (A = &0) but no data is transferred.

OSARGS A=&FF now functions and ensures all open files to the file server. A

call with Y=0 and A=2 returns 0 to differentiate
from NFS 3.nn.

OSARGS A=3 performs BASIC “EXT#channel=value”
OSARGS A=4 returns space allocated to file.
OSARGS A=&80 returns variety of file/FS info.

OSWORD A=&0E read the time.
OSWORD A=&10 extended for zero length transmissions.
OSWORD A=&13 returns fault indication.

201

Extended error messages:

‘Not listening’ & ‘No Reply’ now have the station number added.
‘Won't’ (&93,147) - occurs when trying to *RUN a file with load address of
&FFFFFFFF or execute address which isn’t &FFFFFFFF.

‘Bad parameter’ (&94,148)

‘Station <stn. id.> not present’ (&A4,164)

‘Printer busy’ (&A6,166)

‘Printer jammed (&A7,167)

‘Bad net sum’ (&AA,170)

‘Bad rename’ (&B0,176)

‘Outside file’ (&B7,183)

‘Write only’ (&D4,212)

‘No more FCBs’ (&C0,192)

‘Bad station number’ (&D0,208)

‘Bad net number’ (&D1,209)

‘Remoted’ (&0)

‘No!’” (&93,147) - “RUN file with load & FFFFFFxx

‘Syntax’ (&DC,220) - Recognised command but wrong syntax

‘Net channel’, ‘On channel’, ‘Not on this file server’ (&DE,222)
‘Bad number’ (F0,240)

‘Bad hex’ (F1,241)

‘Bad address’ (FC,252)

‘Bad string’ (FD,253)

Fatal error caused by OSWORD A=&14 function code 2 now produces
‘Fatal error’

Additional library functionality:

Any file with exec address of &FFFFFFFF that is "RUN, */<filename> or
*<filename> will be *EXECd.

Screen saving. To differentiate between ‘standard’ and shadow screen modes, the
following is used:
&FFFExxxx - Current screen RAM.
&FFFFxxxx - User RAM or non-shadow mode screens.
Auto action during Logon can now be stopped using CTRL key.
Number of “retries” is now adjustable.

‘Help’ extensions so that help text can be held on FS disk.

A new Master Series Level 2/3 File Server Utilities Disk is available to optimise the
use of a Master Series machine on an Econet Network. (Ordering Code ADJ25)

202

APPENDIX FIVE
CHANGES INTRODUCED IN
BASIC 4

Changes from Basic 2 and Basic 3

Provides some formatting of assembly listings

COLOR is accepted as an alternative to COLOUR

SAVE AS+B$ works correctly

Use of | & 2 as formal parameters works correctly

A US version listing COLOR instead of COLOUR is available

Additional changes
The version number in ROM is 4.

Incorporates all the 65C02 (65C12) instructions in Assembler:

DEC A may be represented as DEA

INC A may be represented as INA for compatibility with MASM

STZ may be represented as CLR

ASL ALFRED or similar is accepted i.e. the ‘A’ indication of accumulator addressing
mode for AST, L.SR, ROL, ROR, DEC, INC no longer affects symbol recognition.

X,Y or A in the assembler may be in lower case. EQUB, EQUW & EQUD may also be
in lower case.

Trailing spaces will always be stripped from lines entered into the interpreter.
Leading spaces will be stripped from lines entered into the interpreter when a non-
zero LISTO is set. The assumption is that there will be a formatted listing on screen
when cursor editing is used when LISTO is non-zero.

LISTO indents loops correctly.

Cross-reference/Search output is available from L.IST. Lines will be .ISTed 1F the
specified string is present e.g.:

LIST IF DEF

LIST 10,1000 IF =

LIST ,2000 IF A%
It is not possible to search for TIME=90, for example, as a statement - it will only be
checked for as a Boolean expression; PTR#, HIMEM, LOMEM are similarly affected.

203

RENUMBER or LIST will not be affected by &8D in comments or strings. In addition,
L.1ST will not be confused by coloured comments.

A statement to update an open file’s extent ‘ExT#chan=1ength’ has been added.
This uses OSARGS and so will not work until there are suitable filing systems.

A display real-time clock pseudo variable TIMES has been introduced. It fetches a
fixed 24-byte string from the operating system in response to PRINT TIMES (or
similar). The string looks like Wed,31 Dec 1900.23:59:59. Assigning
TIMES="fred" merely passes the string directly to the operating system with the
length in the first byte.

AUTO no longer outputs a space after the line number.

General recursion is now allowed in ‘FOR’ loops e.g.:

DEF FNQ FORJ=1T010:P.J;:N.:=10

FORI=FNQ-9 TO FNQ STEP FNQ/10
now works. In previous versions only the first FNQ or FNQ’s without the FOR loop
would work.

A new command EDIT which has identical syntax to LIST (even the TF section)
can be used to create an in-core text file of the current program (or section of it e.qg.
EDIT 10,100). It then issues the command “*EDIT hh, hh” where the hex
addresses are addresses in zero page of the start of the in-memory text and the
address in zero page of the end of the in-memory text plus one. LISTO 0 is set
before conversion begins. If there is not enough space to convert the entire file, the
error message ‘No room’ will be given together with a line number which shows how
far through the program it had reached. At this stage either CLEAR or a different
EDIT command should be used. ESCAPE will behave similarly, stopping the
conversion to text.

The use of the “I” character at the end of VDU parameters can be used to insert the
correct number of remaining zeros.

204

APPENDIX SIX
PCB SELECTION AND TEST
POINTS

The printed circuit board is provided with a number of points which may be used to
select different hardware configurations or to extract test signals.

Master 128

LK1 PCB track, made A: 1MHz Bus Audio Input/Output - two-position link.

In the A position the 1TMHz Bus signal is an input to the computer’s audio mixer.

In the B position the 1MHz Bus signal is an output from the computer’s audio circuit
(Minimum load 1Kohm).

This link is a permanent track in the A position. The track must be cut before a wire
link is used to make the B position.

LK2 PCB track, made: Cartridge -5V decoupler - one-position link.

In some instances, particular cartridge hardware may need a -5V supply that is
decoupled from the main computer -5V load. To do this R9 needs to be fitted and
LK2 which is a track on the circuit board should be cut.

LK3 : Not present.

LK4 plug, not made: Clock chip IRQ - one-position link.

The 6818 clock/RAM chip has a daily alarm function built in. When the alarm is
triggered, the CPU is interrupted via its IRQ line. Fitting a shunt over LK4
connects the CPU IRQ line to the clock line. This function is not supported by
the operating system as this feature may not be present in future versions of the
circuit board. Consequently the clock chip must be directly operated by the
application software.

LK5 PCB track, made East: CSYNC polarity - two-position link.

The polarity of the composite synchronisation signal is determined by this link. It is
supplied as a track on the PCB causing negative synchronisation polarity. This
track must be broken and a piece of wire used to make the other side of the link for
positive synchronisation.

LK6(0) and LK6(1) plug, made A B: Main Clock Select - multi-function link.
This group of 4 pins can take either one or two shorting plugs as follows:

205

Link between A and B - The computer main 16MHz reference is provided by on-
board circuitry. This is normally how computers are shipped.

Link between B and D - The computer main 16MHz reference must be provided
from pin A17 on either of the cartridge connectors. Note that in this case a clock
source MUST be provided or the dynamic memories could be destroyed.

Link between C and D - The cartridges are clocked by the 8MHz signal from the
computer. This is a synchronous signal with the 2MHz (¢2) signal, also supplied to
the cartridges. Note that the link between A and B must also be fitted.

LK7 PCB track, made East: Video polarity - two-position link.

The polarity of the video RGB signals is determined by this link. It is supplied as a
track on the bottom of the PCB causing true polarity. This track must be broken
and a piece of wire used to make the link West for negative polarity.

LK8 : Not present.
LK9 : Not present.

LK10 fitted for NTSC only: Channel Select - two position link.

When used with NTSC VHF televisions, the modulator enables one of two channels
to be selected. Note that the computer as supplied for use in the UK is fitted with a
UHF modulator so LK10 is not fitted.

LK11 : Present for Issue 2 only: Chroma on Video out.

LK12 Plug, made B (East): CSYNC/Cartridge Machine Detect - two-position link.
Position A - This connection to the computer CSYNC line is provided for GENLOCK
purposes.

Position B - Certain hardware cartridges may need to detect whether they are
plugged into a Master Series computer or an Acorn Electron. Master computers are
shipped with this link in the B position causing a logic LOW to appear on pin A10 of
the cartridges. The Electron has no connection to this pin.

LK13 PCB track, made West: A to D converter reference select - two-position link.
As shipped, this link is a track on the bottom of the PCB causing the A-to-D
converter reference voltage input to be 1.8V.

If the LK13 track is cut then the voltage reference must be applied between
analogue ground and Vref on the external connector.

If the LK13 track is cut and LK13 made East with a wire link, a precision reference
can be fitted in the position PR1 shown on the circuit diagram.

LK14 PCB track, made: Serial data clock reference - one-position link.

As shipped, this link is a track on the PCB connecting the CHROMA chip 1.23MHz
output to the Serial Processor. This link is provided for production purposes and
should not be modified.

206

LK15 PCB track, made West: PAL/NTSC select - two-position link.

As shipped in the UK, this link is a track on the bottom of the PCB causing the
CHROMA chip to encode colour information on to the television output in PAL
format. If the track is cut and a wire link used to make the other side of the link,
then colour information will be encoded in NTSC. In general, televisions within the
UK can only accept the PAL format.

LK16 wire link, not fitted:

Chrominance information luma trap bypass - one-position link.

This link is not normally fitted. It is provided for those applications where filtering of
the luminance information from the chrominance part of the television signal is not
required.

LK17 : Not present.

LK18 plug, made West: Paged ROM/RAM Select - two-position link.

When fitted in the West position, this link causes 16Kbyte of RAM to appear in each
of the “sideways” memory “slots” 4 and 5.

When fitted in the East position, a 32Kbyte ROM occupying slots 4 and 5 may be
plugged into socket labelled 1C41.

LK19 plug, made West: Paged ROM/RAM Select - two-position link.

When fitted in the West position, this link causes 16Kbyte of RAM to appear in each
of the “sideways” memory “slots” 6 and 7.

When fitted in the East position, a 32Kbyte ROM occupying slots 6 and 7 may be
plugged into socket labelled IC37.

LK20 : Not present.

LK21 plug, not made: Light Pen Strobe to cartridge.

This link is not normally made, so position B10 on the cartridges is merely a
connection from one to the other. When the shunt is fitted. the CRTC Light Pen
Strobe input is connected to B10. This is to facilitate GENLOCK and an alternative
LPSTB connection to the rear analogue connector.

Master Compact

TP1 - MAX232 -ve output.
If the serial interface is fitted, the voltage on this pin should be between -10v and
-5v. A figure of -9v is quite typical.

TP2 - MAX232 +ve output.

If the serial interface is fitted, the voltage on this pin should be between 5v and 10v.
A figure of 9v is quite typical.

207

Test points TP1 and TP2 are positioned close to IC5 (North of the PCB).

TP3 - connected to the CPU NMI pin.
This should be generally at 5v while running, making excursions to Ov only when
disc and Econet are being used.

TP4 - connected to the CPU IRQ pin.
Check that this is not stuck either high or low when free running.

TP5 - connected to the CPU SYNC pin.

This is asserted during an opcode fetch by the processor, and is used by ACCCON
to ensure that the correct memory area is accessed at this time. If this is
continuously high or low, then the processor has completely stalled.

TP6 - This is connected to the processor READ/WRITE line.
This should change between Ov and 5v frequently (but not necessarily regularly!)

Test points TP3 to TP6 are situated South of the CPU 1C28 (65C12) to the
southeast of the PCB.

PL7 - Not fitted
allows the light pen strobe (LPTSTB) to be connected to the CRTC IC.

PL9 - pcb track made north

If set North, the video output will be normal, if set South the video output will be
inverted. If change is required, cut circuit board track, and either use tinned copper
wire, or fit three pins, and select the required position using a mini shunt.

PL10 - pcb track made east

If set East, the RGB CSYNC signal will be inverted. If set West, it will be non-
inverted. This is necessary for certain monitors. If change is required, cut circuit
board track, and either use tinned copper wire, or fit three pins, and select the
required position using a mini shunt.

PL11 - plug made north
If set North, 32k ROM space banks 0 and 1 are assigned to the edge connector. If
set South, 32k ROM space banks 0 and 1 are assigned to IC38.

PL12 - plug made north

If set North, allows system ROM containing 64K bytes of code. If set South, allows
ROM containing 128K bytes. Factory position is currently NORTH, but may change
to SOUTH in future production.

208

Circuit board modifications necessary for fitting optional
components.

VR1

If a volume control is required for the loudspeaker, a preset potentiometer VR1 may
be fitted. If this modification is done, first cut the circuit board track joining two pins
of VR1.

FS1
A fuse (FS1) may be fitted if required, first cut the track under FS1 on the PCB.

L1/L2

If further filtering (L1 and L2) is used, the tracks under L1 and L2 on the main PCB
must be cut.

209

APPENDIX SEVEN
THE MASTER 128
CARTRIDGE INTERFACE

The Master Series Cartridge Interface is an enhancement of that of the Electron
Plus 1. The connections and any differences are noted below.

Abbreviations used in this Appendix are as follows:

A/L Active low.

O/C Open Collector output.

CMOS Complementary Metal Oxide Semiconductor.
CPU Central Processor Unit i.e. the microprocessor.
TTL Transistor-Transistor Logic.

& A hexadecimal number follows.

n As a signal prefix means Active low output (A/L).
PCB Printed Circuit Board.

NMOS N-channel Metal Oxide Semiconductor

Cartridge Orientation
The cartridge pinning in the Master Series machine is arranged as follows:

Viewed from above

Pin 22 Pin 1
Side A
ROM Nos 0 and 1 Side B
Side A
ROM Nos 2 and 3 Side B
Front
o

Components are normally mounted on to Side A of the PCB within the cartridge.

210

Pinout

Pins are described viewed from “within” the cartridge i.e. an “input” is an input to the
cartridge. An “output” is an output to the computer.

Side A

1 +5V - logic power supply
150mA max in a Master with co-processor fitted and with disc drives.
50mA max in an Electron Plus 1.

2 nOE - Output Enable Input from A/L CMOS level.
low during phi2 period of system clock. It is intended to switch on the
output buffers of cartridge memory devices. It is not guaranteed
low at other times.

3 nRST - System Reset Input from A/L CMOS level.
low during a system reset. It is not synchronised to any clock.

4 CSRW - chip select - Read/Write Input from CMOS level.

Master

Changes function according to the memory region that the CPU is

addressing. During accesses to &FCOO0 thru &FEFF it is equivalent to

the CPU Read/Write line during phi2. For all other accesses, it is an

Active High chip select for memory devices. It is not guaranteed low at

other times.

Electron

CPU Read/Write line.

A8 - Address line 8 Input from TTL level.

A13 - Address line 13 Input from TTL level.

A12 - Address line 12 Input from TTL level.

phi2 - CPU clock Input from CMOS levels.

computer’s phi2 output.

-5V - Negative supply voltage.

20mA max. This -5V may not be available on all Acorn Cartridge

Interfaces. To ensure compatibility, negative voltages should be

generated within the Cartridge if required.

10 CSYNC/MADET
Master
There are two functions dependent upon link 12 in the computer:
E/nB - the default function. It enables Cartridges to know which
machine they are plugged into. It is connected to OV in the Master, (and
unconnected in the Electron). Link 12 is set to position B.

CSYNC - Composite Sync. Input from TTL levels.

System Vertical & Horizontal sync is made available for Genlock use.
Set Link 12 to position A.

Electron

Unconnected

© NG

21

11

12

13

14

15

16

17

18

RnW/READY

Master

R/W - Data Direction control Input from TTL levels.

System data buffer direction control. If low, cartridges are being written
to; if high and selected, they may drive the bus during phi2.
Electron

READY - CPU wait state control O/C A/L output.

When driven low, this line will cause the CPU to extend its cycle until
READY is released. Only works with CMOS CPUs and only on
READ cycles.

nNMI - Non-maskable Interrupt O/C A/L output.

Connected to system NM line.

nIRQ - Interrupt Request O/C A/L output.
Connected to the system IRQ line.

nINFC - Internal Page &FC Input from TTL levels.
A/L. Memory Active decode input.

Master

When bit IFJ in the Master ACCON register (via &FE34) is set, all
accesses to &FCO00 thru &FCFF will cause this select to become active.
Electron

Not applicable.

nINFD - Internal Page &FD Input from TTL levels.

A/L. Memory Active decoded input.

Master

When bit IFJ in the Master ACCCON register (via &FE34) is set, all
accesses to &FDO00 thru &FDFF will cause this select to become active.
Electron

Not applicable.

ROMQA - Memory paging select Input from TTL levels.

This is the least significant bit of the ROM select latch located at &FE30
in the Master, and &FEO5 in the Electron.

Clock Input/Output TTL levels.

Master

Links 6(0) and 6(1) on the computer select one of two functions:

a) 16MHz output to computer (Link DB only).

b) 8MHz Input to cartridge (Link CD in addition to AB).

The user should ensure that the links are set correctly, and that there is
proper termination. Normally only AB is linked in the computer.
Electron

16MHz Input.

nROMSTB/nCRTCRST TTL levels.

Master

nNnCRTCRST is an Active Low Output signal of the system CRTC reset
input. It is provided for Genlock use.

212

19

20

21

22

Side B

= OONOOASLWN

Electron

nROMSTB is an Active Low Input which selects &FC73. It is intended
to be used as a Paging Register.

ADOUT - System audio Output.

Filtered output of the sum of all audio inputs to the computer. No
significant load should be taken from this pin.

AGND - Audio Ground.

The zero volt return for ADOUT. It should be used instead of system 0V
to minimise audio noise.

ADIN - System audio input.

Master

An input to the computer’s audio circuitry. It presents an impedance of
at least 1K ohm. Only one cartridge using this input should be
connected to the computer at one time.

Electron

This is a connection from one cartridge to the other.

0V - Zero volts.

System earth return for digital signals.

+5V - Logic power supply
150mA max in a Master with Co-processor fitted and with disc drives.
10mA max in an Electron Plus 1.

A10 - Address line 10 Input from TTL levels.
D3 - Data bus line 3 Input/Output TTL levels.
A11 - Address line 11 Input from TTL levels.
A9 - Address line 9 Input from TTL levels.
D7 - Data bus line 7 Input/Output TTL levels.
D6 - Data bus line 6 Input/Output TTL levels.
D5 - Data bus line 5 Input/Output TTL levels.
D4 - Data bus line 4 Input/Output TTL levels.

nOE2/LPSTB - O/P Enable/Light Pen Strobe Input from TTL levels.
Master

With link 21 removed in the computer, this pin provides a connection
between the two cartridges. With the link in place, the pin forms a
connection to a pull-up resistor in the computer to +5V. The connection
is also made to the CRTC Light Pen Strobe and interrupt structure.
Electron

This provides an additional A/L enable for ROMs in the Electron. This
corresponds to ROM position 13 and responds quickly to Service Calls.
It is low during the A/L portion of phi2. It is not guaranteed high at other
times.

213

11

12

13

14

15

16

17

18

19
20

22

BA7 - Buffered address line 7
Master

Input from TTL levels.

This line holds addresses valid for 125ns after phi2 goes low.

Electron

This is not buffered nor held valid for an extended period.

BAG6 - Buffered address line 6
See pin 11.

BAS - Buffered address line 5
See pin 11.

BA4 - Buffered address line 4
See pin 11.

BA3 - Buffered address line 3
See pin 11.

BA2 - Buffered address line 2
See pin 11.

BA1 - Buffered address line 1
See pin 11.

BAO - Buffered address line 0
See pin 11.

DO - Data bus line 0

D2 - Data bus line 2

D1 - Data bus line 1

0V - Zero volts

Digital signal Earth return.

214

Input from TTL levels.
Input from TTL levels.
Input from TTL levels.
Input from TTL levels.
Input from TTL levels.
Input from TTL levels.
Input from TTL levels.
Input/Output TTL levels.

Input/Output TTL levels.
Input/Output TTL levels.

APPENDIX EIGHT
65C12 INSTRUCTION SET

This appendix lists each 65C12 instruction on a separate page along with details of
the status flags affected and a brief description.

A number of new mnemonics which do not exist on the 6502 are provided on the
65C12 which also has one new addressing mode called “(indirect zero page)”. This
is similar to “(indirect,X)” and “(indirect),Y” but does not require the X or Y registers
to be set to zero.

The new 65C12 mnemonics are:

BRA Branch always

CLR Clear memory (also STZ)
DEA Decrement accumulator
INA Increment accumulator
PHX Push X register onto stack
PHY Push Y register onto stack
PLX Pull X register from stack
PLY Pull Y register from stack
STZ Clear memory (also CLR)
TRB Test and reset bits

TSB Test and set bits

The Rockwell R65C02, which is normally fitted within the 6502 and Turbo Second
processors, has two instructions which do not exist on the 65C12 and which have to
be assembled by hand.

BBR Branch on bit reset
BBS Branch on bit set

In the tables listing the various op.codes the time taken to execute each instruction
is given as a number of cycles. Each cycle represents:

0.5 ps on a BBC model B or Master

0.33 ps on a 6502 Second Processor
0.25 ps on a Master Turbo Co-processor.

215

ADC NREEEE
YMEREENE

Add to Accumulator with Carry

Operation
AC=A+M+C

Description
Adds the contents of a memory location to the accumulator. If the carry
flag is set then 1 is also added. If the result overflows then the carry flag
will be set, allowing multiple byte addition.

Op.Code | Addressing Mode | Assembly Lang. | No.Bytes | No.Cycles
&69 Immediate ADC #dd 2 2
&65 Zero Page ADC aa 2 3
&75 Zero Page,X ADC aaX 2 4
&72 (Indirect Zero Page)| ADC (aa) 2 5
&6D Absolute ADC aaaa 3 4
&7D Absolute, X ADC aaaa,X 3 4*
&79 Absolute,Y ADC aaaa,Y 3 4
&61 (Indirect,X) ADC (aa,X) 2 6
&71 (Indirect),Y ADC (aa),Y 2 5*

*

Add 1 cycle if page boundary crossed
** Add 1 cycle for all addressing modes if in decimal mode

216

AND

Status Register

NV e[z
A ML

AND Memory with Accumulator

Operation
A=AAND M

Description
A logical AND is performed between the accumulator and a memory
location. The result is then left in the accumulator.

Op.Code | Addressing Mode | Assembly Lang. | No.Bytes | No.Cycles
&29 Immediate AND #dd 2 2
&25 Zero Page AND aa 2 3
&35 Zero Page,X AND aa,X 2 4
&32 (Indirect Zero Page)| AND (aa) 2 5
&2D Absolute AND aaaa 3 4
&3D Absolute, X AND aaaa,X 3 4*
&39 Absolute,Y AND aaaa,Y 3 4*
&21 (Indirect,X) AND (aa,X) 2 6
&31 (Indirect),Y AND (aa),Y 2 5*

Add 1 cycle if page boundary crossed

217

ASL

Operation
C=M;, M=M*2

Description
Shifts the contents of a memory location or the accumulator one bit to the
left. This operation effectively multiplies by two and leaves any overflow
in the carry flag.

Status Register

NV e[z
MERBRRMY

Accumulator Shift Left

Op.Code | Addressing Mode | Assembly Lang. | No.Bytes | No.Cycles
&0A Accumulator ASL A 1 2
&06 Zero Page ASL aa 2 5
&16 Zero Page,X ASL aaX 2 6
&0E Absolute ASL aaaa 3 6
&1E Absolute, X ASL aaaa,X 3 6*

* Add 1 cycle if page boundary crossed
Always takes 7 cycles on 6502A

218

BBR NREEEE
BEEEEEEE

Branch on Bit Reset

Operation
Branch if bit=0

Description
BBR is not normally available but does exist on the Rockwell R65C02
which is usually fitted within the Master Turbo and 6502 Second
Processors. If a bit in a zero page location is clear a branch will occur.

Op.Code | Addressing Mode | Assembly Lang. | No.Bytes | No.Cycles
&0F Zero page, bit 0 BBRO aa 3 5*
&1F Zero page, bit 1 BBR1 aa 3 5*
&2F Zero page, bit 2 BBR2 aa 3 5*
&3F Zero page, bit 3 BBR3 aa 3 5*
&4F Zero page, bit 4 BBR4 aa 3 5*
&5F Zero page, bit 5 BBR5 aa 3 5*
&6F Zero page, bit 6 BBR6 aa 3 5*
&7F Zero page, bit 7 BBR7 aa 3 5*

Add 1 cycle if branch occurs or
Add 2 cycles if branch crossed a page boundary

This instruction is not available in the BASIC assembler and will have to be
inserted using EQUB.

Example: Branch if bit 5 of zero page location &70 is 0 (reset)

EQUB &5F \ BBR op.code for bit 5
EQUB &70 \ zero page &70
EQUB &09 \ branch forward 9 bytes

219

BBS NREEEE
BEEEEEEE

Branch on Bit Set

Operation
Branch if bit = 1

Description
BBS is not normally available but does exist on the Rockwell R65C02
which is usually fitted within the Master Turbo and 6502 Second
Processors. If a bit in a zero page location is set a branch will occur.

Op.Code | Addressing Mode | Assembly Lang. | No.Bytes | No.Cycles
&8F Zero page, bit 0 BBSO aa 3 5*
&9F Zero page, bit 1 BBS1 aa 3 5*
&AF Zero page, bit 2 BBS2 aa 3 5*
&BF Zero page, bit 3 BBS3 aa 3 5*
&CF | Zero page, bit 4 BBS4 aa 3 5%
&DF | Zero page, bit 5 BBS5 aa 3 5%
&EF Zero page, bit 6 BBS6 aa 3 5*
&FF Zero page, bit 7 BBS7 aa 3 5%

Add 1 cycle if branch occurs or
Add 2 cycles if branch crossed a page boundary

This instruction is not available in the BASIC assembler and will have to be
inserted using EQUB.

Example: Branch if bit 5 of zero page location &70 is 1 (set)

EQUB &DF \ BBS op.code for bit 5
EQUB &70 \ zero page &70
EQUB &09 \ branch forward 9 bytes

220

BCC NREEEE
BEEEEEEE

Branch on Carry Clear

Operation
Branch if Carry flag =0

Description
If the carry flag is clear this instruction performs a relative jump forwards
or backwards a specific number of bytes from the next instruction. This
relative figure is a two’s complement signed number which can span up
to 127 bytes forward, or 128 bytes backward.

Op.Code | Addressing Mode | Assembly Lang. | No.Bytes | No.Cycles

&90 Relative BCC aa 2 2*

* Add 1 cycle if branch occurs or
Add 2 cycles if branch crossed a page boundary

221

BCS NREEEE
BEEEEEEE

Branch on Carry Set

Operation
Branch if Carry flag = 1

Description
If the carry flag is set this instruction performs a relative jump forwards
or backwards a specific number of bytes from the next instruction. This
relative figure is a two’s complement signed number which can span up
to 127 bytes forward, or 128 bytes backward.

Op.Code | Addressing Mode | Assembly Lang. | No.Bytes | No.Cycles

&B0 Relative BCS aa 2 2*

* Add 1 cycle if branch occurs or
Add 2 cycles if branch crossed a page boundary

222

BEQ NREEEE
BEEEEEEE

Branch on Result Equal to Zero

Operation
Branch if Zero flag = 1

Description
If the zero flag is set this instruction performs a relative jump forwards
or backwards a specific number of bytes from the next instruction. This
relative figure is a two’s complement signed number which can span up
to 127 bytes forward, or 128 bytes backward.

Op.Code | Addressing Mode | Assembly Lang. | No.Bytes | No.Cycles

&F0 Relative BEQ aa 2 2*

* Add 1 cycle if branch occurs or
Add 2 cycles if branch crossed a page boundary

223

BIT

Status Register

NV e[z
pofp][[L= UL

Test Bits in Memory with Accumulator

Operation

AANDM, N=My,

Description
This instruction is used to test whether various bits are set in a memory
location by performing an AND instruction. It does not however affect
either the accumulator or the memory location, but just sets the status
flags. Also bits 7 and 6 are transferred to the N and V flags respectively.

V = Me

Op.Code | Addressing Mode | Assembly Lang. | No.Bytes | No.Cycles
&89* | Immediate** BIT #dd 2 2
&24 Zero Page BIT aa 2 3
&34* | Zero Page,X* BIT aa, X 2 4
&2C Absolute BIT aaaa 3 4
&3C* | Absolute,X* BIT aaaa,X 3 4

* New op. codes for 65C12 only, which is
fitted in the Master.

** N and V flags not affected
in immediate addressing mode.

224

Status Register

BMI IMRCEDER
EEEBEREE

Branch on Result Minus

Operation
Branch if Negative flag = 1

Description
If the negative flag is set this instruction performs a relative jump
forwards or backwards a specific number of bytes from the next
instruction. This relative figure is a two’s complement signed number
which can span up to 127 bytes forward, or 128 bytes backward.

Op.Code | Addressing Mode | Assembly Lang. | No.Bytes | No.Cycles

&30 Relative BMI aa 2 2*

* Add 1 cycle if branch occurs or
Add 2 cycles if branch crossed a page boundary

225

Status Register

BNE IMRCEDER
EEEBEREE

Branch on Result Not Equal to Zero

Operation
Branch if Zero flag=0

Description
If the zero flag is clear this instruction performs a relative jump
forwards or backwards a specific number of bytes from the next
instruction. This relative figure is a two’s complement signed number
which can span up to 127 bytes forward, or 128 bytes backward.

Op.Code | Addressing Mode | Assembly Lang. | No.Bytes | No.Cycles

&D0 Relative BNE aa 2 2*

* Add 1 cycle if branch occurs or
Add 2 cycles if branch crossed a page boundary

226

Status Register

BPL IMRCEDER
EEEBEREE

Branch on Result Plus

Operation
Branch if Negative flag = 0

Description
If the negative flag is clear this instruction performs a relative jump
forwards or backwards a specific number of bytes from the next
instruction. This relative figure is a two’s complement signed number
which can span up to 127 bytes forward, or 128 bytes backward.

Op.Code | Addressing Mode | Assembly Lang. | No.Bytes | No.Cycles

&10 Relative BPL aa 2 2*

* Add 1 cycle if branch occurs or
Add 2 cycles if branch crossed a page boundary

227

BRA NREEEE
BEEEEEEE

Branch Always

Operation
Branch Always

Description
This instruction always performs a relative jump forwards or backwards
a specific number of bytes from the next instruction. This relative figure
is a two’s complement signed number which can span up to 127 bytes
forward, or 128 bytes backward.

Op.Code | Addressing Mode | Assembly Lang. | No.Bytes | No.Cycles

&80 Relative BRA aa 2 3*

*

Add 1 cycle if branch crossed a page boundary

228

BRK

Operation

Force Break

Push PC+2 and P on stack, PC=(&FFFE)

Description

Status Register

NV e[z
I o L]

This instruction forces a break which causes the program counter to be
pushed onto the stack along with the status register. The program
counter is then set to the contents of &FFFE/F. The BRK instruction is

usually used for errors.

Op.Code | Addressing Mode

Assembly Lang.

No.Bytes

No.Cycles

&00 Implied

BRK

1

7

229

Status Register

BVC IMRCEDER
EBEEEEEE

Branch on Overflow Clear

Operation
Branch if Overflow flag = 0

Description
If the overflow flag is clear this instruction performs a relative jump
forwards or backwards a specific number of bytes from the next
instruction. This relative figure is a two’s complement signed number
which can span up to 127 bytes forward, or 128 bytes backward.

Op.Code | Addressing Mode | Assembly Lang. | No.Bytes | No.Cycles

&50 Relative BVC aa 2 2*

* Add 1 cycle if branch occurs or
Add 2 cycles if branch crossed a page boundary

230

Status Register

BVS IMRCEDER
EEBEREAE

Branch on Overflow Set

Operation
Branch if Overflow flag = 1

Description
If the overflow flag is set this instruction performs a relative jump
forwards or backwards a specific number of bytes from the next
instruction. This relative figure is a two’s complement signed number
which can span up to 127 bytes forward, or 128 bytes backward.

Op.Code | Addressing Mode | Assembly Lang. | No.Bytes | No.Cycles

&70 Relative BVC aa 2 2*

* Add 1 cycle if branch occurs or
Add 2 cycles if branch crossed a page boundary

231

CLC

Status Register

NV e[z
HEEERREN

Clear Carry Flag
Operation
Carry flag=0
Description
This instruction clears the carry flag and is mainly used to prepare for
ADC or SBC.
Op.Code | Addressing Mode | Assembly Lang. | No.Bytes | No.Cycles
&18 Implied CLC 1 2

232

CLD

Operation
Decimal flag = 0

Description
This instruction switches the 65C12 back to normal binary arithmetic
mode.

Status Register

NV e[z
HEEECRER

Clear Decimal Mode

Op.Code

Addressing Mode

Assembly Lang.

No.Bytes

No.Cycles

&D8

Implied

CLD

1

2

233

CLI NREEEE
BEEEEREE

Clear Interrupt Disable Bit

Operation
Interrupt flag = 0

Description
When maskable interrupts have been disabled using SEI, this instruction
re-enables them.

Op.Code | Addressing Mode | Assembly Lang. | No.Bytes | No.Cycles

&58 Implied CLlI 1 2

234

CLR

Operation

M=0

Description
CLR clears a byte of memory by storing zero at the specified location.
STZ is an alternative mnemonic.

Clear Memory

Status Register

NV e[z
I L]

Op.Code | Addressing Mode | Assembly Lang. | No.Bytes | No.Cycles
&64 Zero Page CLR aa 2 3
&74 Zero Page,X CLR aaX 2 4
&9C Absolute CLR aaaa 3 4
&9E Absolute, X CLR aaaa,X 3 5

235

CLv

Operation
Overflow flag = 0

Description
This instruction clears the overflow flag.

Status Register

NV e[z
- Joll - - I

Clear Overflow Flag

Op.Code

Addressing Mode

Assembly Lang.

No.Bytes

No.Cycles

&B8

Implied

CLv

1

2

236

CMP NREEEE
YEEEEENE

Compare Memory and Accumulator

Operation
A-M

Description
CMP subtracts the contents of a memory location from the accumulator
and sets the status flags without actually affecting the contents of the
accumulator. See table below for results of compare.

Op.Code | Addressing Mode | Assembly Lang. | No.Bytes | No.Cycles
&C9 Immediate CMP #dd 2 2
&C5 Zero Page CMP aa 2 3
&D5 Zero Page,X CMP aaX 2 4
&D2 (Indirect Zero Page)| CMP (aa) 2 5
&CD | Absolute CMP aaaa 3 4
&DD Absolute, X CMP aaaa,X 3 4*
&D9 Absolute,Y CMP aaaa,Y 3 4
&C1 (Indirect,X) CMP (aa,X) 2 6
&D1 (Indirect),Y CMP (aa),Y 2 5*

Add 1 cycle if page boundary crossed

After a CMP instruction the following conditions will apply:

A<M N=1* Z=0 C=0
A=M N=0 Z=1 C=1
A>M =0 Z:O C=1

* Only valid for “two’s complement” compare

237

CPX NREEEE
YEEEEENE

Compare Memory and X Register

Operation
X-M

Description
CPX subtracts the contents of a memory location from the X register
and sets the status flags without actually affecting the contents of the
X register. See table below for results of compare.

Op.Code | Addressing Mode | Assembly Lang. | No.Bytes | No.Cycles

&EO Immediate CPX #dd 2 2
&E4 Zero Page CPX aa 2 3
&EC Absolute CPX aaaa 3 4

After a CPX instruction the following conditions will apply:

X<M N=1* Z=0 C=0
X=M N=0 Z=1 C=1
X>M =0 Z:O C=1

* Only valid for “two’s complement” compare

238

CPY NREEEE
YEEEEENE

Compare Memory and Y Register

Operation
Y-M

Description
CPY subtracts the contents of a memory location from the Y register
and sets the status flags without actually affecting the contents of the
Y register. See table below for results of compare.

Op.Code | Addressing Mode | Assembly Lang. | No.Bytes | No.Cycles

&CO0 Immediate CPY #dd 2 2
&C4 Zero Page CPY aa 2 3
&CC Absolute CPY aaaa 3 4

After a CPY instruction the following conditions will apply:

Y<M N=1* Z=0 C=0
Y=M N=0 Z=1 C=1
Y>M =0 Z:O C=1

* Only valid for “two’s complement” compare

239

DEC / DEA

Operation
M=M -1

Description
This instruction subtracts one from a memory location and sets the
appropriate status flags. The additional addressing mode on the 65C12
allows the accumulator to be decremented by using DEC A or just DEA.

Status Register

NV e[z
A ML

Decrement Memory by One

Op.Code | Addressing Mode | Assembly Lang. | No.Bytes | No.Cycles
&3A* | Accumulator* DEC A (DEA) 1 2
&C6 Zero Page DEC aa 2 5
&D6 Zero Page,X DEC aa,X 2 6
&CE | Absolute DEC aaaa 3 6
&DE | Absolute,X DEC aaaa,X 3 7

* New op. code for 65C12 only, which is
fitted in the Master.

240

DEX

Operation
X=X-1

Description
This instruction subtracts one from the X register and sets the

appropriate status flags.

Status Register

NV e[z
A ML

Decrement X Register by One

Op.Code

Addressing Mode

Assembly Lang.

No.Bytes

No.Cycles

&CA

Implied

DEX

1

2

241

DEY

Operation
Y=Y-1

Description
This instruction subtracts one from the Y register and sets the

appropriate status flags.

Status Register

NV e[z
A ML

Decrement Y Register by One

Op.Code

Addressing Mode

Assembly Lang.

No.Bytes

No.Cycles

&88

Implied

DEY

1

2

242

EOR

Operation
A=AEORM

Description
This instruction performs an Exlusive OR between the accumulator and a
memory location leaving the result in the accumulator.

Status Register

NV e[z
A ML

Exclusive-OR Memory with Accumulator

Op.Code | Addressing Mode | Assembly Lang. | No.Bytes | No.Cycles
&49 Immediate EOR #dd 2 2
&45 Zero Page EOR aa 2 3
&55 Zero Page,X EOR aaX 2 4
&52 (Indirect Zero Page)| EOR (aa) 2 5
&4D Absolute EOR aaaa 3 4
&5D Absolute, X EOR aaaa,X 3 4*
&59 Absolute,Y EOR aaaa,Y 3 4
&41 (Indirect,X) EOR (aa,X) 2 6
&51 (Indirect),Y EOR (aa),Y 2 5*

Add 1 cycle if page boundary crossed

243

INC / INA

Operation
M=M+1

Description

This instruction adds one to a memory location and sets the

Status Register

NV e[z
A ML

Increment Memory by One

appropriate status flags. The additional addressing mode on the 65C12
allows the accumulator to be incremented by using INC A or just INA.

Op.Code | Addressing Mode | Assembly Lang. | No.Bytes | No.Cycles
&1A* | Accumulator* INC A (INA) 1 2
&E6 Zero Page INC aa 2 5
&F6 Zero Page,X INC aaX 2 6
&EE | Absolute INC aaaa 3 6
&FE Absolute, X INC aaaa,X 3 7

fitted in the Master.

New op. code for 65C12 only, which is

244

INX

Operation
X=X+1

Description
This instruction adds one to the X register and sets the
appropriate status flags.

Status Register

NV e[z
A ML

Increment X Register by One

Op.Code

Addressing Mode

Assembly Lang.

No.Bytes

No.Cycles

&E8

Implied

INX

1

2

245

INY

Operation
Y=Y+1

Description
This instruction adds one to the Y register and sets the
appropriate status flags.

Status Register

NV e[z
A ML

Increment Y Register by One

Op.Code

Addressing Mode

Assembly Lang.

No.Bytes

No.Cycles

&C8

Implied

INY

1

2

246

JMP

Operation
PC = new location

Description
This instruction jumps to the specified location by loading the new
address into the program counter.

Status Register

NV e[z
I L]

Jump to new location

Op.Code | Addressing Mode | Assembly Lang. | No.Bytes | No.Cycles
&4C Absolute JMP aaaa 3 3
&6C (Indirect) JMP (aaaa) 3 6
&7C* | (Indirect,X)* JMP (aa,X) 3 6

* New op. code for 65C12 only, which is
fitted in the Master.

247

JSR NREEEE
BEEEEEEE

Jump to Subroutine

Operation
Push PC+2 on stack, PC = new location

Description
This instruction is similar to JMP but first pushes the current program
counter plus 2 onto the stack. When a RTS instruction is encountered
the program counter is then reset using the location that was previously
stored on the stack.

Op.Code | Addressing Mode | Assembly Lang. | No.Bytes | No.Cycles

&20 Absolute JSR aaaa 3 6

248

LDA

Status Register

NV e[z
A ML

Load Accumulator with Memory

Operation
A=M

Description
This instruction loads the accumulator with the contents of a specified
byte of memory.

Op.Code | Addressing Mode | Assembly Lang. | No.Bytes | No.Cycles
&A9 Immediate LDA #dd 2 2
&A5 Zero Page LDA aa 2 3
&B5 Zero Page,X LDA aa,X 2 4
&B2 (Indirect Zero Page)| LDA (aa) 2 5
&AD | Absolute LDA aaaa 3 4
&BD Absolute, X LDA aaaa,X 3 4*
&B9 Absolute,Y LDA aaaa,Y 3 4*
&A1 (Indirect,X) LDA (aa,X) 2 6
&B1 (Indirect),Y LDA (aa),Y 2 5*

Add 1 cycle if page boundary crossed

249

LDX

Status Register

NV e[z
A ML

Load X Register with Memory

Operation
X=M

Description
This instruction loads the X register with the contents of a specified
byte of memory.

Op.Code | Addressing Mode | Assembly Lang. | No.Bytes | No.Cycles
&A2 Immediate LDX #dd 2 2
&A6 Zero Page LDX aa 2 3
&B6 Zero Page,Y LDX aaY 2 4
&AE Absolute LDX aaaa 3 4
&BE Absolute,Y LDX aaaa,Y 3 4*

* Add 1 cycle if page boundary crossed

250

LDY

Operation
Y=M

Description
This instruction loads the Y register with the contents of a specified
byte of memory.

Status Register

NV e[z
A ML

Load Y Register with Memory

Op.Code | Addressing Mode | Assembly Lang. | No.Bytes | No.Cycles
&A0 Immediate LDY #dd 2 2
&A4 Zero Page LDY aa 2 3
&B4 Zero Page,X LDY aa,X 2 4
&AC | Absolute LDY aaaa 3 4
&BC | Absolute,X LDY aaaa,X 3 4*

Add 1 cycle if page boundary crossed

251

LSR

Status Register

NV e[z
o[- I - -]

Logical Shift Right

Operation
C=My, M=M/2

Description
Shift the contents of a memory location or the accumulator one bit to the
right. This operation effectively divides by two and leaves any remainder
in the carry flag.

Op.Code | Addressing Mode | Assembly Lang. | No.Bytes | No.Cycles
&4A Accumulator LSR A 1 2
&46 Zero Page LSR aa 2 5
&56 Zero Page,X LSR aa,X 2 6
&4E Absolute LSR aaaa 3 6
&5E Absolute, X LSR aaaa,X 3 6*

* Add 1 cycle if page boundary crossed

252

NOP NREEEE
BEEEEEEE

No Operation

Operation
No operation

Description
This is an instruction which has no effect other than to use up a memory
location and take 2 cycles. It may be used to reserve space or to replace
redundant code without having to re-assemble.

Op.Code | Addressing Mode | Assembly Lang. | No.Bytes | No.Cycles

&EA [Implied NOP 1 2

253

ORA

Status Register

NV e[z
A ML

OR Memory with Accumulator

Operation
A=AORM

Description
A logical OR is performed between the accumulator and a memory
location. The result is then left in the accumulator.

Op.Code | Addressing Mode | Assembly Lang. | No.Bytes | No.Cycles
&09 Immediate ORA #dd 2 2
&05 Zero Page ORA aa 2 3
&15 Zero Page,X ORA aaX 2 4
&12 (Indirect Zero Page)| ORA (aa) 2 5
&0D Absolute ORA aaaa 3 4
&1D Absolute, X ORA aaaa,X 3 4*
&19 Absolute,Y ORA aaaaY 3 4
&01 (Indirect,X) ORA (aa,X) 2 6
&11 (indirect),Y ORA (aa),Y 2 5*

Add 1 cycle if page boundary crossed

254

PHA

Operation
Push Accumulator

Description
This instruction pushes the contents of the accumulator onto the stack.

Status Register

NV e[z
I L]

Push Accumulator onto Stack

Op.Code

Addressing Mode

Assembly Lang.

No.Bytes

No.Cycles

&48

Implied

PHA

1

3

255

PHP NREEEE
BEEEEEEE

Push Processor Status onto Stack

Operation
Push Status register (P)

Description
This instruction pushes the contents of the status register onto the stack.

Op.Code | Addressing Mode | Assembly Lang. | No.Bytes | No.Cycles

&08 Implied PHP 1 3

256

PHX

Operation
Push X register

Description
This instruction pushes the contents of the X register onto the stack.

Status Register

NV e[z
I L]

Push X Register onto Stack

Op.Code

Addressing Mode

Assembly Lang.

No.Bytes

No.Cycles

&DA

Implied

PHX

1

3

257

PHY

Operation
Push Y register

Description
This instruction pushes the contents of the Y register onto the stack.

Status Register

NV e[z
I L]

Push Y Register onto Stack

Op.Code

Addressing Mode

Assembly Lang.

No.Bytes

No.Cycles

&5A

Implied

PHY

1

3

258

PLA

Operation
Pull Accumulator

Description
This instruction pulls a value from the stack into the accumulator.

Status Register

NV e[z
A ML

Pull Accumulator from Stack

Op.Code

Addressing Mode

Assembly Lang.

No.Bytes

No.Cycles

&68

Implied

PLA

1

4

259

PLP

Operation
Pull Status register (P)

Description
This instruction pulls a value from the stack into the status register.

Status Register

NV e[z
MMBAYYMMY

Pull Processor Status from Stack

Op.Code

Addressing Mode

Assembly Lang.

No.Bytes

No.Cycles

&28

Implied

PLP

1

4

260

PLX

Operation
Pull X register

Description
This instruction pulls a value from the stack into the X register.

Status Register

NV e[z
A ML

Pull X Register from Stack

Op.Code

Addressing Mode

Assembly Lang.

No.Bytes

No.Cycles

&FA

Implied

PLX

1

4

261

PLY

Operation
Pull Y register

Description
This instruction pulls a value from the stack into the Y register.

Status Register

NV e[z
A ML

Pull Y Register from Stack

Op.Code

Addressing Mode

Assembly Lang.

No.Bytes

No.Cycles

&7A

Implied

PLY

1

4

262

ROL

Status Register

NV e[z
MERBRRMY

Rotate Left

Operation
C=M;,, M=M*2, Mo=C

Description
Rotate the contents of a memory location or the accumulator one bit to
the left.

Op.Code | Addressing Mode | Assembly Lang. | No.Bytes | No.Cycles
&2A Accumulator ROL A 1 2
&26 Zero Page ROL aa 2 5
&36 Zero Page,X ROL aaX 2 6
&2E Absolute ROL aaaa 3 6
&3E Absolute, X ROL aaaa,X 3 6*

* Add 1 cycle if page boundary crossed

263

ROR

Status Register

NV e[z
MERBRRMY

Rotate Right

Operation
C=Mo, M=M/2, M;=C

Description
Rotate the contents of a memory location or the accumulator one bit to
the right.

Op.Code | Addressing Mode | Assembly Lang. | No.Bytes | No.Cycles
&6A Accumulator ROR A 1 2
&66 Zero Page ROR aa 2 5
&76 Zero Page,X ROR aaX 2 6
&6E Absolute ROR aaaa 3 6
&7E Absolute, X ROR aaaa,X 3 6*

* Add 1 cycle if page boundary crossed

264

RTI

Status Register

NV e[z
MMBAYYMMY

Return from Interrupt

Operation
Pull Status register (P), pull Program counter (PC)
Description
This instruction pulls both P and PC from the stack on return from an
interrupt.
Op.Code | Addressing Mode | Assembly Lang. | No.Bytes | No.Cycles
&40 Implied RTI 1 6

265

RTS NREEEE
BEEEEEEE

Return from Subroutine

Operation
Pull Program counter (PC)

Description
This instruction is used in conjunction with JSR to terminate a subroutine.
RTS pulls into the program counter the values pushed by JSR from the
stack. Execution is then resumed just after the original JSR.

Op.Code | Addressing Mode | Assembly Lang. | No.Bytes | No.Cycles

&60 Implied RTS 1 6

266

SBC NREEEE
YMEREENE

Subtract from Accumulator with Carry

Operation
AC=A-M-(1-C)

Description
This subtracts the contents of a memory location from the accumulator.
The carry flag is used as a borrow and is usually set before a subtraction.
When the carry flag is clear 1 is also taken away, thus allowing multiple
byte subtraction.

Op.Code | Addressing Mode | Assembly Lang. | No.Bytes | No.Cycles
&E9 Immediate SBC #dd 2 2
&E5 Zero Page SBC aa 2 3
&F5 Zero Page,X SBC aaX 2 4
&F2 (Indirect Zero Page)| SBC (aa) 2 5
&ED | Absolute SBC aaaa 3 4
&FD Absolute, X SBC aaaa,X 3 4*
&F9 Absolute,Y SBC aaaa,Y 3 4
&E1 (Indirect,X) SBC (aa,X) 2 6
&F1 (Indirect),Y SBC (aa),Y 2 5*

* Add 1 cycle if page boundary crossed

267

SEC NREEEE
BEEEEEED

Set Carry Flag
Operation
Carry flag = 1
Description
This instruction sets the carry flag and is mainly used to prepare for SBC
or ADC.

Op.Code | Addressing Mode | Assembly Lang. | No.Bytes | No.Cycles

&38 Implied SEC 1 2

268

SED NREEEE
BEEEOEEE

Set Decimal Mode
Operation
Decimal flag = 0
Description
This instruction switches the 65C12 to binary coded decimal arithmetic
mode.

Op.Code | Addressing Mode | Assembly Lang. | No.Bytes | No.Cycles

&F8 Implied SED 1 2

Note: The 65C12 takes one cycle more than the 6502 to perform decimal mode
arithmetic.

269

SEI NREEEE
BEEEEOEE

Set Interrupt Disable Status

Operation
Interrupt flag = 1

Description
This instruction disables maskable interrupts by setting the interrupt flag.
While set all normal MOS functions will be suspended until a CLI is
performed.

Op.Code | Addressing Mode | Assembly Lang. | No.Bytes | No.Cycles

&78 Implied SEI 1 2

270

STA NREEEE
BEEEEEEE

Store Accumulator in Memory

Operation
M=A

Description
This instruction stores the accumulator’s contents to a specified memory
location.

Op.Code | Addressing Mode | Assembly Lang. | No.Bytes | No.Cycles
&85 Zero Page STA aa 2 3
&95 Zero Page,X STA aaX 2
&92 (Indirect Zero Page)| STA (aa) 2 5
&8D Absolute STA aaaa 3 4
&9D Absolute, X STA aaaa,X 3 5
&99 Absolute,Y STA aaaa,Y 3 5
&81 (Indirect,X) STA (aa,X) 2 6
&91 (Indirect),Y STA (aa),Y 2 6

271

STX

Status Register

NV e[z
I L]

Store X Register in Memory

Operation
M =X

Description
This instruction stores the X register’s contents in a specified memory
location.

Op.Code | Addressing Mode | Assembly Lang. | No.Bytes | No.Cycles
&86 Zero Page STX aa 2 3
&96 Zero Page,Y STX aaY 2 4
&8E Absolute STX aaaa 3 4

272

STY

Status Register

NV e[z
I L]

Store Y Register in Memory

Operation
M=Y

Description
This instruction stores the Y register’s contents in a specified memory
location.

Op.Code | Addressing Mode | Assembly Lang. | No.Bytes | No.Cycles
&84 Zero Page STY aa 2 3
&94 Zero Page,X STY aaX 2 4
&8C Absolute STY aaaa 3 4

273

STZ

Operation

M=0

Description
STZ clears a byte of memory by storing zero at the specified location.
CLR is an alternative mnemonic.

Clear Memory

Status Register

NV e[z
I L]

Op.Code | Addressing Mode | Assembly Lang. | No.Bytes | No.Cycles
&64 Zero Page STZ aa 2 3
&74 Zero Page,X STZ aaX 2 4
&9C Absolute STZ aaaa 3 4
&9E Absolute, X STZ aaaa,X 3 5

274

TAX

Transfer Accumulator to X Register

Operation

X=A

Description
This instruction copies the contents of the accumulator to the X register.

Status Register

NV e[z
A ML

Op.Code

Addressing Mode

Assembly Lang.

No.Bytes

No.Cycles

&AA

Implied

TAX

1

2

275

TAY

Transfer Accumulator to Y Register

Operation

Y=A

Description
This instruction copies the contents of the accumulator to the Y register.

Status Register

NV e[z
A ML

Op.Code

Addressing Mode

Assembly Lang.

No.Bytes

No.Cycles

&A8

Implied

TAY

1

2

276

TRB

Operation

M=

(A EOR &FF) AND M

Description
This instruction ANDs the complement of the accumulator with the
specified memory location and stores the result in that location. The Z

flag is set if AAND M = 0.

Status Register

NV e[z
L]

Test and Reset Bits

Op.Code | Addressing Mode | Assembly Lang. | No.Bytes | No.Cycles
&14 Zero Page TRB aa 2 5
&1C Absolute TRB aaaa 3 6

277

TSB NREEEE
BEEEEENE

Test and Set Bits

Operation
M=AORM

Description
This instruction ORs the accumulator with the specified memory location
and then stores the result in that location. The Z flag is set if
A AND M = 0.

Op.Code | Addressing Mode | Assembly Lang. | No.Bytes | No.Cycles

&04 Zero Page TSB aa 2 5
&0C Absolute TSB aaaa 3 6

278

TSX NREEEE
YEEEEENE

Transfer Stack Pointer to X Register

Operation
X = Stack pointer (S)

Description
This instruction copies the contents of the stack pointer to the X register.

Op.Code | Addressing Mode | Assembly Lang. | No.Bytes | No.Cycles

&BA [Implied TSX 1 2

279

TXA

Transfer X Register to Accumulator

Operation

A=X

Description
This instruction copies the contents of the X register to the accumulator.

Status Register

NV e[z
A ML

Op.Code

Addressing Mode

Assembly Lang.

No.Bytes

No.Cycles

&8A

Implied

TXA

1

2

280

TXS NREEEE
BEEEEEEE

Transfer X Register to Stack Pointer

Operation
Stack pointer (S) = X

Description
This instruction copies the contents of the X register to the stack pointer.

Op.Code | Addressing Mode | Assembly Lang. | No.Bytes | No.Cycles

&9A Implied TSX 1 2

281

TYA

Transfer Y Register to Accumulator

Operation

A=Y

Description
This instruction copies the contents of the X register to the accumulator.

Status Register

NV e[z
A ML

Op.Code

Addressing Mode

Assembly Lang.

No.Bytes

No.Cycles

&98

Implied

TYA

1

2

282

INDEX

A-to-D converter, 17

AC Parametric test (peripheral bus), 65
Access Control (ACCCON), 27

Access restrictions RTCRAM, 35
Acorn approval, 72

ADC, 216

Address space allocation, 73

Address space map, 77

ADFS track format, 146

ADVAL (Master Compact), 199
Advanced Network Filing System, 148
Alarm, 34

Analogue port, 17

Analogue to Digital converter, 17

AND, 217

ANDY, 30

ANFS, 148

ANFS and NFS, differences, 200
ANFS configuration, 33

ANFS enhancements, 154

ANFS error messages, 155

ANFS OS commands, 149

ANFS Printing, 154

ANFS/DFS compatibility, 157
ANFS/NFS, routines to check which, 159
APC sequence, 160

Approval of equipment by Acorn, 72
Architecture, 12

Aries B32 Shadow RAM, compatibility, 170
ASL, 218

Audio Generator, 14, 33

Automatic motor control, 22

AUTO, 204

Auxiliary control register (User VIA), 56
B Bus drive waveforms, 68

Base processor, 12

BASIC 4 changes from earlier versions, 203
Baud rate generator, 61

BBC Micro Expansion Box, 74

BBR (Rockwell 65C02 only), 219

BBS (Rockwell 65C02 only), 220

BCC, 221

BCS, 222

BEQ, 223

BIT, 224

BMI, 225

BNE, 226

Bootstrapping (ANFS), 157

BPL, 227

BRA (65C12 only), 228

Bridges (ANFS), 158

BRK instruction, 88, 229

Buffer transfer (Editor/Language), 161

Buffers, ANFS, 148

BVC, 230

BVS, 231

C Bus drive waveforms, 67

Cartridge interface, 210

Cartridge pinout, Master 128, 211

Cartridge ROM, 30

Cartridge sockets, 189

Changes between:
BASIC 4 and earlier versions, 203
NFS to ANFS, 200
Master 128 and B/B+, 171
Master 128 and Compact, 190

Master 128 memory map from B/B+, 186

Changes: Model B+ and Model B, 165
Character definitions (memory), 83
Circuit description, 19

Circuit operation detail, 24

CLC, 232

CLD, 233

CLI (mnemonic), 234

CLI buffer, 83

Clock, 15

Clock rate, CPU, 19

Clock signals, 24

CLR (65C12 only), 235

CLV, 236

CMOS RAM, 15

CMOS RAM byte allocation, 33

CMP, 237

CNPV, 94

CODE key (Master Compact), 197
Column detection mode (keyboard), 39
Compact, 190

Comparison of memory map (M128 & B/B+), 186

Compatibility ANFS/DFS, 157
Composite video, 44

Control registers, video, 45
Controller chip, CRT, 46
Controller, keyboard, 37
Controller, Peripheral Bus, 63
Co-processor (80186), 131
CP/M, 123

CP/M character I/0, 126

CP/M device assignments, 126

283

CP/M device characteristics, 129

CP/M disc format, 147

CP/M IOBYTE facility, 127

CP/M logical devices, 128

CP/M physical devices (Acorn), 128

CP/M screen control, 125

CP/M System patch area, 130

CP/M Terminal Emulator codes, 125

CPX, 238

CPY, 239

Cathode Ray Tube Controller chip, 46

CRTC chip registers, 47

CRTC Multiplexer, 48

Data Bus (Slow), 32

Data register (User VIA), 53

DEA/DEC A (65C12 only), 240

DEC, 240

Detailed circuit operation, 24

DEX, 241

DEY, 242

DFS (B+), 169

DFS track format, 145

DFS/ANFS compatibility, 157

Differences between:
NFS and ANFS, 200
Master 128 & B/B+, 171
Master 128 & Compact, 190
Model B+ and Model B, 165

Disc Filing Systems, 145

Display, 42

DRAM, 12

DRAM timing, 31

Dual Processor Systems, 98

Dynamic RAM chip (4464), 19

Dynamic RAM timing, 31

E Bus drive waveforms, 69

ECONET, 22

Econet terminal, 185

Editor (Master 128), 161, 183

EDIT, 204

EEPROM (Master Compact), 194

EOR, 243

Equipment approval by Acorn, 72

Error messages, ANFS, 155

Error messages, extended in ANFS, 202

Events on reception (ANFS), 159

Events (Z80), 121

EVNTV, 87, 96

Expansion box, 74

Expansion Port (Compact), 191

Expansion Port pinout (Compact/M128), 192

EXT# change in BASIC 4, 204

Extending the MOS, 84

External second processor, 17
File buffers, ANFS, 148
Filing System vector, 93
Formatting characters, View, 162
Formatting discs, 145
Free run mode (keyboard), 39
FSCV, 93
General description, 12
GSREAD format, 160
Half-frames (TV), 50
Hardware Control Locations (B+), 168
Hardware requirements, 1MHz Bus, 70
Hardware scroll, 43
Hardware scroll and CRTC Multiplexer, 49
HAZEL, 29
HELP information (Master 128), 183
High resolution screen modes, 42
Host processor, 98
1/0O address space with ANFS, 157
I/O processor, 99
1/0 processor, Z80 memory usage, 124
INA/INC A (65C12 only), 244
INC, 244
INDirect Vectors, 95
INSV, 94
Internal hardware strobes, 16
Internal second processor, 16
Interrupt flag register (User VIA), 58
Interrupt handling, Z80, 122
Interrupt request vectors, 96
Introduction, 12
INX, 245
INY, 246
IRQ1V & IRQ2V, 96
IRQs, 96
JMP, 247
Joystick/Mouse (Master Compact), 194
JSR, 248
Keyboard, 24, 33
Keyboard buffer (Master Compact), 197
Controller, 37
matrix, 40
timings, 40
KEYV, 90
Language processor, 12, 98
LDA, 249
LDX, 250
LDY, 251
Library (ANFS), 157
Light pens, 48
LIST IF, 203
LISTO, 203
Logical colour, 20

284

LSR, 252

Luminance balance (TV), 21

LYNNE, 28

Machine Operating System, 77
Master 128 Cartridge interface, 210
Master 128 PCB links, 205

Master 128 Sideways ROMs, 175
Master 128 versus Compact, 190
Master 128 versus Model B/B+, 171
Master 128 VDU Commands, 176
Master Compact Expansion Port, 191
Master Compact PCB links, 208
Master Compact test points, 207
Master Compact versus Master 128, 190
Matrix, keyboard, 33, 40

Memory access control (80186), 143
Memory consistency check, View, 164
Memory format, View, 163

Memory map, 27

Memory map changes (Master 128), 186
Misc functions control register, 45
Model B/B+ versus Master 128, 171
Modulator, 20

MOS, 77

MOS CLI buffer, 83

MOS Function vector table, 86

MOS version, read/display (B/B+), 165
MOS version (Electron/B+), 166

MOS workspace, 83

Monitor (Z280), 122

Monitor commands (80186), 138
Motor control example, 59

Multiplexer, CRTC, 48

NEC mPD7002 A-to-D converter, 17
NETV, 95

Network collisions, 23

Network number, 158

NFS and ANFS, differences, 200
NFS/ANFS, routines to check which, 159
NMI Workspace, claiming, 118
Non-Maskable Interrupts, 118

NOP, 253

NTSC video output, 44

Number register locations, View, 164
Optional component fitting, 209

ORA, 254

OS calls, Z80 (general), 120

OS commands, new in Master 128, 172
OSARGS (80186), 133

OSARGS (ANFS), 154

OSARGS (Tube), 109

OSASCI (80186), 133

OSBGET (80186), 132

OSBGET (Tube), 109
OSBPUT (80186), 132
OSBPUT (Tube), 108
OSBYTE (80186), 134
OSBYTE (Tube), 107
OSBYTE 0 (B+), 165
14 (&0E), 96
96 (&60), 160

151 (&97), 52
190 (&BE) (Master Compact), 195
239 (&EF) (B+), 167
OSBYTE call summary, Master 128, 174
OSCLI (Tube), 106
OSFILE (80186), 133
OSFILE (ANFS), 154
OSFILE (Tube), 109
OSFIND (80186), 132
OSFIND (Tube), 109
OSGBPB (80186), 132
OSGBPB (Tube), 110
OSNEWL (80186), 133
OSRDCH (80186), 133
OSRDCH (Tube), 106
OSRDSC (B+), 167
OSWORD 5 and 6 (B+), 168
OSWORD 114 (&72) bug, 193
OSWORD 250 (&FA) (80186), 142
OSWORD 255 (&FF) (Z80), 123
OSWORD (80186), 134
OSWORD (Tube), 107
OSWRCH (80186), 134
OSWRCH (Tube), 106
OSWRSC (B+), 167
Overlaid RAM in ROM area, 30
Page signals, 73
Paged Mode algorithm, 185
Paging memory, 27
Page 0, 77
Page 0 and 1 (changes from B/B+ shown), 186
Pages 1 to &D, 78
Page 2 to 9 (changes from B/B+ shown), 187
Pages &A to &D (changes from B/B+), 188
Pages &E to &7F, 80

285

Pages &80 to &BF, 80

Pages &CO0 to &DF, 82

Page &FC, 72, 73, 82

Page &FD, 74, 82

Page &FF, 82

PAL video output, 44

Palette, 20

Palette control register, 46
Parallel printer port, 52

Parasite processor, 98

Parasite protocols, 105

PCB link settings, 189

PCB links, Master 128, 205
PCB links, Master Compact, 208
PCB selection and test points, 205
Pens, 48

Peripheral Bus, 63

Peripheral Bus controller, 63
Peripheral Bus, 1/0O definition, 64
Peripheral Bus, timing spec, 65
Peripheral control register (User VIA), 57
PHA, 255

PHP, 256

PHX (65C12 only), 257

PHY (65C12 only), 258

Physical colour, 20

PLA, 259

PLP, 260

PLX (65C12 only), 261

PLY (65C12 only), 262
Pre-compensation (Master Compact), 193
Print vector (user), 92

Printer port, parallel, 52

Printing (ANFS), 154

Private RAM, 188

Processor, serial, 61

RAM, 28

RAM overlaid in ROM area, 30
Random Access memory, 28
Re-tries with ANFS, 158

Read MOS version (Electron/B+), 166
Read/display MOS version (B/B+), 165
Real Time Alarm, 34

Real time clock, 14

Recursion in FOR loops, 204
Refresh control, 49

Registers, CRTC chip, 48
REMV, 94

Reserved characters, View, 162
RGB output, 44

ROL, 263

ROM Cartridge selection, 30
ROMSELect, 30

ROR, 264

Row detection mode (keyboard), 39
RS423 buffering, 61

RTCRAM access restrictions, 35
RTI, 265

RTS, 266

SAA5050 devices, 43

SAA5050 teletext character generator, 20
SBC, 267

Schottky TTL loads, 72

Screen display, 42

Screen modes, 42

Screen modes, teletext, 43
Second Processor (Z80), 120
Second Processor (80186), 131
Second Processor architecture, 98
Second Processor, external, 17
SEC, 268

SED, 269

SEl, 270

Serial interfaces, 21

Serial Processor, 61

SERPROC, 61

Shadow mode OSBYTE calls (B+), 166
Shadow screen (B+), 165

Shadow screen memory, 82

Shift register (User VIA), 54
Sideways ROM headers, illegal, 185
Sideways ROMs, new service calls, 175
Sideways ROM (B+), 169

Signal definitions, 1MHz Bus, 70
Slow Data Bus, 32

SN7694A sound generator, 14
Soft Key definitions, 186

Soft Key expansion buffer, 82
Sound Generator, 14, 33

STA, 271

STX, 272

STY, 273

STZ (65C12 only), 274

System configuration, 33

System VIA, 15

TAX, 275

TAY, 276

Teletext adapter, 72

Teletext character generator, 20
Teletext modes, 43

Terminal Emulator, 160

Terminal file transfer, 160

Test points, Master Compact, 207
Time & Date (ANFS), 157
Time-dependent functions, 96
Time-independent functions, 84

286

Timing requirements, peripherals, 75

Timings, keyboard, 40

Track format, ADFS, 146

Track format, DFS, 145

TRB (65C12 only), 277

TSB (65C12 only), 278

TSX, 279

TUBE, 16, 63, 69, 99

Tube code in 1770 DFS ROM, 169

Tube protocols (general), 101

Tube, checking for presence, 114
claiming, 114
data transfer, 116
filing system usage, 103
hardware dependency, 106
host protocols, 113
initiating data transfer, 115
Interrupt-driven operations, 110
non-interrupt protocols, 106
OS usage, 102
OSARGS protocol, 109
OSBGET protocol, 109
OSBPUT protocol, 108
OSBYTE protocol, 107
OSCLI protocol, 106
OSFILE protocol, 109
OSFIND protocol, 109
OSGBPB protocol, 110
OSRDCH protocol, 106
OSWORD protocol, 107
OSWRCH protocol, 106
parasite protocols, 105
register addresses, 113
register locations, 116
releasing, 116
startup protocol, 113
transferring data, 116
vectors, 105

Tube/Filing System interface, 117

TV modulator, 20

TXA, 280

TXS, 281

TYA, 282

UPTV, 91

URD (ANFS), 156

Use of EPROMS for memory, 81

User bytes in CMOS RAM, 33

User library (ANFS), 157

User Port, 52

User print vector, 92

User Root Directory (ANFS), 156

User VIA aux control register, 56

User VIA data register, 53

User VIA interrupt flag register, 58
User VIA peripheral control register, 57
User VIA shift register, 54

USERYV, 90

VDU Commands Master 128, 176
VDU driver, 49

VDU trailing zeros, 204

VDU workspace allocations, 84

VDU workspace, 83

VDU18, 176

VvDU22, 176

vDU23, 177

VDU24, 180

VDU25, 180

VDU26-255, 182

VDUV, 91

Vector table, 86

Vectors in co-processors, 85

Vectors in Sideways ROM/RAM, 85
VIA, 15

Video control registers, 45

Video outputs, 44

Video processor, 44

View, 162

View, formatting characters, 162
View, memory consistency check, 164
View, memory format, 163

View, number register locations, 164
View, reserved characters, 162
Viewsheet, 164

WD1770 FDC, 23

WD1770 floppy disc controller, 146
Wrong versions (ANFS), 158

Z80 Escape processing, 122

Z80 faults and events, 121

Z80 I/0 memory usage, 124

Z80 interrupt handling, 122

Z80 Monitor, 122

Z80 OS calls (general), 120

Z80 OSWORD call, 123

Z80 Second Processor, 120

*CDIR (ANFS), 149

*command abbreviation clashes, 185
*COMPACT (Master Compact), 193
*CONFIGURE (Master Compact), 194
*CONFIGURE commands (ANFS), 152

*CONFIGURE FDRIVE (Master Compact), 194

*CONFIGURE, 171

*D (80186), 139

*DIR (Master 128), 186
*DOS (80186), 139
*DRIVE (Compact), 192
*DRIVE (Master 128), 185

287

*F (80186), 139 80186 Escape processing, 138

*FLIP (ANFS), 149 80186 extra OSWORD call (OFAh), 142
*FORMAT (Master Compact), 193 80186 Monitor commands, 138
*FS (ANFS), 150 80186 OS calls, 131

*FXO0 (B+), 165 OSARGS, 133

*FX16 default (Master Compact), 197 OSASCI, 133

*FX25 (Master Compact), 198 OSBGET, 132

*FX112, 50 OSBPUT, 132

*FX113, 50 OSBYTE, 134

*FX114 (B+), 166 OSCLI, 134

*FX138 (Master Compact), 197 OSFILE, 133

*FX221-8 (Master Compact), 197 OSFIND, 132

*GO (80186), 140 OSGBPB, 132

*HELP (ANFS), 149 OSNEWL, 133

*| AM (ANFS), 150 OSRDCH, 133

*LCAT (ANFS), 150 OSWORD, 134

*LEX (ANFS), 150 OSWRCH, 134

*MON (80186), 140 80186 Second Processor, 131
*OPT extra commands (ANFS), 153 80186 software interrupts, 131
*PASS (ANFS), 150 8271 code compatibility, 169

*POLLPS (ANFS), 151

*PROT (ANFS), 151

*PS (ANFS), 152

*RENAME wildcards (Master Compact), 193
*S (80186), 140

*SR (80186), 141

*STATUS commands (ANFS), 153
*TFER (80186), 142

*UNPROT (ANFS), 152

*WDUMP (ANFS), 152

*WIPE (ANFS), 151

146818 RTC chip, 15

1770 Floppy Disc Controller (B+), 169
1MHz Bus, 70

1MHz Bus peripherals (note), 69
1MHz External I/O, 17

1MHz Internal I/O, 15

2MHz Internal I/O, 16

4464 Dynamic RAM, 19

6502 Instruction Set, 216

6522 VIA, 15, 21

65C12 (65SC12), 19

65C12 & 65C102 opcode compatibility, 106
65C12 Instruction Set, 216

6845 CRT controller, 17, 42

6850 ACIA, 21

6850 Control register settings, 62
6850 UART, 61

6854 ADLC, 22

80186 Co-processor, 131

80186 data buffer example, 144
80186 error handling, 135

80186 error messages, 136

288

&l

Jessa House, 250 High Street, Watford, WD1 2AN, England
Tel: Watford (0923) 37774, Telex: 8956095 WATFRD, Fax: 01 950 8989

	Introduction
	1. The Master Series Architecture
	Introduction
	Core Machine
	Internal I/O
	External I/O

	Internal Input/Output
	Slow peripherals
	Sound Generator
	Real time clock with RAM
	Configuration Status
	Clock
	1MHz Internal I/O
	System VIA
	2MHz Internal I/O

	External Input/Output
	1MHz External I/O
	Analogue Port
	Light Pen

	2MHz External I/O
	External Second Processor

	2. Circuit Description
	Detailed circuit operation

	3. Memory Organisation
	Memory Map
	Random-Access Memory
	ROMSEL
	Overlaid RAM in ROM area
	DRAM timing

	4. Slow Data Bus
	Memory Locations
	Slow Data Control Port
	Keyboard
	Sound Generator
	Real-time clock/CMOS RAM
	CMOS RAM Allocation
	Real Time Alarm Functions
	RTCRAM Access Restrictions

	5. Keyboard Controller
	Keyboard Operation
	KBDENC connections
	Free running mode
	Column scan mode
	Row scan mode
	Keyboard Matrix
	INKEY Numbers

	6. Screen Display
	Screen Output
	High Resolution Modes
	Teletext
	Hardware Scroll
	Video Output
	Video Processor
	Control Registers
	Functions Control Register
	Palette Control Register

	Cathode Ray Tube Controller
	CRTC Multiplexer
	Internal Timing
	Hardware Scroll
	Refresh Control
	Multiplexing

	The VDU driver

	7. The User Port
	Timers
	User Port Data Register
	User Port Data Direction Register
	T1 Low Order Counter/Latch (R/W)
	T1 High Order Counter (R/W)
	T1 Low Order Latch (R/W)
	T1 High Order Latch (R/W)
	T2 Low Order Counter/Latch (R/W)
	T2 High Order Counter (R/W)
	Shift Register
	Auxiliary Control Register (R/W)
	Peripheral Control Register
	Independent Mode
	Interrupt Flag Register
	Interrupt Enable Register
	Example of motor control

	8. The Serial Processor
	UART
	SERPROC
	Buffer Components
	Control Register Settings

	9. Peripheral Bus Controller
	Internal Timing
	Buffer Control
	Timer
	I/O Definition
	AC Parametric Test Information
	SA data latching point
	SL data latching point
	C Bus Drive Waveforms
	B Bus Drive Waveforms
	E bus drive waveforms

	10. The 1MHz Bus
	Signal definitions
	Hardware requirements
	Further requirements
	Derivation of valid Page signals
	Address space allocation
	Page FC
	Page FD

	Timing requirements

	11. The Machine Operating System
	Address space map
	Page 0
	Pages 1 to &D
	Pages &E to &7F
	Pages &80 to &BF
	Pages &C0 to &DF and page &FF
	Page &FC
	Page &FD
	The Second 32K of RAM

	VDU Workspace
	VDU workspace allocations
	Extending the MOS
	Time-Independent Functions
	Vectors in co-processors
	Vectors in Sideways ROM/RAM
	MOS Function Vector Table
	Entry pointed vectors
	Vectors without MOS entry points

	EVENTV
	BRK instruction
	Single processor systems
	Co-processor systems

	USERV
	KEYV
	VDUV
	UPTV
	FSCV
	INSV
	REMV
	CNPV
	NETV
	INDirect Vectors
	Time-dependent functions
	EVENTV

	12. Dual Processor Systems
	Second processor architecture
	The Tube
	Tube Architecture
	Tube Protocols
	Operating System Usage
	Filing System Usage
	Parasite Protocols
	Vectors
	Hardware Dependency
	Host Hardware
	Parasite Hardware

	Non-Interrupt protocols
	OSWRCH
	OSRDCH
	OSCLI
	OSBYTE
	OSWORD
	OSBPUT
	OSBGET
	OSFIND
	OSARGS
	OSFILE
	OSGBPB

	Interrupt driven operations
	Startup protocol
	Register Addresses
	Tube protocols
	Host Protocols
	Check for presence of the Tube
	Claiming the Tube
	Initiating data transfer
	Transferring data
	Releasing the Tube

	Register Locations
	Tube/filing system interface
	LOAD/SAVE addresses

	Use of the Non-Maskable Interrupt
	Claiming NMI workspace
	Hardware access to the NMI

	13. Z80 Second Processor
	Operating system calls
	Faults and events
	6502 Faults
	Z80 Faults
	Events

	Escape processing
	Interrupt handling
	NMI Non-maskable interrupt
	INT Interrupt request

	Z80 Monitor
	Z80 OSWORD call
	I/O Processor Memory Usage
	Screen Control
	BBC Microcomputer Control Codes
	Terminal Emulator Control Codes
	GSX Functions

	Character I/O under CP/M
	Device assignments
	The IOBYTE facility
	Device characteristics

	The System Patch Area

	14. 80186 Second Processor
	Operating System Calls
	OSFIND
	OSGBPB
	OSBPUT
	OSBGET
	OSARGS
	OSFILE
	OSRDCH
	OSASCI
	OSNEWL
	OSWRCH
	OSWORD
	OSBYTE
	OSCLI

	Error Handling by the Monitor
	Error Handling by languages/applications
	80186 Error Messages
	Escape Processing
	80186 Monitor
	80186 OSWORD call

	15. Disc Filing Systems
	DFS
	ADFS
	CP/M Disc Format

	16. Advanced Network Filing System
	Local buffering
	Operating System Commands
	*HELP
	*CDIR
	*FLIP
	*FS
	*I AM
	*LCAT
	*LEX
	*PASS
	*WIPE

	Extra Utils *commands
	*POLLPS
	*PROT
	*UNPROT
	*PS
	*WDUMP
	*CONFIGURE commands
	*STATUS commands

	Extra *OPT commands
	Printing
	Extra interfaces
	Interface enhancements
	Write only files
	OSFILE
	OSARGS

	Error messages
	URD reference point
	DFS compatibility
	Additional library functionality
	Time and Date
	I/O processor address space
	Automatic Bootstrapping
	Re-tries
	FS / Bridge net translation
	Version detection
	Entry of hexadecimal numbers
	Events on reception

	17. Terminal Emulator
	OSBYTE 96,x
	Terminal File Transfer

	18. The Editor
	Buffer Transfer
	From the language to Editor
	From Editor to the language

	19. View and Viewsheet Formats
	Reserved Characters and File Format
	VIEW formatting characters
	Memory Format
	Number Registers
	Viewsheet

	Appendix 1 - B and B+ differences
	Appendix 2 - B/B+ and M128 differences
	Appendix 3 - M128 and Compact differences
	Appendix 4 - NFS and ANFS differences
	Appendix 5 - Changes in BASIC 4
	Appendix 6 - PCB Links and Test Points
	Appendix 7 - Cartridge Interface
	Appendix 8 - 65C12 Instruction Set
	Index

