Apple il DOS Programmer’s Manual | i’

ForII, II+, lle

Customer Satisfaction

If you discover physical defects in the manuals distributed with an Apple product or in the
media on which a software product is distributed, Apple will replace the documentation or
media at no charge to you during the 90-day period after you purchased the product.

In addition, if Apple releases a corrective update to a software product during the 90-day
period after you purchased the software, Apple will replace the applicable diskettes and
documentation with the revised version at no charge to you during the six months after the
date of purchase.

In some countries the replacement period may be different; check with your authorized
Apple dealer. Return any item to be replaced with proof of purchase to Apple or an
authorized Apple dealer.

Limitation on Warranties
and Liability

Even though Apple has tested the software described in this manual and reviewed its
contents, neither Apple nor its software suppliers make any warranty or representation,
either express or implied, with respect to this manual or to the software described in this
manual, their quality, performance, merchantability, or fitness for any particular purpose. As
aresult, this software and manual are sold “as is,” and you the purchaser are assuming the
entire risk as to their quality and performance. In no event will Apple or its software suppliers
be liable for direct, indirect, incidental, or consequential damages resulting from any defect
in the software or manual, even if they have been advised of the possibility of such
damages. In particular, they shall have no liability for any programs or data stored in or used
with Apple products, including the costs of recovering or reproducing these programs or
data. Some states do not allow the exclusion or limitation of implied warranties or liability for
incidental or consequential damages, so the above limitation or exclusion may not apply
to you.

Copyright

This manual and the software (computer programs) described in it are copyrighted by
Apple or by Apple’s software suppliers, with all rights reserved. Under the copyright laws,
this manual or the programs may not be copied, in whole or part, without the written
consent of Apple, except in the normal use of the software or to make a backup copy. This
exception does not allow copies to be made for others, whether or not sold, but all of the
material purchased (with all backup copies) may be sold, given or loaned to another person.
Under the law, copying includes translating into another language.

You may use the software on any computer owned by you but extra copies cannot be made
for this purpose. For some products, a multi-use license may be purchased to allow the
software to be used on more than one computer owned by the purchaser, including a
shared-disk system. (Contact your authorized Apple dealer for information on multi-use
licenses.)

Product Revisions

Apple cannot guarantee that you will receive notice of a revision to the software described
in this manual, even if you have returned a registration card received with the product. You
should periodically check with your authorized Apple Dealer.

© Apple Computer, Inc., 1982
20525 Mariani Avenue
Cupertino, California 95014
(408) 996-1010

Apple and the Apple logo are registered trademarks of Apple Computer, Inc.
Simultaneously published in the U.S.A. and Canada. All rights reserved.

Reorder Apple Product #A2L.2012

Contents

Preface
Introduction
3 1.1 The DOS Environment
3 1.1.1 The DOS Disks
4 1.1.2 Requirements for Using DOS
4 1.1.3 AFew Conventions
5 1.2 How DOS Commands Are Described
5 1.2.1 Notation
5 1.2.2 Syntax
7 1.3 Direct DOS Commands
7 1.3.1 The CATALOG Command
8 1.3.2 The INIT Command
9 1.3.3 The RENAME Command
10 1.3.4 The LOCK Command
1 1.3.5 The UNLOCK Command
1 1.3.6 The DELETE Command
12 1.3.7 The VERIFY Command
13 1.3.8 The RUN Command
14 1.3.9 The LOAD Command
15 1.3.10 The SAVE Command
DOS Programming Tools
19 2.1 Ways of Using DOS Commands
19 2.1.1 Immediate Execution
20 2.1.2 Deferred Execution
20 2.1.3 Command Files
20 2.2 BASIC Program Files
22 2.2.1 Switching Languages with the FP and INT
Commands
24 2.2.2 Returning to BASIC from the Monitor Program

Contents

Xi

17

25 23

Using DOS From a Program

26 2.3.1 Example

27 2.3.2 Things to Watch Out For

28 2.4 Debugging With the MON and NOMON Commands

29 2.4.1 The MON Command

30 2.4.2 The NOMON Command

30 2.5 Intercepting Errors With Applesoft

31 2.5.1 Example

33 2.5.2 Finding Hidden Characters in a File Name

34 2.6 Talkingto Other Devices From a Program

34 2.6.1 Starting a Program With PR# and IN#

35 2.6.2 The PR# Command

36 2.6.3 The IN# Command

36 2.7 The RENUMBER Program

37 2.7.1 RENUMBER Commands

41 2.7.2 RENUMBER Error Messages

43 2.8 Summary

43 2.8.1 Commands

43 2.8.2 Program

Using Sequential Text Files 45

47 3.1 Comparing Sequential- and Random-Access Text Files

49 3.1.1 Choosing Sequential- or Random-Access Text Files

50 3.1.2 Current Position Pointer

50 3.2 Sequential-Access Text Files

50 3.2.1 The Field

53 3.2.2 Entering and Reading Text

61 3.2.3 Programs: Entering and Reading Text

65 3.3 Commands Used With Sequential-Access Text Files

65 3.3.1 The OPEN Command - Deferred Execution

66 3.3.2 The CLOSE Command - Immediate or Deferred
Execution

67 3.3.3 The WRITE Command - Deferred Execution

68 3.3.4 The READ Command - Deferred Execution

68 3.3.5 The POSITION Command - Deferred Execution

69 3.3.6 The APPEND Command - Deferred Execution

71 3.4 Command Summary

Contents

Using Random-Access Text Files 73

75
76
76
77
77
79
79
79
80
82
84
84
85

86
87

4.1

4.2
4.3

4.4

Random-Access Text Files

4.1.1 Record Length

4.1.2 Writing to a Record

4.1.3 Reading From a Record

A Demonstration: The RANDOM Program

A Sample Random-Access Program

4.3.1 Controlling the Program

4.3.2 Storing Records

4.3.3 Writing a Record

4.3.4 Reading a Record

Commands Used With Random-Access Text

4.4.1 The OPEN Command - Deferred Execution

4.4.2 The CLOSE Command - Immediate or Deferred
Execution

4.4.3 The WRITE Command - Deferred Execution

4.4.4 The READ Command - Deferred Execution

88 4.5 Command Summary

Programming With More Sophistication 89
91 5.1 Usinga Command File

92

94

96

99
101
101
102
103
103
105
106
107
108
108
109
109
113
113
113

5.2
5.3

5.4

5.5

5.6

5.7

5.5.1 The EXEC Demonstration

5.1.2 Creatinga Command File

5.1.3 Special-Purpose Command Files
The EXEC Command

The MAXFILES Command

5.3.1 Buffering Information

5.3.2 Example

CHAIN

5.4.1 The CHAIN Command - Integer BASIC
5.4.2 The CHAIN Program - Applesoft
The MASTER Program

5.5.1 Example

Making a Turnkey Disk

5.6.1 Creating a Turnkey Disk

5.6.2 Creating a Master Turnkey Disk
5.6.3 A Disk for All Systems

Summary

5.7.1 Commands

5.7.2 Program

Contents

Using Memory More Efficiently 115
117 6.1 Binary Files

118 6.1.1 Binary Addresses

118 6.1.2 Anand Ln: The Memory Address Arguments

119 6.2 The Binary Commands
120 6.2.1 The BRUN Command

121 6.2.2 The BLOAD Command
122 6.2.3 The BSAVE Command

124 6.3 DOS and the Monitor Program

125 6.3.1 Input and Output Registers of the Monitor Program
126 6.3.2 Input and Output Registers of DOS

127 6.4 Memory Usage and Entry Points

127 6.4.1 PR# and IN# in Memory

129 6.4.2 Memory Maps

133 6.4.3 DOS Entry Points

135 6.5 Binary Command Summary

Dealing With 13-Sector Disks 139
140 A.1 Converting 13-Sector Disks: The CONVERT13 Program
140 A.1.1 Example

143 A.1.2 The Wildcard Character

144 A.2 Running Unconverted 13-Sector Disks

144 A.2.1 Usingthe START13 Program

145 A.2.2 Using the BASICS Disk

The Storage Process 147

147 B.1 Tracks and Sectors
148 B.2 Contents of File Sectors

149 B.2.1 Format of File Sectors According to File Type
149 B.2.2 The Track/Sector List

151 B.2.3 The Disk Directory

155 B.2.4 The Volume Table of Contents

157 B.2.5 The Track Bit Map

158 B.3 Track and Sector Allocation
159 B.4 Addressing Tracks and Sectors: The RWTS Subroutine

160 B.4.1 Example
162 B.4.2 Formats: I/O Block and Device-Characteristics
Table

163 B.5 DOS Vectorsin Page 3
165 B.6 Zero Page Use

DOS Error Messages 167

168 C.1 DOS Error Messages
169 C.2 Recovering From Errors

Contents

Programs 177

177 D.1 Programs onthe SYSTEM MASTER Disk
178 D.2 Programs on the SAMPLE PROGRAMS Disk

Summary of DOS Operating Concepts and

Commands 181
181 E.1 Operating Concepts

181 E.1.1 Cold Start

182 E.1.2 Warm Start

182 E.1.3 Initializing a Disk

182 E.1.4 Creating a Master Disk

183 E.1.5 Interpreting Commands

183 E.1.6 Capacity

183 E.1.7 File Types
183 E.2 Command Notation
183 E.2.1 Conventions
184 E.2.2 Syntax

184 E.2.3 Arguments
186 E.3 Command Summary

187 E.3.1 Nonprogramming Commands for Accessing Disks

190 E.3.2 Commands that Control the Programming
Environment

192 E.3.3 Programming Commands for Sequential-Access
Text Files

195 E.3.4 Programming Commands for Random-Access Text
Files

197 E.3.5 Commands for Binary Files
Glossary 199
Index 21

Contents

An array is a table of elements (numbers
or words).

The next program reads the four fields from FOUR.FRUITS with one
input statement. It also displays them to show it's working.

1¢ REM GET.FRUIT WITH ONE INPUT STATEMENT
70 D$ = CHR$ (4) (D$ is (ConTroL)-(D))
25 PRINT D#%3i"MON C,I.,0" (Watchthe action)
3¢ PRINT D#%3"OPEN FOUR.FRUITS"
(Prepare FOUR.FRUITS for use)
4@ PRINT D#%3"READ FOUR.FRUITS"
(Specify file for input)
SO INPUT A$(@) +A$(1) »AS(Z2) » A$(3)
(If there are no parts leftin a
field, DOS reads the first part
from the next field)
8@ PRINT A%(@)" "A%(1)" "AK(2)" "A%(3)
(Print the fruits on the screen)
9¢ PRINT D%3"CLOSE FOUR.FRUITS"™
(Close FOUR.FRUITS when
done)
94 PRINT D#%3"NOMON C.I.0"
(Suppress the action)
96 END

You'll see this on your screen:
APPLE BANANA CANTALOUPE DATE

The next program reads four fields of the sequential-access text file
FOUR.FRUITS into successive elements of an array. The DIM
statement in line 15 sets aside space for an array of the specified
number of elements.

10 REM GET.FRUIT.INTO.CUPS USING AN ARRAY
15 DIM A%(3)
20 D$ = CHR$% (4) (D$ is (conTROL)-(D))
23 PRINT D#$3"MON C,I 0" (Watchthe action)
3¢ PRINT D$3"0OPEN FOUR.FRUITS"
(Prepare FOUR.FRUITS for use)
49 PRINT D$3i"READ FOUR.FRUITS"
(Prepare it for reading)

30 FOR I = @ TO 3 (For fields O through 3 read field |
BB : INPUT A%(I) from the file, and print it on the
7@ : PRINT A%(I) screen)

8@ NEXT I (Then do the next field)

9@ PRINT D$3"CLOSE FOUR.FRUITS"
(Close FOUR.FRUITS when
done)

Chapter 3: Using Sequential-Access Text Files

Figures and Tables

Appendix A Dealing With 13-Sector Disks

139 Figure A-1.
140 Figure A-2.
145 Figure A-3.

13-Sector Versus 16-Sector Disks
The CONVERT13 Menu
The START13 Title Screen

AppendixB The Storage Process

148 Figure B-1.
159 Figure B-2.

149 Table B-1.
150 Table B-2.
152 Table B-3.
153 Table B-4.
154 Table B-5.
155 Table B-6.
155 Table B-7.
157 Table B-8.
157 Table B-9.
162 Table B-10.
163 Table B-11.
164 Table B-12.
165 Table B-13.

Tracks on a Disk
Tracks and Sectors

Format of File Sectors for Different File Types
First Sector of a Track/Sector List

One Sector of a Disk Directory

Directory Entry for One File

Byte Indicating the File Type
Locked/Unlocked Values of the File Type Byte
Volume Table of Contents: VTOC (Track $11, Sector $0)
Track Bit Map for One Disk Track

Typical Track Bit Map

Format of an I/0 Block

Format of a Device-Characteristics Table
DOS Vectors ($3D0-$3FF)

DOS Zero Page Use

Appendix C DOS Error Messages

168 Table C-1.
168 Table C-2.
170 Table C-3.
174 Table C-4.

Contents

DOS Error Messages

DOS Error Codes

Minimum and Maximum Values of Arguments
Types of Files According to Command

Preface

The DOS Programmer’s Manual is written for people who want to
store programs and other information on disks. It describes DOS 3.3,
a disk operating system that allows you to place information on disks,
change information already on disks, and retrieve information from
disks. DOS runs on Apple Il, Apple Il Plus, and Apple lle computers.

The DOS User’s Manual can be used as an introduction to this
manual. However, the DOS Programmer’s Manual summarizes the
information it contains.

Organization of This Manual

This manual is designed as a reference. The topics covered become
increasingly complex as you progress.

Each chapter begins with an introduction to the topics it contains and
concludes with a summary of the commands that are discussed.

Chapter 1 describes the DOS environment and the DOS commands
that are used primarily from the keyboard.

Chapter 2 explains several ways of using DOS commands. It
describes how to embed a DOS command in a program, monitor the
processing, and intercept errors.

Chapter 3 tells you about disk access for text files and compares
sequential and random access. It explains how to write sequential-
access text programs.

Chapter 4 explains random-access files and how to write programs
that use them.

Chapter 5 tells you how to use DOS to write a program that runs other

programs, how to chain programs, and how to create a turnkey
program.

Preface

Chapter 6 describes binary files and commands. It also discusses the
relation between DOS and the Monitor program.

Appendix A describes how to run a program on a 13-sector disk and
how to convert 13-sector disks to 16-sector format.

Appendix B explains disk storage: how tracks and sectors are
mapped and used by DOS, and how machine-language
programmers can directly address tracks and sectors.

Appendix C discusses DOS error messages. It lists each message
and suggests ways to fix the problem.

Appendix D describes each program on the SYSTEM MASTER and
the SAMPLE PROGRAMS disks.

Appendix E is a summary of the DOS commands.

The glossary explains some of the terms that are used in this manual.
Terms shown in boldface in the text are defined in the glossary.

A tear-out reference card inside the back cover lists all the DOS
commands.

Preface

Introduction

e

3
3
4
4
5
5
5
6
6
6
6
7
7
7
7
8
9
10

11
1
12
13
14
15

e g

1.1 The DOS Environment

1.1.1
1.1.2
1.1.3

The DOS Disks
Requirements for Using DOS
A Few Conventions

1.2 How DOS Commands Are Described

1.2.1
1.2.2

1.3 Direct
1.3.1
1.3.2
1.3.3
1.3.4
1.3.5
1.3.6
1.3.7
1.3.8
1.3.9
1.3.10

Introduction

Notation
Syntax
1.2.2.1 Defaults
1.2.2.2 Numbers
1.2.2.3 The Slot Number Option: [,Sn]
1.2.2.4 The Drive Number Option: [,Dn]
1.2.2.5 The Volume Number Option: [,Vn]
1.2.2.6 Hexadecimal Numbers
DOS Commands

The CATALOG Command

The INIT Command

The RENAME Command

The LOCK Command

The UNLOCK Command

The DELETE Command

The VERIFY Command

The RUN Command

The LOAD Command

The SAVE Command

This chapter briefly summarizes
information in the DOS User’s Manual.

Introduction

1.1 The DOS Environment

The DOS Programmer’s Manual describes how to use DOS
commands to write and store programs and other information on
disks. DOS is the disk operating system for the Apple Il, Apple Il Plus,
and the Apple lle computers.

When you bring the DOS program into the computer, the commands
and capabilities of DOS are added to the other computing capabilities
that are already available.

Here are some suggestions on how best to use the information in
your DOS manuals.

e If you are just beginning to use an Apple Il computer, you should
be familiar with the introductory material that came with it.

® Before you begin using disks, it would help you to know the
programming principles described in the Applesoft Tutorial and
the Applesoft BASIC Programmer’s Reference Manual.

® Depending on your familiarity with your computer and with
programming techniques, you may want to read the DOS User’s
Manual before you begin to write programs that access disks..The
DOS User’s Manual is an introduction to the more complex
information in this manual.

By the Way: There’s a handy DOS summary card at the back of this
manual. You can tear it out and keep it near your computer.

1.1.1 The DOS Disks

The disk labeled DOS 3.3 SYSTEM MASTER contains the DOS
program itself and other programs that do additional tasks related to
using disks. Many of these programs are described in this manual.

The DOS Environment

Appendix A explains how to use a
13-sector disk with this 16-sector DOS.

The disk labeled DOS 3.3 SAMPLE PROGRAMS contains
demonstration programs that you can run while you are learning the
DOS concepts. It also contains examples of BASIC programs that will
help you learn to write programs that access disks. This manual
describes many of these demonstration programs and all of the
examples.

1.1.2 Requirements for Using DOS

The DOS operating system runs on any Apple Il computer that has
16K (16 kilobytes) of random-access memory (RAM). DOS itself
uses about 10.5K of memory. You'll find it easier to run your programs
if your computer has at least 32K of memory. If you want to use both
the Applesoft and the Integer BASIC programming languages, your
computer must have 64K of memory.

Your Apple |l computer must also have at least one disk drive
connected to it. To connect the disk drive, follow the installation
instructions in the manual that came with your disk drive.

DOS, version 3.3, organizes the space on a disk into 16 sectors.

1.1.3 A Few Conventions

Apple I, as used in this manual, implies every model of Apple ||
computer: the standard Apple Il, the Apple Il Plus, and the Apple lle.
The manual says explicitly when information applies only to a specific
model.

The first time important terms are used, they appear in boldface type
and are defined. These terms are also listed in the glossary.

The DOS manuals use two special paragraphs to catch your eye and
deliver especially important information:

By the Way: The gray box provides a reminder or additional
clarification—a faster or better way to do something. ltis labeled “Hint” or
“By the Way” or something similar.

The warning box indicates danger to a file, a disk, or your system. The
information in the box describes the danger and suggests ways to avoid it.

If you have already read the DOS User’s Manual, you can skip the
material in the rest of this chapter. It is a summary, included here so
you have all the information about DOS in one book.

Chapter 1: Introduction

Figure 1-1. The Syntax of DOS
Commands

1.2 How DOS Commands Are Described

The syntax (the order and form) of the various parts of a DOS
command is expressed in a kind of shorthand, which is described in
the next section.

1.2.1 Notation

This is the notation that is used in descriptions of command syntax:

UPPERCASE indicates the actual name of something, like a
DOS command. Type it exactly as indicated.

lowercase indicates something you supply, like the name
of aprogram.

fn indicates a file name that you supply. A file
name is composed of up to 30 characters. The
first character must be a letter; the others can
be any character, including a space, except the
comma (,).

[1] Square brackets enclose an optional argument
to acommand. If you choose to include the
argument, do not type the brackets, which are
used only to indicate an option.

n indicates a number you supply.

1.2.2 Syntax

All the possible forms of each DOS command are presentedin a
one-line description of the command (Figure 1-1).

Syntax Examples

Arguments SAVE ELEGANT.CODE, D2
——— DELETE BOOKS, S6, D1, V3
COMMAND fn[,Sn][,Dn][,Vn] ~ RUN WHIZBOOM, D1

N\ X— Volume Number
Drive Number
Slot Number

Command Filename

in Figure 1-1, the word COMMAND represents any DOS command
(for example, SAVE). The fn, [,Sn], [,Dn], and [,Vn] are the
command’s arguments. An argument in square brackets is optional; if
omitted, DOS uses the default.

How DOS Commands Are Described

A default is the value DOS assumes
when you do not specify a value.

Hexadecimal number system: base 16,

digits 0 through 9 and A through F.

To boot = to start up

1.2.2.1 Defaults

When you don’t tell DOS anything about an optional argument, DOS
makes an assumption called a default. A default value is what DOS
uses when you do not explicitly give a value.

For example, suppose you type these commands in this order:

CATALOG,D1,S6
RUN COPYA,D2 (command without slot number)

The slot you specified in the first command, slot 6, becomes the
default slot. When you omit the slot number in the RUN command,
DOS uses the default, slot 6.

When you want to change the default, you must tell DOS explicitly;
include the argument in the next appropriate command.

1.2.2.2 Numbers

Replace the lowercase nin an argument with a number. You can use
either a decimal integer or a hexadecimal number.

1.2.2.3 The Slot Number Option: [,Sn]

The Sn option specifies the number of the slot containing the disk
controller card for the drive you want to use. Replace the lowercase n
with an actual number from 1 to 7.

By the Way: On Apple Il and Apple Il Plus computers, slot 0 holds the
Language Card.

When you use the Sn option, the value you specify becomes the
default slot number. That is, DOS uses this slot number until you
specify a different slot number.

If you don't specify a slot number, DOS looks in the most recently
used slot. If you never specify a slot number in a given session with
DOS, DOS uses the slot from which you started (booted) DOS.

1.2.2.4 The Drive Number Option: [,Dn]

The Dn option specifies the number of the drive that contains the disk
you want to use. Replace the lowercase n with a drive number, 1 or 2.
When you omit the drive number, DOS uses the drive that it used last.
If you never specify a drive number in a given session with DOS,
DOS uses the drive from which you started DOS.

Chapter 1: Introduction

A catalog is a list of files on a volume.

1.2.2.5 The Volume Number Option: [,Vn]

The Vn option specifies the volume number of the disk you want to
use. Although the volume option is available with most DOS
commands, it is rarely used. When you use Vn, replace the
lowercase n with a volume number from 0 to 254; that number
becomes the default volume number.

If you omit the volume number when you prepare a disk with the INIT
command, DOS assigns a default number of 254 to that disk. In all
other DOS commands, DOS ignores the volume specification when
you omit this option, specify VO, or type V with no number.

1.2.2.6 Hexadecimal Numbers

Under certain circumstances, you can replace the lowercase n with a
hexadecimal number. Machine-language programmers often use
hexadecimal numbers because it takes fewer hexadecimal than
decimal digits to express a large number.

You are never required to use a hexadecimal number in an option.
But if you choose to, use a dollar sign ($) as the first character,
followed by the hexadecimal digits. For example, the decimal integer
254 expressed in hexadecimal notation is $FE.

Quick Identification: Throughout this manual, hexadecimal numbers are
preceded by a $ sign.

1.3 Direct DOS Commands

DOS commands must be typed in capital letters. If you are using an
Apple lle, press and leave it in the locked position.

1.3.1 The CATALOG Command

The CATALOG command displays a directory of files called a
catalog. The catalog lists the names, sizes, and types of fileson a
volume. Locked files are listed with an asterisk (*) next to their file

type.

When a catalog contains more entries than your screen can display
at one time, press to continue.

Direct DOS Commands

Aninitialized disk is one prepared for use
on an Apple Il computer.

Turnkey program = greeting program

This is the command’s full syntax:

CATALOG [,Sn][,Dn]

(.Sn]

[.Dn]

where nis a number from 1 to 7, specifies the slot
containing the disk controller card of the drive to be
accessed. If omitted, DOS uses the default slot
number.

where nis 1 or 2, specifies the disk drive to be
accessed. If omitted, DOS uses the default drive
number.

No Volume Number: If you include a volume number in a CATALOG
command, DOS ignores it.

1.3.2 The INIT Command

The INIT command organizes the surface of a disk into tracks and
sectors, writing zeros in all sectors. INIT also puts a BASIC file and a
copy of DOS on the disk. This process creates an initialized disk.
The DOS program on an initialized disk is always read into the same
memory location.

The INIT command takes this form:

INIT fn [,Sn] [,Dn] [,Vn]

fn

[.Sn]

(.Dn]

[,Vn]

is a name of the file to serve as the greeting or turnkey
program.

where nis a number from 1 to 7, specifies the slot
containing the disk controller card of the drive to be
accessed. If omitted, DOS uses the default slot
number.

where nis 1 or 2, specifies the drive that holds the disk
on which to store the greeting or turnkey program. If
omitted, DOS uses the default drive number.

where nis a number from 0 to 254, specifies a volume
number to assign to a disk. If you specify 0, just V, or
omit the option, DOS uses 254 as the default volume
number.

Chapter 1: Introduction

1.3.3 The RENAME Command

The RENAME command changes the name of a file from the name
indicated by fn1 to the name indicated by fn2. This is the form of the
command:

RENAME fn1,fn2[,Sn] [,Dn] [,Vn]

fn1,fn2 where fn1 is the name of an existing file and fn2 is the
new name that must be unique. If fn1 does not exist,
you'lllseea FILE NOT FOUND errormessage. The
file must be unlocked.

[,Sn] where nis a number from 1 to 7, specifies the slot
containing the disk controller card of the drive to be
accessed. If omitted, DOS uses the default slot
number.

[,Dn] where nis 1 or 2, specifies the drive that holds the disk
containing the file to be renamed. If omitted, DOS uses
the default drive number.

[LVn] where nis a number from 0 to 254, specifies the
volume number of the disk to be accessed. If you
specify 0, just V, or omit the option, DOS ignores the
volume specification.

If fn2 existed before you executed RENAME, you may no longer be able to
access the original contents of fn2 directly.

Direct DOS Commands

1.3.4 The LOCK Command

The LOCK command locks a file, that is, it protects an individual file
from being accidentally altered, deleted, or renamed.

LOCK fn[,Sn] [,Dn] [,Vn]

fn

(.Sn]

(.Dn]

[LVn]

is the name of the file to be locked.

where nis a number from 1 to 7, specifies the slot
containing the disk controller card of the drive to be
accessed. If omitted, DOS uses the default slot
number.

where nis 1 or 2, specifies the drive that holds the disk
containing fn. If omitted, DOS uses the default drive
number.

where nis a number from 0 to 254, specifies the
volume number of the disk to be accessed. If you
specify 0, just V, or omit the option, DOS ignores the
volume specification.

You'llsee FILE LOCKED ifyou trytochange, rename, or delete a
locked file. To change a locked file, you must first unlock it by using
the UNLOCK command.

In the catalog of the files on a disk, a locked file has an asterisk (*) to
the left of its file type.

By the Way: You cannot lock a disk as a whole. You can, however, protect
an entire disk by covering its write-enable notch with a write-protect tab.

Chapter 1: Introduction

1.3.5 The UNLOCK Command

The UNLOCK command unlocks a file, removing the file protection
so that you can delete, rename, or change the file.

UNLOCK fn [,Sn][,Dn][,Vn]
fn is the name of the file to unlock.
[,Sn] where nis a number from 1 to 7, specifies the slot

containing the disk controller card of the drive to be
accessed. If omitted, DOS uses the default slot

number.

[,Dn] where nis 1 or 2, specifies the drive that holds the disk
containing fn. If omitted, DOS uses the default drive
number.

[Lvn] where nis a number from 0 to 254, specifies the

volume number of the disk to be accessed. If you
specify 0, just V, or omit the option, DOS ignores the
volume specification.

1.3.6 The DELETE Command

The DELETE command lets you remove a file from a disk.

DELETE fn[,Sn][,Dn][,Vn]

fn is the name of the file to be deleted; fn must be
unlocked. If the file does not exist, you'llsee FILE
NOT FOUND.

[,Sn] where n is a number from 1 to 7, specifies the slot

containing the disk controller card of the drive to be
accessed. If omitted, DOS uses the default slot

number.

[,Dn] where nis 1 or 2, specifies the drive of the disk
containing fn. If omitted, DOS uses the default drive
number.

[,Vn] where n is a number from 0 to 254, specifies the

volume number of the disk to be accessed. If you
specify 0, just V, or omit the option, DOS ignores the
volume specification.

Direct DOS Commands n

For more on buffers, see Chapter 5.

1.3.7 The VERIFY Command

The VERIFY command lets you test that a file was written on the disk
correctly and that DOS can still read it.

VERIFY fn [,Sn][,Dn][,Vn]

fn specifies the file you want to verify. Any type of file can
be verified, including text files and binary files. DOS
displays FILE NOT FOUND ifthe file does not exist.

[,Sn] where nis a number from 1 to 7, specifies the slot
containing the disk controller card of the drive to be
accessed. If omitted, DOS uses the default slot

number.

[,Dn] where nis 1 or 2, specifies the drive that holds the disk
containing fn. If omitted, DOS uses the default drive
number.

[,vn] where nis a number from 0 to 254, specifies the

volume number of the disk to be accessed. If you
specify 0, just V, or omit the option, DOS ignores the
volume specification.

If the file can be verified, it's safe to assume that the information on
the disk has been stored correctly and can be retrieved whenever
you want.

In verifying a file, DOS simply reads the file from the disk into a file
buffer, an area in memory that is not currently in use. (This does not
destroy a program that might already be in memory.) If DOS can read
the file successfully, it displays the prompt character. If DOS finds that
it cannot read the file (the file was damaged or written incorrectly), it
displays the message 1/0 ERROR.

Silence Is Golden: When DOS can read the file, DOS does not display
any message.

Chapter 1: Introduction

See Section 2.2, BASIC Program Files.

1.3.8 The RUN Command

The RUN command executes an Applesoft or Integer BASIC
program that is stored on a disk.

RUN fn[,Sn] [,Dn] [,Vn]

fn indicates the program that DOS is to run. Its file type
must be either A or I. If the program is not on the disk,
you'llsee FILE NOT FOUND. Ifthefiletypeis
neither Anorl,you'llsee FILE TYPE MISMATCH.
If DOS cannot switch to the program’s language, you'll
see LANGUAGE NOT AVAILABLE.

[,Sn] where nis a number from 1 to 7, specifies the slot
containing the disk controller card of the drive to be
accessed. If omitted, DOS uses the default slot

number.

[,Dn] where nis 1 or 2, specifies the drive that holds the disk
containing fn. If omitted, DOS uses the default drive
number.

[Lvn] where nis a number from 0 to 254, specifies the

volume number of the disk to be accessed. If you
specify 0, just V, or omit the option, DOS ignores the
volume specification.

When DOS sees the RUN command, it finds the specified program,
brings it into memory, and starts it. Before bringing the program into
memory, DOS checks the program’s file type. If the file type is A and
Applesoft BASIC is not active, DOS switches to Applesoft (if
possible). If the file type is | and Integer BASIC is not active, DOS
switches to Integer (if possible).

Since RUN automatically loads a program into memory, it is not
necessary to use the LOAD command before you run a program.

By the Way: Once your program is in memory, you can run it again by
issuing the RUN command without a file name. Without a file name, RUN
is a BASIC statement.

Direct DOS Commands

See Section 2.2, BASIC Program Files.

1.3.9 The LOAD Command
The LOAD command transfers a copy of a disk program into memory.

LOAD fn [,Sn] [,Dn] [,Vn]

fn

(,Sn]

(.Dn]

[,Vn]

indicates the program that DOS is to load. Its file type
must be either A or . If the program is not on the disk,
you'llsee FILE NOT FOUND. Ifthefiletypeis
neither Anor |, you'llsee FILE TYPE MISMATCH.
If DOS cannot switch to the program’s language, you'll
see LANGUAGE NOT AVAILABLE.

where nis a number from 1 to 7, specifies the slot
containing the disk controller card of the drive to be
accessed. If omitted, DOS uses the default slot
number.

where nis 1 or 2, specifies the drive that holds the disk
containing fn. If omitted, DOS uses the default drive
number.

where nis a number from 0 to 254, specifies the
volume number of the disk to be accessed. If you
specify 0, just V, or omit the option, DOS ignores the
volume specification.

Before bringing the program into memory, DOS checks the program’s
file type and tries to switch to the appropriate BASIC. When you use
the LOAD command to bring the contents of a file into memory, the
file on the disk remains unchanged.

Itis not necessary to load a program before you use the RUN
command; RUN automatically loads it into memory.

By the Way: When a new program is loaded into memory, the previous
program is erased from the Apple’s memory. If you don’t want to lose the
program that is currently in memory, you must store it on a disk using the
SAVE command.

Chapter 1: Introduction

See Section 2.2, BASIC Program Files.

1.3.10 The SAVE Command

The SAVE command transfers a copy of the BASIC program that is
currently in memory to a file on a disk.

SAVE fn [,Sn] [,Dn] [,Vn]

fn specifies the file name for the program. If a file by that
name already exists on the disk, the file must be
unlocked and must have the same file type (A or) as
the program you want to save.

[,Sn] where nis a number from 1 to 7, specifies the slot
containing the disk controller card of the drive to be
accessed. If omitted, DOS uses the default slot

number.

[,Dn] where nis 1 or 2, specifies the drive that holds the disk
containing fn. If omitted, DOS uses the default drive
number.

[,Vn] where nis a number from 0 to 254, specifies the

volume number of the disk to be accessed. If you
specify 0, just V, or omit the option, DOS ignores the
volume specification.

When the current prompt is], DOS writes the file onto the disk with
the file type A. When the prompt is >, DOS writes the file with the file
type I. In addition to handling file type for you, DOS automatically
determines the location on the disk and the length of the file being
saved.

Warning

Ifyousee I/0 ERROR when you try to save a file, the disk may be bad
or notinitialized, the drive you specified may not contain a disk, or the
drive door may be open. Put a fresh, initialized disk in the drive, close the
door properly, and issue the SAVE command again.

Direct DOS Commands

Chapter 1: Introduction

DOS Programming Tools

B R— e

19 2.1 Ways of Using DOS Commands

19 2.1.1 Immediate Execution

20 2.1.2 Deferred Execution

20 2.1.3 Command Files

20 2.2 BASIC Program Files

22 2.2.1 Switching Languages With the FP and INT
Commands

23 2.2.1.1 The FP Command

23 2.2.1.2 The INT Command

24 2.2.2 Returning to BASIC From the Monitor Program

25 2.3 Using DOS From a Program

26 2.3.1 Example

27 2.3.2 Things to Watch Out For

28 2.4 Debugging With the MON and NOMON Commands

29 2.4.1 The MON Command

30 2.4.2 The NOMON Command

30 2.5 Intercepting Errors With Applesoft

31 2.5.1 Example

33 2.5.2 Finding Hidden Characters in a File Name

34 2.6 Talkingto Other Devices From a Program

34 2.6.1 Starting a Program With PR# and IN#

35 2.6.2 The PR# Command

36 2.6.3 The IN# Command

36 2.7 The RENUMBER Program

37 2.7.1 RENUMBER Commands

38 2.7.1.1 The Syntax of RENUMBER Commands

39 2.7.1.2 Internal Line References

39 2.7.1.3 The Hold Buffer

40 2.7.1.4 Examples

41 2.7.2 RENUMBER Error Messages

43 2.8 Summary

43 2.8.1 Commands

43 2.8.2 Program

DOS Programming Tools

Immediate execution: Commands issued
from the keyboard.

Error messages; see Appendix C.

DOS Programming Tools

This chapter discusses how to use DOS commands from the
keyboard and from a program. It describes:

e switching between the two types of BASIC and when to use each.

® how to monitor the action of the commands you have written.

e how to find errors in programs and hidden characters in file
names.

® how your program can communicate with peripheral devices
through the expansion slots.

® how to renumber your program instructions.

This chapter and those that follow describe more advanced ways of
using DOS. The information is for people who are familiar with writing
BASIC programs. If you have done all the examples in the Applesoft
Tutorial, you know enough fundamental programming to use this
manual.

2.1 Ways of Using DOS Command's

You can issue a DOS command directly from your keyboard, by -
embedding it in a BASIC program, or by including itin a command
file.

2.1.1 Immediate Execution

You can issue most, but not all, DOS commands directly from your
keyboard. This is called immediate execution.

When you enter acommand from the keyboard, DOS looks first at the
command, then compares the command with its list of valid DOS
commands and passes a command that is not in its list to BASIC. You
will sometimes get error messages from BASIC when you meant to
give DOS a command. In this case, check the proper form of the DOS
command and issue it again.

Ways of Using DOS Commands

Deferred-execution commands are
executed when the program runs.

EXEC file = command file.

An appendix in the Applesoft BASIC
Programmer's Reference Manual
summarizes the differences between
Integer BASIC and Applesoft.

Add the alternate language by installing
an Applesoft Card, an Integer Card, or a
Language Card (also known as a 16K
RAM Card).

2.1.2 Deferred Execution

You can issue most DOS commands from within a BASIC program.
This method of issuing commands is called deferred execution
because commands embedded in a program are not executed until
the program is run. For example, if a program contains the DOS
command OPEN, the program will open a disk file to store
information. The execution of the DOS command will be deferred
until you issue the BASIC statement RUN to execute the program.

2.1.3 CommandFiles

A program that runs other programs is called a command file. Since
the EXEC command runs a command file, a command file is also
known as an EXEC file. The command file can contain both DOS
commands and BASIC statements.

2.2 BASIC Program Files

Apple Il computers support two dialects of the BASIC (Beginners
All-purpose Symbolic Instruction Code) programming language:
Applesoft BASIC and Integer BASIC. Integer BASIC, the earlier
version of the BASIC language, operates only on whole numbers
(integers). Applesoft can operate on integers and on numbers
expressed with decimal points (floating point). This is the most
significant difference between them; for more details, see the
Applesoft BASIC Programmer’s Reference Manual.

On every Apple Il computer, one of the two BASIC languages resides
in read-only memory (ROM). This resident language is available to
you as soon as you turn on your computer. In the standard Apple Il
Integer BASIC is resident. In the Apple Il Plus and Apple lle,
Applesoft BASIC is resident.

The language you want to use depends on what work you want the
computer to do for you. The language you can use depends on the
memory size of your computer and the hardware or firmware it has.
For example, if your Apple Il computer has 48K or less of random
access memory (RAM), you can have only one dialect in memory at
the same time unless you add a card that supplies additional
memory. ltis relatively easy to add RAM memory cards.

Chapter 2: DOS Programming Tools

The APPLESOFT program loads the disk
file FPBASIC, which contains Applesoft,
into the Language Card.

Many Apple Il computers are large enough to hold both dialects in
memory. The Apple lle computer is large enough to contain both
dialects without additional hardware.

When you start DOS in an Apple Il computer that has at least 64K of
memory, DOS tries to load the nonresident, or alternate, BASIC
from the disk into memory. DOS reports which BASIC it is loading into
memory. On a computer with resident Applesoft BASIC, you'll see
LOADING INTEGER BASIC INTO MEMORY. Onacomputer
with resident Integer BASIC, you'llsee LOADING APPLESOFT
BASIC INTO MEMORY. On Apple Il computers that have less than
48K of memory or when the alternate BASIC is not available on the
startup disk, you willnotseethe LOADING. .. message.

You can recognize which BASIC is currently active by noticing the
prompt character:

] indicates Applesoft BASIC.

> indicates Integer BASIC.

Use the FP or INT commands whenever you want to switch from one
dialect to another.

The RUN and LOAD commands automatically try to activate the BASIC
that corresponds to the program’s file type.

On the Apple Il Plus and Apple Ile computers, you'll see LANGUAGE
NOT AVAILABLE when Integer BASIC, the nonresident language, is
not already in memory.

On the standard Apple Il computer, Integer BASIC is resident. When
Applesoft is notin memory, DOS looks for the APPLESOFT program and
runs it. If Applesoft BASIC is not on the disk, you'll see LANGUAGE NOT
AVAILABLE.

BASIC Program Files

Figure 2-1. FP and INT

2.2.1 Switching Languages With the FP and INT
Commands

When you have both BASIC dialects in memory, use the FP and INT
commands to switch from one to the other. You can also use FP or
INT to reset the system and memory, even when you are returning to
the same BASIC dialect. Both commands can be used in either
immediate or deferred execution.

FP turns on
Applesoft BASIC.

FP
BASIC programs and
variables in memory ,é:/c— ﬁ
= &\ ==
INT turns on INT
Integer BASIC.

Eachreset
clears memory

The FP and INT commands erase your program and variables from main
memory by redirecting the pointers in memory. If you are going to switch
languages, do so before typing in a new program.

Chapter 2: DOS Programming Tools

See Chapter 6, Memory Usage and Entry

2.2.1.1 The FP command

The FP command switches to Applesoft BASIC. FP stands for
floating point. If you had been using Integer BASIC and then decided
to write a program to balance your checkbook, you'd need to switch
to Applesoft BASIC, which can operate on decimal numbers.

This is the form of the command:
FP[,Sn][,Dn][,Vn]

[,Sn] where nis a number from 1 to 7, specifies the
slot containing the disk controller card of the
drive to be accessed. If omitted, DOS uses the
default slot number.

[,Dn] where nis 1 or 2, specifies the drive of the disk
to be accessed. If omitted, DOS uses the
default drive number.

[LVn] where nis a number from 0 to 254, specifies
the volume number of the disk to be accessed.
If you specify 0, just V, or omit the option, DOS
ignores the volume specification.

Do not use the command RUN APPLESOFT to change languages. If you
do, DOS will test the file type and set memory pointers to accommodate
an Integer BASIC program instead of the Applesoft program you intend to
work with.

2.2.1.2 The INT Command

The INT command switches to Integer BASIC. INT stands for integer.
This is the full syntax of the command:

INT

The INT command does not have any arguments.

BASIC Program Files

2.2.2 Returning to BASIC From the Monitor
Program

Occasionally, you may see an asterisk (*), the prompting character of
For more about the Monitor program, see the Monitor program. Perhaps you were running a program that had
the Apple Il Reference Manual. an error in it and its error routine jumped to the Monitor.

You can return to BASIC from the Monitor in three ways. Two allow
you to get right back to work; the third destroys what you had in
memory, so you'll have to begin again.

1. Torestart DOS and return to BASIC with your program and
variables intact, type

3DaG (careful, that's a zero...)

It’s No Dog: 3D0 is the address in memory where DOS starts. The G
stands for go.

2. Toreturnto BASIC with your program and variables intact, type
(ConTrOL)-(C) and press (RETURN).

(controL)-(c) only starts up the BASIC you were using before you entered the
Monitor. If DOS was disconnected sometime prior to (controu)-(c], it will still be
inactive even though you have returned to BASIC.

3. These commands also return to BASIC:
(CoNTROU)-(BJ or 3D3G

(controL)-(8) and 3D3G erase both your program and your variables from
memory.

Chapter 2: DOS Programming Tools

If you omit the (controL)-(0), DOS
assumes the string is part of a BASIC
statement and passes it on to BASIC's
command interpreter.

A function returns a value for use in some
further calculation.

2.3 Using DOS From a Program

Using a DOS command from a BASIC program extends the
capability of your programs in several ways. For example, you might
use deferred-execution DOS commands to automatically display a
disk’s catalog, to save a backup copy of records in afile, or to save an
unfinished game so you can continue it later.

To use a DOS command from a program, use the BASIC statement
PRINT followed by the string you want to print. In this case, the string
will contain a DOS command. To indicate that you're printing a DOS
command rather than text, type a (conTroL)-(D) as the first character of
the string. This is the general form:

PRINT (conTroU-(0) “DOS command”

You can use two methods to get a (CONTROL)-(0) into your program.
In one method, the (conTrOL)-(0] is visible in the PRINT statement;
in the other, the (ConTrOD-(0] is not visible.

To use an invisible (ConTrRoU-(0), type (ConTROU-D] right after you
type the quote marks that begin the string you want to print:

1@ PRINT "CATALOG" (There is a (conTROL)-(0) between
“and C.)

The (conTrRoD-(D] is there, although you can't see it. This method can
be used for both Integer BASIC or Applesoft program statements.

Caution: Using the =)key to copy a BASIC statement will not copy
invisible control characters. In effect, the (=) deletes control characters.

You can see a (ConTroL)-(0) with Applesoft BASIC only. This method
uses the CHRS$ function. The CHRS$ function takes a single numeric
argument and returns a one-character string consisting of the
corresponding ASCII character.

The ASCII (American Standard Code for Information Interchange)
code for the (ConTroD)-(0) is 4. When you give CHR$ a value of 4, it
returns a (ConTroL)-(0). Set any string variable to CHR$(4) at the
beginning of your program and print that string variable before each
DOS command. You will able to see the variable in each statement.
In addition, you’ll need to fix it in only one place if you've declared it
improperly.

Using DOS From a Program

In a PRINT statement, (conTroL)- 0] from a CHR$ function looks
like this:

5 REM VALID ONLY WITH APPLESOFT
10 D$=CHR% (4)
2@ PRINT D#$:"CATALOG"

D$ is the string variable used throughout this manual. The name of
the variable is a reminder of the control character it contains.

You Can Omit the Semicolon: The semicolon after D$ is optional. You'll
save typing time and memory space by omitting the semicolon when your
program has many DOS commands in PRINT statements. Without a
semicolon, line 20 looks like this:

20 PRINT D$"CATALOG"

2.3.1 Example

The following Applesoft HELLO program displays a message and the
disk’s catalog on the screen. Type NEW to clear the computer’s
memory of any previous program and enter this program.

5 REM APPLESOFT HELLO
1@ D$ = CHR$ (4) : REM CONTROL-D B
(D$ contains (CoNTROU-D))
20 PRINT "DOS TEST PROGRAMS™
3¢ PRINT " 26 NOVEMBER 1883"
(Print a title and a date)
4@ PRINT D%3"CATALOG" (Then list the catalog)
5@ END

Now type RUN tosee how it works.
The equivalent program written in Integer BASIC looks like this.

5 REM INTEGER HELLO
1@ D = "" : REM CONTROL-D
(There’s an invisible (CoNTROL-(D)
between the quotes)
20 PRINT "DOS TEST PROGRAMS"
3@ PRINT " 26 NOVEMBER 1983"
(Print the title and the date)
49 PRINT D#$3"CATALDG" (Then list the disk’s directory)
5@ END

Chapter 2: DOS Programming Tools

A semicolon at the end of a PRINT
statement prevents BASIC from adding a
carriage-return character after a printed
string, variable, or literal.

Look closely at line 10, the only one that’s different. When you use
this method to set the D$ variable to (ConTROD)-(D), it's common
practice to include the remark, REM CONTROL-D.

Heads Up: From now on, most of the examples in this manual will be in
Applesoft.

2.3.2 Things to Watch Out For

There are three things you should watch out for while using DOS
commands from Applesoft programs.

First, be sure you have only one DOS command per PRINT
Statement.

Second, be sure D$ is preceded by a carriage return. If the
statement before your DOS command ends with a semicolon, a (T2),
or acomma, your DOS command will not go to the DOS command
interpreter.

If a DOS command does not start on a new line, the command will be
printed and not executed. In this example, the word CATALOG is
printed, but it is not executed as a command:

3¢ D% = CHR$ (4) : REM CONTROL-D

(D$ is (conTROL)-(D))
4@ PRINT "AUTUMN "3 (Semicolon inhibits (RETURN))
2@ PRINT D#3"CATALOG" (So this doesn’t work)

Instead of displaying a disk’s catalog, this program prints AUTUMN
CATALOG.

When your program unexpectedly prints a DOS command instead of
executing it, look for a program statement that ends with a semicolon.

Using DOS From a Program

If you want to be sure you print a carriage return before each
(conTroL)-(D), set your D$ variable to contain both a carriage
return (ASCII 13) and a (controu)-(0) (ASCII 4):

D$=CHR$ (13)+CHR$(4d)

When D$ is declared this way, an Applesoft statement like

PRINT D$;“CATALOG” prints a carriage return before the
(controL)-(0) and ensures that the DOS command always starts on
anew line.

D$ declared this way will cause problems when you write or append text
files.

The third thing to watch for is that some DOS commands work only in
programs. The DOS commands that can be issued only in deferred
execution are APPEND, OPEN, POSITION, READ, and WRITE.

2.4 Debugging With the MON and NOMON
Commands

Program errors are often called bugs, and the process of getting a
program to run properly is called debugging. To debug a program,
you may want to follow the exchange of information between the disk
and the computer. Monitoring this action helps you track down
problems.

To watch this exchange, use the MON command. With MON, you can
watch commands like OPEN that control operations to the disk. You
can watch the output to a disk from PRINT statements or the input
coming from a disk, like the data brought in by a READ command.

When you've seen all that you want to see (and to make your program
run faster again), turn off the display with the NOMON command.

Perfect Combination: To see program statement numbers as you're
debugging, combine DOS’s MON and NOMON commands with BASIC'’s
TRACE and NOTRACE statements. See the Applesoft BASIC
Programmer’s Reference Manual for details.

When you use TRACE, be sure your D$ variable contains both a carriage
return and a (controD-(0). Define D$ as D$ = CHR$(13) + CHR$(4)

Chapter 2: DOS Programming Tools

2.4.1 The MON Command

Normally, you don't see all disk commands or the information sent
between the computer and a disk. To monitor this action, use the
MON command. The syntax of the MON command is:

MON [C][,1[.O]
C displays all disk commands.

| displays input, that is, information being sent from the
disk to the computer.

0] displays output, that is, information being sent from the
computer to the disk.

The arguments stand for Commands, Input, and Output,
respectively. They may appear in any order and in any combination,
depending on the information you wish to monitor. The commas are
optional, for example: MONICO.

At least one of the arguments must be present or MON is ignored.

MON remains in effect until you issue a NOMON, an FP, or INT
command, or you restart DOS with a startup (boot) disk, the
command 3D0G, or the command 3D3G.

Debugging With the MON and NOMON Commands

Error messages are listed in Appendix C.

2.4.2 The NOMON Command

The NOMON command turns off the display of disk commands and
information sent between the computer and the disk. The syntax of
the NOMON command is:

NOMON[C][I][[O]
C suppresses the display of all disk commands.

I suppresses the display of the input information going
from the disk to the computer.

0] suppresses the display of the output information going
from the computer to the disk.

The arguments stand for Commands, Input, and Output,
respectively. They may appear in any order and in any combination,
depending on what monitoring you want to suppress. The commas
are optional.

At least one of the arguments must be present, or NOMON is ignored.

You can issue a NOMON command so that it prints almost invisibly.
Use

1@ PRINT D#%$3 "NOMON C,I.0": UTAB PEEK(37):
CALL -BG8

where D$ contains (conTroU)-0), VTAB PEEK(37) moves the cursor
to the beginning of the line that contains NOMON C I :0, and
CALL -868 clears that line.

2.5 Intercepting Errors With Applesoft

When DOS or Applesoft detect an error connected with disk usage,
they normally stop the program containing the error, display an
error message, and store a code number for the error in memory
location 222.

You can create an Applesoft routine that prevents both DOS and
Applesoft errors from stopping your program. The routine can
examine memory and return the error number, which can be tested.
Based on this number, your program can branch to a line that handles
that specific kind of error. To create an error-handling routine, use the
ONERR GOTO statement and the PEEK function.

Chapter 2: DOS Programming Tools

PEEK must be used to determine a
variable. PRINT PEEK prints the variable
on the screen.

The RENAME command won't work on
a locked file. When your program tries
to rename a locked file, DOS returns
FILE LOCKED andthe error-code
number, 10.

® The ONERR GOTO statement lets you specify a statement
number to which to transfer control when your program
encounters an error. Your error-handling routine can start at the
statement specified in the ONERR GOTO statement.

® The PEEK function lets your program examine the contents of a
specified location in the computer's memory; the location is
specified as a decimal value. To detect the code number of an
error, examine memory location 222; use PRINT PEEK (222)
to see the code number of the error on your screen. You can also
use PEEK (222) toassignthe errorasanumeric variable. To
detect the statement number that caused the error, use PEEK

(218) + PEEKR (219) * 236. Precede the expression with
PRINT to see the statement number on your screen.

2.5.1 Example

The program called ONERR DEMO shows you how to use the
ONERR GOTO statement and the PEEK function to recover from a
DOS error. The program returns an error number and reports the
number of the statement that caused the error.

ONERR DEMO can rename a file whether the file is locked or not.
When ONERR DEMO detects an error, it uses the ONERR GOTO
statement and branches to an error routine. The error routine gives
you a chance to unlock the file before the program tries to rename the
file again. The routine also displays the error number and line number
of the error.

5 REM ONERR DEMO
1@ D$ = CHR$% (4)

15 PRINT D%$3"MON C*

20 ONERR GOTO 100 (Handle an error at line 100)
3@ INPUT "FILE TO RENAME? "iF%$

(Read afile name into F$)
4@ INPUT "NEW NAME?T " iN%

(Read the new name into N$)
5@ PRINT D&3"RENAME "iF$3", "iN$

(Give the RENAME command)

6@ END (No error, program ends)

D$ contains (CoNTROL-(D))

Watch disk commands)

(
(

Line 30 reads into F$ the name of the file to be renamed. Line 40
reads the new name into N$. Line 50 has the RENAME command.
When there is no error, the program renames the file and ends.

Intercepting Errors With Applesoft

See Appendix C for the complete DOS
error codes and their meanings.

When there is an error, the ONERR statement in line 20 sends the
execution to line 100 where errors are handled.

109 PRINT: IF PEEK (22Z) <> 1@ THEN 200

Line 100 tests location 222. If location 222 contains 10 (the code for
FILE LOCKED), execution falls through to line 110 where you get a
chance to rename the file. If location 222 does not contain 10, some
other error occurred and execution goes to line 200.

11¢ INPUT "FILE IS LOCKED. RENAME ANYWAYT (Y/N)
"EIYE
120 IF Y& <> "Y" THEN 16@
(No, don'trename file)
130 PRINT D$3"UNLOCK "iF%
(Yes, unlock the file)
143 PRINT D&3"RENAME "iF$3i" s "iN%$
(Rename it)
15@ PRINT D#%3"LOCK "iN$ (Lockitagain)
16@ PRINT D$3"NOMON C": END
(Suppress special display)

Line 130 unlocks the file, line 140 renames it, and line 150 locks it
again under its new name.

200 PRINT "ERROR #"3PEEK (Z222)3" DETECTED"
219 PRINT "AT LINE "3PEEK (Z1B) + PEEK (219) * 256

When your program has an error other than FILE LOCKED, lines 200
and 210 display the code number of the error and the statement
number in which the error occurs.

To bring ONERR DEMO in from the SAMPLE PROGRAMS disk and
try iton a locked file, type

RUN ONERR DEMO

Chapter 2: DOS Programming Tools

2.5.2 Finding Hidden Characters in File Names

You can also use Applesoft BASIC to find hidden characters in a file
name. When a file name contains control characters, you won't see
them printed, but you need to type them to use or delete the file.

If you suspect that you accidentally introduced control characters
into a file name, you can use this Applesoft program to find

any hidden character except (conTroL-(M] (carriage return),

(€S9), (CoNTROL)-(H] (<), or (CONTROL)-(U] ().

1@ DATA Z@l., 141, 240, 21, 201, 136
20 DATA Z4@, 17, 201, 128, 144, 13
3@ DATA Z@1, 160, 176, 9y 72+ 132
4@ DATA 53, 36 233y G4, 76, 248

50 DATA 233 76 240, 253

6@ FOR I = 768 T0 768 + 27

70 READ Y : POKE T,U @ NEXT I

8@ POKE 54,2 : POKE 55,3

9@ CALL 1002

Type this program, save it, and run it. When you then issue a
CATALOG command, control characters in the file names will be
displayed as blinking characters.

To return to normal display on an Apple Il and Apple Il Plus computer,
type PR#@.

On an Apple lle computer, when you have not turned on the
80-Column Text Card, type PR#@ to return to the standard
40-column display. If you have turned on the 80-Column Text Card,
type PR#3 toreturnto the 80-column display, ortype PR#3 and
(conTrOL)-Q) to return to 40-column display.

Never issue a PR#0 on an Apple lle when the 80-Column Text Card is
turned on. Doing so yields unpredictable results.

Intercepting Errors With Applesoft

Without a (contrRou)-o), PR#
and IN# are BASIC commands, not DOS
commands.

For more information, see Section 6.4.1.

2.6 Talking to Other Devices From a Program

In this section, you'll find out how to have a program communicate
with a peripheral device—for example, a printer or a disk drive—that
is connected to the computer through a card in an expansion slot.

Your Apple Il computer usually sends characters to the display
screen, the standard output device. And it usually reads characters
from the keyboard, the standard input device. The PR# and IN#
commands allow you to use other devices.

You cannot have more than one peripheral device active at a time.

With DOS in effect, the PR# and IN# commands can be used in
immediate execution in the usual way (see your BASIC manuals). But
when PR# and IN# are issued by lines in a program, they must be in
PRINT statements preceded by a (ConTroL)-(D). For example

2@ PRINT D#%3 "PR# 1"
3¢ PRINT D#%3 "IN Z¢

When you omit (controU)-(0] from the PR# and IN# commands
in deferred execution, DOS partially disconnects and is unable to
print or read characters properly.

To restore DOS'’s input and output to the standard devices, use the
BASIC statement:

CALL 1002

2.6.1 Starting a Program With PR# and IN#

The primary purpose of PR# and IN# is to direct output and input.
You can also use the commands to start a program on a disk in the
drive connected to the slot specified in the command.

When you use PR# or IN#, DOS tries to run a program in the ROM
chip on the card in that slot. When the program is in ROM on a disk
controller card, the disk controller automatically tries to read
information from the disk. Since reading information from the disk
usually means bringing in the greeting program and running it, this
amounts to starting the Apple II.

Chapter 2: DOS Programming Tools

2.6.2 The PR# Command

The PR# command specifies one of the computer’s slots and the
device connected to the slot as the destination for output characters.

The PR# command can also be used to run a program on a disk by
specifying the slot that contains your disk controller card. The syntax
of the PR# command is:

PR#n

where nis a number from 1to 7. DOS sends characters to the device
connected through the slot specified by the number. The number

In a program use the command: sign (#) is part of the command and must be typed.

PRINT D$; “PR# n”
For example, when your computer has a printer controller card
installed in slot 1 and you want your program to send output to the
printer, use the command:

1@ D&=CHR%$(4)
20 PRINT D#%3 "PR# 1"

To send output to the screen again, on a standard Apple |l or an
Apple Il Plus computer, use PR#0.

On an Apple lle computer, when you have not turned on the
80-Column Text Card, use PR#0 to return to a 40-column screen.
If the 80-Column Text Card is operating, use PR#3 to return to an
80-column display, or use PR#3 followed by (conTROL)-(Q)

to go to a 40-column display.

By the Way: PR# 0 is a special case. It tells DOS to send output to the
screen; it does not activate slot 0 on a standard Apple |l or an Apple Il Plus
computer.

Talking to Other Devices From a Program

In a program use the command:
PRINT D$; “IN# n”

RENUMBER is a programming tool
rather than a utility program.

2.6.3 The IN# Command

The IN# command specifies a device as the source for input
characters. The IN# command can also be used to run a program on
a disk. Specify the slot that contains your disk controller card.

The syntax of the IN# command is:
IN# n

where nis a number from 1to 7. DOS reads characters from the
device connected through the slot specified by the number. The
number sign (#) is part of the command and must be typed.

For example, if your Apple Il computer has an external terminal
connected through slot 4, and you want your program to read
characters from that external terminal, use the command:

1@ De=CHR%(4)
2@ PRINT D$3 "INs 4"

On all Apple Il computers, use IN# 0 to read input from the keyboard
again.

By the Way: IN# O is a special case. It tells DOS to read input from the
keyboard; it does not activate slot 0.

2.7 The RENUMBER Program

Use the RENUMBER program to renumber all or some of the
statements of your Applesoft BASIC program, merge the statements
of two of your programs, or insert a subroutine into your program from
a subroutine library. The RENUMBER program resides on the
SYSTEM MASTER disk. To use the program, put the SYSTEM
MASTER disk in a drive and type

RUN RENUMBER

After the RENUMBER title screen appears (Figure 2-2), issue one of
the RENUMBER commands. You'll see a BASIC prompt character.
RENUMBER stays in memory so you can continue to build your
program by entering and changing BASIC statements. You can run
and save your program, just as if the RENUMBER program were not
there.

Chapter 2: DOS Programming Tools

Figure 2-2. The RENUMBER Title -

APPLESOFT RENUMBER
COPYRIGHT APPLE COMPUTER: INC. 1978

RENUMBER (DEFAULT VALUES) .
B EFIRST 1@1 [+INE 10 1 [,5 @ 1 [E 53988 1

MERGE
&H PUT PROGRAM ON HOLD
&M MERGE TO PROGRAM ON HOLD

PRESS ‘RETURN’ TO CONTINUE ...

2.7.1 RENUMBER Commands

The END, FIRST, INC, and START commands specify the
renumbering values. Each value, n, must be a decimal number from
010 63,999.

START n (or Sn) where nis a line in the program that is currently
in memory, specifies where to start to renumber. If you
omit the S command, RENUMBER uses 0 (the first line
in your program).

ENDnN (or En) where nis a line number in the program that is
currently in memory, specifies where to end
renumbering. If you omit the E command, RENUMBER
uses a value of 63,999.

FIRST n (or Fn) where n is a decimal integer, specifies the new
number to assign to the starting line (the line specified
by S). If you omit the F command, RENUMBER uses
10; that is, it renumbers the first line as 10.

INCn (or In) where nis the increment, specifies the size of
the step to the next line number. If | is omitted,
RENUMBER uses 10, to produce a sequence such as
110, 120, 130...

The RENUMBER Program

HOLD (or H) puts your program in the hold buffer and displays
PROGRAM ON HOLD, USE ‘&M‘ TO RECOVER.
This message means that whenever you want to
transfer the program into memory again, issue the
MERGE command.

MERGE (or M) combines a program in the hold buffer with the
program currently in memory. The M command can
insert a subroutine into your program from a subroutine
library.

MERGE arranges the lines in ascending order. When
there are statements with duplicate numbers, MERGE
puts both in the final file, placing the statement from the
program in memory first, followed by the statement
from the program in the hold buffer.

When there is no program in memory, MERGE
restores the program in the hold buffer to memory. If
you change your mind after putting your program in the
hold buffer, you can use the M command to restore the
hold file as long as you do not load another program
into memory.

When no program is in the hold buffer and you issue
the M command, RENUMBER displays NO
PROGRAM IN MEMORY.

2.7.1.1 The Syntax of RENUMBER Commands

The first character of a renumber command line is an ampersand (&).
The shortest command line is: (&) (RETURN). When you give this
command, RENUMBER renumbers the program that is currently in
memory, starting at the first and ending with the last program
statement, by assigning 10 to the first program statement and
incrementing the statement numbers by 10.

Use a comma to separate commands when there is more than one
commandon aline, forexample, &5 5@ E 10@¢, F 500
(which tells RENUMBER to process lines 50 through 100 of a
program and give the first statement a line number of 500).

You may abbreviate a command to its first letter and the commands
may be in any order.

Chapter 2: DOS Programming Tools

See Chapter 5, for details on command
files.

2.7.1.2 Internal Line References

In addition to renumbering the statement numbers in your program,
RENUMBER adjusts line-number references in these statements:

GOTO ON...GOTO

GOSuB ON...GOSUB

DEL THEN (asin“7 IF X=0THEN 250”)
RUN

RENUMBER will not renumber a line-number reference that is part of
aremark. To have your remarks accurately reflect your program,
renumber a line-number reference in REMARK statements yourself.

2.7.1.3 The Hold Buffer

When you use the HOLD command, RENUMBER puts the current
program into a separate part of the Apple II's memory reserved for
RENUMBER. This area is called a hold buffer. Neither BASIC nor
DOS can use it for their operation. Therefore, when you need as
much of memory as possible, use the hold buffer only while merging
programs.

RENUMBER may take up to one minute to process a 16K program.
During the time it is processing your program, do not press (Rese)! Always
wait for the BASIC prompt before issuing the next command.

Pressing or issuing the MERGE command while RENUMBER is
running will destroy your program.

Do not use the MAXFILES command while RENUMBER is in memory.
DOS overwrites RENUMBER, destroying it.

RENUMBER commands may be put into a command file. However, when
the program is executed (the EXEC command), RENUMBER returns to
BASIC rather than to the command file.

RENUMBER executes CONVERT, HOLD, and MERGE immediately. If a
command follows CONVERT, HOLD, or MERGE on the same line,
RENUMBER ignores it.

The RENUMBER Program

2.7.1.4 Examples

The first example renumbers an entire program, the second
renumbers part of a program, and the third merges two programs.

1. To renumber your entire program, starting at 10 and incrementing
each instruction number by 10, putthe SYSTEM MASTER disk in
drive 1 and type

RUN RENUMBER

Put your program into memory by entering it from the keyboard or

by using the LOAD command to read it into memory from a disk.
After you see a BASIC prompt character, press the (&) and then
(RETURN). To see the renumbered statements, use the LIST command.

2. Here’s a sample program that shows the renumbering part of a
program. To try it, first be sure that RENUMBER is in memory, then
type in the program listed on the left.

Original Version Renumbered Version

1 INPUT X 1 INPUT X

2 IF X<l THEN 1 2 IF ®<1 THEN 1

3 ON X GDSuUB 39,87 3 ON X GOSUB 39,30
27 END 27 END

39 PRINT A 3@ PRINT A * A

45 RETURN I 39 PRINT A

87 PRINT A * A /—> 40 RETURN

99 RETURN 45 RETURN

Now, give the command
& START 87, END 99, FIRST 3@

which renumbers only two statements in the program. To see the
renumbered program, issue the LIST command. Line 87 has
become 30 and 99 has become 40. Note that RENUMBER has
changed the line-number reference in line 3.

Incidentally: This technique can be used when you want to move
statements from one part of your program to another.

3. Suppose you want to merge two programs. With RENUMBER in
memory, load your first program. You may add lines, renumber
them, run the program to test it, and edit the program. When you
are satisfied, putitinto the hold buffer by typing

& HOLD

Now LOAD your second program. You can develop and test this
program as you did the first. Renumber your second program so
its lines don’t conflict with the first program.

Chapter 2: DOS Programming Tools

Finally, merge the programs. Type
& MERGE

You can, if you like, run the newly formed program to test it before
you save it on the disk.

Sigh of Relief: If RENUMBER detects an irrecoverable error, it will stop
execution before it makes any changes to your program. It displays an
error message indicating the problem it found.

2.7.2 RENUMBER Error Messages

» 63989
You entered a value that is out of range.

DUPLICATE LINE NUMBERS
One of the new line numbers would be the same as a number
you've specified if RENUMBER continues. Use a smaller
increment (INCn) or a different number for first new line (Fn).

HOLD FILE IN USE
You issued a second HOLD command without issuing an
intervening MERGE command.

LIMITED MEMORY s MAY DESTROY PROGRAM. CONTINUE
(Y/N)?
You are operating in too small a system or with too large a
program. If renumbering fails, your program may be destroyed.
Any key other than (Y) cancels the renumbering and returns to
BASIC.

LINE INCREMENT = @
Not allowed. Specify a value greater than 0.

LINE INCREMENT TOO LARGE
The increment you specified would cause a line to be
numbered beyond 63,999.

LINE TOO LONG
Renumbering would cause a line longer that 239 characters.
Use fewer statements per line.

NO LINES IN RANGE
RENUMBER could not find any lines in the range you specified.
It does not renumber any lines.

The RENUMBER Program

NO PROGRAM IN MEMORY

You tried to renumber with no program in memory. Return to
memory the program that is in the hold buffer by typing
BMERGE.

OUT OF MEMORY
Processing requires more memory than is available.
RENUMBER itself is about 2K bytes long.

SYNTAX

RENUMBER does not recognize the first letter of a command or
the value you specified is invalid.

Chapter 2: DOS Programming Tools

2.8 Summary

2.8.1 Commands

FP[SI[.DI[V]
switches to Applesoft BASIC. It resets the pointers in memory
so they no longer point to the previous BASIC program and
variables.

INT

switches to Integer BASIC. It resets the pointers in memory so
they no longer point to the previous BASIC program and
variables.

MON [C][,1[.O]
displays the action between the computer and the disk.

NOMON [C] [,I][,O]

suppresses the action display between the computer and the
disk that was turned on by the MON command.

PR#n

specifies a device connected through slot n as the destination
for output characters.

IN# n

specifies a device connected through slot n as the source of
input characters.

2.8.2 Program
RENUMBER

renumbers the statements of all or a part of a BASIC program or
merges the statements of two programs.

Summary

Chapter 2: DOS Programming Tools

Using Sequential-Access
Text Files

47 3.1 Comparing Sequential- and Random-Access Text Files

49
50
50
50
51
52
53
53
54
55
57
59
61
61
63
65
65
66

67
68
68
69
7

3.2

3.3

3.4

3.1.1 Choosing Sequential- or Random-Access Text Files
3.1.2 Current Position Pointer
Sequential-Access Text Files
3.2.1 The Field

3.2.1.1 Storing Characters in Fields

3.2.1.2 A Short Sequential-Access Text File
3.2.2 Entering and Reading Text

3.2.2.1 Writing To a File Using PRINT

3.2.2.2 Reading Characters From a File

3.2.2.3 One Part Per Field

3.2.2.4 Multiple Parts Per Field

3.2.2.5 Reading Fields That Contain Commas
3.2.3 Programs: Entering and Reading Text

3.2.3.1 A Program for Entering Text

3.2.3.2 A Program for Retrieving Text
Commands Used With Sequential-Access Text Files
3.3.1 The OPEN Command - Deferred Execution
3.3.2 The CLOSE Command - Immediate or Deferred

Execution
3.3.3 The WRITE Command - Deferred Execution
3.3.4 The READ Command - Deferred Execution
3.3.5 The POSITION Command - Deferred Execution
3.3.6 The APPEND Command - Deferred Execution
Command Summary

Using Sequential-Access Text Files

For DOS commands used with random-
access text files, see Chapter 4.

Using Sequential-Access
Text Files

This chapter discusses text files and compares the two types:
sequential-access and random-access. It then describes writing
programs and the DOS commands used with sequential-access text
files.

Atext file is a series of fields stored on disk. A field is a sequence of
from 1 to 32767 characters that ends with a carriage return.

AT in the file-type column of a catalog identifies both types of text
files.

3.1 Comparing Sequential- and Random-
Access TextFiles

A sequential-access textfile is a series of fields that can vary in
length. Each successive field immediately follows the carriage-return
character that ends the preceding field. Each time DOS writes to or
reads from a sequential-access text file, DOS starts with the first field
in the file and accesses the fields in sequence, one field after
another.

A random-access text file is a series of records, each made of the
same predetermined number of characters. Since a record can
contain carriage-return characters, which indicate the end of a field, a
record can contain one or more fields. But all the records of a
random-access text file are the same length. Each time you open a
random-access file, you must specify record length. This way, you
can direct DOS to access any field in the file in any order.

Comparing Sequential- and Random-Access Text Files

Figure 3-1. Printing to a Sequential-
Access Text File

Figure 3-2. Printing to a Random-Access
File

Text files store strings of ASCII code (that is, text). However, the
placement of the strings in the file depends on whether the text is
written with sequential-access or random-access commands.
Figure 3-1 shows how text is placed in a sequential-access file;
Figure 3-2, in arandom-access file (assuming a record length of 5
with one field per record).

The) character represents the RETURN character, which is sent
automatically at the end of most PRINT statements.

Character: 7)A T)O N E)B L OW)
*ASCIl: B7 8D C1 D4 8D CFCE C58D C2 CC CF D7 8D 00 00 00 00 00 00 00
FileByte: 0 1 2 3 4 5 6 7 8 9 10 11 1213 14 15 16 17 18 19 20

Field: 0 1 2 3

*The ASClII values are represented in hexadecimal numbers and
reflect the fact that data is written to the disk with the high-order
bit set.

Character: 7) AT) O N E) B L OW)
*ASCIl: B7 8D 00 00 00 C1 D4 8D 00 00 CF CE C58D 00 C2 CC CFD78D 00
FileByte: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Record
Bytet0 1 2 3 4 01 23 40 123401 2340

Field: 0 0 0 0

Record: 0 1 2 3

*The ASCII values are represented in hexadecimal numbers and
reflect the fact that data is written to the disk with the high-order
bit set.

Note: The end of any text file is automatically marked with hexadecimal $@0.

Your program needs to open any text file before it tries to put anything
into it. After you're finished working with the file, your program must
close it. For these initial and final tasks, use the DOS commands
OPEN and CLOSE.

When your text file is open, your program can print new lines to the
file or read (retrieve) lines from it. Add information to a text file with
the DOS command WRITE and the BASIC statement PRINT; retrieve
information with the DOS command READ and the BASIC
statements INPUT and GET.

Chapter 3: Using Sequential-Access Text Files

See section 3.3 for the syntax and use of
sequential-access commands.

See section 4.3 for the syntax and use of
random-access commands.

The arguments you add to these commands and others depend on
which of the two text-file types you are using. The main difference is
that arguments to random-access commands specify length.

3.1.1 Choosing Sequential- or Random-Access
TextFiles

The fields of a sequential-access file can vary in length. You use
them only sequentially, starting at the beginning of the file and
working toward the end. Sequential-access is the better type of file
for applications that begin a session by reading the entire contents of
the file and finish by writing the modified contents back to the file.
Many word processors store their text in sequential-access text files.

All the records in a random-access text file must be the same length.
You can use them in any order or modify one record of the file without
affecting the others. Random-access files are the better type for
storing many pieces of information whose maximum length can be
determined and whose contents change frequently. For example, you
could store stock quotations or lists of experimental data in random-
access files.

You might want to consider the following factors when choosing
which type of text file to use:

® Disk space. The firsttime you write a record to a random-access
text file, the entire record is placed in the file. If you specify a
record length of 200 characters and write only one character to
each record, you waste 199 (198 plus the carriage return)
characters of disk space per record. In actual practice, records are
rarely filled entirely, so random-access text files use disk space
less efficiently than do sequential-access text files.

e Amount of data. When you read all the information into memory
at the beginning of the program, it is faster to read it field by field
from a sequential-access text file.

® Use of data. When the information won't all fitin memory, and you
won'’t use it in any particular order, itis much faster to use a
random-access text file.

Comparing Sequential- and Random-Access Text Files

3.1.2 Current Position Pointer

Every open text file has a pointer that keeps track of the current
position in the file. Throughout this manual, this is called the current
position pointer. When you read from a file, the current position
becomes the character following the carriage return after the last
character read. Likewise, when you write to a file, it points to the
position immediately following the last carriage return. When you first
open afile, the current position is the first character position in the
file.

3.2 Sequential-Access Text Files

A sequential-access text file is like a scroll that contains an unlimited
number of lines of text. With a sequential-access file, or a scroll, you
need to search line by line to locate a particular text line. There are no
pages to make the search faster.

3.2.1 TheField

The basic unit of a sequential-access text file is the field. A field can
be compared to a line of text on the screen. Both are a series of
characters that ends with a carriage-return character. To understand
how to create a field in a text file, look first at how the PRINT
statement of BASIC sends a field to the screen.

When a PRINT statement without a terminating semicolon prints a
line to the screen, BASIC puts a carriage-return character at the end
of the line. You can see the cursor move to the next line.

When you print to a file using a PRINT statement that does not have a
terminating semicolon, BASIC puts the contents of the PRINT string
into the file and writes a carriage-return character at the end of the
string. In afile, the string is called a field. The next PRINT statement
creates the next field in the file.

The following BASIC statement could be used to write either a line to
the screen or a field into afile.

5@ PRINT "THIS CREATES A FIELD"
A semicolon tells BASIC not to write a carriage-return character at
the end of a line (or a field). To make a longer line or field, use a

semicolon after the string in the PRINT statement, for example

190 PRINT "THIS MAKES PART OF A FIELD":

Chapter 3: Using Sequential-Access Text Files

The }symbol represents the carriage-
return character.

Because line 100 ends with a semicolon, the next PRINT statement
will add characters to the same line on the screen (or to the same
field in a text file):

11® PRINT " AND OTHER PARTS WILL FOLLOW."
On the screen, lines 100 and 110 look like this:

THIS MAKES PART OF A FIELD AND OTHER PARTS WILL
FOLLOW.

3.2.1.1 Storing Characters in Fields

Look at the following PRINT statements: they create several fields in
a file and show how the fields relate to each other in a sequential-
access text file.

49 PRINT "GREEN"
5@ PRINT "YELLOW"
6@ PRINT "ORANGE"
7@ PRINT "RED"
8@ PRINT "UIDLET"
9@ PRINT "BLUE"

This sequential-access text file contains 36 characters in 6 fields of
varying lengths. On the screen, lines 40 through 90 look like this:

GREEN
YELLOW
ORANGE
RED
UIDLET
BLUE

Here is how the characters generated by lines 40 through 90 are
storedin afile:

Character sequence: GREEN)YELLOW)ORANGE}RED)VIOLET)BLUE)
Field number: 0 1 2 3 4 5

By the Way: Note that the first field in a sequential-access text file is
numbered 0.

Sequential-Access Text Files

The EXEC command is described in
Chapter 5.

3.2.1.2 A Short Sequential-Access Text File

The sample program LISTSELF creates a sequential-access text file
called LISTFILE and places lines in the file.

1@ REM PROGRAM LISTSELF

20 D$ = CHR$ (4) (D$ is (conTROL)-(D))

3¢ PRINT D$%3"OPEN LISTFILE"
(Open LISTFILE; createitifit
doesn't yet exist)

4@ PRINT D$3i"WRITE LISTFILE"
(Prepare LISTFILE for writing)

5@ LIST (Put the program’s listing in
LISTFILE; line 40 points there)
6@ PRINT D%3"CLOSE" (CLOSE all open files)

This short program directs DOS to open LISTFILE (line 30), uses
WRITE so that LISTFILE can be written to (line 40), gives the BASIC
statement LIST, and closes LISTFILE.

Notice that LIST is nota DOS command and is not preceded by a
(conTroL)-(0). Indeed, if D$ were printed here, it would cancel the
last DOS command (WRITE, in line 40).

The WRITE command redirects all output to the file. Therefore, the
LIST statement places the lines of the program, one by one, into
LISTFILE instead of sending them to the screen.

Type in the program. Then put an initialized, write-enabled disk into
drive 1 and type

RUN

This executes LISTSELF, which puts the text file named LISTFILE
on the disk. After LISTSELF has finished running and you see the
prompt character on the screen again, look at the disk’s catalog.
You'll see the entry for LISTFILE. The two-sector long entry will be
preceded by a T (for text file).

To check the contents of the new text file, you can use the EXEC
command. The EXEC command expects to deal with text files and to
take commands from them instead of from the keyboard.

When you type in lines of a BASIC program, they are entered in
memory as a BASIC program. Thus, if you use the EXEC command
to read program lines from a sequential-access text file, they too will
enter memory as a BASIC program. You can use the LIST statement
to look at a BASIC program.

Chapter 3: Using Sequential-Access Text Files

The NEW statement clears memory and
variables.

Table 3-1. Printing to a Text File

By the Way: Immediate-execution BASIC commands work on programs
in memory whether you type them in, issue a LOAD command to bring
them in from disk, or have an EXEC file bring them in.

First, clear memory with the NEW statement. Then, issue the LIST
statement to prove that there is no program in memory. Now type the
command

KEC LISTFILE
One prompt character appears on the screen for each line in the
BASIC program. When the disk stops spinning and BASIC prints a
prompt that is not followed by a line from the program, type

LIST

The LIST statement lists the program that has reappeared in
memory.

3.2.2 Entering and Reading Text

How you enter text into a file determines how you will later read it from
the file. Each of the following examples builds on the previous one.

In the next two discussions, the data separated by commas are
called parts. Statement 5 in Table 3-1 shows how to create these
parts; statement 2 in Table 3-2 shows how to read them.

3.2.2.1 Writing to a File Using PRINT

How you terminate the PRINT statement affects how characters are
putinto a text file. In Table 3-1, A$ has the value “DOG” and B$ has
the value “CAT”; the) character denotes a carriage return.

PRINT Statement Adds Characters Comments

1. PRINT “TEXT” TEXT) Ends the current field; adds a carriage-
return character.

2. PRINT “TEXT"; TEXT Doesn't add a carriage return.

3. PRINT A$;B$; DOGCAT Adds second field to first field; doesn'’t
add a carriage-return character.

4. PRINT A$,B$ DOGCAT) Unlike PRINT to the screen, does not add
spaces between fields separated by
commas; adds a carriage return at the
end.

5. PRINT A$;“,”;B$ DOG,CAT) Adds a comma and second field to the

first field; adds a carriage return.

Sequential-Access Text Files

Table 3-2. Reading From a Text File

See the warnings about GET in section
3.2.25.

3.2.2.2 Reading Characters From a File

How you put characters into a file with PRINT statements determines
how you can read them. INPUT is better for reading some types of
data; GET is better for others.

An INPUT statement contains a variable for each part of a field it can
read. An INPUT statement with one variable reads all characters up
to the next carriage-return character, adding to the variable only the
characters up to a colon or comma. Since an INPUT statement can
read data into more than one variable if the pieces of data are
separated by commas, use INPUT with additional variables to read
characters after a comma.

Use a GET statement to read information that cannot be read with an
INPUT statement. GET reads all characters, including commas and
colons. This is the way to read fields with varying numbers of parts.

Note: INPUT will truncate the information it reads to 239 characters. If the
information is longer than 255 characters, INPUT will cancel the whole
line and start over. This is why it is better to create many short fields than
one long one. Also, it's a good idea to read from a sequential-access file
with a GET statement when you're not sure of the length of the field you
want to read.

Table 3-2 shows some of the ways to read characters with INPUT
and GET.

Statement Effect

1. INPUT A$ Reads one part of afield. If a field has more
than one part, BASIC discards the remaining
parts and displays EXTRA IGNORED. This
means the other parts aren’t read.

2. INPUT AS$,B$ Reads two parts of a field. If a field has more
than two parts, BASIC discards the remaining
parts and displays EXTRA IGNORED. This
means the other parts aren’t read. If a field has
less than two parts, BASIC reads parts from
the next field.

3.GETC$ Reads the next character (letter, comma, or
colon) from the file.

The next three examples show how to enter and read text with one
part per field, with multiple parts per field, and with fields that contain
commas.

Chapter 3: Using Sequential-Access Text Files

3.2.2.3 One Part Per Field

This program shows you how to write four fields, each containing one
part, to a sequential-access text file.

1& REM MAKE.FRUIT

20 D$ = CHR$ (4) (D$ is (conTROD)-(D])

25 PRINT D$3i"MON C,+I.0" (Watchthe action)

3@ PRINT D$3i"OPEN FOUR.FRUITS"
(Create the file FOUR.FRUITS, if
necessary, and OPEN it)

4@ PRINT "THIS GOES TO THE SCREEN"
(Characters go to the screen
until WRITE is executed)

5@ PRINT D$i"WRITE FOUR.FRUITS"
(Specify the output file)

6@ PRINT "APPLE" (Put field 0 in the file)
7@ PRINT "BANANA" (Putfield 1 in the file)
8@ PRINT "CANTALOUPE" (Putfield 2 in the file)
9@ PRINT "DATE" (Putfield 3 in the file)

92 PRINT D#$3i"CLOSE FOUR.FRUITS"

(Close FOUR.FRUITS)
94 PRINT D$3i"NOMON C,I.0"

(Suppress the action)
96 END

Notice that even after FOUR.FRUITS is open, you can still PRINT to
the screen (line 40). However, after the WRITE statement in line 50,
all PRINT statements send their characters to the file.

Here is how the characters are stored in FOUR.FRUITS.

) = carriage-return character Character sequence: APPLE) BANANA) CANTALOUPE) DATE)
Field number: 0 1 2 3

Sequential-Access Text Files

94 PRINT D$3i"NOMON C,I.O"
(Suppress the action)

86 END

This program uses the INPUT statement (line 60) once for each field
it reads from the file. The colons in lines 60 and 70 are not required;
they make the program easier for you to read.

3.2.2.4 Multiple Parts Per Field

The next program places three parts in each of two fields. When you
type the program into memory and run it, the commas between the
parts in lines 50 and 60 are written to the file INVENTORY because
they are within quotes.

1@ REM BINS
20 D$ = CHR$ (4) (D$ is (conTROL)-(D))
25 PRINT D#%3"MON C+Is0" (Watchthe action)
3@ PRINT D#%3"OPEN INVENTORY"
(Create the file INVENTORY, if
necessary; prepare to use it)
43 PRINT D$3"WRITE INVENTORY"
(Prepare to write to file)
5@ PRINT "BOLTS 'SCREWS s NAILS"
(Print three parts in field 0)
6@ PRINT "WASHERSGROMMETS » RINGS™
(Printthree parts in field 1)
7@ PRINT D#%3i"CLOSE INVENTORY"
(Close INVENTORY)
94 PRINT D%3"NOMON C.I.0"
(Suppress the action)
96 END

Here’s how the characters are stored in INVENTORY:

Character

sequence: BOLTS,SCREWS,NAILS)WASHERS,GROMMETS,RINGS)
Field 0 1

number:

The INPUT statements in the next two programs will read these
commas in different ways. The commas are treated as markers for
the end of the parts the programs read (retrieve).

Sequential-Access Text Files

This program reads each part into a separate variable.

1¢ REM DRAKWERS
20 D$ = CHR$% (4) (D$ is (conTRrOL)-(D))
25 PRINT D#%3"MON C+I:0" (Watch the action)
3@ PRINT D&3"0OPEN INVENTORY"
(Prepare to use INVENTORY)
4@ PRINT D$3"READ INVENTORY"
(Prepare to read from file)
50 INPUT Al$A2%+A3% +A4% A0S »AGE
(Read 3 parts from field 0 and 3
parts from field 1)
6@ PRINT D#%3i"CLOSE INVENTORY"
(Close INVENTORY)
7@ PRINT Al%AZ%:A3%:A4% A5 +AGS
(Print all six parts)
8@ PRINT D$3"NOMON C,I.0"
(Suppress the action)
9¢ END

Notice that line 50 simply reads consecutive parts from the file. When
all the parts have been read from one field, parts are automatically
taken from the next field.

This program reads only the first part from each field.

5 REM METAL.PARTS
10 D$ = CHR$ (1) (D$ is (CoNTROL-(D))
20 PRINT D$3"MON C+I.:0" (Watchthe action)
3¢ PRINT D$3"0OPEN INVENTORY"

(Prepare to use INVENTORY)
4@ PRINT D$3"READ INVENTORY"

(Prepare to read from file)
S50 INPUT Al% (Read first part from field 0)
B@ INPUT AZ% (Read first part from field 1)
7@ PRINT D#3"CLOSE INVENTORY™

(Close INVENTORY)
8@ PRINT Al%:AZ2% (Display the two parts)
9¢ PRINT D$3"NOMON C.I.0"

(Suppress the action)
1@ END

In this example, each INPUT statement reads an entire field,
regardless of the number of parts it has. Line 50 assigns the value
“BOLTS” to A1$, discards the rest of field 0, and displays EXTRA
IGNORED. Likewise, line 60 assigns the value “WASHERS” to
A2$, ignores the rest of field 1, and displays EXTRA IGNORED.
Finally, line 70 displays the parts BOLTS and WASHERS.

Chapter 3: Using Sequential-Access Text Files

3.2.2.5 Reading Fields That Contain Commas

To read a comma, colon, or control character, or to detect a particular
character asitis read, use the Applesoft GET statement instead of
INPUT. INPUT reads strings of characters separated by a comma,
but GET reads characters one by one from either the keyboard or a
text file.

Warning
After an Applesoft GET statement reads a character from a text file, the
following problems arise in DOS:

If a DOS command is the firstitem printed after the GET, the DOS
command may not be executed because the necessary preceding
carriage-return character is missing. To solve this, print a carriage return
before printing the DOS command.

When NOMON C, 1,0 is in effect, the first character printed after GET will
notappear on the screen.

When MON C,|,QO is in effect, the first character printed after GET will
appear on the screen.

To solve these problems, put a nonprinting character (like (controD)-())
into a variable and print it before the PRINT character you want to see.

Note also that GET reads a field character by character and stores each
character it reads until it arrives at a carriage-return character. Thus,
using GET to read a long string or a series of concatenated strings may
cause memory problems.

If you've been doing the examples, you typed in the BINS program
and created the file INVENTORY. The next example retrieves
characters from INVENTORY by using the GET statement. The GET
statement reads one or more parts from a field.

INVENTORY has three parts in each field. However, there may be
times when you won’t know how many parts to read from a field. Use
the GET statement to read an unknown number of parts, separated
by commas, from one field of a file.

The following subroutine reads parts, separated by commas, and

then places them into consecutive elements of string array A$. The
elementin use at any time is indicated by A$(l).

Sequential-Access Text Files

This example reads only the first field
from the file.

The subroutine also uses the GET statement to read one character

into the variable C$. If the character is not acomma or a carriage-
return character, the subroutine adds it to A$(l). When the subroutine
reads a comma that separates two elements, it increments the
variable | by 1, so that | will indicate the next element of the array, and
continues reading characters. It repeats this process until it reads a
carriage-return character indicating the end of the field.

190 R% = CHR$ (13) (R$is acarriage return)
999 REM READ A FIELD

1000 1 = @ (Start with array element 0)
1¢1¢ I =1 + 1 (Use next array element)
102¢ GET C% (Read the next character)

1030 IF C$ = "" THEN GOTOD 1010
(If comma, use next element)
R$ THEN RETURN
(If GET reads a carriage return,
there are no more elements to
read; otherwise
1050 A%(I) A%(I) + C% addC$tothe element)

1ec6e GOTO 10Z0

1040 IF Cs

To use this subroutine, you need a program that calls the subroutine
to retrieve the parts from the first field of the file INVENTORY. To
summon a subroutine, use GOSUB n, where niis the line on which
the subroutine starts (line 60 below). When the RETURN statement
is executed (line 1040 above), execution branches to the line
following the GOSUB statement (line 70 below).

2¢ REM USE SUBROUTINE
3¢ D% = CHR$ (13) + CHR$ (4)
(D$ is carriage return plus
(conTrOL-(0] to ensure that CLOSE
executes)
4¢ PRINT D$3"DPEN INVENTORY"
(Prepare INVENTORY for use)
3¢ PRINT D$3i"READ INVENTORY"
(Prepare INVENTORY for
reading)
6@ GOS5UB 1000 (Read all parts from a field)
7¢ PRINT D$3"CLOSE INVENTORY"
(Close INVENTORY)
1 70 1 (Now print the | elements of A$
onto the screen)

80 FOR J

8@ : PRINT As(J)
100 NEXT J
11® END

Chapter 3: Using Sequential-Access Text Files

The TEXT statement converts the display
to 24 lines of text (instead of graphics)
and positions the cursor at the beginning
of the bottom line.

You can test this program. After you have typed in the lines of the
program and the lines of the subroutine, type

RUN

You'll see the three words in the first field of the INVENTORY file on
your screen, one word per line.

3.2.3 Programs: Entering and Reading Text

You can see how GET reads a variable number of fields from a file by
using two programs from the SAMPLE PROGRAMS disk. The
program MAKE TEXT reads text from the keyboard and saves itina
file. The program GET TEXT reads text from a file and displays it on
the screen.

3.2.3.1 A Program for Entering Text

The following program is stored in the file MAKE TEXT. The program
lets you type up to one hundred lines of text and save them in afile. It
asks for lines of text, reads them from the keyboard, and places them
into consecutive elements of the array A$. The program stops
reading lines when it encounters an empty line. The first portion of
MAKE TEXT looks like this:

5 REM MAKE TEX
1@ DIM A%(100) (Allow room for 100 lines in
array)
REM CONTROL-D
(Set (conTroL-(0] in the
variable D$)
: REM RETURN

(Set in the variable R$)

20 D&=CHR%(4)

3¢ R$=CHR%(13)

4@ TEXT : HOME (Set text mode; clear screen)
5@ PRINT ™ TEXT FILE CREATOR"

6@ INVERSE : PRINT ™ TO ADD A STRING:"
7@ NORMAL : PRINT " ENTER CHARACTERS: AND

PRESS RETURN"

8@ INVERSE : PRINT "TO END:"

9@ NORMAL : PRINT " PRESS RETURN ON AN
EMPTY LINE"

180 PRINT : POKE 34,6 (Skip 1 line; specify line 6 as top

of screen for new display to save
program instructions)

Sequential-Access Text Files

Setting a text window, see the Applesoft
BASIC Programmer's Reference
Manual.

110 T = I + 1 : PRINT I3":z "3
(Ask for next line of text)
12¢ GOSUB 1000 (Jump to reading routine)
130 IF A$(I)y < » "" GOTO 110
(If A$(l) is not empty, go to line
110 for another line)

In line 40, the TEXT statement switches to text mode and the HOME
statement clears all characters from the screen and moves the cursor
to the upper-left corner of the screen. Lines 50 through 110 place the
instructions for the program on the screen, some in normal letters,
and some in inverse letters. Line 100 sets a text window, that is, it
freezes the upper six lines of the screen so that the instructions stay
on the screen. The variable | has the value of 0 the first time it is used.
When the program executes line 110 the first time, it sets I to 1 and
prints “1” on the screen.

Line 120 directs MAKE TEXT to jump to the subroutine that reads a
line of text from the keyboard. This is the subroutine:

100@ GET C$: PRINT C%3 (Read 1 characterand printitto
the screen)

1810 IF C%$=R$ THEN RETURN
(If that character = (RETURN), exit this
routine; go back to 130)

1020 A%(I) = A%(I) + C% (If somethingelse wasinput,
build itinto a string)

1@30 GOTO 1000 (Go back for more input)

MAKE TEXT reads one character into the variable C$ and tests C$. If
C$ contains a carriage-return character, execution goes to line 130.
Butif C$ does not contain a carriage-return character, the program
adds the contents of C$ into the growing array (line 1020). The
program puts each string into element | of the array A$.

Once the text is stored in the array, MAKE TEXT asks for the name of
the file into which it should place the text:

142 INPUT "SAVE TO WHAT FILE? "iN$
150 IF LEN (N#%)=0 THEN 220
(If no name given, go to 220 to
quit)
16@ PRINT D#3"OPEN "iN%$ (Openthe file named N$)
17@ PRINT D$3"WRITE " iN% (Preparetowritetoit)

The program reads that name into the variable N$. The next line tests

that a name was actually entered. If a file name was not entered, the
program branches to line 220 and quits.

Chapter 3: Using Sequential-Access Text Files

Note: If the filename does not begin with a letter, DOS will display
SYNTAX ERROR.

Next, the program saves the array contents into the specified file. An
empty input line indicates the end of the text. MAKE TEXT then prints
the entire array to the file (lines 180 through 200).

180 FOR J = 1 TO I - 1 (Foreachlineof text, it

190 : PRINT A%(J) prints the line to the file

200 NEXT J and continues to the next line)
21@ PRINT D#3"CLOSE " iN% (Closes the file when done)

Finally, with line 220, MAKE TEXT resets the screen pointers for
proper text mode and ends.

220 TEXT : END (Resets screen to normal size)

Run this program a few times, creating text files of different lengths.
Experiment with the program’s features and get familiar with the way
they work. For example, enter a blank line of text by putting spaces
on that line; since it contains characters, the length of the line will

not be 0.

3.2.3.2 A Program for Retrieving Text

Creating a sequential-access text file is a challenging exercise. You
also need to have some method for retrieving the information you've
put into the file.

The program GET TEXT reads a sequential-access text file. Load
the program from the SAMPLE PROGRAMS disk and look at the
lines as they are described below.

First, GET TEXT sets up the variables it is going to use. It dimensions
the array A$ to hold up to 100 elements and assigns the value of
(controL)-(0) to D$ and the value of to R$. Before going

on, the program clears the screen and moves the cursor to the upper-
left corner of the screen (line 50).

5 REM GET TEX
1@ ONERR GOTO 150
20 DIM As(102)

30 R$ = CHR$ (13) (R$ is (RETURN))
49 D$ = CHR$ (1) (D$ is (conTROL)-(D))

50 TEXT : HOME

Sequential-Access Text Files

Inline 60, GET TEXT asks for the name of the file from which to read
text and reads that name into the variable N$. Line 70 tells you that
pressing (ConTrRoL)-(s] will stop the program and pressing almost any
key will restart the listing.

6@ INPUT "LIST WHAT TEXT FILE™ "3N%$

7@ PRINT : PRINT "TYPE: CONTROL-S TO STOP
LISTING"

8@ PRINT * ANY KEY TO CONTINUE"

9@ PRINT @ PRINT : POKE 3446

As with the preceding program, GET TEXT freezes the upper six
lines of the screen (line 90) so that they remain on the screen even
when you enter more lines than the screen can hold.

Having read the name of the text file, GET TEXT can now open the
file you've specified and read consecutive lines fromit:

100 PRINT D$3 "OPEN "3 N%

(Open the text file named in N$)
11@ PRINT D$3 "READ "i N$

(Prepare to read from the file)

120 FOR I = 1 TO 100 (For eachlinein the file, go to

13@¢ GOSUB 1000 the subroutine to process each
character)

135 : PRINT A%(I) (Display each character on the
screen)

14 NEXT I (Then do the next string)

The only remaining task is to close the file and reset the screen.

150 PRINT D#3:"CLOSE "3N% (Close thefile)
160 TEXT : END

Here is the subroutine mentioned in line 130. It is similar to the
subroutine of MAKE TEXT.

19@® GET C%: PRINT C#%3 (Read1characterandechoit)
101@ IF C%$=R$ THEN RETURN
(If that character was a (RETURN), exit
this routine and go back to 135)
1020 A%$(I) = A%$(I) + C% (If somethingelse was there,
build it into a string)
193¢ GOTO 1000 (Read more)

Chapter 3: Using Sequential-Access Text Files

MAXFILES, see Chapter 5.

3.3 Commands Used With Sequential-Access

Files

This section describes the DOS commands used with sequential-
access files. Note that only one of these commands can be used in
both immediate and deferred execution. The others can be used only
in deferred execution.

3.3.1 The OPEN Command - Deferred Execution

Before writing to or reading from a sequential-access textfile, a
program must open that file.

When a program opens a text file, DOS reserves 595 bytes of
memory space for the file; this space is called a file buffer. DOS also
sets the current position (for reading and writing) to point to the
beginning of the file.

The OPEN command allows up to 16 files to be open at once;
however, you must set MAXFILES since each DOS file you use
requires a file buffer.

This is the general form of OPEN:

OPENfn[,Sn][,Dn][,Vn]

fn indicates the name of the file to be opened. When it
does not yet exist, DOS creates one with that name,
type T. If the file already exists, it must not be open.

[,Sn] where n is a number from 1 to 7, specifies the slot

containing the disk controller card of the drive to be<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>