Apple I DOS Programmer’s Manual -,

ForII, I+, /le

Customer Satisfaction

If you discover physical defects in the manuals distributed with an Apple product orinthe
media on which a software productis distributed, Apple will replace the documentation or
media at no charge to you during the 90-day period after you purchased the product.

In addition, if Apple releases a corrective update to a software product during the 90-day
period after you purchased the software, Apple will replace the applicable diskettes and
docurentation with the revised version at no charge to you during the six months after the
date of purchase.

In some countries the replacement period may be different; check with your authorized
Apple dealer. Return any item to be replaced with proof of purchase to Apple or an
authorized Apple dealer. i

Limitation on Warranties
and Liability

Even though Apple has tested the software described in this manual and reviewed its
contents, neither Apple nor its software suppliers make any warranty or representation,
either express or implied, with respect to this manual or to the software described in this
manual, their quality, performance, merchantability, or fitness for any particular purpose. As
aresult, this software and manual are sold “asis,” and you the purchaser are assuming the
entire risk as to their quality and performance. In no event will Apple or its software supphers
be liable for direct, indirect, incidental, or consequential damages resulting from any defect
in the software or manual, even if they have been advised of the possibility of such
damages. In particular, they shall have no liability for any programs or data stored in or used
with Apple products, including the costs of recovering or reproducing these programs or
data. Some states do not allow the exclusion or limitation of implied warranties or liability for
incidental or consequential damages, so the above limitation or exclusion may not apply
to you.

Copyright

This manual and the software (computer programs) described in it are copyrighted by
Apple or by Apple’s software suppliers, with all rights reserved. Under the copyright laws,
this manual or the programs may not be copied, in whole or part, without the written
consent of Apple, except in the normal use of the software or to make a backup copy. This
exception does not allow copies to be made for others, whether or not sold, but all of the
material purchased (with all backup copies) may be sold, given or loaned to another person.
Under the law, copying includes translating into another language.

You may use the software on any computer owned by you but extra copies cannot be made
for this purpose. For some products, a multi-use license may be purchased to allow the
software to be used on more than one computer owned by the purchaser, including a
shared-disk system. (Contact your authorized Apple dealer for information on multi-use
licenses.)

Product Revisions

Apple cannot guarantee that you will receive notice of a revision to the software described
in this manual, even if you have returned a registration card received with the product. You
should periodically check with your authorized Apple Dealer.

© Apple Computer, Inc., 1982
20525 Mariani Avenue
Cupertino, California 95014
(408) 996-1010

Apple and the Apple logo are registered trademarks of Apple Computer, Inc.
Simultaneously published in the U.S.A. and Canada. All rights reserved.

Reorder Apple Product #A2L2012

Applell DOS Programmer’s Manual [§

Contents

Preface Xi
. Introduction 1
3 1.1 The DOS Environment
3 1.1.1 The DOS Disks
4 1.1.2 Requirements for Using DOS
4 1.1.3 AFew Conventions
5 1.2 How DOS Commands Are Described
5 1.2.1 Notation
5 1.2.2 Syntax
7 1.3 Direct DOS Commands
7 1.3.1 The CATALOG Command
8 1.3.2 The INIT Command
9 1.3.3 The RENAME Command
10 1.3.4 The LOCK Command
11 1.3.5 The UNLOCK Command
1 1.3.6 The DELETE Command
12 1.3.7 The VERIFY Command
13 1.3.8 The RUN Command
14 1.3.9 The LOAD Command
15 1.3.10 The SAVE Command
DOS Programming Tools 17
19 2.1 Ways of Using DOS Commands
19 2.1.1 Immediate Execution
20 2.1.2 Deferred Execution
20 2.1.3 Command Files
20 2.2 BASIC Program Files
22 2.2.1 Switching Languages with the FP and INT
Commands
24 2.2.2 Returning to BASIC from the Monitor Program

Contents n

25 2.3 Using DOS From a Program

26 2.3.1 Example

27 2.3.2 Things to Watch Out For

28 2.4 Debugging With the MON and NOMON Commands

29 2.4.1 The MON Command

30 2.4.2 The NOMON Command

30 2.5 Intercepting Errors With Applesoft

31 2.5.1 Example

33 2.5.2 Finding Hidden Characters in a File Name

34 2.6 Talkingto Other Devices From a Program

34 2.6.1 Starting a Program With PR# and IN#

35 2.6.2 The PR# Command

36 2.6.3 The IN# Command

36 2.7 The RENUMBER Program

37 2.7.1 RENUMBER Commands

1 2.7.2 RENUMBER Error Messages

43 2.8 Summary

43 2.8.1 Commands

43 2.8.2 Program

Using Sequential Text Files 45

47 3.1 Comparing Sequential- and Random-Access Text Files

49 3.1.1 Choosing Sequential- or Random-Access Text Files

50 3.1.2 Current Position Pointer

50 3.2 Sequential-Access Text Files

50 3.2.1 TheField

53 3.2.2 Entering and Reading Text

61 3.2.3 Programs: Entering and Reading Text

65 3.3 Commands Used With Sequential-Access Text Files

65 3.3.1 The OPEN Command - Deferred Execution

66 3.3.2 The CLOSE Command - Immediate or Deferred
Execution

67 3.3.3 The WRITE Command - Deferred Execution

68 3.3.4 The READ Command - Deferred Execution

68 3.3.5 The POSITION Command - Deferred Execution

69 3.3.6 The APPEND Command - Deferred Execution

71 3.4 Command Summary

Contents

Using Random-Access Text Files 73
75 4.1 Random-Access Text Files

76 4.1.1 Record Length
76 4.1.2 Writing to a Record
77 4.1.3 Reading From a Record

77 4.2 A Demonstration: The RANDOM Program
79 4.3 A Sample Random-Access Program

79 4.3.1 Controlling the Program
79 4.3.2 Storing Records

80 4.3.3 Writing a Record

82 4.3.4 Reading aRecord

84 4.4 Commands Used With Random-Access Text

84 4.4.1 The OPEN Command - Deferred Execution

85 4.4.2 The CLOSE Command - Immediate or Deferred
Execution

86 4.4.3 The WRITE Command - Deferred Execution

87 4.4.4 The READ Command - Deferred Execution

88 4.5 Command Summary

Programming With More Sophistication 89

91 5.1 UsingaCommand File
92 5.5.1 The EXEC Demonstration
94 5.1.2 Creating a Command File
96 5.1.3 Special-Purpose Command Files
99 5.2 The EXEC Command
101 5.3 The MAXFILES Command

101 5.3.1 Buffering Information
102 5.3.2 Example
103 54 CHAIN

103 5.4.1 The CHAIN Command - Integer BASIC
105 5.4.2 The CHAIN Program - Applesoft
106 5.5 The MASTER Program

107 5.5.1 Example

108 5.6 Making a Turnkey Disk

108 5.6.1 Creating a Turnkey Disk

109 5.6.2 Creating a Master Turnkey Disk
109 5.6.3 A Disk for All Systems

113 5.7 Summary

113 5.7.1 Commands

13 5.7.2 Program

Contents

1o

Using Memory More Efficiently 115

117 6.1 Binary Files

118 6.1.1 Binary Addresses

118 6.1.2 Anand Ln: The Memory Address Arguments
119 6.2 The Binary Commands

120 6.2.1 The BRUN Command

121 6.2.2 The BLOAD Command

122 6.2.3 The BSAVE Command

124 6.3 DOS and the Monitor Program

125 6.3.1 Input and Output Registers of the Monitor Program
126 6.3.2 Input and Output Registers of DOS

127 6.4 Memory Usage and Entry Points

127 6.4.1 PR# and IN# in Memory

129 6.4.2 Memory Maps

133 6.4.3 DOS Entry Points

135 6.5 Binary Command Summary

Dealing With 13-Sector Disks 139

140 A.1 Converting 13-Sector Disks: The CONVERT13 Program
140 A.1.1 Example

143 A.1.2 The Wildcard Character

144 A.2 Running Unconverted 13-Sector Disks

144 A.2.1 Using the START13 Program

145 A.2.2 Using the BASICS Disk

The Storage Process 147

147 B.1 Tracks and Sectors
148 B.2 Contents of File Sectors

149 B.2.1 Format of File Sectors According to File Type
149 B.2.2 The Track/Sector List

151 B.2.3 The Disk Directory

155 B.2.4 The Volume Table of Contents

157 B.2.5 The Track Bit Map

158 B.3 Track and Sector Allocation

159 B.4 Addressing Tracks and Sectors: The RWTS Subroutine

160 B.4.1 Example

162 B.4.2 Formats: I/O Block and Device-Characteristics
Table

163 B.5 DOS Vectorsin Page 3

165 B.6Zero Page Use

DOS Error Messages 167

168 C.1 DOS Error Messages
169 C.2 Recovering From Errors

Contents

Programs 177

177 D.1 Programs onthe SYSTEM MASTER Disk
178 D.2 Programs on the SAMPLE PROGRAMS Disk

Summary of DOS Operating Concepts and
Commands 181

181 E.1 Operating Concepts

181 E.1.1 Cold Start

182 E.1.2 Warm Start

182 E.1.3 Initializing a Disk

182 E.1.4 Creating a Master Disk

183 E.1.5 Interpreting Commands

183 E.1.6 Capacity

183 E.1.7 File Types

183 E.2 Command Notation

183 E.2.1 Conventions

184 E.2.2 Syntax

184 E.2.3 Arguments

186 E.3 Command Summary

187 E.3.1 Nonprogramming Commands for Accessing Disks

190 E.3.2 Commands that Control the Programming
Environment

192 E.3.3 Programming Commands for Sequential-Access
Text Files

195 E.3.4 Programming Commands for Random-Access Text
Files

197 E.3.5 Commands for Binary Files
Glossary 199
Index 211

Contents

N Figures and Tables

22
37

48
48

53
54

80
80
82

92
93
94

119
130
131

125
125
126
126
132

Chapter 1

Figure 1-1.

Chapter 2

Figure 2-1.
Figure 2-2.

Chapter 3

Figure 3-1.
Figure 3-2.

Table 3-1.
Table 3-2.

Chapter 4

Figure 4-1.
Figure 4-2.
Figure 4-3.

Chapter 5

Figure 5-1.
Figure 5-2.
Figure 5-3.

Chapter 6

Figure 6-1.
Figure 6-2.
Figure 6-3.

Table 6-1.
Table 6-2.
Table 6-3.
Table 6-4.
Table 6-5.

Contents

Introduction
The Syntax of DOS Commands

DOS Programming Tools

FP and INT
The RENUMBER Title Screen

Using Sequential-Access Text Files

Printing to a Sequential-Access Text File
Printing to a Random-Access Text File

Printing to a Text File
Reading From a Text File

Using Random-Access Text Files

Five Addresses in BLACK.BOOK
Writing an Address to Record 5
Reading an Address from Record 5

Programming With More Sophistication

The First Screen of the EXEC Demonstration
EXEC DEMO’s Final Screen
A Command File

Using Memory and Disks More Efficiently

BRUN, BLOAD, and BSAVE
Memory Areas Overwritten When Booting DOS
Memory Areas Used by DOS and Both BASICs

Monitor Input Register in Locations 56-57 ($38-$39)
Monitor Output Register in Locations 54-55 ($36-$37)
DOS Input Register

DOS Output Register

The Values of HIMEM

Figures and Tables

Appendix A Dealing With 13-Sector Disks

139 Figure A-1. 13-Sector Versus 16-Sector Disks
140 Figure A-2. The CONVERT13 Menu
145 Figure A-3. The START13 Title Screen

Appendix B The Storage Process

148 Figure B-1. Tracks on a Disk
159 Figure B-2. Tracks and Sectors

149 Table B-1. Format of File Sectors for Different File Types
150 Table B-2. First Sector of a Track/Sector List

152 Table B-3. One Sector of a Disk Directory

153 Table B-4. Directory Entry for One File

154 Table B-5. Byte Indicating the File Type

155 Table B-6. Locked/Unlocked Values of the File Type Byte
155 Table B-7. Volume Table of Contents: VTOC (Track $11, Sector $0)
157 Table B-8. Track Bit Map for One Disk Track

157 Table B-9. Typical Track Bit Map

162 Table B-10. Format of an I/O Block

163 Table B-11. Format of a Device-Characteristics Table

164 Table B-12. DOS Vectors ($3D0-$3FF)

165 Table B-13. DOS Zero Page Use

AppendixC DOS Error Messages

168 Table C-1. DOS Error Messages

168 Table C-2. DOS Error Codes

170 Table C-3. Minimum and Maximum Values of Arguments
174 Table C-4. Types of Files According to Command

Contents

Preface

The DOS Programmer’'s Manual is written for people who want to
store programs and other information on disks. It describes DOS 3.3,
a disk operating system that allows you to place information on disks,
change information already on disks, and retrieve information from
disks. DOS runs on Apple Il, Apple Il Plus, and Apple lle computers.

The DOS User’s Manual can be used as an introduction to this
manual. However, the DOS Programmer’s Manual summarizes the
information it contains.

Organization of This Manual

This manual is designed as a reference. The topics covered become
increasingly complex as you progress.

Each chapter begins with an introduction to the topics it contains and
concludes with a summary of the commands that are discussed.

Chapter 1 describes the DOS environment and the DOS commands
that are used primarily from the keyboard.

Chapter 2 explains several ways of using DOS commands. It
describes how to embed a DOS command in a program, monitor the
processing, and intercept errors.

Chapter 3 tells you about disk access for text files and compares
sequential and random access. It explains how to write sequential-
access text programs.

Chapter 4 explains random-access files and how to write programs
that use them.

Chapter 5 tells you how to use DOS to write a program that runs other

programs, how to chain programs, and how to create a turnkey
program.

Preface n

Chapter 6 describes binary files and commands. It also discusses the
relation between DOS and the Monitor program.

Appendix A describes how to run a program on a 13-sector disk and
how to convert 13-sector disks to 16-sector format.

Appendix B explains disk storage: how tracks and sectors are
mapped and used by DOS, and how machine-language
programmers can directly address tracks and sectors.

Appendix C discusses DOS error messages. It lists each message
and suggests ways to fix the problem.

Appendix D describes each program on the SYSTEM MASTER and
the SAMPLE PROGRAMS disks.

Appendix E is a summary of the DOS commands.

The glossary explains some of the terms that are used in this manual.
Terms shown in boldface in the text are defined in the glossary.

Atear-out reference card inside the back cover lists all the DOS
commands.

Preface

Chapter 1

Introduction

1.1 The DOS Environment
1.1.1 The DOS Disks
1.1.2 Requirements for Using DOS
1.1.3 AFew Conventions
1.2 How DOS Commands Are Described
1.2.1 Notation
1.2.2 Syntax
1.2.2.1 Defaults
1.2.2.2 Numbers
1.2.2.3 The Slot Number Option:[,Sn]
1.2.2.4 The Drive Number Option: {,Dn]
1.2.2.5 The Volume Number Option: [,Vn]
1.2.2.6 Hexadecimal Numbers
1.3 Direct DOS Commands
1.3.1 The CATALOG Command
1.3.2 The INIT Command
1.3.3 The RENAME Command
1.3.4 The LOCK Command
1.3.6 The UNLOCK Command
1.3.6 The DELETE Command
1.3.7 The VERIFY Command
1.3.8 The RUN Command
1.3.9 The LOAD Command
1.3.10 The SAVE Command

R G G
NBABRWNS a2 OOONNSNNOOTOOOOTODNNNDLELWW

introduction

Introduction

I 7.7 The DOS Environment

The DOS Programmer’s Manual describes how to use DOS
commands to write and store programs and other information on
disks. DOS is the disk operating system for the Apple Il, Apple Il Plus,
and the Apple lle computers.

When you bring the DOS program into the computer, the commands
and capabilities of DOS are added to the other computing capabilities
that are already available.

Here are some suggestions on how best to use the information in
your DOS manuals.

e If you are just beginning to use an Apple Il computer, you should
be familiar with the introductory material that came with it.

e Before you begin using disks, it would help you to know the
programming principles described in the Applesoft Tutorial and
the Applesoft BASIC Programmer’s Reference Manual.

This chapter briefly summarizes e Depending on your familiarity with your computer and with

information in the DOS User's Manual. programming techniques, you may want to read the DOS User’s
Manual before you begin to write programs that access disks.. The
DOS User's Manual is an introduction to the more complex
information in this manual.

By the Way: There's a handy DOS summary card at the back of this
manual. You can tear it out and keep it near your computer.

1.1.1 The DOS Disks

The disk labeled DOS 3.3 SYSTEM MASTER contains the DOS
program itself and other programs that do additional tasks related to
using disks. Many of these programs are described in this manual.

The DOS Environment n

. Appendix A explains how to use a

13-sector disk with this 16-sector DOS.

The disk labeled DOS 3.3 SAMPLE PROGRAMS contains
demonstration programs that you can run while you are learning the
DOS concepts. It also contains examples of BASIC programs that will
help you learn to write programs that access disks. This manual
describes many of these demonstration programs and all of the
examples.

1.1.2 Requirements for Using DOS

The DOS operating system runs on any Apple |l computer that has
16K (16 kilobytes) of random-access memory (RAM). DOS itself
uses about 10.5K of memory. You'll find it easier to run your programs
if your computer has at least 32K of memory. If you want to use both
the Applesoft and the Integer BASIC programming languages, your
computer must have 64K of memory.

Your Apple Il computer must also have at least one disk drive
connected to it. To connect the disk drive, follow the installation
instructions in the manual that came with your disk drive.

DOS, version 3.3, organizes the space on a disk into 16 sectors.

1.1.3 A Few Conventions

Apple ll, as used in this manual, implies every model of Apple I|
computer: the standard Apple Il, the Apple Il Plus, and the Apple lle.
The manual says explicitly when information applies only to a specific
model.

The first time important terms are used, they appear in boldface type
and are defined. These terms are also listed in the glossary.

The DOS manuals use two special paragraphs to catch your eye and
deliver especially important information:

By the Way: The gray box provides a reminder or additional
clarification—a faster or better way to do something. Itis labeied “Hint” or
“By the Way” or something similar.

Warning

The warning box indicates danger to a file, a disk, or your system. The
information in the box describes the danger and suggests ways to avoid it.

If you have already read the DOS User’s Manual, you can skip the
material in the rest of this chapter. Itis a summary, included here so
you have-all the information about DOS in one book.

Chapter 1: Introduction

I 7.2 How DOS Commands Are Described

The syntax (the order and form) of the various parts of a DOS
command is expressed in a kind of shorthand, which is described in

the next section.

1.2.1 Notation

This is the notation that is used in descriptions of command syntax:

UPPERCASE indicates the actual name of something, like a
DOS command. Type it exactly as indicated.

lowercase indicates something you supply, like the name
of a program.

fn indicates a file name that you supply. A file

name is composed of up to 30 characters. The
first character must be a letter; the others can
be any character, including a space, except the
comma (,).

[1] Square brackets enclose an optional argument
to acommand. If you choose to include the
argument, do not type the brackets, which are
used only to indicate an option.

n indicates a number you supply.

1.2.2 Syntax

All the possible forms of each DOS command are presented in a
one-line description of the command (Figure 1-1).

Fi 1-1. The Syntax of DOS
Cg;:ands Y Syntax Examples

Arguments SAVE ELEGANT.CODE, D2
,——~—— DELETE BOOKS, S6,D1, V3
COMMAND fn[,Sn][,Dn][,Vn] RUN WHIZBOOM, D1 .

X “—Volume Number
Drive Number
Slot Number

Command Filename

In Figure 1-1, the word COMMAND represents any DOS command
(for example, SAVE). The fn, [,Sn], [,Dn], and [,Vn] are the
command’s arguments. An argument in square brackets is optional; if
omitted, DOS uses the default.

How DOS Commands Are Described

A default is the value DOS assumes
when you do not specify a value.

Hexadecimal number system: base 16,
digits 0 through 9 and A through F.

To boot = to startup

1.2.2.1 Defaults

When you don't tell DOS anything about an optional argument, DOS
makes an assumption called a default. A default value is what DOS
uses when you do not explicitly give a value.

For example, suppose you type these commands in this order:

CATALOG,D1,S6
RUN COPYA,D2 (command without slot number)

The slot you specified in the first command, slot 6, becomes the
default slot. When you omit the slot number in the RUN command,
DOS uses the default, slot 6.

When you want to change the default, you must tell DOS expilicitly;
include the argument in the next appropriate command.

1.2.2.2 Numbers

Replace the lowercase n in an argument with a number. You can use
either a decimal integer or a hexadecimal number.

1.2.2.3 The Siot Number Option: [,Sn]

The Sn option specifies the number of the slot containing the disk
controller card for the drive you want to use. Replace the lowercase n
with an actuat number from1to 7.

By the Way: On Apple Il and Apple |l Plus computers, slot 0-holds the
Language Card.

When you use the Sn option, the value you specify becomes the
default slot number. That is, DOS uses this slot number until you
specify a different slot number.

If you don't specify a slot number, DOS looks in the most recently
used slot. if you never specify a slot number in a given session with
DOS, DOS uses the slot from which you started (booted) DOS.

1.2.2.4 The Drive Number Option: [,Dn]

The Dn option specifies the number of the drive that contains the disk
you want to use. Replace the lowercase n with a drive number, 1 or 2.
When you omit the drive number, DOS uses the drive that it used last.
If you never specify a drive number in a given session with DOS,
DOS uses the drive from which you started DOS.

Chapter 1: Introduction

A catalog is a list of files on a volume.

1.2.2.5 The Volume Number Option: [,Vn]

The Vn option specifies the volume number of the disk you want to
use. Although the volume option is available with most DOS
commands, itis rarely used. When you use Vn, replace the
lowercase n with a volume number from 0 to 254; that number
becomes the default volume number.

If you omit the volume number when you prepare a disk with the INIT
command, DOS assigns a default number of 254 to that disk. In ali
other DOS commands, DOS ignores the volume specification when
you omit this option, specify VO, or type V with no number.

1.2.2.6 Hexadecimal Numbers

Under certain circumstances, you can replace the lowercase nwith a
hexadecimal number. Machine-language programmers often use
hexadecimal numbers because it takes fewer hexadecimal than
decimal digits to express a large number.

You are never required to use a hexadecimal number in an option.
But if you choose to, use a dollar sign ($) as the first character,
followed by the hexadecimal digits. For example, the decimal integer
254 expressed in hexadecimal notation is $FE.

Quick Identification: Throughout this manual, hexadecimal numbers are
preceded by a $ sign.

1.3 Direct DOS Commands

Warning

DOS commands must be typed in capital letters. If you are using an
Apple lle, press and leave itin the locked position.

1.3.1 The CATALOG Command

The CATALOG command displays a directory of files called a
catalog. The catalog lists the names, sizes, and types of files on a
volume. Locked files are listed with an asterisk (*) next to their file

type.

When a catalog contains more entries than your screen can display
at one time, press to continue.

Direct DOS Commands

An initialized disk is one prepared for use
on an Apple Il computer.

Turnkey program = greeting program

This is the command’s full syntax:

CATALOG [,Sn][,Dn)

[.Sn]

[,On]

where n is a number from 1 to 7, specifies the slot
containing the disk controller card of the drive to be
accessed. If omitted, DOS uses the default slot
number.

where nis 1 or 2, specifies the disk drive to be
accessed. If omitted, DOS uses the default drive
number.

No Volume Number: If you include a volume number in a CATALOG
command, DOS ignores it.

1.3.2 The INIT Command

The INIT command organizes the surface of a disk into tracks and
sectors, writing zeros in all sectors. INIT also puts a BASIC fileand a
copy of DOS on the disk. This process creates an Initialized disk.
The DOS program on an initialized disk is always read into the same
memory location.

The INIT command takes this form:

INIT fn[,Sn) [,Dn} [,V

fn

[.Sn]

(.Dn]

L,vn]

is a name of the file to serve as the greeting or turnkey
program.

where nis a number from 1 to 7, specifies the slot
containing the disk controller card of the drive to be
accessed. If omitted, DOS uses the default slot
number.

where nis 1 or 2, specifies the drive that holds the disk
on which to store the greeting or turnkey program. If
omitted, DOS uses the default drive number.

where n is a number from 0 to 254, specifies a volume
number to assign to a disk. If you specify 0, just V, or
omit the option, DOS uses 254 as the default volume
number.

Chapter 1: Introduction

1.3.3 The RENAME Command

The RENAME command changes the name of a file from the name
indicated by fn1 to the name indicated by fn2. This is the form of the
command:

RENAME fn1,in2 [,Sn] [,Dn] [,Vn]

fn1,fn2 where fn1 is the name of an existing file and fn2 is the
new name that must be unigue. if fn1 does not exist,
you'lllseea FILE NDT FOUND errormessage. The
file must be unlocked.

[,Sn] where n is a number from 1 to 7, specifies the slot
containing the disk controller card of the drive to be
accessed. If omitted, DOS uses the default slot

number.

[,Dn] where nis 1 or 2, specifies the drive that holds the disk
containing the file to be renamed. If omitted, DOS uses
the default drive number.

[,vn] where nis a number from 0 to 254, specifies the

volume number of the disk to be accessed. If you
specify 0, just V, or omit the option, DOS ignores the
volume specification.

Warning

If fn2 existed before you executed RENAME, you may no longer be able to
access the original contents of fn2 directly.

Direct DOS Commands

1.3.4The LOCK Command

The LOCK command locks a file, that is, it protects an individual file
from being accidentally altered, deleted, or renamed.

LOCKfn[,Sn]{,Dn][,Vn]
fn is the name of the file to be locked.
[,Sn] where nis a number from 1 to 7, specifies the slot

containing the disk controller card of the drive to be
accessed. If omitted, DOS uses the default slot

number.

[,Dn] where nis 1 or 2, specifies the drive that holds the disk
containing fn. If omitted, DOS uses the default drive
number.

[,Vn] where n is a number from 0 to 254, specifies the

volume number of the disk to be accessed. If you
specify 0, just V, or omit the option, DOS ignores the
volume specification.

You'llsee FILE LOCKED ifyou trytochange, rename, or delete a
locked file. To change a locked file, you must first unlock it by using
the UNLOCK command.

Inthe catalog of the files on a disk, a locked file has an asterisk (*) to
the left of its file type.

By the Way: You cannot lock a disk as a whole. You can, however, protect
an entire disk by covering its write-enable notch with a write-protect tab.

Chapter 1: Introduction

1.3.5 The UNLOCK Command

The UNLOCK command unlocks a file, removing the file protection
so that you can delete, rename, or change the file.

UNLOCK fn[,Sn] [,Dn][,Vn]
fn is the name of the file to unlock.
[.Sn] where nis a number from 1 to 7, specifies the slot

containing the disk controller card of the drive to be
accessed. If omitted, DOS uses the default slot

number.

[,Dn] where nis 1 or 2, specifies the drive that holds the disk
containing fn. If omitted, DOS uses the default drive
number.

[.vn] where n is a number from 0 to 254, specifies the

volume number of the disk to be accessed. If you
specify 0, just V, or omit the option, DOS ignores the
volume specification.

1.3.6 The DELETE Command

The DELETE command lets you remove a file from a disk.

DELETE fn[,Sn][,Dn][,Vn]

fn is the name of the file to be deleted; fn must be
unlocked. If the file does not exist, you'llsee FILE
NOT FOUND.

[.Sn] where n is a number from 1 to 7, specifies the slot

containing the disk controller card of the drive to be
accessed. If omitted, DOS uses the default slot

number.

[,Dn] where nis 1 or 2, specifies the drive of the disk
containing fn. If omitted, DOS uses the default drive
number.

[,vnl where n is a number from 0 to 254, specifies the

volume number of the disk to be accessed. If you
specify 0, just V, or omit the option, DOS ignores the
volume specification.

Direct DOS Commands

For more on buffers, see Chapter 5.

1.3.7 The VERIFY Command

The VERIFY command lets you test that a file was written on the disk
correctly and that DOS can still read it.

VERIFY fn[,Sn][,Dn] [,Vn]

fn - specifies the file you want to verify. Any type of file can
be verified, including text files and binary files. DOS
displays FILE NOT FOUND ifthe file does not exist.

[,Sn] where nis anumber from 1 to 7, specifies the slot
containing the disk controller card of the drive to be
accessed. If omitted, DOS uses the default siot

number.

[,Dn] where nis 1 or 2, specifies the drive that holds the disk
containing fn. If omitted, DOS uses the default drive
number.

[,vn] where nis a number from 0 to 254, specifies the

volume number of the disk to be accessed. If you
specify O, just V, or omit the option, DOS ignores the
volume specification.

If the file can be verified, it's safe to assume that the information on
the disk has been stored correctly and can be retrieved whenever
you want.

In verifying a file, DOS simply reads the file from the disk into a file
buffer, an area in memory that is not currently in use. (This does not
destroy a program that might already be in memory.) If DOS can read
the file successfully, it displays the prompt character. if DOS finds that
it cannot read the file (the file was damaged or written incorrectly), it
displays the message 1/0 ERROR.

Silence Is Golden: When DOS can read the file, DOS does not display
any message.

Chapter 1: Introduction

See Section 2.2, BASIC Program Files.

1.3.8 The RUN Command

The RUN command executes an Applesoft or Integer BASIC
program that is stored on a disk.

RUN fn [,Sn] [,Dn] [,Vn]

fn indicates the program that DOS is to run. Its file type
must be either A or . If the program is not on the disk,
you'llsee FILE NOT FOUND. Ifthefiletypeis
neither Anorl, you'llsee FILE TYPE MISMATCH.
If DOS cannot switch to the program’s language, you'll
see LANGUAGE NOT AVAILABLE.

[,Sn] where n is a number from 1 to 7, specifies the slot
containing the disk controller card of the drive to be
accessed. If omitted, DOS uses the default slot

number.

,Dn] where nis 1 or 2, specifies the drive that holds the disk
containing fn. If omitted, DOS uses the default drive
number.

[Lvn] where n is a number from 0 to 254, specifies the

volume number of the disk to be accessed. If you
specify 0, just V, or omit the option, DOS ignores the
volume specification.

When DOS sees the RUN command, it finds the specified program,
brings it into memory, and starts it. Before bringing the program into
memory, DOS checks the program’s file type. If the file type is A and
Applesoft BASIC is not active, DOS switches to Applesoft (if
possible). If the file type is | and Integer BASIC is not active, DOS
switches to Integer (if possible).

Since RUN automatically loads a program into memory, it is not
necessary to use the LOAD command before you run a program.

By the Way: Once your program is in memory, you can runit again by
issuing the RUN command without a file name. Without a file name, RUN
is a BASIC statement.

Direct DOS Commands

See Section 2.2, BASIC Program Files.

1.3.9 The LOAD Command
The LOAD command transfers a copy of a disk program into memory.

LOAD fn[,Sn][,Dn] [,Vn]

fn indicates the program that DOS is to load. Its file type
must be either A or |. if the program is not on the disk,
you'llsee FILE NOT FOUND. Ifthe file typeis
neither Anor |, you'llsee FILE TYPE MISMATCH.
If DOS cannot switch to the program’s language, you'll
see LANGUAGE NOT AUVAILABLE.

[,Sn] where n is a number from 1 to 7, specifies the slot
containing the disk controller card of the drive to be
accessed. If omitted, DOS uses the default slot

number.

[,Dn] where nis 1 or 2, specifies the drive that holds the disk
containing fn. If omitted, DOS uses the default drive
number.

[vn] where n is a number from 0 to 254, specifies the

volume number of the disk to be accessed. If you
specify 0, just V, or omit the option, DOS ignores the
volume specification.

Before bringing the program into memory, DOS checks the program’s
file type and tries to switch to the appropriate BASIC. When you use
the LOAD command to bring the contents of a file into memory, the
file on the disk remains unchanged.

itis not necessary to load a program before you use the RUN
command; RUN automatically loads it into memory.

By the Way: When a new program is loaded into memory, the previous
program is erased from the Apple’s memory. If you don’t want to lose the
program that is currently in memory, you must store it on a disk using the
SAVE command. .

Chapter 1: Introduction

See Section 2.2, BASIC Program Files.

1.3.10 The SAVE Command

The SAVE command transfers a copy of the BASIC program that is
currently in memory to a file on a disk.

SAVE fn[,Sn][,Dn][,Vn]

fn specifies the file name for the program. If a file by that
name already exists on the disk, the file must be
unlocked and must have the same file type (A or |) as
the program you want to save.

[,Sn] where n is a number from 1 to 7, specifies the slot
containing the disk controller card of the drive to be
accessed. If omitted, DOS uses the default slot

number.

[,Dn] where nis 1 or 2, specifies the drive that holds the disk
containing fn. If omitted, DOS uses the default drive
number.

[,Vn] where n is a number from 0 to 254, specifies the

volume number of the disk to be accessed. If you
specify 0, just V, or omit the option, DOS ignores the
volume specification.

When the current prompt s], DOS writes the file onto the disk with
the file type A. When the prompt is >, DOS writes the file with the file
type |. In addition to handling file type for you, DOS automatically
determines the location on the disk and the length of the file being
saved.

Warning

lfyousee 1/0 ERROR when youtry o save afile, the disk may be bad
or not initialized, the drive you specified may not contain a disk, or the
drive door may be open. Put a fresh, initialized disk in the drive, close the
door properly, and issue the SAVE command again.

Direct DOS Commands

Chaboter 1: Introduction

DOS Programming Tools

S

19 2.1 Ways of Using DOS Commands

19 2.1.1 Immediate Execution

20 2.1.2 Deferred Execution

20 2.1.3 Command Files

20 2.2 BASIC Program Files

22 2.2.1 Switching Languages With the FP and INT
Commands

23 2.2.1.1 The FP Command

23 2.2.1.2 The INT Command

24 2.2.2 Returning to BASIC From the Monitor Program

25 2.3 Using DOS From a Program

26 2.3.1 Example

27 2.3.2 Things to Watch Out For

28 2.4 Debugging With the MON and NOMON Commands

29 2.4.1 The MON Command

30 2.4.2 The NOMON Command

30 2.5 Intercepting Errors With Applesoft

3 2.5.1 Example

33 2.5.2 Finding Hidden Characters in a File Name

34 2.6 Talkingto Other Devices From a Program

34 2.6.1 Starting a Program With PR# and IN#

35 2.6.2 The PR# Command

36 2.6.3 The IN# Command

36 2.7 The RENUMBER Program

37 2.7.1 RENUMBER Commands

38 2.7.1.1 The Syntax of RENUMBER Commands

39 2.7.1.2 Internal Line References

39 2.7.1.3 The Hold Buffer

40 2.7.1.4 Examples

41 2.7.2 RENUMBER Error Messages

43 2.8 Summary

43 2.8.1 Commands

43 2.8.2 Program

DOS Programming Tools

DOS Programming Tools

This chapter discusses how to use DOS commands from the
keyboard and from a program. It describes:

® switching between the two types of BASIC and when to use each.

e how to monitor the action of the commands you have written.

o how to find errors in programs and hidden characters in file
names.

® how your program can communicate with peripheral devices
through the expansion slots.

® how to renumber your program instructions.

This chapter and those that follow describe more advanced ways of
using DOS. The information is for people who are familiar with writing
BASIC programs. If you have done all the examples in the Applesoft
Tutorial, you know enough fundamental programming to use this
manual.

I 2.7 Ways of Using DOS Command's

You can issue a DPOS command directly from your keyboard, by -
embedding itin a BASIC program, or by including it in a command
file.

2.1.1 Immediate Execution

You can issue most, but not all, DOS commands directly from your
Immediate execution: Commandsissued ~ keyboard. This is called immediate execution.
from the keyboard.
When you enter a command from the keyboard, DOS looks first at the
command, then compares the command with its list of valid DOS
commands and passes a command that is notin its list to BASIC. You
Error messages; see Appendix C. will sometimes get error messages from BASIC when you meant to
give DOS a command. In this case, check the proper form of the DOS
command and issue it again.

Ways of Using DOS Commands

Deferred-execution commands are
executed when the program runs.

EXEC file = command file.

An appendix in the Applesoft BASIC
Programmer’s Reference Manual
summarizes the differences between
Integer BASIC and Applesoft.

Add the alternate language by installing
an Applesoft Card, an Integer Card, or a
Language Card (also known as a 16K
RAM Card).

2.1.2 Deferred Execution

You can issue most DOS commands from within a BASIC program.
This method of issuing commands is called deferred execution

" because commands embedded in a program are not executed until

the program is run. For example, if a program contains the DOS
command OPEN, the program will open a disk file to store
information. The execution of the DOS command will be deferred
until you issue the BASIC statement RUN to execute the program.

2.1.3 Command Files

A program that runs other programs is called a command file. Since
the EXEC command runs a command file, acommand file is also
known as an EXEC file. The command file can contain both DOS
commands and BASIC statements.

2.2 BASIC Program Files

Apple Il computers support two dialects of the BASIC (Beginners
All-purpose Symbolic Instruction Code) programming language:
Applesoft BASIC and Integer BASIC. Integer BASIC, the earlier
version of the BASIC language, operates only on whole numbers
(integers). Applesoft can operate on integers and on numbers
expressed with decimal points (floating point). This is the most
significant difference between them; for more details, see the
Applesoft BASIC Programmer’s Reference Manual.

On every Apple Il computer, one of the two BASIC languages resides
in read-only memory (ROM). This resident language is available to
you as soon as you turn on your computer. In the standard Apple |,
Integer BASIC is resident. In the Apple Il Plus and Apple lle,
Applesoft BASIC is resident.

The language you want to use depends on what work you want the
computer to do for you. The language you can use depends on the
memory size of your computer and the hardware or firmware it has.
For example, if your Apple Il computer has 48K or less of random
access memory (RAM), you can have only one dialect in memory at
the same time unless you add a card that supplies additional
memory. ltis relatively easy to add RAM memory cards.

Chapter 2: DOS Programming Tools

The APPLESOFT program ioads the disk
file FPBASIC, which contains Applesoft,
into the Language Card.

Many Apple Il computers are large enough to hold both dialects in
memory. The Apple lle computer is large enough to contain both
dialects without additional hardware.

When you start DOS in an Apple |l computer that has at least 64K of
memory, DOS tries to load the nonresident, or alternate, BASIC
from the disk into memory. DOS reports which BASIC it is loading into
memory. On a computer with resident Applesoft BASIC, you'll see
LOADING INTEGER BASIC INTO MEMORY. Onacomputer
with resident Integer BASIC, you'll see LOADING APPLESOFT
BASIC INTO MEMORY. On Apple Il computers that have less than
48K of memory or when the alternate BASIC is not available on the
startup disk, you will not see the LOADING... message.

You can recognize which BASIC is currently active by noticing the
prompt character:

1 indicates Applesoft BASIC.

> indicates Integer BASIC.

Use the FP or INT commands whenever you want to switch from one
dialect to another.

Warning

The RUN and LOAD commands automatically try to activate the BASIC
that corresponds to the program’s file type.

On the Apple 11 Plus and Apple lle computers, you'll see LANGUAGE
NOT AVAILABLE when Integer BASIC, the nonresident language, is
not already in memory.

On the standard Apple Il computer, Integer BASIC is resident. When
Applesoftis notin memory, DOS looks for the APPLESOFT program and
runs it. If Applesoft BASIC is not on the disk, you'll see LANGUAGE NOT
AVAILABLE.

BASIC Program Files

2.2.1 Switching Languages With the FP and INT
Commands

When you have both BASIC dialects in memory, use the FP and INT
commands to switch from one to the other. You can also use FP or
INT to reset the system and memory, even when you are returning to
the same BASIC dialect. Both commands can be used in either
immediate or deferred execution.

Figure 2-1. FP and INT

FP turnson
Applesoft BASIC.

BASIC programs and
variables in memory

INT turnson
Integer BASIC.

Each reset
clears memory

A Warning

The FP and INT commands erase your program and variables from main
memory by redirecting the pointers in memory. If you are going to switch
languages, do so before typing in a new program.

Chapter 2: DOS Programming Tools

2.2.1.1 The FP command

The FP command switches to Applesoft BASIC. FP stands for
floating point. If you had been using Integer BASIC and then decided
to write a program to balance your checkbook, you'd need to switch
to Applesoft BASIC, which can operate on decimal numbers.

This is the form of the command:

FP[,Sn][.Dn][,Vn]

[.Sn] where n is a number from 1 to 7, specifies the
slot containing the disk controller card of the
drive to be accessed. If omitted, DOS uses the
default slot number.

,Dn] where n is 1 or 2, specifies the drive of the disk
to be accessed. If omitted, DOS uses the
default drive number.

L,vn] where n is a number from 0 to 254, specifies

the volume number of the disk to be accessed.
If you specify 0, just V, or omit the option, DOS
ignores the volume specification.

A Warning

Do not use the command RUN APPLESOFT to change languages. If you
See Chapter 6, Memory Usage and Entry do, DOS will test the file type and set memory pointers to accommodate
Points. an Integer BASIC program instead of the Applesoft program you intend to
work with.

2.2.1.2 The INT Command

The INT command switches to Integer BASIC. INT stands for integer.
This is the full syntax of the command:

INT

The INT command does not have any arguments.

BASIC Program Files

For more about the Monitor program, see
the Apple Il Reference Manual.

2.2.2 Returning to BASIC From the Monitor
Program

Occasionally, you may see an asterisk (*), the prompting character of
the Monitor program. Perhaps you were running a program that had
an error in it and its error routine jumped to the Monitor.

You can return to BASIC from the Monitor in three ways. Two allow
you to get right back to work; the third destroys what you had in
memory, so you'll have to begin again.

1. To restart DOS and return to BASIC with your program and
variables intact, type

300G (careful, that’s a zero...)

It's No Dog: 3D0 is the address in memory where DOS starts. The G
stands for go.

2. To return to BASIC with your program and variables intact, type
and press (RETUAN),

Warning

only starts up the BASIC you were using before you entered the
Monitor. If DOS was disconnected sometime prior to (GontrRo)-{(c), it will still be
inactive even though you have returned to BASIC.

3. These commands also return to BASIC:
(ConTrRoOD-(B) or 3D3G

A Warning

{controL)-(8) and 3D3G erase both your program and your variables from
memory.

Chapter 2: DOS Programming Tools

I 2.3 Using DOS From a Program

Using a DOS command from a BASIC program extends the
capability of your programs in several ways. For example, you might
use deferred-execution DOS commands to automatically display a
disk’s catalog, to save a backup copy of records in a file, or to save an
unfinished game so you can continue it later.

To use a DOS command from a program, use the BASIC statement
PRINT followed by the string you want to print. In this case, the string
will contain a DOS command. To indicate that you're printing a DOS

If you omit the (GHTR0D), DOS command rather than text, type a (€oNTRoL-(D) as the first character of
assumes the string is part of a BASIC the string. This is the general form:

statement and passes it on to BASIC's
command interpreter.

PRINT (€ontrov{0) “DOS command”

You can use two methods to get a (ConTrRoL)-(0] into your program.
In one method, the (CoNTROD)-(D) is visible in the PRINT statement;
in the other, the (€oNTRGD-(D) is not visible.

To use an invisible (CoNTROD-(D), type (CoNTROL-(D) right after you
type the quote marks that begin the string you want to print:

10 PRINT "CATALOG" (There is a (conTROD-(0] between
“andC.)

The (controU-{p) is there, although you can't see it. This method can
be used for both Integer BASIC or Applesoft program statements.

Caution: Using the G key to copy a BASIC statement will not copy
invisible control characters. In effect, the (=)deletes control characters.

You can see a (controD)-{p) with Applesoft BASIC only. This method
Afunction returns a value foruseinsome uses the CHR$ function. The CHRS$ function takes a single numeric
further calculation. argument and returns a one-character string consisting of the
corresponding ASCIi character.

The ASCII (American Standard Code for Information Interchange)
code for the (controD)-(D) is 4. When you give CHRS$ a value of 4, it
returns a (CoNTROD-(D). Set any string variable to CHR$(4) atthe
beginning of your program and print that string variable before each
DOS command. You will able to see the variable in each statement.
In addition, you’ll need to fix it in only one place if you've declared it
improperly.

Using DOS From a Program

In a PRINT statement, (ConTroU-{D) from a CHR$ function looks
like this:

S REM VALID ONLY WITH APPLESOFT
19 D#=CHR% (4)
20 PRINT D%i"CATALOG"

D$ is the string variable used throughout this manual. The name of
the variable is a reminder of the control character it contains.

You Can Omit the Semicolon: The semicolon after D$ is optional. You'll
save typing time and memory space by omitting the semicolon when your
program has many DOS commands’in PRINT statements. Without a
semicolon, line 20 looks like this:

20. PRINT D$"CATALOG®

2.3.1 Example

The following Applesoft HELLO program displays a message and the
disk’s catalog on the screen. Type NEW to clear the computer’s
memory of any previous program and enter this program.

5 REM APPLESOFT HELLO
12 D% = CHR$ (4) : REM CONTROL-D

(D$ contains (CONTRGD-(D))
2@ PRINT "DOS TEST PROGRAMS"
3@ PRINT " 26 NOVEMBER 1883"

(Print a title and a date)
49 PRINT D& 3"CATALOG" (Then list the catalog)
o@ END :

Now type RUN tosee how it works.
The equivalent program written in Integer BASIC looks like this.

o REM INTEGER HELLO
1¢ D$ = " : REM CONTROL-D
(There's an invisible (CoNTROL)-(D)
between the quotes)
2@ PRINT "DOS TEST PROGRAMS!
30 PRINT " 26 NOVEMBER 1885"
(Print the title and the date)
4@ PRINT D#$3i"CATALOG" (Then list the disk’s directory)
5@ END

Chapter 2: DOS Programming Tools

A semicolon at the end of a PRINT
statement prevents BASIC from adding a
carriage-return character after a printed
string, variable, or literal.

Look closely at line 10, the only one that’s different. When you use
this method to set the D$ variable to (€oNTROD-(D), it’s common
practice to include the remark, REM CONTROL-D.

Heads Up: From now on, most of the examples in this manual will be in
Applesoft.

2.3.2 Things to Watch Out For

There are three things you should watch out for while using DOS
commands from Applesoft programs.

First, be sure you have only one DOS command per PRINT
statement.

Second, be sure D$ is preceded by a carriage return. If the
statement before your DOS command ends with a semicolon, a (7a8),
or acomma, your DOS command will not go to the DOS command
interpreter.

If aDOS command does not start on a new line, the command will be
printed and not executed. In this example, the word CATALOG is
printed, but it is not executed as a command:

30 D$ = CHR$ (4) : REM CONTROL-D

(D$ is (conTrROD-(D))
40 PRINT "AUTUMN "3 (Semicolon inhibits RETURN))
50 PRINT D$3"CATALOG" (Sothis doesn’'t work)

Instead of displaying a disk’s catalog, this program prints AUTUMN
CATALDG.

A Warning

When your program unexpectedly prints a DOS command instead of
executing it, look for a program statement that ends with a semicolon.

Using DOS From a Program

If you want to be sure you print a carriage return before each
(conTroL)-(D), set your D$ variable to contain both a carriage
return (ASCII 13) and a (GonTrRoL-(0) (ASCI| 4):

De=CHR%(13)+CHR$(4)

When D$ is declared this way, an Applesoft statement like

PRINT D$;“CATALOG” prints a carriage return before the
(contrRoD)-() and ensures that the DOS command always starts on
anew line.

Warning
D$ declared this way will cause problems when you write or append text
files.

The third thing to watch for is that some DOS commands work only in
programs. The DOS commands that can be issued only in deferred
execution are APPEND, OPEN, POSITION, READ, and WRITE.

2.4 Debugging With the MON and NOMON
Commands

Program errors are often called bugs, and the process of getting a
program to run properly is called debugging. To debug a program,
you may want to follow the exchange of information between the disk
and the computer. Monitoring this action helps you track down
problems.

To watch this exchange, use the MON command. With MON, you can
watch commands like OPEN that control operations to the disk. You
can watch the output to a disk from PRINT statements or the input
coming from a disk, like the data brought in by a READ command.

When you've seen all that you want to see (and to make your program
run faster again), turn off the display with the NOMON command.

Perfect Combination: To see program statement numbers as you're
debugging, combine DOS's MON and NOMON commands with BASIC’s
TRACE and NOTRACE statements. See the Applesoft BASIC
Programmer’s Reference Manual for details.

When you use TRACE, be sure your D$ variable contains both a carriage
return and a (controL)-(p}. Define D$ as D$= CHR$(13) + CHR$(4)

Chapter 2: DOS Programming Tools

2.4.1 The MON Command

Normally, you don't see all disk commands or the information sent
between the computer and a disk. To monitor this action, use the
MON command. The syntax of the MON command is:

MON [C][1[.0]
C displays all disk commands.

| displays input, that is, information being sent from the
disk to the computer.

0] displays output, that is, information being sent from the
computer to the disk.

The arguments stand for Commands, Input, and Output,
respectively. They may appear in any order and in any combination,
depending on the information you wish to monitor. The commas are
optional, for example: MONICO.

Warning
At least one of the arguments must be present or MON is ignored.

MON remains in effect until you issue a NOMON, an FP, or INT
command, or you restart DOS with a startup (boot) disk, the
command 3D0G, or the command 3D3G.

Debugging With the MON and NOMON Commands

2.4.2 The NOMON Command

The NOMON command turns off the display of disk commands and
information sent between the computer and the disk. The syntax of
the NOMON command is:

NOMONICILII O]
C suppresses the display of all disk commands.

| suppresses the display of the input information going
from the disk to the computer.

0] suppresses the display of the output information going
from the computer to the disk.

The arguments stand for Commands, Input, and Output,
respectively. They may appear in any order and in any combination,
depending on what monitoring you want to suppress. The commas
are optional.

Warning
Atleast one of the arguments must be present, or NOMON is ignored.

You can issue a NOMON command so that it prints aimost invisibly.
Use

16 PRINT D#$3 "NOMON C,I.0": UTAB PEEK(37):
CALL -BGB

where D$ contains (€ontro)-{(p), VTAB PEEK(37) moves the cursor
to the beginning of the line that contains NOMON C+I :0, and
CALL -868 clears thatline.

I 2.5 Intercepling Errors With Applesoft

Error messages are listed in Appendix C.

When DOS or Applesoft detect an error connected with disk usage,
they normally stop the program containing the error, display an
error message, and store a code number for the error in memory
location 222.

You can create an Applesoft routine that prevents both DOS and
Applesoft errors from stopping your program. The routine can
examine memory and return the error number, which can be tested.
Based on this number, your program can branch to a line that handles
that specific kind of error. To create an error-handling routine, use the
ONERR GOTO statement and the PEEK function.

Chapter 2: DOS Programming Tools

PEEK must be used to determine a
variable. PRINT PEEK prints the variable
on the screen.

The RENAME command won'’t work on
alocked file. When your program tries
to rename a locked file, DOS returns
FILE LOCKED andthe error-code
number, 10.

o The ONERR GOTO statement lets you specify a statement
number to which to transfer control when your program
encounters an error. Your error-handling routine can start at the
statement specified in the ONERR GOTO statement.

o The PEEK function lets your program examine the contents of a
specified location in the computer’'s memory; the location is
specified as a decimal value. To detect the code number of an
error, examine memory location 222; use PRINT PEEK (222)
to see the code number of the error on your screen. You can also
use PEEK (222) to assignthe erroras anumeric variable. To
detect the statement number that caused the error, use PEEK

(218) + PEEK (219) * 2586. Precede the expression with
PRINT to see the statement number on your screen.

2.5.1 Example

The program called ONERR DEMO shows you how to use the
ONERR GOTO statement and the PEEK function to recover from a
DOS error. The program returns an error number and reports the
number of the statement that caused the error.

ONERR DEMO can rename a file whether the file is locked or not.
When ONERR DEMO detects an error, it uses the ONERR GOTO
statement and branches to an error routine. The error routine gives
you a chance to unlock the file before the program tries to rename the
file again. The routine also displays the error number and line number
ofthe error.

5 REM ONERR DEMO

1¢ D% = CHR% (4) (D$ contains (conTrRoU-(D))
15 PRINT D$3i"MON C" (Watch disk commands)
20 ONERR GOTO 100 (Handle an error atline 100)

3@ INPUT "FILE TO RENAME? "iF%

(Read afile name into F$)
4@ INPUT "NEW NAME? "iN$

(Read the new name into N$)
S@ PRINT D& 3i"RENAME "3F#$3", "iN$

(Give the RENAME command)

6@ END (No error, program ends)
Line 30 reads into F$ the name of the file to be renamed. Line 40

reads the new name into N$. Line 50 has the RENAME command.
When there is no error, the program renames the file and ends.

Intercepting Errors With Applesoft .

See Appendix C for the complete DOS
error codes and their meanings.

When there is an error, the ONERR statement in line 20 sends the
execution to line 100 where errors are handled.

1900 PRINT: IF PEEK (222) <> 10 THEN 200

Line 100 tests location 222. If location 222 contains 10 (the code for
FILE LOCKED), execution falls through to line 110 where you geta
chance to rename the file. If location 222 does not contain 10, some
other error occurred and execution goes to line 200.

119 INPUT "FILE IS LOCKED. RENAME ANYWAY? (Y/N)
"iY$
120 IF Y$ <> "Y" THEN 160
(No, don’t rename file)
130 PRINT D$3"UNLOCK "iF%
(Yes, unlock the file)
140 PRINT D$3i"RENAME "3iF$3i": "3iN$
(Rename it)
150 PRINT D$3"LOCK "3iN$ (Lockitagain)
160 PRINT D$3i"NOMON C": END
(Suppress special display)

Line 130 unlocks the file, line 140 renames it, and line 150 locks it
again under its new name.

200 PRINT "ERROR #"3PEEK (22Z)3" DETECTED"
210 PRINT "AT LINE "SPEEK (218) + PEEK (219) * 256

When your program has an error other than FILE LOCKED, lines 200
and 210 display the code number of the error and the statement
number in which the error occurs.

To bring ONERR DEMO in from the SAMPLE PROGRAMS disk and
try it on a locked file, type

RUN ONERR DEMO

Chapter 2: DOS Programming Tools

2.5.2 Finding Hidden Characters in File Names

You can also use Applesoft BASIC to find hidden characters in a file
name. When a file name contains control characters, you won't see
them printed, but you need to type them to use or delete the file.

if you suspect that you accidentally introduced control characters
into a file name, you can use this Applesoft program to find

any hidden character except (GonTrRoL)-(M) (carriage return),

(E0), (ConTROD-(H) (), or ©).

10 DATA 201 141, 240, 21, 201, 136
20 DATA 240, 17, 201, 128, 144, 13
30 DATA 201, 160, 176, 9, 72y 132
40 DATA 53, 5Bs 233y 64y 76y 249
50 DATA 253 76, 240, 253

60 FOR I = 768 TO 768 + 27

70 READ V : POKE IV : NEXT I

8@ POKE 54,0 : POKE 55.:3

90 CALL 1002

Type this program, save it, and run it. When you then issue a
CATALOG command, control characters in the file names will be
displayed as blinking characters.

To return to normal display on an Apple Ii and Apple Il Plus computer,
type PR#0.

On an Apple lle computer, when you have not turned on the
80-Column Text Card, type PR#@ toreturn to the standard
40-column display. If you have turned on the 80-Column Text Card,
type PR#3 toreturntothe 80-columndisplay, ortype PR#3 and
to return to 40-column display.

A Warning

Never issue a PR#0 on an Apple lle when the 80-Column Text Card is
turned on. Doing so yields unpredictable results.

Intercepting Errors With Applesoft

Without a (ConTrou)-(0), PR#
and IN# are BASIC commands, not DOS
commands.

For more information, see Section 6.4.1,

2.6 Talking to Other Devices From a Program

In this section, you'll find out how to have a program communicate
with a peripheral device—for example, a printer or a disk drive—that
is connected to the computer through a card in an expansion slot.

Your Apple Il computer usually sends characters to the display
screen, the standard output device. And it usually reads characters
from the keyboard, the standard input device. The PR# and IN#
commands allow you to use other devices.

Warning :
You cannot have more than one peripheral device active at a time.

With DOS in effect, the PR# and IN# commands can be used in
immediate execution in the usual way (see your BASIC manuals). But
when PR# and IN# are issued by lines in a program, they must be in
PRINT statements preceded by a (controD-{(0). For example

20 PRINT D$%: "PR# 1"
30 PRINT D%3§ "INs 2"

When you omit (ControD-(0) from the PR# and IN# commands
in deferred execution, DOS partially disconnects and is unable to
print or read characters properly.

To restore DOS’s input and output to the standard devices, use the
BASIC statement:

CALL 1002

2.6.1 Starting a Program With PR# and IN#

The primary purpose of PR# and IN# is to direct output and input.
You can also use the commands to start a program on a disk in the
drive connected to the slot specified in the command.

When you use PR# or IN#, DOS tries to run a program in the ROM
chip on the card in that slot. When the program is in ROM on a disk
controller card, the disk controller automatically tries to read
information from the disk. Since reading information from the disk
usually means bringing in the greeting program and running it, this
amounts to starting the Apple Il.

Chapter 2: DOS Programming Tools

2.6.2 The PR# Command

The PR# command specifies one of the computer’s slots and the
device connected to the slot as the destination for output characters.

The PR# command can also be used to run a program on a disk by
specifying the slot that contains your disk controller card. The syntax
of the PR# command is:

PR#n

where nis a number from 1 to 7. DOS sends characters to the device
connected through the slot specified by the number. The number

In a program use the command: sign (#) is part of the command and must be typed.

PRINT D$§; “PR# n" ‘
For example, when your computer has a printer controller card
installed in slot 1 and you want your program to send output to the
printer, use the command:

10 D%=CHR%$(4)
20 PRINT D$i "PR# 1"

To send output to the screen again, on a standard Apple ll or an
Apple Il Plus computer, use PR#0.

On an Apple lle computer, when you have not turned on the
80-Column Text Card, use PR#0 to return to a 40-column screen.
if the 80-Column Text Card is operating, use PR#3 to return to an
80-column display, or use PR#3 followed by

to go to a 40-column display.

By the Way: PR# Qs a special case. It tells DOS to send output to the
screen; it does not activate slot 0 on a standard Apple Il or an Apple Il Plus
computer.

Talking to Other Devices From a Program

In a program use the command:
PRINT D$; “IN# n”

RENUMBER is a programming tool
rather than a utility program.

2.6.3 The IN# Command

The IN# command specifies a device as the source for input
characters. The IN# command can also be used to run a program on
adisk. Specify the slot that contains your disk controller card.

The syntax of the IN# command is:
IN#n

where nis a number from 1 to 7. DOS reads characters from the
device connected through the slot specified by the number. The
number sign (#) is part of the command and must be typed.

For example, if your Apple | computer has an external terminal
connected through slot 4, and you want your program to read
characters from that external terminal, use the command:

10 D$=CHR%(4)
20 PRINT D#$3i "IN 4"

On all Apple Il computers, use IN# 0 to read input from the keyboard
again.

By the Way: IN# O is a special case. It tells DOS to read input from the
keyboard; it does not activate siot 0.

2.7 The RENUMBER Program

Use the RENUMBER program to renumber all or some of the
statements of your Applesoft BASIC program, merge the statements
of two of your programs, aor insert a subroutine into your program from
a subroutine library. The RENUMBER program resides on the
SYSTEM MASTER disk. To use the program, put the SYSTEM
MASTER disk in a drive and type

RUN RENUMBER

After the RENUMBER title screen appears (Figure 2-2), issue one of
the RENUMBER commands. You'll see a BASIC prompt character.
RENUMBER stays in memory so you can continue to build your
program by entering and changing BASIC statements. You can run
and save your program, just as if the RENUMBER program were not
there.

Chapter 2: DOS Programming Tools

Figure 2-2. The RENUMBER Title -
Screen

APPLESOFT RENUMBER
COPYRIGHT APPLE COMPUTER: INC. 1978

RENUMBER (DEFAULT VALUES) '
& IEIRST 191 [HINC 1031 [5 @ 1 [E 63998 |

MERGE
&H PUT PROGRAM ON HOLD
&M MERGE TO PROGRAM ON HOLD

PRESS ‘RETURN’ TO CONTINUE ...

2.7.1 RENUMBER Commands

The END, FIRST, INC, and START commands specify the
renumbering values. Each value, n, must be a decimal number from
010 63,999.

START n (or Sn) where nis a line in the program that is currently
in memory, specifies where to start to renumber. i you
omit the S command, RENUMBER uses 0 (the first line

in your program).

ENDn (or En) where nis a line number in the program thatis
currently in memory, specifies where to end -
renumbering. If you omit the E command, RENUMBER
uses a value of 63,999.

FIRSTn (or Fn) where n is a decimal integer, specifies the new
number to assign to the starting line (the line specified
by S). If you omit the F command, RENUMBER uses
10; that is, it renumbers the first line as 10.

INCn (or In) where n is the increment, specifies the size of
the step to the next line number. If | is omitted,
RENUMBER uses 10, to produce a sequence such as

110, 120, 130...

The RENUMBER Program

HOLD (or H) puts your program in the hold buffer and displays
PROGRAM ON HOLD. USE ‘&M’ TO RECOVER.
This message means that whenever you want to
transfer the program into memory again, issue the
MERGE command.

MERGE (or M) combines a program in the hold buffer with the
program currently in memory. The M command can
insert a subroutine into your program from a subroutine
library.

MERGE arranges the lines in ascending order. When
there are statements with duplicate numbers, MERGE
puts both in the final file, placing the statement from the
program in memory first, followed by the statement
from the program in the hold buffer.

When there is no program in memory, MERGE
restores the program in the hold buffer to memory. If
you change your mind after putting your program in the
hold buffer, you can use the M command to restore the
hold file as long as you do not load another program
into memory.

When no program is in the hold buffer and you issue
the M command, RENUMBER displays NO
PROGRAM IN MEMORY.

2.7.1.1 The Syntax of RENUMBER Commands

The first character of a renumber command line is an ampersand (&).
The shortest command line is: (&) (RETuRN). When you give this
command, RENUMBER renumbers the program that is currently in
memory, starting at the first and ending with the last program
statement, by assigning 10 to the first program statement and
incrementing the statement numbers by 10.

Use a comma to separate commands when there is more than one
command on aline, forexample, &5 50, E 100, F 500
(which tells RENUMBER to process lines 50 through 100 of a
program and give the first statement a line number of 500).

You may abbreviate a command to its first letter and the commands
may be in any order.

Chapter 2: DOS Programming Tools

See Chapter 5, for details on command
files.

2.7.1.2 Internal Line References

In addition to renumbering the statement numbers in your program,
RENUMBER adjusts line-number references in these statements:

GOTO ON...GOTO

GOsuB ON...GOSuUB

DEL THEN (asin “7 IF X=0 THEN 250”)
RUN

RENUMBER will not renumber a line-number reference that is part of
aremark. To have your remarks accurately reflect your program,
renumber a line-number reference in REMARK statements yourself.

2.7.1.3 The Hold Buffer

When you use the HOLD command, RENUMBER puts the current
program into a separate part of the Apple II's memory reserved for
RENUMBER. This area is called a hold buffer. Neither BASIC nor
DOS can use it for their operation. Therefore, when you need as
much of memory as possible, use the hold buffer only while merging
programs.

Warning

RENUMBER may take up to one minute to process a 16K program.
During the time it is processing your program, do not press (REseD)! Always
wait for the BASIC prompt before issuing the next command.

Pressing or issuing the MERGE command while RENUMBER is
running will destroy your program.

Do not use the MAXFILES command while RENUMBER is in memory.
DOS overwrites RENUMBER, destroying it.

RENUMBER commands may be putinto a command file. However, when
the program is executed (the EXEC command), RENUMBER returns to
BASIC rather than to the command file.

RENUMBER executes CONVERT, HOLD, and MERGE immediately..if a
command follows CONVERT, HOLD, or MERGE on the same line,
RENUMBER ignores it.

The RENUMBER Program

2.7.1.4 Examples

The first example renumbers an entire program, the second
renumbers part of a program, and the third merges two programs.

1. To renumber your entire program, starting at 10 and incrementing
each instruction number by 10, putthe SYSTEM MASTER disk in
drive 1 and type

RUN RENUMBER

Put your program into memory by entering it from the keyboard or

by using the LOAD command to read it into memory from a disk.
After you see a BASIC prompt character, press the (&) and then
(RETURN). To see the renumbered statements, use the LIST command.

2. Here’s a sample program that shows the renumbering part of a
program. To try it, first be sure that RENUMBER is in memory, then
type in the program listed on the left.

Original Version Renumbered Version

1 INPUT X 1 INPUT X

2 IF %<1 THEN 1 2 IF X<{1 THEN 1

3 ON X GOSuB 39.87 3 ON X GOSUB 39,30
27 END 27 END

38 PRINT A 3¢ PRINT A * A

45 RETURN I 39 PRINT A

87 PRINT A * A Vans 40 RETURN

99 RETURN 45 RETURN

Now, give the command
& START 87+ END 99, FIRST 30

which renumbers only two statements in the program. To see the
renumbered program, issue the LIST command. Line 87 has
become 30 and 99 has become 40. Note that RENUMBER has
changed the line-number reference in line 3.

Incidentally: This technique can be used when you want to move
statements from one part of your program to another.

3. Suppose you want to merge two programs. With RENUMBER in
memory, load your first program. You may add lines, renumber
them, run the program to test it, and edit the program. When you
are satisfied, put it into the hold buffer by typing

& HOLD

Now LOAD your second program. You can develop and test this
program as you did the first. Renumber your second program so
its lines don't conflict with the first program.

Chapter 2: DOS Programming Tools

Finally, merge the programs. Type
& MERGE

You can, if you like, run the newly formed program to test it before
you save it on the disk.

Sigh of Relief: If RENUMBER detects an irrecoverable error, it will stop
execution before it makes any changes to your program. It displays an
error message indicating the problem it found.

2.7.2 RENUMBER Error Messages

» 63989
You entered a value that is out of range.

DUPLICATE LINE NUMBERS
One of the new line numbers would be the same as a number
you've specified if RENUMBER continues. Use a smaller
increment (INCn) or a different number for first new line (Fn).

HOLD FILE IN USE
You issued a second HOLD command without issuing an
intervening MERGE command.

LIMITED MEMORY,» MAY DESTROY PROGRAM. CONTINUE
(Y/N)?
You are operating in too small a system or with too large a
program. If renumbering fails, your program may be destroyed.
Any key other than (Y) cancels the renumbering and returns to
BASIC.

LLINE INCREMENT = @
Not allowed. Specify a value greater than 0.

LINE INCREMENT TOO LARGE
The increment you specified would cause a line to be
numbered beyond 63,999.

LINE TOD LONG
Renumbering would cause a line longer that 239 characters.
Use fewer statements per line.

ND LINES IN RANGE

RENUMBER could not find any lines in the range you specified.
It does not renumber any lines.

The RENUMBER Program

NO PROGRAM IN MEMORY
You tried to renumber with no program in memory. Return to
memory the program that is in the hold buffer by typing
&MERGE.

OUT OF MEMORY
Processing requires more memory than is available.
RENUMBER itseif is about 2K bytes long.

SYNTAX

RENUMBER does not recognize the first letter of acommand or
the value you specified is invalid.

Chapter 2: DOS Programming Tools

I 2.8 Summary

2.8.1 Commands

FPLSI[DILV]

switches to Applesoft BASIC. It resets the pointers in memory
so they no longer point to the previous BASIC program and
variables.

INT

switches to Integer BASIC. It resets the pointers in memory so
they no longer point to the previous BASIC program and
variables.

MON [C][,1[.O]
displays the action between the computer and the disk.

NOMON C][,11[,O]

suppresses the action display between the computer and the
disk that was turned on by the MON command.

PR#n

specifies a device connected through slot n as the destination
for output characters.

IN# n

specifies a device connected through slot n as the source of
input characters.

2.8.2 Program
RENUMBER

renumbers the statements of all or a part of a BASIC program or
merges the statements of two programs.

Summary

Chapter 2: DOS Programming Tools

Chapter3

Using Sequential-Access
Text Files

47 3.1 Comparing Sequential- and Random-Access Text Files

49
50
50
50
51
52
53
53
54
55
57
59
61
61
63
65
65
66

67
68
68
69
7

Using Sequential-Access Text Files

3.2

3.3

3.1.1 Choosing Sequential- or Random-Access Text Files
3.1.2 Current Position Pointer
Sequential-Access Text Files
3.2.1 The Field

3.2.1.1 Storing Characters in Fields

3.2.1.2 A Short Sequential-Access Text File
3.2.2 Entering and Reading Text

3.2.2.1 Writing To a File Using PRINT

3.2.2.2 Reading Characters From a File

3.2.2.3 One Part Per Field

3.2.2.4 Multiple Parts Per Field

3.2.2.5 Reading Fields That Contain Commas
3.2.3 Programs: Entering and Reading Text

3.2.3.1 AProgram for Entering Text

3.2.3.2 A Program for Retrieving Text
Commands Used With Sequential-Access Text Files
3.3.1 The OPEN Command - Deferred Execution
3.3.2 The CLOSE Command - Immediate or Deferred

Execution
3.3.3 The WRITE Command - Deferred Execution
3.3.4 The READ Command - Deferred Execution
3.3.5 The POSITION Command - Deferred Execution
3.3.6 The APPEND Command - Deferred Execution

3.4 Command Summary

Chapter 3

Using Sequential-Access
Text Files

This chapter discusses text files and compares the two types:
sequential-access and random-access. It then describes writing

For DOS commands used withrandom- programs and the DOS commands used with sequential-access text
access text files, see Chapter 4. files.

Atextfile is a series of fields stored on disk. A field is a sequence of
from 1 to 32767 characters that ends with a carriage return.

AT inthe file-type column of a catalog identifies both types of text
files.

I 3.7 Comparing Sequential- and Random-

Access Text Files

A sequential-access textfile is a series of fields that can vary in
length. Each successive field immediately follows the carriage-return
character that ends the preceding field. Each time DOS writes to or
reads from a sequential-access text file, DOS starts with the first field
in the file and accesses the fields in sequence, one field after
another.

A random-access text file is a series of records, each made of the
same predetermined number of characters. Since a record can
contain carriage-return characters, which indicate the end of a field, a
record can contain one or more fields. But all the records of a
random-access text file are the same length. Each time you open a
random-access file, you must specify record length. This way, you
can direct DOS to access any field in the file in any order.

Comparing Sequential- and Random-Access Texi Files

Figure 3-1. Printing to a Sequential-
Access Text File

Figure 3-2. Printing to a Random-Access
File

Text files store strings of ASCII code (that is, text). However, the
placement of the strings in the file depends on whether the text is
written with sequential-access or random-access commands.
Figure 3-1 shows how textis placed in a sequential-access file;
Figure 3-2, in a random-access file (assuming a record length of 5
with one field per record).

The) character represents the RETURN character, which is sent
automatically at the end of most PRINT statements.

Character: 7)AT)ONE)BLOW)
*ASCIl: B7 8D C1 D4 8D CF CE C5 8D C2CCCF D7 8D 00 00 00 00 00 00 00
FileByte: 0 1 2 3 4 56 6 7 8 9 10 11 1213 14 1516 17 18 19 20
Field: 0 1 2 3

*The ASCIi values are represented in hexadecimal numbers and
reflect the fact that data is written to the disk with the high-order
bit set.

Character:?) AT) ONE) BLOW)
*ASCIl: B7 8D 00 00 00 C1 D4 8D 00 00 CF CE C58D 00 C2CCCFD78D 00
FieByte: 0 1 2 3 4 5 6 7 8 9 1011 1213141516 17181920

Record

Byte: 0 1 2 3 4 01 23 401234012340
Field: 0 0 0 0

Record: 0 1 2 3

*The ASClII values are represented in hexadecimal numbers and
reflect the fact that data is written to the disk with the high-order
bit set.

Note: The end of any text file is automatically marked with hexadecimal $2@.

Your program needs to open any text file before it tries to put anything
into it. After you're finished working with the file, your program must
close it. For these initial and final tasks, use the DOS commands
OPEN and CLOSE.

When your text file is open, your program can print new lines to the
file or read (retrieve) lines from it. Add information to a text file with
the DOS command WRITE and the BASIC statement PRINT; retrieve
information with the DOS command READ and the BASIC
statements INPUT and GET.

Chapter 3: Using Sequential-Access Text Files

See section 3.3 for the syntax and use of
sequential-access commands.

See section 4.3 for the syntax and use of
random-access commands.

The arguments you add to these commands and others depend on
which of the two text-file types you are using. The main difference is
that arguments to random-access commands specify length.

3.1.1 Choosing Sequential- or Random-Access
Text Files

The fields of a sequential-access file can vary in length. You use
them only sequentially, starting at the beginning of the file and
working toward the end. Sequential-access is the better type of file
for applications that begin a session by reading the entire contents of
the file and finish by writing the modified contents back to the file.
Many word processors store their text in sequential-access text files.

All the records in a random-access text file must be the same length.
You can use them in any order or modify one record of the file without
affecting the others. Random-access files are the better type for
storing many pieces of information whose maximum length can be
determined and whose contents change frequently. For example, you
could store stock quotations or lists of experimental data in random-
access files.

You might want to consider the following factors when choosing
which type of text file to use:

e Disk space. The first time you write a record to a random-access
textfile, the entire record is placed in the file. If you specify a
record length of 200 characters and write only one character to
each record, you waste 199 (198 plus the carriage return)
characters of disk space per record. In actual practice, records are
rarely filled entirely, so random-access text files use disk space
less efficiently than do sequential-access text files.

e Amount of data. When you read all the information into memory
at the beginning of the program, it is faster to read it field by field
from a sequential-access text file.

e Use of data. When the information won't all fitin memory, and you
won't use itin any particular order, it is much fasterto use a
random-access text file.

Comparing Sequential- and Random-Access Text Files n

3.1.2 Current Position Pointer

Every open text file has a pointer that keeps track of the current
position in the file. Throughout this manual, this is called the current
position pointer. When you read from a file, the current position
becomes the character following the carriage return after the last
character read. Likewise, when you write to a file, it points to the
position immediately following the last carriage return. When you first
open a file, the current position is the first character position in the
file.

3.2 Sequential-Access Text Files

A sequential-access text file is like a scroll that contains an unlimited
number of lines of text. With a sequential-access file, or a scroll, you
need to search line by line to locate a particular text line. There are no
pages to make the search faster.

3.2.1 The Field

The basic unit of a sequential-access text file is the field. A field can
be compared to a line of text on the screen. Both are a series of
characters that ends with a carriage-return character. To understand
how to create a field in a text file, look first at how the PRINT
statement of BASIC sends a field to the screen.

When a PRINT statement without a terminating semicolon prints a
line to the screen, BASIC puts a carriage-return character at the end
of the line. You can see the cursor move to the next line.

When you print to a file using a PRINT statement that does not have a
terminating semicolon, BASIC puts the contents of the PRINT string
into the file and writes a carriage-return character at the end of the
string. In afile, the string is called a field. The next PRINT statement
creates the next field in the file.

The following BASIC statement could be used to write either a line to
the screen or a field into afile.

5@ PRINT "THIS CREATES A FIELD"

A semicolon tells BASIC not to write a carriage-return character at
the end of a line (or afield). To make a longer line or field, use a
semicolon after the string in the PRINT statement, for example

162 PRINT "THIS MAKES PART OF A FIELD"}

Chapter 3: Using Sequential-Access Text Files

Because line 100 ends with a semicolon, the next PRINT statement
will add characters to the same line on the screen (or to the same
field in a text file):

118 PRINT " AND OTHER PARTS WILL FOLLOMW.®
On the screen, lines 100 and 110 look like this:

THIS MAKES PART OF A FIELD AND OTHER PARTS WILL
FOLLOW.

3.2.1.1 Storing Characters in Fields

Look at the following PRINT statements: they create several fields in
a file and show how the fields relate to each other in a sequential-
access text file.

49 PRINT "GREEN"
S PRINT “YELLOW®
6@ PRINT "ORANGE"
7@ PRINT "RED”
80 PRINT "VIDLET"
90 PRINT "BLUE"

This sequential-access text file contains 36 characters in 6 fields of
varying lengths. On the screen, lines 40 through 90 look like this:

GREEN
YELLOW
DRANGE
RED
VIOLET
BLUE

Here is how the characters generated by lines 40 through 90 are
storedin afile:

The?symbol represents the carriage- Character sequence: GREEN)YELLOW) ORANGE)RED)VIOLET)BLUE)
return character. Field number: 0 1 2 3 "4 5

By the Way: Note that the first field in a sequential-access text file is
numbered 0.

Sequential-Access Text Files

The EXEC command is described in
Chapter 5.

3.2.1.2 A Short Sequential-Access Text File

The sample program LISTSELF creates a sequential-access text file
called LISTFILE and places lines in the file.

10 REM PROGRAM LISTSELF

20 D$ = CHR$ (4) (DS is (ConTROD-(D))

30 PRINT D%3"OPEN LISTFILE"
(Open LISTFILE; createitif it
doesn’t yet exist)

49 PRINT D&i"WRITE LISTFILE"
(Prepare LISTFILE for writing)

S@ LIST (Put the program’s listing in
LISTFILE; line 40 points there)
B¢ PRINT D%3i"CLOSE" (CLOSE all open files)

This short program directs DOS to open LISTFILE (line 30), uses
WRITE so that LISTFILE can be written to (line 40), gives the BASIC
statement LIST, and closes LISTFILE.

Notice that LIST is not a DOS command and is not preceded by a
(contro-D). Indeed, if D$ were printed here, it would cancel the
last DOS command (WRITE, in line 40).

The WRITE command redirects all output to the file. Therefore, the
LIST statement places the lines of the program, one by one, into
LISTFILE instead of sending them to the screen.

Type in the program. Then put an initialized, write-enabled disk into
drive 1 and type

RUN

This executes LISTSELF, which puts the text file named LISTFILE
on the disk. After LISTSELF has finished running and you see the
prompt character on the screen again, look at the disk’s catalog.
You'll see the entry for LISTFILE. The two-sector long entry will be
preceded by a T (for text file).

To check the contents of the new text file, you can use the EXEC
command. The EXEC command expects to deal with text files and to
take commands from them instead of from the keyboard.

When you type in lines of a BASIC program, they are entered in
memory as a BASIC program. Thus, if you use the EXEC command
to read program lines from a sequential-access text file, they too will
enter memory as a BASIC program. You can use the LIST statement
to look at a BASIC program.

Chapter 3: Using Sequential-Access Text Files

The NEW statement clears memory and
variables.

Table 3-1. Printing to a Text File

By the Way: Immediate-execution BASIC commands work on programs
in memory whether you type them in, issue a LOAD command to bring
them in from disk, or have an EXEC file bring them in.

First, clear memory with the NEW statement. Then, issue the LIST
statement to prove that there is no program in memory. Now type the
command

EXEC LISTFILE

One prompt character appears on the screen for each line in the
BASIC program. When the disk stops spinning and BASIC prints a
prompt that is not followed by a line from the program, type

LIST

The LIST statement lists the program that has reappeared in
memory.

3.2.2 Entering and Reading Text

How you enter textinto a file determines how you will later read it from
the file. Each of the following examples builds on the previous one.

In the next two discussions, the data separated by commas are
called parts. Statement 5 in Table 3-1 shows how to create these
parts; statement 2 in Table 3-2 shows how to read them.

3.2.2.1 Writing to a File Using PRINT

How you terminate the PRINT statement affects how characters are
putinto a text file. In Table 3-1, A$ has the value “DOG” and B$ has
the value “CAT”; the) character denotes a carriage return.

PRINT Statement = Adds Characters Comments

1. PRINT “TEXT” TEXT) Ends the current field; adds a carriage-
return character.

2.PRINT“TEXT"; TEXT Doesn’t add a carriage return.

3. PRINT A$;BS; DOGCAT Adds second field to first field; doesn’t
add a carriage-return character.

4. PRINT A$,B$ DOGCAT) Unlike PRINT to the screen, does not add
spaces between fields separated by
commas; adds a carriage return at the
end.

5. PRINT AS;",”;B$ DOG,CAT) Adds a comma and second field to the

first field; adds a carriage return.

Sequential-Access Text Files

Table 3-2. Reading From a Text File

See the warnings about GET in section
3.2.2.5.

3.2.2.2 Reading Characters From a File

How you put characters into a file with PRINT statements determines
how you can read them. INPUT is better for reading some types of
data; GET is better for others.

An INPUT statement contains a variable for each part of a field it can
read. An INPUT statement with one variable reads all characters up
to the next carriage-return character, adding to the variable only the
characters up to a colon or comma. Since an INPUT statement can
read data into more than one variable if the pieces of data are
separated by commas, use INPUT with additional variables to read
characters after acomma.

Use a GET statement to read information that cannot be read with an
INPUT statement. GET reads all characters, including commas and
colons. This is the way to read fields with varying numbers of parts.

Note: INPUT will truncate the information it reads to 239 characters. If the
information is longer than 255 characters, INPUT will cancel the whole
line and start over. This is why itis better to create many short fields than
one long one. Also, it's a good idea to read from a sequential-access file
with a GET statement when you're not sure of the length of the field you
want to read.

Table 3-2 shows some of the ways to read characters with INPUT
and GET.

Statement Effect

1. INPUT A$ Reads one part of a field. If a field has more
than one part, BASIC discards the remaining
parts and displays EXTRA IGNORED. This
means the other parts aren’tread.

2.INPUT A$,B$ Reads two parts of a field. If a field has more
than two parts, BASIC discards the remaining
parts and displays EXTRA IGNORED. This
means the other parts aren’t read. If a field has
less than two parts, BASIC reads parts from
the next field.

3.GETC$ Reads the next character (letter, comma, or
colon) from the file.

The next three examples show how to enter and read text with one
part per field, with multiple parts per field, and with fields that contain
commas.

Chapter 3: Using Sequential-Access Text Files

) = carriage-return character

3.2.2.3 One Part Per Field

This program shows you how to write four fields, each containing one
part, to a sequential-access text file.

10 REM MAKE.FRUIT

20 D$ = CHR$ (4) (D$ is (conTrROD-(D))

23 PRINT D$3"MON C.I,0" (Watchthe action)

30 PRINT D$3"0OPEN FOUR.FRUITS"
(Create the file FOUR.FRUITS, if
necessary, and OPEN it)

4@ PRINT “"THIS GDES TO THE SCREEN®
(Characters go to the screen
until WRITE is executed)

5@ PRINT D$3i"WRITE FOUR.FRUITS"
(Specify the output file)

6@ PRINT "“APPLE" (Putfield 0 in the file)
70 PRINT "BANANA" (Putfield 1 in the file)
80 PRINT "CANTALOUPE" (Putfield 2 in the file)
8@ PRINT "DATE" (Putfield 3 in the file)

92 PRINT D%3"CLOSE FOUR.FRUITS®

(Close FOUR.FRUITS)
94 PRINT Ds3"NOMON C.I.0"

(Suppress the action)
96 END

Notice that even after FOUR.FRUITS is open, you can still PRINT to
the screen (line 40). However, after the WRITE statement in line 50,
all PRINT statements send their characters to the file.

Here is how the characters are stored in FOUR.FRUITS.

Character sequence: APPLE) BANANA) CANTALOUPE) DATE)
Field number: 0 1 2 3

Sequential-Access Text Files

An array is a table of elements (numbers
or words).

The next program reads the four fields from FOUR.FRUITS with one
input statement. It also displays them to show it's working.

1@ REM GET.FRUIT WITH ONE INPUT STATEMENT
20 D% = CHR$ (4 (D$ is (ConTROL)-(D))
25 PRINT D&3i"MON C.I.0" (Watchthe action)
3¢ PRINT D#%3i"DPEN FOUR,FRUITS"
(Prepare FOUR.FRUITS for use)
49 PRINT D%3"READ FOUR.FRUITS"
(Specify file for input)
S@ INPUT AR(3) :A%(1) sA%(2) » A%(3)
(If there are no parts leftina
field, DOS reads the first part
from the next field)
8@ PRINT A&{(@)" "A%(1)" "A%(2)" "A%(D)
(Print the fruits on the screen)
9¢ PRINT D%3"CLOSE FOUR.FRUITS®
(Close FOUR.FRUITS when
done)
94 PRINT D&3i“NOMON C+I.0"
(Suppress the action)
96 END

You'll see this on your screen:
APPLE BANANA CANTALOUPE DATE

The next program reads four fields of the sequential-access text file
FOUR.FRUITS into successive elements of an array. The DIM
statement in line 15 sets aside space for an array of the specified
number of elements.

1@ REM GET.FRUIT.INTO.CUPS USING AN ARRAY
15 DIM A%$(3)
20 D% = CHR$ (4 (D$ is (conTrROD-(D))
25 PRINT D$3"MON C,I,0" (Watchthe action)
3¢ PRINT D%3i"OPEN FOUR.FRUITS"
(Prepare FOUR.FRUITS for use)
4@ PRINT D$3"READ FOUR.FRUITS"
(Prepare it for reading)

5S¢ FOR I = @ TO 3 (For fields 0 through 3 read field |
G@ : INPUT A%(I) from the file, and print it on the
7@ : PRINT A%(I) screen)
80 NEXT I (Then do the next field)
8¢ PRINT D#3i"CLOSE FOUR.FRUITS"
(Close FOUR.FRUITS when
done)

Chapter 3: Using Sequential-Access Text Files

94 PRINT D$3i"NOMON C,I.0"
(Suppress the action)
96 END

This program uses the INPUT statement (line 60) once for each field
it reads from the file. The colons in lines 60 and 70 are not required;
they make the program easier for you to read.

3.2.2.4 Multiple Parts Per Field

The next program places three parts in each of two fields. When you
type the program into memory and run it, the commas between the
parts in lines 50 and 60 are written to the file INVENTORY because
they are within quotes.

10 REM BINS
20 D$ = CHR% (4) (D$ is (conTrOL)-(D))
25 PRINT D$3i"MON C.I.0" (Watch the action)
30 PRINT D$3i"OPEN INVENTORY"
(Create the file INVENTORY, if
necessary; prepare to use it)
40 PRINT D$3"WRITE INVENTORY"
(Prepare to write to file)
5@ PRINT "BOLTS sSCREWS s NAILS"
*(Print three parts in field 0)
8@ PRINT "WASHERS GROMMETS s RINGS"
(Printthree parts in field 1)
70 PRINT D$3i"CLOSE INVENTORY"
(Close INVENTORY)
94 PRINT D$3i"NOMON C.I.0"
(Suppress the action)
96 END

Here’s how the characters are stored in INVENTORY:

Character

sequence: BOLTS,SCREWS,NAILS)WASHERS,GROMMETS,RINGS)
Field 0 1

number:

The INPUT statements in the next two programs will read these
commas in different ways. The commas are treated as markers for
the end of the parts the programs read (retrieve).

Sequential-Access Text Files

This program reads each part into a separate variable.

12 REM DRAMWERS
20 D% = CHR$ (4) (D$ is (ConTROL{D))
25 PRINT D$3i"MON C,I 0" (Watch the action)
30 PRINT D$3i"0OPEN INVENTORY"
(Prepare to use INVENTORY)
4@ PRINT D% 3i"READ INVENTORY"
(Prepare to read from file)
5@ INPUT A1%,AZ2% »A3%:A4% :A5% »ABS
(Read 3 parts from field 0 and 3
parts from field 1)
60 PRINT D$%3"CLOSE INVENTORY"
(Close INVENTORY)
70 PRINT A1%,AZ2% :A3% »Ad% 1A% 1AGH
(Print all six parts)
80 PRINT D$3i"NOMON C.I.0"
(Suppress the action)
90 END

Notice that line 50 simply reads consecutive parts from the file. When
all the parts have been read from one field, parts are automatically
taken from the next field.

This program reads only the first part from each field.

5 REM METAL.PARTS
10 D$ = CHR$ (4) (D$ is (conTROLH(D))
2@ PRINT D$3"MON C.I 0" (Watchthe action)
3@ PRINT D#%3i"OPEN INVENTORY"

(Prepare to use INVENTORY)
4@ PRINT D#%3i"READ INVENTORY"

(Prepare to read from file)
50 INPUT Als% (Read first part from field 0)
6@ INPUT AZ%$ (Read first part from field 1)
70 PRINT D#$3i"CLOSE INVENTORY"

(Close INVENTORY)

8@ PRINT Al%$.:AZ24% (Display the two parts)
90 PRINT D$3i"NOMON C.I.0"

(Suppress the action)
100 END

In this example, each INPUT statement reads an entire field,
regardless of the number of parts it has. Line 50 assigns the value
“BOLTS” to A1$, discards the rest of field 0, and displays EXTRA
IGNORED. Likewise, line 60 assigns the value “WASHERS” to
A2$, ignores the rest of field 1, and displays EXTRA IGNORED.
Finally, line 70 displays the parts BOLTS and WASHERS.

Chapter 3: Using Sequential-Access Text Files

3.2.2.5 Reading Fields That Contain Commas

To read a comma, colon, or control character, or to detect a particular
character as itis read, use the Applesoft GET statement instead of
INPUT. INPUT reads strings of characters separated by a comma,
but GET reads characters one by one from either the keyboard or a
text file.

Warning

After an Applesoft GET statement reads a character from a text file, the
following problems arise in DOS:

If a DOS command is the firstitem printed after the GET, the DOS
command may not be executed because the necessary preceding
carriage-return character is missing. To solve this, print a carriage return
before printing the DOS command.

When NOMON C, 1,0 is in effect, the first character printed after GET will
not appear on the screen.

When MON C,I,0 is in effect, the first character printed after GET will
appear on the screen.

To solve these problems, put a nonprinting character (like (controt)-(4))
into a variable and print it before the PRINT character you want to see.

Note also that GET reads a field character by character and stores each
character it reads until it arrives at a carriage-return character. Thus,
using GET to read a long string or a series of concatenated strings may
cause memory problems.

if you've been doing the examples, you typed in the BINS program
and created the file INVENTORY. The next example retrieves
characters from INVENTORY by using the GET statement. The GET
statement reads one or more parts from a field.

INVENTORY has three parts in each field. However, there may be
times when you won't know how many parts to read from a field. Use
the GET statement to read an unknown number of parts, separated
by commas, from one field of afile.

The following subroutine reads parts, separated by commas, and

then places them into consecutive elements of string array A$. The
element in use at any time is indicated by A$(l).

Sequential-Access Text Files

This example reads only the first field
from the file.

The subroutine also uses the GET statement to read one character
into the variable C$. If the character is not a comma or a carriage-
return character, the subroutine adds it to A$(l). When the subroutine
reads a comma that separates two elements, itincrements the
variable | by 1, so that | will indicate the next element of the array, and
continues reading characters. It repeats this process until itreads a
carriage-return character indicating the end of the field.

10 R$ = CHR$ (13)
999 REM READ A FIELD

(R$ is a carriage return)

1000 1 = @ (Start with array element 0)
1016 1 =1 + 1 (Use next array element)
1020 GET C# (Read the next character)

1830 IF C$ = ",»" THEN GOTO 1010
(If comma, use next element)

1040 IF C% = R$ THEN RETURN
(If GET reads a carriage return,
there are no more elements to
read; otherwise

1050 A$(I) = A$(I) + C% addC$totheelement)

1060 GOTO 1020

To use this subroutine, you need a program that calls the subroutine
to retrieve the parts from the first field of the file INVENTORY. To
summon a subroutine, use GOSUB n, where n is the line on which
the subroutine starts (line 60 below). When the RETURN statement
is executed (line 1040 above), execution branches to the line
following the GOSUB statement (line 70 below).

20 REM USE SUBROUTINE
30 D% = CHR% (13) + CHR$ (4)
(D$ is carriage return plus
(conTrRoD{D) to ensure that CLOSE
executes)
4¢ PRINT D#3"OPEN INVENTORY".
(Prepare INVENTORY for use)
50 PRINT D$3"READ INVENTORY"
(Prepare INVENTORY for
reading)
6¢ GOSUB 10@¢0 (Read all parts from a field)
7@ PRINT D$3i"CLOSE INVENTORY"
(Close INVENTORY)

80 FOR J = 1 TO I (Now print the | elements of A$
onto the screen)

90 : PRINT A%(J)

100 NEXT J

110 END

Chapter 3: Using Sequential-Access Text Files

The TEXT statement converts the display
to 24 lines of text (instead of graphics)
and positions the cursor at the beginning
of the bottom line.

You can test this program. After you have typed in the lines of the
program and the lines of the subroutine, type

RUN

You'll see the three words in the first field of the INVENTORY file on
your screen, one word per line.

3.2.3 Programs: Entering and Reading Text

You can see how GET reads a variable number of fields from a file by
using two programs from the SAMPLE PROGRAMS disk. The
program MAKE TEXT reads text from the keyboard and savesiitin a
file. The program GET TEXT reads text from a file and displays it on
the screen.

3.2.3.1 A Program for Entering Text

The following program is stored in the file MAKE TEXT. The program
lets you type up to one hundred lines of text and save them in a file. It
asks for lines of text, reads them from the keyboard, and places them
into consecutive elements of the array A$. The program stops
reading lines when it encounters an empty line. The first portion of
MAKE TEXT looks like this:

9 REM MAKE TEXT

10 DIM A%(100) (Allow room for 100 lines in
array)

20 D$=CHR%(4) : REM CONTROL-D
(Set (ConTROL-0) in the
variable D$)

30 R$=CHR$(13) : REM RETURN
(Set inthe variable R$)

40 TEXT : HOME (Set text mode; clear screen)
50 PRINT " TEXT FILE CREATOR"

6@ INVERSE : PRINT * TO ADD A BTRING:"
7@ NORMAL : PRINT " ENTER CHARACTERS: AND

PRESS RETURN"
8@ INVERSE : PRINT "TO END:*
8¢ NORMAL : PRINT " PRESS RETURN ON AN
EMPTY LINE"
100 PRINT : POKE 34.6 (Skip 1 line; specify line 6 as top
of screen for new display to save
program instructions)

Sequential-Access Text Files

110 I = 1 + 1 ¢ PRINT Ii": "3§
(Ask for next line of text)
120 GOSUB 1000 (Jump to reading routine)
130 IF A$(I) < > "* GOTO 11¢@
(If A$(l) is not empty, go to line
110 for another line)

In line 40, the TEXT statement switches to text mode and the HOME
statement clears all characters from the screen and moves the cursor
to the upper-left corner of the screen. Lines 50 through 110 place the
instructions for the program on the screen, some in normal letters,

Setting a text window, see the Applesoft and some in inverse letters. Line 100 sets a text window, that is, it

AB"‘;%CEIP’ ogrammer's Reference freezes the upper six lines of the screen so that the instructions stay

' on the screen. The variable | has the value of 0 the first time it is used.

When the program executes line 110 the first time, it sets 1 to 1 and
prints “1” on the screen.

Line 120 directs MAKE TEXT to jump to the subroutine that reads a
line of text from the keyboard. This is the subroutine:

100¢ GET C%: PRINT C#3 (Read 1character and printit to
the screen)

1010 IF C#=R$ THEN RETURN
(Ifthat character = (RETURN), exit this
routine; go back to 130)

1020 A$(1) = A%$(I) + C$% (If something else was input,
build itinto a string)

1030 GOTO 1000 (Go back for more input)

MAKE TEXT reads one character into the variable C$ and tests C$. If
C$ contains a carriage-return character, execution goes to line 130.
But if C$ does not contain a carriage-return character, the program
adds the contents of C$ into the growing array (line 1020). The
program puts each string into element | of the array A$.

Once the text is stored in the array, MAKE TEXT asks for the name of
the file into which it should place the text:

1490 INPUT “SAVE TO WHAT FILE? "iN$
158 IF LEN (N$)=0 THEN 220
(If no name given, go to 220 to
quit)
160 PRINT D#3"OPEN "3iN$ (Open the file named N$)
17¢ PRINT D$:i"WRITE " iN$ (Preparetowritetoit)

The program reads that name into the variable N$. The next line tests

that a name was actually entered. If a file name was not entered, the
program branches to line 220 and quits.

Chapter 3: Using Sequential-Access Text Files

Note: If the filename does not begin with a letter, DOS will display
SYNTAX ERROR.

Next, the program saves the array contents into the specified file. An
empty input line indicates the end of the text. MAKE TEXT then prints
the entire array to the file (lines 180 through 200).

180 FOR J =1 TO I - 1 (Foreachline of text, it

190 : PRINT As(.D) prints the line to the file

200 NEXT J and continues to the next line)
210 PRINT D%3i"CLOSE " iN$ (Closes the file when done)

Finally, with line 220, MAKE TEXT resets the screen pointers for
proper text mode and ends.

220 TEXT : END (Resets screen to normal size)

Run this program a few times, creating text files of different lengths.
Experiment with the program’s features and get familiar with the way
they work. For example, enter a blank line of text by putting spaces
on that line; since it contains characters, the length of the line will
notbe 0.

3.2.3.2 A Program for Retrieving Text

Creating a sequential-access text file is a challenging exercise. You
also need to have some method for retrieving the information you've
putinto the file.

The program GET TEXT reads a sequential-access text file. Load
the program from the SAMPLE PROGRAMS disk and look at the
lines as they are described below.

First, GET TEXT sets up the variables it is going to use. It dimensions
the array A$ to hold up to 100 elements and assigns the value of
(conTROD){0) to D$ and the value of to R$. Before going

on, the program clears the screen and moves the cursor to the upper-
left corner of the screen (line 50).

3 REM GET TEXT
10 ONERR GOTO 150
20 DIM A%$(100)

30 R$ = CHR$ (13) (R$ is RETURN))
40 D% = CHR$ (4) (D$ is (conTROL)D))

90 TEXT : HOME

Sequential-Access Text Files

In line 60, GET TEXT asks for the name of the file from which to read
text and reads that name into the variable N$. Line 70 tells you that
pressing (controD)-(s) will stop the program and pressing almost any
key will restart the listing.

60 INPUT "LIST WHAT TEXT FILE? "iN$

70 PRINT : PRINT "TYPE: CONTROL-S TO STOP
LISTING”

80 PRINT " ANY KEY TO CONTINUE"

90 PRINT : PRINT : POKE 34,6

As with the preceding program, GET TEXT freezes the upper six
lines of the screen (line 90) so that they remain on the screen even
when you enter more lines than the screen can hold.

Having read the name of the text file, GET TEXT can now open the
file you've specified and read consecutive lines from it:

100 PRINT D#%3 "OPEN "3 N%

(Open the text file named in N§)
110 PRINT D#%§ "READ "3 N%

(Prepare to read from the file)
1Z6 FOR I = 1 7O 100 (For each line in the file, go to

13¢ GOSUB 1000 the subroutine to process each
character)

135 : PRINT A$(I) (Display each character on the
screen)

14@ NEXT I (Then do the next string)

The only remaining task is to close the file and reset the screen.

150 PRINT D%3i"CLOSE " 3iN$ (Close thefile)
166 TEXT : END

Here is the subroutine mentioned in line 130. It is similar to the
subroutine of MAKE TEXT.

1000 GET C$: PRINT C%$3 (Read 1 characterandechoit)
101¢ IF C%=R% THEN RETURN
(If that character was a (RETURN), exit
this routine and go back to 135)
1020 A%(1) = A%(I) + C% (lf something else was there,
build it into a string)
1030 GOTO 1000 (Read more)

Chapter 3: Using Sequential-Access Text Files

I 3.3 Commands Used With Sequential-Access

MAXFILES, see Chapter 5.

Files

This section describes the DOS commands used with sequential-
access files. Note that only one of these commands can be used in
both immediate and deferred execution. The others can be used only
in deferred execution.

3.3.1 The OPEN Command - Deferred Execution

Before writing to or reading from a sequential-access text file, a
program must open that file.

When a program opens a text file, DOS reserves 595 bytes of
memory space for the file; this space is called a file buffer. DOS also
sets the current position (for reading and writing) to point to the
beginning of the file.

The OPEN command allows up to 16 files to be open at once;
however, you must set MAXFILES since each DOS file you use
requires a file buffer.

This is the general form of OPEN:
OPEN fn[,Sn] [,Dn}[,Vn] —

fn indicates the name of the file to be opened. When it
does not yet exist, DOS creates one with that name,
type T. If the file already exists, it must not be open.

[,Sn] where nis a number from 1 to 7, specifies the slot
containing the disk controller card of the drive to be
accessed. If omitted, DOS uses the default siot

number.

[,Dn] where nis 1 or 2, specifies the drive that holds the disk
containing fn. if omitted, DOS uses the default drive
number.

LvVn] where nis a number from 0 to 254, specifies the

volume number of the disk to be accessed. If you
specify 0, just V, or omit the option, DOS ignores the
volume specification.

Previous sections presented several examples of the OPEN
command. This section gives you a new use for OPEN.

Commands Used With Sequential-Access Text Files

For more on file buffers, see Section 5.3.

Suppose your program routinely replaces an old text file with a new
one with the same name. When the new one is shorter than the old
one, the hew one will have part of the old file hanging on the end
unless the program first deletes the old one. If you don’t want this
extra text at the end of the file, delete the old file before writing to the
new one. The next program shows you how to delete a file and open it
for new data, whether or not the file already exists.

3 REM DEMONSTRATES ERROR FREE DELETION

1@ D% = CHR$ (4) (D$ is (coNTROL)-(D))
2?0 N$ = "GAMES" (N$ is the name of the file)

3¢ PRINT D#3i"MON C,I.0"
4@ PRINT D$3i"0OPEN " iN$

(Watch the action)

(Open thefile. If it does not
already exist, DOS creates file)
5@ PRINT D$3"DELETE " iN% (Since the file definitely exists,
the file can be deleted)

(Open the file)

6@ PRINT D&3"OPEN "3N%

The following statements complete the example program.

7@ PRINT D$i"WRITE " iN% (Prepare to writeto thefile)
8@ PRINT “"TIC"

8¢ PRINT *"TAC"

18¢ PRINT "TOE"

110 PRINT D&i"CLOSE " iN% (Closefile)

120 PRINT D&3i"OPEN "iN$ (Open thefile)

13¢ PRINT D$:i"READ "3iN$ (Read thefile)

140 INPUT A%,B%,Cé

150
160
170

PRINT A%.:B%.C%
PRINT D%3i"CLOSE " iN% (Closefile)
PRINT D$3"NOMON C.1.0"
(Suppress the action)
180 END

By the Way: Deleting a text file frees that file’s allocated file buffer as well
as the file’s sectors on the disk.

3.3.2 The CLOSE Command - Immediate or
Deferred Execution

After a program has finished writing to or reading from a file, it must
close the file. Closing every file properly ensures that all characters
are written to the files and that the file buffer is released.

By the way: A program should always close a file that it opened as soon
as possible, even if only temporarily. You or your program can always
open the file again if you need it.

Chapter 3: Using Sequential-Access Text Files

In some circumstances, a program contains an error and stops
before it can close all open files. When this happens, issue the
CLOSE command from the keyboard.

CLOSE takes the form:

CLOSE [fn]

where fn indicates the name of the file to be closed. The CLOSE
command without any arguments closes all open files.

A Coding Technique: Add an ONERR GOTO statement that branches to
aroutine that will close all files.

3.3.3 The WRITE Command - Deferred Execution

The WRITE command tells DOS which file to write to and where to
start writing. The WRITE command remains in effect until the next
DOS command or an INPUT statement. You must use the WRITE
command before you can use the PRINT statement to place
characters in afile.

After a WRITE statement, all output characters that would normally
be displayed on the screen are sent to the file. This includes the
question-mark prompting character of an INPUT statement (if INPUT
appears after the WRITE command) and error messages (unless an
ONERR GOTO statement redirects them).

This command takes the form:
WRITE fn [,Bn]

fn indicates the name of the sequential-access text file to
write to. This argument is required.

[.Bn] where n is the number of bytes, or characters, to read
and skip over. This option changes the current position
in the file.

You can use the Bn option to tell DOS where in the file
to write the first character. If you don’t use it, DOS
writes the first character at the current position.

By the Way: If you have not included an ONERR GOTO statement and a
DOS error occurs, the error message will be stored as the last field in your
text file. In addition, the error message will cancel a WRITE command.

Commands Used With Sequential-Access Text Files

3.3.4 The READ Command - Deferred Execution

The READ command tells DOS which file to read from. It remains in
effect until the next DOS command is given. You must use the READ
statement before you use the INPUT and GET statements to read
characters from afile. /

This command takes the form:
READ fn[,Bn]

fn indicates the name of the file to read from. This
argument is required.

{,Bn] where n is the number of bytes, or characters, to read
and skip over. This option changes the current position
in the file.

You can use the Bn option to tell DOS where in the file
to read the first character. If you don't use it, DOS reads
the first character at the current position.

Reminder: Avoid using TRACE (an Applesoft statement) with INPUT
statements unless you have defined your D$ variable to contain both a
carriage return and a GontroD)-(0): D$=CHR%$ (13) +CHR$(4) .

3.3.5 The POSITION Command - Deferred
Execution

The POSITION command lets you access information in any field
within a file. It automatically opens the specified file and directs DOS
to start reading at the current position and to skip over a number of
fields. Since a field is a sequence of characters ending with a
carriage return, POSITION scans the file, byte by byte, looking for
carriage-return characters.

A Warning

The POSITION command cancels a READ or WRITE command;
therefore, use POSITION before a READ or WRITE.

Chapter 3: Using Sequential-Access Text Files

This command takes the form:
POSITIONfn[,Rn]

fn indicates the file whose current position is to be altered.
This argument is required.

[,Rn] where n indicates the number of fields to read and skip
over. This number is relative to the current position.
When Rn is omitted, it defaults to 0, the first field. If you
try to specify a position past the end of the file, DOS
displays END OF DATA and stops program
execution.

This command specifies that the current position be moved forward
to the Rth field ahead of the current position. When R is specified as
0, DOS reads or writes beginning in the current field. When R is
specified as 1, DOS skips the current field and begins reading or
writing in the next field.

The position specified is relative to the current position. For
example, if the current position is in the fourth field of a file and you
want to read from the tenth field in the file, skip six fields by using
POSITION in,R6.

Warning

if you use POSITION to rewrite the current field, make sure that you print
exactly the same number of characters that you printed in that field
originally. If you print fewer characters, you will create a new field: the field
just printed and the end of the original field. If you print more characters
than the original field contains, you will write over some of the characters
of the next field in the file.

3.3.6 The APPEND Command - Deferred Execution

The APPEND command opens a sequential-access text file and
sets the current position to the end of the file so that you may add
information. After opening the file, the APPEND command sets the
current position to point to one byte beyond the last characterin
the file. The APPEND command must be followed by a WRITE
command.

Commands Used With Sequential-Access Text Files ﬂ

MAKE TEXT creates a sequential-
access text file

The APPEND command has this form:
APPEND n [,Sn] [,Dn][,Vn]

fn indicates the file to append to. When the file does not
exist, DOS displays FILE NOT FOUND.

[,Sn] where nis a number from 1 to 7, specifies the slot
containing the disk controller card of the drive to be
accessed. If omitted, DOS uses the default slot

number.

[,Dn] where nis 1 or 2, specifies the drive that holds the disk
containing fn. If omitted, DOS uses the default drive
number.

.vn] where nis a number from 0 to 254, specifies the

volume number of the disk to be accessed. If you
specify 0, just V, or omit the option, DOS ignores the
volume specification.

Reminder: Unlike the OPEN-command, the APPEND command does not
create a new file. The file you specify must already exist.

The next example modifies the program MAKE TEXT so that it adds
lines to the end of a text file. First MAKE TEXT reads lines of text into
the array A$ and asks for a file name. Then it opens the file and prints
the text lines to the file.

With the SAMPLE PROGRAMS disk in drive 1, load MAKE TEXT into
memory and display it on the screen by typing

LOAD MAKE TEXT
LIST

Change the code to append text lines to the end of the file by
replacing the OPEN statement with an APPEND statement. To
replace lines 50 and 160, enter these lines

S@ PRINT " TEXT FILE APPENDER"
160 PRINT D$3"APPEND "N

To keep this program, save it by typing

SAVE APPEND TEXT

Chapter 3: Using Sequential-Access Text Files

IS 3.4 Command Summary
OPEN fn (,Sn] [,Dn] [,Vn]

opens a text file so that DOS can write to it or read fromiit.
Unless you include a POSITION or APPEND command in your
program, you must use the OPEN command before you use a
text file. When fn does not exist, DOS creates a text file with that
name. When fn exists, OPEN checks that the file is a text file.

CLOSE [fn]
tells DOS that you have finished reading from and writing to a
file. Before ending, a program must close all the files it opened.

WRITE fn[,Bn]

telis DOS which file to write to. Use the WRITE command after
you open the file. DOS writes to fn until another DOS command
specifies a new fn.

READ fn[,Bn]

tells DOS which file to read from and where to start reading.
Use the READ command after you open the file. DOS reads
from fn until another DOS command specifies a new fn.

POSITION fn [,Rn]

sets the current position within the file. The POSITION
command lets you skip a specified number of fields in the text
file before you read or write more information.

APPEND fn [,Sn] [,Dn] [,Vn]

opens an existing text file and moves the current position to the
end of the file so that your program can add data.

Reminder: Only CLOSE can be used in immediate execution (that is,
from the keyboard). All of the other commands must be used in deferred
execution (thatis, issued from a BASIC program).

Command Summary

Chapter 3: Using Sequential-Access Text Files

Chapter 4

Using Random-Access
Text Files

75 4.1 Random-Access Text Files

76 4.1.1 Record Length
76 4.1.2 Writing to a Record
77 4.1.3 Reading From a Record

77 4.2 ADemonstration: The RANDOM Program
79 4.3 A Sample Random-Access Program

79 4.3.1 Controlling the Program

79 4.3.2 Storing Records

80 4.3.3 Writing a Record

82 4.3.4 Reading a Record

84 4.4 Commands Used With Random-Access Text Files

84 4.41 The OPEN Command - Deferred Execution

85 4.4.2 The CLOSE Command - Immediate or Deferred
Execution

86 4.4.3 The WRITE Command - Deferred Execution

87 4.4.4 The READ Command - Deferred Execution

88 4.5 Command Summary

Using Random-Access Text Files

Chapter4

Using Random-Access
Text Files

This chapter discusses random-access text files: how to structure
and use them. It also includes two demonstration programs. The
chapter ends with a discussion of the random-access commands
and their syntax.

Reminder: A sequential-access text file is a series of fields that can vary
in length. A random-access text file is a series of records, all the same
length and containing one or more fields.

4.1 Random-Access Text Files

A random-access text file is like a notebook with an unlimited number
of pages (records). Each page holds the same number of characters,
but the characters can be distributed on an unlimited number of lines
(fields in a record). With a random-access text file (or a notebook),
you go to a specific record (or page) before reading or writing fields
(or lines) of text.

To use random-access commands, you need to

® specify a record length when you open the file.

o specify the number of the record that you are going to write or
read.

It's a Good Idea: To use your random-access text files effectively, keep

detailed information about their structure, format, record length, and field
wengthi=You can put this information into a comment at the beginning of

each program, for example

1@ REM R/A4 FILES RECORD LENGTH 33 ONE FIELD PER
RECORD

Better still, include this information in the file name, for example
R/6 FILE-LSF1

Random-Access Text Files

Record length is the allowable humber of
characters per record.

4.1.1 Record Length

When you open a random-access text file, assign it a record
length: the number of characters that each record holds. For
example, to open a random-access text file named STOCK
SYMBOLS, use this command

30 PRINT D$3"DPEN STOCK S5YMBOLEB 12"

The L argument specifies that the length of each record in the file
STOCK SYMBOLS is 12.

You can also specify record length with a hexadecimal number, for
example

30 PRINT D$3"OPEN STOCK SYMBOLS.L$C"

Warning

Do not specify record length with a hexadecimal number if the length is
contained in a variable that is less than 10.

By the Way: When you open a random-access text file, you don't need to
specify the total number of records for a file. DOS does this for you.

4.1.2 Writing to a Record

To use the WRITE command with random-access text files, you
specify the number of the record you are going to write to. If a record
with that number does not yet exist, DOS creates it, reserving
enough space on the disk for that entire record. For example, to enter
data into record 10 of the STOCK SYMBOLS file, prepare to write to it
by using the command

50 PRINT D#3"WRITE STOCK SYMBOLS.R12"

By the Way: You can also specify the record with a hexadecimal number,
forexample S0 PRINT D$i"WRITE STOCK SYMBOLSR$A".

Then write a PRINT statement to put characters into record 10 of the
STOCK SYMBOLS file. Even if you enter only one character, the
record will use the full length declared in the OPEN statement.

Chapter 4: Using Random-Access Text Files

A Warning

Be careful not to print more characters than a record can hold. DOS will
put any extra characters in the next record. Remember that the carriage
return at the end of a field is a character too.

4.1.3 Reading From a Record

When you use the READ command with a random-access text file,
specify the number of the record you want to read from. For example,
The first record in a fileis record 0. prepare to retrieve the seventh record of the STOCK SYMBOLS file

by typing
8@ PRINT D$3"READ STOCK SYMBOLS :RB"

Then read it with an INPUT or GET statement. If the record you want
toread doesn't exist, you'llseean END OF DATA message after
your first GET or INPUT statement.

NN 4.2 A Demonstration: The RANDOM Program

The RANDOM program on the SAMPLE PROGRAMS disk uses a
random-access text file to demonstrate an inventory-control scheme.
RANDOM is a very simple small program: it can handie at most nine
parts. Any Apple Il computer can handie thousands of parts in an
inventory.

RANDOM automatically runs the random-access text file APPLE
PROMS. You can list one or all items in the inventory. You can also
change items, either one at a time or all at once. Here's how it works:
With the SAMPLE PROGRAMS disk in a disk drive, type

RUN RANDOM

You'll see these three options:

B eeeieoeRows
COMMAND NUMBER
LIBT i
CHANGE 2
EXIT . 3

Remember: Press each time you complete a response.

A Demonstration: The RANDOM Program

Press 1 and you'll see this message:

PART NUMBER 1-8 (9=ALL) 0

Press 0 to get a list of all the parts in the inventory. You'll see

When you're ready to return to the list of options, press (RETURN).

Try out the various program options. Option 1 allows you to list parts
by part number, one at a time as well as all at once.

Option 2 allows you to change any or all part names and descriptions.
For example, suppose part 3 should be COSMIC GLUE, size 56,

with 1234 in stock. To revise the entry for part 3, select option 2
(CHANGE), then select part number 3. The old part name will be
displayed, with the cursor at its beginning to allow you to enter

the new name. After you type in the new name and press (RETURN),
the cursor will move to the right and perform similarly for part size
and quantity. To use the current name, size, or quantity, just

press (RETURN),

Option 3 stops the program.

Chapter 4: Using Random-Access Text Files

I 4.3 A Sample Random-Access Program

The ADDRESS program on the SAMPLE PROGRAMS disk
illustrates the use of random-access text files. ADDRESS maintains
a mailing list by doing two tasks: adding new addresses and looking
up addresses that are already entered. Each task is written as a
subroutine.

4.3.1 Controlling the Program
The main program is straightforward:

12 D$ = CHR$ (4) (D$ is (conTROD)-(D)
20 F$ = "BLACK.BOOK" (F$ is the file of addresses)
39 HOME (Clear the screen)

4@ PRINT "WHAT WOULD YOU LIKE TO DO?Y
5@ PRINT " 1 ENTER A NEW ADDRESS"
6@ PRINT " 2 LOOK UP AN ADDRESS"
7@ PRINT * 3 END*
8@ INPUT "TYPE A NUMBER AND PRESS RETURN "iC$%
g8 C = YaL (CH) (Convert response to number)
i0¢ IF C < 1 OR C » 3 THEN GOTO 3@
(Bad entry, try again)

ii@ IF € = 1 THEN GOSUB 1000

(Enter a new address)
120 IF C = 2 THEN GOSUB 2000

(Look up an address)

130 IF C = 3 THEN END
149 GOTO 30

Lines 80 through 100 let you choose to enter a new address, read an
existing address, or quit. If you type a letter to choose an option, the
VAL statement (line 90) converts it to a number. Line 100 directs the
program to repeat the question (line 40} if the number isn’tin the
expected range. Lines 110 through 130 send the program to the
subroutine that corresponds to the option you select.

4.3.2 Storing Records

When you create a random-access text file, decide how information
will be arranged within each record and how long a record will be. For
example, ADDRESS stores information in a data file called
BLACK.BOOK. Each record in BLACK.BOOK is 200 characters long
and contains six fields: name, address, city, state, ZIP code, and
telephone number.

A Sample Random-Access Program

Figure 4-1. Five Addresses in
BLACK.BOOK

Figure 4-2. Writing an Address to
Record 5

ADDRESS reads each field into a separate variable (N$, A$, C$, S$,
Z$, and P$). Then it adds 1 to the total number of records (TR).
ADDRESS stores the first address in record 1, the second in record
2, and so on. Inrecord 0 it stores the total number of records in the
file. Figure 4-1 shows BLACK.BOOK'’s structure when it contains five
addresses.

| Addr
| Addr 5
| Addr 4
l Addr 3 y
2
Total A?dr
Number of
Records
Record T T
Number 0 1 2 3 4 5

4.3.3 Writing a Record

To write a new record, ADDRESS first uses OPEN and WRITE to
specify that BLACK.BOOK will receive the new record. Then a
separate PRINT statement places each field in the record and prints
the new total number to record O.

Figure 4-2 shows the BASIC statements that place an address in
record 5 of BLACK.BOOK. The) notation indicates a carriage return
character and 0...0 represents the number of ASCII zeros needed to
fill the record to 200 characters.

PRINT D$: “OPEN BLACK.BOOK,L200"
PRINT DS; “WRITE BLACK.BOOK,R5”

PRINT N$ > Name

PRINT A$ > Address)

PRINT C$ » City

PRINT S$ > Stal g)

PRINT Z$ B Zip ode)

PRINT P$ > Telephone) 0...0

Record 5

Chapter 4: Using Random-Access Text Files

Lines 1010 through 1060 of the subroutine READ NEW INFO show
the BASIC statements that gather the information for a record

100¢ REM READ NEW INFO
1810 INPUT "NAME: "IN

(Read name to be entered)
1920 INPUT "ADDRESS: "iA$

¢ (Read address)

1930 INPUT "CITY: "iC%

(Read city)
19040 INPUT "STATE: "35%

(Read state)
1@50 INPUT "ZIP CODE: "i2%

(Read ZIP code)
1906¢ INPUT "PHONE: " iPE

(Read phone number)

Lines 1070 through 1120 open the file whose name is stored in F$
and write information to the new record (record number TR):

1079 PRINT D$3i"0PEN "“iF$i",L200"
(Open the file with record length
of 200)
108¢ PRINT D$3i"READ "iF$i",Re"
(Read total records)
129¢ INPUT TR:TR = TR + 1
(Gettotal records, add 1)
11890 PRINT D&3"WRITE "iF$3" JR"3TR
(Prepare to write to record
number TR)
1119 PRINT N$: PRINT A%: PRINT C%
(Place each part of address
1120 PRINT S%$: PRINT Z%: PRINT P%
in a separate field)

Lines 1130 through 1160 print to record 0 the total number of address
records now in the file, close the file, and end the subroutine:;

1132 PRINT D%3"WRITE "iF$i" ;RO
(Prepare to write file into
record 0)
114@ PRINT TR (Print new record number)
1150 PRINT D$i"CLOSE "iF%
(Close the file)
116¢ RETURN (End of subroutine)

A Sample Random-Access Program

4.3.4 Reading a Record

After you figure out how to store information in a record, decide how
your random-access file will retrieve a particular record. The
subroutine LOOKUP offers a solution: after the OPEN and READ
commands specify BLACK.BOOK as the file to read, LOOKUP reads
the total number of entries (record 0) in BLACK.BOOK. Then
LOOKUP retrieves the names from the records and displays them in
a numbered list. Finally, LOOKUP asks which record you want to
display and displays the record you select.

Figure 4-3 shows how the BASIC statements relate to the fields in
record 5 of the file BLACK.BOOK.

Figure 4-3. Reading an Address from

Record 5 PRINT D$; “OPEN BLACK.BOOK,L200”
PRINT D$; “READ BLACK.BOOK,R5”
Nam? » INPUT N$
Addr ss) -» INPUT A$
City » INPUTC$
Sta g) » INPUT S$
Zip ode) - INPUT Z$
Telephone) » INPUT P$
Record 5

Lines 2000 to 2030 read the total number of addresses from record 0
of the file. Lines 2050 to 2100 read the name from each record and
display the name on the screen.

2000 PRINT D$3i"0OPEN "iF$3i".LZoa"
(Openthefile)
2019 PRINT D$3"READ "iF%3i" R@"

(Read from record 0)
2020 INPUT TR (Get the number of records)
293¢ IF TR = @ THEN GOTD 2210

(Check for no records)
2049 HOME (Clear the screen)

2050 PRINT "WHOSE ADDRESS DO YOU MWANT?Y
2060 FOR I = 1 70 TR (For each record |,
2070 PRINT D$3i"READ "iF$i"R"iI
position to record |,
2080 INPUT N$ and read the stored name)

Chapter 4: Using Random-Access Text Files

2890 PRINT IsN% (Display the record number and

name on the screen)

2100 NEXT I (Repeat for all records)

2119 PRINT D% (Empty DOS command turns off
previous READ command)

The READ statement in line 2010 reads characters from
BLACK.BOOK rather than from the keyboard. To read from the
keyboard, line 2010 must be cancelled. The DOS command in line
2110, which prints only a (ConTRoD)-(D), does this.

Line 2120 asks for a number and reads it into the string R$. Line 2130
converts R$ to a number (R); if you pressed a letter key, the VAL
function converts it o zero. The next line compares the number to the
valid address numbers. An invalid response redisplays the question
(line 140).

2120 INPUT “"TYPE A NUMBER AND PRESS RETURN"iR%
2130 R = VAL (R$) (Get numeric value of answer)
214¢ IF R < 1 OR R > TR THEN GOTO 2120

(i bad number, try again)

The last part of the LOOKUP subroutine displays an address. The
READ statement (line 2160) sets the position to the requested
record. The INPUT statement in line 2170 reads the six fields of the
record and lines 2180 through 2200 print the six fields on the screen.
Line 2220 prevents the address from being erased before you can
read it.

215¢ HOME (Clear screen)
2160 PRINT D$3"READ "3F$:i",R"iR

- (Prepare to read record R)
2170 INPUT N$ A% 0% 5% :2%+P%

(Read address)
218¢ PRINT N#%: PRINT A% (Printname, address)
2190 PRINT C%, 5% (Put city, state on same line)

22¢0 PRINT Z%: PRINT P% (PrintZIP code, phone)
2210 PRINT D$%3i"CLOSE "“iF%$

(Close the file)
2220 YTAB Z3: HTAB 1@ (Position cursor; save screen)
2230 INPUT "PRESS RETURN TO CONTINUE"ITS
2240 RETURN

A Sample Random-Access Program

I 4.4 Commands Used With Random-Access

Sequential-access text files, see
Chapter 3.

Text Files

Except for CLOSE, the commands used with random-access text
files work in deferred execution only.

Read Carefully: The commands described here have different options
than those for sequential-access text files.

4.4.1 The OPEN Command - Deferred Execution

Before a program can write to or read from a random-access textfile,
it must open the text file with the OPEN command. The general form
of the command is

OPEN fn, Ln[,Sn] [,Dn}[,Vn}

fn is the name of the file to be opened for random access.
When fn exists, DOS checks to see that it is a text file.
When the file already exists and is open, DOS closes
the named file and opens it again. If the file does not yet
exist, DOS creates it as a text file and opens it.

Ln where n is a number from 1 to 32767, specifies the
number of bytes in each record of the file. You must
specify the record length whenever you open the file;
that is, whenever you create or reopeniit. If you omit L,
DOSuses 1.

[,Sn] where nis a number from 1 to 7, specifies the slot
containing the disk controller card of the drive to be
accessed. If omitted, DOS uses the default slot

number.

[.Dn] where nis 1 or 2, specifies the drive containing the disk
on which to store fn. If omitted, DOS uses the default
drive number.

[.vn] where n is a number from 0 to 254, specifies the

volume number of the disk to be accessed. If you
specify 0, just V, or omit the option, DOS ignores the
volume specification.

The first time you open a random-access text file, create it witha

specified record length. Each time you subsequently open that file,
you must specify that same length.

Chapter 4: Using Random-Access Text Files

File buffer = 595 bytes

Warning

The declared record length must be greater than the maximum number of
characters, including carriage returns, you're going to put in one of the
file’s records. If you write past the end of a record, you'll write over the
beginning of the next record in the file, destroying what is there.

Whenever any text file is opened, DOS prepares to read or write
starting at the beginning of the file and designates a file buffer to hold
information about the file.

4.4.2 The CLOSE Command—Immediate or
Deferred Execution

After writing to or reading from a file, a program must close it to
ensure that DOS writes all the characters and releases the buffer
associated with the file.

CLOSE takes the form:

CLOSE [fn]

where fn indicates the name of the file to close. When you omit the file
name, the CLOSE command closes all open files, finishes any
writing that your program is doing, and releases all file buffers.
Sometimes a program contains an error and stops before it can close
all open files. Whenever this happens, issue the CLOSE command
from the keyboard to close any files that are open.

A Programming Technique: Code into your program an ONERR GOTO
statement that branches to a routine that will close any open files.

Commands Used With Random-Access Text Files ﬂ

4.4.3 The WRITE Command—Deferred Execution

The WRITE command names the random-access file you're writing
10, identifies the record that receives information, and specifies the
position within the record of the first character to be written.

The WRITE command takes this form:

WRITE fn[,Rn}[,Bn]
fn indicates the name of the file to be written to.
[,Rn] where n is a nurhber from 0 to 32767, indicates the

record at which the program is going to start writing. If
Rn is omitted, DOS prepares to start writing at record 0.

[,Bn] where n is the number of characters that DOS should
skip in the specified record, changes the current
position in the file. If this option is omitted, DOS
prepares to start writing at byte 0, the beginning of the
record specified by R.

WRITE remains in effect until the next DOS command or the next
INPUT or GET statement.

Use WRITE before putting characters into a record with PRINT
statements, and use WRITE each time you want to print to a record
other than the current one.

Warning

If you are not using ONERR GOTO and your program generates an error
message, the message is stored as the last field in your text file. Also, the
error message cancels the WRITE command.

The WRITE statement tells DOS to send to the open file all the
characters that are normally sent to the screen. This includes error
messages—if you have notincluded an ONERR GOTO statement—
and the prompt characters of INPUT statements—if INPUT appears
after the WRITE command.

Chapter 4: Using Random-Access Text Files

Warning
Do not use the sequential-access command POSITION to skip fields
within a record. If you do, you cancel the WRITE command.

Do not print more characters (including the carriage-return character) to a
random-access record than you specify in the L argument of OPEN. DOS
will write the current record correctly but will calculate the next record’s
starting position as if the previous record had been within the specified
length. The next record will write over the last characters of the previous,
oversized record, including the carriage-return character marking the end
of that record.

If you print fewer characters to a random-access record than you specify
inthe L argument of OPEN, you create two new fields: the field you just
printed, followed by the end of the field you were writing over.

4.4.4 The READ Command—Deferred Execution

When used with random-access files, the READ command identifies
the file from which the next INPUT or GET statement takes
characters. You can specify the record (Rn) within the file and the
byte position (Bn) within the record from which the first character will
be read.

The READ command remains in effect until the next DOS command
and takes this form:

READ fn[,Rn] [,Bn]
fn indicates the name of the file to be read.
[LRn] where n is a number from 0 to 32767, indicates the

record from which the program is going to read. If Rniis
omitted, DOS prepares to start reading at record 0. If
Rn indicates a record that doesn't exist and you are not
using ONERR GOTO, you'llsee an END 0OF DATA
message after the first INPUT or GET statement from
the nonexistent record.

[.Bn] where n is the number of characters that DOS is to skip
in the specified record, changes the position in the file
relative to the file’s current position. If this option is
omitted, DOS prepares to start reading from byte 0, the
beginning of the record specified by R.

Caution: Unless D$ = CHR$(13) + CHR$(4), avoid using the Applesoft
command TRAGE with INPUT statements—your program will stop and
wait for input from the keyboard.

Commands Used With Random-Access Text Files

I 4.5 Command Summary
OPENfn, Ln[,Sn][,Dn] [,Vn]

opens a random-access text file so that DOS can write to it. The
length (L), specifies the number of bytes, or characters, each
record can hold. If the file is a new one—that is, if it doesn’t yet
exist—DOS creates it and gives it the file name you specify in
fn. If fn does exist, DOS checks that it is a text file.

CLOSE [fn]

tells DOS that you have finished reading from and writing to a
file. If fn is omitted, DOS closes all open files.

WRITE fn [,Rn} [,Bn]

specifies the random-access file to write to and where to start
writing: the number of the record (Rn) and the position within
the record of the first character to write (Bn). The file must be
open. DOS writes to fn until the next DOS command or the next
INPUT or GET statement.

READ fn [,Rn] [,Bn]

specifies the random-access file to read from and where to start
reading: the number of the record (Rn) and the position within
the record of the first character to read (Bn). The file must be
open. DOS reads fn until the next DOS command.

Reminder: All of these commands, including CLOSE, can be issued from
a BASIC program. Only CLOSE can be issued from the keyboard.

Chapter 4: Using Random-Access Text Files

Chapter 5

Programming With More
Sophistication

91 5.1 Using a Command File
92 5.1.1 The EXEC Demonstration

94 5.1.2 Creating a Command File

96 5.1.3 Special-Purpose Command Files

96 5.1.3.1 Capturing Lines From a BASIC Program
98 5.1.3.2 Translating Machine Language to BASIC

99 5.2 The EXEC Command
101 5.3 The MAXFILES Command

101 5.3.1 Buffering Information
102 5.3.2 Example
103 5.4 CHAIN

103 5.4.1 The CHAIN Command - Integer BASIC
105 5.4.2 The CHAIN Program - Applesoft

106 5.5 The MASTER Program

107 5.5.1 Example

108 5.6 Making a Turnkey Disk

108 5.6.1 Creating a Turnkey Disk

109 5.6.2 Creating a Master Turnkey Disk

109 5.6.3 A Disk for All Systems

110 5.6.3.1 Example
113 5.7 Summary

113 5.7.1 Commands

13 5.7.2 Program

Programming With More Sophistication

Chapter 5

Programming With More
Sophistication

This chapter describes three commands and two programs that allow
DOS to interact with several programs, files, and systems.

e EXEC lets you use a command file to execute another file.
e CHAIN lets you link one program to another.

o MAXFILES lets you increase or decrease the number of files that
can be open in your Apple II's memory.

o The MASTER program lets you create a master disk that can
operate in Apple Il computers with different memory sizes.

I 5.7 Using a Command File

Your Apple Il computer can take its commands from a special text file,
Command file = EXEC file. called a command file, as well as from the keyboard. Command files
Command file has file type T. let you automate a frequently used set of commands, convert a
program written in one BASIC dialect to the other, or repeatedly enter
the same information into a program. To use this programming
capability, first write a BASIC program that creates a command file,
then execute the command file with the EXEC command.

A command file may contain anything that you might type in from the
keyboard: DOS commands, lines of BASIC statements, or even
Monitor commands. When you put a DOS command in a command
file, you do not precede it with (conTrRoD-(D).

You can’t look at a command file with a LIST statement. Instead, use
the program GET TEXT, on the SAMPLE PROGRAMS disk, ora
For more on EDASM, see the Applesoft/ special editing program, like Apple Writer 2.0 or EDASM. You can
DOS Tool Kit. also issue a MON C command to watch as the command file issues
and executes its commands.

Using a Command File

The following demonstration uses GET TEXT to look at the command
file DO’ER.

Remember: Do not precede a DOS command in a command file with
CONTROL)-(D).

5.1.1 The EXEC Demonstration

This demonstration has two parts. First run the BASIC program
EXEC DEMO on the SAMPLE PROGRAMS disk to create a
command file. Then issue the EXEC command so your computer
takes its instructions from the command file instead of the keyboard.

By the Way: Be sure your copy of the SAMPLE PROGRAMS disk is
write-enabled so you can save the command file on it.

1. To create the command file, insert your SAMPLE PROGRAMS
disk into drive 1 and type

RUN EXEC DEMO, D1
Read the full page of instructions (Figure 5-1).

F 1. i
D'egn.::a sst-rat?c;'r‘\e First Screen of the EXEC : o XEC BEne s

:THIS PRDGF.’&M CREATES A SEQUENTIAL TE T
FILE NAMED "DO’ER" CONTAINING SEVERAL
STRINGS: EACH A LEGAL APPLE II CDMMQN

THEN YOU TYPE:

EXEC DO'ER

THEN THE COMMANDS IN FILE DD'ER TAKE
CONTROL OF YOUR COMPUTER., EACH COMMAND
WILL BE EXECUTED JUST AS IF IT HAD BEEN
TYPED AT THE KEYBOARD. THE DOS MANUAL
DESCRIBES THE PROGRAM IN MORE DETAIL,

4 HAPPY EKECUTING b

’:EPRESS THE SPACE BAR TO MAKE THIS
PROGRAM CREATE THE FILE DO'ER.

IF YOU WISH TO STOP THIS PRDGR’ﬁﬁ NOW
YOU MAY PRESS THE ESC KEY.

Chapter 5: Programming With More Sophistication

2. After you've read EXEC DEMO's first screen, press the
bar. EXEC DEMO writes the DO’ER file to the disk and then
displays the screen shown in Figure 5-2.

Figure 5-2. EXEC DEMO’s -

Final Screen IT’S DONE! !!

YOUR APPLE’S READY TO DO‘ER ITS THING!
ALL YOU HAVE TO DO IS TYPE .
EXEC DO’ER
PRESS THE RETURN KEY, AND SIT BACK.

EXEC DEMO has created a command file, named it DO’ER, and
put DO’ER on the disk.

3. To see acommand file in action, execute DO’ER by typing
EXEC DO’ER

DOS loads the first sector of DO’ER from the disk and begins
executing the commands. DO’ER describes everything it is doing.
Since DO’ER runs some programs that use Integer BASIC, you'll
see LLANGUAGE NOT AVAILABLE if your computer doesn't
have that language. Nothing to worry about; DO’ER executes
those programs it can. And you won't have to touch the keyboard
unless your catalog has more than eighteen entries. Then you'll
have to press to see the nineteenth.

GET TEXT reads a textfile; see 4. To look at the commands in the DO’ER file, use the GET TEXT
Chapter 3 for a complete description. program. Type

RUN GET TEXT
When GET TEXT asks LIST WHAT TEXT FILE®, type
DO’ER

As GET TEXT displays the contents of DO’ER, notice the wide
variety of commands it contains.

Using a Command File

Figure 5-3. ACommand File

5.1.2 Creating a Command File
To create a command file, a BASIC program must:

e open the text file using the OPEN command,

o prepare the file to be written to using the WRITE command,
e place commands in the text file using PRINT or LIST,

e close the textfile.

Here's a step-by-step example thatillustrates how to create an EXEC
file. Figure 5-3 shows the files and commands the example uses. The
files in the example are MAKE.DOIT, a BASIC program that creates a
command file, and DOIT, a command file that executes the program
called AWAY. DOIT will contain the following DOS commands:
CATALOG, RUN, and LIST.

MAKE.DOIT DOIT AWAY
20 PRINT D$;“OPEN DOIT” MONICO
CATALOG
RUN
LIST
NOMON CIO
90 PRINT D$;“CLOSE DOIT”

BASIC Program creates—> Command File controls—> Program

Chapter 5: Programming With More Sophistication

1. First, type in this program:

3 REM MAKE.DOIT
10 D$ = CHR$ (4) (REM D$ is (controD-(0)
20 PRINT D$3"OPEN DOIT"
(Prepare the file to be written to)
3¢ PRINT D$3i"WRITE DOIT"
4¢ PRINT "MONICO" (Watch the action)
5@ PRINT "CATALOG" (Put these three commands
6@ PRINT "RUN AWAY" intothe command
70 PRINT "LIST" file DOIT)
8@ PRINT "“NOMON CIO" (Turnoff MON)
92 PRINT D&3;"CLOSE DOITY
(And close the file)

Save the program on the disk and name it MAKE.DOIT by typing
SAVE MAKE.DOIT

The PRINT statements beginning with D$ (lines 20, 30, and 90)
are DOS commands that will be executed when you run
MAKE.DOIT. The other PRINT statements will be written to

the command file DOIT to be used later. Notice the DOS
commands that will be put in the command file: none are
preceded by (conTROD-(D),

2. Next, type in this Applesoft program:

S REM AWAY

10 PRINT "A WAY TO JOURNEY »"
20 PRINT "A WHALER JOE."

308 PRINT "AWEIGH THE ANCHOR "
40 PRINT "AWAY WE GO."

Save the program on the disk by typing
SAVE AWAY
Later, the command file will run AWAY.

Using a Command File

MAKE TEXT, see Chapter 3.

3. After you have saved MAKE.DOIT and AWAY, run MAKE.DOIT
and create the sequential-access text file named DOIT by typing

RUN MAKE.DOIT
When MAKE.DOIT has finished, DOIT is on the disk.

4. To watch those commands race by as if you were typing them in
very quickly from the keyboard, and to execute the commands in
the file DOIT one by one, type the commands

MON I.C.0
EXEC DOIT

The command file DOIT displays the files on the disk, the
sentences printed out by the program, and a listing of the program
AWAY.

Note: You can also create a command file by using the program MAKE
TEXT. However, you have no way to fix an erroneous line in MAKE TEXT.

5.1.3 Special-Purpose Command Files

You can design command files to do many tasks: convert a listing
of a BASIC program into a text file, edit a program using a DOS-
compatible word processor, place part of a program anywhere in
another program, insert subroutines from a subroutine file into a
program, even connect two programs. The following examples
illustrate two of these tasks.

5.1.3.1 Capturing Lines From a BASIC Program

The EXEC command lets you capture lines from a program in
memory and insert a copy of them into a text file to create a new
program. The “captured” lines may need some editing before the
new program can run, but editing existing lines may be easier than a
lot of retyping.

Chapter 5: Programming With More Sophistication

The next example shows you the CAPTURE routine, which reads
lines of a BASIC program in memory and puts them into a text file
named LISTING.

1 REM CAPTURE ROUTINE

2 D$ = CHR$ (4) : POKE 33,33
(REM D$ is (ConTroD)-(0)
Change the text area to prevent
spaces in PRINT statements)

3 PRINT D$37 "OPEN LISTING"
(Prepare the file LISTING to

write to)
4 PRINT D$37 "WRITE LISTING"
S LIST 227@,5130 (List the lines to the file)
6 PRINT D$§7 “"CLOSE LISTING"
(Close up thefile,
7 TEXT : END and reset the text area)

The POKE statement in line 2 puts a value into a memory location.
POKE 33,33 sets the right margin of the text area 33 characters away
from the left margin so that BASIC won't split a long line into two and
DOS won't add extra spaces.

Use the command EXEC LISTING to read the lines of LISTING into
the computer's memory as if you had typed them in.

You can tallor these lines to your own purposes by adding the
CAPTURE routine to the beginning of your own program. Replace
the line numbers in line 5 with the numbers of the lines you want to
capture from the program in memory; replace LISTING (lines 3, 4,
and 6) with the name of the new file to which you want to add the
captured lines.

You can also use the CAPTURE routine to combine programs. First,
create a program using CAPTURE. Then load the second program
into memory and use the EXEC command on the file that was
created using CAPTURE.

Remember: Using the EXEC command on a file does not delete the
program that is already in memory.

Using a Command File

PEEK returns a value stored in a memory
location. POKE stores a value directly
into memory.

5.1.3.2 Translating Machine Language to BASIC

The demonstration program POKER, on the SAMPLE PROGRAMS
disk, creates an EXEC file that reads a binary program and translates
itinto BASIC. POKER uses PEEK to read consecutive bytes of the
binary program, and for each byte, it prints a POKE statement into a
command file.

When you execute the command file, it builds a new BASIC program
containing these POKE statements. You can also write the program
to have the command file add BASIC statements to an existing
BASIC program in memory.

100 REM PROGRAM POKER

110 D$ = CHR$ (4) (D$ is (coNTROL)(D))

126 HOME

130 INPUT "FILE NAME TO CREATE? "iN$

140 PRINT : INPUT "STARTING ADDRESS (DECIMAL)?
" ;S

156 PRINT : INPUT "ENDING ADDRESS (DECIMAL)?
|I;E

160 IF S»E THEN PRINT : PRINT "THE STARTING
ADDRESS MUST BE LESS THAN" : PRINT "THE
ENDING ADDRESS"$ CHR$(7): GOTO 140

176 PRINT : INPUT "BASIC LINE TD START AT?
"SLINE

180 IF LINE<® OR LINE»B3999 THEN PRINT : PRINT
"BASIC LINE NUMBERS MUST BE IN THE
RANGE": PRINT "OF @ TO G3999"F CHR$(7):

GOTO 17¢
180 PRINT D$3i"OPEN "N$ (Opens, closes, and deletes
200 PRINT D%;5"CLOSE " the file you named in 130

212 PRINT D$3"DELETE "N incase it already exists)
220 PRINT D$:i"OPEN "N$ (Opens file namedin 130)
230 PRINT D%3i"WRITE "N$ (Preparestowritetoit)
24¢ FOR PLACE = 8 TO E (Foreach memory location,
200 C=C + 1 increments counter, puts
260 IF C = 16 THEN C = 1 tenPOKEsoneach line)
278 IF C < > 1 THEN 3@@ (Forfirst POKE onaline,
28@ PRINT : PRINT LINE3: printsthe line number, and

280 LINE = LINE + 1 increments it)
300 PRINT "POKE "§$PLACE3:" . "3 PEEK
(PLACE) 3" "3 (Pokes a byte
310 NEXT PLACE and handies next location)
320 PRINT (Creates a new line for DOS
command)
330 PRINT D$i"CLOSE" (Then closes the file)
34¢ END

Chapter 5: Programming With More Sophistication

To use this program, put the SAMPLE PROGRAMS disk in your disk
drive and type

RUN POKER

When POKER asks, enter the name you'd like to use for your
command file (line 130), enter the memory locations (lines 140 and
150), and enter the BASIC line number (line 170). if you name the
command file FILLER, you can execute it by typing

EXEC FILLER

FILLER will add the lines containing the POKE statements to
whatever BASIC lines are already in memory.

5.2 The EXEC Command

The EXEC command directs DOS to take its commands from a
command file rather than from the keyboard. You can start execution
at any line of a command file.

The EXEC command has the form

EXEC fn [,Rn] [,Sn] [,Dn) [,Vn]

fn Indicates the name of the command file, a text file that
can contain DOS commands, data, and BASIC
statements.

[,Rn] where n is a number from 0 to 32767, indicates the

number of lines to skip in the command file. When Rnis
omitted, DOS starts executing the command file at the
first line. DOS counts fields from the beginning of the
command file, so Rnis always relative to 0. Specifying
a value for R beyond the end of the file returns an END
OF DATA message.

The EXEC Command

[,Sn) where n is a number from 1 to 7, specifies the slot
containing the disk controller card of the drive to be
accessed. If omitted, DOS uses the default slot

number.

,Dn) where nis 1 or 2, specifies the drive that holds the disk
containing the command file. If omitted, DOS uses the
default drive number.

[.vn] where n is a number from 0 to 254, specifies the

volume number of the disk to be accessed. If you
specify 0, just V, or omit the option, DOS ignores the
volume specification. You can execute only one
command file at a time.

Warning

Be careful if your command file is on a disk in one drive and the disk
containing the program the command file will run is in another drive. The
drive containing the EXEC file should be the default so that DOS can
return to the EXEC file after each sector of the program is executed.

When a command file completes all its commands, it closes itself and
stops. If a command file issues the EXEC command to call another
command file, the original command file closes, and the new
command file opens and executes. The second command file
replaces the firstin memory.

The command file currently in memory is not affected by the NEW
statement or by the FP, INT, or CLOSE commands.

Using the EXEC command on a command file does not delete a
program that is already in memory.

You can stop a command file that is executing BASIC statements by
pressing (€oNTRGD-(C); the remaining commands in the command file will
not be executed. To stop a command file that is executing DOS
commands, turn off the computer.

Warning

When a command file is running a program, an INPUT statement in the
program will read the next field from the command file rather than from the
keyboard. If the input is an immediate-execution DOS command, the
command is executed before the program continues.

Chapter 5: Programming With More Sophistication

I 5.3 The MAXFILES Command

Track/sector list: see Appendix B.

1 byte = 1 character

At startup DOS gives you a maximum of three files that can be open,
or active, at one time. But you may want more if you are building a
large program. Or you may want less if you need every possible byte
in memory.

The MAXFILES command allows you to increase the number of
active files to a maximum of 16 or decrease them to a minimum of
one. The number you specify in the command is the maximum until
you issue another MAXFILES command or start up DOS again.

The syntax for the MAXFILES command is
MAXFILES n
where nis an integer from 1 10 16, specifies the number of file buffers

that can be active at one time. If you specify a value beyond this
range, you'liseea RANGE ERROR message.

5.3.1 Buffering Information

For each file you open, DOS sets aside 595 bytes of memory space
in an area called a file buffer. DOS uses 256 bytes of the file buffer
for data and 256 bytes for the track/sector list. The remaining 83
bytes are for “housekeeping” information such as the file’s location
on the disk.

When your program reads information from a disk, DOS brings in 256
bytes, putting them in the data section of the buffer. DOS delivers to
your program whatever subset of those 256 bytes your program
requests.

When your program sends information to a disk, DOS first stores
characters in the data section of the buffer until it accumulates 256
bytes. Then DOS writes them to the disk all at once.

By the Way: DOS initializes the data section by filling it with 256 zeros;
these are replaced by the characters you enter. When DOS writes that
buffer to a disk, it transfers the entire 256 bytes. If you've entered fewer
than 256 characters, DOS transfers the characters you entered and any
zeros remaining in the buffer.

The MAXFILES Command H

File buffer = 595 bytes in memory

HIMEM = highest memory address
available to an Applesoft program; see
Chapter 6.

The three file buffers that DOS initially supplies reserve a total of
1785 bytes in memory. When you execute MAXFILES to increase the
number of files, DOS reserves 595 additional bytes of memory for
each new file buffer. When MAXFILES decreases the number of
active files, DOS releases 595 bytes of memory for each buffer no
longer required.

You can issue the MAXFILES command in immediate execution
before loading and running a program.

Warning
When you issue the MAXFILES command from the keyboard, DOS

moves HIMEM in memory, but does not move any Integer BASIC program
or Applesoft strings.

Changing the number of buffers erases Integer BASIC programs.
Increasing the number of buffers affects the area where Applesoft strings
are stored.

By the Way: You can also issue MAXFILES from an Applesoft program.
Make MAXFILES the first program statement since it changes memory
pointers for string variables.

All DOS commands except PR#, IN#, and MAXFILES require afile
buffer. If you set MAXFILES to 1 and open afile, you use the present
limit, one buffer. You'llsee NO BUFFERS AVAILABLE ifyouthen
issue a DOS command other than PR#, IN#, or MAXFILES.

5.3.2 Example

To change MAXFILES from an Applesoft program, make the
MAXFILES command the first statement in the program, before you
declare any string variables. For example

10 PRINT CHR®(4)§ "MAXFILES 5"

Chapter 5: Programming With More Sophistication

I 5.4 CHAIN

CHAIN lets you link one program with another. When both programs
arein Integer BASIC, use the CHAIN command. When both
programs are in Applesoft, use the CHAIN program on the SYSTEM
MASTER disk. _

5.4.1 The CHAIN Command—Integer BASIC

When an Integer BASIC program is too big to fit entirely in memory,
the CHAIN command lets you bring in parts of the program and run
each part, one at atime. When the second part comes in, DOS does
not clear the variables or close the files that were used by the first
part.

The command takes this form

CHAIN fn [,Sn] [,Dn] [,Vn]

fn indicates the file containing the Integer BASIC module
to be run next.

[,Sn] where n is a number from 1 to 7, specifies the siot

containing the disk controller card of the drive to be
accessed. If omitted, DOS uses the default slot

number.

[.Dn] where nis 1 or 2, specifies the drive containing the disk
on which to store fn. If omitted, DOS uses the default
drive number.

[L,Vn] where n is a number from 0 to 254, specifies the

volume number of the disk to be accessed. If you
specify 0, just V, or omit the option, DOS uses the
default volume number.

When you chain from one program to another, the first program is
removed from memory. Execution begins at the lowest numbered line
of the next program. To use the first program again, use the CHAIN
command again.

A Warning

If there is an array in two chained programs, be sure the dimensions are
declared in the same program that contains the array.

If two chained programs use a defined function, be sure itis defined in
each.

CHAIN

In the following example, the program PART1 uses the CHAIN
command to connect a second program part, PART2.

Reminder: Be sure you are running Integer BASIC. If you don't see a
> prompt character, issue the INT command.

1. Type in this program. Type a character after the first
quotation mark in line 50.

16 REM PARTI1
12 DIM I%(30) (In Integer BASIC, a string
variable must be dimensioned if
itis longer than one character.)
30 I$="THE STRING I$ IS PRESERVED."
(Set a string value)
40 PRINT "PART1: I4% HAS BEEN SET."
(And say s0)
50 PRINT "CHAIN PARTZ "
(Chain to PART2)
66 END

To save this program, type
SAVE PARTI1

2. Now type in and save PART2.
15 REM PARTZ

45 PRINT "PART2: 3I$ (Printsthe string setin PARTY)
66 END

3. If you want to see what will be printed, type
RUN PART1

The CHAIN command works properly if the variable I$ retains the
value set by PART1 when it is printed out by PART2. Then you'll
see PART2§ THE STRING I%$ IS PRESERVED. If CHAIN
doesn’t work, you'll see only PARTZ:.

Chapter 5: Programming With More Sophistication

5.4.2 The CHAIN Program—Applesoft

This example uses the binary CHAIN program on the SYSTEM
MASTER disk to show you chaining in Applesoft. PART1 sets the
variable I$ and issues the CHAIN command to link with PART2.

Reminder: Be sure the disk you're using to hold PART1 and PART2 also
has the CHAIN program. If it doesn’t, use the FILEM program to copy it
from the SYSTEM MASTER disk.

1. Type in PART1 and save it.

Warning

When you type line 60, do not type a space, a comma, acolon, ora
semicolon after the number 520, the memory address where the CHAIN
subroutine was loaded.

16 REM PART!

20 D$=CHR$(4) (D$ is set to (CoNTRODHD))

30 I$="THE STRING I% IS PRESERVED."
(Set a string value and announce
it)

4@ PRINT "PART1: 1% HAS BEEN SET."

5@ PRINT D43i"BLOAD CHAIN: ASZ0"
(Load to memory address)

6@ CALL SZ0"PARTZ2" (Chain to PART2)

2. Now type in and save PART2.

15 REM PARTZ2
43 PRINT "PARTZ2: "3lI%
60 END

The CHAIN command in line 50 of PART1 allows PART2 to display
the contents of I$ (line 45).

3. To put the CHAIN program through its paces, type
RUN PART1

The CHAIN command works properly if the variable I$ retains the
value set by PART1 when itis printed out by PART2. Then you'll
see PARTZ5 THE STRING I$ IS PRESERVED. If CHAIN
doesn't work, you'lisee only PARTZ:.

CHAIN

I 5.5 The MASTER Program

You can skip this section if you aren't
going to use your disks on other
computers with a smaller memory.

You place a copy of DOS on every disk you initialize. When you start
up the disk, DOS goes into the same memory locations it had in the
system on which you initialized the disk. If you start up the diskona
computer of a different size, DOS won’t work. So, if you use more
than one Apple Il computer and they have different sizes of memory,
a master disk is handy.

A master disk contains a relocatable image of DOS and can be used
on any Apple |l computer with at least 16K of memory. When you start
up a master disk, DOS is placed in locations relative to the size of the
system on which you are using the disk.

MASTER is an Applesoft program that executes MASTER CREATE,
abinary program on the SYSTEM MASTER disk that converts an
initialized, write-enabled disk into a master disk. Converting the disk
will not harm any programs aiready onit.

MASTER requests the name of a program that DOS will run each
time the disk is started. You may name a traditional greeting program
or you may name some other program.

By the Way: Earlier manuals said to issue a binary command to get
MASTER CREATE running. You can still execute it directly by typing

BRUN MASTER CREATE

Warning

After using the MASTER program, always restart DOS before doing any
other work.

Chapter 5: Programming With More Sophistication

5.5.1 Example

1. Write a greeting program that reflects the master status the disk
will have, for exampie:

1@ PRINT "MASTER DISK 3ZK"
20 END

2. Save the greeting program on the disk that you wish to convert.
Type
SAVE HELLO

When the IN USE light goes out, remove that disk from the drive.
3. Insertthe SYSTEM MASTER disk in drive 1 and type
RUN MASTER

The message EXECUTING MASTER CREATE appears briefly.
Then you'll see the title screen of the MASTER CREATE program:

4. Inresponse to the message, PLEASE INPUT THE ,
"GREETING" PROGRAM'S FILE NAME:, enterthe name of
your greeting program. You'll see this screen: ’

if you'd like the disk to run a program other than “name” each time
the disk is started, press and enter the name of your greeting
program.

The MASTER Program

5. Remove the SYSTEM MASTER disk from drive 1 and insert the
initialized disk that you wish to convert to a master disk. Press
®ETURN). MASTER begins the conversion and informs you
when the process is complete.

6. When the conversion is done and the IN USE light on the disk drive
goes out, press (€55), remove the disk, and label it. Indicate that it's
a master disk.

Reminder: Don't forget. After using the MASTER program, restart DOS.

5.6 Making a Turnkey Disk

A turnkey disk automatically runs a program when it starts up DOS.
This section tells you how to make three kinds of turnkey disks: a
simple startup disk, a master startup disk, and a master startup disk
that brings the alternate BASIC into all Apple Il systems, whatever the
memory size.

Warning

Aturnkey disk does not automatically return from DOS to BASIC uniess
its turnkey program provides an exit command.

To make a turnkey disk, load your turnkey program into memory and
save it on an initialized disk. When you issue the SAVE command,
use the name of the disk’s greeting program.

5.6.1 Creating a Turnkey Disk

This example shows you how to create a turnkey disk so that the
RENUMBER program runs automatically every time you start that
disk.

1. Initialize a blank disk, using the name HELLO for the greeting
program.

2. Insertthe SYSTEM MASTER into drive 1 and bring RENUMBER
into memory by typing

LOAD RENUMBER

3. Remove the SYSTEM MASTER disk and insert the initialized disk
into your disk drive. Put the RENUMBER program on it by typing

SAVE HELLO
Now the RENUMBER program will be named HELLO. Any time you

start up with this disk, you'll automatically start HELLO, the program
that used to be called RENUMBER.

Chapter 5: Programming With More Sophistication

MASTER program, see section 5.5.1.

Use the SYSTEM MASTER disk to load
the alternate BASIC.

5.6.2 Creating a Master Turnkey Disk

Use the MASTER program to turn an initialized disk into a master
disk. When MASTER asks you to enter the name of the greeting
program, enter the name of the program that you want to be the
turnkey program.

5.6.3 A Disk for All Systems

Suppose you want to make a turnkey disk that will run on all Apple Ii
computers. You'll need a DOS that works in any memory size and
that brings in whichever BASIC your programs require. Look first at
how each type of Apple Il computer interacts with memory and with
BASIC.

When you insert a DOS disk in drive 1 and turn on the power, your
computer runs the greeting program on that disk, if it has in ROM the
BASIC in which the greeting program is written. That is,

e the standard Apple Il runs an Integer BASIC greeting program.

e the Apple Il Plus and the Apple lle run an Applesoft greeting
program.

o the standard Apple H with the Applesoft Card and the Apple Il Plus
with the Integer BASIC Card can each run a greeting program
written in either BASIC.

When the greeting program is written in the alternate BASIC and you
don’t have that BASIC in memory, you'll see LANGUAGE NOT
AVAILABLE and the prompt character for the resident BASIC.

If you have the Apple Language System, you can run programs in the
alternate BASIC after loading the alternate BASIC into the Language
Card.

By the Way: Installing a language card increases your Apple Il's memory
by adding 16K bytes of memory. Your computer must have at least 48K
before you can install a language card.

The simplest way to load the alternate BASIC is to start up DOS by
using the SYSTEM MASTER disk. The HELLO program on the
SYSTEM MASTER uses LOADER.OBJO to determine which BASIC
is resident. Then it loads the alternate BASIC from the disk.

Making a Turnkey Disk m

5.6.3.1 Example

This example shows you how to make a disk that starts on all the
Apple Il systems.

Remember: If you are using more than one drive, you'll need to specify
the drive option, [,Dn}.

1. Load the HELLO program from the SYSTEM MASTER disk into
memory. Use that greeting program when you initialize a blank
disk with the INIT command. When INIT is finished, reinsert the
SYSTEM MASTER disk.

2. Use FILEM to copy these language files and programs that load
the languages from the SYSTEM MASTER to your new disk:

APPLESOFT
INTBASIC
FPBASIC
LOADER.OBJO

When you start this disk, DOS will load the alternate BASIC.
Put any other programs you want on this disk.

3. Convert the initialized disk to a master disk with the MASTER
program. Type

RUN MASTER

Insert the newly initialized disk in the drive when MASTER
instructs you.

When MASTER asks for the name of the greeting program, type
HELLO

4. Change the HELLO program to run your turnkey program, called
TURNKEY in this example.

To change HELLO, unlock it, load it, and list it:

10 TEXT : HOME

20 D$ = CHR$% (4) REM CTRL-D

3@ UTAB Z2:A% = "APPLE II": GOSUB 1000

49 UTAB d:A% = "DOS VERSION 3.3 SYSTEM
MASTER": GOSUB 10¢¢

5@ VTAB 7:A% = "JANUARY 1, 1983": GOSUB 1000

6@ PRINT D#3"BLOAD LOADER.DBJE"

7¢ CALL 4@36

8¢ VTAD 1@: CALL - 93B:A% = "COPYRIGHT APPLE
COMPUTER +INC, 1888,1882 ": GOSUB 1000

Chapter 5: Programming With More Sophistication

80 C = PEEK (- 1181): IF C=6 THEN PRINT :
INVERSE :A% = "BE SURE CAPS LOCK IS
DOWN": GOSUB 1000: NORMAL

10¢ PRINT CHR#(4)3i"FP"

108@ REM CENTER STRING A%

1010 B = INT (20 - (LEN (A$) / 2)): IF B =40

THEN B=1
1020 HTAB B: PRINT As: RETURN

5. Change line 100 so that it reads
100 PRINT CHR#(4)3i"RUN TURNKEY"
Then save the file with the name HELLO and lock it.
6. Unlock the file APPLESOFT, load it, and list it:

1@ TEXT : CALL -B36: DIM A$(40)

20 De="": REM CTRL-D

3¢ UTAB 2:A%="APPLE II": GOSUB 100@

4¢ YTAB 4d:A%="D0OS VERSION 3.3 SAMPLE
PROGRAMS": GOSUB 1000

9@ UTAB 7:A%="JANUARY 1, 1883": GOSUB 1000

6@ PRINT D#3i"BLOAD LOADER.OBJO"

7¢ CALL 4096

BG VUTAB 10: CALL -85B:A%$="COPYRIGHT APPLE
COMPUTER » INC. 1880, 1982": GOSUB 1000

9¢ C=PEEK (-11@1): IF C<>B THEN GOTO 10@:
PRINT

93 POKE 50.:127:A% ="BE SURE CAPS LOCK IS
DOWN®: GOSUB 1000: POKE 5@ 255

100 PRINT D$3i"INT"

100@ REM CENTER STRING A#$

18106 B = 20 - (LEN (A%) / 2): IF B = @& THEN

B=1
10720 TAB B: PRINT A%: RETURN

Change line 100 so that it reads
100 PRINT D#$3"RUN TURNKEY"

Save the file with the name APPLESOFT and lock it. This changes
HELLO and APPLESOFT so they run your turnkey program
instead of the BASIC that they ran originally.

Making a Turnkey Disk

7. Rename your turnkey program TURNKEY. Here is a sample
TURNKEY program in Applesoft:

100 TEXT : HOME

200 UTAB 3: PRINT "THIS IS MY TURNKEY
PROGRAM "

302 VTAB 5: FOR A = 1 TO 16: PRINT A: NEXT A

4¢¢ PRINT : PRINT "THIS IS THE END OF MY
TURNKEY PROGRAM"

500 END

8. Aiter you make sure your disk has the HELLO, APPLESOFT,
INTBASIC, FPBASIC, LOADER.OBJO, and TURNKEY files, test
your turnkey disk by putting it in drive 1 and turning the power off
and on. The disk should start DOS, load Integer BASIC or
Applesoftif necessary, and run the program named TURNKEY.

Chapter 5: Programming With More Sophistication

I 5.7 Summary

5.7.1 Commands
EXEC fn{,Rn][,Sn] [,Dn] [,Vn]

directs DOS to take its commands from a command file rather
than from the keyboard. The fn argument names a command
file created by a BASIC program. The command file can contain
DOS commands, data, and BASIC statements.

MAXFILES n

where nis an integer from 1 to 16, specifies the number of files
that can be active at one time.

CHAIN fn [,Sn][,Dn] [,Vn]

loads and runs an Integer BASIC program from the disk without
clearing the values of any variables or arrays from memory and
without closing any open files.

5.7.2 Program
MASTER

converts an initialized disk into a master disk that can operate
on an Apple Il system of any memory size.

Summary

Chapter 5: Programming With More Sophistication

Chapter 6

Using Memory More
Efficiently

117 6.1 Binary Files

118 6.1.1 Binary Addresses

118 6.1.2 Anand Ln: The Memory Address Arguments
119 6.2 The Binary Commands

120 6.2.1 The BRUN Command

121 6.2.2 The BLOAD Command

122 6.2.3 The BSAVE Command

123 6.2.3.1 Example

124 6.3 DOS and the Monitor Program

125 6.3.1 The Input and Output Registers of the Monitor
126 6.3.2 The Input and Output Registers of DOS

127 6.4 Memory Usage and Entry Points

127 6.4.1 PR# and IN# in Memory

129 6.4.2 Memory Maps

129 6.4.2.1 HIMEM

132 6.4.2.2 The Values of HIMEM

132 6.4.2.3 High-Resolution Graphics

133 6.4.3 DOS Entry Points

133 6.4.3.1 Routine to Reconnect DOS

134 6.4.3.2 Binary File Memory Locations After BLOAD
134 6.4.3.3 DOS Memory Locations After BLOAD

135 6.5 Binary Command Summary

Using Memory More Efficiently 115

Binary is a numeric representation in
terms of powers of 2, using the digits 0
and 1.

Hexadecimal numbers are expressed in
terms of powers of 16, using the digits 0
through 9 and A through F.

Chapter 6

Using Memory More
Efficiently

This chapter describes how to use binary programs and how they
interact in memory with the Monitor program. Itincludes

e loading, running, and saving binary programs;
® using binary programs to read and write characters;

e controlling the input and output registers of DOS and of the
Monitor.

Programmers who write in assembly and machine language use
binary commands. The Apple Il Reference Manual and the 6502
Assembler/DOS Tool Kit (formerly called the Apple 6502 Assembler/
Editor Manual) provide detailed information about using these
languages.

6.1 Binary Files

A binary file contains information stored in consecutive locations in
your Apple II's memory or on a disk. The information is not expressed
in text form; instead, it is a series of hexadecimal numbers from $00
to $FF (decimal @ to 255). These hexadecimal numbers can
represent numbers, letters, machine-language commands, or high-
resolution graphics.

You can store values in a binary file up to the limits of your Apple II's
memory. A binary file has the file type B.

Binary Files

6.1.1 Binary Addresses

You don’'t have to understand the organization of the Apple II's
memory to run an existing machine-language program. But you do
need to know about memory addresses to work directly with the
binary information in memory.

Your computer's memory is a continuous sequence of memory
locations, or bytes, each having an address. The address of the first
memory location is @ (written as $0000 in hexadecimal), the address
of the second memory location is 1 ($0001), and so on. When your
computer has 48K bytes of memory, the address of the last RAM
memory location is 49151 ($BFFF); for 64K, the last RAM memory
location is 65535 ($FFFF).

6.1.2 An and Ln: The Memory Address Arguments

To use a binary command, you indicate the memory address by
means of command arguments:

An specifies the starting address in memory.

Ln specifies the number of memory locations, or bytes.
Replace the lowercase n with a decimal or hexadecimal number. For
example, to save a high-resolution graphics screen that is in memory
locations 8192 through 16383 ($2000 through $3FFF) in a file, you
specify the starting address of the information as

,A8192 or ,A$2000

and the number of bytes you're saving as

,L8192 or ,L$2000

Remember: Hexadecimal numbers are preceded by $.

Chapter 6: Using Memory More Efficiently

Figure 6-1. BRUN, BLOAD, and BSAVE

6.2 The Binary Commands

The DOS commands BRUN, BLOAD, and BSAVE deal with binary
information in any part of the computer's memory. The B in each of
these commands stands for “binary.”

Binary commands transfer binary information, byte for byte, between
memory and a file. The two most common uses of binary commands
are running binary programs and bringing binary images into
memory for display.

BRUN loads and runs a binary file.
BLOAD loads a file from disk.
BSAVE saves a file from memory.

Display

The Binary Commands

6.2.1 The BRUN Command

The BRUN command runs a binary program file (file type B). When
DOS sees this command, it transfers the specified program into
memory and runs the program. DOS puts the program into main
memory starting at the address from which the program was saved
(BSAVE) unless you specify another address. This is the command
syntax:

BRUN fn [,An] [,Sn] [,Dn] [,Vn]

fn indicates a binary file. If you use only this argument,
DOS places the entire contents of the binary file fn into
memory starting at the address from which it was
saved with the BSAVE command.

[,An] where n is a memory address from 0 to 65535
(decimal) or $0 to $FFFF (hexadecimal), specifies
where DOS transfers the first byte of the program.

LSn] where n is a number from 1 to 7, specifies the slot
containing the disk controller card of the drive to be
accessed. If omitted, DOS uses the default slot

number.

[,Dn] where nis 1 or 2, specifies the drive of the disk
containing fn. If omitted, DOS uses the default drive
number.

[,vn] where n is a number from 0 to 254, specifies the

volume number of the disk to be accessed. If you
specify 0, just V, or omit the option, DOS ignores the
volume specification.

To run a binary program named FID, type the command

BRUN FID

By the Way: DOS can'ttell the difference between a binary program file
and a binary data file. So it's a good idea to name binary files to indicate
their contents. For example, the suffix .PIC can specify a file containing

picture data.

If you accidentally run (BRUN) a data file, parts of DOS may be changed.
In this case, restart DOS.

Chapter 6: Using Memory More Efficiently

6.2.2 The BLOAD Command

With the BLOAD command, you can move a picture from afileto a
graphics screen, move the binary image of any type of file into
memory, or transfer a program written in machine language from a
disk file to memory. The syntax is

BLOAD fn [,An] [,Sn][,Dn] [,Vn]
fn indicates a binary file.

[L,An] where n is a memory address from 0 to 65535
(decimal) or $0 to $FFFF (hexadecimal), specifies
where DOS transfers the first byte of the entire
contents of this file. When the target address is omitted,
DOS puts the file in memory starting at the address
from which it was saved (BSAVE).

,Sn] where n is a number from 1 to 7, specifies the slot
containing the disk controller card of the drive to be
accessed. If omitted, DOS uses the default slot

number,

[,Dn] where nis 1 or 2, specifies the drive of the disk
containing fn. If omitted, DOS uses the default drive
number.

[Lvn] where n is a number from 0 to 254, specifies the

volume number of the disk to be accessed. If you
specify 0, just V, or omit the option, DOS ignores the
volume specification.

Warning

The BLOAD command transfers binary information from a disk file to RAM
memory only.

Unlike the LOAD command, BLOAD doesn't erase programs or
variables from memory unless they reside in the memory locations
where the disk file will be put.

Warning

A machine-language program may not run if it is moved to a memory
location other than the one from which it was saved. It's a good idea to
note the address you used with the BSAVE command on the disk’s label.

The Binary Commands n

6.2.3 The BSAVE Command

The BSAVE command transfers binary information from any part of
your computer’s memory to a disk file. It allows you to transfer a
machine-language program from memory to a file, to move a picture
from a graphics screen to a file, or to store information in any portion
of memory to a binary file.

The general form of the command is

BSAVE fn, An, Ln[,Sn] [,Dn][,Vn]

fn

JAn

[:Sn]

[.Dn]

[.vn]

indicates a binary file.

where n is a memory address from 0 to 65535
(decimai) or $@ to $FFFF (hexadecimal), specifies the
memory address from which DOS transfers the first
byte of the program. This argument is required.

where n is a number of bytes in the range

of 0 to 32767 (decimal) or $0 to $7FFF
(hexadecimal), specifies the number of bytes of
memory to transfer. This argument is required.

where n is a number from 1 to 7, specifies the slot
containing the disk controller card of the drive to be
accessed. If omitted, DOS uses the default slot
number.

where nis 1 or 2, specifies the drive of the disk on
which to store fn. If omitted, DOS uses the default drive
number,

where n is a number from 0 to 254, specifies the
volume number of the disk to be accessed. If you
specify 0, just V, or omit the option, DOS ignores the
volume specification.

Reminder: On the disk’s label write the address from which you save
(BSAVE) a binary. program.

Chapter 6: Using Memory More Efficiently

The Monitor is in read-only memory and
controls the computer’s functions.

6.2.3.1 Example

In this example you create a binary file and use it with the BSAVE,
BRUN, and BLOAD commands.

1. To enter the Monitor, type CALL -151 and press (RETuRN).

2. Type these binary values into memory. Note that they are
hexadecimal numbers.

300: 20 B0 FE A0 00 B9 16 03 F2 06 20 ED FD
C8 10 F5 20 84 FE 4C D? @3 8D C1 DO D@ CC C5
AG AF AF 00

When you've entered all the values, press RETURN),

3. Ask DOS to save this data as a binary file with the name APPLEII
by typing
BSAVE APPLEII ;A$300,L$20

The An argument saves the data from location $300. The Ln
argument saves data for a length of $20 bytes.

4. Run it by typing

BRUN APPLEII

You'llsee APPLEII printed ininverse mode on your screen.
5. Todo the same thing from BASIC, type

BLOAD APPLEII »A$300
CALL 768

The Binary Commands

I 6.3 DOS and the Monitor Program

In the previous example, you entered the Monitor program so that
you could type in a binary program. This section lists many of the
commands you use to enter the Monitor and to return to BASIC.

To enter the Monitor program from BASIC, type
CALL -151

You will see an asterisk (*), the prompt character for the Monitor
program. DOS is still active, so you can use all the immediate-
execution DOS commands. For example, the CATALOG command
will display a catalog on the screen and the PR# command will run a
program on a disk.

You can use several commands (n is the siot number) from the
Monitor with or without DOS active:

n(CONTROL)-(P) (Same as PR#n from the
. Monitor—directs output)
n(conTROD-(K) (Same as IN#n from the
Monitor—directs input)
(Continues BASIC—doesn't
resetit)
(Enters BASIC—resets it)
*3D0G (Enters BASIC—doesn't reset
it—connects DOS again)
3D3G (Enters BASIC—doesn't reset
it—connects DOS again)
3EAG (If DOS is in memory, connects

DOS—remains in the Monitor)
To select input and output devices and to connect DOS again, you

can also use POKE statements to put appropriate vaiues directly into
the Monitor registers.

Chapter 6: Using Memory More Efficiently

(ControL)-(x) and are not
displayed on the screen when you type
them.

Table 6-1. Monitor Input Register in
Locations 56-57 ($38-$39)

Table 6-2. Monitor Output Register in
Locations 54-55 ($36-$37)

6.3.1 The Input and Output Registers of the

Monitor
In Table 6-1, n(conTRoD)-(K) and n(CoNTROO(P) are
Monitor commands.
Register
contents Tothe Subsequent input
set by value comes from
—741 Monitor Input
O(GonTROLHK) ($FD1B) Routine from
IN#0 keyboard
n(oNTROD-(K) 49152 + n*256 slotn
IN#n ($Cn00) If slot n contains disk
(wheren > 0) controller, boot DOS
DOS boot Top of mem. - 8515 DOS

($Top of mem. - $2143)
Register
contents To the Subsequent output
set by value goes to
—528 Monitor Output
0 ($FDF0) Routine to display
PR#0 screen
n(CoNTRODP) 49152 + n*256 slotn
PR#n ($Cn00) If slot n contains disk

(where n > 0)

DOS boot

Top of mem. - 8575
($Top of mem. - $217F)

controller, boot DOS

DOS

DOS and the Monitor Program

Table 6-3. DOS Input Register

Table 6-4. DOS Output Register

6.3.2 The Input and Output Registers of DOS

Register

contents To the Subsequent input
set by value comes from

DOS boot —741 Monitor Input

3D0G ($FD1B) Routine from

IN#0 keyboard

PRINT D$:“IN#0”

(D$ = (ConTROD-(D))

IN#n 49152 + n*256 slotn

PRINT D$;“IN#n" ($Cn00) If slot n contains disk

(where n > 0)

controller, reboot
DOS

Register

contents To the Subsequent output
set by value goes to

DOS boot —528 Monitor Output
3D0G ($FDF0) Routine to display
PR#0 screen

PRINT D$;“PR#0”

(D$ = (conTrROD{D))

PR#n 49152 + n*256 slotn

PRINT D$;“PR#n” ($Cn00) If slot n contains disk

(where0 <n<8)

controller, reboot
DOS

When DOS is operating, PR# and IN# do not affect the contents of
the DOS input and output registers unless they are issued without
a (conTROD-(D) as an instruction in a command file. For example,
when a command file executes a line such as 120 PR#3, the
contents of the Monitor output register are changed and DOS is

partially disconnected until the nextinput.
No matter what input or output device is selected by the DOS input

and output registers, input can also be received from the disk and
output can be sent to the disk.

Chapter 6: Using Memory More Efficiently

There are two ways to select input and output devices and to
reconnect DOS: you can use the commands in Tables 6-1 through
6-4, or you can use POKE statements to put appropriate values
directly into the DOS registers.

A Warning
The specific memory locations of the DOS input and output registers
change with different sizes of system memory and with different versions
of DOS. For this reason, you need to follow a special two-step procedure
to change the contents of these register locations:

For an example of this procedure, see 1. Change the Monitor input and output register locations to the values
Chapter 2 for the program for finding you want the DOS input and output registers to contain. Either use POKE
hidden characters. statements to place the values directly into the Monitor locations or use

IN# and PR# without (GontroD)-(0) from a program.

2. Issue a CALL 1002 (from DOS) or $3EAG (from the Monitor) to
reconnect DOS through the Monitor registers. The previous contents of
the Monitor input and output registers will appear in the input and output
registers of DOS. This CALL can also be used to reconnect DOS
whenever your program needs to disconnect DOS temporarily.

DOS does not recognize the Monitor commands n(conTroD-{x]) and
n(conTroD-(P). Since these commands directly affect the Monitor input or
output registers, use PR# and IN# when DOS is connected.

I 6.4 Memory Usage and Entry Points

This section describes how PR# and IN# use memory. Then it maps
the memory areas overwritten when starting DOS, the memory
addresses DOS assigns to HIMEM, and the memory areas that DOS
and both BASIC dialects use.

6.4.1 PR# and IN# in Memory

To see how PR# and IN# work in memory, examine how the Apple ||
normally sends and receives characters. Two memory locations,

CSWH and CSWL = monitoroutputlink. named CSWH and CSWL, store the memory address of a routine
that writes characters. CSWH and CSWL are the monitor output
link; they link the Monitor program to an output routine.

KSWH and KSWL = monitor input link. Similarly, two other memory locations, named KSWH and KSWL,

store the memory address of the routine that reads characters.
KSWH and KSWL are the monitor input link.

Memory Usage and Entry Points

COUT1 sends characters to the display
screen; KEYIN reads characters from the
keyboard.

The monitor output link normally contains the address of the standard
output routine, COUT1, which sends characters to the display
screen. The monitor input link normally contains the address of the
standard input routine, KEYIN, which reads characters from the
keyboard.

When DOS is not running and you use PR# or IN# from BASIC, the
Monitor links are set to indicate the ROM on the card in the indicated
slot ($Cn00 for slot n). When the computer gets a character from the
keyboard or sends one to the display screen, it calls the input or
output routine in the card’s ROM to perform the transfer.

When DOS is running, the I/O links of the Monitor program contain
the addresses of the DOS input and output routines instead of the
standard input and output routines. DOS keeps the addresses of the
Monitor's standard input and output routines in the DOS 1/O links; that
is, the DOS I/0 links normally contain the addresses of KEYIN and
COUT1.

When you use PR# or IN# with a slot number, DOS replaces the
contents of the proper DOS link with the address of the ROM on the
card in the indicated slot ($Cn00 for slot n). When you use PR# or
IN# with an address, DOS places that address in the proper DOS
link. Then, when the Apple Il tries to write or read a character, the
Monitor’s output or input links point to the proper DOS routine, which
is atwo-part transfer:

e Inpart 1, DOS moves the addresses of the current /O routines
from the DOS /O links to the Monitor’s I/O links. Then DOS calls
COUT1 or KEYIN to write the character to or read it from the
device now selected by the Monitor’s I/0 links.

e Inpart2, DOS reconnects itself by placing the addresses of its I/O
routines into the Monitor's I/O links.

Chapter 6: Using Memory More Efficiently

HIMEM = highest memory address (plus
one) that Applesoft can use.

When a program issues a PR# or IN# command without a (ConTRoD){(D),
the command goes to BASIC. Then BASIC changes the values of the
Monitor 1/O links. Since the Monitor’s links no longer point to DOS,

DOS is disconnected. Because of the two-part transfer, DOS will use
the old I/O routine (part 1) to transfer the next character, then it will
reconnect itself (part 2) if it isn’t disconnected at both input and

output registers simultaneously.

If this should happen, reset the DOS input and output to the keyboard
and display screen. If DOS is no longer in memory, restart DOS. If
DOS is still in memory, use the BASIC statement CALL 1002.

By the Way: CALL executes a machine-language subroutine from a
BASIC program. Control transfers to the subroutine. When it finishes,
execution goes to the statement following the CALL. The CALL doesn't
affect the program in memory.

6.4.2 Memory Maps

6.4.2.1 HIMEM

HIMEM is the highest memory address available to an Applesoft
program for the storage of program statements and variables.
Applesoft automatically sets HIMEM to the address of the highest
writeable memory (plus one) RAM address available on your
computer. Loading DOS automatically resets HIMEM to a lower value
in order to protect the area of memory DOS itself occupies.
Depending on the value DOS sets, the area above the HIMEM
address may be available for use by DOS, high-resolution graphics,
or machine-language programs.

Memory Usage and Entry Points

Figure 6-2 maps main memory as it is affected by booting DOS.
Figure 6-3 maps areas of memory that are used by DOS and both
BASIC languages.

Locations 6912 to 16383 ($1B00 to $3FFF) are affected when
starting up a master disk. They are not affected when starting a disk
initialized on a system 32K or larger. DOS is placed directly below the
highest RAM memory address that was available on the system on
which the disk was prepared.

Figure 6-2. Memory Areas Overwritten Location on Locationona
When Booting DOS any system: 48K system:
Highest RAM
memory address —» r «—— 49151 ($BFFF)
8960 Relocated DOS,
($2300) on completion
bytes of boot
- 40192 ($9D00)
7 bytes not used
- 40184 ($9CF8)
1792 Three file
($700) buffers of
bytes 595 (253) bytes
for input & output
DOS points l
HIMEM here —» - 38400 ($9600)
16383 ($3FFF) —»
DOS, where first booted
from a disk
7424 ($1D00) —»
DOS Relocation Code
6912 ($1800) —»
2303 ($8FF)—»
First stage boot
starts here
2048 ($800)—»
1023 ($3FF)—»
“Nibble” buffers used during boot
512 ($200)—»
Lowest RAM
Memory address —p
000 ($000)

Chapter 6: Using Memory More Efficiently

Figure 6-3. Memory Areas Used by DOS

and Both BASICs

Highest RAM i
T S < it bt
- | ~ BASICs poi
points here
on a 48K system 10752 Disk
($2A00) Operating
bytes System
(if booted)
00 _ _ With DOS, HIMEM
($9600) i i points here
on a 48K system
Integer BASIC Applesoft
program lines strings
startatHIMEM start at HIMEM
and builddown and build down
24576 o,
($6000)
High-resolution graphics, Page 2
16384
($4000)
High-resolution graphics, Page 1
8192 >
($2000)
| BothBASICs' 'f
variables
startat LOMEM |
d bui
| EndbikiEp _ |
Applesoft I
programlines
push LOMEMup FP {firmware)
2048, | <— andINT set
($0800) LOMEM here
BASIC system use:
low-resolution graphics
and text screen, etc.
Lowest RAM >
memory address: _ g
1023 ($03FF) $3D0—3FF DOS + Monitor
768 _ $300—3CF Free Space
($0300) Monitor and BASIC Workspace
($0000—00FF:Zero Page
0000 —>

Memory Usage and Entry Points

Table 6-5. The Values of HIMEM

6.4.2.2 The Values of HIMEM

HIMEM is the highest memory location that is available to your
program. This upper boundary is set initially by the Apple ll computer.

Booting DOS sets the value of HIMEM according to the amount of
memory your computer has. Table 6-5 shows these values. When
your system is running Integer BASIC, the HIMEM pointer is located
(low byte first, then high byte) in bytes 76-77 ($4C-$4D). When your
system is running Applesoft, the HIMEM pointer is in bytes 115-116
(8$73-$74).

Increasing MAXFILES moves HIMEM down 595 bytes for each file
buffer you add. The Applesoft Il BASIC Programming Manual gives
the locations of other Applesoft program pointers.

System Highest RAM address HIMEM (set by DOS boot)

size Decimal Hexadecimal Decimal Hexadecimal
16K 16383 $3FFF 5632 $1600

20K 20479 $4FFF 9728 $2600

24K 24575 $5FFF 13824 $3600

32K 32767 $7FFF 22016 $5600

36K 36863 $8FFF 26112 $6600

48K (*) 49151 $BFFF —27136 $9600 (**)

(*) These values are for systems 48K and larger.

(**) The decimal number -27136 could also be written 38400;
however, Integer BASIC does not accept numbers greater than
32767.

By the Way: In Integer BASIC, memory addresses greater than 32767
must be expressed as their negative equivalents. The negative equivalent
of any positive decimal address nis (n - 65536).

6.4.2.3 High-Resolution Graphics

The Apple Il computer has two areas of memory for low-resolution
graphics and two areas for high-resolution graphics. These areas are
called pages. The pages are plotted on the display screen in terms of
rows and columns.

Using high-resolution graphics Page 1 erases the contents of
memory locations 8192 through 16383. Unless your system contains
at least 32K of memory, you cannot use disks and high-resolution
graphics at the same time.

Chapter 6: Using Memory More Efficiently

Page 3, see Figure 6-3.

A Warning

HIMEM and LOMEM must be set appropriately to avoid conflict with high-
resolution graphics Page 1.

Using high-resolution graphics Page 2 erases the contents of
memory locations 16384 through 24575. Unless your system
contains at least 32K of memory, you cannot use disks and high-
resolution graphics Page 2 at the same time.

Warning

HIMEM and LOMEM must be set appropriately to avoid conflict with high-
resolution graphics Page 2.

6.4.3 DOS Entry Points
This section provides DOS entry points and the ways to use them

e toreconnect DOS if itis partly overwritten.

e to find the starting address and length of a binary program brought
into memory by the BLOAD command.

e to find the DOS locations of the starting address and length of the
most recent program placed in memory by the BLOAD command.

6.4.3.1 Routine to Reconnect DOS

The DOS pointers and subroutines found in Page 3 may be
disconnected if you accidentally enter the Monitor program. Page 3 is
an area of memory (addresses $0300 to $03FF) used by DOS.

To reconnect DOS, use either a CALL or the Monitor command G
with the value needed for the size of your computer’s memory; these
values are:

System Decimal address Hexadecimal address
size (CALL) (G)
48K* —25153 $9DBF
32K 23999 $5DBF
16K 7615 $1DBF

* For systems 48K and larger.

The Monitor command 3D@L lists this number at the top right of the
screen.

Memory Usage and Entry Points ﬁ

6.4.3.2 Binary Flle Memory Locations After BLOAD

You can find the starting address or iength of a binary file after a
BLOAD command. Type

PRINT PEEK(lowbyte) + PEEK(low byte +1) %256

Find the appropriate low byte your Apple Il uses from the list below.

System Starting address (low byte) Program length (low byte)

size Decimal Hexadecimal Decimal Hexadecimal
48K* 43634 $AA72 43616 $AA60
32K 27250 $6A72 27232 $6A60
16K 10866 $2A72 10848 $2A60

* For systems 48K and larger.

6.4.3.3 DOS Memory Locations After BLOAD

This program finds the DOS locations containing the starting address
and length of the program most recently brought into memory by the
BLOAD command. It can be used on an Apple Il with any size
memory.

Memory Size: The values of Hand T (lines 7 and 8) are for a 48K Apple |l
Table 6-5 shows the correct values for your computer.

S REM BLOAD FINDER

7 H = 384606: REM DOS-BOOT HIMEM

8 T = 49152: REM HIGHEST ADDRESS

10 D$ = CHR$ (4): REM CONTROL-D

20 PRINT D$3 “"BSAVE FOO, A$7777, L$77"

3¢ PRINT D$35 "BLOAD FOO"

40 PRINT D45 "DELETE FOO"

S¢ FOR I = H +1792 TO T

60 IF PEEK (I) <> 119 OR PEEK (I+1) <> 0 THEN
NEXT I

70 PRINT "LOCATIONS OF START ADDRESS: "ili“,
“51 + 1

80 FOR I =H+ 1792 T0 T

90 IF PEEK (0) <> 119 OR PEEK (I+1) <> @ THEN
NEXT 1

100 PRINT "LOCATIONS OF LENGTH: "3iI§", "5l + 1

This program takes about two minutes to find the desired locations.

Chapter 6: Using Memory More Efficlently

I 6.5 Binary Command Summary
BRUN fn [,An] [,Sn] [,Dn] [,Vn]

tranfers the contents of a binary file (file type B) on a disk to any
part of memory and then executes the program. If the An
(address) option is not used, the programis placed in memory
starting at the address specified in the BSAVE command that
originally saved the file.

BLOAD fn[,An][,Sn] [,Dn] [,Vn]

transfers binary information from a disk to any part of memory.
When the An (address) option is not used, the program is
placed in memory starting at the address specified in the
BSAVE command that originally saved the file.

" BSAVEfn, An, Ln[,Sn][,Dn] [,Vn]

transfers binary data from a specified portion of memory toa
binary file (file type B) on a disk. The An (address) and Ln
(length) arguments allow you to transfer information from any
part of memory.

Binary Command Summary

Appendixes

139 A. Dealing With 13-Sector Disks
140 A.1 Converting a 13-Sector Disk: The CONVERT13

Program
140 A.1.1 Example
143 A.1.2 The Wildcard Character
144 A.2 Running Unconverted 13-Sector Disks
144 A.2.1 Using the START13 Program
144 A.2.1.1 Example
145 A.2.2 Using the BASICS Disk

147 B. The Storage Process
147 B.1 Tracks and Sectors
148 B.2 Contents of File Sectors

149 B.2.1 Format of File Sectors According to File Type
149 B.2.2 The Track/Sector List

151 B.2.3 The Disk Directory

155 B.2.4 The Volume Table of Contents

157 B.2.5 The Track BitMap

158 B.3 Track and Sector Allocation
159 B.4 Addressing Tracks and Sectors: The RWTS Subroutine

160 B.4.1 Example
162 B.4.2 Formats: I/O Block and Device-Characteristics
Table

163 B.5 DOS Vectors in Page 3

165 B.6 Zero Page Use

167 C. DOS Error Messages

168 C.1 DOS Error Messages

169 C.2 Recovering From Errors

177 D. Programs

177 D.1 Programs on the SYSTEM MASTER Disk
178 D.2 Programs on the SAMPLE PROGRAMS Disk

Appendixes

181 E. Summary of DOS Operating Concepts and Commands

181 E.A
181
182
182
182
183
183
183
183 5.2
183
184
184
186 E.3
187

190
192
195

197

Appendixes

Operating Concepts

E.1.1 Cold Start

E.1.2 Warm Start

E.1.3 Initializing a Disk

E.1.4 Creating a Master Disk

E.1.5 Interpreting Commands

E.1.6 Capacity

E.1.7 File Types

Command Notation

E.2.1 Conventions

E.2.2 Syntax

E.2.3 Arguments

Command Summary

E.3.1 Nonprogramming Commands for Accessing
Disks

E.3.2 Commands that Control the Programming
Environment

E.3.3 Programming Commands for Sequential-
Access Text Files

E.3.4 Programming Commands for Random-Access
Text Files

E.3.5 Commands for Binary Files

Appendix A

Dealing With 13-Sector
Disks

This appendix is for people who have earlier versions of DOS or who
have games or other application programs that don’t seem to run on
their present Apple Ll. It tells you how to convert 13-sector disks to
16-sector format and how to use unconverted 13-sector disks with
16-sector DOS.

Earlier versions of DOS (3.1 and 3.2) organized the surface of each
track on a disk into 13 sectors (see Figure A-1). But DOS 3.3 divides
each track into 16 sectors, giving each disk about 20 percent more
space for information.

By the Way: If you have a 13-sector system and would like to update it,
install the DOS 3.3 Kit.

If you use a disk that has the wrong format for your system, DOS
prints an appropriate error message, such as UNABLE TO READ,
UNABLE TO WRITE, or 1/0 ERROR.

Figure A-1. 13-Sector Versus 16-Sector
Disks

Track
/ 35 tracks on each disk

-\« One sector
: (16 sectors on a track)

256 bytes of data
stored in each sector
of each track

13-Sector Disk 16-Sector Disk

Dealing With 13-Sector Disks 139

IR A.7 Converting a 13-Sector Disk: The

Figure A-2. The CONVERT13 Menu

CONVERT13 Program

The CONVERT13 program on the SYSTEM MASTER disk converts
a 13-sector disk and its programs to 16-sector format. CONVERT13
reads the information from a 13-sector disk and writes the
information to a disk you have initialized in the 16-sector format
without changing the original information in any way.

Incidentally: The MUFFIN program, from an earlier version of DOS,
performs the same function that CONVERT 13 does.

A.1.1 Example

This example of CONVERT 13 assumes that your Apple !l has one
disk drive and that your disk drive is connected to a controller card in
slot 6.

1. With DOS in memory, initialize a blank disk.
2. Putthe SYSTEM MASTER disk in your drive and type
RUN CONVERT13

The message EXECUTING MUFFIN appears briefly; then
you'll see the CONVERT 13 menu, as shown in Figure A-2.

Appendix A: Dealing With 13-Sector Disks

Type
1
to indicate that you want to convert files.
3. Whenyou see the question SOURCE S5LOT?, type
B

This is the number of the slot that holds the controller card for the
drive that will contain the 13-sector disk.

4. Thenextquestionis DRIVE?. Type

1

the number of your disk drive.
5. Whenyousee DESTINATION SLOT?, type

. ,

Use the same slot number for the duplicate disk.
6. Answerthe question DRIVE™ by typing

1

the number of your disk drive.

7. Now you're asked for the name of the file to be converted:
FILENAME?T. Type

Wildcard, see the next section. The equal sign (=) is a wildcard representing the names of all
the 13-sector files. It means you want to convert the entire
contents of the 13-sector disk.

Converting a 13-Sector Disk: The CONVERT 13 Program 141

To convert large files, you may need to
swap disks several times to get the whole
file transferred.

10.

1.

Before anything will be converted, CONVERT13 asks DO YOU
WANT PROMPTING?

For now, type
N (forno).

Whenyousee INSERT DISK(S) THEN PRESS <ESC»
TO RETURN TO MAIN MENU OR ANY OTHER KEY TO
BEGIN, remove the SYSTEM MASTER from the drive. From
here on, you'll be working with your 13-sector disk and a newly
initialized disk.

Insert the 13-sector disk into the drive. Whenyou see INSERT
SOURCE DISK AND PRESS A KEY, press (RETURN).

CONVERT13 now finds and reads the first file on the 13-sector
disk.

CONVERT13displays INSERT DESTINATION DISK AND
PRESE ANY KEY and waits for you to insert the 16-sector disk
and press (RETURN),

. CONVERT13 will instruct you to insert the source disk again.

Repeat this procedure, alternately reading from the source and
writing to the destination disk until each 13-sector file has been
converted and moved to the 16-sector disk. You'll see the
message DONE after each file has been processed.

Two Drives: If you have more than one disk drive, specify the slot and
drive numbers of the source and destination disks when the CONVERT13
program asks for them. Place the disks-in the appropriate drives before
the conversion begins.

Appendix A: Dealing With 13-Sector Disks

When you see the message

INSERT DIBK(S5) THEN PRESS <ESC: TO RETURN TO
MAIN MENU OR ANY OTHER KEY TO BEGIN

you have the chance to change your mind about converting the file. If
you press (Esc), CONVERT13 stops and displays the menu.

if you try to convert a 13-sector file with the same name as a file
already on the destination disk, you'll see:

FILE [filename]

ALREADY EXISTS.
TYPE IN A NEW FILE NAME FOR THE COPY
OR <RETURN» TO REPLACE EXISTING FILE
OR <~CONTROL-CHRETURN: TO CANCEL COPY:

You can type a new name for the 13-sector file, convert the 13-sector
file and have it replace the current 16-sector file, or press (ConTrRoD)-(C]
to halt the conversion.

A.1.2 The Wildcard Character

As you saw in the example, the wildcard character (=) may be used
to mean all files on the disk. It may also stand for any character or
group of characters within a file name. For example, if you respond to
the question FILENAME?, bytyping FI=LE itconverts allfiles
whose names begin with Fl and end with LE. In the same way,
=TEXT converts all files whose names end with TEXT, and =#%=,
all files with names containing an asterisk.

When you use the wildcard, CONVERT13 asks DO ¥0OU WANT
PROMPTING?Y Ifyourespond ¥ foryes, CONVERT13 stops after
finding each file on the 13-sector disk and asks you to confirm that
you want to convert thatfile. If youtype N forno, CONVERT13
converts all the files in the wildcard group without asking you to
confirm. Type @ toreturnto the menu.

Converting a 13-Sector Disk: The CONVERT 13 Program m

I A.2 Running Unconverted 13-Sector Disks

The BASICS disk contains both BASIC
languages; it is no longer part of the
standard DOS package.

If your 13-sector disk is copy-protected and can’t be converted, you
can still use it on your 16-sector system. You can run the START 13
program on the SYSTEM MASTER disk or you can start up your
system with the BASICS disk.

By the Way: The BASICS disk is comparable to the START13 program.
The difference is that you must boot the BASICS disk to use it. In contrast,
you use the RUN command to execute the START 13 program directly
from the SYSTEM MASTER disk.

A.2.1 Using the START13 Program

START13 is a special loader program on the SYSTEM MASTER disk
that reads information from a 13-sector disk into memory. It allows
you to both read and write in 13 sectors.

Incidentally: START 13 is the same as the earlier BOOT13 program,
which needed the BRUN command. RUN START 13 is equivalent to
BRUN BOOT13.

A.2.1.1 Example

The START 13 example assumes that you have one disk drive
connected to a disk controller card in siot 6.

1. With the SYSTEM MASTER disk in drive 1, execute the START13
program by typing

RUN STARTL3

After you press (RETURN), the message EXECUTING BODOT13
appears briefly. Then you’'ll see the title screen shown in
Figure A-3. Remember, START13 runs BOOT13.

2. After the title screen, you'll see the question SLOT TU BOOT
FROM (DEFAULT=B)7 The program is asking what slotis
connected to the drive that will hoid your 13-sector disk. Put your
13-sector disk in drive 1 and press (RETURN).

If your 13-sector disk is a turnkey disk, the turnkey program on it
will begin. So if the 13-sector disk contains Apple Writer 1.0, you'll
see the menu of Apple Writer commands.

Appendix A: Dealing With 13-Sector Disks

Figure A-3. The START13 Title Screen

13-SECTOR BOOT UTILITY
COPYRIGHT APPFLE COMPUTER,INC, 1879

A.2.2 Using the BASICS Disk

The BASICS disk also loads information from a 13-sector disk into
memory, allowing you to both read and write in 13 sectors. To use the
BASICS disk, put it in drive 1, which must be connected via slot 6,
and turn vour computer on. When you see this display on your screen

INSERT YOUR 13-SECTOR DISKETTE
AND PRESS RETURN

insert any 13-sector disk and press (RETURN),

By the Way: The BASICS diskitself does not contain DOS.

Boot the BASICS Disk: When an earlier Apple Il manual says “boot the
BASICS disk,” you can use either the BASICS disk orthe START13
program on the SYSTEM MASTER disk.

Running Unconverted 13-Sector Disks

Appendix B

The Storage Process

This appendix discusses the relation between tracks and sectors,
and describes in detail such storage elements as the volume table of
contents. It also explains how machine-language programmers can
work directly with tracks and sectors and with relocatable DOS
routines.

I B.7 Tracks and Sectors

In the 16-sector DOS system, information is recorded on a disk in 35
concentric zones or bands, called tracks. Tracks are numbered from
Adollar sign ($) indicates a hexadecimal track $00, the outermost, through track $22, the innermost. While the
number. disk spins, the drive’s recording and reading head moves in and out
to each of these 35 different tracks.

Each track on the disk is divided into 16 sectors, which are
numbered from $0 through $F. When the drive’s head is over a given
track, that track’s 16 sectors will pass under the head, one after the
other, each time the disk spins around.

Each sector holds up to 256 ($100) bytes of information. To store
information on the disk, DOS first puts one sector’s worth of the

File buffer = 595 bytes: 256 for data, information in an area of memory called a file buffer. When the file
256 for the track/sector list, 83 for buffer is full, DOS stores the information in one sector on the disk.
housekeeping.

Then DOS fills the buffer with zeros, which will be replaced by the
next 256 bytes of information.

DOS always records information on the disk in 256-byte chunks,
exactly filling one sector each time. If fewer than 256 bytes of data are
in the buffer, the remaining bytes will be zeros.

DOS begins storing a program or text file wherever it can find an
unused sector on the disk. When a sector is filled, DOS finds another
free sector, perhaps on ancther track, and continues to record
information there. This process continues until the entire file has
been stored.

Tracks and Sectors

To keep track of the storage locations of the file's data, DOS
maintains a list of each track and sector that the file uses. Then DOS
stores that track/sector list in another free sector on the disk.

By the Way: When an existing file is accessed, the track/sector list is read
into the second 256 bytes of the file buffer.

Finally, the file’s name, file type, length in sectors, and the disk
location of the file’s track/sector list are recorded in a special area of
track $11 called the directory. At this time, DOS updates the disk’s
volume table of contents to show which sectors of each track are
currently in use.

Figure B-1 shows the track structure of a disk.

Figure B-1. Tracks on the Disk

Tracks $0, $1 & $2: For use of DOS.
Not Available for File Storage.

Track $11: Directory/VTOC. —"

B.2 Contents of File Sectors

This section describes the format of individual storage elements: file
sectors, the track/sector list, the disk directory, the volume table of
contents, and the track bit map.

Appendix B: The Storage Process

File type is part of the “housekeeping”
information in the last 83 bytes of the file
buffer.

Table B-1. Format of File Sectors for
Different File Types

For the sector format of file type R, see
the 6502 Assembler/DOS Tool Kit.

B.2.1 Format of File Sectors According to File
Type
Allinformation, regardless of file type, is stored as hexadecimal

bytes. But DOS interprets the information differently depending on
the file type: A, I, T, B, or R.

Table B-1 shows the format of file sectors for the different file types.

File
type Sector Byte Contents of byte
Al 1st sector $0 Program length, low byte
$1 Program length, high byte
$2 through $FF Tokenized program
Subsequent All Tokenized program
sectors bytes
T All All ASCli representation of text,
sectors bytes with high bit set: one byte/
character ($00 marks end of
file)
B 1st sector $0 Starting RAM address, low
byte
$1 Starting RAM address, high
byte
$2 Length of RAM image, low
byte
$3 Length of RAM image, high
byte
$4 through $FF Binary data
Subsequent All Binary data

sectors bytes

B.2.2 The Track/Sector List

As afile is stored on the disk, DOS makes a list of the disk locations
the file uses. This track/sector list is stored on the disk in the same
way the file itself was stored. Table B-2 shows the contents of the first
sector of a track/sector list. Notice that each file is assigned a pair of
bytes, one with the track and the other with the sector location; these
bytes are called the track/sector pair. Notice also the link pair; these
two bytes contain the location of the next portion of the track/sector
list.

Contents of File Sectors m

Table B-2. First Sector of a
Track/Sector List

When the list extends beyond 122 track/sector pairs, subsequent
sectors of the track/sector list are identical to the first sector

(Table B-2) except that the track/sector pairs refer to subsequent
groups of 122 file sectors. Also, link bytes 1 and 2 differ for each
subsequent sector, although the track may be the same. When both
bytes of the link are zeros, the current sector is the final portion of the
track/sector list.

Byte Contents of Byte
$0 Not used
$1 Link: track number where continuation of the
track/sector list can be found.
$2 Link: sector number where continuation of the

track/sector list can be found.
(If both bytes of link = zero, no link.)

$3 through $4 Not used
$5- %6 The position, relative to the start of the file, of the
first sector of the current portion of the track/

sector list.

$7 through $B Not used

$C Track number of first file sector

$D Sector number of first file sector

$E Track number of second file sector
$F Sector number of second file sector
$10 Track number of third file sector

$1 Sector number of third file sector.
$FE Track number of 122nd file sector
$FF Sector number of 122nd file sector

Appendix B: The Storage Process

Any track/sector pair that is 0/0 indicates an unassigned sector. This
is usually the end of the file, although random-access text files can
contain many 0/0 indicators for sectors where future records may be
written.

With random-access text files, only the track/sector pairs for those
sectors actually containing information appear as non-zero in the
track/sector list. DOS calculates the correct position for the track/
sector pair within the list; unassigned track/sector pairs are filled with
zeros.

With a random-access file, when you specify the length as 127 (two
records per sector) and you write only to record number 2700, DOS
uses 13 disk sectors: one for the contents of record number 2700 and
12 for the sectors of the track/sector list. The contents of records

0 through 2683 may someday occupy 1342 sectors; but until those
records are written, they do not use any disk space. In the track/
sector list, the locations of the sectors containing records 0 to 2683
occupy 11 sectors.

B.2.3 The Disk Directory

DOS reserves track $11 of every initialized disk for the disk directory,
which holds information about each file on the disk: the file’s name,
file type, the number of sectors the file uses (MOD 256), whether the
file is locked, and the location of the file's first track/sector list. The
CATALOG command displays all of this information except the
location of the first track/sector list.

Contents of File Sectors

Table B-3. One Sector of a Disk Directory

Directory entry, see Table B-4.

Table B-3 lists the contents of each sector of a disk directory.

Byte Contents of Byte
$0 Not used
$1 Link: Track number where continuation of the

directory can be found (normally $11)
$2 Link: Sector number where continuation of the
directory can be found
(If both bytes of link = zero, no link.)
$3 through $A Not used

$B through $2D Directory entry for file 1

$2E through $50 Directory entry for file 2

$51 through $73 Directory entry for file 3

$74 through $96 Directory entry for file 4

$97 through $B9 Directory entry for file 5

$BA through $DC Directory entry for file 6

$DD through $FF Directory entry for file 7

The file numbers for the seven directory entries in Figure B-4 are
arbitrary. When a file is deleted, DOS marks its directory entry. The
next time afile is stored, DOS overwrites a marked directory entry
with the entry for the new file. Thus, while DOS originally filis the
directory in the order shown, file deletions soon render this order
meaningless.

The disk directory begins in track $11, sector $F. This starting sector
is found in bytes 1 and 2 of the volume table of contents.

When more space is needed to store additional directory entries,
sector $F is linked to sector $E. When still more space is needed,
sector $E is linked to sector $D, and so on, through sector $1. This
allows the directory to store entries for a maximum of 105 different
files.

Appendix B: The Storage Process

Each directory entry is written in the format shown in Table B-4.

Table B-4. Directory Entry for One File

Relative Contents of Byte
Byte
$0 Track number of the track/sector list of the file

(The original value is copied into $20 and value
of byte $0 is changed to $FF if file is deleted.)

$1 Sector number of its track/sector list
$2 File type
$3 through $20 File name

$21 Sector count: the number of disk sectors
(MOD 256) occupied by the file

$22 Terminator (0)

The relative byte (column 1) of a directory entry specifies each byte
within the entry, although each entry starts at a different actual byte
number within the directory sector. To find the absolute sector byte
corresponding to a relative byte, add the relative byte to the entry’s
first absolute sector byte (as shown in Table B-3).

Because only one byte is used to store a file’s sector count, the
maximum directory sector count is 255 ($FF). When afile exceeds
255 sectors, its sector count (as displayed by CATALOG) starts over
again at sector 0. This doesn't affect the use of the file but gives an
erroneous impression of the remaining space on the disk.

Contents of File Sectors

The eight bits of the byte that designates file type (in Table B-4,
relative byte number 2 in afile’s directory entry) are assigned the
values shown in Table B-5.

Table B-5. Byte Indicating the File Type

CATALOG
Bit Symbol File Type Designated
7 * File is locked (write-protected) if this bit is 1
File is unlocked (not protected) if this bitis 0
6-5 Expansion type for future use (normally zero)
4 R Relocatable EDASM file when this bit is 1
3 S Expansion type for future use (normally zero)
2 B Binary file when this bit is 1
1 A Applesoft BASIC file when this bit is 1
0 | Integer BASIC file when this bit is 1
6-0 T Text file when bits 6 through 0 are all zero

The file type is determined by a 1 in one of the bits 6 through 0. If bits
6 through 0 contain only zeros, the file type defaults to a text file.

Appendix B: The Storage Process

Table B-6. Locked/Unlocked Values of

the File Type Byte

VTOC = volume table of contents.

Table B-7. Volume Table of Contents
(Track $11, Sector $0)

The byte that designates the file type can take on the values indicated

in Table B-6.
File Value of Type Byte

Type File unlocked File locked
T $0 $80
I $1 $81
A $2 $82
B $4 $84
S $8 $88
R $10 $90

B.2.4 The Volume Table of Contents

Sector $0 of track $11 contains the disk’s volume table of contents
(VTOC). The VTOC stores the information shown in Table B-7.

Byte Value Description
$0 $2 Variable value; not used
$1 $11 Track number of first directory sector
$2 $OF Sector number of first directory sector
$3 $3 DOS release number
$4 $0 Not used
$5 $0 Not used
$6 $1-$FE Disk volume number (default: $FE)
$7 - $26 $0 Not used
$27 $7A Maximum number of track/sector pairs
possible in each sector of track/sector
list
$28 - $2F $0 Not used

Contents of File Sectors

Byte Value Description

$30 $FF Last track allocated

$31 $FF Direction of allocation (+ = higher
track)

$32 $00 Unused

$33 $00 Unused

$34 $23 Number of tracks per disk

$35 $OF Number of sectors per track

$36 $00 Number of bytes per sector, low byte

$37 $01 Number of bytes per sector, high byte

$38-$3B $0 Track @ bitmap (Not available)

$3C - $3F $0 Track 1 bitmap (Available only if

$40 - $43 $0 Track2bitmap VTOCis altered)

$44 and $45 ? Track 3 bit map

$46 and $47 $0 Track 3 bit map

$48 and $49 ? Track 4 bit map

$4A and $4B $0 Track 4 bitmap (Unused)

$78 and $79 ’7 Track $10 bit map

$7A and $7B $0 Track $10 bit map

$7C-$7D $0 Track $11 bitmap (Directory & VTOC)

$7E - $7F $0 Track $11 bitmap (Unused)

$80 and $81 ? Track $12 bitmap (Unused)

$82 and $83 $0 Track $12 bit map

$00 and $C1 ’7 Track $22 bit map

$C2 and $C3 $0 Track $22 bitmap (Unused)

$C4 - $FF %0 Not used

Appendix B: The Storage Process

Table B-8. Track Bit Map for One Disk
Track

Table B-9. Typical Track Bit Map

B.2.5 The Track Bit Map

Starting in byte $38 of the VTOC (Table B-7), subsequent 4-byte
groups each contain the track bit map for one of the 35 tracks on the
disk. The arrangement of 1-bits and 0-bits within the track bit map
shows DOS which sectors of that track are currently in use and
which are free. The bit map for each track uses the format shown in
Table B-8.

Designated Designated
Byte Bit Sector Byte Bit Sector
1st 7 $F 2nd " $7
6 $E 6 $6
5 $D 5 $5
4 $C 4 $4
3 $B 3 $3
2 $A 2 $2
1 $9 1 $1
0 - $8 0 $0
3rd & 4th All Spare

When a bit in the track bit map is 1, the sector that corresponds to
that bit is free. When a bit in the map is 0, the corresponding sector
is currently in use. Bits marked “Spare” contain 0; these bits are
not used.

Table B-9 shows the track bit map for a typical track. The sector
numbers are hexadecimal.

1st byte 2nd byte 3rd byte 4th byte
0000111111111100000000'00000000

e

DCBA9876543210 Not used

Sectors desngnated

1 = Free sector (assuming the corresponding bit of the mask, VTOC
bytes $30 and $31, is also 1)
0 = Sectorinuse

Contents of File Sectors

When you store a file using WRITE, SAVE, or BSAVE, an entire track
is allocated to the file if possible, and the track’s bit map shows the
entire track in use. Then, when the file is closed and the VTOC is
updated, those sectors not actually used are again designated as
free in the track bit map.

To Release Sectors: The sectors actually used for a file’s information,
however, can only be “set free” when that file name is deleted from the
directory. For example, you have a disk containing a 100-sector BASIC file
named BIG. If you now save a 2-sector file with the same name to the
same disk, you will overwrite the older BIG file. But the catalog will
continue to list your new, 2-sector file as having 100 sectors. To free up the
98 sectors your file no longer needs, issue this series of commands:

LOAD BIG
DELETE BIG
SAVE BIG

Release sectors no longer needed by binary files with a similar command
series.

If you want to save the data and release sectors no longer needed by a
text file, you have to read each of the file’s fields into memory. If you store
all the fields in an array, you can then delete the original file before you
write each record back to the disk with the original file name.

Another way to free up text-file sectors is to read each field into memory
and then immediately write the field back to the disk under a new file
name. After you read and write the last field, delete the original file.

NN B.3 Track and Sector Allocation

Each disk contains 35 tracks, three of which are reserved for DOS
and one of which is reserved for the directory, leaving 31 tracks for
the user. Each track contains 16 sectors, so 31+16 or 496 sectors are
available to you.

On afreshly initialized disk, sectors are filled starting with sector $F
and working back to sector $0. Tracks are first filled starting with track
$12 (just inside the track for the directory/VTOC) and proceeding
inward to track $22 (the innermost). When track $22 is full, tracks are
then filled starting with track $10 (just outside the directory/VTOC
track) and working outward to track $3 (the outermost track available
to the user).

Appendix B: The Storage Process

I B.4 Addressing Tracks and Sectors:
The RWTS Subroutine

As shown in Figure B-2, each sector has an address field and a data
field. The address field contains information concerning which track
the head is on, which sector is about to spin past the head, and the
volume number of the disk. The data field contains the actual 256
bytes of data that are stored on the sector.

Figure B-2. Tracks and Sectors

///% Address Field
////// / Data Field
35 Tracks — /[I/I/ ///////////// _——
(16 sectors

O/
NN\
\\

Track 0 on each track)

DOS determines tracks and sectors for you, however, machine-
language programmers can assign track and sector by calling the
RWTS (Read or Write a Track and Sector) subroutine of DOS from a
machine-language program.

The RWTS subroutine writes information to or reads information
from a particular track and sector on a disk. To use the RWTS,
you must first create and store in memory an I/0 block, a device-
characteristics table, and a controlling subroutine.

Addressing Tracks and Sectors: The RWTS Subroutine ﬁ

1/0 block, see Table B-10. ® The //O block tells the RWTS subroutine which slot and drive
number to use and specifies volume number, the track and sector
to access, and whether to read or write.

Device-characteristics table, see ® The device-characteristics table describes the device—in this
Table B-11. case, a disk drive.

® The controlling subroutine stores the address of the starting
location of the I/O block into the A and Y registers. The A register
contains the high byte and the Y register, the low byte of the
address. Finally, the controlling subroutine transfers control (with
an assembler JSR instruction) to the starting address of the
RWTS subroutine, location $3D9.

B.4.1 Example

The following sample 1/O block, device-characteristics table, and
controlling subroutine are loaded into memory beginning at location
$C00.

This I/O block specifies slot 6, drive 1 for input and output. It writes
256 bytes of memory starting at location $C0A, on track $12, sector
$06.

Location Code Purpose

$COA 01 I/0 block type indicator, must be $01

$CoB 60 Slot number times 16

$CoC 01 Disk drive number

$CoD 00 Expected volume number

$COE 12 Track number

$COF 06 Sector number

$C10 20 Low-order byte of starting address of device-
characteristics table

$C11 0C High-order byte of starting address of device-

‘ characteristics table

$C12 00 Low-order byte of starting address of data
buffer

$C13 20 High-order byte of starting address of data
buffer

$C14 00 Unused

$C15 00 Unused

$C16 02 Command code, $02 = write

$C17 00 Error code

$C18 00 Actual volume number

$C19 60 Previous slot number accessed

$C1A 01 Previous driver number accessed

Appendix B: The Storage Process

The following controlling subroutine loads the A and Y registers with
the address of the starting location of the I/O block; then it transfers
execution to the RWTS subroutine.

$C00 A9 0C LDA #$0C Load Aregister with $0C
$C02- AD 0A LDY #$0A Load Y register with $0A
$C04- 20 D9 03 JSR $03D9 Jump tothe RWTS subroutine
$C07- 60 RTS

$C08- 00 BRK

Store the device-characteristics table in location $C20 following the
I/0 block. (In this example locations $C10 and $C11 of the I/0 block
above point to this starting address.) The device-characteristics table
contains the following code:

Location Code Purpose

$C20 00 contains the device type code

$C21 01 contains the number of phases per track
$C22 EF contains the time count

$C23 D8 contains the time count

After you store an I/O block at $C0A, a device-characteristics table at
$C20, and a controlling subroutine at $C0, run the entire routine by
issuing either of these two commands:

coea or CALL 3072

Addressing Tracks and Sectors: The RWTS Subroutine ﬂ

B.4.2 Formats: I/0 Block and Device-Characteristics Table
Table B-10 shows the format of an I/0O block.

Table B-10. Format of an I/O Block

Byte
Number Name Purpose
o1 1BTYPE identifies the type of I/O block. Only type code $01 is currently defined.
02 1BSLOT contains the number-times-16 of the slot that holds the drive's controller card. For example, to access siot
6, store the value $60 in this location.
03 IBDRVN contains the number (either $81 or $02) of the drive to access.
04 IBVOL contains the volume number to access; $00 will match all volume numbers.
05 IBTRK contains the number of the track to access. It must be within the range $00 to $22 (0 to 34).
06 IBSECT contains the number of the sector to access. It must be within the range $00 to $0F (0 to 15).
07-08 IBBUFP contains the starting address of the data buffer (256 bytes of memory) that the RWTS uses. When you write
to a disk, the data is written from the buffer to the disk. When you read from a disk, data is put in the buffer.
The RWTS reads data only in chunks of 256 bytes.
0B-0C Unused
oD IBCMD . specifies the operation that the RWTS will perform. The values that can be stored in byte $8D (13) are:
$00—starts the drive and positions the head.
$01—reads the 256 bytes stored at the specified track and sector and stores them in the data buffer.
$02—writes the next 256 bytes from the buffer to the specified track and sector.
$04—formats the disk, writing self-synchronizing nibbles on every track and sector. Because the entire disk
is formatted, the values in bytes $05 and $06 are ignored. The entire formatted disk is available for
use; nothing, not even DOS, is stored on the disk until you put it there.
0E IBSTAT contains the code number for errors:
$00—no error.
$10—the disk is write-protected.
$20—the volume number found differed from the number specified in byte $04.
$40—drive error.
oF IBSMOD contains the actual volume number.
10 IOBPSN contains the number-times-16 of the slot last accessed. For example, if you previously accessed a drive
in slot 5, store the value $05 here. If there is no controller in the specified slot, the Apple Il will hang.
11 IOBPDN contains the number of the drive last accessed, either $01 or $02.

Appendix B: The Storage Process

Table B-11. Format of a Device-
Characteristics Table

Memory areas used by DOS and both
BASICs, see Figure 6-3.

Table B-13 lists the Page-3 addresses
and their contents that DOS 3.3 uses.

Table B-11 shows the format of a device-characteristics table.

Byte
Number Name Purpose
01 DEVTPC Device type code tells what type of device to use. Ifit's a
drive, store $00 in this byte.
02 PPTC store $01 here.
03-04 MONTC store the complement of the motor-on time count in 100
micro-second intervals. If the device is a drive, put $EF in
byte 3 and $D8 in byte 4.
B.5 DOS Vectors in Page 3

DOS occupies 10.5K of RAM. In addition, DOS uses a group of
vectors in Page 3 (locations $3D0 through $3FF, below the primary
text-page 1).

Since DOS can be located in different areas of memory depending
on the memory size of system and whether or not DOS came in from
a master disk, the addresses of callable DOS routines will change
from system to system and from disk to disk. When you place the
addresses of DOS routines into a vector at a fixed location in Page 3
of memory, you are no longer dependent on the varying DOS
locations in high memory.

You can also use the addresses in Page 3 for locating DOS
subroutines from versions prior to 3.3. Earlier versions of DOS use
locations $300 through $3CF to load the BOOT1 program; DOS 3.3
uses those locations as a data buffer and a disk code translate table.

DOS Vectors in Page 3

Table B-12. DOS 3.3 Vectors

($3D0-$3FF)
Address Contents
$3D0 A JMP to the DOS warm-start routine that reconnects DOS, keeping the current program and MAXFILES setting.

$3D3

$3D6
$3D9
$3DC
$3E3
$3EA
$3EF
$3F2-
$3F3
$3F4

$3F5
$3F8
$3FB

$3FE-
$3FF

A JMP to the DOS cold-start routine that reconnects DOS as if it were rebooted. The current program is lost,
MAXFILES returns to the default number, and HIMEM is reset.

A JMP to the DOS file-manager subroutine so your assembly-language program can call it.

A JMP to the RWTS routine so your assembly-language programs can call it.

A subroutine that locates the input-parameter list so your program can create one before using the file manager.
A subroutine that locates the IOB parameter list so your program can create one before calling the RWTS.

A JMP to the DOS subroutine that re-establishes the I/O vectors of DOS.

A JMP to the routine that handles a BRK machine-language instruction (Autostart ROM only). Normally this vector
contains the address of the Monitor ROM subroutine that displays registers.

The low-byte and high-byte address of the routine that handles RESET for the Autostart ROM. Usually the DOS
restart address is here.

This is the cold-start byte. It contains the complement of the RESET address to distinguish between cold start and
(RESED); If a cold start occurs, the Autostart ROM ignores the address at $3F2 (above) and attempts to boot a disk. To
prevent this when you change $3F2 to handle your own resets, store the new value as an EOR with $A5 and then
store the result in the cold-start byte.

A JMP to amachine-language routine that is called when the ampersand (&) is used in an Applesoft statement.

A JMP to a machine-language routine that is called when the Monitor reads a (CoNTRoL-(¥),

A JMP to a machine-language routine that ROM calls when a nonmaskable interrupt occurs.

The low-byte and high-byte address of a routine that ROM calls when a maskable interrupt occurs.

Appendix B: The Storage Process

I B.6 Zero Page Use

The zero page, addresses $0 through $FF, is the Monitor and BASIC
workspace. Machine-language programmers use this memory area
forindexed indirect commands and special functions that need highly
condensed code. Table B-13 shows how DOS uses the zero page.

Table B-13. DOS Zero Page Use

Byte Use
$24 Cursor horizontal (DOS)
$26-$27 Read buffer used by boot routine
RWTS workspace
$2A RWTS workspace
$2B Boot slot times 16
RWTS workspace
$2C Checksum
$2D Sector number (RWTS)
$2E Track number (RWTS)
$2F Volume number (RWTS)
RWTS workspace
$33 Prompt character (DOS)
$35 Drive number in high bit (RWTS)
$36-$37 CSWL,CSWH (DOS)
$38-$39 KSWL,KSWH (DOS)
$3C RWTS workspace
Device-characteristics table address (RWTS)
$3D Sector number (BOOT)
Device-characteristics table address (RWTS)
$3E-$3F Address of ROM sector-read subroutine (BOOT)
RWTS buffer address
$40-$41 DOS image address (BOOT)
DOS file buffer address
$41 Volume number used in INIT
$42-343 DOS buffer address
$44 Track number used in INIT
$45 Sync byte used in INIT
$46-$47 RWTS workspace
$48-349 IOB address pointer (RWTS)
$4A-$4B LOMEM address for Integer BASIC (DOS)
$4C-$4D HIMEM address for Integer BASIC (DOS)
$67-$68 Pointer to beginning of Applesoft program
$69-$6A Pointer to start of Applesoft variable space
$6F-$70 Pointer to start of Applesoft string storage
$73-$74 Highest location in memory, plus one, for Applesoft
$76 Applesoft line number being executed
$AF-$B0 Pointer to end of Applesoft program
$CA-$CB Pointer to beginning of Integer BASIC program
$CC-$CD Pointer to end of Integer BASIC variable space
$D6 Applesoft write-protect flag (DOS)
$D8-$D9 Integer BASIC line number (DOS)

Applesoft ONERR (DOS)

Zero Page Use

DOS Error Messages

This appendix discusses only DOS errors. An error message alerts
you to a problem and indicates that the command you have issued is
incompatible with DOS. The form of an error message tells you
whether it comes from DOS or from one of the BASIC languages.

Form | Message Sent By
SYNTAX ERROR DOS

POYNTAX ERROR Applesoft

*#% SYNTAX ERR Integer BASIC

Errors are always indicated by code numbers from 10 15in
Applesoft ONERR routines.

Section C.1 lists the DOS error messages. Section C.2 discusses
each message and suggests ways to fix the problem.

DOS Error Messages

Table C-1. DOS Error Messages

Table C-2. DOS Error Codes

I C.7 DOS Error Messages

Table C-1 lists DOS error messages in alphabetic order; Table C-2, in

numeric order.
Message Code Meaning
DISK FULL 8 Too many files on disk
END OF DATA 5 Reading beyond end of text file
FILELOCKED i@ Attempt to overwrite a locked file
FILENOTFOUND 8 File misspelied or not on disk
FILETYPEMISMATCH 13 Disk file doesn’t match command
I1/0ERROR 8 Door open or disk not initialized
LANGUAGE NOT AVAILABLE 1 Requested language is not there
NOBUFFERS AVAILABLE 12 Too many text files are open
NOTDIRECT COMMAND i35 Command must be in a program
PROGRAM TOOD LARGE 14 Insufficient memory available
RANGE ERROR 213 Command parameter too large
SYNTAXERROR i1 Bad file name, parameter, or
comma
VOLUME MISMATCH 7 Wrong volume parameter
WRITE PROTECTED 4 write-protect tab on disk
Code Message Meaning
1 LANGUAGE NOT AVAILABLE Requested language is not
there
213 RANGE ERROR Command parameter too
large
4 WRITE PROTECTED Write-protect tab on disk
3 END OF DATA Reading beyond end of text
file
B8 FILENOT FOUND File misspelled or not on disk
7 VOLUMEMISMATCH Wrong volume parameter
g I/0ERROR Door open or disk not
initialized
9 DISK FULL Too many files on disk
19 FILELOCKED Attempt to overwrite a locked
file
i1 SYNTAX ERROR Bad file name, argument, or
comma
i2 NOBUFFERS AVAILABLE Too many text files are open
i3 FILETYPEMISMATCH Disk file doesn’t match
command
14 PROGRAM TOO LARGE Insufficient memory available
15 NOTDIRECT COMMAND Command mustbein a

program

Appendix C: DOS Error Messages

NN C.2 Recovering From Errors

The following DOS error messages are listed in numeric order.
1 LANGUAGE NOT AVAILABLE

The commands FP, INT, LOAD, or RUN may initiate a language
search. LANGUAGE NOT AVAILABLE means that DOS cannot
find the BASIC your program needs.

You'll see this message after you issue a command that requests
Applesoft from the disk in the current drive and that disk does not
contain the APPLESOFT and FPBASIC programs.

You'll see this message after you issue a command that requests
Integer BASIC and Integer BASIC is not in your computer.

So long as your computer has enough memory to use both Applesoft
and Integer, put a disk that contains the FPBASIC, INTBASIC,
HELLO, and LOADER.OBJO programs into a drive and issue the
command again. The SYSTEM MASTER disk has these files.

When you request Applesoft, DOS first looks for the language in
ROM, on an Applesoft firmware ROM card, or on the Language Card.
If Applesoft is not there, DOS looks in RAM. When Applesoftis notin
RAM, DOS looks on the disk in the current disk drive (the most recent
values of the S and D arguments). When you request Integer BASIC,
DOS looks for that language in ROM or RAM.

Recovering From Errors

Table C-3. Minimum and Maximum

Values of Arguments

2or3 RANGE ERROR

RANGE ERROR means that the value of acommand argumentis
too large or too small. Table C-3 shows the values that can be used
with each argument.

Argument Minimum Maximum

AllFiles: Slot S 1 7
Drive D 1 2
Volume \ 0 254
Sequential- Byte B 0 32767
Access Relative Field R 0 32767
Text Files: Absolute Field (EXEC) R 0 32767
Random-Access Record Length L 1 32767
Text Files: Record Number R 0 32767
Binary Files: Starting Address A 0 65535
Number of Bytes L 1 32767
DOS Commands: PR#n n 0 16*
IN#n n 0 16"
MAXFILES n n 1 16

* Issuing PR# and IN# with arguments of 8 to 16 can have unpredictable results.

A value beyond the allowable range does not always cause the
RANGE ERROR message. Any DOS command with a value less
than O or greater than 65535 may returna SYNTAX ERROR
message.

4 WRITE PROTECTED

WRITE PROTECTED meansthat DOS is unable to save, write, or
delete information on a write-protected disk. Either the disk has no
write-enable notch or the notch is covered with a write-protect tab.

o |[fthere is a write-protect tab over the disk’s notch, remove the tab
and issue the command again.

o [f you receive this message while running the COPY program, you
may have inserted the disk into the drive incorrectly. Check the
disk’s position in the drive.

® Choose another disk to save your file on. A disk without a write-
enable notch is permanently protected from changes and
deletions.

Appendix C: DOS Error Messages

5 END OF DATA

END OF DATA means that your program tried to retrieve
information from an area of a text file that contains no data.

Any byte beyond the last field in a sequential-access text file or
beyond the last field of each record in a random-access text file
contains the value 0, or $00, the ASCII code for a null character. Any
command that tries to read a null character produces the END OF
DATA message.

You'llsee an END OF DATA message when

e aB (byte) argument is too large. In sequential access, do not
specify a byte beyond the last carriage-return character in the file.
In random access, do not specify a byte beyond the last carriage-
return character in the currently selected record.

Remember: The first byte in a file or a record is byte 0.

® an R (relative-field position) argument in a POSITION command is
too large. In sequential access, do not specify a field beyond the
last existing field in the file. In random access, do not specify a
field beyond the last existing field in the currently selected record.

Remember: The POSITION command moves forward in the file; the
command’s R argument specifies a field in the file relative to the current
position.

e anRargumentinan EXEC command is too large. It may specify a
line beyond the end of the command file.

e an R argumentin a READ command specifies an empty random-
access record. Before you can read from a particular record in a
random-access file, write some information into that record.

an L argument of an OPEN preceding a READ differs from an
L argument of an OPEN preceding a WRITE.

You'llseean END OF DATA message afteran INPUT ora GET
command when your program has

® too many successive INPUTs or an INPUT with too many

variables. Each INPUT or INPUT variable reads an additional,
adjacent field into the computer.

Recovering From Errors

® too many successive GET statements. Each GET reads one
additional adjacent byte or character into the computer.

6 FILENOT FOUND

FILE NOT FOUND ‘means that you specified the name of a file that
is not on the disk that you are currently using.

Check the disk’s catalog:

e You may have misspelled the file name by typing it incorrectly or
by omitting the comma that separates the file name from a
following argument.

e The file may have been accidentally deleted or may be on another
disk.

lfyouseea FILE NOT FOUND message eachtime youstarta
disk, you must tell DOS the name of a greeting program on that disk.
If you have no files on the disk that you want to save, you can initialize
the disk again. If you can remember the name of one of the files on
the disk, run the MASTER program to rename the greeting program
with that file name.

7 VOLUME MISMATCH

VOLUME MISMATCH means that the volume (V) number usedin a
DOS command differs from the volume number assigned to the disk
when it was initialized. Use the CATALOG command to check the
volume number of the disk.

8 I/0 ERROR

1/0 ERROR means that DOS was unable to store information on a
disk or to retrieve information from a disk. (DOS tries 96 times.)

Check your disk:

e |t mustbe correctly inserted in the selected or default disk drive
and the drive door must be closed.
® |t must be initialized.

e [fitis a 13-sector disk, see Appendix A.

Appendix C: DOS Error Messages

Check your command arguments:

e AD argument may have specified a disk drive that doesn't exist in
your system and a nonexistent drive is now the default. Specify the
correct D argument with the next DOS command.

e The S argument specified a slot that doesn’t contain a disk
controller card. An erroneous slot is now the default, and DOS
assumes that the disk that isn't connected to the slot is still
running. Even if the next DOS command specifies the right slot,
DOS will wait in limbo forever for the nonexistent disk to stop
running the last command. If you have no program in memory,
restart DOS. To recover with your program intact, first press
when the system hangs; then, to change the default, type
CATALOG» Sn, where nis the correct slot number.

With a VERIFY command, check to find out if the file was stored
correctly on the disk. Or, if the file is still in memory, try storing it on
the current disk again or on a different disk.

9 DISKFULL

DISK FULL means that DOS tried to store information on a disk on
which no space was available. In this situation, DOS closes all files
and saves all the information that it can.

ifyougeta DISK FULL message, you can delete afile ortwoon
the current disk before trying to save the information in memory. Or
save it on a disk that has more room.

By the Way: If you receive this message and try again to save to the full
disk, the sector length of one of the existing files in that disk’s catalog will
be setto 0. Despite the odd appearance of that catalog entry, the existing
file itself will not be damaged in any way.

10 FILELOCKED

FILE LOCKED means you tried to save, write to, change, append,
or delete a locked file. Check the catalog: the name of a locked file is
preceded by an asterisk (*). To unlock the file, use the UNLOCK
command. '

11 SYNTAX ERROR
SYNTAX ERROR means that you or your program issued a DOS
command with an incorrect value or incorrect separator (comma or

space). You will also see this message when the command lacks a
required argument. Check the command’s syntax in this manual.

Recovering From Errors 173

Table C-4. Types of Files According to
Command

174

12 NO BUFFERS AVAILABLE

Each open file and each DOS command (except PR#, IN#, and
MAXFILES) requires a file buffer. NO BUFFERS AVAILABLE
means that you or your program tried to open one more file or issued
one more DOS command than there were buffers available in
memory.

Issue the CLOSE command to release file buffers or issue the
MAXFILES to increase the number of file buffers.

13 FILE TYPE MISMATCH

FILE TYPE MISMATCH means thata DOS command specified a
file with a file type that is inappropriate to the present command.

Use the CATALOG command to look at the file type of the file on the
disk. Then look at Table C-4 to make sure that the command you are
using is legal with that file type.

If you're sure that the command is correct, use a file name that is not
now on the disk, use a different disk, or rename or delete the existing
file.

Command Legal File Type
LOAD, RUN, SAVE Aorl
CHAIN |

OPEN, READ, WRITE, CLOSE

APPEND, POSITION, EXEC T
BLOAD, BRUN, BSAVE B

Appendix C: DOS Error Messages

HIMEM is the highest memory location
available to your program. For your
system’s maximum HIMEM with DOS
and three file buffers, see Appendix B.

14 PROGRAMTOO LARGE

PROGRAM TOO LARGE means thata DOS command tried to load
a disk file and found insufficient space in main memory for the entire
file.

If you are in immediate-execution mode, issue either an FP or INT
command, whichever is appropriate to your program.

Use MAXFILES to decrease the number of file buffers that are
available to your BASIC program.

Often a previous program set HIMEM or LOMEM to values that will
not allow the loading of your next program. Use POKE to place the
correct values into the HIMEM or LOMEM locations.

By the Way: To determine whether or not a program will fit into memory,
DOS looks only at the number of disk sectors the program occupies.
Usually, a program will not completely fill the last file sector (256 bytes),
but DOS ignores this. DOS compares the high-order byte of LOMEM
(Integer BASIC) or HIMEM (Applesoft) with the high-order byte of the
projected end-of-program location: Thus, programs that should fitinto
memory and that leave less than 256 bytes free after loading cause this
message. Sometimes you can correct this before loading the program by
moving HIMEM or LOMEM slightly to change the high-order byte.

15 NOT DIRECT COMMAND

NOT DIRECT COMMAND means that you tried to use an APPEND,
OPEN, POSITION, READ, or WRITE command in immediate
execution. These commands can be used only from PRINT
statements in a program.

This message can also occur when a program is stopped and
restarted. Repair the error by typing POKE 513 @:CONT.

Recovering From Errors

Appendix D

Programs

I D.7 Programs on the SYSTEM MASTER Disk

These are the programs on the SYSTEM MASTER disk:

Name Function

HELLO an Applesoft greeting program that DOS runs automatically if the Applesoft language is available.

APPLESOFT agreeting program in Integer BASIC that DOS runs automatically when the Applesoft language is not
available.

BOOT13 abinary program that loads 13-sector disks created under earlier versions of DOS (before version 3.3).

CHAIN a binary program that loads and runs a second program without erasing from memory the variables and
arrays of the first. Both chained programs must be Applesoft BASIC.

CONVERT13 an Applesoft BASIC program that runs the MUFFIN program to convert 13-sector disks to 16-sector format.

COPY the copying program to use when you are running Integer BASIC.

COPY.OBJO a machine-language routine used by COPY and COPYA.

COPYA the copying program to use when you are running Applesoft BASIC.

FID a binary program that performs several support functions for DOS.

FILEM an Applesoft program that runs FID.

FPBASIC the Applesoft BASIC language on disk, in binary.

INTBASIC the integer BASIC language on disk, in binary.

LOADER.OBJO amachine-language program loaded by HELLO on the SYSTEM MASTER disk. LOADER.OBJO0 loads the
alternate language into the language card or into memory. If the alternate language already exists, no action
is taken. LOADER.OBJO0 also moves an image of the Monitor ROM from the main logic board to the $F800
location in the language card or in memory.

MASTER an Applesoft program that runs the MASTER CREATE program, a binary program, to convert an initialized
disk into a master disk.

MASTER CREATE a binary program that creates a master disk that contains a DOS that is placed as high as possible in
memory. A master disk is useful on an Apple |l computer of any size.

MUFFIN abinary program to convert 13-sector disks to 16-sector format.

RENUMBER an Applesoft program that renumbers the lines of a BASIC program or merges two programs.

SLOT# an Applesoft program that returns the current default values for slot and drive.

START13 an Applesoft program that runs the BOOT13 program.

Programs on the SYSTEM MASTER Disk

NN D.2 Programs on the SAMPLE PROGRAMS

Disk
These are the programs on the SAMPLE PROGRAMS disk.

Name Function

ADDRESS a demonstration program written in Applesoft that illustrates reading and writing random-text files.

ANIMALS a game written in Integer BASIC for which you build a data file.

APPLEPROMS a data file for the RANDOM program. APPLE PROMS contains a parts-list inventory.

APPLEVISION a demonstration program written in Integer BASIC.

BLACK BOOK adata file that stores the records of the ADDRESS program.

BRICK OUT a gatmle program written in Applesoft. Play the game with the arrow keys on the keyboard or with hand
controls.

COLORTEST a demonstration program written in Applesoft to help you adjust a color TV set.

DELETE.ME A a demonstration Applesoft file that lets you practice deleting a file.

DELETE.ME.2 ademonstration Applesoft file that lets you practice deleting a file.

DELETE.ME.3 a demonstration Applesoft file that lets you practice deleting a file.

EXEC DEMO a demonstration program written in Applesoft that illustrates how an EXEC program is created and runs.

FPBASIC the Applesoft BASIC language on disk, in binary.

GETTEXT a demonstration program written in Applesoft that reads text files.

HELLO an Applesoft greeting program.

INTBASIC the Integer BASIC language on disk, in binary.

LOADER.OBJO amachine-language program loaded by HELLO on the SYSTEM MASTER disk. LOADER.OBJO loads the
alternate language into the language card or into memory. If the alternate language already exists, no action
is taken. LOADER.OBJ0 also moves an image of the Monitor ROM from the main logic board to the $F800
location in the language card or in memory.

LOCK.ME.1 a demonstration Applesoft file that lets you practice locking an unlocked file.

LOCKED.UP.1 a demonstration Applesoft file that lets you practice unlocking a locked file.

LOCKED.UP.2 a demonstration Applesoft file that lets you practice unlocking a locked file.

MAKE TEXT a demonstration Applesoft program that illustrates creating sequential-text files.

ONERR DEMO a sample program that illustrates error recovery. It checks to see if a file is locked and, if so, lets you unlock it.

POKER a demonstration program in Applesoft that illustrates translating machine-language into a text file.

PHONE LIST a practice program written in Applesoft.

RANDOM a demonstration program written in Applesoft that illustrates reading and writing with a random-access text
file. It uses APPLE PROMS io hold the data.

VERIFY.ME a demonstration Applesoft file that lets you practice verifying a file.

Appendix D: Programs

Downloaded from www.Apple20Online.com

Programs on the SAMPLE PROGRAMS Disk

AppendixE ,

Summary of DOS
Operating Concepts and
Commands

References to discussions in the DOS User's Manual are indicated
as Chapter x, DU. References to discussions in this manual are
indicated as Chapter x.

I E.71 Operating Concepts

DOS operates on Apple Il, Apple Il Plus, and Apple lle computers. If
information applies only to a specific model, this manual says so
explicitly.

E.1.1 Cold Start

See Chapter 1, DU. The process of turning on the power to your computer (or simulating
this same sequence by PR# n) so that DOS is loaded into main
memory is

1. Insert a DOS disk into disk drive 1.

2. Turn on your video display screen.

3. Find the power switch on the computer and turn it on.

On an Apple lle computer, you can simulate a cold start once the
power is on. Hold down (@) while you press and release and
(®ESED); then release @).

On a standard Apple !l or an Apple Il Plus, you can simulate a cold
start by typing Sn (CoNTROD-(P), (CoNTROD-(L), or Crn@@G,
where n is the number of the slot containing the disk controller card.

Operating Concepts ﬂ

E.1.2 Warm Start (All Apple Il computers)

The process of restarting your computer when the power is already
onis

See Chapter 1, DU. Press (ConTroL) and (RESET) simultaneously and then release them.
On some earlier models of Apple Il computers, you need to press
only (BESED).

A warm start does not reload DOS into main memory, and often does
not erase the program in memory.

E.1.3 Initializing a Disk
The process for initializing a disk is

See Chapter 3, DU. 1. Start DOS and put a blank disk in the disk drive.

2. Issue the NEW statement of BASIC to clear the Apple II's memory.
Then type in a greeting program, for example

1@ PRINT "32K DISK INITIALIZED 5 MAY 84"
20 END

To test that the greeting program is correct, type RUN.

3. Assuming you want to name the greeting program HELLO, type
INIT HELLO. Thisformats the disk and writes your program on
the disk, giving it the name HELLO.

E.1.4 Creating a Master Disk

This is the procedure for converting an initialized disk into a master
disk:

See Chapter 5. 1. First create a greeting program to reflect the master status of the
disk by changing an existing greeting program or by typingin a
new one. Save the greeting program with a new name (for
example, SAVE BIG HELLO). Remove that disk from the drive.

2. Insertthe SYSTEM MASTER disk in the drive and type RUN
MASTER.

3. Enter the new name of your greeting program. This is the name
used in step 1 with the SAVE command. If you want the disk to run
some other program—that is, to make a turnkey disk—press
and enter the name of that program.

4. Replace the SYSTEM MASTER with the initialized disk you want
to convert. Press to begin the conversion.

Appendix E: Summary of DOS Operating Concepts and Commands

See Chapter 2.

The CHR$(4) function returns the ASCII
equivalent for (CoNTROD-(D).

See Appendix B.

E.1.5 Interpreting Commands

Deferred execution means that a command is issued from a BASIC
program. Immediate execution means that a command is issued
from your keyboard. When a command is preceded by (GonTrRoL-(0),
only DOS looks at it. To issue a deferred-execution DOS command,
use the PRINT command to print a string consisting of (CoNTROL)-(D)
followed by the command. For example

Applesoft only Integer BASIC and Applesoft

1@ D$=CHR%(4) 1@ PRINT “"CATALOG"
2@ PRINT D#%3"CATALOG" 2@ REM (There’saninvisibie
30 REM (contRoD-(0) before
4@ REM the Cinside first quote
mark).

E.1.6 Capacity

A maximum of 496 disk sectors are available to hold your
information. Each disk sector can store up to 256 bytes.

An empty text file is 1 sector long; the sector is occupied by the file’s
empty track/sector list. Empty Applesoft, Integer BASIC, and binary
files are 2 sectors long: one sector is the track/sector list, the other is
the first program sector, which contains the program’s length.

E.1.7 File Types
File types are listed, by code, in a disk’s catalog.

E.2 Command Notation

This section describes the DOS command notation used in this
manual.

E.2.1 Notation Conventions
UPPERCASE indicates the actual name of a command. Type it
exactly as indicated.

lowercase indicates an element that you must supply in a
command, for example, the name of a file.

[1] Square brackets enclose an optional argumentin a
command. You may include the option or not, as you

choose. Do nottype the brackets.

Command Notation

E.2.2 Syntax

A file name usually is the first argument foilowing a command word;

See Chapter 2. remaining arguments may appear in any order. The file name must
be separated by a comma from any argument that follows, for
example

INIT fn [,Vn][,Sn][,Dn] indicates the command’s syntax.

INIT HELLO, V17, D2 s interpreted this way:

® The command word INIT is uppercase and is typed exactly as
shown.

® The argument fn stands for a file name and is replaced by an
actual file name in uppercase, HELLO in the example.

® The argument Vn indicates an optional volume number. In the
example, itis replaced by V17. (This volume number was chosen
arbitrarily.)

® The argument Sn indicates an optional slot number; this example
omits it.

e The argument Dn, also optional, indicates that DOS should access
the disk in drive 2.

E.2.3 Arguments
fn in a command, indicates the name of a file that you
See Chapter 2. supply. A file name begins with a letter and may contain

from 1 to 30 characters. Any typeable character except
the comma may appear in a file name.

n as an argument of the PR# and IN# commands,

See Chapter 2. indicates a slot number from 1 to 7. As an argument of
the MAXFILES command, indicates the number of
buffers and may range from 1 to 16. You may use
decimal or hexadecimal notation.

n in all other arguments, indicates a decimal or
hexadecimal number. Hexadecimal numbers are
preceded by a dollar sign, for example, $FE.

See Chapter 2.

Appendix E: Summary of DOS Operating Concepts and Commands

An specifies an address in memory. Replace n with a
See Chapter 6. number from 0 through 65535. With BSAVE, An
indicates the address in memory from which the
transfer starts. With BLOAD and BRUN, it specifies a
target address in memory for loading the binary file; if it
is omitted, DOS puts the file in memory starting at the
address from which it was saved with the BSAVE

command.
Bn specifies a byte or character number. Replace n with a
Sequential access, see Chapter 3; number from 0 through 32767; if omitted, DOS defaults
random access, see Chapter 4. to 0. In sequential access, Bn specifies an absolute

byte within the file and, for most programs, is not
greater than the last byte in the file. In random access,
Bn specifies an absolute byte within the record
indicated by Rn and, for most programs, is not greater
than the last byte in the current record.

Dn specifies the number of a disk drive. Replace n with
See Chapter 2. either 1 or 2. The drive number initially defaults to 1;
subsequently it defaults to the last Dn specified
(Chapter 2).

Ln specifies length: a number of bytes or characters.

See Chapter 6. Replace n with a number from 0 through 32767. With
the OPEN command for random-access files, it
specifies the number of bytes that each record holds.
With BSAVE, it specifies the number of bytes of
memory, starting at the address specified by An. When
Ln is omitted, DOS defaults to 1.

POSITION, see Chapter 3; EXEC, see Rn with the POSITION and EXEC commands, specifies

Chapter 5. the number of fields or lines to skip, relative to the
current position. Replace n with a number from 0
through 32767. When omitted, DOS defaults to 0, the
beginning of the file.

Random-access textfiles, see Chapter4. Rn with READ and WRITE commands for random-access
text files specifies a record number. Replace n with a
number from 0 through 32767. After OPEN, Rn initially
defaults to 0, the first record of the file; after that, it
defaults to the last record specified. Rn indicates an
absolute record within a random-access file.

Command Notation

Sn specifies the number of a slot containing the disk
controller card of the drive to be accessed. Replace n
See Chapter 2. with a number from 1 to 7. If omitted, DOS uses the
default slot number. DOS initially defaults to the
number of the slot from which it was started;
subsequently, it defaults to the last Sn specified.

Vn specifies a volume number of a disk. Replace nwith a

See Chapter 2. number from 1 through 254. DOS initially defaults to the
volume number of the disk from which it was started.
After that, DOS defaults to the last Vn specified or read
from a disk. When omitted from the INIT command,
DOS defaults to 254. When omitted from other DOS
commands or when specified as either 0 or just V, DOS
ignores the volume specification.

N £.3 Command Summary

In this section, the DOS commands are grouped into 5 categories:

1. Nonprogramming commands for accessing disks:

CATALOG INIT DELETE RENAME
LOCK UNLOCK VERIFY RUN
LOAD SAVE PR# IN#

2. Commands that control the programming environment:
FP INT MON NOMON

EXEC MAXFILES CHAIN
3. Programming commands for sequential-access text files:

OPEN CLOSE READ WRITE
APPEND POSITION

4. Programming commands for random-access text files:
OPEN CLOSE READ WRITE
5. Commands for binary files:
BRUN BLOAD BSAVE
Abbreviated descriptions of all DOS commands are listed below;
each command is followed by an example. At the end of each

description, you'll find a reference to the chapter where you can find
more detailed information.

Appendix E: Summary of DOS Operating Concepts and Commands

See Chapter 3, DU.

See Chapter 3, DU.

See Chapter 4, DU.

See Chapter 4, DU.

E.3.1 Nonprogramming Commands
for Accessing Disks

CATALOG [,Sn][,Dn)
Example: CATALOG

displays on the screen the volume number and the names of all the
files on your disk. It also displays information about each file: its file
type, its size in sectors, and whether it is locked, as indicated by an
asterisk (*) beside the file type.

The file types are:

Integer BASIC program file, created by SAVE.
Applesoft program file, created by SAVE.

Text file, created by OPEN and filled by WRITE.
Binary memory-image file, created by BSAVE.
Relocatable, created by BSAVE.

Reserved for future use.

NOIDWHP» -

When an individual file exceeds 255 sectors, the catalog display of
that file's length starts over at 000. This gives an erroneous
impression of remaining space on the disk.

INIT fn [,Sn] [,Dn] [,Vn]
Example: INIT HELLO, V18

organizes the surface of a disk into tracks and sectors and writes
zeros in all data fields. INIT also places a copy of DOS and a greeting
program on the disk.

DELETE fn [,Sn] [,Dn][,Vn]
Example: DELETE TEXT

removes an unlocked file from a disk. When the specified file does
not exist on the disk, DOS displays the message FILE NOT
FOUND. To avoid this error, issue an OPEN command before the
DELETE.

RENAME fn1,fn2[,Sn][,Dn] [,Vn]
Example: RENAME CURRENT, ARCHIVAL, S7, D1

changes the name of a file from fn1 (CURRENT) to fn2 (ARCHIVAL)
without affecting the file’s contents. If the file was open, itis closed
and then renamed. RENAME doesn’t check to see whether fn2
already exists.

Command Summary

See Chapter 4, DU.

See Chapter 4, DU.

See Chapter 4, DU.

See Chapter 5, DU.

See Chapter 5, DU.

See Chapter 5, DU.

LOCK fn[,Sn][,Dn][,Vn]
Example: LOCK LOVE LETTERS, V31

protects a file from being accidentally destroyed. A locked file is
indicated by an asterisk (*) in its disk catalog. You cannot rename,
delete, or change a locked file.

UNLOCK fn [,Sn}[,Dn][,Vn]
Example: UNLOCK DOORS, D2

removes protection from a locked file and makes it possible to
rename, delete, and change it.

VERIFY fn[,Sn][,Dn] [,Vn]
Example: VERIFY FACTS

tests that DOS is able to read the file from a disk into the computer’s
memory. fn must be unlocked. When DOS can read the file, DOS
displays no confirming message. When DOS cannot read the file,
you'llsee I/0 ERROR. You can verify any type of file.

RUNfn [,Sn][,Dn] [,Vn]
Example: RUN ANNUITY, D1

copies a BASIC program, file type A or |, from a disk file into memory
and executesiit.

LOAD fn[,Sn][,Dn][,Vn]
Example: LOAD CARGO, S6, D1

copies a program, file type A or |, from a disk file into memory. Once
the program is in memory, you can run it, modify it, or save it as a disk
file.

Before loading a new program into memory, DOS closes all text files
that are currently open. When a new program is actually loaded,
DOS erases any program currently in memory and changes to the
BASIC that corresponds to fn’s file type.

If the file type is A and Applesoft is notin memory or available from
the Applesoft firmware ROM card, DOS tries to load Applesoft from
the disk and runs it. If Applesoft is not on that disk, you’ll see the
message LANGUAGE NOT AVAILABLE.

SAVE n[,Sn][,Dn] [,Vn]
Example: SAVE COLOR DEMOS, D2

writes the BASIC program currently in main memory to a disk file.
When the program is an Applesoft program, DOS saves it as type A.
When itis Integer BASIC, DOS saves it as type l.

Appendix E: Summary of DOS Operating Concepts and Commands

See Chapter 2.

See Chapter 2.

When fn does not exist, DOS creates a file with that name and stores
the program currently in memory in that file. If the disk already
contains a file with the same file name and in the same file type, DOS
writes over its contents with the current BASIC program. When the
disk contains a file with the same file name and a different file type,
DOSdisplays FILE TYPE MISMATCH.

PR#n
Example: PR# 6

sends the characters normally printed on the screen to the device
connected through slot n. The number sign (#) is part of the
command and must be typed.

On the standard Apple Il and the Apple Il Plus, the command PR# 0
redirects output to the screen. On the Apple lle, when you have not
turned on the 80-Column Text Card, use PR#0toreturntoa
40-column screen. If the 80-Column Text Card is operating, use
PR#3 to return to an 80-column display, or use PR#3 followed by
(conTROD{@) to go to a 40-column display.

When a deferred-execution PR# command is not preceded by
a or when no device controller card is in slot n, DOS
appears to be disconnected. You have to restart DOS.

IN# n
Example: IN# 2

reads characters from the device connected through slot n (for
example, an external terminal) instead of from the keyboard. The
number sign (#) is part of the command and must be typed.

To return to the keyboard from some other device, use IN# 0.
When a deferred-execution IN# is not preceded by a (ConTRoD)-(D)

or when no device controller card is in slot n, DOS appears to be
disconnected. You have to restart DOS.

Command Summary

See Chapter 2.

See Chapter 2.

See Chapter 2.

See Chapter 2.

E.3.2 Commands That Control the Programming
Environment

FP[,Sn][,Dn]
Example: FP, D2

switches to Applesoft. It resets the pointers in memory so they no
longer point to the previous BASIC program and variables;
essentially, that program is lost.

If your standard Apple || computer contains the Applesoft firmware
card or a Language Card, DOS looks there for Applesoft. When your
system does not contain the Applesoft firmware card, DOS tries to
load the program FPBASIC from the disk and run it.

INT
Example: INT

switches to Integer BASIC. It resets the pointers in memory so they
no longer point to the previous BASIC program and variables;
essentially, that program is lost. If Integer BASIC is not present, you'll
see LANGUAGE NOT AVAILABLE.

MON[C] LI [,O]
Examples: MON O and MONICO

displays the action between the computer and the disk. C displays
disk commands; | displays the input from the disk to the computer; O
displays the output to the disk. You may list the arguments in any
order and in any combination, but at least one of them must be
present; commas that separate the arguments are optional.

These values for MON remain in effect until you issue a NOMON, FP,
or INT command or restart the system; running a program does not
cancel them.

NOMON [C],11(,0]
Examples: NOMON C and NOMON I, C

suppresses the action display between the computer and the disk
that was turned on by the MON command. C suppresses display of
disk commands; | suppresses display of the input from the disk to the
computer; O suppresses display of the output to the disk. You may
use the arguments in any order and in any combination but at least
one of the arguments must be present; commas that separate the
arguments are optional.

Appendix E: Summary of DOS Operating Concepts and Commands

See Chapter 5.

See Chapter 5.

The command NOMON C, |, O returns the system to its initial state:
no commands and information sent between the computer and the
disk will be displayed on the screen.

EXEC fn[,Rn] [,Sn][,Dn] [,Vn]
Example: EXEC UTILITY

directs DOS to take commands from a command file created by a
BASIC program rather than from the keyboard. fn indicates the name
of the command file, which can contain DOS commands, data, and
BASIC statements.

DOS begins executing the command file at the line specified by Rn.
When you omit this argument, DOS starts at the first line of the file,
which is record 0. If you specify a value of R beyond the end of the
file,you'llseean END OF DATA message.

Warning

When a program is running under control of a command file, any INPUT
statement in the program reads the next field from the command file
rather than the keyboard. If the input is an immediate-execution DOS
command, the command is executed before the program continues.

MAXFILES n
Example: MAXFILES 6

where nis aninteger from 1 to 16, specifies the maximum number of
files that can be active at one time. When MAXFILES is executed,
DOS reserves a file buffer (595 bytes of memory) for each file. When
DOS is started, three file buffers (1785 bytes) are reserved and you
can have up to active three files.

All DOS commands except PR#, IN#, and MAXFILES require afile
buffer for execution. If you specify MAXFILES 1 and open one file, an
attempt to perform most DOS commands displays the message NO
BUFFERS AVAILABLE.

Warning

Use of MAXFILES moves HIMEM, erasing Integer BASIC programs and
Applesoft strings. Use MAXFILES before loading and running a program
or as the first line in the program.

Command Summary

See Chapter 5.

Afield is a sequence of characters
(1to 32767 characters) that ends with a
carriage return.

See Chapter 3.

CHAIN fn [,Sn] [,Dn] [,Vn]
Example: CHAIN PART TWO, D1, S7

runs a new program and does not close files that are open. It saves in
memory the variables from the previous program. Your next program
can operate on the results of the previous program and can leave
data for subsequent programs. Only Integer BASIC programs can be
chained with this command.

E.3.3 Programming Commands for
Sequential-Access Text Files

Atextfile (file type T) is a series of fields separated by carriage
returns and stored on disk. It can be accessed in two ways:
sequential access or random access. Information is stored with the
WRITE command and retrieved with the READ command. READ
and WRITE need the help of OPEN and CLOSE.

In a sequential-access text file, no length is specified when the file is
opened and fields are stored one immediately following the other.
That is, DOS writes the first character of each field immediately
following the carriage-return character that ended the previous field.
Each time the file is opened, DOS starts reading from or writing to the
beginning of the file, accessing the fields sequentially.

Warning

All of these sequential-access commands are used in deferred execution.
Only CLOSE can be issued in both immediate and deferred execution.

OPEN fn[,Sn][,Dn] [,Vn]
Example: OPEN SESAME, D2

opens a sequential-access text file so that DOS can read from or
write to it. When the specified file does not yet exist, DOS creates it
as a text file (type T).

When you open a file, DOS designates a file buffer (595 bytes in

memory) for the file and sets the current position for reading and
writing to point to the beginning of the file.

Appendix E: Summary of DOS Operating Concepts and Commands

See Chapter 3.

See Chapter 3.

A field consists of from 1 to 32767
characters, ending with a carriage-return
character.

See Chapter 3.

CLOSE [fn]
Example: CLOSE CLOSET

tells DOS that you have finished accessing a text file. Before ending,
a program must close all open files to ensure that all characters are
written and that the file buffers are properly released.

When your program is writing to a file, CLOSE sends all output
remaining in the file buffer to the file and then releases the buffer.
When CLOSE is used without a file name, DOS closes all open files
except a command file.

If a program has an error and stops before it can close all open files,
close them by issuing the CLOSE command from the keyboard.

READ fn[,Bn]
Example: READ TLEAVES

tells DOS which sequential-access file to read from and where to
start reading. READ is used only after the file is open; fn remains the
file from which to read until the next DOS command is specified.

The B option tells DOS to begin reading at the specified byte, relative
to the current position.

~atatime. Howewer duatothe'hm;tsmmmgsand mput/autputbumrs, itis
difficult to read fields larger than 255 characters

WRITE fn[,Bn]
Example: WRITE ADDRESS.DATA

tells DOS which sequential-access text file to write to and where to
start writing. WRITE is used only after the file is open; fn remains the
file to which to write until the next DOS command is specified.

Command Summary

See Chapter 3.

See Chapter 3.

The B option tells DOS to begin writing at the specified byte, relative
to the current position.

By the Way: After this command, PRINT statements send their output to
the specified file. Output includes the question-mark prompt character of
the INPUT statement if INPUT is used after a WRITE, and error
messages if the program does not have an error—handlmg routine
(ONERR GOTO).. S s B g 5 ;

APPEND fn [,Sn} [,Dn}[,Vn]
Example: APPEND INFO

opens a sequential-access text file so that your program can write
data starting at the end of the file. APPEND opens the file for writing
and sets the current position to point to the end of the file.

After this command, the next character written into the file will follow
the last sequentially written character presently in the file. APPEND
must be followed by a WRITE command that specifies the same file.

POSITION fn [,Rn]
Example: POSITION ADDRESS.DATA, R277

sets the current position for reading or writing. POSITION allows you
to skip forward a specified number of fields in the text file before you
read or write more information.

When the R option is omitted, the current position is the beginning of
the file. When R is specified, the current position is a relative number
of fields ahead of the current position.

POSITION scans the contents of the file, character by character,
looking for the Rth carriage-return character. It then sets the current
position to point to the first byte following that character. Subsequent
READ and WRITE commands proceed from that point. If you try to
position past the end of the file, you'll see an END OF DATA error
message.

Appendix E: Summary of DOS Operating Concepts and Commands

Arecord is one field or a collection of
fields that DOS treats as a unit.

See Chapter 4.

See Chapter 4.

E.3.4 Programming Commands for
Random-Access Text Files

A length argument is specified when a random-access text file is
opened. It determines the number of characters in a record.

DOS can start reading from or writing to a specified location in the
file. That is, you do not have to read all preceding records in the file
and you do not have to read all preceding characters in a given
record. DOS accesses subsequent records or a field within a record
without regard to what was last accessed.

Warning
Al of these random-access commands are used in deferred execution.
Only CLOSE can be issued in both immediate and deferred execution.

OPENn, Ln[,Sn][,Dn] [,Vn]
Example: OPEN SESAME, L2

opens a random-access text file. When the specified file does not
exist, DOS creates it as a text file (type T). When the file already
exists, it must not be open.

The Ln argument, the length of each record, is required. Each time
you open the file, specify the same length. DOS uses the length
argument to calculate the starting position of each record.

When you open a file, DOS designates a file buffer (595 bytes in
memory) for the file, sets the current position to point to the beginning
of the file, and sets the record length to the number of bytes specified
by the length argument.

CLOSE [fn]
Example: CLOSE ENCOUNTERS

tells DOS that you have finished accessing a text file. Before ending,
a program must close all open files to ensure that all characters are
written to their files and that the file buffers are properly released.

When your program is writing to a file, the CLOSE command sends
all characters remaining in the file buffer to the file and then releases
the buffer. When CLOSE is used without a file name, DOS closes all
open files except a command file.

When a program contains an error and stops before it can close all
open files, issue CLOSE from the keyboard.

Command Summary ﬁ

See Chapter 4.

See Chapter 4.

READ fn[,Rn][,Bn]
Example: READ PALMS,R3,B30

tells DOS which random-access text file to read from and where to
start reading. READ is used only after the file is open; fn remains the
file from which to read until the next DOS command is specified.

The R (record number) argument causes reading to begin ata
specified record of the file. When R is omitted, DOS defaults to 0, the
first record.

The B (byte) argument causes reading to begin at a specified byte of
the record indicated by the R argument. When B is omitted, DOS
defaults to 0, the first byte in the record.

By the Way: Subsequent INPUT statements and GET statements of
Applesoft read from the specified file ratherthan the keyboard. The
INPUT statementreads characters from the currentrecord; one fieldat a

WRITE fn [,Rn][,Bn]
Example: WRITE ADDRESS.DATA, R3

tells DOS which random-access file to write to and where to start
writing. WRITE is used only after the file is open; fn remains the file to
which to write until the next DOS command.

The R (record number) argument causes writing to begin ata
specified record of the file. When R is omitted, DOS defaults to 0, the
first record.

The B (byte) argument causes writing to begin at a specified byte of
the record indicated by the R argument. When B is omitted, DOS
defaults to 0, the first byte in the record.

Warning

After the WRITE statement, all output characters that would normally be
displayed on the display screen are sent to the file. This includes the
question-mark prompt character of the INPUT statement if INPUT is used
before WRITE, and error messages if your program doesn't include an
error-handling routing (ONERR GOTO).

Appendix E: Summary of DOS Operating Concepts and Commands

See Chapter 6.

See Chapter 6.

See Chapter 6.

E.3.5 Commands for Binary Files

BRUN fn [,An][,Sn] [,Dn] [,Vn]
Example: BRUN SUPER, A$C0A, V75

tranfers a binary file (file type B) stored on the disk to any part of
memory and executes the file.

When A is specified, the data is put in memory beginning at the
specified address. When the An option is omitted, DOS puts the
program in memory starting at the address that was specified in the
BSAVE command used to save the file originally.

BLOAD fn [,An] [,Sn] [,Dn] [,Vn]
Examples: BLOAD PICTURE, A8192 (decimal notation)
BLOAD PICTURE, A$2000 (hexadecimal notation)

transfers binary information from a disk file to any part of memory.

When the An option is specified, the data is placed in memory
beginning at the specified address. When A is omitted, DOS loads it
starting at the address that was specified in the BSAVE command
used to save the file originally.

Warning

When An is specified, a machine-language program may no longer be
executable at its new address.

BSAVE fn, An, Ln[,Sn][,Dn][,Vn]
Examples: BSAVE PICTURE, A16384,18192 (decimal notation)
BSAVE PICTURE, A$4000, L$2000 (hexadecimal
notation)

transfers binary data from memory to a file on the disk. When the file
does not exist, DOS creates it as a binary file (type B). When it does
exist, DOS overwrites its contents with the specified contents of
memory. The An (address) and Ln (length) arguments allow transfer
from any part of memory.

Command Summary

The glossary includes terms that appear in this manual as well as
some you may encounter in other Apple publications. The first time
an important termis used in this manual, it is shown in boldface type
so you will know that the word is defined here.

address A number used to identify a location in the computer’s
memory.

Applelle A personal computer in the Apple Il family.

Apple lle 80-Column Text Card A peripheral card that plugs into
the Apple lle’s auxiliary slot and converts the display of text from 40-
to 80-column width.

Apple lle Extended 80-Column Text Card A peripheral card that
plugs into the Apple lle’s auxiliary slot and converts the text display
from 40- to 80-column width. It also extends the Apple II's memory
capacity by 64K bytes.

Applesoft An extended version of the BASIC programming
language used with Apple il computers and capable of processing
numbers in floating-point. An interpreter for executing Applesoft
programs is built into firmware in the Apple lle and Apple Il Plus.

application program A program that puts the resources and
capabilities of the computer to use for some specific purpose or task,
such as word processing, data-base management, graphics, or
telecommunications.

argument The value on which a function operates.

array A collection of variables referred to by the same name and
distinguished by means of numerical subscripts.

ASCIl American Standard Code for Information Interchange; an
information code in which the numbers from 0 to 127 represent
alphanumeric or control characters. ASCII code is used for
representing text inside a computer and for transmitting text between
computers or between a computer and a peripheral device.

Glossary ﬁ

assembler A language translator that converts a program written
in assembly language into an equivalent program in machine
language.

assembly language A low-level programming language in which
individual machine-language instructions are written in a symbolic
form more easily read by a person than machine language.

auxiliary slot The special expansion slot inside the Apple lle used
for the 80-Column or Extended 80-Column Text Card.

BASIC Beginner's All-Purpose Symbolic Instruction Code; a high-
level programming language designed to be easy to learn and use.
Two versions of BASIC are available for use with Apple Il computers:
Applesoft (built into the Apple lle and the Apple 11 Plus in firmware)
and Integer BASIC (provided on the SYSTEM MASTER disk).

binary A numeric representation in terms of the powers of 2, using
the digits 0 and 1. Commonly used in computers, since the values 0
and 1 can easily represent such states as the presence or absence
of electric current, positive or negative voltage, and a white or black
dot on the screen.

binary file A file containing information not expressed in terms of 0
and 1.

bit Abinary digit (0 or 1); the smallest possible unit of information,
consisting of a simple two-way choice, such as yes or no, on or off,
positive or negative, something or nothing.

boot To start a computer by loading a program into memory from
an external storage medium such as a disk. Often accomplished by
first loading a small program whose purpose is to read the larger
program into memory. The program is said to “pull itself up by its own
bootstraps”; hence the term “booting.”

bootdisk A disk containing software recorded in the proper form to
be loaded into the Apple II's memory in order to set the system into
operation. Also called a startup disk.

buffer An area of the computer's memory reserved for a specific
purpose, such as to hold graphical information to be displayed on the
screen or text characters being read from the keyboard or some
peripheral device. Often used as an intermediary “holding area” for
transferring information between devices operating at different
speeds, such as the computer’s processor and a printer or disk drive.
Information can be stored into the buffer by one device and then read
by the other at a different speed.

bug Anerrorinaprogram that causes it not to work as intended.

Glossary

byte A unit of information consisting of a fixed number of bits; on
the Apple ll, one byte consists of eight bits and can hold a value from
0to 255.

call Torequestthe execution of a subroutine or function.

character A letter, digit, punctuation mark, or other symbol used in
printing or displaying information that can be read by people; see
control character.

chip The small piece of semiconducting material (usually silicon)
on which an integrated circuit is fabricated. The word chip properly
refers only to the piece of silicon itself and is often used for an
integrated circuit and its package; see integrated circuit.

code (1) Anumberor symbol used to represent a discrete piece of
information in a compact form. (2) Statements or instructions
comprising a program.

cold start The process of starting up the Apple Il when the power is
first turned on by loading the operating system into main memory,
then loading and running a program. Certain commands and control
characters simulate a cold start.

command A communication from the user to a computer system
directing it to perform some immediate action. A command can by
typed from the keyboard or embedded in a program.

command file A program that runs other programs. The EXEC
command runs a command file, which can contain both DOS
commands and BASIC statements.

component A part; in particular, a part of a computer system.

connector The physical joining place for electrical or electronic
devices. Also a device, such as a plug, socket, or jack, used to
connect one hardware component of a system to another.

control character A character that controls or modifies the way
information is printed or displayed. Control characters have ASCII

codes between 0 and 31 and are typed from the keyboard by holding
down while typing some other character. For example, pressing
(conTRoL){M) means “return to the beginning of the line” and is

equivalent to (RETURN).

controller card A card that connects a peripheral device such as a
printer or disk drive to the Apple Il and controls the operation of the
device.

cursor A marker or symbol displayed on the screen that marks
where the user’s next action will take effect or where the next
character typed from the keyboard will appear.

Glossary ﬂ

debug Tolocate and correct an error or the cause of a problem or
malfunction in a computer system. Typically used to refer to software-
related problems.

decimal The common form of number representation in which
numbers are expressed in terms of the powers of 10, using the digits
0to9.

default A value, action, or setting that is automatically used by a
computer system when no other explicit information is given. For
example, if a command to run a program from a disk does not identify
which disk drive to use, DOS automatically uses the same drive that
was used in the last operation.

deferred execution The saving of an instruction in a program for
execution at a later time as part of a complete program; occurs when
a statement is typed with a line number.

digit (1) One of the characters 0t0 9, used to express numbers in
decimal form. (2) One of the characters used to express numbers in
some other form, suchas 0 and 1 in binaryorOto9 and Ato Fin
hexadecimal.

dimension the maximum size of one of the subscripts of an array.
directory Alist of all files stored on a disk; also called a catalog.

disk Aninformation storage medium consisting of a circular
magnetic surface on which information can be recorded in small
magnetized spots, similarly to the way sounds are stored on tape.

disk controller card A peripheral card that connects one or two
disk drives to the Apple Il and controls their operation.

disk drive A peripheral device that writes and reads information on
the surface of a magnetic disk.

diskette A term sometimes used for the small (5'z-inch) flexible
disks.

element A member of a set or collection; specifically, one of the
individual variables making up an array.

EXECfile A program that runs other programs when it is executed
by the EXEC command.

expansion slot A connector inside the Apple Il computer in which a
peripheral card can be installed; also called peripheral slot.

field A sequence of from 1 to 32767 characters that ends with a
carriage-return character.

Glossary

fixed-point A method of representing numbers in the computer in
which the decimal point (more correctly, the binary point) is
considered to occur at a fixed position in the number. Typically, the
pointis considered to lie at the right end of the number, so that the
number is interpreted as an integer. Fixed-point numbers of a given
length represent a narrower range than floating-point numbers of the
same length, but with greater precision.

floating-point A method of representing numbers in the computer
in which the decimal point (more correctly, the binary point) is
permitted to “float” to different positions within the number. Some of
the bits within the number itself are used to keep track of the point's
position. Floating-point numbers of a given length represent a wider
range than fixed-point numbers of the same length, but with less
precision.

format (1) The formin which information is organized or
presented. (2) To specify or control the format of information. (3) To
prepare a blank disk to receive information by dividing its surface into
tracks and sectors; also initialize.

function A preprogrammed calculation that can be carried outon
request from any point in a program.

hardware Those components of a computer system consisting of
physical (electronic or mechanical) devices.

hexadecimal The representation of numbers in terms of powers of
16, using the digits 0 to 9 and A to F. Hexadecimal numbers are
easier for people to read and understand than binary numbers and
can be converted easily and directly to binary: a hexadecimal digit
corresponds to a sequence of four binary digits, or bits.

high-order byte The more significant half of a memory address or
other two-byte quantity. In the Apple II's 6502 microprocessor, the
low-order byte of an address is usually stored first and the high-order
byte second.

IC See integrated circuit.

immediate execution The execution of an instruction of a program
as soon as it is typed; occurs when the line is typed without a line
number.

indexed addressing A method of specifying memory addresses
used in machine-language programming.

initialize (1) To setto aninitial state or value in preparation for
some computation. (2) To prepare a blank disk to receive information
by dividing its surface into tracks and sectors; also format.

Glossary

initialized disk a disk that is organized into tracks and sectors and
contains DOS and a greeting program. This disk will contain a DOS
that is placed in the same memory location that it had in the computer
on which the disk was prepared. The INIT command is used to create
aninitialized disk.

input (1) Information transferred into a computer from some
external source, such as the keyboard, a disk drive, or amodem. (2)
The act or process of transferring such information.

instruction A unit of a machine-language or assembly-language
program corresponding to a single action for the computer’s
processor to perform.

integer A whole number; represented inside the computer in fixed-
point form.

Integer BASIC A version of the BASIC programming language
used with the Apple Il computers. Integer BASIC is older than
Applesoft and capable of processing numbers in integer (fixed-point)
form only. The SYSTEM MASTER disk includes an interpreter for
creating and executing programs in Integer BASIC and automatically
loads it into memory when the computer is started with that disk.

integrated circuit An electronic component consisting of many
circuit elements fabricated on a single piece of semiconducting
material, such as silicon; see chip.

interface card A peripheral card thatimplements a particular
interface by which the computer can communicate with a peripheral
device such as a printer or modem.

interrupt A temporary suspension in the execution of a program by
a computer in order to perform some other task, typically in response
to a signal from a peripheral device or other source external to the
computer.

1/0 Input/output; the transfer of information into and out of a
computer. See input, output.

/0 link A fixed location that contains the address of an input/output
subroutine in the Apple Il Monitor program.

K Two to the tenth power, or 1024 (from the Greek root kilo,
meaning one thousand); for example, 64K equals 64x1024, or
65,536.

keyboard The set of keys connected to the computer, similarto a
typewriter keyboard, for entering information into the computer.

kilobyte A unit of information consisting of 1K (1024) bytes, or 8K
(8192) bits; see K.

Glossary

KSW The symbolic name of the location in the Apple II's memory
where the standard input link is stored; stands for “keyboard switch.”
See /0 link.

load To transfer information from a peripheral storage medium
such as a disk into main memory.

loader A program that brings BASIC or a binary file from disk into
main memory.

low-order byte The less significant half of a memory address or
other two-byte quantity. In the Apple II's 6502 microprocessor, the
low-order byte of an address is usually stored first and the high-order
byte second.

machine language The form in which instructions to a computer
are stored in memory for direct execution by the computer's
processor. Each model of computer processor has its own form of
machine language.

main memory The memory component of a computer system that
is built into the computer itself and whose contents are directly
accessible to the processor.

master disk a disk containing a DOS that is placed as high as
possible in memory. It can operate on any system 16K or larger. The
MASTER program creates a master disk from an initialized disk.

memory A hardware component of a computer system that can
store information for later retrieval; see main memory, random-
access memory, read-only memory, read-write memory.

memory location A unit of main memory that is identified by an
address and can hold a single item of information of a fixed size; in
the Apple I, a memory location holds one byte of information.

microprocessor A computer processor contained in a single
integrated circuit.

Monitor program A system program built into Apple Il firmware,
used for directly inspecting or changing the contents of memory and
for operating the computer at the machine-language level.

output (1) Information transferred from a computer to an external
destination, such as display screen, disk drive, printer, or modem. (2)
The process of transferring such information.

Pascal A high-level programming language. A version called
Apple Il Pascal is used with the Apple 1l family of computers.

peripheral card A removable printed-circuit board that plugs into
one of the Apple II's expansion slots and expands or modifies the
computer’s capabilities by connecting a peripheral device or
performing some subsidiary or peripheral function.

Glossary W

peripheral slot See expansion slot.

pointer An item of information consisting of the memory address of
some other item. For example, Applesoft maintains internal pointers
to (among other things) the most recently stored variable, the most
recently typed program line, and the most recently read data item.

processor The hardware component of a computer that performs
the actual computation by directly executing instructions represented
in machine language and stored in main memory.

program A set of instructions describing actions for a computer to
perform in order to accomplish some task, conforming to the rules
and conventions of a particular programming language.

prompt Toremind or signal the user that some action is expected,
typically by displaying a distinctive symbol, a reminder message, ora
menu of choices on the display screen.

prompt character A text character displayed on the screen to
prompt the user for some action. Often also identifies the program or
component of the system that is doing the prompting; for example,
the prompt character] is used by the Applesoft interpreter, > by
Integer BASIC, and * by the system Monitor program.

radio-frequency modulator A device for converting the video
signals produced by a computer to a form that can be accepted by a
television receiver.

RAM See random-access memory.

random-access memory Memory in which the contents of
individual locations can be referenced in an arbitrary or random
order. This term is often used incorrectly to refer to read-write
memory, but strictly speaking, both read-only and read-write memory
can be accessed in random order.

read To transfer information into the computer’s memory from a
source external to the computer (such as a disk drive or modem) or
into the computer’s processor from a source external to the
processor (such as the keyboard or main memory).

read-only memory Memory whose contents can only be read;
used for storing firmware. Information is written to read-only memory
once, during manufacture; it then remains there permanently, even
when the computer’s power is turned off; it can never be erased or
changed.

Glossary

read-write memory Memory whose contents can be both read
and written; often misleadingly called random-access memory, or
RAM. The information contained in read-write memory is erased
when the computer’s power is turned off and is permanently lost
unless it has been saved on a more permanent storage medium,
such as a disk.

register A location in a computer processor where information is
held and modified under program control.

sector A portion of the recording surface of a disk consisting of a
fixed fraction of a track. Under DOS 3.3, there are 16 sectors per
track.

software Those components of a computer system consisting of
programs that determine or control the behavior of the computer.

startup disk A disk containing software recorded in the proper
form to be loaded into the Apple II's memory in order to set the
system into operation. Sometimes called a boot disk.

statement A unit of a program in a high-level language specifying
an action for the computer to perform, typically corresponding to
several instructions of machine language.

subroutine A part of a program that can be executed on request
from any point in the program, and which returns control to the point
of the request on completion.

subscript Anindex number used to identify a particular element of
an array.

syntax The rules governing the structure of statements or
instructions in a programming language.

text (1) Information presented in the form of characters readable
by humans. (2) The display of characters on the Apple II's display
screen.

textfile Afile containing information expressed in text form.

text window An area on the Apple II’s display screen within which
text is displayed and scrolled.

track A portion of the recording surface of a disk consisting of a
single circular band at a fixed distance from the center of the disk.
Under DOS 3.3, there are 35 tracks on a disk.

turnkey disk A disk that executes a specific program when you
start it up.

Glossary

variable (1) Alocation in the computer's memory where a value
can be stored. (2) The symbol used in a program to represent such a
location.

video monitor A display device that receives video signals by
direct connection only, and which cannot receive broadcast signals
such as commercial television. Can be connected directly to the
Apple Il computer as a display device.

warm start The process of restarting the Apple |l after the power is
already on, without reloading the operating system into main memory
and often without losing the program or information already in main
memory.

wildcard character The equal sign (=), which may represent the
files within a directory or those files that share a file pattern.

write To transfer information from the computer to a destination
external to the computer, such as a disk drive, printer, or modem, or
from the computer’s processor to a destination external to the
processor, such as main memory.

write-enable notch A square cutout in one edge of a disk’s jacket
that permits information to be written on the disk. If there is no write-
enable notch, orif itis covered, information can be read from the disk
but not written onto it.

write-protect To protect the information on a disk by covering the
write-enable notch with a write-protect tab, preventing any new
information from being written onto the disk.

write-protecttab A small adhesive sticker used to write-protect a
disk by covering the write-enable notch.

Glossary

Downloaded from www.Apple20Online.com

1.3.5 The UNLOCK Command

The UNLOCK command unlocks a file, removing the file protection
so that you can delete, rename, or change the file.

UNLOCK fn [,Sn] [,Dn] [,Vn]

fn is the name of the file to unlock.

[,Sn] where nis a number from 1 to 7, specifies the slot
containing the disk controller card of the drive to be
accessed. If omitted, DOS uses the default slot
number.

[,Dn] where nis 1 or 2, specifies the drive that holds the disk
containing fn. If omitted, DOS uses the default drive
number.

[.Vn] where n is a number from 0 to 254, specifies the

volume number of the disk to be accessed. If you
specify 0, just V, or omit the option, DOS ignores the
volume specification.

1.3.6 The DELETE Command
The DELETE command lets you remove a file from a disk.

DELETE fn [,Sn] [,Dn] [,Vn]

fn

[.Sn]

[.Dn}

[.vn]

Direct DOS Commands

is the name of the file to be deleted; fn must be
unlocked. If the file does not exist, you'll see FILE
NOT FOUND.

where n is a number from 1 to 7, specifies the slot
containing the disk controller card of the drive to be
accessed. If omitted, DOS uses the default slot
number.

where nis 1 or 2, specifies the drive of the disk
containing fn. If omitted, DOS uses the default drive
number.

where n is a number from 0 to 254, specifies the
volume number of the disk to be accessed. If you
specify 0, just V, or omit the option, DOS ignores the
volume specification.

Index

(@ (conTroD)-(RESET) 181

33

25,33

= 141,143

] 15,21

> 15,21

; 26,27,50

, 27,29,57,173

35

& 38

$7

* 7,24,124,173, 187

> 63999 41

*#%% SYNTAX ERROR 167
#3EAG 127

PSYNTAX ERROR 167
13-sector disks 139-145
16K RAM Card 20

3D0G 24,29

*3D0G 124

3D3G 124

3D3G 29

3EAG 124

6502 Assembler/DOS Tool Kit 149
80-Column Text Card 38, 189

A

Aregister 160, 161
ADDRESS program 79, 178
addresses, binary 118
addressing tracks and sectors
159-163
ampersand 38
An argument 118,185
with BLOAD 121,197
with BRUN 120, 197
with BSAVE 122,197
ANIMALS program 178
APPEND command 28, 69, 175,
194
Apple Il Reference Manual 24
Apple Language System 109

index

Apple Writer2.0 91
APPLEPROMS program 178
Applesoft BASIC 13, 20, 23, 25,
169, 190
and CHAIN 103
and MAXFILES 102
Applesoft BASIC Programmer’s
Reference Manual 3,20, 28,62
Applesoft Card 20
Applesoft Il BASIC Programming
Manual 132
APPLESOFT language file 110
APPLESOFT program 21, 169, 177
Applesoft Tutorial 3,19
Applesoft/DOS Tool Kit 91
APPLEVISION program 178
arguments 184-186
array(s)
definition 56
with CHAIN 103
ASCII 25
asterisk 7,10, 24, 124,173, 187
AWAY program 94

B

BASIC 20
BASIC program files 20-24
BASICS disk 144, 145
binary addresses 118
binary files 117-123, 158
commands 119-123, 197
BLACK.BOOK 79, 178
BLOAD command 119, 121, 134,
197
Bnargument 171, 185
with READ 68, 193, 196
with WRITE 68, 196
BOOT13 program 144, 177
BRICK OUT program 178
BRUN command 119, 120, 197
BSAVE command 119, 120, 122,
158, 197

buffer, file 65, 85, 101, 191, 195
buffering 101
bugs 28
byte(s) 101
link 149

Cc

C argument, with MON 29, 190
C argument, with NOMON 30, 190
C00G 161
CALL -151 123, 124
CALL -868 30
CALL 1002 34,127
CALL 3072 161
CALL statement 129
7
CAPTURE routine 97
capturing lines 96
carriage return 27,28, 47, 192
CATALOG command 7, 151, 187
CHAIN command 91, 192
and Applesoft 103
and Integer BASIC 103
CHAIN program 103, 105, 177
CHR$ function 25
CLOSE command 48, 100, 174
with random access 85, 195
with sequential access 66, 193
CnooG 18t
cold start 181
COLOR TEST program 178
comma 27,29, 38,57, 173
infields 59
command
arguments 184-186
defaults 6
description 5
notation 5, 183
program environment 190-192
summary 186-197
syntax 184
command file(s) 20, 91-99
and INPUT 100
creating 94
commands
binary 119-123, 197
random-access 84-88, 195-196
nonprogramming 187
sequential-access 65-71,
192-194
contents of sectors 148
control characters 25, 33
(conTRoL)-(a) 59
(Contro)-(B) 24
(contRoL)(¢) 100, 124, 143

Index

(controL-(0) 25, 26, 28, 34, 91, 92, 126,

127,183, 189
(contROL)-(H) 33
(conTROL-(K) 24
(conTROL)-(1) 181
(conTROL)-(M) 33
(conTroL)-(F) 124, 127, 181
(conTroL)-(RESET) 182
(conTRoL)-(s) 64
(conTROL)-(v) 33
CONVERT13 program 140, 177
converting 13-sector disks 140-143
COPY program 170, 177
COPY.OBJO program 177
COPYA program 177
COUT1 routine 128
CSWH 127
CSWL 127
current position pointer 50, 69

D

D$ variable 26,28
debugging 28-30
defaults 6
deferred execution 20, 28, 183
DELETE command 11, 187
DELETE.ME.1 program 178
DELETE.ME.2 program 178
DELETE.ME.3 program 178
deleting files 66, 158, 187
device-characteristics table 160,
161, 163
direct DOS commands 7-15
directory, disk 7, 148, 151-155
DISKFULL 173
disk(s)
13-sector 139-145
access commands 187
capacity 183
initializing 8, 101, 187
master startup 108, 182
protection 10
startup 108
turnkey 108, 182
Dnargument 6,173,185
DO’ER command file 92
DOIT command file 94
dollar sign 7
DOS error messages 167-175
DOS
and Monitor 127
defauits 6
disks 3
entry points 133
environment 3,4
reconnect routine 133
requirements 4

syntax 5

vectors 163-164
DOS User’'s Manual 3
drive number option 6
DUPLICATE LINE NUMBERS 41

E

EDASM 91

Encommand 37

END command 37

END OF DATA 69, 171, 191, 194

equal sign 141,143

error messages, DOS 167-175

error trapping 30-33

(Ese) 33

(Es©) (controD)-(0) 33, 35, 189

EXEC command 20, 39, 52, 91, 99,
191

EXEC DEMO program 92, 178

EXEC file 20

EXTRA IGNORED 54

F

FID program 177

field(s)
definition 47
random access 47
sequential access 47
withcommas 59

file buffer 85, 101,147,191, 195
definition 65

FILELOCKED 10, 31, 173

file name 184

FILENOT FOUND 9, 11, 12, 13,
172,187

file protection 10, 11

filetype 13, 15,47, 149, 154

FILE TYPE MISMATCH 13,174,
189

file types 174,183, 187

file(s)
deleting 66, 158, 187
locking 7,187,188
protecting 188
renaming 187
unlocking 188

files
binary 117-123, 158
command 91-99
random-access 47, 75-88, 151
sequential-access 47-71
text 48,192

FILEM program 177

FIRST command 37

floating point 20, 23

fnargument 5, 184

Index

Fncommand 37

FP command 21, 22, 23, 29, 100,
169, 175, 190

FPBASIC language file 110

FPBASIC program 169, 177, 178,
190

functions 25
with CHAIN 103

G

GET command 171

GET statement 54, 59, 86, 196
GET TEXT program 63, 91,92,178
greater-than-sign 15, 21

H

Hcommand 38
HELLO program 177,178
Applesoft 26
Integer BASIC 26
hexadecimal 6,7, 117
hidden characters 33
high-resolution graphics 132
HIMEM 129, 133,175
and MAXFILES 102, 132, 191
values 132
hold buffer 39
HOLD command 38
HOLD FILE IN USE 41

I

| argument, with MON 29, 190
| argument, with NOMON 30, 190
1/0O block 160, 161
format 162
/0 ERROR 12, 15, 139, 172, 188
immediate execution 19, 183
Incommand 37
IN#0 36
IN# command 34, 36, 126, 127,
170, 189, 191
INC command 37
INIT command 182, 187
initializing disks 8, 101, 182, 187
INPUT command 171
input registers, DOS 126
input registers, Monitor 125
INPUT statement 54, 86, 191, 196
with command files 100
INT command 21, 22, 23, 29, 100,
169, 175, 190
INTBASIC language file 110
INTBASIC program 177,178
Integer BASIC 4, 13, 20, 21, 23,
169, 190
and CHAIN 103
and MAXFILES 102

Integer Card 20
intercepting errors 30-33

J

K

KEYIN routine 128
KSWH 127
KSWL 127

L

Language Card 6, 20, 109, 169, 190
LANGUAGE NOT AVAILABLE 13,
21,109, 169, 188, 190
left-arrow key 33
LIMITED MEMORY... 41
LINE INCREMENT 41
LINE INCREMENT TOO
LARGE 41
line numbers 37
LINE TOO LONG 41
line-number references 39
link bytes 149
link pair 149
LIST command 94
Lnargument 118, 185
with OPEN 84
with BSAVE 122,197
with OPEN 171,195
with READ 171
with WRITE 171
LOAD command 14,21, 169, 188
LOADER.OBJO program 109, 110,
169, 177,178
LOADING APPLESOFT... 21
LOADING INTEGER... 21
LOCK command 10, 178
LOCK.ME.1 program 178
locked files 7, 187, 188
LOCKED.UP.1 program 178
LOCKED.UP.2 program 178
LOMEM 133,175

m

Mcommand 38

machine language 98

MAKE TEXT program 61, 70, 96,
178

MAKE.DOIT program 94

maps, memory 129-133

MASTER CREATE program 106,
177

master disk 182

MASTER program 91, 106, 110, 177

master startup disk 108

Index

MAXFILES command 39, 65, 91,
101, 174, 175, 191
and Applesoft 102
and HIMEM 132
and Integer BASIC 102
memory address 118
memory maps 129-133
memory pages 132
memory, and high-resolution
graphics 132
MERGE command 38
MON command 28, 29, 190
with GET 59
Monitor and DOS 127
Monitor I/O registers 125
monitor input link 127
monitor outputlink 127
Monitor program 24, 124, 127
prompt character 124
MUFFIN program 140, 177

N

n57

nargument 184

n(controL)-(k) command 127

n(contrRoL)-P) command 127

NEW 26, 100

NO BUFFERS AVAILABLE 102,
174,191

NO LINES IN RANGE 41

NO PROGRAM IN MEMORY 38,
42

NOMON command 28, 29, 30, 190
with GET 59

NOT DIRECT COMMAND 175

notation, command 5, 183

NOTRACE statement 28

number sign (#) 35

numbers 6

(0

O argument, with MON 29, 190
O argument, with NOMON 30, 190
ONERR DEMO program 31, 32,
178
ONERR GOTO statement 30, 31,
32
OPEN command 28, 48, 87, 94,
175,187
with random access 84, 195
with sequential access 65, 192
OuT OF MEMORY 42
outputregisters, DOS 126
output registers, Monitor 125

P

Page 3 163-164

pages 132

PEEK function 30, 31,98

peripheral device 34

PHONE LIST program 178

pointer, current position 50, 69

POKE function 98, 127,175

POKER program 98, 178

POSITION command 28, 68, 87,
171,175

PR# command 34, 35, 126, 127,
170, 174,189, 191

PR#0 33

PR#3 33,35

PRINT command 94

PRINT to afile 53

PROGRAM ON HOLD... 38

PROGRAM TOO LARGE 175

prompt character(s) 15, 21
Monitor 24,124

protecting files 188

R

RAM 4,20
RANDOM program 77,178
random vs. sequential access 49
random-access commands 84-88,
195-196
random-access files 47, 75-88, 151
random-access memory 4,20
RANGE ERROR 101,170
READ command 28, 175
with random access 77, 87, 196
with sequential access 68, 193
read-only memory 20
reconnecting DOS 133
record length 76, 84, 85
records, 47,75
references, line number 39
registers, 1/0 125-127
REMARK statement 39
RENAME command 9, 31, 187
renaming files 187
RENUMBER program 36-42, 177
commands 38
error messages 41
39, 182
resident language 20
7
right bracket 15, 21
right-arrow key 25, 33
Rnargument 185
with EXEC 99, 171, 185, 191
with POSITION 69, 171, 185, 194
with READ 87, 171, 185, 196
with WRITE 86, 185, 196

Index

ROM 20
RUN command 13, 14, 21, 169, 188
RWTS subroutine 159-163

S

SAMPLE PROGRAMS disk 4, 32,
61,63,77,79,91,92,98, 178
SAVE command 15, 158, 188
sector(s) 147-149
addressing 159-163
allocation 158
contents 148
definition 147
unassigned 151
semicolon 26, 27, 50
sequential vs. random access 49
sequential-access commands
65-71,192-194
sequential-access files 47-71
slot0 6
slot number 6
slot number option 6
SLOT# program 177
Sn argument 6, 173, 181, 186
with RENUMBER 37
START command 37
START13 program 144,145,177
starting a program 34
startup disk 108
storage 147-165
summary card 3
summary, DOS commands 186-197
summary, DOS operating
concepts 181-186
switching languages 22
SYNTAX 42
SYNTAX ERROR 167,173
syntax, command 5, 184
SYSTEM MASTER disk 3, 36, 103,
105, 106, 109, 110, 140, 144, 145,
169,177, 182

T

27

text files 48, 192

TEXT statement 62

text window 62

TRACE 28,87

track bitmap 157

tracks 147-149, 158
addressing 159-163
allocation 158
definition 147

track/sector allocation 158

track/sector list 148, 149-151, 183
track/sector pairs 150, 151
translating machine language 98
turnkey disk 108, 182

u

UNABLE TO READ 139
UNABLE TO WRITE 139
UNLOCK command 11, 188
unlocking files 188

4

VERIFY command 12, 173, 188

VERIFY.ME program 178

Vnargument 7, 186

VOLUME MISMATCH 172

volume number 8

volume number option 7

volume table of contents 148, 152,
155-156

VTOC 155, 157, 158

w

warm start 182

wildcard 141, 143

window, text 62

WRITE command 28, 69, 94,
158, 175
with random access 76, 86, 196
with sequential access 67, 193

WRITE PROTECTED 170

write-protection 10

X

Y
Y register 160, 161

V4
zero page 165

Index

i’gpple computar

20525 Mariani Avenue
Cupertino, California 95014
(408) 996-1010
TLX 171-576 030-0536-A

