
I

Apple II DOS Programmer's Manual
®

For II, II+, lie

Customer Satisfaction

Limitation on Warranties
and Liability

Copyright

Product Revisions

If you discover physical defects in the manuals distributed with an Apple product or i1 ht
media on which a software product is distributed, Apple will replace the documentation or
media at no charge to you during the 90-day period after you purchased the product.

In addition, if Apple releases a corrective update to a software product during the 90-day
period after you purchased the software. Apple will replace the applicable diskettes and
documentation with the revised version at no charge to you during the six months after the
date of purchase.

In some countries the replacement period may be different; check with your authorized
Apple dealer. Return any item to be replaced with proof of purchase to Apple or an
authorized Apple dealer.

Even though Apple has tested the software described in this manual and reviewed its
contents, neither Apple nor its software suppliers make any warranty or representation,
either express or implied, with respect to this manual or to the software described in this
manual, their quality, performance, merchantability, or fitness for any particular purpose. As
a result, this software and manual are sold "as is," and you the purchaser are assuming the
entire risk as to their quality and performance. In no event wm Apple or its software suppliers
be liable for direct, indirect, incidental, or consequential damages resulting from any defect
in the software or manual, even if they have been advised of the possibility of such
damages. In particular, they shall have no liability for any programs or data stored in or used
with Apple products, including the costs of recovering or reproducing these programs or
data. Some states do not allow the exclusion or limitation of implied warranties or liability for
incidental or consequential damages, so the above limitation or exclusion may not apply
to you.

This manual and the software (computer programs) described in it are copyrighted by
Apple or by Apple's software suppliers, with all rights reserved. Under the copyright laws,
this manual or the programs may not be copied, in whole or part, without the written
consent of Apple, except in the normal use of the software or to make a backup copy. This
exception does not allow copies to be made for others, whether or not sold, but all of the
material purchased (with all backup copies) may be sold, given or loaned to another person.
Under the law, copying includes translating into another language.

You may use the software on any computer owned by you but extra copies cannot be made
for this purpose. For some products, a multi-use license may be purchased to allow the
software to be used on more than one computer owned by the purchaser, including a
shared-disk system. (Contact your authorized Apple dealer for information on m!Mi-use
licenses.)

Apple cannot guarantee that you will receive notice of a revision to the software described
in this manual, even if you have returned a registration card received with the product. You
should periodically check with your authorized Apple Dealer.

© Apple Computer, Inc., 1982
20525 Mariani Avenue
Cupertino, California 95014
(408) 996-1010

Apple and the Apple logo are registered trademarks of Apple Computer, Inc.

Sinultaneously published in the U.S.A. and Canada. AH rights reserved.

Reorder Apple Product #A2L2012

Applell DOS Programmer's Manual
'-••

Contents

Preface xi

II Introduction
3 1.1 The DOS Environment
3 1.1 .1 The DOS Disks

1

4 1.1 .2 Requirements for Using DOS
4 1.1 .3 A Few Conventions
5 1.2 How DOS Commands Are Described
5 1.2.1 Notation
5 1 .2.2 Syntax
7 1.3 Direct DOS Commands
7 1.3.1 The CATALOG Command
8 1.3.2 The INIT Command
9 1.3.3 The RENAME Command

10 1.3.4 The LOCK Command
11 1.3.5 The UNLOCK Command
11 1.3.6 The DELETE Command
12 1.3.7 The VERIFY Command
13 1.3.8 The RUN Command
14 1.3.9 The LOAD Command
15 1.3.1 O The SAVE Command

DOS Programming Tools 17
19 2.1 Ways of Using DOS Commands
19 2.1.1 Immediate Execution
20 2.1 .2 Deferred Execution
20 2.1.3 Command Files
20 2.2 BASIC Program Files
22 2.2.1 Switching Languages with the FP and INT

Commands
24 2.2.2 Returning to BASIC from the Monitor Program

Contents •

25 2.3 Using DOS From a Program
26 2.3.1 Example
27 2.3.2 Things to Watch Out For
28 2.4 Debugging With the MON and NOMON Commands
29 2.4.1 The MON Command
30 2.4.2 The NOMON Command
30 2.5 Intercepting Errors With Applesoft
31 2.5.1 Example
33 2.5.2 Finding Hidden Characters in a File Name
34 2.6 Talking to Other Devices From a Program
34 2.6.1 Starting a Program With PR# and IN#
35 2.6.2 The PR# Command
36 2.6.3 The IN# Command
36 2.7 The RENUMBER Program
37 2.7.1 RENUMBER Commands
41 2.7.2 RENUMBER Error Messages
43 2.8 Summary
43 2.8.1 Commands
43 2.8.2 Program

II Using Sequential Text Files 45
47 3.1 Comparing Sequential- and Random-Access Text Files
49 3.1.1 Choosing Sequential- or Random-Access Text Files
50 3.1.2 Current Position Pointer
50 3.2 Sequential-Access Text Files
50 3.2.1 The Field
53 3.2.2 Entering and Reading Text
61 3.2.3 Programs: Entering and Reading Text
65 3.3 Commands Used With Sequential-Access Text Files
65 3.3.1 The OPEN Command - Deferred Execution
66 3.3.2 The CLOSE Command - Immediate or Deferred

Execution
67 3.3.3 The WRITE Command - Deferred Execution
68 3.3.4 The READ Command - Deferred Execution
68 3.3.5 The POSITION Command - Deferred Execution
69 3.3.6 The APPEND Command - Deferred Execution
71 3.4 Command Summary

• Contents

Using Random-Access Text Files 73
75 4.1 Random-Access Text Files
76 4.1.1 Record Length
76 4.1 .2 Writing to a Record
77 4.1 .3 Reading From a Record
77 4.2 A Demonstration: The RANDOM Program
79 4.3 A Sample Random-Access Program
79 4.3.1 Controlling the Program
79 4.3.2 Storing Records
80 4.3.3 Writing a Record
82 4.3.4 Reading a Record
84 4.4 Commands Used With Random-Access Text
84 4.4.1 The OPEN Command - Deferred Execution
85 4.4.2 The CLOSE Command - Immediate or Deferred

Execution
86 4.4.3 The WRITE Command - Deferred Execution
87 4.4.4 The READ Command - Deferred Execution
88 4.5 Command Summary

Programming With More Sophistication 89
91 5.1 Using a Command File
92 5.5.1 The EXEC Demonstration
94 5.1.2 Creating a Command File
96 5.1 .3 Special-Purpose Command Files
99 5.2 The EXEC Command

101 5.3 The MAXFILES Command
101 5.3.1 Buffering Information
102 5.3.2 Example
103 5.4 CHAIN
103 5.4.1 The CHAIN Command - Integer BASIC
105 5.4.2 The CHAIN Program - Applesoft
106 5.5 The MASTER Program
107 5.5.1 Example
108 5.6 Making a Turnkey Disk
108 5.6.1 Creating a Turnkey Disk
109 5.6.2 Creating a Master Turnkey Disk
109 5.6.3 A Disk for All Systems
113 5.7 Summary
113 5.7.1 Commands
113 5.7.2 Program

Contents •

m
•

Using Memory More Efficiently
117 6.1 Binary Files
118 6.1.1 Binary Addresses
118 6.1.2 An and Ln: The Memory Address Arguments
119 6.2 The Binary Commands
120 6.2.1 The BRUN Command
121 6.2.2 The BLOAD Command
122 6.2.3 The BSAVE Command
124 6.3 DOS and the Monitor Program

115

125 6.3.1 Input and Output Registers of the Monitor Program
126 6.3.2 Input and Output Registers of DOS
127 6.4 Memory Usage and Entry Points
127 6.4.1 PR# and IN# in Memory
129 6.4.2 Memory Maps
133 6.4.3 DOS Entry Points
135 6.5 Binary Command Summary

Dealing With 13-Sector Disks 139
140 A.1 Converting 13-Sector Disks: The CONVERT13 Program
140 A.1 .1 Example
143 A.1.2 The Wildcard Character
144 A.2 Running Unconverted 13-Sector Disks
144 A.2.1 Using the START13 Program
145 A.2.2 Using the BASICS Disk

The Storage Process
147 B.1 Tracks and Sectors
148 B.2 Contents of File Sectors
149 B.2.1 Format of File Sectors According to File Type
149 B.2.2 The Track/Sector List
151 B.2.3 The Disk Directory
155 B.2.4 The Volume Table of Contents
157 B.2.5 The Track Bit Map
158 B.3 Track and Sector Allocation

147

159 B.4 Addressing Tracks and Sectors: The RWTS Subroutine
160 B.4.1 Example
162 B.4.2 Formats: 1/0 Block and Device-Characteristics

Table
163 B.5 DOS Vectors in Page 3
165 B.6 Zero Page Use

DOS Error Messages
168 C.1 DOS Error Messages
169 C.2 Recovering From Errors

Contents

167

Programs
1n D.1 Programs on the SYSTEM MASTER Disk
178 D.2 Programs on the SAMPLE PROGRAMS Disk

177

Summary of DOS Operating Concepts and
Commands 181
181 E.1 Operating Concepts
181 E.1 .1 Cold Start
182 E.1.2 Warm Start
182 E.1.3 Initializing a Disk
182 E.1 .4 Creating a Master Disk
183 E.1 .5 Interpreting Commands
183 E.1 .6 Capacity
183 E.1.7 FileTypes
183 E.2 Command Notation
183 E.2.1 Conventions
184 E.2.2 Syntax
184 E.2.3 Arguments
186 E.3 Command Summary
187 E.3.1 Nonprogramming Commands for Accessing Disks
190 E.3.2 Commands that Control the Programming

Environment
192 E.3.3 Programming Commands for Sequential-Access

Text Files
195 E.3.4 Programming Commands for Random-Access Text

Files
197 E.3.5 Commands for Binary Files

Glossary 199

Index 211

Contents •

•

Figures and Tables

Chapter 1 Introduction

5 Figure 1-1 . The Syntax of DOS Commands

Chapter 2 DOS Programming Tools

22 Figure 2-1. FP and INT
37 Figure 2-2. The RENUMBER Title Screen

Chapter 3 Using Sequential-Access Text Files

48 Figure 3-1. Printing to a Sequential-Access Text File
48 Figure 3-2. Printing to a Random-Access Text File

53 Table 3-1 . Printing to a Text File
54 Table 3-2. Reading From a Text File

Chapter 4 Using Random-Access Text Flies

80 Figure 4-1. Five Addresses in BLACK.BOOK
80 Figure 4-2. Writing an Address to Record 5
82 Figure 4-3. Reading an Address from Record 5

Chapter 5 Programming With More Sophistication

92 Figure 5-1 . The First Screen of the EXEC Demonstration
93 Figure 5-2. EXEC DEMO's Final Screen
94 Figure 5-3. A Command File

Chapter 6 Using Memory and Disks More Efficiently

119 Figure 6-1. BRUN, BLOAD, and BSAVE
130 Figure 6-2. Memory Areas Overwritten When Booting DOS
131 Figure 6-3. Memory Areas Used by DOS and Both BASICs

125 Table 6-1. Monitor Input Register in Locations 56-57 ($38-$39)
125 Table 6-2. Monitor Output Register in Locations 54-55 ($36-$37)
126 Table 6-3. DOS Input Register
126 Table 6-4. DOS Output Register
132 Table 6-5. The Values of HIMEM

Contents

Figures and Tables

Appendix A Dealing With 13-Sector Disks

139 Figure A-1. 13-Sector Versus 16-Sector Disks
140 Figure A-2. The CONVERT13 Menu
145 Figure A-3. The START13 Title Screen

Appendix B The Storage Process

148 Figure B-1 . Tracks on a Disk
159 Figure B-2. Tracks and Sectors

149 Table B-1. Format of File Sectors for Different File Types
150 Table B-2. First Sector of a Track/Sector List
152 Table B-3. One Sector of a Disk Directory
153 Table B-4. Directory Entry for One File
154 Table B-5. Byte Indicating the File Type
155 Table B-6. Locked/Unlocked Values of the File Type Byte
155 Table B-7. Volume Table of Contents: VTOC (Track $11, Sector $0)
157 Table B-8. Track Bit Map for One Disk Track
157 Table B-9. Typical Track Bit Map
162 Table B-10. Format of an 1/0 Block
163 Table B-11 . Format of a Device-Characteristics Table
164 Table B-12. DOS Vectors ($300-$3FF)
165 Table B-13. DOS Zero Page Use

Appendix C DOS Error Messages

168 Table C-1. DOS Error Messages
168 Table C-2. DOS Error Codes
170 Table C-3. Minimum and Maximum Values of Arguments
174 Table C-4. Types of Files According to Command

Contents •

Preface

Preface

The DOS Programmer's Manual is written for people who want to
store programs and other information on disks. It describes DOS 3.3,
a disk operating system that allows you to place information on disks,
change information already on disks, and retrieve information from
disks. DOS runs on Apple II, Apple II Plus, and Apple lie computers.

The DOS User's Manual can be used as an introduction to this
manual. However, the DOS Programmer's Manual summarizes the
information it contains.

Organization of This Manual
This manual is designed as a reference. The topics covered become
increasingly complex as you progress.

Each chapter begins with an introduction to the topics it contains and
concludes with a summary of the commands that are discussed. ·

Chapter 1 describes the DOS environment and the DOS commands
that are used primarily from the keyboard.

Chapter 2 explains several ways of using DOS commands. It
describes how to embed a DOS command in a program, monitor the
processing, and intercept errors.

Chapter 3 tells you about disk access for text files and compares
sequential and random access. It explains how to write sequential­
access text programs.

Chapter 4 explains random-access files and how to write programs
that use them.

Chapter 5 tells you how to use DOS to write a program that runs other
programs, how to chain programs, and how to create a turnkey
program.

Preface •

•

Chapter 6 describes binary files and commands. It also discusses the
relation between DOS and the Monitor program.

Appendix A describes how to run a program on a 13-sector disk and
how to convert 13-sector disks to 16-sector format.

Appendix B explains disk storage: how tracks and sectors are
mapped and used by DOS, and how machine-language
programmers can directly address tracks and sectors.

Appendix C discusses DOS error messages. It lists each message
and suggests ways to fix the problem.

Appendix D describes each program on the SYSTEM MASTER and
the SAMPLE PROGRAMS disks.

Appendix E is a summary of the DOS commands.

The glossary explains some of the terms that are used in this manual.
Terms shown in boldface in the text are defined in the glossary.

A tear-out reference card inside the back cover lists all the DOS
commands .

Preface

Chapter1

Introduction

3 1.1 The DOS Environment
3 1 .1 .1 The DOS Disks
4 1.1.2 Requirements for Using DOS
4 1.1.3 A Few Conventions
5 1.2 How DOS Commands Are Described
5 1.2.1 Notation
5 1 .2.2 Syntax
6 1.2.2.1 Defaults
6 1.2.2.2 Numbers
6 1.2.2.3 The Slot Number Option: [,Sn]
6 1.2.2.4 The Drive Number Option: [,On]
7 1.2.2.5 The Volume Number Option: [,Vn]
7 1.2.2.6 Hexadecimal Numbers
7 1.3 Direct DOS Commands
7 1.3.1 The CATALOG Command
8 1.3.2 The INIT Command
9 1.3.3 The RENAME Command

10 1.3.4 The LOCK Command
11 1.3.5 The UNLOCK Command
11 1.3.6 The DELETE Command
12 1.3.7 TheVERIFYCommand
13 1.3.8 The RUN Command
14 1.3.9 The LOAD Command
15 1.3.1 O The SAVE Command

Introduction •

This chapter briefly summarizes
information in the DOS User's Manual.

Chapter1

Introduction

1.1 The DOS Environment
The DOS Programmer's Manual describes how to use DOS
commands to write and store programs and other information on
disks. DOS is the disk operating system for the Apple 11, Apple II Plus,
and the Apple lie computers.

When you bring the DOS program into the computer, the commands
and capabilities of DOS are added to the other computing capabilities
that are already available.

Here are some suggestions on how best to use the information in
your DOS manuals.

• If you are just beginning to use an Apple II computer, you should
be familiar with the introductory material that came with it.

• Before you begin using disks, it would help you to know the
programming principles described in the Applesoft Tutorial and
the Applesoft BASIC Programmer's Reference Manual.

• Depending on your familiarity with your computer and with
programming techniques, you may want to read the DOS User's
Manual before you begin to write programs that access disks.The
DOS User's Manual is an introduction to the more complex
information in this manual.

By the Way: There's a handy DOS summary card at the back of this
manual. You can tear it out and keep it near your computer.

1.1.1 The DOS Disks

The disk labeled DOS 3.3 SYSTEM MASTER contains the DOS
program itself and other programs that do additional tasks related to
using disks. Many of these programs are described in this manual .

The DOS Environment •

Appendix A explains how to use a
13-sector disk with this 16-sector DOS.

The disk labeled DOS 3.3 SAMPLE PROGRAMS contains
demonstration programs that you can run while you are learning the
DOS concepts. It also contains examples of BASIC programs that will
help you learn to write programs that access disks. This manual
describes many of these demonstration programs and all of the
examples.

1.1.2 Requirements for Using DOS
The DOS operating system runs on any Apple II computer that has
16K (16 kilobytes) of random-access memory (RAM). DOS itself
uses about 10.5K of memory. You'll find if easier to run your programs
if your computer has at least 32K of memory. If you want to use both
the Applesoft and the Integer BASIC programming languages, your
computer must have 64K of memory.

Your Apple II computer must also have at least one disk drive
connected to it. To connect the disk drive, follow the installation
instructions in the manual that came with your disk drive.

DOS, version 3.3, organizes the space on a disk into 16 sectors.

1.1.3 A Few Conventions
Apple II, as used in this manual, implies every model of Apple II
computer: the standard Apple II, the Apple II Plus, and the Apple lie.
The manual says explicitly when information applies only to a specific
model.

The first time important terms are used, they appear in boldface type
and are defined. These terms are also listed in the glossary.

The DOS manuals use two special paragraphs to catch your eye and
deliver especially important information:

By the Way: The gray box provides a reminder or additional
clarification-a faster or better way to do something. It is labeled "Hint" or
"By the Way" or something similar.

.. Warning

I

The warning box indicates danger to a file, a disk, or your system. The
information in the box describes the danger and suggests ways to avoid it.

If you have already read the DOS User's Manual, you can skip the
material in the rest of this chapter. It is a summary, included here so
you have all the information about DOS in one book.

Chapter 1 : Introduction

Rgure 1-1. The Syntax of DOS
Commands

1.2 How DOS Commands Are Described
The syntax (the order and form) of the various parts of a DOS
command is expressed in a kind of shorthand, which is described in
the next section.

1.2.1 Notation
This is the notation that is used in descriptions of command syntax:

UPPERCASE

lowercase

f n

[1

n

1.2.2 Syntax

indicates the actual name of something, like a
DOS command. Type it exactly as indicated.

indicates something you supply, like the name
of a program.

indicates a file name that you supply. A file
name is composed of up to 30 characters. The
first character must be a letter; the others can
be any character, including a space, except the
comma(,).

Square brackets enclose an optional argument
to a command. If you choose to include the
argument, do not type the brackets, which are
used only to indicate an option.

indicates a number you supply.

All the possible forms of each DOS command are presented in a
one-line description of the command (Figure 1-1).

Syntax Examples

Arguments SAVE ELEGANT.CODE, 02
r A " DELETE BOOKS, S6, 01, V3

COMMAND fn [,Sn] [,On] [,Vn] RUN WHIZBOOM, 01 .

~
'--Volume Number

Drive Number
Slot Number

Command Filename

In Figure 1-1, the word COMMAND represents any DOS command
(for example, SAVE). The fn, [,Sn], [,Dn], and [,Vn] are the
command's arguments. An argument in square brackets is optional; if
omitted, DOS uses the default.

How DOS Commands Are Described •

A default is the value DOS assumes
when you do not specify a value.

Hexadecimal number system: base 16,
digits 0 through 9 and A through F.

To boot = to start up

•

1.2.2.1 Defaults

When you don't tell DOS anything about an optional argument, DOS
makes an assumption called a default. A default value is what DOS
uses when you do not explicitly give a value.

For example, suppose you type these commands in this order:

CATALOG,01 ,86
RUN COPYA,02 (command without slot number)

The slot you specified in the first command, slot 6, becomes the
default slot. When you omit the slot number in the RUN command,
DOS uses the default, slot 6.

When you want to change the default, you must tell DOS explicitly;
include the argument in the next appropriate command.

1.2.2.2 Numbers

Replace the lowercase n in an argument with a number. You can use
either a decimal integer or a hexadeclmal number.

1.2.2.3 The Slot Number Option: [.SnJ

The Sn option specifies the number of the slot containing the disk
controller card for the drive you want to use. Replace the lowercase n
with an actual number from 1to7.

By the Way: On Apple II and Apple II Plus computers, slot O holds the
Language Card.

When you use the Sn option, the value you specify becomes the
default slot number. That is, DOS uses this slot number until you
specify a different slot number.

If you don't specify a slot number, DOS looks in the most recently
used slot. If you never specify a slot number in a given session with
DOS, DOS uses the slot from which you started (booted) DOS.

1.2.2.4 The Drive Number Option: [,DnJ

The On option specifies the number of the drive that contains the disk
you want to use. Replace the lowercase n with a drive number, 1 or 2.
When you omit the drive number, DOS uses the drive that it used last.
If you never specify a drive number in a given session with DO.S,
DOS uses the drive from which you started DOS .

Chapter 1 : Introduction

A catalog is a list of files on a volume.

1.2.2.s The Volume Number Option: [,Vn]

The Vn option specifies the volume number of the disk you want to
use. Although the volume option is available with most DOS
commands, it is rarely used. When you use Vn, replace the
lowercase n with a volume number from 0 to 254; that number
becomes the default volume number.

If you omit the volume number when you prepare a disk with the INIT
command, DOS assigns a default number of 254 to that disk. In all
other DOS commands, DOS ignores the volume specification when
you omit this option, specify VO, or type V with no number.

1.2.2.6 Hexadecimal Numbers

Under certain circumstances, you can replace the lowercase n with a
hexadecimal number. Machine-language programmers often use
hexadecimal numbers because it takes fewer hexadecimal than
decimal digits to express a large number.

You are never required to use a hexadecimal number in an option.
But if you choose to, use a dollar sign ($) as the first character,
followed by the hexadecimal digits. For example, the decimal integer
254 expressed in hexadecimal notation is $FE.

Quick Identification: Throughout this manual, hexadecimal numbers are
preceded by a$ sign.

1.3 Direct DOS Commands

A Warning
DOS commands must be typed in capital letters. If you are using an
Apple lie, press (cAPs LOCK J and leave it in the locked position.

1.3.1 The CATALOG Command

The CATALOG command displays a directory of files called a
catalog. The catalog lists the names, sizes, and types of files on a
volume. Locked files are listed with an asterisk(*) next to their file
type.

When a catalog contains more entries than your screen can display
at one time, press !RETURN) to continue.

Direct DOS Commands •

This is the command's full syntax:

CATALOG [,Sn] [,On]

[,Sn] where n is a number from 1 t~ 7, specifies the slot
containing the disk controller card of the drive to be
accessed. If omitted, DOS uses the default slot
number.

[,On] where n is 1 or 2, specifies the disk drive to be
accessed. If omitted, DOS uses the default drive
number.

No Volume Number: If you include a volume number in a CATALOG
command, DOS ignores it.

1.3.2 The IN" Command
The INIT command organizes the surface of a disk into tracks and
sectors, writing zeros in all sectors. INIT also puts a BASIC file and a

An Initialized disk is one prepared for use copy of DOS on the disk. This process creates an Initialized disk.
on an Apple II computer. The DOS program on an initialized disk is always read into the same

memory location.

Turnkey program = greeting program

•

The INIT command takes this form:

INIT fn [,Sn) [,On] [, Vn)

f n is a name of the file to serve as the greeting or turnkey
program.

[,Sn] where n is a number from 1 to 7, specifies the slot
containing the disk controller card of the drive to be
accessed. If omitted, DOS uses the default slot
number.

[,On) where n is 1 or 2, specifies the drive that holds the disk
on which to store the greeting or tumkey program. If
omitted, DOS uses the default drive number.

[, Vn) where n Is a number from Oto 254, specifies a volume
number to assign to a disk. If you specify 0, just V, or
omit the option, DOS uses 254 as the default volume
number .

Chapter 1: Introduction

1.3.3 The RENAME Command

The RENAME command changes the name of a file from the name
indicated by fn1 to the name indicated by fn2. This is the form of the
command:

RENAME fn1 ,fn2 [,Sn] [,On] [,Vn]

fn1 ,fn2

[,Sn]

[,On]

[,Vn]

• Warning

where fn 1 is the name of an existing file and fn2 is the
new name that must be unique. If fn 1 does not exist,
you'll see a FI LE NOT FOUND error message. The
file must be unlocked.

where n is a number from 1 to 7, specifies the slot
containing the disk controller card of the drive to be
accessed. If omitted, DOS uses the default slot
number.

where n is 1 or 2, specifies the drive that holds the disk
containing the file to be renamed. If omitted, DOS uses
the default drive number.

where n is a number from 0 to 254, specifies the
volume number of the disk to be accessed. If you
specify 0, just V, or omit the option, DOS ignores the
volume specification.

If fn2 existed before you executed RENAME, you may no longer be able to
access the original contents of fn2 directly.

Direct DOS Commands •

•

1.3.4 The LOCK Command

The LOCK command locks a file, that is, i.t protects an individual file
from being accidentally altered, deleted, or renamed.

LOCK fn [,Sn] [,On] [, Vn]

fn is the name of the file to be locked.

[,Sn] where n is a number from 1 to 7, specifies the slot
containing the disk controller card of the drive to be
accessed. If omitted, DOS uses the default slot
number.

[, Dn] where n is 1 or 2, specifies the drive that holds the disk
containing fn. If omitted, DOS uses the default drive
number.

[, Vn] where n is a number from 0 to 254, specifies the
volume number of the disk to be accessed. If you
specify 0, just V, or omit the option, DOS ignores the
volume specification.

You'll see FI LE LOCKED if you try to change, rename, or delete a
locked file. To change a locked file, you must first unlock it by using
the UNLOCK command.

In the catalog of the files on a disk, a locked file has an asterisk(*) to
the left of its file type.

By the Way: You cannot lock a disk as a whole. You can, however, protect
an entire disk by covering its write-enable notch with a write-protect tab .

Chapter 1 : Introduction

1.3.5 The UNLOCK Command

The UNLOCK command unlocks a file, removing the file protection
so that you can delete, rename, or change the file.

UNLOCK fn [,Sn] [,Dn] [,Vn]

fn is the name of the file to unlock.

[,Sn] where n is a number from 1 to 7, specifies the slot
containing the disk controller card of the drive to be
accessed. If omitted, DOS uses the default slot
number.

[,Dn] where n is 1 or 2, specifies the drive that holds the disk
containing fn. If omitted, DOS uses the default drive
number.

[, Vn] where n is a number from Oto 254, specifies the
volume number of the disk to be accessed. If you
specify 0, just V, or omit the option, DOS ignores the
volume specification.

1.3.6 The DELETE Command

The DELETE command lets you remove a file from a disk.

DELETE fn [,Sn] [,Dn] [,Vn]

fn is the name of the file to be deleted; fn must be
unlocked. If the file does not exist, you'll see FI LE
NOT FOUND.

[,Sn] where n is a number from 1 to 7, specifies the slot
containing the disk controller card of the drive to be
accessed. If omitted, DOS uses the default slot
number.

[,Dn] where n is 1 or 2, specifies the drive of the disk
containing fn. If omitted, DOS uses the default drive
number.

[, Vn] where n is a number from 0 to 254, specifies the
volume number of the disk to be accessed. If you
specify 0, just V, or omit the option, DOS ignores the
volume specification.

Direct DOS Commands •

For more on buffers, see Chapter 5.

•

1.3.7 The VERIFY Command
The VERIFY command lets you test that a file was written on the disk
correctly and that DOS can still read it.

VERIFYfn [.Sn] [,Dn] [.Vn]

fn · specifies the file you want to verify. Any type of file can
be verified, including text files and binary files. DOS
displays FI LE NOT FOUND if the file does not exist.

[.Sn] where n is a number from 1 to 7, specifies the slot
containing the disk controller card of the drive to be
accessed. If omitted, DOS uses the default slot
number.

(.Dn] where n is 1 or 2, specifies the drive that holds the disk
containing fn. If omitted, DOS uses the default drive
number.

[, Vn] where n is a number from Oto 254, specifies the
volume number of the disk to be accessed. If you
specify 0, just V, or omit the option, DOS ignores the
volume specification.

If the file can be verified, it's safe to assume that the information on
the disk has been stored correctly and can be retrieved whenever
you want.

In verifying a file, DOS simply reads the file from the disk into a file
buffer, an area in memory that is not currently in use. (This does not
destroy a program that might already be in memory.) If DOS can read
the file successfully, it displays the prompt character. If DOS finds that
it cannot read the file (the file was damaged or written incorrectly), it
displays the message I 10 ERROR.

Silence Is Golden: When DOS can read the file, DOS does not display
any message .

Chapter 1 : Introduction

See Section 2.2, BASIC Program Files.

1.3.8 The RUN Command

The RUN command executes an Applesoft or Integer BASIC
program that is stored on a disk.

RUN fn [,Sn] [,On] [,Vn]

fn indicates the program that DOS is to run. Its file type
must be either A or I. If the program is not on the disk,
you'll see FI LE NOT FOUND. If the file type is
neitherAnorl,you'llsee FILE TYPE MISMATCH.
If DOS cannot switch to the program's language, you'll
see LANGUAGE NOT Al.JA I LABLE.

[,Sn] where n is a number from 1 to 7, specifies the slot
containing the disk controller card of the drive to be
accessed. If omitted, DOS uses the default slot
number.

[,On] where n is 1 or 2, specifies the drive that holds the disk
containing fn. If omitted, DOS uses the default drive
number.

[, Vn] where n is a number from 0 to 254, specifies the
volume number of the disk to be accessed. If you
specify 0, just V, or omit the option, DOS ignores the
volume specification.

When DOS sees the RUN command, it finds the specified program,
brings it into memory, and starts it. Before bringing the program into
memory, DOS checks the program's file type. If the file type is A and
Applesoft BASIC is not active, DOS switches to Applesoft (if
possible). If the file type is I and Integer BASIC is not active, DOS
switches to Integer (if possible).

Since RUN automatically loads a program into memory, it is not
necessary to use the LOAD command before you run a program.

By the Way: Once your program is in memory, you can run it again by
issuing the RUN command without a file name. Without a file name, RUN
is a BASIC statement.

Direct DOS Commands •

See Section 2.2, BASIC Program Files.

•

1.3.9 The LOAD Command

The LOAD command transfers a copy of a disk program into memory.

LOAD fn [,Sn] [,On] [,Vn]

fn indicates the program that DOS is to load. Its file type
must be either A or I. If the program is not on the disk,
you'll see FI LE NOT FOUND. If the file type is
neither A nor I, you'll see FILE TYPE MISMATCH.
If DOS cannot switch to the program's language, you'll
see LANGUAGE NOT AIJA I LABLE.

[,Sn] where n is a number from 1 to 7, specifies the slot
containing the disk controller card of the drive to be
accessed. If omitted, DOS uses the default slot
number.

[,On] where n is 1 or 2, specifies the drive that holds the disk
containing fn. If omitted, DOS uses the default drive
number.

· [, Vn] where n is a number from Oto 254, specifies the
volume number of the disk to be accessed. If you
specify 0, just V, or omit the option, DOS ignores the
volume specification.

Before bringing the program into memory, DOS checks the program's
file type and tries to switch to the appropriate BASIC. When you use
the LOAD command to bring the contents of a file into memory, the
file on the disk remains unchanged.

It is not necessary to load a program before you use the RUN
command; RUN automatically loads it into memory.

By the Way: When a new program is loaded into memory, the previous
program is erased from the Apple's memory. If you don't want to lose the
program that is currently in memory, you must store it on a disk using the
SAVE command .

Chapter 1 : Introduction

See Section 2.2, BASIC Program Files.

1.3.10 The SAVE Command

The SAVE command transfers a copy of the BASIC program that is
currently in memory to a file on a disk.

SAVE fn [,Sn] [,Dn] [,Vn]

fn specifies the file name for the program. If a file by that
name already exists on the disk, the file must be
unlocked and must have the same file type (A or I) as
the.program you want to save.

[,Sn] where n is a number from 1 to 7, specifies the slot
containing the disk controller card of the drive to be
accessed. If omitted, DOS uses the default slot
number.

[,Dn] where n is 1 or 2, specifies the drive that holds the disk
containing fn. If omitted, DOS uses the default drive
number.

(,Vn] where n is a number from o to 254, specifies the
volume number of the disk to be accessed. If you
specify 0, just V, or omit the option, DOS ignores the
volume specification.

When the current prompt is], DOS writes the file onto the disk with
the file type A. When the prompt is >, DOS writes the file with the file
type I. In addition to handling file type for you, DOS automatically
determines the location on the disk and the length of the file being
saved.

Warning
If you see I /0 ERROR when you try to save a file, the disk may be bad
or not initialized, the drive you specified may not contain a disk, or the
drive door may be open. Put a fresh, initialized disk in the drive, close the
door properly, and issue the SAVE command again.

Direct DOS Commands •

ha ter 1 lntrodu

Chapter2

DOS Programming Tools

19 2.1 Ways of Using DOS Commands
19 2.1 .1 Immediate Execution
20 2.1.2 Deferred Execution
20 2.1.3 Command Files
20 2.2 BASIC Program Files
22 2.2.1 Switching Languages With the FP and INT

Commands
23 2.2.1 .1 The FP Command
23 2.2.1.2 The INT Command
24 2.2.2 Returning to BASIC From the Monitor Program
25 2.3 Using DOS From a Program
26 2.3.1 Example
27 2.3.2 Things to Watch Out For
28 2.4 Debugging With the MON and NOMON Commands
29 2.4.1 The MON Command
30 2.4.2 The NOMON Command
30 2.5 Intercepting Errors With Applesoft
31 2.5.1 Example
33 2.5.2 Finding Hidden Characters in a File Name
34 2.6 Talking to Other Devices From a Program
34 2.6.1 Starting a Program With PR# and IN#
35 2.6.2 The PR# Command
36 2.6.3 The IN# Command
36 2.7 The RENUMBER Program
37 2.7.1 RENUMBER Commands
38 2.7.1.1 The Syntax of RENUMBER Commands
39 2.7.1.2 Internal Line References
39 2.7.1.3 The Hold Buffer
40 2. 7 .1 .4 Examples
41 2.7.2 RENUMBER Error Messages
43 2.8 Summary
43 2.8.1 Commands
43 2.8.2 Program

DOS Programming Tools

Chapter2

DOS Programming Tools

This chapter discusses how to use DOS commands from the
keyboard and from a program. It describes:

• switching between the two types of BASIC and when to use each.

• how to monitor the action of the commands you have written.

• how to find errors in programs and hidden characters in file
names.

• how your program can communicate with peripheral devices
through the expansion slots.

• how to renumber your program instructions.

This chapter and those that follow describe more advanced ways of
using DOS. The information is for people who are familiar with writing
BASIC programs. If you have done all the examples in the Applesoft
Tutorial, you know enough fundamental programming to use this
manual.

2.1 Ways of Using DOS Commands
You can issue a DOS command directly from your keyboard, by .
embedding it in a BASIC program, or by including it in a command
file.

2.1.1 Immediate Execution
You can issue most, but not all, DOS commands directly from your

Immediate execution: Commands issued keyboard. This is called immediate execution.
from the keyboard.

When you enter a command from the keyboard, DOS looks first at the
command, then compares the command with its list of valid DOS
commands and passes a command that is not in its list to BASIC. You

Error messages; see Appendix c. will sometimes get error messages from BASIC when you meant to
give DOS a command. In this case, check the proper form of the DOS
command and issue it again.

Ways of Using DOS Commands •

Deferred-execution commands are
executed when the program runs.

EXEC file = command file.

An appendix in the Applesoft BASIC
Programmer's Reference Manual
sunvnarlzes the differences between
Integer BASIC and Applesoft.

Add the alternate language by installing
an Applesoft Card, an Integer Card, or a
Language Card (also known as a 16K
RAM Card).

•

2.1.2 Deferred Execution

You can issue most DOS commands from within a BASIC program.
This method of issuing commands is called deferred execution
because commands embedded in a program are not executed until
the program is run. For example, if a program contains the DOS
command OPEN, the program will open a disk file to store
information. The execution of the DOS command will be deferred
until you issue the BASIC statement RUN to execute the program.

2.1.3 Command Fl/es
A program that runs other programs is called a command flle. Since
the EXEC command runs a command file, a command file is also
known as an EXEC file. The command file can contain both DOS
commands and BASIC statements.

2.2 BASIC Program Flies
Apple II computers support two dialects of the BASIC (Beginners
All-purpose Symbolic Instruction Code) programming language:
Applesoft BASIC and Integer BASIC. Integer BASIC, the earlier
version of the BASIC language, operates only on whole numbers
(integers). Applesoft can operate on integers and on numbers
expressed with decimal points (floating point). This is the most
significant difference between them; for more details, see the
Applesoft BASIC Programmer's Reference Manual.

On every Apple II computer, one of the two BASIC languages resides
in read-only memory (ROM). This resident language is available to
you as soon as you turn on your computer. In the standard Apple II,
Integer BASIC is resident. In the Apple II Plus and Apple lie,
Applesoft BASIC is resident.

The language you want to use depends on what work you want the
computer to do for you. The language you can use depends on the
memory size of your computer and the hardware or firmware it has.
For example, if your Apple II computer has 48K or less of random
access memory (RAM), you can have only one dialect in memory at
the same time unless you add a card that supplies additional
memory. It is relatively easy to add RAM memory cards .

Chapter 2: DOS Programming Tools

Many Apple II computers are large enough to hold both dialects in
memory. The Apple lie computer is large enough to contain both
dialects without additional hardware.

When you start DOS in an Apple II computer that has at least 64K of
memory, DOS tries to load the nonresident, or alternate, BASIC
from the disk into memory. DOS reports which BASIC it is loading into
memory. On a computer with resident Applesoft BASIC, you'll see
LOAD I NG I NT EGER BASIC INTO MEMORY. On a computer
with resident Integer BASIC, you'll see LOADING APPLESOFT
BASIC INTO MEMORY. On Apple 11 computers that have less than
48K of memory or when the alternate BASIC is not available on the
startup disk, you will not see the LOAD I NG. • • message.

You can recognize which BASIC is currently active by noticing the
prompt character:

indicates Applesoft BASIC.
> indicates Integer BASIC.

Use the FP or INT commands whenever you want to switch from one
dialect to another.

.. Warning

The APPLESOFT program loads the disk
file FPBASIC, which contains Applesoft,
into the Language Card.

The RUN and LOAD commands automatically try to activate the BASIC
that corresponds to the program's file type.

On the Apple II Plus and Apple lie computers, you'll see LANGUAGE
NOT AVAILABLE when Integer BASIC, the nonresident language, is
not already in memory.

On the standard Apple II computer, Integer BASIC is resident. When
Applesoft is not in memory, DOS looks for the APPLESOFT program and
runs it. If Applesoft BASIC is not on the disk, you'll see LANGUAGE NOT
AVAILABLE.

BASIC Program Files •

Figure2-1. FP and INT

2.2.1 Switching Languages With the FP and INT
Commands

When you have both BASIC dialects in memory, use the FP and INT
commands to switch from one to the other. You can also use FP or
INT to reset the system and memory, even when you are returning to
the same BASIC dialect. Both commands can be used in either
immediate or deferred execution.

• Warning

FPturnson
Applesoft BASIC. I'""-"""'"'

INT turns on
Integer BASIC.

Each reset
clears memory

The FP and INT commands erase your program and variables from main
memory by redirecting the pointers in memory. If you are going to switch
languages, do so before typing in a new program.

• Chapter 2: DOS Programming Tools

2.2.1.1 The FP command

The FP command switches to Applesoft BASIC. FP stands for
floating point. If you had been using Integer BASIC and then decided
to write a program to balance your checkbook, you'd need to switch
to Applesoft BASIC, which can operate on decimal numbers.

This is the form of the command:

FP [,Sn] [,On] [,Vn]

[,Sn]

[,On]

[,Vn]

.. Warning

where n is a number from 1 to 7, specifies the
slot containing the disk controller card of the
drive to be accessed. If omitted, DOS uses the
default slot number.

where n is 1 or 2, specifies the drive of the disk
to be accessed. If omitted, DOS uses the
default drive number.

where n is a number from o to 254, specifies
the volume number of the disk to be accessed.
If you specify 0, just V, or omit the option, DOS
ignores the volume specification.

Do not use the command RUN APPLE SOFT to change languages. If you
See Chapter 6, Memory Usage and Entry do, DOS will test the file type and set memory pointers to accommodate
Points. an Integer BASIC program instead of the Applesoft program you intend to

work with.

2.2.1.2 The INT Command

The INT command switches to Integer BASIC. INT stands for integer.
This is the full syntax of the command:

INT

The INT command does not have any arguments .

BASIC Program Files •

2.2.2 Returning to BASIC From the Monitor
Program
Occasionally, you may see an asterisk(*), the prompting character of

For more about the Monitor program, see the Monitor program. Perhaps you were running a program that had
the Apple II Reference Manual. an error in it and its error routine jumped to the Monitor.

You can return to BASIC from the Monitor in three ways. Two allow
you to get right back to work; the third destroys what you had in
memory, so you'll have to begin again.

1. To restart DOS and return to BASIC with your program and
variables intact, type

3D0G (careful, that's a zero ...)

It's No Dog: 300 is the address in memory where DOS starts. The G
stands for go.

2. To return to BASIC with your program and variables intact, type
(CONTROL)-@] and press (RETURN).

• Warning
I coNTRoL I-@ only starts up the BASIC you were using before you entered the
Monitor. If DOS was disconnected sometime prior to I coNTROL I-@, it will still be
inactive even though you have returned to BASIC.

3. These commands also return to BASIC:

(CONTROL J-@ or 3D3G

• Warning
! coNTRoL !-@ and 3D3G erase both your program and your variables from
memory.

II Chapter 2: DOS Programming Tools

Hyouomitthe ~.DOS
assumes the string Is part of a BASIC
statement and passes it on to BASIC's
command interpreter.

2.3 Using DOS From a Program
Using a DOS command from a BASIC program extends the
capability of your programs in several ways. For example, you might
use deferred-execution DOS commands to automatically display a
disk's catalog, to save a backup copy of records in a file, or to save an
unfinished game so you can continue it later.

To use a DOS command from a program, use the BASIC statement
PRINT followed by the string you want to print. In this case, the string
will contain a DOS command. To indicate that you're printing a DOS
command rather than text, type a~ as the first character of
the string. This is the general form:

PRINT I CONTROL 1-@ "DOS command"

You can use two methods to get a !coNTROLl-@into your program.
In one method, the I CONTROL I-@ is visible in the PRINT statement;
in the other, the~ Is not visible.

To use an invisible I coNTROL 1-@, type ~right after you
type the quote marks that begin the string you want to print:

10 PRINT "CATALOG" (There is a~ between
"andC.)

The I CONTROL 1-@ is there, although you can't see it. This method can
be used for both Integer BASIC or Applesoft program statements.

Caution : Using the 8 keyto copy a BASIC statement will not copy
invisible control characters. In effect, the 8 deletes control characters .

You can see a~ with Applesoft BASIC only. This method
A function returns a value for use in some uses the CHR$ function. The CHR$ function takes a single numeric
further calculation. argument and returns a one-character string consisting of the

corresponding ASCII character.

The ASCII (American Standard Code for Information Interchange)
code for the~ is 4. When you give CHR$ a value of 4, it
returns a I CONTROL 1-@. Set any string variable to CHR$(4) at the
beginning of your program and print that string variable before each
DOS command. You wlll able to see the variable In each statement.
In addition, you'll need to fix it in only one place if you've declared it
improperly.

Using DOS From a Program •

•

In a PRINT statement, (coNrRoL J-@J from a CHR$ function looks
like this:

5 REM VALID ONLY WITH APPLESOFT
1121 D$=CHR$ (4)
2121 PRINT D$;"CATALOG"

0$ is the string variable used throughout this manual. The name of
the variable is a reminder of the control character it contains.

Yo.u Can .OmiUhe Semicolon: Thesemicolon after. 0$ isoplional. You'll
save typing time and memory space by omitting thesemicolo.n when youn
programhas many DOS commands in PRINT statements. Without a
semicolon, line201ookslikethis:

20 PRINT D$"CATALOG"

2.3. f Example
The following Applesoft HELLO program displays a message and the
disk's catalog on the screen. Type NEW to clear the computer's
memory of any previous program and enter this program.

5 REM APPLESOFT HELLO
1121 D$ = CHR$ (4) : REM CONTROL-D

(D$ contains (CONTROLJ-@J)
2121 PRINT "DOS TEST PROGRAMS"
3121 PR I NT II 28 NOIJEMBER 1985 II

(Print a title and a date)
4121 PR I NT D$; "CATALOG" (Then list the catalog)
5121 END

Now type RUN to see how it works.

The equivalent program written in Integer BASIC looks like this.

5 REM INTEGER HELLO
1121 D$ = 1111

: REM CONTROL-D
(There's an invisible (coNrnoLJ-@J
between the quotes)

2121 PRINT "DOS TEST PROGRAMS"
3121 PRINT II 28 NOVEMBER 1885"

(Print the title and the date)
4121 PRINT D$; "CATALOG" (Then listthe disk's directory)
5121 END

Chapter 2: DOS Programming Tools

A semicolon at the encl of a PRINT
statemel'lt prevents BASIC from adding a
carriage-return character after a printed
siring, variable, or literal.

Look closely at line 10, the only one that's different. When you use
this method to set the D$ variable to I coNTRoL J.{fil, it's common
practice to include the remark, REM CONTROL-D.

Heads Up: From now on, most of the examples in this manual will be in
Applesoft.

2.3.2 Things to Watch Out For

There are three things you should watch out for while using DOS
commands from Applesoft programs.

First, be sure you have only one DOS command per PRINT
statement.

Second, be sure D$ is preceded by a carriage return. If the
statement before your DOS command ends with a semicolon, a I TAB I,
or a comma, your DOS command will not go to the DOS command
interpreter.

If a DOS command does not start on a new line, the command will be
printed and not executed. In this example, the word CATALOG is
printed, but it is not executed as a command:

30 0$ = CHR$ (ll) : REM CONTROL-D

40 PRINT "AUTUMN 11
;

50 PRINT O$;"CATALOG"

(D$ iS (CONTROL J-@))
(Semicolon inhibits ""IR=ET=u=R~NI)
(So this doesn't work)

Instead of displaying a disk's catalog, this program. prints AUTUMN
CATALOG.

Warning
When your program unexpectedly prints a DOS command instead of
executing it, look for a program statement that ends with a semicolon .

Using DOS From a Program •

•

If you want to be sure you print a carriage return before each
(coNTROL 1-@J, set your D$ variable to contain both a carriage
return (ASCII 13) and a (CONTROL]-@ (ASCII 4):

D$=CHR$(13)+CHR$C4>

When D$ is declared this way, an Applesoft statement like
PRINT D$;"CATALOG" prints a carriage return before the
(coNTROL I-@ and ensures that the DOS command always starts on
a newline.

... Warning
0$ declared this way will cause problems when you write or append text
files.

The third thing to watch for is that some DOS commands work only in
programs. The DOS commands that can be issued only in deferred
execution are APPEND, OPEN, POSITION, READ, and WRITE.

2A Debugging With the MON and NOMON
Commands
Program errors are often called bugs, and the process of getting a
program to run properly is called debugging. To debug a program,
you may want to follow the exchange of information between the disk
and the computer. Monitoring this action helps you track down
problems.

To watch this exchange, use the MON command. With MON, you can
watch commands like OPEN that control operations to the disk. You
can watch the output to a disk from PRINT statements or the input
coming from a disk, like the data brought in by a READ command.

When you've seen all that you want to see (and to make your program
run faster again), turn off the display with the NOMON command.

Perfect Combination: To see program statement numbers as you're
debugging, combine DOS's MON and NOMON commands with BASIC's
TRACE and NOTRACE statements. See the Applesoft BASIC
Programmer's Reference Manual for details.

When you use TRACE, be sureyour 0$ variable contains both a carriage
return and a [coNrnoLJ-@J. Define 0$ as 0$= CHR$(13) + CHR$(4)

Chapter 2: DOS Programming Tools

2A.1 The MON Command
Normally, you don't see all disk commands or the information sent
between the computer and a disk. To monitor this action, use the
MON command. The syntax of the MON command is:

MON [CJ [,IJ [,OJ

c displays all disk commands.

displays input, that is, information being sent from the
disk to the computer.

0 displays output, that is, information being sent from the
computer to the disk.

The arguments stand for Commands, Input, and Output,
respectively. They may appear in any order and in any combination,
depending on the information you wish to monitor. The commas are
optional, for example: MONICO.

• Warning
At least one of the arguments must be present or MON is ignored.

MON remains in effect until you issue a NOMON, an FP, or INT
command, or you restart DOS with a startup (boot) disk, the
command 300G, or the command 303G.

Debugging With the MON and NOMON Commands •

2A.2 The NOMON Command
The NOMON command turns off the display of disk commands and
information sent between the computer and the disk. The syntax of
the NOMON command is:

NOMON [C] [,I] [,0]

c suppresses the display of all disk commands.

suppresses the display of the input information going
from the disk to the computer.

0 suppresses the display of the output information going
from the computer to the disk.

The arguments stand for Commands, Input, and Output,
respectively. They may appear in any order and in any combination,
depending on what monitoring you want to suppress. The commas
are optional.

£. Warning
At least one of the arguments must be present, or NOMON is ignored.

You can issue a NOMON command so that it prints almost invisibly.
Use

10 PRINT 0$; 11 NOMON Ct I t0 11
: IJTAB PEEK< 37):

CALL -888

where 0$ contains I coNrRoL 1-@, VTAB PEEK(37) moves the cursor
to the beginning of the line that contains NOMON C , I ,o, and
CALL -868 clears that line.

2.5 Intercepting Errors With Applesoft
When DOS or Applesoft detect an error connected with disk usage,
they normally stop the program containing the error, display an

Error messages are listed in Appendix c. error message, and store a code number for the error in memory
location 222.

•

You can create an Applesoft routine that prevents both DOS and
Applesoft errors from stopping your program. The routine can
examine memory and return the error number, which can be tested.
Based on this number, your program can branch to a line that handles
that specific kind of error. To create an error-handling routine, use the
ONERR GOTO statement and the PEEK function .

Chapter 2: DOS Programming Tools

PEEK must be used to determine a
variable. PRINT PEEK prints the variable
on the screen.

The RENAME command won't work on
a locked file. When your program tries
to rename a locked file, DOS returns
FILE LOCKED andtheerror-code
number, 10.

• The ON ERR GOTO statement lets you specify a statement
number to which to transfer control when your program
encounters an error. Your error-handling routine can start at the
statement specified in the ONERR GOTO statement.

• The PEEK function lets your program examine the contents of a
specified location in the computer's memory; the location is
specified as a decimal value. To detect the code number of an
error, examine memory location 222; use PR I NT PEEK < 222 >

to see the code number of the error on your screen. You can also
use PEEK < 222 > to assign the error as a numeric variable. To
detect the statement number that caused the error, use PEEK
< 218 > + PEEK < 219 > * 256. Precede the expression with
PR I NT to see the statement number on your screen.

2.5.1 Example

The program called ON ERR DEMO shows you how to use the
ONE RR GOTO statement and the PEEK function to recover from a
DOS error. The program returns an error number and reports the
number of the statement that caused the error.

ON ERR DEMO can rename a file whether the file is locked or not.
When ON ERR DEMO detects an error, it uses the ON ERR GOTO
statement and branches to an error routine. The error routine gives
you a chance to unlock the file before the program tries to rename the
file again. The routine also displays the error number and line number
of the error.

5 REM ONERR DEMO
10 D$ = CHR$ <ll>

15 PRINT D$; 11 MON C11

(D$ contains (CONTROL 1-@))

(Watch disk commands)

20 ONERR GOTO 100 (Handle an error at line 100)
30 INPUT "FILE TO RENAME? 11 ;F$

(Read a file name into F$)
40 INPUT II NEW NAME? II ;N$

(Read the new name into N$)
50 PRINT D$; "RENAME II ;F$; II t ";N$

(Give the RENAME command)

60 END (No error, program ends)

Line 30 reads into F$ the name of the file to be renamed. Line 40
reads the new name into N$. Line 50 has the RENAME command.
When there is no error, the program renames the file and ends .

Intercepting Errors With Applesoft •

See Appendix C for the complete DOS
error codes and their meanings.

•

When there is an error, the ONERR statement in line 20 sends the
execution to line 100 where errors are handled.

100 PRINT: IF PEEK <222) <> 10 THEN 200

Line 100 tests location 222. If location 222 contains 10 (the code for
FILE LOCKED), execution falls through to line 110 where you get a
chance to rename the file. If location 222 does not contain 10, some
other error occurred and execution goes to line 200.

110 INPUT 11 FILE IS LOCKED. RENAME ANYWAY? <YIN>
II ;y$

120 IF Y$ <> 11 Y11 THEN 160
(No, don't rename file)

130 PRINT D$; "UNLOCK II ;F$
(Yes, unlock the file)

1ll0 PRINT D$; 11 RENAME 11 iF$i 11
1 ";N$

(Rename it)
150 PRINT D$; 11 LOCK ";N$ (Lockitagain)
180 PRINT 0$; 11 NOMON C": END

(Suppress special display)

Line 130 unlocks the file, line 140 renames it, and line 150 locks it
again under its new name.

200 PRINT "ERROR •";PEEK <222);" DETECTED"
210 PRINT "AT LINE ";PEEK <218) +PEEK <219) * 256

When your program has an error other than FILE LOCKED, lines 200
and 21 O display the code number of the error and the statement
number in which the error occurs.

To bring ONE RR DEMO in from the SAMPLE PROGRAMS disk and
try it on a locked file, type

RUN ONERR DEMO

Chapter 2: DOS Programming Tools

2.5.2 Finding Hidden Characters In Fiie Names
You can also use Applesoft BASIC to find hidden characters in a file
name. When a file name contains control characters, you won't see
them printed, but you need to type them to use or delete the file.

If you suspect that you accidentally introduced control characters
into a file name, you can use this Applesoft program to find
any hidden character except lcoNTRoLl-@(carriage return),
(ESC),(CONTROLl-®{8),or ~{8).

10 DATA 2011 1411 2401 211 2011 138
20 DATA 240 1 1 7 1 201 1 128 1 144 , 13
30 DATA 201 1 160 1 176 1 9, 72 1 132
40 DATA 531 ss, 2331 54, 761 249
50 DATA 2531 761 2401 253
60 FOR I = 768 TO 788 + 27
70 READ V: POKE I1V: NEXT I
80 POKE 5410 : POKE 55,3
90 CALL 1002

Type this program, save it, and run it. When you then issue a
CATALOG command, control characters in the file names will be
displayed as blinking characters.

To return to normal display on an Apple Ii and Apple II Plus computer,
type PR•0.

On an Apple lie computer, when you have not turned on the
80-Column Text Card, type PR•0 to return to the standard
40-column display. If you have turned on the 80-Coiumn Text Card,
type PR•3 to return to the 80-column display, or type PR•3 and
I Escl ~to return to 40-column display .

.A Warning
Never Issue a PR#O on an Apple lie when the BO-Column Text Car.d Is
turned on. Doing so yields unpredictable results.

Intercepting Errors With Applesoft •

2.6 Talking to Other Devices From a Program
In this section, you'll find out how to have a program communicate
with a peripheral device-for example, a printer or a disk drive-that
is connected to the computer through a card in an expansion slot.

Your Apple II computer usually sends characters to the display
screen, the standard output device. And it usually reads characters
from the keyboard, the standard input device. The PR# and IN#
commands allow you to use other devices.

• Warning

Without a~. PR#
and IN# are BASIC commands, not DOS
commands.

You cannot have more than one peripheral device active at a time.

With DOS in effect, the PR# and IN# commands can be used in
immediate execution in the usual way (see your BASIC manuals). But
when PR# and IN# are issued by lines in a program, they must be in
PRINT statements preceded by a I coNTROL I-@. For example

20 PR I NT 0$; II PR• 1 "
30 PRINT 0$; II IN• 2"

When you omit~ from the PR# and IN# commands
in deferred execution, DOS partially disconnects and is unable to
print or read characters properly.

To restore DOS's input and output to the standard devices, use the
BASIC statement:

For more information, see Section 6.4.1. CALL 1002

•

2.6. f Starting a Program With PR# and IN#

The primary purpose of PR# and IN# is to direct output and input.
You can also use the commands to start a program on a disk in the
drive connected to the slot specified in the command.

When you use PR# or IN#, DOS tries to run a program in the ROM
chip on the card in that slot. When the program is in ROM on a disk
controller card, the disk controller automatically tries to read
information from the disk. Since reading information from the disk
usually means bringing in the greeting program and running it, this
amounts to starting the Apple 11 .

Chapter 2: DOS Programming Tools

In a program use the command:
PRINT 0$; MPR# n"

2.1.2 The PR# Command
The PR# command specifies one of the computer's slots and the
device connected to the slot as the destination tor output characters.

The PR# command can also be used to run a program on a disk by
specifying the slot ihat contains your disk controller card. The syntax
of the PR# command is:

PR#n

where n is a number from 1 to 7. DOS sends characters to the device
connected through the slot specified by the number. The number
•lgn (#) 18 part of the COllW8Hd and must be typed.

For example, when your computer has a printer controller card
Installed in slot 1 and you want your program to send output to the
printer, use the command:

10 0$=CHR$(4)
20 PRINT 0$; "PR• 1 11

To send output to the screen again, on a standard Apple II or an
Apple II Plus computer, use PR#O.

On an Apple lie computer, when you have not turned on the
80-Column Text Card, use PR#O to return to a 40-column screen.
H the 80-Column Text Card Is operating, use PR#3 to return to an
80-column display, or use PR#3 followed bytEscl ~
to go to a 40-column display.

By the Way: PR# o is a special case. It tells DOS to send output to the
screen ; it does not activate slot 0 on a standard Apple II or an Apple II Plus
computer.

Talking to Other Devices From • Program __ II ____

In a program use the command:
PRINT 0$; "IN# n"

RENUMBER is a programming tool
rather than a utility program.

II

2.6.3 The IN# Command

Ttie IN# command specifies a device as the source for input
characters. The IN# command can also be used to run a program on
a disk. Specify the slot that contains your disk controller card.

The syntax of the IN# command is:

!N#n

where n is a number from 1 to 7. DOS reads characters from the
device connected through the slot specified by the number. The
number sign(#) Is part of the command and must be typed.

For example, if your Apple II computer has an external terminal
connected through slot 4, and you want your program to read
characters from that external terminal, use the command:

10 0$=CHR$(4)
20 PRINT 0$; "IN• 4"

On all Apple II computers, use IN# 0 to read input from the keyboard
again.

By the Way: IN# 0 is a special case. It tells DOS to read input from the
keyboard; it does not activate slot 0.

2.7 The RENUMllER Program
Use the RENUMBER program to renumber all or some of the
statements of your Applesoft BASIC program, merge the statements
of two of your programs, Qr insert a subroutine into your program from
a subroutine library. The RENUMBER program resides on the
SYSTEM MASTER disk. To use the program, put the SYSTEM
MASTER disk in a drive and type

RUN RENUMBER

After the RENUMBER title screen appears (Figure 2-2), issue one of
the RENUMBER commands. You'll see a BASIC prompt character.
RENUMBER stays in memory so you can continue to build your
program by entering and changing BASIC statements. You can run
and save your program, just as if the RENUMBER program were not
there.

Chapter 2: DOS Programming Tools

Figure 2-2. The RENUMBER Title •
Screen

~

AePLESOFT RENUMBER ~
COPYRIGHT· APP.LE COMPUTER, 1978

. t ~·a;;; ;i'.i: :1 ,;;"' l

MERGE
&H ~U_:J . PROGRAM~ ON HOLD c,.'.,_'
&M l!l_ERGE TO PROGRAM ON ~OLD

2.7.1 RENUMBER Commands
The END, FIRST, INC, and START commands specify the
renumbering values. Each value, n, must be a decimal number from
Oto63,999.

STARTn

ENDn

FIRSTn

INCn

(or Sn) where n is a line in the program that is currently
in memory, specifies where to start to renumber. If you
omit the S command, RENUMBER uses o (the first line
in your program).

(or En) where n is a line number in the program that is
currently in memory, specifies where to end
renumbering. If you omit the E command, 'RENUMBER
uses a value of 63,999.

(or Fn) where n is a decimal integer, specifies the new
number to assign to the starting line (the line specified
by S). If you omit the F command, RENUMBER uses
10; that is, it renumbers the first line as 10.

(or In) where n is the increment, specifies the size of
the step to the next line number. If I is omitted,
RENUMBER uses 10, to produce a sequence such as
110, 120, 130 ...

The RENUMBER Program •

I

HOLD

MERGE

(or H) puts your program in the hold buffer and displays
PROGRAM ON HOLDt USE '&M' TO RECOVER.
This message means that whenever you want to
transfer the program into memory again, issue the
MERGE command.

(or M) combines a program in the hold buffer with the
program currently in memory. The M command can
insert a subroutine into your program from a subroutine
library.

MERGE arranges the lines in ascending order. When
there are statements with duplicate numbers, MERGE
puts both in the final file, placing the statement from the
program in memory first, followed by the statement
from the program in the hold buffer.

When there is no program in memory, MERGE
restores the program in the hold buffer to memory. If
you change your mind after putting your program in the
hold buffer, you can use the M command to restore the
hold file as long as you do not load another program
into memory.

When no program is in the hold buffer and you issue
the M command, RENUMBER displays NO
PROGRAM IN MEMORY.

2.7.1.1 The Syntax of RENUMBER Commands

The first character of a renumber command line is an ampersand (&).
The shortest command line is:(!) I RETURN I. When you give this
command, RENUMBER renumbers the program that is currently in
memory, starting at the first and ending with the last program
statement, by assigning 10 to the first program statement and
incrementing the statement numbers by 10.

Use a comma to separate commands when there is more than one
command on a line, for example, &S 50 , E 100 , F 500
(which tells RENUMBER to process lines 50 through 100 of a
program and give the first statement a line number of 500).

You may abbreviate a command to its first letter and the commands
may be in any order.

Chapter 2: DOS Programming Tools

2.7.1.2 Internal Une References

In addition to renumbering the statement numbers in your program,
RENUMBER adjusts line-number references in these statements:

GOTO
GOSUB
DEL
RUN

ON ... GOTO
ON ... GOSUB
THEN (as in "7 IF X = 0 THEN 250")

RENUMBER will not renumber a line-number reference that is part of
a remark. To have your remarks accurately reflect your program,
renumber a line-number reference in REMARK statements yourself.

2.7.1.3 The Hold Buffer

When you use the HOLD command, RENUMBER puts the current
program into a separate part of the Apple ll's memory reserved for
RENUMBER. This area is called a hold buffer. Neither BASIC nor
DOS can use it for their operation. Therefore, when you need as
much of memory as possible, use the hold buffer only while merging
programs.

.. Warning
RENUMBER may take up to one minute to process a 16K program.
During the time it is processing your program, do not press c RESET I! Always
wait for the BASIC prompt before issuing the next command.

Pressing I RESET I or issuing the MERGE command while RENUMBER is
running will destroy your program.

See Chapter 5, for details on command Do not use the MAXFILES command while RENUMBER is in memory.
files. DOS overwrites RENUMBER, destroying it.

RENUMBER commands may be put into a command file. However, when
the program is executed (the EXEC command), RENUMBER returns to
BASIC rather than to the command file.

RENUMBER executes CONVERT, HOLD, and MERGE immediately .. If a
command follows CONVERT, HOLD, or MERGE on the same line,
RENUMBER ignores It.

The RENUMBER Program •

•

2.7.1 A Examples

The first example renumbers an entire program, the second
renumbers part of a program, and the third merges two programs.

1. To renumber your entire program, starting at 10 and incrementing
each instruction number by 10, put the SYSTEM MASTER disk in
drive 1 and type

RUN RENUMBER
Put your program into memory by entering it from the keyboard or
by using the LOAD command to read it into memory from a disk.
After you see a BASIC prompt character, press the@ and then
! RETURN I. To see the renumbered statements, use the LIST command.

2. Here's a sample program that shows the renumbering part of a
program. To try it, first be sure that RENUMBER is in memory, then
type in the program listed on the left.

Orlglnal Version
1 INPUT X
2 IF X<1 THEN 1
3 ON X GOSUB 39,97
27 END
39 PRINT A ---
45 RETURN I
87 PRINT A * A---
99 RETURN ______ r
Now, give the command

& START 97, ENO 99, FIRST 30

Renumbered Version
1 INPUT X
2 IF X<1 THEN 1
3 ON X GOSUB 39,30
27 ENO
30 PRINT A * A
39 PRINT A
40 RETURN
45 RETURN

which renumbers only two statements in the program. To see the
renumbered program, issue the LIST command. Line 87 has
become 30 and 99 has become 40. Note that RENUMBER has
changed the line-number reference in line 3.

Incidentally: This technique can be used when you want to move
statements from one part of your program to another.

3. Suppose you want to merge two programs. With RENUMBER in
memory, load your first program. You may add lines, renumber
them, run the program to test it, and edit the program. When you
are satisfied, put it into the hold buffer by typing

8c HOLD
Now LOAD your second program. You can develop and test this
program as you did the first. Renumber your second program so
its lines don't conflict with the first program .

Chapter 2: DOS Programming Tools

Finally, merge the programs. Type

& MERGE
You can, if you like, run the newly formed program to test it before
you save it on the disk.

Sigh of Relief: If RENUMBER detects an irrecoverable error, it will stop
execution before it makes any changes to your program. It displays an
error message indicating the problem it found.

2.7.2 RENUMBER Error Messages

> 63988
You entered a value that is out of range.

DUPLICATE LINE NUMBERS
One of the new line numbers would be the same as a number
you've specified if RENUMBER continues. Use a smaller
increment (INCn) or a different number for first new line (Fn).

HOLD FILE IN USE
You issued a second HOLD command without issuing an
intervening MERGE command.

LIMITED MEMORY, MAY DESTROY PROGRAM. CONTINUE
<YIN>?

You are operating in too small a system or with too large a
program. If renumbering fails, your program may be destroyed.
Any key other than (Y) cancels the renumbering and returns to
BASIC.

LINE INCREMENT = 0
Not allowed. Specify a value greater than 0.

LINE INCREMENT TOD LARGE
The increment you specified would cause a line to be
numbered beyond 63,999.

LINE TDD LONG
Renumbering would cause a line longer that 239 characters.
Use fewer statements per line.

NO LINES IN RANGE
RENUMBER could not find any lines in the range you specified.
It does not renumber any lines.

The RENUMBER Program •

•

NO PROGRAM IN MEMORY
You tried to renumber with no program in memory. Return to
memory the program that is in the hold buffer by typing
&MERGE.

OUT OF MEMORY
Processing requires more memory than is available.
RENUMBER itself is about 2K bytes long.

SYNTAX .
RENUMBER does not recognize the first letter of a command or
the value you specified is invalid .

Chapter 2: DOS Programming Tools

2.BSummary

2.8.1 Commands

FP [,SJ [,DJ [,VJ

INT

switches to Applesoft BASIC. It resets the pointers in memory
so they no longer point to the previous BASIC program and
variables.

switches to Integer BASIC. It resets the pointers in memory so
they no longer point to the previous BASIC program and
variables.

MON [C] [,I] [,OJ

displays the action between the computer and the disk.

NOMON[CJ [,I) [,O]

suppresses the action display between the computer and the
disk that was turned on by the MON command.

PR#n

specifies a device connected through slot n as the destination
for output characters.

IN#n

specifies a device connected through slot n as the source of
input characters.

2.8.2 Program
RENUMBER

renumbers the statements of all or a part of a BASIC program or
merges the statements of two programs.

Summary •

I Chapter 2: DOS Programming Tools

Chapter3

UsingSequentta~Access
Text Files

47 3.1 Comparing Sequential- and Random-Access Text Files
49 3.1.1 Choosing Sequential- or Random-Access Text Files
50 3.1.2 Current Position Pointer
50 3.2 Sequential-Access Text Files
50 3.2.1 The Field
51 3.2.1.1 Storing Characters in Fields
52 3.2.1.2 A Short Sequential-Access Text File
53 3.2.2 Entering and Reading Text
53 3.2.2.1 Writing To a File Using PRINT
54 3.2.2.2 Reading Characters From a File
55 3.2.2.3 One Part Per Field
57 3.2.2.4 Multiple Parts Per Field
59 3.2.2.5 Reading Fields That Contain Commas
61 3.2.3 Programs: Entering and Reading Text
61 3.2.3.1 A Program for Entering Text
63 3.2.3.2 A Program for Retrieving Text
65 3.3 Commands Used With Sequential-Access Text Files
65 3.3.1 The OPEN Command - Deferred Execution
66 3.3.2 The CLOSE Command - Immediate or Deferred

Execution
67 3.3.3 The WRITE Command - Deferred Execution
68 3.3.4 The READ Command - Deferred Execution
68 3.3.5 The POSITION Command - Deferred Execution
69 3.3.6 The APPEND Command - Deferred Execution
71 3.4 Command Summary

Using Sequential-Access Text Files II

Chapter3

Using Sequential-Access
Text Files

This chapter discusses text files and compares the two types:
sequential-access and random-access. It then describes writing

For oos commands used with random- programs and the DOS commands used with sequential-access text
access text files, see Chapter 4. files.

A text file is a series of fields stored on disk. A field is a sequence of
from 1 to 32767 characters that ends with a carriage return.

AT in the file-type column of a catalog identifies both types of text
files.

3.1 Comparing Sequent/al· and Random­
Access Text Files
A sequential-access text file is a series of fields that can vary in
length. Each successive field immediately follows the carriage-return
character that ends the preceding field. Each time DOS writes to or
reads from a sequential-access text file, DOS starts with the first field
in the file and accesses the fields in sequence, one field after
another.

A random-access text file is a series of records, each made of the
same predetermined number of characters. Since a record can
contain carriage-return characters, which indicate the end of a field, a
record can contain one or more fields. But a// the records of a
random-access text file are the same length. Each time you open a
random-access file, you must specify record length. This way, you
can direct DOS to access any field in the file in any order.

Comparing Sequential· and Random-Access Text Flies •

Figure 3-1. Printing to a Sequential­
Access Text File

Text files store strings of ASCII code (that is, text). However, the
placement of the strings in the file depends on whether the text is
written with sequential-access or random-access commands.
Figure 3-1 shows how text is placed in a sequential-access file;
Figure 3-2, in a random-access file (assuming a record length of 5
with one field per record).

Thel character represents the RETURN character, which is sent
automatically at the end of most PRINT statements.

Character:7 IA T ~o NE ;e Low I
*ASCII: 87 80 C1 04 80 CF CE C5 80 C2 CC CF 07 80 00 00 00 00 00 00 00

File Byte: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Field: 0 2 3

*The ASCII values are represented in hexadecimal numbers and
reflect the fact that data is written to the disk with the high-order
bit set.

Figure 3-2. Printing to a Random-Access Character: 7)
File , A T I

•

*ASCII: 87 80 00 00 00 C1 04 80 00 00 CF CE CS 80 00 C2 CC CF 07 80 00

File Byte: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Record
Byte:012340123401234012340

Field: 0

Record: O

0 0 0

2 3

*The ASCII values are represented in hexadecimal numbers and
reflect the fact that data is written to the disk with the high-order
bit set.

Note: The end of any text file is automatically marked with hexadecimal $0'!].

Your program needs to open any text file before it tries to put anything
into it. After you're finished working with the file, your program must
close it. For these initial and final tasks, use the DOS commands
OPEN and CLOSE.

When your text file is open, your program can print new lines to the
file or read (retrieve) lines from it. Add information to a text file with
the DOS command WRITE and the BASIC statement PRINT; retrieve
information with the DOS command READ and the BASIC
statements INPUT and GET .

Chapter 3: Using Sequential-Access Text Flies

See section 3.3 tor the syntax and use of The arguments you add to these commands and others depend on
sequential-access commands. which of the two text·file types you are using. The main difference is
See section 4.3 for the syntax and use of that arguments to random-access commands specify length.
random-access commands.

3.1.1 Choosing Sequential· or Random-Access
Text Fl/es

The fields of a sequential-access file can vary in length. You use
them only sequentially, starting at the beginning of the file and
working toward the end. Sequential-access is the better type of file
for applications that begin a session by reading the entire contents of
the file and finish by writing the modified contents back to the file.
Many word processors store their text in sequential-access text files.

All the records in a random-access text file must be the same length.
You can use them In any order or modify one record of the file without
affecting the others. Random-access files are the better type for
storing many pieces of information whose maximum length can be
determined and whose contents change frequently. For example, you
could store stock quotations or lists of experimental data in random­
access files.

You might want to consider the following factors when choosing
which type of text file to use:

• Disk space. The first time you write a record to a random-access
text file, the entire record is placed In the file. If you specify a
record length of 200 characters and write only one character to
each record, you waste 199 (198 plus the carriage return)
characters of disk space per record. In actual practice, records are
rarely filled entirely, so random-access text files use disk space
less efficiently than do sequential-access text files.

• Amount of data. When you read all the information into memory
at the beginning of the program, it is faster to read it field by field
from a sequential-access text file.

• Use of data. When the information won't all fit in memory, and you
won't use it in any particular order, it is much faster to use a
random-access text file.

Comparing Sequential- and Random-Access Text Flies •

I

3.1.2 Current Position Pointer

Every open text file has a pointer that keeps track of the current
position in the file. Throughout this manual, this is called the current
position pointer. When you read from a file, the current position
becomes the character following the carriage return after the last
character read. Likewise, when you write to a file, it points to the
position immediately following the last carriage return. When you first
open a file, the current position is the first character position in the
file.

3.2 Sequential-Access Text Files
A sequential-access text file is like a scroll that contains an unlimited
number of lines of text. With a sequential-access file, or a scroll, you
need to search line by line to locate a particular text line. There are no
pages to make the search faster.

3.2.1 The Field

The basic unit of a sequential-access text file is the field. A field can
be compared to a line of text on the screen. Both are a series of
characters that ends with a carriage-return character. To understand
how to create a field in a text file, look first at how the PRINT
statement of BASIC sends a field to the screen.

When a PRINT statement without a terminating semicolon prints a
line to the screen, BASIC puts a carriage-return character at the end
of the line. You can see the cursor move to the next line.

When you print to a file using a PRINT statement that does not have a
terminating semicolon, BASIC puts the contents of the PRINT string
into the file and writes a carriage-return character at the end of the
string. In a file, the string is called a field. The next PRINT statement
creates the next field in the file.

The following BASIC statement could be used to write either a line to
the screen or a field into a file.

50 PRINT "THIS CREATES A FIELD"

A semicolon tells BASIC not to write a carriage-return character at
the end of a line (or a field). To make a longer line or field, use a
semicolon after the string in the PRINT statement, for example

100 PRINT "THIS MAKES PART OF A FIELD";

Chapter 3: Using Sequential-Access Text Flies

The.symbol represents the carriage­
retuf'n character.

Because line 100 ends with a semicolon, the next PRINT statement
will add characters to the same line on the screen (or to the same
field in a text file):

110 PRINT 11 AND OTHER PARTS WILL FOLLOW."

On the screen, lines 100and110 look like this:

THIS MAKES PART OF A FIELD AND OTHER PARTS WILL
FOLLOW.

3.2.1.1 Storing Characters in Fields

Look at the following PRINT statements: they create several fields in
a file and show how the fields relate to each other in a sequential­
access text file.

40 PRINT "GREEN"
50 PRINT "YELLOW"
80 PRINT "ORANGE"
70 PRINT "RED"
80 PRINT "VIOLET"
90 PRINT "BLUE"

This sequential-access text file contains 36 characters in 6 fields of
varying lengths. On the screen, lines 40 through 90 look like this:

GREEN
YELLOW
ORANGE
RED
VIOLET
BLUE

Here is how the characters generated by lines 40 through 90 are
stored in a file:

Character sequence: GREE~ YELLO~ ORANG~RED~ VIOLET~BLUE~
Field number: O 1 2 3 4 5

By the Way: Note that the first.field in a sequential-access text file is
numberedO.

Sequential-Access Text Files •

The EXEC command is described in
Chapters.

•

3.2.1.2 A Short Sequential-Access Text File

The sample program LISTS ELF creates a sequential-access text file
called LISTFILE and places lines in the file.

10 REM PROGRAM LISTSELF
20 0$ = CHR$ (4)
30 PRINT O$;"OPEN

40 PRINT 0$; "WRITE

50 LIST

(D$ iS (CONTROLJ-@J)

LISTFILE"
(Open LISTFILE; create it if it
doesn't yet exist)

LISTFILE"
(Prepare LISTFILE for writing)
(Put the program's listing in

60 PRINT D$;"CLOSE"
LISTFILE; line 40 points there)
(CLOSE all open files)

This short program directs DOS to open LISTFILE (line 30), uses
WRITE so that LISTFILE can be written to (line 40), gives the BASIC
statement LIST, and closes LISTFILE.

Notice that LIST is not a DOS command and is not preceded by a
I coNTROL 1-@J. Indeed, if 0$ were printed here, it would cancel the
last DOS command (WRITE, in line 40).

The WRITE command redirects all output to the file. Therefore, the
LIST statement places the lines of the program, one by one, into
LISTFILE instead of sending them to the screen.

Type in the program. Then put an initialized, write-enabled disk into
drive 1 and type

RUN

This executes LISTSELF, which puts the text file named LISTFILE
on the disk. After LISTSELF has finished running and you see the
prompt character on the screen again, look at the disk's catalog.
You'll see the entry for LISTFILE. The two-sector long entry will be
preceded by a T (for text file).

To check the contents of the new text file, you can use the EXEC
command. The EXEC command expects to deal with text files and to
take commands from them instead of from the keyboard.

When you type in lines of a BASIC program, they are entered in
memory as a BASIC program. Thus, if you use the EXEC command
to read program lines from a sequential-access text file, they too will
enter memory as a BASIC program. You can use the LIST statement
to look at a BASIC program .

Chapter 3: Using Sequential-Access Text Files

By the way: Immediate-execution BASIC commands work on programs
in memory whether you type them in, issue a LOAD command to bring
them in from disk, or have an EXEC file bring them in.

The NEW statement clears memory and First, clear memory with the NEW statement. Then, issue the LIST
variables. statement to prove that there is no program in memory. Now type the

command

Table 3-1 . Printing to a Text File

EXEC LI STF I LE

One prompt character appears on the screen for each line in the
BASIC program. When the disk stops spinning and BASIC prints a
prompt that is· not followed by a line from the program, type

LIST

The LIST statement lists the program that has reappeared in
memory.

3.2.2 Entering and Reading Text ..
How you enter text into a file determines how you will later read it from
the file. Each of the following examples builds on the previous one.

In the next two discussions, the data separated by commas are
called parts. Statement 5 in Table 3-1 shows how to create these
parts; statement 2 in Table 3-2 shows how to read them.

3.2.2.1 Writing to a Fiie Using PRINT

How you terminate the PRINT statement affects how characters are
put into a text file. In Table3-1, A$ has the value "DOG" and B$ has
the value "CAT"; the~ character denotes a carriage return.

PRINT Statement Adds Characters

1. PRINT "TEXT" TEXl}

2. PRINT "TEXT"; TEXT

3. PRINT A$;8$; DOGCAT

4. PRINT A$,8$ DOGCA~

5. PRINT A$;",";8$ 000,CAT)

Sequential-Access Text Flies

Comments

Ends the current field; adds a carriage­
retum character.

Doesn't add a carriage return.

Adds second field to first field; doesn't
add a carriage-return character.

Unlike PRINT to the screen, does not add
spaces between fields separated by
commas; adds a carriage return at the
end.

Adds a comma and second field to the
first field; adds a carriage return •

•

Table 3-2. Reading From a Text File

See the warnings about GET in section
3.2.2.5.

•

3.2.2.2 Reading Characters From a File

How you put characters into a file with PRINT statements determines
how you can read them. INPUT is better for reading some types of
data; GET is better for others.

An INPUT statement contains a variable for each part of a field it can
read. An INPUT statement with one variable reads all characters up
to the next carriage-return character, adding to the variable only the
characters up to a colon or comma. Since an INPUT statement can
read data into more than one variable if the pieces of data are
separated by commas, use INPUT with additional variables to read
characters after a comma.

Use a GET statement to read information that cannot be read with an
INPUT statement. GET reads all characters, including commas and
colons. This is the way to read fields with varying numbers of parts.

Note: INPUT will truncate the information it reads to 239 characters. If the
information is longer than 255 characters, INPUT will cancel the whole
line and start over. This is why it is better to create many short fields than
one long one. Also, it's a good idea to read from a sequential-access file
with a GET statement when you're not sure of the length of the field you
want to read.

Table 3-2 shows some of the ways to read characters with INPUT
and GET.

Statement

1. INPUTA$

2. INPUT A$,B$

3.GETC$

Effect

Reads one part of a field. If a field has more
than one part, BASIC discards the remaining
parts and displays EXTRA IGNORED. This
means the other parts aren't read.

Reads two parts of a field. If a field has more
than two parts, BASIC discards the remaining
parts and displays EXTRA IGNORED. This
means the other parts aren't read. If a field has
less than two parts, BASIC reads parts from
the next field.

Reads the next character (letter, comma, or
colon) from the file.

The next three examples show how to enter and read text with one
part per field, with multiple parts per field, and with fields that contain
commas .

Chapter 3: Using Sequential-Access Text Flies

J = carriage-return character

3.2.2.3 One Part Pel' Field

This program shows you how to write four fields, each containing one
part, to a sequential-access text file.

10 REM MAKE.FRUIT
20 0$ = CHR$ <a> (0$ is !coNrnoLJ-@)
25 PRINT 0$; "MON Ct I tO" (Watch the action)
30 PRINT O$;"OPEN FOUR.FRUITS"

(Create the file FOUR.FRUITS, if
necessary, and OPEN it)

ll0 PRINT "THIS GOES TO THE SCREEN"
(Characters go to the screen
until WRITE is executed)

50 PRINT 0$; "WRITE FOUR.FRUITS"

80 PRINT
70 PRINT
80 PRINT
80 PRINT
82 PRINT

"APPLE"
"BANANA"
"CANTALOUPE"
"DATE"

(Specify the output file)
(Put field O in the file)
(Put field 1 in the file)
(Put field 2 in the file)
(Put field 3 in the file)

0$; "CLOSE FOUR.FRUITS"

94 PRINT 0$; "NOMON
(Close FOUR.FRUITS)

Ct I tO"
(Suppress the action)

98 END

Notice that even after FOUR.FRUITS is open, you can still PRINT to
the screen (line 40). However, after the WRITE statement in line 50,
all PRINT statements send their characters to the file.

Here is how the characters are stored in FOUR.FRUITS.

Character sequence: APPLE) BANANA) CANTALOUPE) DATE)
Field number: 0 1 2 3

Sequential-Access Text Files •

The next program reads the four fields from FOUR.FRUITS with one
input statement. It also displays them to show it's working.

10 REM GET.FRUIT WITH ONE INPUT STATEMENT
20 D$ = CHR$ < 4 > (D$ is I coNrnoL !-@))
25 PRINT D$; "MON Ct I tO" (Watch the action)
30 PRINT D$; 11 0PEN FOUR.FRUITS"

(Prepare FOUR.FRUITS for use)
40 PRINT D$;"READ FOUR.FRUITS"

(Specify file for input)
50 INPUT A$(0) tA$<1> tA$(2) t A$(3)

(If there are no parts left in a
field, DOS reads the first part
from the next field)

80 PRINT A$(0)" "A$(1)" "A$(2)" "A$(3)
(Print the fruits on the screen)

80 PRINT D$;"CLOSE FOUR.FRUITS"
(Close FOUR.FRUITS when
done)

84 PRINT D$; "NOMON Ct I tO"
(Suppress the action)

86 END

You'll see this on your screen:

APPLE BANANA CANTALOUPE DATE

The next program reads four fields of the sequential-access text file
An array is a table of elements (numbers FOUR.FRUITS into successive elements of an array. The DIM
or words). statement in line 15 sets aside space for an array of the specified

number of elements.

I

10 REM GET.FRUIT.INTO.CUPS USING AN ARRAY
15 DIM A$(3)
20 D$ = CHR$ < 4 > (D$ is I coNTROL 1-@))
25 PRINT D$; "MON Ct I tO" (Watch the action)
30 PRINT D$;"OPEN FOUR.FRUITS"

40 PRINT D$; "READ

50 FOR I = 0 TO 3
60 : INPUT A$(I)
70 : PRINT A$CI)
80 NEXT I
80 PRINT D$;"CLOSE

(Prepare FOUR.FRUITS for use)
FOUR.FRUITS"

(Prepare it for reading)
(For fields 0 through 3 read field I
from the file, and print it on the
screen)
(Then do the next field)

FOUR.FRUITS"
(Close FOUR.FRUITS when
done)

Chapter 3: Using Sequential-Access Text Files

84 PRINT D$; 11 NOMON CtitO"
(Suppress the action)

86 END

This program uses the INPUT statement (line 60) once for each field
it reads from the file. The colons in lines 60 and 70 are not required;
they make the program easier for you to read.

3.2.2A Multlple Parts Per Field

The next program places three parts in each of two fields. When you
type the program into memory and run it, the commas between the
parts in lines 50 and 60 are written to the file INVENTORY because
they are within quotes.

1!21 REM BINS
2!21 D$ = CHR$ (ll > (0$ is I coNTRoL 1-@))
25 PRINT D$; "MON C, I tO" (Watch the action)
30 PRINT D$;"OPEN INVENTORY"

(Create the file INVENTORY, if
necessary; prepare to use it)

40 PRINT D$;"WRITE INVENTORY"
(Prepare to write to file)

50 PRINT 11 BOLTStSCREWStNAILS 11

· (Print three parts in field 0)
60 PRINT 11 WASHERStGROMMETStRINGS 11

(Print three parts in field 1)
70 PRINT D$;"CLOSE INVENTORY"

(Close INVENTORY)
84 PRINT D$; 11 NOMON Ctit0 11

(Suppress the action)
86 END

Here's how the characters are stored in INVENTORY:

Character
sequence: BOLTS,SCREWS,NAILS)WASHERS,GROMMETS,RINGS)

Field 0
number:

The INPUT statements in the next two programs will read these
commas in different ways. The commas are treated as markers for
the end of the parts the programs read (retrieve).

Sequential-Access Text Files I

•

This program reads each part into a separate variable.

10 REM DRAWERS
20 D$ = CHR$ <4> (0$is~)
25 PRINT D$;"MON C ,I ,o" (Watch the action)
30 PRINT D$;"OPEN INVENTORY"

(Prepare to use INVENTORY)
40 PRINT D$;"READ INVENTORY"

(Prepare to read from file)
50 INPUT A1$,A2$,A3$tA4$tA5$,A6$

(Read 3 parts from field O and 3
parts from field 1)

60 PRINT D$;"CLOSE INVENTORY"
(Close INVENTORY)

70 PRINT A1$,A2$tA3$,A4$tA5$,A6$
(Print all six parts)

80 PRINT D$;"NOMON c,I,011

(Suppress the action)
90 END

Notice that line 50 simply reads consecutive parts from the file. When
all the parts have been read from one field, parts are automatically
taken from the next field.

This program reads only the first part from each field.

5 REM METAL.PARTS
10 D$ = CHR$ (4) (D$is~)
20 PRINT 0$; "MON c, I ,o" (Watch the action)
30 PRINT os;"OPEN INVENTORY"

(Prepare to use INVENTORY)
40 PRINT D$;"READ INVENTORY"

(Prepare to read from file)
50 INPUT A 1 $ (Read first part from field 0)
60 INPUT A2$ (Read first part from field 1)
70 PRIN1 os;"CLOSE INVENTORY"

(Close INVENTORY)
80 PRINT A1$,A2$ (Displaythetwoparts)
90 PRINT D$; "NOMON C, I ,0 11

(Suppress the action)
100 END

In this example, each INPUT statement reads an entire field,
regardless of the number of parts it has. Line 50 assigns the value
"BOLTS" to A 1 $,discards the rest of field 0, and displays EXTRA
IGNORED. Likewise, line 60 assigns the value "WASHERS" to
A2$, ignores the rest of field 1, and displays EXTRA IGNORED.
Finally, line 70 displays the parts BOLTS and WASHERS .

Chapter 3: Using Sequentlal-Access Text Files

3.2.2.5 Reading Fields That Contain Commas

To read a comma, colon, or control character, or to detect a particular
character as it is read, use the Applesoft GET statement instead of
INPUT. INPUT reads strings of characters separated by a comma,
but GET reads characters one by one from either the keyboard or a
text file.

... Warning
After an Applesoft GET statement reads a character from a text file, the
following problems arise in DOS:

If a DOS command is the first item printed after the GET, the DOS
command may not be executed because the necessary preceding
carriage-return character is missing. To solve this, print a carriage return
before printing the DOS command.

When NOMON C,1,0 is in effect, the first character printed after GET will
not appear on the screen.

When MON C,1,0 is in effect, the first character printed after GET will
appear on the screen.

To solve these problems, put a nonprinting character (like (coNTROL 1-0)
into a variable and print it before the PRINT character you want to see.

Note also that GET reads a field character by character and stores each
character it reads until it arrives at a carriage-return character. Thus,
using GET to read a long string or a series of concatenated strings may
cause memory problems.

If you've been doing the examples, you typed in the BINS program
and created the file INVENTORY. The next example retrieves
characters from INVENTORY by using the GET statement. The GET
statement reads one or more parts from a field.

INVENTORY has three parts in each field. However, there may be
times when you won't know how many parts to read from a field. Use
the GET statement to read an unknown number of parts, separated
by commas, from one field of a file . .

The following subroutine reads parts, separated by commas, and
then places them into consecutive elements of string array A$. The
element in use at any time is indicated by A$(1).

Sequential-Access Text Files •

This example reads only the first field
from the file.

•

The subroutine also uses the GET statement to read one character
into the variable C$. If the character is not a comma or a carriage­
return character, the subroutine adds it to A$(1). When the subroutine
reads a comma that separates two elements, it increments the
variable I by 1, so that I will indicate the next element of the array, and
continues reading characters. It repeats this process until it reads a
carriage-return character indicating the end of the field.

10 R$ = CHR$ (13)
999 REM READ A FIELD
1000 I = 0
1010 I = I + 1
1020 GET C$

(R$ is a carriage return)

(Start with array element 0)
(Use next array element)­
(Read the next character)

1030 IF C$ = 11
1

11 THEN GOTO 1010
(If comma, use next element)

1040 IF C$ = R$ THEN RETURN
(If GET reads a carriage return,
there are no more elements to
read; otherwise

1050 A$ < I) = A$ < I) + C$ add C$ to the element)

1080 GOTO 1020

To use this subroutine, you need a program that calls the subroutine
to retrieve the parts from the first field of the file INVENTORY. To
summon a subroutine, use GOSUB n, where n is the line on which
the subroutine starts (line 60 below). When the RETURN $tatement
is executed (line 1040 above), execution branches to the line
following the GOSUB statement (line 70 below).

20 REM USE SUBROUTINE
30 D$ = CHR$ (13) + CHR$ <4>

(0$ is carriage return plus
1coNrRoL1-@to ensure that CLOSE
executes)

40 PRINT D$; 11 0PEN INVENTORY"
(Prepare INVENTORY for use)

50 PRINT D$; 11READ INVENTORY"
(Prepare INVENTORY for
reading)

80 GOSUB 1000 (Read all parts from a field)
70 PRINT D$;"CLOSE INVENTORY"

(Close INVENTORY)
80 FOR J = 1 TO I (Now print the I elements of A$

onto the screen)
90 : PRINT A$(J)
100 NEXT J
110 END

Chapter 3: Using Sequentlal-Access Text Files

The TEXT statement converts the display
to 24 Hnes of text (instead of graphics)
and positions the cursor at the beginning
of the bottom line.

You can test this program. After you have typed in the lines of the
program and the lines of the subroutine, type

RUN

You'll see the three words in the first field of the INVENTORY file on
your screen, one word per line.

3.2.3 Programs: Entering and Reading Text
You can see how GET reads a variable number of fields frQm a file by
using two programs from the SAMPLE PROGRAMS disk. the
program MAKE TEXT reads text from the keyboard and saves it in a
file. The program GET TEXT reads text from a file and displays it on
the screen.

3.2.3.1 A Pt0gram for Entering Text

The following program is stored in the file MAKE TEXT. The program
lets you type up to one hundred lines of text and save them in a file. It
asks for lines of text, reads them from the keyboard, and places them
into consecutive elements of the array A$. The program stops
reading lines when it encounters an empty line. The first portion of
MAKE TEXT looks like this:

5 REM MAKE TEXT
10 DIM AS<100> (Allow room for 100 lines in

array)
20 DS=CHR$(4) : REM CONTROL-D

(Set~lnthe
variable 0$)

30 R$=CHR$(13) REM RETURN
(Seti~ RE=T-uR-N I In the variable R$)

40 TEXT : HOME (Set text mode; clear screen)
50 PRINT " TEXT FILE CREATOR"
60 INVERSE : PRINT " TO ADD A STRING:"
70 NORMAL : PRINT " ENTER CHARACTERSt AND

PRESS RETURN"
80 INVERSE : PRINT "TO END:"
90 NORMAL : PRINT " PRESS RETURN ON AN

EMPTY LINE"
100 PRINT : POKE 34,5

Sequentlal-Accesa Text Flies

(Skip 1 line; specify line 6 as top
of screen for new display to save
program Instructions)

II

Setting a text window, see the Apptesoft
BASIC Programmer's Reference
Manual.

I

110 I = I+ 1 : PRINT I;": ";
(Ask for next line of text)

120 GOSUB 1000 (Jump to reading routine)
130 IF A$(I> < > 1111 GOTO 110

(If A$(1) is not empty, go to line
11 o for another line)

In line 40, the TEXT statement switches to text mode and the HOME
statement clears all characters from the screen and moves the cursor
to the upper-left corner of the screen. Lines 50 through 11 O place the
instructions for the program on the screen, some in normal letters,
and some in inverse letters. Line 100 sets a text window, that is, it
freezes the upper six lines of the screen so that the instructions stay
on the screen. The variable I has the value of O the first time it is used.
When the program executes line 110 the first time, it sets I to 1 and
prints "1" on the screen.

Line 120 directs MAKE TEXT to jump to the subroutine that reads a
line of text from the keyboard. This Is the subroutine:

1000 GET C$: PR I NT C$; (Read 1 character and print itto
the screen)

1010 IF C$=R$ THEN RETURN
(If that character = Qfilfil®, exit this
routine; go back to 130)

1020 A$< I) = A$< I > + C$ (If something else was input,
build it into a string)

1030 GOTO 1000 (Go back for more input)

MAKE TEXT reads one character Into the variable C$ and tests C$. If
C$ contains a carriage-return character, execution goes to line 130.
But if C$ does not contain a carriage-return character, the program
adds the contents of C$ into the growing array (line 1020). The
program puts each string into element I of the array A$.

Once the text is stored in the array, MAKE TEXT asks for the name of
the file Into which it should place the text:

140 INPUT "SAVE TO WHAT FILE? ";N$
150 IF LEN CN$)=0 THEN 220

(If no name given, go to 220 to
quit}

160 PRINT 0$; "OPEN "iN$ (Open the file named N$)
170 PR I NT 0$; "WRITE " ; N$ (Prepare to write to it)

The program reads that name into the variable NS. The next line tests
that a name was actually entered. If a file name was not entered, the
program branches to line 220 and quits.

Chapter 3: Using Sequentlal-Acceu Text Files

Note: If the filename does not begin with a letter, DOS will display
SYNTA)-(ERROR.

Next, the program saves the array contents into the specified file. An
empty input line indicates the end of the text. MAKE TEXT then prints
the entire array to the file (lines 180 through 200).

180 FOR J = 1 TO I - 1 (For each line of text, it
190 : PR I NT A$< J > prints the line to the file
200 NEXT J and continues to the next line)
210 PRINT 0$;"CLOSE 11 ;N$ (Closesthefilewhendone)

Finally, with line 220, MAKE TEXT resets the screen pointers for
proper text mode and ends.

220 TEXT : ENO (Resets screen to normal size)

Run this program a few times, creating text files of different lengths.
Experiment with the program's features and get familiar with the way
they work. For example, enter a blank line of text by putting spaces
on that line; since it contains characters, the length of the line will
notbeO.

3.2.3.2 A Program for Retrieving Tut

Creating a sequential-access text file is a challenging exercise. You
also need to have some method for retrieving the information you've
put into the file.

The program GET TEXT reads a sequential-access text file. Load
the program from the SAMPLE PROGRAMS disk and look at the
lines as they are described below.

First, GET TEXT sets up the variables it is going to use. It dimensions
the array A$ to hold up to 100 elements and assigns the value of
I CONTROL 1-@) to 0$ and the value of 1RETURN1 to R$. Before going
on, the program clears the screen and moves the cursor to the upper­
left corner of the screen (line 50).

5 REM GET TEXT
10 ONERR GOTO 150
20 DIM A$(100)
30 R$ = CHR$ (13)
40 0$ = CHR$ (Q)

50 TEXT : HOME

Sequentlal-Access Text Files

(R$ is [RETURN I)
(0$is~)

•

•

In line 60, GET TEXT asks for the name of the file from which to read
text and reads that name into the variable N$. Line 70 tells you that
pressing I CONTROL !-@will stop the program and pressing almost any
key will restart the listing.

60 INPUT II LI ST WHAT TEXT FI LE? II ;N$
70 PRINT : PRINT "TYPE: CONTROL-S TO STOP

LISTING"
80 PRINT " ANY KEY TO CONTINUE"
90 PRINT : PRINT : POKE 34,9

As with the preceding program, GET TEXT freezes the upper six
lines of the screen (line 90) so that they remain on the screen even
when you enter more lines than the screen can hold.

Having read the name of the text file, GET TEXT can now open the
file you've specified and read consecutive lines from it:

100 PRINT D$; "OPEN II; N$
(Open the text file named in N$)

110 PRINT D$; "READ II; N$
(Prepare to read from the file)

120 FOR I = 1 TO 100 (For each line in the file, go to
130 GOSUB 1000 the subroutine to process each

character)
135 : PR I NT A$< I > (Display each character on the

screen)
140 NEXT I (Then do the next string)

The only remaining task is to close the file and reset the screen.

150 PR I NT D$; "CLOSE 11 ;N$ (Close the file)
160 TEXT : END

Here is the subroutine mentioned in line 130. It is similar to the
subroutine of MAKE TEXT.

1000 GET C$: PR I NT C$; (Read 1 character and echo it)
1010 IF C$=R$ THEN RETURN

(If that character was a I RETURN 1, exit
this routine and go back to 135)

1020 A$< I > = A$< I > + C$ (If something else was there,
build it into a string)

1030 GOTO 1000 (Read more)

Chapter 3: Using Sequential-Access Text Files

MAXFILES, see Chapter 5.

3.3 Commands Used With Sequential-Access
Files
This section describes the DOS commands used with sequential­
access files. Note that only one of these commands can be used in
both immediate and deferred execution. The others can be used only
in deferred execution.

3.3.1 The OPEN Command- Deferred Execution
Before writing to or reading from a sequential-access text file, a
program must open that file.

When a program opens a text file, DOS reserves 595 bytes of
memory space for the file; this space is called a file buffer. DOS also
sets the current position (for reading and writing) to point to the
beginning of the file.

The OPEN command allows up to 16 files to be open at once;
however, you must set MAXFILES since each DOS file you use
requires a file buffer.

This is the general form of OPEN:

OPEN fn [,Sn] [, Dn] [, Vn]

fn indicates the name of the file to be opened. When it
does not yet exist, DOS creates one with that name,
type T. If the file already exists, it must not be open.

[,Sn] where n is a number from 1 to 7, specifies the slot
containing the disk controller card of the drive to be
accessed. If omitted, DOS uses the default slot
number.

[,Dn] where n is 1 or 2, specifies the drive that holds the disk
containing fn. If omitted, DOS uses the default drive
number.

[,Vfl] where n is a number from Oto 254, specifies the
volume number of the disk to be accessed. If you
specify 0, just V, or omit the option, DOS ignores the
volume specification.

Previous sections presented several examples of the OPEN
command. This section gives you a new use for OPEN.

Commands Used With Sequential-Access Text Files •

Suppose your program routinely replaces an old text file with a new
one with the same name. When the new one is shorter than the old
one, the new one will have part of the old file hanging on the end
unless the program first deletes the old one. If you don't want this
extra text at the end of the file, delete the old file before writing to the
new one. The next program shows you how to delete a file and open it
for new data, whether or not the file already exists.

5 REM DEMONSTRATES ERROR FREE DELETION
10 D$ = CHR$ < ll> (D$ is (coNTRoL J-@)
20 N$ = "GAMES" (N$isthenameofthefile)
30 PRINT D$; "MON C 'I 10 11 (Watch the action)
ll0 PRINT D$;"OPEN ";N$ (Openthefile. lfitdoesnot

already exist, DOS creates file)
50 PR I NT D$; "DELETE " ; N$ (Since the file definitely exists,

the file can be deleted)
80 PRINT D$;"OPEN 11 ;N$ (Openthefile)

The following statements complete the example program.

70 PRINT D$;"WRITE ";N$ (Preparetowritetothefile)
80 PRINT "TIC"
90 PRINT "TAC"
100 PRINT "TOE"
110 PRINT D$; "CLOSE ";N$ (Close file)
120 PRINT D$;"OPEN ";N$ (Openthefile)
130 PRINT D$;"READ ";N$ (Readthefile)
140 INPUT A$1B$1C$
150 PRINT A$1B$1C$
180 PR I NT D$; "CLOSE 11 ;N$ (Close file)
170 PRINT D$;"NOMON C1I10 11

(Suppress the action)
180 END

By the Way:Deleting a text file frees that file's allocatedfile. buffer as well
as the file's sectors on the disk.

3.3.2 The CLOSE Command· Immediate or
Deferred Execution

For more on file buffers, see Section 5.3. After a program has finished writing to or reading from a file, it must
close the file. Closing every file properly ensures that all characters
are written to the files and that the file buffer is released.

•
~~~~~~~~~~~~.....,. ,c·•··~--~~~~~~---. 

By the way: A program should always close a file that it opened as soon 
as possible, even if only temporarily. You or your program can always 
open the file again if you need it. .... .... 

Chapter 3: Using Sequential-Access Text Files 



In some circumstances, a program contains an error and stops 
before it can close all open flles. When this happens, issue the 
CLOSE command from the keyboard. 

CLOSE takes the form: 

CLOSE[fn] 

where fn indicates the name of the file to be closed. The CLOSE 
command without any arguments closes all open files. 

A Coding Technique: Add an ON ERR GOTO statement that branches to 
a routine that will close all files. 

3.3.3 The WRITE Command· Deterred Execution 

The WRITE command tells DOS which file to write to and where to 
start writing. The WRITE command remains in effect until the next 
DOS command or an INPUT statement. You must use the WRITE 
command before you can use the PRINT statement to place 
characters in a file. 

After a WRITE statement, all output characters that would normally 
be displayed on the screen are sent to the file. This includes the 
question-mark prompting character of an INPUT statement (if INP.UT 
appears after the WRITE command) and error messages (unless an 
ONERR GOTO statement redirects them). 

This command takes the form: 

WRITE fn [,Bn] 

fn indicates the name of the sequential-access text file to 
write to. This argument is required. 

[,Bn] where n is the number of bytes, or characters, to read 
and skip over. This option changes the current position 
in the file. 

You can use the Bn option to tell DOS where in the file 
to write the first character. If you don't use it, DOS 
writes the first character at the current position. 

By the Way: If you have not included an ONERR GOTO statement and a 
DOS error occurs, the error message will be stored as the last field in your 
text file. In addition, the error message will cancel a WRITE command. 

Commands Used With Sequential-Access Text Files I 



3.3A The READ Command - Deferred Execution 
The READ command tells DOS which file to read from. It remains in 
effect until the next DOS command is given. You must use the READ 
statement before you use the INPUT and GET statements to read 
characters from a file. 

This command takes the form: 

READ fn [,Bn] 

fn indicates the name of the file to read from. This 
argument is required. 

[,Bn] where n is the nµmber of bytes, or characters, to read 
and skip over. This option changes the current position 
in the file. 

You can use the Bn option to tell DOS where in the file 
to read the first character. If you don't use it, DOS reads 
the first character at the current position. 

Reminder: Avoid using TRACE (an Applesoft statement) with INPUT 
statements unless you have defined your D$ variable to contain both a 
carriage return and a tcoNTRoLJ-@J:D$=CHR$ < 13 > +CHR$ <a>. 

3.3.5 The POSITION Command- Deferred 
Execution 
The POSITION command lets you access information in any field 
within a file. It automatically opens the specified file and directs DOS 
to start reading at the current position and to skip over a number of 
fields. Since a field is a sequence of characters ending with a 
carriage return, POSITION scans the file, byte by byte, looking for 
carriage-return characters . 

.A. Warning 
The POSITION command cancels a READ or WRITE command; 
therefore, use POSITION before a READ or WRITE. 

I Chapter 3: Using Sequentta~Access 'll!xt Flies 



This command takes the form: 

POSITION fn [,Rn] 

fn indicates the file whose current position is to be altered. 
This argument is required. 

[,Rn] where n indicates the number of fields to read and skip 
over. This number is relative to the current position. 
When Rn is omitted, it defaults to 0, the first field. If you 
try to specify a position past the end of the file, DOS 
displays END OF DATA and stops program 
execution. 

This command specifies that the current position be moved forward 
to the Rth field ahead of the current position. When R is specified as 
0, DOS reads or writes beginning in the current field. When R is 
specified as 1, DOS skips the current field and begins reading or 
writing in the next field. 

The position specified is relative to the current position. For 
example, if the current position is in the fourth field of a file and you 
want to read from the tenth field in the file, skip six fields by using 
POSITION fn,R6. 

... Warning 
H you use POSITION to rewrite the current field, make sure that you print 
exactly the same number of characters that you printed in that field 
originally. If you print fewer characters, you will create a new field: the field 
just printed and the end of the original field. If you print more characters 
than the original field contains, you will write over some of the characters 
of the next field in the file. 

3.3.6 The APPEND Command -Deferred Execution 
The APPEND command opens a sequential-access text file and 
sets the current position to the end of the file so that you may add 
information. After opening the file, the APPEND command sets the 
current position to point to one byte beyond the last character in 
the file. The APPEND command must be followed by a WRITE 
command. 

Commands Used With Sequential-Access Text Flies I 



MAKE TEXT creates a sequential­
access text file 

• 

The APPEND command has this form: 

APPEND fn [,Sn] [,Dn] [,Vn) 

fn indicates the file to append to. When the file does not 
exist, DOS displays FI LE NOT FOUND. 

[,Sn] where n is a number from 1 to 7, specifies the slot 
containing the disk controller card of the drive to be 
accessed. If omitted, DOS uses the default slot 
number. 

[,Dn] where n is 1 or 2, specifies the drive that holds the disk 
containing fn. If omitted, DOS uses the default drive 
number. 

[, Vn] where n is a number from 0 to 254, specifies the 
volume number of the disk to be accessed. If you 
specify 0, just V, or omit the option, DOS ignores the 
volume specification. 

Reminder: Unlike the OPEN command, the APPEND command does not 
create a new file. The file you specify must already exist. 

The next example modifies the program MAKE TEXT so that it adds 
lines to the end of a text file. First MAKE TEXT reads lines of text into 
the array A$ and asks for a file name. Then it opens the file and prints 
the text lines to the file. 

With the SAMPLE PROGRAMS disk in drive 1, load MAKE TEXT into 
memory and display it on the screen by typing 

LOAD MAKE TEXT 
LIST 

Change the code to append text lines to the end of the file by 
replacing the OPEN statement with an APPEND statement. To 
replace lines 50 and 160, enter these lines 

50 PRINT " TEXT FILE APPENDER" 
180 PRINT 0$; 11 APPEND II ;N$ 

To keep this program, save it by typing 

SAVE APPEND TE>{T 

Chapter 3: Using Sequential-Access Text Files 



3A Command Summary 
OPEN fn [,Sn] [,Dn] [, Vn] 

opens a text file so that DOS can write to it or read from it. 
Unless you include a POSITION or APPEND command in your 
program, you must use the OPEN command before you use a 
text file. When fn does not exist, DOS creates a text file with that 
name. When fn exists, OPEN checks that the file is a text file. 

CLOSE[fn] 

tells DOS that you have finished reading from and writing to a 
file. Before ending, a program must close all the files it opened. 

WRITE fn [,Bn] 

tells DOS which file to write to. Use the WRITE command after 
you open the file. DOS writes to fn until another DOS command 
specifies a new fn. 

READ fn [,Bn] 

tells DOS which file to read from and where to start reading. 
Use the READ command after you open the file. DOS reads 
from fn until another DOS command specifies a new fn. 

POSITION fn [,Rn] 

sets the current position within the file. The POSITION 
command lets you skip a specified number of fields in the text 
file before you read or write more information. 

APPEND fn [,Sn] [,On] [,Vn] 

opens an existing text file and moves the current position to the 
end of the file so that your program can add data. 

Reminder: Only CLOSE can be used in immediate execution (that is, 
from the keyboard). All of the other commands must be used in deferred 
execution (that is, issued from a BASIC program). 

Command Summary • 



• Chapter 3: Using Sequential-Access Text Flies 



Chapter4 

Using Random-Access 
Text Files 

75 4.1 Random-Access Text Files 
76 4.1 .1 Record Length 
76 4.1 .2 Writing to a Record 
77 4.1 .3 Reading From a Record 
77 4.2 A Demonstration: The RANDOM Program 
79 4.3 A Sample Random-Access Program 
79 4.3.1 Controlling the Program 
79 4.3.2 Storing Records 
80 4.3.3 Writing a Record 
82 4.3.4 Reading a Record 
84 4.4 Commands Used With Random-Access Text Files 
84 4.4.1 The OPEN Command - Deferred Execution 
85 4.4.2 The CLOSE Command - Immediate or Deferred 

Execution 
86 4.4.3 The WRITE Command - Deferred Execution 
87 4.4.4 The READ Command - Deferred Execution 
88 4.5 Command Summary 

Using Random-Access Text Files • 





Chapter4 

Using Random-Access 
Text Files 

This chapter discusses random-access text files: how to structure 
and use them. It also includes two demonstration programs. The 
chapter ends with a discussion of the random-access commands 
and their syntax. 

Reminder: A sequential-access text file is a series of fields that can vary 
in length. A random-access text file is a series of records, all the same 
length and containing one or more fields. 

4.1 Random-Access Text Files 
A random-access text file is like a notebook with an unlimited number 
of pages (records). Each page holds the same number of characters, 
but the characters can be distributed on an unlimited number of lines 
(fields in a record). With a random-access text file (or a notebook), 
you go to a specific record (or page) before reading or writing fields 
(or lines) qf text. 

To use random-access commands, you need to 

• specify a record length when you open the file. 

• specify the number of the record that you are going to write or 
read. 

It's a Good Idea: To use your random-access text files effectively, keep 
detailed information about their structure, format, record length, and field 

'':."18 •. 'You can put this information into a comment at the beginning of 
each program, for example 

10 REM RIA FILE; RECORD LENGTH 5i ONE FIELD PER 
RECORD 

Better still, include this information in the file name, for example 

RIA FILE-L5F1 

Random-Access Text Files • 



4.1.1 Record Length 
Record length is the allowable number of When you open a random-access text file, assign it a record 
characters per record. length: the number of characters that each record holds. For 

example, to open a random-access text file named STOCK 
SYMBOLS, use this commanq 

• 

30 PRINT 0$; "OPEN STOCK SYMBOLS tl12" 

The L argument specifies that the length of each record in the file 
STOCK SYMBOLS is 12. 

You can also specify record length with a hexadecimal number, for 
·example 

30 PR I NT O$; " OPEN STOCK SYMBOLS,L$C" 

Warning 
Do not specify record length with a hexadecimal number if the length is 
contained in a variable that is less than 10. 

By the Way: When you open a random-access text file, you don't need to 
specify the total number of records for a file. DOS does this for you. 

4.1.2 Writing to a Record 
To use the WRITE command with random-access text files, you 
specify the number of the record you are going to write to. If a record 
with that number does not yet exist, DOS creates it, reserving 
enough space on the disk for that entire record. For example, to enter 
data into record 10 of the STOCK SYMBOLS file, prepare to write to it 
by using the command 

50 PRINT 0$; "WRITE STOCK SYMBOLS tR10" 

By the Way: You can also specify the record with a hexadecimal number, 
for example 50 PRINT 0$ i " WRITE STOCK SYMBOLS 1R$A 11

• 

Then write a PRINT statement to put characters into record 10 of the 
STOCK SYMBOLS file. Even if you enter only one character, the 
record will use the full length declared in the OPEN statement. 

Chapter 4: Using Random-Access Text Files 



The first record in a file is record 0. 

Warning 
Be careful not to print more characters than a record can hold. DOS will 
put any extra characters in the next record. Remember that the carriage 
return at the end of a field is a character too. 

4.1.3 Reading From a Record 
When you use the READ command with a random-access text file, 
specify the number of the record you want to read from. For example, 
prepare to retrieve the seventh record of the STOCK SYMBOLS file 
by typing 

80 PRINT O$;"READ STOCK SYMBOLStRG" 

Then read it with an INPUT or GET statement. If the record you want 
to read doesn't exist, you'll see an END OF DATA message after 
your first GET or INPUT statement. 

4.2 A Demonstration: The RANDOM Program 
The RANDOM program on the SAMPLE PROGRAMS disk uses a 
random-access text file to demonstrate an inventory-control scheme. 
RANDOM is a very simple small program: it can handle at most nine 
parts. Any Apple II computer can handle thousands of parts in an 
inventory. 

RANDOM automatically runs the random-access text file APPLE 
PROMS. You can list one or all items in the inventory. You can also 
change items, either one at a time or all at once. Here's how it works: 

With the SAMPLE PROGRAMS disk in a disk drive, type 

RUN RANDOM 

You'll see these three options: 

~ APPLE PROMS 
COMMAND NUMBER 

LIST 1 
CHANGE 2 
EXIT 3 
CHOOSE NUMBER (1 - 3) 1 

Remember: Press ( RE TURN J each time you complete a response . 

A Demonstration: The RANDOM Program • 



• 

II 

Press 1 and you'll see this message: 

PART NUMBER 1-8 C0=ALL> 0 

Press o to get a list of all the parts in the inventory. You'll see 

When you're ready to return to the list of options, press (RETURN J. 

Try out the various program options. Option 1 allows you to list parts 
by part number, one at a time as well as all at once. 

Option 2 allows you to change any or all part names and descriptions. 
For example, suppose part 3 should be COSMIC GLUE, size 56, 
with 1234 in stock. To revise the entry for part 3, select option 2 
(CHANGE), then select part number 3. The old part name will be 
displayed, with the cursor at its beginning to allow you to enter 
the new name. After you type in the new name and press (RETURN), 

the cursor will move to the right and perform similarly for part size 
and quantity. To use the current name, size, or quantity, just 
press (RETURN), 

Option 3 stops the program. 

Chapter 4: Using Random-Access Text Files 



4.3 A Sample Random-Access Program 
The ADDRESS program on the SAMPLE PROGRAMS disk 
illustrates the use of random-access text files. ADDRESS maintains 
a mailing list by doing two tasks: adding new addresses and looking 
up addresses that are already entered. Each task is written as a 
subroutine. 

4.3.1 Controlling the Program 
The main program is straightforward: 

10 D$ = CHR$ ( £0 (D$ is ( coNrRoL J-@J) 
20 F$ = "BLACK • BOOK" (F$ is the file of addresses) 
30 HOME (Clear the screen) 
40 PRINT "WHAT WOULD YOU LIKE TO DO?" 
50 PRINT 11 1 ENTER A NEW ADDRESS" 
60 PRINT " 2 LOOK UP AN ADDRESS" 
70 PRINT II 3 END" 
80 INPUT "TYPE A NUMBER AND PRESS RETURN ";C$ 
90 C = lJAL ( C$) (Convert response to number) 
100 IF C < 1 OR C > 3 THEN GOTO 30 

(Bad entry, try again) 
110 IF C = 1 THEN GOSUB 1000 

(Enter a new address) 
120 IF C = 2 THEN GOSUB 2000 

130 IF C = 3 THEN END 
140 GOTO 30 

(Look up an address) 

Lines 80 through 100 let you choose to enter a new address, read an 
existing address, or quit. If you type a letter to choose an option, the 
VAL statement (line 90) converts it to a number. Line 100 directs the 
program to repeat the question (line 40) if the number isn't in the 
expected range. Lines 110 through 130 send the program to the 
subroutine that corresponds to the option you select. 

4.3.2 Storing Records 
When you create a random-access text file, decide how information 
will be arranged within each record and how long a record will be. For 
example, ADDRESS stores information in a data file called 
BLACK.BOOK. Each record in BLACK.BOOK is 200 characters long 
and contains six fields: name, address, city, state, ZIP code, and 
telephone number. 

A Sample Random-Access Program • 



Figure 4-1. Five Addresses in 
BLACK.BOOK 

Figure 4-2. Writing an Address to 
Records 

• 

ADDRESS reads each field into a separate variable (N$, A$, C$, S$, 
Z$, and P$). Then it adds 1 to the total number of records (TR). 
ADDRESS stores the first address in record 1, the second in record 
2, and so on. In record O it stores the total number of records in the 
file. Figure 4-1 shows BLACK.BOOK's structure when it contains five 
addresses. 

l 
l Addr 

l Addr s 

l Addr 4 

l Addr 3 

Addr 2 
Total 1 
Number of 

1 
Records 

1 Record t r 
Number 0 1 2 3 4 s 

4.3.3 Writing a Record 

To write a new record, ADDRESS first uses OPEN and WRITE to 
specify that BLACK.BOOK will receive the new record. Then a 
separate PRINT statement places each field in the record and prints 
the new total number to record 0. 

Figure 4-2 shows the BASIC statements that place an address in 
record S of BLACK.BOOK. The) notation indicates a carriage return 
character and 0 ... 0 represents the number of ASCII zeros needed to 
fill the record to 200 characters. 

PRINT 0$: "OPEN BLACK.BOOK,L200" 
PRINT DS; "WRITE BLACK.BOOK, RS" 

PRINT N$ -----­
PRINT A$-------
PRINT C$ -------
PRINTS$ _____ ..,. 

PRINTZ$-----­
PRINT P$ -------

Namel 
Address) 
Cityl 
Stafel 
Zip Code) 
Telephone) 0 ... 0 

Records 

Chapter 4: Using Random-Access Text Files 



Lines 1010through 1060ofthesubroutine READ NEW INFO show 
the BASIC statements that gather the information for a record 

1000 REM READ NEW INFO 
1010 INPUT "NAME: II ;N$ 

(Read name to be entered) 
1020 INPUT "ADDRESS: II ;A$ 

II (Read address) 
1030 INPUT "CITY: II ;c$ 

(Read city) 
1040 INPUT "STATE: II ;s$ 

(Read state) 
1050 INPUT "ZIP CODE: II ;z$ 

(Read ZIP code) 
1080 INPUT "PHONE: II ;p$ 

(Read phone number) 

Lines 1070 through 1120 open the file whose name is stored in F$ 
and write information to the new record (record number TR): 

1070 PRINT D$; "OPEN II ;F$; II tL200" 
(Open the file with record length 
of200) 

1080 PRINT D$; "READ II ;F$;" tR0" 
(Read total records) 

1080 INPUT TR:TR = TR + 1 
(Gettotal records, add 1) 

1100 PRINT D$;"WRITE II ;F$;" tR" HR 
(Prepare to write to record 
number TR) 

1110 PRINT N$: PRINT A$: PRINT C$ 
(Place each part of address 

1120 PRINT S$: PRINT Z$: PRINT P$ 
in a separate field) 

Lines 1130 through 1160 print to record 0 the total number of address 
records now in the file, close the file, and end the subroutine: 

1130 PRINT D$;"WRITE II ;F$;" tR0" 
(Prepare to write file into 
record 0) 

1140 PR I NT TR (Print new record number) 
1150 PRINT D$;"CLOSE ";F$ 

(Close the file) 
1180 RETURN (End of subroutine) 

A Sample Random-Access Program • 



Figure 4-3. Reading an Address from 
Record5 

II 

4.3A Reading a Record 

After you figure out how to store information in a record, decide how 
your random-access file will retrieve a particular record. The 
subroutine LOOKUP offers a solution: after the OPEN and READ 
commands specify BLACK.BOOK as the file to read, LOOKUP reads 
the total number of entries (record 0) in BLACK.BOOK. Then 
LOOKllP retrieves the names from the records and displays them in 
a numbered list. Finally, LOOKUP asks which record you want to 
display and displays the record you select. 

Figure 4-3 shows how the BASIC statements relate to the fields in 
record 5 of the file BLACK.BOOK. 

PRINT D$; "OPEN BLACK.BOOK,L200" 
PRINT 0$; "READ BLACK.BOOK,R5" 

INPUTN$ 
INPUT A$ 
INPUTC$ 
INPUTS$ 
INPUTZ$ 
INPUTP$ 

Nam~ 
Addr ssj 
City' 
Sta~ ...... 

Zip ode) ~ 

Telephon~ 

Record5 

Lines 2000 to 2030 read the total number of addresses from record O 
of the file. Lines 2050 to 2100 read the name from each record and 
display the name on the screen. 

2000 PRINT D$; "OPEN II ;F$; II tl200" 
(Open the file) 

2010 PRINT D$; "READ II ;F$;" tR0" 
(Read from record 0) 

2020 INPUT TR (Get the number of records) 
2030 IF TR = 0 THEN GOTO 2210 

(Check for no records) 
20ll0 HOME (Clear the screen) 
2050 PRINT "WHOSE ADDRESS DD YOU WANT?" 
2060 FOR I = 1 TO TR (For each record I, 
2070 PRINT D$; "READ ";F$;",R";I 

position to record I, 
2080 INPUT N$ and read the stored name) 

Chapter 4: Using Random-Access Text Files 



2090 PRINT I tN$ 

2100 NEXT I 
2110 PRINT D$ 

(Display the record number and 
name on the screen) 
(Repeat for all records) 
(Empty DOS command turns off 
previous READ command) 

The READ statement in line 2010 reads characters from 
BLACK.BOOK rather than from the keyboard. To read from the 
keyboard, line 2010 must be cancelled. The DOS command in line 
2110, which prints only a ( coNrRoL I-@, does this. 

Line 2120 asks for a number and reads it into the string R$. Line 2130 
converts R$ to a number (R); if you pressed a letter key, the VAL 
function converts it to zero. The next line compares the number to the 
valid address numbers. An invalid response redisplays the question 
(line 140). 

2120 INPUT "TYPE A NUMBER AND PRESS RETURN"m$ 
2130 R = VAL CR$) (Get numeric value of answer) 
2140 IF R < 1 DR R > TR THEN GOTO 2120 

(If bad number, try again) 

The last part of the LOOKUP subroutine displays an address. The 
READ statement (line 2160) sets the position to the requested 
record. The INPUT statement in line 2170 reads the six fields of the 
record and lines 2180 through 2200 print the six fields on the screen. 
Line 2220 prevents the address from being erased before you can 
read it. 

2150 HOME (Clear screen) 
2180 PRINT D$; "READ "ff$;" ,R" m 

(Prepare to read record R) 
2170 INPUT N$,A$,C$,S$,Z$,P$ 

(Read address) 
2180 PRINT N$: PRINT A$ (Print name, address) 
2190 PRINT C$, S$ (Put city, state on same line) 
2200 PRINT Z$: PRINT P$ (Print ZIP code, phone) 
2210 PRINT D$; "CLOSE II ff$ 

(Close the file) 
2220 VTAB 23: HTAB 10 (Position cursor; save screen) 
2230 INPUT "PRESS RETURN TO CONTINUE"iT$ 
2240 RETURN 

A Sample Random-Access Program • 



Sequential-access text files, see 
Chapter3. 

• 

4A Commands Used With Random-Access 
Text Files 
Except for CLOSE, the commands used with random-access text 
files work in deferred execution only. 

Read Carefully: The commands described here have different options 
than those for sequential-access text files. 

4A.1 The OPEN Command - Deferred Execution 

Before a program can write to or read from a random-access text file, 
it must open the text file with the OPEN command. The general form 
of the command is 

OPEN fn, Ln [,Sn] [,On] [,Vn] 

fn is the name of the file to be opened for random access. 
When fn exists, DOS checks to see that it is a text file. 
When the file already exists and is open, DOS closes 
the named file and opens it again. If the file does not yet 
exist, DOS creates it as a text file and opens it. 

Ln where n is a number from 1 to 32767, specifies the 
number of bytes in each record of the file. You must 
specify the record length whenever you open the file; 
that is, whenever you create or reopen it. If you omit L, 
DOSuses1. 

[,Sn] where n is a number from 1 to 7, specifies the slot 
containing the disk controller card of the drive to be 
accessed. If omitted, DOS uses the default slot 
number. 

[,Dn] where n is 1 or 2, specifies the drive containing the disk 
on which to store fn. If omitted, DOS uses the default 
drive number. 

[,Vn] where n is a number from 0 to 254, specifies the 
volume number of the disk to be accessed. If you 
specify o, just V, or omit the option, DOS ignores the 
volume specification. 

The first time you open a random-access text file, create it with a 
specified record length. Each time you subsequently open that file, 
you must specify that same length . 

Chapter 4: Using Random-Access Text Files 



A Warning 
The declared record length must be greater than the maximum number of 
characters, including carriage returns, you're going to put in one of the 
file's records. If you write past the end of a record, you'll write over the 
beginning of the next record in the file, destroying what is there. 

Whenever any text file is opened, DOS prepares to read or write 
File buffer = 595bytes starting at the beginning of the file and designates a file buffer to hold 

information about the file. 

4.4.2 The CLOSE Command-Immediate or 
Deferred Execution 
After writing to or reading from a file, a program must close it to 
ensure that DOS writes all the characters and releases the buffer 
associated with the file. 

CLOSE takes the form: 

CLOSE[fn] 

where fn indicates the name of the file to close. When you omit the file 
name, the CLOSE command closes all open files, finishes any 
writing that your program is doing, and releases all file buffers. 

Sometimes a program contains an error and stops before it can close 
all open files. Whenever this happens, issue the CLOSE command 
from the keyboard to close any files that are open. 

A Programming Technique: Code into your program an ONER.A GOTO 
statement that branches to a routine that will close any open files . 

Commands Used With Random-Access Text Files • 



• 

4A.3 The WRITE Command-Deferred Execution 

The WRITE command names the random-access file you're writing 
to, identifies the record that receives information, and specifies the 
position within the record of the first character to be written. 

The WRITE command takes this form: 

WRITE fn [,Rn] [,Bn] 

fn indicates the name of the file to be written to. 

[,Rn] where n is a number from 0 to 32767, indicates the 
record at which the program is going to start writing. If 
Rn is omitted, DOS prepares to start writing at record 0. 

[,Bnj where n is the number of characters that DOS should 
skip in the specified record, changes the current 
position in the file. If this option is omitted, DOS 
prepares to start writing at byte 0, the beginning of the 
record specified by R. 

WRITE remains ih effect until the next DOS command or the next 
INPUT or GET statement. 

Use WRITE before putting characters into a record with PRINT 
statements, and use WRITE each time you want to print to a record 
other than the current one. 

Warning 
If you are not using ON ERR GOTO and your program generates an error 
message, the message is stored as the last field in your text file. Also, the 
error message cancels the WRITE command. 

The WRITE statement tells DOS to send to the open file all the 
characters that are normally sent to the screen. This includes error 
messages-if you have not included an ON ERR GOTO statement­
and the prompt characters of INPUT statements-if INPUT appears 
after the WRITE command . 

Chapter 4: Using Random-Access Text Files 



Warning 
Do not use the sequential-access command POSITION to skip fields 
within a record. If you do, you cancel the WRITE command. 

Do not print more characters (including the carriage-return character) to a 
random-access record than you specify in the L argument of OPEN. DOS 
will write the current record correctly but will calculate the next record's 
starting position as if the previous record had been within the specified 
length. The next record will write over the last characters of the previous, 
oversized record, including the carriage-return character marking the end 
of that record. 

If you print fewer characters to a random-access record than you specify 
in the L argument of OPEN, you create two new fields: the field you just 
printed, followed by the end of the field you were writing over. 

4.4A The READ Command-Deferred Execution 

When used with random-access files, the READ command identifies 
the file from which the next INPUT or GET statement takes 
characters. You can specify the record (Rn) within the file and the 
byte position (Bn) within the record from which the first character will 
be read. 

The READ command remains in effect until the next DOS command 
and takes this form: 

READ fn [,Rn] [,Bn] 

fn indicates the name of the file to be read. 

[,Rn) where n is a number from 0 to 32767, indicates the 
record from which the program is going to read. If Rn is 
omitted, DOS prepares to start reading at record o. If 
Rn indicates a record that doesn't exist and you are not 
using ONERR GOTO, you'll see an END OF DATA 
message after the first INPUT or GET statement from 
the nonexistent record. 

[,Bn] where n is the number of characters that DOS is to skip 
in the specified record, changes the position in the file 
relative to the file's current position. If this option is 
omitted, DOS prepares to start reading from byte 0, the 
beginning of the record specified by R. 

Caution: Unless D$ = CHR$(13) + CHR$(4), avoid using the Applesoft 
command TRACE with INPUT statements-your program will stop and 
wait for input from the keyboard. 

Commands Used With Random-Access Text Files • 



. • 

4.5 Command Summary 
OPEN fn, Ln [,Sn] [,On] [,Vn] 

opens a random-access text file so that DOS can write to it. The 
length (L), specifies the number of bytes, or characters, each 
record can hold. If the file is a new one-that is, if it doesn't yet 
exist-DOS creates it and gives it the file name you specify in 
fn. If fn does exist, DOS checks that it is a text file. 

CLOSE[fn] 

tells DOS that you have finished reading from and writing to a 
file. If fn is omitted, DOS closes all open files. 

WRITE fn [,Rn] [,Bn] 

specifies the random-access file to write to and where to start 
writing: the number of the record (Rn) and the position within 
the record of the first character to write (Bn). The file must be 
open. DOS writes to fn until the next DOS command or the next 
INPUT or GET statement. 

READ fn [,Rn] [,Bn] 

specifies the random-access file to read from and where to start 
reading: the number of the record (Rn) and the position within 
the record of the first character to read (Bn). The file must be 
open. DOS reads fn until the next DOS command. 

Remincter: Allof t.hese com.mands, including CLOSE, can be .. iss.ued from 
a BASIC program. Only CLOSE can be issued from the keyboard . 

Chapter 4: Using Random-Access Text Files 



Chapters 

Programming With More 
Sophistication 

91 5.1 Using a Command File 
92 5.1 .1 The EXEC Demonstration 
94 5.1.2 Creating a Command File 
96 5.1 .3 Special-Purpose Command Files 
96 5.1.3.1 Capturing Lines From a BASIC Program 
98 5.1.3.2 Translating Machine Language to BASIC 
99 5.2 The EXEC Command 

101 5.3 The MAXFILES Command 
101 5.3.1 Buffering Information 
102 5.3.2 Example 
103 5.4 CHAIN 
103 5.4.1 The CHAIN Command - Integer BASIC 
105 5.4.2 The CHAIN Program -Applesoft 
106 5.5 The MASTER Program 
107 5.5.1 Example 
108 5.6 Making a Turnkey Disk 
108 5.6.1 Creating a Turnkey Disk 
109 5.6.2 Creating a Master Turnkey Disk 
109 5.6.3 A Disk for All Systems 
110 5.6.3.1 Example 
113 5.7 Summary 
113 5.7.1 Commands 
113 5.7.2 Program 

Programming With More Sophistication • 





Command file = EXEC file. 
Command file has file type T. 

Chapters 

Programming With More 
Sophistication 

This chapter describes three commands and two programs that allow 
DOS to interact with several programs, files, and systems. 

• EXEC lets you use a command file to execute another file. 

• CHAIN lets you link one program to another. 

• MAXFILES lets you increase or decrease the number of files that 
can be open in your Apple ll's memory. 

• The MASTER program lets you create a master disk that can 
operate in Apple II computers with different memory sizes. 

5.1 Using a Command File 
Your Apple II computer can take its commands from a special text file, 
called a command file, as well as from the keyboard. Command files 
let you automate a frequently used set of commands, convert a 
program written in one BASIC dialect to the other, or repeatedly enter 
the same information into a program. To use this programming 
capability, first write a BASIC program that creates a command file, 
then execute the command file with the EXEC command. 

A command file may contain anything that you might type in from the 
keyboard: DOS commands, lines of BASIC statements, or even 
Monitor commands. When you put a DOS command in a command 
file, you do not precede it with ( coNrRoL l-@J. 

You can't look at a command file with a LIST statement. Instead, use 
the program GET TEXT, on the SAMPLE PROGRAMS disk, or a 

For more on EDASM, see the Applesoftl special editing program, like Apple Writer 2.0 or EDASM. You can 
DOS Tool Kit. also issue a MON C command to watch as the command file issues 

and executes its commands. 

Using a Command File • 



Figure 5-1. The First Screen of the EXEC 
Demonstration • 

• 

The following demonstration uses GET TEXT to look at the command 
fileDO'ER. 

Remember: Do not precede a DOS command in a command file with 
(CONTROL I-@ . 

5.1.1 The EXEC Demonstration 

This demonstration has two parts. First run the BASIC program 
EXEC DEMO on the SAMPLE PROGRAMS disk to create a 
command file. Then issue the EXEC command so your computer 
takes its instructions from the command file instead of the keyboard. 

By the Way: Be sure your copy of the SAMPLE PROGRAMS disk is 
write-enabled so you can save the command file on it. 

1. To create the command file, insert your SAMPLE PROGRAMS 
disk into drive 1 and type 

RUN EXEC DEMOt 01 

Read the full page of instructions (Figure 5-1 ). 

;;·r! 
,I' I 

,JHIS PROGRAM CREATES A SEQUENH AL TEXT ~. 

FI LE NAMED II DO I ER 11 _CQNTA IN INGcc SEVERAL ~-

STRINGS t EACH A LEGAL APPLE I~I COMMAND, 
-- I 

~ •'' ·' 
!~ d::f j,jEN 1i: YOW ';if.T YPE: 
I ~l EXEC DQ ' ER 

THEN THE COMMANDS IN_ FILE Do :~ TAKE 

CONTROL OF YOUR COM_fJJTER, EACH .. COMMAND 

WILL BES:XECUTED ..1.IJSl AS I ll (t .HAD BEEN.~. 
~ TYPED AT THE KEYBOARD . THE ~Doi-MANUAL --

• 'DESCRIBES THE PROGRAM IN MORE. DETAIL. 
~. -- ~'-; 

IF YOU WI SH TD STOP THIS PROGRAM NOW, 

~'OU MAY RRESS THE ESC KEY, 

Chapter 5: Programming With More Sophistication 



Figure 5-2. EXEC DEMO's 
Final Screen 

GET TEXT reads a text file; see 
Chapter 3 for a complete description. 

• 
2. After you've read EXEC DEMO's first screen, press the I sPAcEI 

bar. EXEC DEMO writes the DO'ER file to the disk and then 
displays the screen shown in Figure 5·2. 

IT'S DONE!! ! 

YOUR APPLE'S ' 

EXEC DEMO has created a command file, named it DO'ER, and 
put DO'ER on the disk. 

3. To see a command file In action, execute DO'ER by typing 

EXEC OO'ER 

DOS loads the first sector of DO'ER from the disk and begins 
executing the commands. DO'ER describes everything it is doing. 
Since DO'ER runs some programs that use Integer BASIC, you'll 
see LANGUAGE NOT AVAILABLE if your computer doesn't 
have that language. Nothing to worry about; DO'ER executes 
those programs it can. And you won't have to touch the keyboard 
unless your catalog has more than eighteen entries. Then you'll 
have to press I RETURN I to see the nineteenth. 

4. To look at the commands in the DO'ER file, use the GET TEXT 
program. Type 

RUN GET TEXT 

WhenGETTEXTasks LIST WHAT TEXT FILE?, type 

OO'ER 

As GET TEXT displays the contents of DO'ER, notice the wide 
variety of commands it contains. 

Using a Command Fiie • 



Figure 5-3. A Command File 

II 

5.1.2 Creating a Command File 
To create a command file, a BASIC program must: 

• open the text file using the OPEN command, 

• prepare the file to be written to using the WRITE command, 

• place commands In the text file using PRINT or LIST, 

• close the text file. 

Here's a step-by-step example that illustrates how to create an EXEC 
file. Figure 5-3 shows the files and commands the example uses. The 
files in the example are MAKE.COIT, a BASIC program that creates a 
command file, and DOIT, a command file that executes the program 
called AWAY. DOIT will contain the following DOS commands: 
CATALOG, RUN, and LIST. 

MAKE.DO IT 

20 PRINT D$;"0PEN DOIT" 

90 PRINT D$;"CLOSE DOIT" 

DOIT 

MONICO 
CATALOG 
RUN 
LIST 
NOMONCIO 

AWAY 

BASIC Program creates-> Command File controls-> Program 

Chapter 5: Programming Whh More Sophistication 



1. First, type in this program: 

5 REM MAKE.OOIT 
10 0$ = CHR$ < LI> (REM 0$ is 1CONTROL1-@) 

20 PRINT 0$; "OPEN OOIT" 
(Prepare the file to be written to) 

30 PRINT 0$; "WRITE OOIT" 
ll0 PR I NT "MON I CO" (Watch the action) 
50 PR I NT "CATALOG" (Put these three commands 
60 PRINT "RUN AWAY" intothecommand 
70 PR I NT 11 LIST 11 file DOIT) 
80 PR I NT 11 NOMON C IO 11 (Turn off MON) 
90 PRINT 0$; "CLOSE DOIT" 

(And close the file) 

Save the program on the disk and name it MAKE.COIT by typing 

SAVE MAKE.DOIT 

The PRINT statements beginning with 0$ (lines 20, 30, and 90) 
are DOS commands that will be executed when you run 
MAKE.DOIT. The other PRINT statements will be written to 
the command file DOIT to be used later. Notice the DOS 
commands that will be put in the command file: none are 
preceded by I CONTROL I-@. 

2. Next, type in this Applesoft program: 

5 REM AWAY 
10 PRINT "A WAY TO JOURNEYt" 
20 PRINT "A WHALER JOE. 11 

30 PRINT "AWEIGH THE ANCHORt" 
40 PRINT "AWAY WE G0. 11 

Save the program on the disk by typing 

SAVE AWAY 

Later, the command file will run AWAY. 

Using a Command Fiie • 



MAKE TEXT, see Chapter 3. 

• 

3. After you have saved MAKE.DOIT and AWAY, run MAKE.DOIT 
and create the sequential-access text file named DOIT by typing 

RUN MAKE.COIT 

When MAKE.COIT has finished, DOIT is on the disk. 

4. To watch those commands race by as if you were typing them in 
very quickly from the keyboard, and to execute the commands in 
the file DOIT one by one, type the commands 

MON ItCtO 
EXEC DOIT 

The command file DOIT displays the files on the disk, the 
sentences printed out by the program, and a listing of the program 
AWAY. 

Note: You can also create a command fi le by using the program MAKE 
TEXT. However, you have no way to fix an erroneous line in MAKE TEXT. 

5.1.3 Special-Purpose Command Files 
You can design command files to do many tasks: convert a listing 
of a BASIC program into a text file, edit a program using a DOS­
compatible word processor, place part of a program anywhere in 
another program, insert subroutines from a subroutine file into a 
program, even connect two programs. The following examples 
illustrate two of these tasks. 

5.1.3.1 Capturing Lines From a BASIC Program 

The EXEC command lets you capture lines from a program in 
memory and insert a copy of them into a text file to create a new 
program. The "captured" lines may need some editing before the 
new program can run, but editing existing lines may be easier than a 
lot of retyping . 

Chapter 5: Programming With More Sophistication 



The next example shows you the CAPTURE routine, which reads 
lines of a BASIC program in memory and puts them into a text file 
named LISTING. 

1 REM CAPTURE ROUTINE 
2 0$ = CHR$ <4> : POKE 33,33 

(REMD$1s~ 
Change the text area to prevent 
spaces in PRINT statements) 

3 PRINT 0$; "OPEN LISTING" 
(Prepare the file LISTING to 
write to) 

4 PRINT 0$; "WRITE LISTING" 
5 LIST 227015130 (Listthelinestothefile) 
6 PRINT 0$; "CLOSE LISTING" 

(Close up the file, 
7 TEXT : END and reset the text area) 

The POKE statement in line 2 puts a value into a memory location. 
POKE 33,33 sets the right margin of the text area 33 characters away 
from the left margin so that BASIC won't split a long line into two and 
DOS won't add extra spaces. 

Use the command EXEC LISTING to read the lines of LISTING into 
the computer's memory as if you had typed them in. 

You can tallor these lines to your own purposes by adding the 
CAPTURE routine to the beginning of your own program. Replace 
the line numbers in line 5 with the numbers of the lines you want to 
capture from the program In memory; replace LISTING (lines 3, 4, 
and 6) with the name of the new file to which you want to add the 
captured lines. 

You can also use the CAPTURE routine to combine programs. First, 
create a program using CAPTURE. Then load the second program 
into memory and use the EXEC command on the file that was 
created using CAPTURE. 

Remember: Using the EXEC command on a file does not delete the 
program that is already in memory. 

Using a Command Fiie • 



PEEK returns a value stored in a memory 
location. POKE stores a value directly 
into memory. 

• 

5. f .3.2 Translating Machine Language to BASIC 

The demonstration program POKER, on the SAMPLE PROGRAMS 
disk, creates an EXEC file that reads a binary program and translates 
it into BASIC. POKER uses PEEK to read consecutive bytes of the 
binary program, and for each byte, it prints a POKE statement into a 
command file. 

When you execute the command file, it builds a new BASIC program 
containing these POKE statements. You can also write the program 
to have the command file add BASIC statements to an existing 
BASIC program In memory. 

100 REM PROGRAM POKER 
110 D$ = CHR$ < ll > (0$ is ! coNrRoL 1-@) 
120 HOME 
130 INPUT "FILE NAME TO CREATE? "tNS 
1ll0 PRINT INPUT "STARTING ADDRESS <DECIMAL>? 

II ;s 
150 PRINT : INPUT "ENDING ADDRESS <DECIMAL>? 

160 IF S>E THEN PRINT : PRINT "THE STARTING 
ADDRESS MUST BE LESS THAN" : PRINT "THE 
ENDING ADDRESS"; CHR$C7): GOTO 140 

170 PRINT : INPUT "BASIC LINE TO START AT? 
";LINE 

180 IF LINE<0 OR LINE>63999 THEN PRINT : PRINT 
"BASIC LINE NUMBERS MUST BE IN THE 
RANGE": PRINT "OF 0 TO 63999"; CHR$(7): 
GOTO 170 

180 PR I NT 0$ ; "OPEN "N$ (Opens, closes, and deletes 
200 PR I NT DS ; "CLOSE " the file you named in 130 
210 PRINT D$;"DELETE "N$ incaseitalreadyexists) 
220 PR I NT 0$ ; "OPEN "NS (Opens file named in 130) 
230 PR I NT D$ ; "WRITE "NS (Prepares to write to it) 
2ll0 FOR PLACE = s TO E (For each memory location, 
250 C = C + 1 increments counter, puts 
260 IF C = 10 THEN C = 1 ten POKEs on each line) 
270 IF C < > 1 THEN 300 (For first POKE on a line, 
280 PR I NT : PR I NT LI NE ; prints the line number, and 
290 LI NE = LI NE + 1 increments it) 
300 PRINT "POKE II ;PLACE; II , II; PEEK 

< PLACE> ; " : " ; (Pokes a byte 
310 NEXT PLACE and handles next location) 
320 PR I NT (Creates a new line for DOS 

command) 
330 PR I NT 0$ ; "CLOSE" (Then closes the file) 
3ll0 END 

Chapter 5: Programming With More Sophistication 



To use this program, put the SAMPLE PROGRAMS disk In your disk 
drive and type 

RUN POKER 

When POKER asks, enter the name you'd like to use for your 
command file (line 130), enter the memory locations (lines 140 and 
150), and enter the BASIC line number (line 170). If you name the 
command file FILLER, you can execute It by typing 

EXEC FILLER 

FILLER will add the lines containing the POKE statements to 
whatever BASIC lines are already In memory. 

5.2 The EXEC Command 
The EXEC command directs DOS to take its commands from a 
command file rather than from the keyboard. You can start execution 
at any line of a command file. 

The EXEC command has the form 

EXEC fn [,Rn] [,Sn] [,On] [, Vn] 

fn Indicates the name of the command file, a text file that 
can contain DOS commands, data, and BASIC 
statements. 

[,Rn] where n Is a number frol')'I Oto 32767, indicates the 
number of lines to skip In the command flle. When Rn Is 
omitted, DOS starts executing the command file at the 
first line. DOS counts fields from the beginning of the 
command file, so Rn is always relative too. Specifying 
a value for R beyond the end of the file returns an ENO 
OF DATA message. 

The EXEC Command I 



I 

[,Sn] where n is a number from 1 to 7, specifies the slot 
containing the disk controller card of the drive to be 
accessed. If omitted, DOS uses the default slot 
number. 

[,On] where n is 1 or 2, specifies the drive that holds the disk 
containing the command file. If omitted, DOS uses the 
default drive number. 

[, Vn] where n is a number from O to 254, specifies the 
volume number of the disk to be accessed. If you 
specify 0, just V, or omit the option, DOS ignores the 
volume specification. You can execute only one 
command file at a time. 

.. Warning 
Be careful if your command file Is on a disk in one drive and the disk 
containing the program the command file will run is in another drive. The 
drive containing the EXEC file should be the default so that DOS can 
return to the EXEC flle after each sector of the program is executed. 

When a command file completes all Its commands, it closes Itself and 
stops. If a command file issues the EXEC command to call another 
command file, the original command file closes, and the new 
command file opens and executes. The second command file 
replaces the first in memory. 

The command file currently In memory is not affected by the NEW 
statement or by the FP, INT, or CLOSE commands. 

Using the EXEC command on a command file does not delete a 
program that is already In memory. 

You can stop a command file that is executing BASIC statements by 
pressing I CONTROL 1-@; the remaining commands in the command file will 
not be executed. To stop a command file that is executing DOS 
commands, tum off the computer. 

Warning 
When a command file is running a program, an INPUT statement in the 
program will read the next field from the command file rather than from the 
keyboard. If the input is an Immediate-execution DOS command, the 
command is executed before the program continues. 

Chapter 5: Programming With More Sophistication 



Track/sector list: see Appendix B. 

1 byte = 1 character 

5.3 The MAXFILES Command 
At startup DOS gives you a maximum of three files that can be open, 
or active, at one time. But you may want more if you are building a 
large program. Or you may want less if you need every possible byte 
in memory. 

The MAXFILES command allows you to increase the number of 
active files to a maximum of 16 or decrease them to a minimum of 
one. The number you specify in the command is the maximum until 
you issue another MAXFILES command or start up DOS again. 

The syntax for the MAXFILES command is 

MAXFILESn 

where n is an integer from 1 to 16, specifies the number of file buffers 
that can be active at one time. If you specify a value beyond this 
range, you'll see a RANGE ERROR message. 

5.3.1 Buttering Information 
For each file you open, DOS sets aside 595 bytes of memory space 
in an area called a flle buffer. DOS uses 256 bytes of the file buffer 
for data and 256 bytes for the track/sector list. The remaining 83 
bytes are for "housekeeping" information such as the file's location 
on the disk. 

When your program reads information from a disk, DOS brings in 256 
bytes, putting them in the data section of the buffer. DOS delivers to 
your program whatever subset of those 256 bytes your program 
requests. 

When your program sends information to a disk, DOS first stores 
characters in the data section of the buffer until it accumulates 256 
bytes. Then DOS writes them to the disk all at once. 

By the Way: DOS initializes the data section by filling it with 256 zeros; 
these are replaced by the characters you enter. When DOS writes that 
buffer to a disk, it transfers the entire 256 bytes. If you've entered fewer 
than 256 characters, DOS transfers the characters you entered and any 
zeros remaining in the buffer. 

The MAXFILES Command I 



File buffer = 595 bytes in memory 

HIMEM = highest memory address 
available to an Applesoft program; see 
Chapter6. 

I 

The three file buffers that DOS initially supplies reserve a total of 
1785 bytes in memory. When you execute MAXFILES to increase the 
number of files, DOS reserves 595 additional bytes of memory for 
each new file buffer. When MAXFILES decreases the number of 
active files, DOS releases 595 bytes of memory for each buffer no 
longer required. 

You can issue the MAXFILES command in immediate execution 
before loading and running a program. 

Warning 
When you issue the MAXFILES command from the keyboard, DOS 
moves HIMEM in memory, but does not move any Integer BASIC program 
or Applesoft strings. 

Changing the number of buffers erases Integer BASIC programs. 
Increasing the number of buffers affects the area where Applesoft strings 
are stored. 

By the Way: You can also issue MAXFILES from an Applesoft program. 
Make MAXFILES the first program statement since it changes memory 
pointers for string variables. 

All DOS commands except PR#, IN#, and MAXFILES require a file 
buffer. If you set MAXFILES to 1 and open a file, you use the present 
limit, one buffer. You'll see ND BUFFERS AVAILABLE if you then 
issue a DOS command other than PR#, IN#, or MAXFILES. 

5.3.2 Example 
To change MAXFILES from an Applesoft program, make the 
MAXFILES command the first statement in the program, before you 
declare any string variables. For example 

10 PRINT CHR$(4)i 11 MAXFILES 5 11 

Chapter 5: Programming With More Sophistication 



SA CHAIN 
CHAIN lets you link one program with another. When both programs 
are in Integer BASIC, use the CHAIN command. When both 
programs are in Applesoft, use the CHAIN program on the SYSTEM 
MASTER disk. 

5A.1 The CHAIN Command-Integer BASIC 
When an Integer BASIC program is too big to fit entirely in memory, 
the CHAIN command lets you bring in parts of the program and run 
each part, one at a time. When the second part comes in, DOS does 
not clear the variables or close the files that were used by the first 
part. 

The command takes this form 

CHAIN fn [,Sn] [,Dn] [, Vn] 

fn indicates the file containing the Integer BASIC module 
to be run next. 

[,Sn] where n is a number from 1 to 7, specifies the slot 
containing the disk controller card of the drive to be 
accessed. If omitted, DOS uses the default slot 
number. 

[,Dn] where n is 1 or 2, specifies the drive containing the disk 
on which to store fn. If omitted, DOS uses the default 
drive number. 

[, Vn] where n is a number from Oto 254, specifies the 
volume number of the disk to be accessed. If you 
specify 0, just V, or omit the option, DOS uses the 
default volume number. 

When you chain from one program to another, the first program is 
removed from memory. Execution begins at the lowest numbered line 
of the next program. To use the first program again, use the CHAIN 
command again. 

Warning 
If there Is an array in two chained programs, be sure the dimensions are 
declared in the same program that contains the array. 

If two chained programs use a defined function, be sure it is defined in 
each. 

CHAIN 



II 

In the following example, the program PART1 uses the CHAIN 
command to connect a second program part, PART2. 

Reminder: Be sure you are running Integer BASIC. If you don't see a 
> prompt character, issue the INT command. 

1. Typeinthisprogram. Typea~characterafterthefirst 
quotation mark in line 50. 

10 REM PART1 
12 DIM I$ ( 30 ) (In Integer BASIC, a string 

variable must be dimensioned if 
it is longer than one character.) 

30 l$= 11 THE STRING I$ IS PRESERVED." 
(Set a string value) 

40 PRINT "PART1: 1$ HAS BEEN SET. II 
(And say so) 

50 PRINT "CHAIN PART2 II 

80 END 

To save this program, type 

SAVE PART1 

2. Now type in and save PART2. 

15 REM PART2 

(Chain to PART2) 

ll5 PR I NT "PART2: ; I$ (Prints the string set in PART1) 
60 END 

3. If you want to see what will be printed, type 

RUN PART1 

The CHAIN command works properly if the variable 1$ retains the 
value set by PART1 when it is printed out by PART2. Then you'll 
see PART2; THE STRING 1$ IS PRESERVED. If CHAIN 
doesn't work, you'll see only PART2: . 

Chapter 5: Programming With More Sophistication 



5A.2 The CHAIN Program-Applesoft 
This example uses the binary CHAIN program on the SYSTEM 
MASTER disk to show you chaining in Applesoft. PART1 sets the 
variable 1$ and issues the CHAIN command to link with PART2. 

Reminder: Be sure the disk you're using to hold PART1 and PART2 also 
has the CHAIN program. If it doesn't, use the FILEM program to copy it 
from the SYSTEM MASTER disk. 

1. Type in PART1 and save it. 

.A Warning 
When you type line 60, do not type a space, a comma, a colon, or a 
semicolon after the number 520, the memory address where the CHAIN 
subroutine was loaded. 

10 REM PART1 
20 D$=CHR$ ( ll) (0$ is setto (CONTROL I-@) 
30 I$= 11 THE STRING I$ IS PRESERVED. 11 

(Set a string value and announce 
it) 

ll0 PRINT "PART1: I$ HAS BEEN SET." 
50 PRINT D$;"BLOAD CHAINt A520" 

(Load to memory address) 
60 CALL 520" PART2" (Chain to PART2) 

2. Now type in and save PART2. 

15 REM PART2 
llS PR I NT II PART2: II ; l$ 
60 END 
The CHAIN command in line 50 of PART1 allows PART2 to display 
the contents of 1$ (line 45). 

3. To put the CHAIN program through its paces, type 

RUN PART1 
The CHAIN command works properly if the variable 1$ retains the 
value set by PART1 when it is printed out by PART2. Then you'll 
see PART2 ; THE STRING I$ IS PRESERVED. If CHAIN 
doesn't work, you'll see only PART2 : . 

CHAIN • 



You can skip this section if you aren't 
going to use your disks on other 
computers with a smaller memory. 

5.5 The MASTER Program 
You place a copy of DOS on every disk you initialize. When you start 
up the disk, DOS goes into the same memory locations it had in the 
system on which you initialized the disk. If you start up the disk on a 
computer of a different size, DOS won't work. So, if you use more 
than one Apple II computer and they have different sizes of memory, 
a master disk is handy. 

A master disk contains a relocatable image of DOS and can be used 
on any Apple II computer with at least 16K of memory. When you start 
up a master disk, DOS is placed in locations relative to the size of the 
system on which you are using the disk. 

MASTER is an Applesoft program that executes MASTER CREATE, 
a binary program on the SYSTEM MASTER disk that converts an 
initialized, write-enabled disk into a master disk. Converting the disk 
will not harm any programs already on it. 

MASTER requests the name of a program that DOS will run each 
time the disk is started. You may name a traditional greeting program 
or you may name some other program. 

By ttie Way: Earlier manuals said to issue a oinary commana to get 
MASTER CREATE running. You can still execute it directly by typing 

BRUN MASTER CREATE 

.& Warning 
After using the MASTER program, always restart DOS before doing any 
other work. 

• Chapter 5: Programming With More Sophistication 



• 

• 

5.5.1 Example 
1. Write a greeting program that reflects the master status the disk 

will have, for example: 

10 PRINT "MASTER DISK 32K" 
20 END 

2. Save the greeting program on the disk that you wish to convert. 
Type 

SAVE HELLO 

When the IN USE light goes out, remove that disk from the drive. 

3. Insert the SYSTEM MASTER disk in drive 1 and type 

RUN MASTER 

The message EXEC UT I NG MASTER CREATE appears briefly. 
Then you'll see the title screen of the MASTER CREATE program: 

4. In response to the message, PLEASE IN PUT THE 
11 GREET I NG 11 PROGRAM 'S FI LE NAME: , enter the name of 
your greeting program. You'll see this screen: 

If you'd like the disk to run a program other than "name" each time 
the disk is started, press ! Esc l and enter the name of your greeting 
program. 

The MASTER Program • 



• 

5. Remove the SYSTEM MASTER disk from drive 1 and insert the 
initialized disk that you wish to convert to a master disk. Press 
I RETURN I. MASTER begins the conversion and informs you 
when the process is complete. 

6. When the conversion is done and the IN USE light on the disk drive 
goes out, press I esc 1, remove the disk, and label it. Indicate that it's 
a master disk. 

Reminder: Don't forget. After using the MASTER program, restart DOS. 

5.6 Making a Turnkey Disk 
A turnkey disk automatically runs a program when it starts up DOS. 
This section tells you how to make three kinds of turnkey disks: a 
simple startup disk, a master startup disk, and a master startup disk 
that brings the alternate BASIC into all Apple II systems, whatever the 
memory size. 

A Warning 
A turnkey disk does not automatically return from DOS to BASIC unless 
its turnkey program provides an exit command. 

To make a turnkey disk, load your turnkey program into memory and 
save it on an initialized disk. When you issue the SAVE command, 
use the name of the disk's greeting program. 

5.6.1 Creating a Turnkey Disk 

This example shows you how to create a turnkey disk so that the 
RENUMBER program runs automatically every time you start that 
disk. 

1. Initialize a blank disk, using the name HELLO for the greeting 
program. 

2. Insert the SYSTEM MASTER into drive 1 and bring RENUMBER 
into memory by typing 

LOAD RENUMBER 

3. Remove the SYSTEM MASTER disk and insert the initialized disk 
into your disk drive. Put the RENUMBER program on it by typing 

SAVE HELLO 

Now the RENUMBER program will be named HELLO. Any time you 
start up with this disk, you'll automatically start HELLO, the program 
that used to be called RENUMBER. 

Chapter 5: Programming With More Sophistication 



MASTER program, see section 5.5.1. 

Use the SYSTEM MASTER disk to load 
the alternate BASIC. 

5.6.2 Creating a Master Turnkey Disk 

Use the MASTER program to turn an initialized disk into a master 
disk. When MASTER asks you to enter the name of the greeting 
program, enter the name of the program that you want to be the 
turnkey program. 

5.6.3 A Disk for All Systems 
Suppose you want to make a turnkey disk that will run on all Apple II 
computers. You'll need a DOS that works in any memory size and 
that brings in whichever BASIC your programs require. Look first at 
how each type of Apple II computer interacts with memory and with 
BASIC. 

When you insert a DOS disk in drive 1 and turn on the power, your 
computer runs the greeting program on that disk, if it has in ROM the 
BASIC in which the greeting program is written. That is, 

• the standard Apple II runs an Integer BASIC greeting program. 

• the Apple II Plus and the Apple lie run an Applesoft greeting 
program. 

• the standard Apple II with the Applesoft Card and the Apple II Plus 
with the Integer BASIC Card can each run a greeting program 
written in either BASIC. 

When the greeting program is written in the alternate BASIC and you 
don't have that BASIC in memory, you'll see LANGUAGE NOT 
AlJA I LABLE and the prompt character for the resident BASIC. 

If you have the Apple Language System, you can run programs in the 
alternate BASIC after loading the alternate BASIC into the Language 
Card. 

By the Way: Installing a language card increases your Apple ll's memory 
by adding 16K bytes of memory. Your computer must have at least 48K 
before you can install a language card. 

The simplest way to load the alternate BASIC is to start up DOS by 
using the SYSTEM MASTER disk. The HELLO program on the 
SYSTEM MASTER uses LOADER.OBJO to determine which BASIC 
is resident. Then it loads the alternate BASIC from the disk. 

Making a Turnkey Disk 



5.6.3. f Example 

This example shows you how to make a disk that starts on all the 
Apple II systems. 

Remember: If you are using more than one drive, you'll need to specify 
the drive option, [,On]. 

1. Load the HELLO program from the SYSTEM MASTER disk into 
memory. Use that greeting program when you initialize a blank 
disk with the INIT command. When INIT is finished, reinsert the 
SYSTEM MASTER disk. 

2. Use FILEM to copy these language files and programs that load 
the languages from the SYSTEM MASTER to your new disk: 

APP LESO FT 
INTBASIC 
FPBASIC 
LOADER.OBJO 

When you start this disk, DOS will load the alternate BASIC. 

Put any other programs you want on this disk. 

3. Convert the initialized disk to a master disk with the MASTER 
program. Type 

RUN MASTER 

Insert the newly initialized disk in the drive when MASTER 
instructs you. 

When MASTER asks for the name of the greeting program, type 

HELLO 

4. Change the HELLO program to run your turnkey program, called 
TURNKEY in this example. 

To change HELLO, unlock it, load it, and list it: 

10 TEXT : HOME 
20 0$ = CHR$ (4) REM CTRL-D 
30 VTAB 2:A$ = "APPLE II": GOSUB 1000 
40 VTAB 4:A$ = "DOS VERSION 3.3 SYSTEM 

MASTER": GOSUB 1000 
50 VTAB 7:A$ ="JANUARY lt 1883": GOSUB 1000 
60 PRINT O$;"BLOAD LOADER.OBJ0" 
70 CALL 4086 
80 lJTAB 10: CALL - 858:A$ = "COPYRIGHT APPLE 

COMPUTER tINC. 1880 t1882 II: GOSUB 1000 

Chapter 5: Programming With More Sophistication 



90 C = PEEK < - 1101): IF C=6 THEN PRINT 
INVERSE :A$ = "BE SURE CAPS LOCK IS 
DOWN": GOSUB 1000: NORMAL 

100 PRINT CHR$(4) ;"FP" 
1000 REM CENTER STRING A$ 
1010 B = INT (20 - ( LEN CA$) I 2>>: IF B =<0 

THEN B=1 
1020 HTAB B: PRINT A$: RETURN 

5. Change line 100 so that it reads 

100 PRINT CHR$(4);"RUN TURNKEY" 

Then save the file with the name HELLO and lock it. 

6. Unlock the file APPLESOFT, load it, and list it: 

10 TEXT : CALL -836: DIM A$(40> 
20 D$= 1111 

: REM CTRL-D 
30 VTAB 2:A$="APPLE II": GOSUB 1000 
40 VTAB 4:A$= 11 DOS VERSION 3.3 SAMPLE 

PROGRAMS": GOSUB 1000 
50 VTAB 7:A$="JANUARY 1 t 1883": GOSUB 1000 
60 PRINT D$;"BLOAD LOADER.OBJ0" 
70 CALL 4086 
80 VTAB 10: CALL -858:A$="COPYRIGHT APPLE 

COM PUT ER , I NC • 1880 , 1982 11 
: GOSUB 1000 

80 C=PEEK (-1101): IF C<>6 THEN GOTO 100: 
PRINT 

85 POKE 501127:A$ ="BE SURE CAPS LOCK IS 
DOWN": GOSUB 1000: POKE 501255 

100 PRINT D$;"INT" 
1000 REM CENTER STRING A$ 
1010 B = 20 - < LEN CA$) I 2): IF B = 0 THEN 

B=1 
1020 TAB B: PRINT A$: RETURN 

Change line 100 so that it reads 

100 PRINT D$;"RUN TURNKEY" 

Save the file with the name APPLESOFT and lock it. This changes 
HELLO and APPLESOFT so they run your turnkey program 
instead of the BASIC that they ran originally. 

Making a Turnkey Disk • 



• 

7. Rename your turnkey program TURNKEY. Here is a sample 
TURNKEY program In Applesoft: 

100 TEXT : HOME 
200 VTAB 3: PRINT "THIS IS MY TURNKEY 

PROGRAM II 

300 VTAB 5: FOR A = 1 TO 10: PRINT A: NEXT A 
ll00 PRINT : PRINT "THIS IS THE END OF MY 

TURNKEY PROGRAM" 
500 END 

8. After you make sure your disk has the HELLO, APPLESOFT, 
INTBASIC, FPBASIC, LOADER.OBJO, and TURNKEY files, test 
your turnkey disk by putting it In drive 1 and turning the power off 
and on. The disk should start DOS, load Integer BASIC or 
Applesoft if necessary, and run the program named TURNKEY • 

Chapter 5: Programming With More Sophistication 



5.7Summary 

5.7.1 Commands 

EXEC fn [,Rn] [,Sn] [,On] [,Vn] 

directs DOS to take its commands from a command file rather 
than from the keyboard. The fn argument names a command 
file created by a BASIC program. The command file can contain 
DOS commands, data, and BASIC statements. 

MAXFILESn 

where n is an integer from 1 to 16, specifies the number of files 
that can be active at one time. 

CHAIN fn [,Sn] [,On] [,Vn] 

loads and runs an Integer BASIC program from the disk without 
clearing the values of any variables or arrays from memory and 
without closing any open files. 

5.7.2 Program 
MASTER 

converts an initialized disk into a master disk that can operate 
on an Apple II system of any memory size. 

Summary • 



II Chapter 5: Programming With More Sophistication 



Chapter6 

Using Memory More 
Efficiently 

117 6.1 Binary Files 
118 6.1.1 Binary Addresses 
118 6.1.2 An and Ln: The Memory Address Arguments 
119 6.2 The Binary Commands 
120 6.2.1 The BRUN Command 
121 6.2.2 The BLOAD Command 
122 6.2.3 The BSAVE Command 
123 6.2.3.1 Example 
124 6.3 DOS and the Monitor Program 
125 6.3.1 The Input and Output Registers of the Monitor 
126 6.3.2 The Input and Output Registers of DOS 
127 6.4 Memory Usage and Entry Points 
127 6.4.1 PR# and IN# in Memory 
129 6.4.2 Memory Maps 
129 6.4.2.1 HIMEM 
132 6.4.2.2 The Values of HIMEM 
132 6.4.2.3 High-Resolution Graphics 
133 6.4.3 DOS Entry Points 
133 6.4.3.1 Routine to Reconnect DOS 
134 6.4.3.2 Binary File Memory Locations After BLOAD 
134 6.4.3.3 DOS Memory Locations After BLOAD 
135 6.5 Binary Command Summary 

Using Memory More Efficiently • 





Binary is a numeric representation in 
terms of powers of 2, using the digits 0 
and 1. 

Hexadecimal numbers are expressed in 
terms of powers of 16, using the digits 0 
through 9 and A through F. 

Chapter6 

Using Memory More 
Efficiently 

This chapter describes how to use binary programs and how they 
interact in memory with the Monitor program. It includes 

• loading, running, and saving binary programs; 

• using binary programs to read and write characters; 

• controlling the input and output registers of DOS and of the 
Monitor. 

Programmers who write in assembly and machine language use 
binary commands. The Apple II Reference Manual and the 6502 
Assembler/DOS Tool Kit (formerly called the Apple 6502 Assembler! 
Editor Manual) provide detailed information about using these 
languages. 

6.1 Binary Files 
A binary flle contains information stored in consecutive locations in 
your Apple ll's memory or on a disk. The information is not expressed 
in text form; instead, it is a series of hexadecimal numbers from $00 
to $FF (decimal 0 to 255). These hexadecimal numbers can 
represent numbers, letters, machine-language commands, or high­
resolution graphics. 

You can store values in a binary file up to the limits of your Apple ll's 
memory. A binary file has the file type B. 

Binary Flies • 



I 

6.1.1 Binary Addresses 
You don't have to understand the organization of the Apple ll's 
memory to run an existing machine-language program. But you do 
need to know about memory addresses to work directly with the 
binary information in memory. 

Your computer's memory is a continuous sequence of memory 
locations, or bytes, each having an address. The address of the first 
memory location is 0 (written as $0000 in hexadecimal), the address 
of the second memory location is 1 ($0001 ), and so on. When your 
computer has 48K bytes of memory, the address of the last RAM 
memory location is 49151 ($BFFF); for 64K, the last RAM memory 
location is 65535 ($FFFF). 

6.1.2 An and Ln: The Memory Address Arguments 

To use a binary command, you indicate the memory address by 
means of command arguments: 

An specifies the starting address in memory. 

Ln specifies the number of memory locations, or bytes. 

Replace the lowercase n with a decimal or hexadecimal number. For 
example, to save a high-resolution graphics screen that is in memory 
locations 8192 through 16383 ($2000 through $3FFF) in a file, you 
specify the starting address of the information as 

,A8192 or ,A$2000 

and the number of bytes you're saving as 

,L8192 or ,L$2000 

Remember: Hexadecimal numbers are preceded by$. 

Chapter 6: Using Memory More Efficiently 



Figure 6-1. BRUN, BLOAD, and BSAVE 

62 The Binary Commands 
The DOS commands BRUN, BLOAD, and BSAVE deal with binary 
information in any part of the computer's memory. The Bin each of 
these commands stands for "binary." 

Binary commands transfer binary information, byte for byte, between 
memory and a file. The two most common uses of binary commands 
are running binary programs and bringing binary images into 
memory for display. 

The Binary Commands 

BRUN loads and runs a binary file. 

BLOAD loads a file from disk . 

• 



6.2.1 The BRUN Command 

The BRUN command runs a binary program file (file type B). When 
DOS sees this command, it transfers the specified program into 
memory and runs the program. DOS puts the program into main 
memory starting at the address from which the program was saved 
(BSAVE) unless you specify another address. This is the command 
syntax: 

BRUN fn [,An] [,Sn] [,Dn] [,Vn] 

fn indicates a binary file. If you use only this argument, 
DOS places the entire contents of the binary file fn into 
memory starting at the address from which it was 
saved with the BSAVE command. 

[,An] where n is a memory address from 0 to 65535 
(decimal) or $0 to $FFFF (hexadecimal), specifies 
where DOS transfers the first byte of the program. 

[,Sn] where n is a number from 1 to 7, specifies the slot 
containing the disk controller card of the drive to be 
accessed. If omitted, DOS uses the default slot 
number. 

[,Dn] where n is 1 or 2, specifies the drive of the disk 
containing fn. If omitted, DOS uses the default drive 
number. 

[, Vn] where n is a number from 0 to 254, specifies the 
volume number of the disk to be accessed. If you 
specify 0, just V, or omit the option, DOS ignores the 
volume specification. 

To run a binary program named FID, type the command 

BRUN FID 

By the Way: DOS can't tell the difference between a binary program file 
and a binary data file. So it's a good idea to name binary files to indicate 
their contents. For example, the suffix .PIC can specify a file containing 
picture data. 

If you accidentally run (BRUN) a data file, parts of DOS may be changed. 
In this case, restart DOS. 

Chapter 6: Using Memory More Efficiently 



6.2.2 The BLOAD Command 

Wrth the BLOAD command, you can move a picture from a file to a 
graphics screen, move the binary image of any type of file into 
memory, or transfer a program written in machine language from a 
disk file to memory. The syntax is 

BLOAD fn [,An] [,Sn] [,On] [,Vn] 

fn indicates a binary file. 

[,An] where n is a memory address from 0 to 65535 
(decimal) or $0 to $FFFF (hexadecimal), specifies 
where DOS transfers the first byte of the entire 
contents of this file. When the target address is omitted, 
DOS puts the file in memory starting at the address 
from which it was saved (BSAVE). 

[,Sn] where n is a number from 1 to 7, specifies the slot 
containing the disk controller card of the drive to be 
accessed. If omitted, DOS uses the default slot 
number. 

[,On] where n is 1 or 2, specifies the drive of the disk 
containing fn. If omitted, DOS uses the default drive 
number. 

[, Vn] where n is a number from 0 to 254, specifies the 
volume number of the disk to be accessed. If you 
specify 0, just V, or omit the option, DOS ignores the 
volume specification. 

... Warning 
The BLOAD command transfers binary information from a disk file to RAM 
memory only. 

Unlike the LOAD command, BLOAD doesn't erase programs or 
variables from memory unless they reside in the memory locations 
where the disk file will be put. 

Warning 
A machine-language program may not run if it is moved to a memory 
location other than the one from which it was saved. It's a good idea to 
note the address you used with the BSAVE command on the disk's label. 

The Binary Commands • 



II 

6.2.3 The BSAVE Command 
The BSAVE command transfers binary information from any part of 
your computer's memory to a disk file. It allows you to transfer a 
machine-language program from memory to a file, to move a picture 
from a graphics screen to a file, or to store information in any portion 
of memory to a binary file. 

The general form of the command is 

BSAVE fn, An, Ln [,Sn] [,Dn] [, Vn] 

fn indicates a binary file. 

,An where n is a memory address from 0 to 65535 
(decimal) or $0 to $FFFF (hexadecimal), specifies the 
memory address from which DOS transfers the first 
byte of the program. This argument is required. 

,Ln where n is a number of bytes in the range 
of 0 to 32767 (decimal) or $0 to $7FFF 
(hexadecimal), specifies the number of bytes of 
memory to transfer. This argument is required. 

[,Sn] where n is a number from 1 to 7, specifies the slot 
containing the disk controller card of the drive to be 
accessed. If omitted, DOS uses the default slot 
number. 

[,Dn] where n is 1 or 2, specifies the drive of the disk on 
which to store fn. If omitted, DOS uses the default drive 
number. 

[,Vn] where n is a number from 0 to 254, specifies the 
volume number of the disk to be accessed. If you 
specify 0, just V, or omit the option, DOS ignores the 
volume specification. 

Reminder: On the disk's label write the address from which you save 
(BSAVE}a binary program. 

Chapter 6: Using Memory More Efficiently 



The Monitor is in read-only memory and 
controls the computar's foocllona. 

8.2.3. f Example 

In this example you create a binary file and use it with the BSAVE, 
BRUN, and BLOAD commands. 

1. To enter the Monitor, type CALL -151 and press I RETURN I. 

2. Type these binary values Into memory. Note that they are 
hexadecimal numbers. 

300: 20 80 FE A0 00 BS 16 03 F0 06 20 ED FD 
CB 10 F5 20 84 FE 4C: D0 03 BD C:l D0 D0 CC C:5 
A0 AF AF 00 
When you've entered all the values, press I RETURN I. 

3. Ask DOS to save this data as a binary file with the name APPLEll 
by typing 

BSAVE APPLEll1A$3001L$20 
The An argument saves the data from location $300. The Ln 
argument saves data for a length of $20 bytes. 

4. Run it by typing 

BRUN APPLEII 

You'll see APPLE I I printed in inverse mode on your screen. 

5. To do the same thing from BASIC, type 

BLOAD APPLElltAS300 
CALL 768 

The Binary Commands • 



II 

6.3 DOS and the Monitor Program 
In the previous example, you entered the Monitor program so that 
you could type in a binary program. This section lists many of the 
commands you use to enter the Monitor and to return to BASIC. 

To enter the Monitor program from BASIC, type 

CALL -151 

You will see an asterisk(*), the prompt character for the Monitor 
program. DOS is still active, so you can use all the immediate­
execution DOS commands. For example, the CATALOG command 
will display a catalog on the screen and the PR# command will run a 
program on a disk. 

You can use several commands (n is the slot number) from the 
Monitor with or without DOS active: 

n(CONTROLJ-(EJ 

n! coNTROL Hill 

(CONTROL I-@) 

(CONTROL)-@ 

*3D0G 

3D3G 

3EAG 

(Same as PR#n from the 
Monitor-directs output) 
(Same as IN#n from the 
Monitor-directs input) 
(Continues BASIC-doesn't 
reset it) 
(Enters BASIC-resets it) 

. (Enters BASIC-doesn't reset 
it-connects DOS again) 
(Enters BASIC-doesn't reset 
it-connects DOS again) 
(If DOS is in memory, connects 
DOS-remains in the Monitor) 

To select input and output devices and to connect DOS again, you 
can also use POKE statements to put appropriate values directly into 
the Monitor registers. 

Chapter 6: Using Memory More Efficiently 



lcONmoL I-@ and~ are not 
displayed on the screen when you type 
them. 

'nlble 6-1. Monitor Input Regisler in 
Locations 56-57 ($38-$39) 

Table 6-2. Monitor Output Register in 
Locations 54-55 ($36-$37) 

6.3.1 The Input and Output Registers of the 
Monitor 
In Table 6-1, nlcoNrRoLl-@and n~ are 
Monitor commands. 

Register 
contents To the Subsequent Input 
set by value comes from 

(RESET) -741 Monitor Input 
o~ ($FD1B) Routine from 
IN#O keyboard 

nlcONTROLI-@ 49152 + n*256 slotn 
IN#n ($Cn00) If slot n contains disk 
(wheren >0) controller, boot DOS 

DOS boot Top of mem. - 8515 DOS 
($Top of mem. - $2143) 

Register 
contents To the Subsequent output 
set by value goes to 

(RESET) -528 Monitor Output 
o~ ($FDF0) Routine to display 
PR#O screen 

n~ 49152 + n*256 slotn 
PR#n ($Cn00) If slot n contains disk 
(wheren>O) controller, boot DOS 

DOS boot Top of mem. - 8575 DOS 
($Top of mem. - $217F) 

DOS and the Monitor Program • 



Table 6·3. DOS Input Register 

Table 6·4. DOS Output Register 

• 

6.3.2 The Input and Output Registers of DOS 

Register 
contents 
set by 

DOS boot 
(RESET) 3D0G 
IN#O 
PRINT D$:"1N#O" 
(D$ = (CONTROL J-@) 

IN#n 
PRINT D$;"1N#n" 
(wheren > 0) 

Register 
contents 
set by 

DOS boot 
(RESET) 3D0G 
PR#O 
PRINT D$;"PR#O" 
(D$ = (CONTROL J-@) 

To the 
value 

-741 
($FD1B) 

49152 + n*256 
($Cn00) 

To the 
value 

-528 
($FDF0) 

PR#n 49152 + n*256 
PRINT D$;"PR#n" ($Cn00) 
(where 0 < n < 8) 

Subsequent Input 
comes from 

Monitor Input 
Routine from 
keyboard 

slotn 
If slot n contains disk 
controller, reboot 
DOS 

Subsequent output 
goes to 

Monitor Output 
Routine to display 
screen 

slotn 
If slot n contains disk 
controller, reboot 
DOS 

When DOS is operating, PR# and IN# do not affect the contents of 
the DOS input and output registers unless they are issued without 
a~ as an instruction in a command file. For example, 
when a command file executes a line such as 120 PR#3, the 
contents of the Monitor output register are changed and DOS is 
partially disconnected until the next input. 

No matter what input or output device is selected by the DOS input 
and output registers, input can also be received from the disk and 
output can be sent to the disk . 

Chapter 6: Using Memory More Efflclently 



For an example of this procedure, see 
Chapter 2 for the program for finding 
hidden characters. 

There are two ways to select input and output devices and to 
reconnect DOS: you can use the commands in Tables 6-1 through 
6-4, or you can use POKE statements to put appropriate values 
directly into the DOS registers. 

Warning 
The specific memory locations of the DOS input and output registers 
change with different sizes of system memory and with different versions 
of DOS. For this reason, you need to follow a special two-step procedure 
to change the contents of these register locations: 

1. Change the Monitor input and output register locations to the values 
you want the DOS input and output registers to contain. Either use POKE 
statements to place the values directly into the Monitor locations or use 
IN# and PR# without I CONTROL I-@ from a program. 

2. Issue a CALL 1002 (from DOS) or $3EAG (from the Monitor) to 
reconnect DOS through the Monitor registers. The previous contents of 
the Monitor input and output registers will appear in the input and output 
registers of DOS. This CALL can also be used to reconnect DOS 
whenever your program needs to disconnect DOS temporarily. 

DOS does not recognize the Monitor commands nt coNrRoL 1-0 and 
nl coNTROL 1-0. Since these commands directly affect the Monitor input or 
output registers, use PR# and IN# when DOS is connected. 

6A Memory Usage and Entry Points 
This section describes how PR# and IN# use memory. Then it maps 
the memory areas overwritten when starting DOS, the memory 
addresses DOS assigns to HIMEM, and the memory areas that DOS 
and both BASIC dialects use. 

6.4.1 PR# and IN# in Memory 

To see how PR# and IN# work in memory, examine how the Apple II 
normally sends and receives characters. Two memory locations, 

CSWH and CSWL = monitor output link. named CSWH and CSWL, store the memory address of a routine 
that writes characters. CSWH and CSWL are the monitor output 
link; they link the Monitor program to an output routine. 

KSWH and KSWL = monitor input link. Similarly, two other memory locations, named KSWH and KSWL, 
store the memory address of the routine that reads characters. 
KSWH and KSWL are the monitor input link. 

Memory Usage and Entry Points • 



COUT1 sends characters to the display 
screen; KEVIN reads characters from the 
keyboard. 

II 

The monitor output link normally contains the address of the standard 
output routine, COUT1 , which sends characters to the display 
screen. The monitor Input link normally contains the address of the 
standard input routine, KEVIN, which reads characters from the 
keyboard. 

When DOS is not running and you use PR# or IN# from BASIC, the 
Monitor links are set to indicate the ROM on the card in the indicated 
slot ($Cn00 for slot n). When the computer gets a character from the 
keyboard or sends one to the display screen, it calls the Input or 
output routine in the card's ROM to perform the transfer. 

When DOS is running, the VO links of the Monitor program contain 
the addresses of the DOS input and output routines instead of the 
standard input and output routines. DOS keeps the addresses of the 
Monitor's standard Input and output routines in the DOS VO links; that 
is, the DOS 1/0 links normally contain the addresses of KEVIN and 
COUT1. 

When you use PR# or IN# with a slot number, DOS replaces the 
contents of the proper DOS link with the address of the ROM on the 
card In the indicated slot ($Cn00 for slot n). When you use PR# or 
IN# with an address, DOS places that address in the proper DOS 
link. Then, when the Apple II tries to write or read a character, the 
Monitor's output or Input links point to the proper DOS routine, which 
Is a two-part transfer: 

• In part 1, DOS moves the addresses of the current 1/0 routines 
from the DOS 1/0 links to the Monitor's 1/0 links. Then DOS calls 
COUT1 or KEVIN to write the character to or read it from the 
device now selected by the Monitor's 1/0 links. 

• In part 2, DOS reconnects itself by placing the addresses of its 1/0 
routines into the Monitor's 1/0 links. 

Chapter&: Using Memory More Efflclently 



When a program issues a PR# or IN# command without a~. 
the command goes to BASIC. Then BASIC changes the values of the 
Monitor 110 links. Since the Monitor's links no longer point to DOS, 
DOS is disconnected. Because of the two-part transfer, DOS will use 
the old 1/0 routine (part 1 ) to transfer the next character, then it will 
reconnect itself (part 2) if it isn't disconnected at both input and 
output registers simultaneously. 

If this should happen, reset the DOS input and output to the keyboard 
and display screen. If DOS is no longer in memory, restart DOS. If 
DOS is still in memory, use the BASIC statement CALL 1002. 

By the Way: CALL executes a machine-language subroutine from a 
BASIC program. Control transfers to the subroutine. When it finishes, 
execution goes to the statement following the CALL. The CALL doesn't 
affect the program in memory. 

6A.2 Memory Maps 

BA.2.1 HIMEM 

HIMEM = highest memory address (plus HIMEM is the highest memory address available to an Applesoft 
one) that Applesoft can use. program for the storage of program statements and variables. 

Applesoft automatically sets HIMEM to the address of the highest 
writeable memory (plus one) RAM address available on your 
computer. Loading DOS automatically resets HIMEM to a lower value 
in order to protect the area of memory DOS itself occupies. 
Depending on the value DOS sets, the area above the HIMEM 
address may be available for use by DOS, high-resolution graphics, 
or machine-language programs. 

Memory Usage and Entry Points II 



Figure 6-2. Memory Areas Overwritten 
When Booting DOS 

II 

Figure 6-2 maps main memory as it is affected by booting DOS. 
Figure 6-3 maps areas of memory that are used by DOS and both 
BASIC languages. 

Locations 6912 to 16383 ($1800 to $3FFF) are affected when 
starting up a master disk. They are not affected when starting a disk 
initialized on a system 32K or larger. DOS is placed directly below the 
highest RAM memory address that was available on the system on 
which the disk was prepared. 

Location on 
any system: 

Highest RAM 
memory address__. 

DOS points 
HIMEM here__.. 

16383 ($3FFF)____. 

7424($1000)____. 

6912($1800)~ 

2303 ($8FF)---.. 

2048 ($800)____. 

1023($3FF)____. 

512 ($200)--.. 

Lowest RAM 
Memory address____.. 

000($000) 

I 

8960 Relocated DOS, 
($2300) on completion 
bytes of boot 

t 
l 7 bytes not used 

1792 Three file 
($700) buffers of 
bytes 595 (253) bytes 

i 
for input & output 

DOS, where first booted 
from a disk 

DOS Relocation Code 

First stage boot 
starts here 

"Nibble" buffers used during boot 

Chapter 6: Using Memory More Efficiently 

Location on a 
48Ksystem: 

..--- 49151 ($BFFF) 

...___ 40192 ($9000) 

..--- 40184 ($9CF8) 

...___ 38400 ($9600) 



Figure 6-3. Memory Areas Used by DOS 
and Both BASICS 

Highest RAM 
memory address: 

49151 ($BFFF) 
on a 48K system 

38400 
($9600) 

on a 48K system 

___,. 

...... 

24576 
($6000 )---.. 

16384 
($4000 )---.. 

8192 
($2000) 

__. 

T 
10752 Disk 

($2A00) Operating 
bytes System 

~ 
(if booted) 

1 1 
Integer BASIC Applesoft 
program lines strings 
start at HIMEM start at HIMEM 
and build down and build down 

I- _ _t __ - - _i__ 

High-resolution graphics, Page 2 

High-resolution graphics, Page 1 

I- Both BASICS' - r 
variables 

2048 
($0800) 

Lowest RAM 
memory address: 
1023 ($03FF) 

768 
($0300) 

~ -.... 

---.. 

--

start at LOMEM I 

I- ~md b~ld up 1 
Applesoft + 

program lines I 
push LOMEM up J 

BASIC system use: 
low-resolution graphics 

and text screen, etc. 

$3D0-3FF DOS + Monitor 

$300-3CF Free Space 

Monitor and BASIC Workspace 
($0000-00FF:Zero Page 

Memory Usage and Entry Points 

....__ 

-

Without DOS, 
HIMEM in both 

BASICs points here 

With DOS, HIMEM 
points here 

FP (firmware) 
and INT set 

LOMEMhere 

• 



Table 6-5. The Values of HIMEM 

II 

6.4.2.2 The Values of HIMEM 

HIMEM is the highest memory location that is available to your 
program. This upper boundary is set initially by the Apple II computer. 

Booting DOS sets the value of HIMEM according to the amount of 
memory your computer has. Table 6-5 shows these values. When 
your system is running Integer BASIC, the HIMEM pointer is located 
(low byte first, then high byte) in bytes 76-77 ($4C-$40). When your 
system is running Applesoft, the HIMEM pointer is in bytes 115-116 
($73-$74). 

Increasing MAXFILES moves HIMEM down 595 bytes for each file 
buffer you add. The Applesoft II BASIC Programming Manual gives 
the locations of other Applesoft program pointers. 

System Highest RAM address HIMEM (set by DOS boot) 
size Decimal Hexadecimal Decimal Hexadecimal 

16K 16383 $3FFF 5632 $1600 
20K 20479 $4FFF 9728 $2600 
24K 24575 $5FFF 13824 $3600 
32K 32767 $7FFF 22016 $5600 
36K 36863 $8FFF 26112 $6600 
48K (*) 49151 $BFFF -27136 $9600 (**) 

(*)These values are for systems 48K and larger. 

(**)The decimal number -27136 could also be written 38400; 
however, Integer BASIC does not accept numbers greater than 
32767. 

By the Way: In Integer BASIC, memory addresses greater than 32767 
must be expressed as their negative equivalents. The negative equivalent 
of any positive decimal address n is (n - 65536). 

6.4.2.3 High-Resolution Graphics 

The Apple II computer has two areas of memory for low-resolution 
graphics and two areas for high-resolution graphics. These areas are 
called pages. The pages are plotted on the display screen in terms of 
rows and columns. 

Using high-resolution graphics Page 1 erases the contents of 
memory locations 8192 through 16383. Unless your system contains 
at least 32K of memory, you cannot use disks and high-resolution 
graphics at the same time. 

Chapter 6: Using Memory More Efficiently 



Page 3, see Figure 6-3. 

... Warning 
HIMEM and LOMEM must be set appropriately to avoid conflict with high­
resolution graphics Page 1. 

Using high-resolution graphics Page 2 erases the contents of 
memory locations 16384 through 24575. Unless your system 
contains at least 32K of memory, you cannot use disks and high­
resolution graphics Page 2 at the same time. 

.. Warning 
HIMEM and LOMEM must be set appropriately to avoid conflict with high­
resolution graphics Page 2. 

6A.3 DOS Entry Points 

This section provides DOS entry points and the ways to use them 

• to reconnect DOS if it is partly overwritten. 

• to find the starting address and length of a binary program brought 
into memory by the BLOAD command. 

• to find the DOS locations of the starting address and length of the 
most recent program placed in memory by the BLOAD command. 

6.4.3.1 Routine to Reconnect DOS 

The DOS pointers and subroutines found in Page 3 may be 
disconnected if you accidentally enter the Monitor program. Page 3 is 
an area of memory (addresses $0300 to $03FF) used by DOS. 

To reconnect DOS, use either a CALL or the Monitor command G 
with the value needed for the size of your computer's memory; these 
values are: 

System 
size 

48K * 
32K 
16K 

Decimal address 
(CALL) 

- 25153 
23999 

7615 

* For systems 48K and larger. 

Hexadecimal address 
(G) 

$9DBF 
$5DBF 
$1DBF 

The Monitor command 300L lists this number at the top right of the 
screen. 

Memory Usage and Entry Points II 



• 

6.4.3.2 Binary Fii• Memory Locations After BLOAD 

You can find the starting address or length of a binary file after a 
BLOAD command. Type 

PR I NT PEEK (low byte) + PEEK (low byte+ 1> *256 

And the appropriate low byte your Apple II uses from the list below. 

System Starting address (low byte) 
size Declmal Hexadecimal 

48K* 
32K 
16K 

43634 
27250 
10866 

$AA72 
$6A72 
$2A72 

* For systems 48K and larger. 

43616 
27232 
10848 

6.4.3.3 DOS llemory LocatlonsAtterBLOAD 

$AA60 
$6A60 
$2A60 

This program finds the DOS locations containing the starting address 
and length of the program most recently brought Into memory by the 
BLOAD command. It can be used on an Apple II with any size 
memory. 

Memory Size: The values of Hand T (lines 7 and 8) are for a 48K Apple II. 
Table 6-5 shows the correct values for your computer. 

5 REM 8LOAD FINDER 
7 H = 38400: REM DOS-BOOT HIMEM 
8 T • 48152: REM HIGHEST ADDRESS 
10 DS = CHRS <4>: REM CONTROL-D 
20 PRINT D$i "8SAVE Foo, A$7777t L$77" 
30 PRINT D$i "BLOAD FOO" 
40 PR INT D$; II DELETE FOO" 
50 FOR I = H +1792 TO T 
60 IF PEEK <I> <> 119 OR PEEK <I+1) <> 0 THEN 

NEXT I 
70 PRINT "LOCATIONS OF START ADDRESS: II H ;n, 

II; I + 1 
80 FOR I = H + 1792 TO T 
90 IF PEEK <O> <> 119 OR PEEK <I+1> <> 0 THEN 

NEXT I 
100 PRINT "LOCATIONS OF LENGTH: II H; II, II H + 1 

This program takes about two minutes to find the desired locations . 

Chapter 6: Ualng Memory More Eftlclently 



6.5 Binary Command Summary 
BRUN fn [,An] [,Sn] [,On][, Vn] 

tranfers the contents of a binary file (file type B) on a disk to any 
part of memory and then executes the program. If the An 
(address) option is not used, the program is placed in memory 
starting at the address specified in the BSAVE command that 
originally saved the file. 

BLOADfn [,An] [,Sn] [,On] [,Vn] 

transfers binary information from a disk to any part of memory. 
When the An (address) option is not used, the program is 
placed in memory starting at the address specified in the 
BSAVE command that originally saved the file. 

BSAVE fn , An , Ln [,Sn] [,On][, Vn] 

transfers binary data from a specified portion of memory to a 
binary file (file type B) on a disk. The An (address) and Ln 
(length) arguments allow you to transfer information from any 
part of memory. 

Binary Command Summary • 



Appendixes 

139 A. Dealing With 13-Sector Disks 
140 A.1 Converting a 13-Sector Disk: The CONVERT13 

Program 
140 A.1 .1 Example 
143 A.1 .2 The Wildcard Character 
144 A.2 Running Unconverted 13-Sector Disks 
144 A.2.1 Using the START13 Program 
144 A.2.1.1 Example 
145 A.2.2 Using the BASICS Disk 
147 B. The Storage Process 
147 B.1 Tracks and Sectors 
148 B.2 Contents of File Sectors 
149 B.2.1 Format of File Sectors According to File Type 
149 B.2.2 The Track/Sector List 
151 B.2.3 The Disk Directory 
155 B.2.4 The Volume Table of Contents 
157 B.2.5 The Track Bit Map 
158 B.3 Track and Sector Allocation 
159 B.4 Addressing Tracks and Sectors: The RWTS Subroutine 
160 B.4.1 Example 
162 B.4.2 Formats: 1/0 Block and Device-Characteristics 

Table 
163 B.5 DOS Vectors in Page 3 
165 B.6 Zero Page Use 
167 C. DOS Error Messages 
168 C.1 DOS Error Messages 
169 C.2 Recovering From Errors 
177 D. Programs 
177 D.1 Programs on the SYSTEM MASTER Disk 
178 D.2 Programs on the SAMPLE PROGRAMS Disk 

II Appendixes 



181 E. 
181 
181 
182 
182 
182 
183 
183 
183 
183 
183 
184 
184 
186 
187 

190 

192 

195 

197 

Appendixes 

Summary of DOS Operating Concepts and Commands 
E.1 Operating Concepts 

E.1 .1 Cold Start 
E.1.2 Warm Start 
E.1.3 Initializing a Disk 
E.1.4 Creating a Master Disk 
E.1.5 Interpreting Commands 
E.1.6 Capacity 
E.1. 7 File Types 

5.2 Command Notation 
E.2.1 Conventions 
E.2.2 Syntax 
E.2.3 Arguments 

E.3 Command Summary 
E.3.1 Nonprogramming Commands for Accessing 

Disks 
E.3.2 Commands that Control the Programming 

Environment 
E.3.3 Programming Commands for Sequential­

Access Text Files 
E.3.4 Programming Commands for Random-Access 

Text Files 
E.3.5 Commands for Binary Files 

Appendixes II 





Figure A-1 . 13-Sector Versus 16-Sector 
Disks 

13-Sector Disk 

Appendix A 

Dealing With 13-Sector 
Disks 

This appendix is for people who have earlier versions of DOS or who 
have games or other application programs that don't seem to run on 
their present Apple II. It tells you how to convert 13-sector disks to 
16-sector format and how to use unconverted 13-sector disks with 
16-sector DOS. 

Earlier versions of DOS (3.1 and 3.2) organized the surface of each 
track on a disk into 13 sectors (see Figure A-1 ). But DOS 3.3 divides 
each track into 16 sectors, giving each disk about 20 percent more 
space for information. 

By the Way: If you have a 13-sector system and would like to update it, 
install the DOS 3.3 Kit. 

If you use a disk that has the wrong format for your system, DOS 
prints an appropriate error message, such as UNABLE TO READ, 
UNABLE TO WRITE, or I/O ERROR. 

16-Sector Disk 

Dealing With 13-Sector Disks 

Track 
35 tracks on each disk 

'. ..- One sector 
(16 sectors on a track) 

256 bytes of data 
stored in each sector 
of each track 

II 



Figure A-2. The CONVERT13 Menu 

• 

II 

A.1 Converting a 13-Sector Disk: The 
CONVERT13 Program 
The CONVERT13 program on the SYSTEM MASTER disk converts 
a 13-sector disk and its programs to 16-sector format. CONVERT13 
reads the information from a 13-sector disk and writes the 
information to a disk you have initialized in the 16-sector format 
without changing the original information in any way. 

Incidentally: The MUFFIN program, from an earlier version of DOS, 
performs the same function that CONVERT13 does. 

A.1.1 Example 

This example of CONVERT13 assumes that your Apple II has one 
disk drive and that your disk drive is connected to a controller card in 
slot6. 

1 . With DOS in memory, initialize a blank disk. 

2. Put the SYSTEM MASTER disk in your drive and type 

RUN CONVERT13 

The message E}<ECUT I NG MUFFIN appears briefly; then 
you'll see the CONVERT13 menu, as shown in Figure A-2. 

Appendix A: Dealing With 13-Sector Disks 



Wildcard, see the next section. 

Type 

1 

to indicate that you want to convert files. 

3. When you see the question SOURCE SLOT?, type 

8 

This is the number of the slot that holds the controller card for the 
drive that will contain the 13-sector disk. 

4. The next question is DR I IJE?. Type 

1 

the number of your disk drive. 

5. When you see DESTINA TI ON SLOT?, type 

G 

Use the same slot number for the duplicate disk. 

6. Answer the question DR I IJE? by typing 

1 

the number of your disk drive. 

7. Now you're asked for the name of the file to be converted: 
FILENAME?. Type 

= 

The equal sign ( =) is a wlldcard representing the names of all 
the 13-sector files. It means you want to convert the entire 
contents of the 13-sector disk. 

Converting a 13-Sector Disk: The CONVERT 13 Program II 



To convert large files, you may need to 
swap disks several times to get the whole 
file transferred. 

I 

8. Before anything will be converted, CONVERT13 asks DD YOU 
WANT PROMPTING? 

For now, type 

N (for no). 

9. When you see INSERT DISK <S > THEN PRESS < ESC > 
TD RETURN TD MAIN MENU OR ANY OTHER KEY TO 
BEGIN, remove the SYSTEM MASTER from the drive. From 
here on, you'll be working with your 13-sector disk and a newly 
initialized disk. 

10. Insert the 13-sector disk into the drive. When you see INSERT 
SOURCE DISK AND PRESS A KEY, press(RETURNl. 

CONVERT13 now finds and reads the first file on the 13-sector 
disk. 

11. CONVERT13displays INSERT DESTINATION DISK AND 
PRESS ANY KEY and waits for you to insert the 16-sector disk 
and press [RETURN!. 

12. CONVERT13 will instruct you to insert the source disk again. 
Repeat this procedure, alternately reading from the source and 
writing to the destination disk until each 13-sector file has been 
converted and moved to the 16-sector disk. You'll see the 
message DONE after each file has been processed. 

Two Drives: If you have more than one disk drive, specify the slot and 
drive numbers of the source and destination disks when the CONVERT13 
program asks for them. Place the disks in the appropriate drives before 
the conversion begins. 

Appendix A: Dealing With 13-Sector Disks 



• 

• 

When you see the message 

INSERT DISK(S) THEN PRESS <ESC> TD RETURN TO 
MAIN MENU DR ANY OTHER KEY TD BEGIN 

you have the chance to change your mind about converting the file. If 
you press (EscJ, CONVERT13 stops and displays the menu. 

If you try to convert a 13-sector file with the same name as a file 
already on the destination disk, you'll see: 

FILE [filename] 
ALREADY EHISTS. 

TYPE IN A NEW FILE NAME FOR THE COPY 
DR <RETURN> TD REPLACE EHISTING FILE 

DR <CDNTRDL-C><RETURN> TD CANCEL COPY: 

You can type a new name for the 13-sector file, convert the 13-sector 
file and have it replace the current 16-sector file, or press ( coNTRoL 1-@J 
(RETURN) to halt the conversion. 

A.1.2 The Wildcard Character 

As you saw in the example, the wildcard character ( =) may be used 
to mean all files on the disk. It may also stand for any character or 
group of characters within a file name. For example, if you respond to 
the question FILENAME?, by typing FI =LE it converts all files 
whose names begin with Fl and end with LE. In the same way, 
= TE>n converts all files whose names end with TEXT, and = * = , 
all files with names containing an asterisk. 

When you use the wildcard, CONVERT13 asks DD YOU WANT 
PROMPTING? If you respond Y foryes, CONVERT13stopsafter 
finding each file on the 13-sector disk and asks you to confirm that 
you want to convert that file. If you type N for no, CONVERT13 
converts all the files in the wildcard group without asking you to 
confirm. Type Q to return to the menu. 

Converting a 13-Sector Disk: The CONVERT 13 Program Ill 



The BASICS disk contains both BASIC 
languages; it is no longer part of the 
standard DOS package. 

II 

A.2 Running Unconverted 13-Sector Disks 
If your 13-sector disk is copy-protected and can't be converted, you 
can still use it on your 16-sector system. You can run the START13 
program on the SYSTEM MASTER disk or you can start up your 
system with the BASICS disk. 

By the Way: The BASICS disk is comparable to the START13 program. 
The difference is that you must boot the BASICS disk to use it. In contrast, 
you use the RUN command to execute the START13 program directly 
from the SYSTEM MASTER disk. 

A.2.1 Using the START13 Program 

START13 is a special loader program on the SYSTEM MASTER disk 
that reads information from a 13-sector disk into memory. It allows 
you to both read and write in 13 sectors. 

Incidentally: START13 is the same as the earlier BOOT13 program, 
which needed the BRUN command . RUN START13 is equivalent to 
BRUN BOOT13. 

A.2.1.1 Example 

The START13 example assumes that you have one disk drive 
connected to a disk controller card in slot 6. 

1. With the SYSTEM MASTER disk in drive 1, execute the START13 
program by typing 

RUN START13 

After you press (RETURN), the message E><ECUT I NG BOOT 13 
appears briefly. Then you'll see the title screen shown in 
Figure A-3. Remember, START13 runs BOOT13. 

2. After the title screen, you'll see the question SLOT TD BOOT 
FROM < DEFAULT= G > ? The program is asking what slot is 
connected to the drive that will hold your 13-sector disk. Put your 
13-sector disk in drive 1 and press (RETURN). 

If your 13-sector disk is a turnkey disk, the turnkey program on it 
will begin. So if the 13-sector disk contains Apple Writer 1.0, you'll 
see the menu of Apple Writer commands. 

Appendix A: Dealing With 13-Sector Disks 



Figure A-3. The START13 Title Screen 

• 

• 

13-SECTOR BOOT UTILITY 

COPYRIGHT 

A.2.2 Using the BASICS Disk 

The BASICS disk also loads information from a 13-sector disk into 
memory, allowing you to both read and write in 13 sectors. To use the 
BASICS disk, put it in drive 1, which must be connected via slot 6, 
and turn vour computer on. When you see this display on your screen 

INSERT YOUR 13-SECTOR DISKETTE 
AND PRESS RETURN 

nsert any 13-sector disk and press (RETURN). 

By the Way: The BASICS disk itself does not contain DOS. 

Boot the BASICS Disk: When an earlier Apple II manual says "boot the 
BASICS disk," you can use either the BASICS disk or theSTART13 
program on the SYSTEM MASTER disk. 

Running Unconverted 13-Sector Disks 





AppendixB 

The Storage Process 

This appendix discusses the relation between tracks and sectors, 
and describes in detail such storage elements as the volume table of 
contents. It also explains how machine-language programmers can 
work directly with tracks and sectors and with relocatable DOS 
routines. 

B.1 Tracks and Sectors 
In the 16-sector DOS system, information is recorded on a disk in 35 
concentric zones or bands, called tracks. Tracks are numbered from 

A dollar sign($) indicates a hexadecimal track $00, the outermost, through track $22, the innermost. While the 
number. disk spins, the drive's recording and reading head moves in and out 

to each of these 35 different tracks. 

File buffer = 595 bytes: 256 for data, 
256 for the track/sector list, 83 for 
"housekeeping." 

Each track on the disk is divided into 16 sectors, which are 
numbered from $0 through $F. When the drive's head is over a given 
track, that track's 16 sectors will pass under the head, one after the 
other, each time the disk spins around. 

Each sector holds up to 256 ($100) bytes of information. To store 
information on the disk, DOS first puts one sector's worth of the 
information in an area of memory called a file buffer. When the file 
buffer is full, DOS stores the information in one sector on the disk. 
Then DOS fills the buffer with zeros, which will be replaced by the 
next 256 bytes of information. 

DOS always records information on the disk in 256-byte chunks, 
exactly filling one sector each time. If fewer than 256 bytes of data are 
in the buffer, the remaining bytes will be zeros. 

DOS begins storing a program or text file wherever it can find an 
unused sector on the disk. When a sector is filled, DOS finds another 
free sector, perhaps on another track, and continues to reco.rd 
information there. This process continues until the entire file has 
been stored. 

Tracks and Sectors II 



Figure B-1 . Tracks on the Disk 

To keep track of the storage locations of the file's data, DOS 
maintains a list of each track and sector that the file uses. Then DOS 
stores that track/sector list in another free sector bn the disk. 

By the Way: When an existing file is accessed, the track/sector list is read 
into the second 256 bytes of the file buffer. 

Finally, the file's name, file type, length in sectors, and the disk 
location of the file's track/sector list are recorded in a special area of 
track $11 called the directory. At this time, DOS updates the disk's 
volume table of contents to show which sectors of each track are 
currently in use. 

Figure B-1 shows the track structure of a disk. 

Tracks $0, $1 & $2: For use of DOS. --+.f* 
Not Available for File Storage. 

Track $11: DirectoryNTOC. 

Ill 

B.2 Contents of File Sectors 
This section describes the format of individual storage elements: file 
sectors, the track/sector list, the disk directory, the volume table of 
contents, and the track bit map. 

Appendix B: The Storage Process 



File type is part of the "housekeeping" 
information in the last 83 bytes of the file 
buffer. 

Table B-1. Format of File Sectors for 
Different File Types 

For the sector format of file type R, see 
the 6502 Assembler/DOS Tool Kit. 

B.2.1 Format of File Sectors According to File 
Type 

All information, regardless of file type, is stored as hexadecimal 
bytes. But DOS interprets the information differently depending on 
the file type: A, I, T, B, or R. 

Table B-1 shows the format of file sectors for the different file types. 

File 
type Sector 

A, I 1 st sector 

Subsequent 
sectors 

T All 
sectors 

B 1st sector 

Subsequent 
sectors 

Byte 

$0 
$1 

$2 through $FF 

All 
bytes 

All 
bytes 

$0 

$1 

$2 

$3 

$4 through $FF 

All 
bytes 

B.2.2 The Track/Sector List 

Contents of byte 

Program length, low byte 
Program length, high byte 

Tokenized program 

Tokenized program 

ASC 11 representation of text, 
with high bit set: one byte/ 
character ($00 marks end of 
file) 

Starting RAM address, low 
byte 
Starting RAM address, high 
byte 

Length of RAM image, low 
byte 
Length of RAM image, high 
byte 

Binary data 

Binary data 

As a file is stored on the disk, DOS makes a list of the disk locations 
the file uses. This track/sector list is stored on the disk in the same 
way the file itself was stored. Table B-2 shows the contents of the first 
sector of a track/sector list. Notice that each file is assigned a pair of 
bytes, one with the track and the other with the sector location; these 
bytes are called the track/sector pair. Notice also the link pair; these 
two bytes contain the location of the next portion of the track/sector 
list. 

Contents of File Sectors II 



Table B-2. First Sector of a 
Track/Sector List 

When the list extends beyond 122 track/sector pairs, subsequent 
sectors of the track/sector list are identical to the first sector 
(Table B-2) except that the track/sector pairs refer to subsequent 
groups of 122 file sectors. Also, link bytes 1 and 2 differ for each 
subsequent sector, although the track may be the same. When both 
bytes of the link are zeros, the current sector is the final portion of the 
track/sector list. 

Byte 

$0 

$1 

$2 

$3 through $4 

$5-$6 

$7 through $8 

$C 
$D 

$E 
$F 

$10 
$11 

$FE 
$FF 

Contents of Byte 

Not used 

Link: track number where continuation of the 
track/sector list can be found. 
Link: sector number where continuation of the 
track/sector list can be found. 
(If both bytes of link = zero, no link.) 

Not used 

The position, relative to the start of the file, of the 
first sector of the current portion of the track/ 
sector list. 

Not used 

Track number of first file sector 
Sector number of first file sector 

Track number of second file sector 
Sector number of second file sector 

Track number of third file sector 
Sector number of third file sector. 

Track number of 122nd file sector 
Sector number of 122nd file sector 

Appendix B: The Storage Process 



Any track/sector pair that is 0/0 indicates an unassigned sector. This 
is usually the end of the file, although random-access text files can 
contain many 0/0 indicators for sectors where future records may be 
written. 

With random-access text files, only the track/sector pairs for those 
sectors actually containing information appear as non-zero in the 
track/sector list. DOS calculates the correct position for the track/ 
sector pair within the list; unassigned track/sector pairs are filled with 
zeros. 

With a random-access file, when you specify the length as 127 (two 
records per sector) and you write only to record number 2700, DOS 
uses 13 disk sectors: one for the contents of record number 2700 and 
12 for the sectors of the track/sector list. The contents of records 
O through 2683 may someday occupy 1342 sectors; but until those 
records are written, they do not use any disk space. In the track/ 
sector list, the locations of the sectors containing records 0 to 2683 
occupy 11 sectors. 

B.2.3 The Disk Directory 

DOS reserves track $11 of every initialized disk for the disk directory, 
which holds information about each file on the disk: the file's name, 
file type, the number of sectors the file uses (MOD 256), whether the 
file is locked, and the location of the file's first track/sector list. The 
CATALOG command displays all of this information except the 
location of the first track/sector list. 

Contents of File Sectors Iii 



Table B-3. One Sector of a Disk Directory 

Directory entry, see Table B-4. 

Table B-3 lists the contents of each sector of a disk directory. 

Byte Contents of Byte 

$0 Not used 

$1 Link: Track number where continuation of the 
directory can be found (normally $11) 

$2 Link: Sector number where continuation of the 
directory can be found 
(If both bytes of link = zero, no link.) 

$3 through $A Not used 

$8 through $2D Directory entry for file 1 

$2E through $50 Directory entry for file 2 

$51 through $73 Directory entry for file 3 

$74 through $96 Directory entry for file 4 

$97 through $B9 Directory entry for file 5 

$BA through $DC Directory entry for file 6 

$DD through $FF Directory entry for file 7 

The file numbers for the seven directory entries in Figure 8-4 are 
arbitrary. When a file is deleted, DOS marks its directory entry. The 
next time a file is stored, DOS overwrites a marked directory entry 
with the entry for the new file. Thus, while DOS originally fills the 
directory in the order shown, file deletions soon render this order 
meaningless. 

The disk directory begins in track $11, sector $F. This starting sector 
is found in bytes 1 and 2 of the volume table of contents. 

When more space is needed to store additional directory entries, 
sector $F is linked to sector $E. When still more space is needed, 
sector $Eis linked to sector $D, and so on, through sector $1. This 
allows the directory to store entries for a maximum of 105 different 
files. 

Appendix B: The Storage Process 



Table B-4. Directory Entry for One File 

Each directory entry is written in the format shown in Table B-4. 

Relative 
Byte 

$0 

$1 

$2 

$3 through $20 

$21 

$22 

Contents of Byte 

Track number of the track/sector list of the file 
(The original value is copied into $20 and value 
of byte $0 is changed to $FF if file is deleted.) 

Sector number of its track/sector list 

File type 

Filename 

Sector count: the number of disk sectors 
(MOD 256) occupied by the file 

Terminator (0) 

The relative byte (column 1) of a directory entry specifies each byte 
within the entry, although each entry starts at a different actual byte 
number within the directory sector. To find the absolute sector byte 
corresponding to a relative byte, add the relative byte to the entry's 
first absolute sector byte (as shown in Table B-3). 

Because only one byte is used to store a file's sector count, the 
maximum directory sector count is 255 ($FF). When a file exceeds 
255 sectors, its sector count (as displayed by CATALOG) starts over 
again at sector 0. This doesn't affect the use of the file but gives an 
erroneous impression of the remaining space on the disk. 

Contents of File Sectors II 



Table B-5. Byte Indicating the File Type 

II 

The eight bits of the byte that designates file type (in Table B-4, 
relative byte number 2 in a file's directory entry) are assigned the 
values shown in Table B-5. 

CATALOG 
Bit Symbol File Type Designated 

7 * File is locked (write-protected) if this bit is 1 
File is unlocked (not protected) if this bit is O 

6-5 Expansion type for future use (normally zero) 

4 R Relocatable EDASM file when this bit is 1 

3 s Expansion type for future use (normally zero) 

2 B Binary file when this bit is 1 

A Applesoft BASIC file when this bit is 1 

0 Integer BASIC file when this bit is 1 

6-0 T Text file when bits 6 through Oare all zero 

The file type is determined by a 1 in one of the bits 6 through 0. If bits 
6 through O contain only zeros, the file type defaults to a text file. 

Appendix B: The Storage Process 



Table B-6. Locked/Unlocked Values of 
the File Type Byte 

VTOC = volume table of contents. 

Table B-7. Volume Table of Contents 
(Track $11 , Sector $0) 

The byte that designates the file type can take on the values indicated 
in Table B-6. 

Value of Type Byte File 
Type File unlocked File locked 

T 

A 

B 

s 

R 

$0 

$1 

$2 

$4 

$8 

$10 

$80 

$81 

$82 

$84 

$88 

$90 

B.2.4 The Volume Table of Contents 

Sector $0 of track $11 contains the disk's volume table of contents 
(VTOC) . The VTOC stores the information shown in Table B-7. 

Byte Value Description 

$0 $2 Variable value; not used 

$1 $11 Track number of first directory sector 
$2 $0F Sector number of first directory sector 

$3 $3 DOS release number 

$4 $0 Not used 
$5 $0 Not used 

$6 $1-$FE Disk volume number (default: $FE) 

$7-$26 $0 Not used 

$27 $7A Maximum number of track/sector pairs 
possible in each sector of track/sector 
list 

$28-$2F $0 Not used 

Contents of File Sectors II 



Byte Value Description 

$30 $FF Last track allocated 
$31 $FF Direction of allocation ( + = higher 

track) 

$32 $00 Unused 
$33 $00 Unused 

$34 $23 Number of tracks per disk 

$35 $0F Number of sectors per track 

$36 $00 Number of bytes per sector, low byte 
$37 $01 Number of bytes per sector, high byte 

$38-$38 $0 Track 0 bit map (Not available) 
$3C-$3F $0 Track 1 bit map (Available only if 
$40-$43 $0 Track 2 bit map VTOC is altered) 

$44and$45 ? Track 3 bit map 
$46and$47 $0 Track 3 bit map 

$48and $49 ? Track 4 bit map 
$4Aand$4B $0 Track 4 bit map (Unused) 

$78 and$79 ? Track $10 bit map 
$7Aand$7B $0 Track $10 bit map 

$7C-$7D $0 Track $11 bit map (Directory & VTOC) 
$7E-$7F $0 Track $11 bit map (Unused) 

$80and$81 ? Track $12 bit map (Unused) 
$82and $83 $0 Track $12 bit map 

$C0and$C1 ? Track $22 bit map 
$C2and$C3 $0 Track $22 bit map (Unused) 

$C4-$FF $0 Not used 

II Appendix B: The Storage Process 



Table B-8. Track Bit Map for One Disk 
Track 

Table B-9. Typical Track Bit Map 

B.2.5 The Track Bit Map 

Starting in byte $38 of the VTOC (Table 8-7), subsequent 4-byte 
groups each contain the track bit map for one of the 35 tracks on the 
disk. The arrangement of 1-bits and 0-bits within the track bit map 
shows DOS which sectors of that track are currently in use and 
which are free. The bit map for each track uses the format shown in 
TableB-8. 

Designated Designated 
Byte Bit Sector Byte Bit Sector 

1st 7 $F 2nd 7 $7 
6 $E 6 $6 
5 $0 5 $5 
4 $C 4 $4 
3 $8 3 $3 
2 $A 2 $2 
1 $9 1 $1 
0 $8 0 $0 

3rd &4th All Spare 

When a bit in the track bit map is 1, the sector that corresponds to 
that bit is free. When a bit in the map is 0, the corresponding sector 
is currently in use. Bits marked "Spare" contain O; these bits are 
not used. 

Table 8-9 shows the track bit map for a typical track. The sector 
numbers are hexadecimal. 

1st byte 2nd byte 3rd byte 4th byte 

Io o o o o o 1 

111
1 1 1 1 1 1 1

1
0 o o o o o o olo o o o o o o o 

1111111 l f l 111 f 1 l \ Spare ~ Spare J 

FEDCBA9876543210 Not used 

Sectors designated 

1 = Free sector (assuming the corresponding bit of the mask, VTOC 
bytes $30 and $31, is also 1) 

O = Sector in use 

Contents of File Sectors I 



I 

When you store a file using WRITE, SAVE, or BSAVE, an entire track 
is allocated to the file if possible, and the track's bit map shows the 
entire track in use. Then, when the file is closed and the VTOC is 
updated, those sectors not actually used are again designated as 
free in the track bit map. 

.. 

To Release Sectors: The sectors actually used for a file's information, 
however, can only be "set free" when that file name is deleted from the 
directory. For example, you have a disk containing a 100-sector BASIC file 
named BIG. If you now save a 2-sector file with the same name to the 
same disk, you will overwrite the older BIG file. But the catalog will 
continue to list your new, 2-sector file as having 100 sectors. To free up the 
98 sectors your file no longer needs, issue this series of commands: 

LOAD BIG 
DELETE BIG 
SAl,IE BIG 

Release sectors no longer needed by binary files with a similar command 
series. 

If you want to save the data and release sectors no longer needed by a 
text file, you have to read each of the file's fields into memory. If you store 
all the fields in an array, you can then delete the original file before you 
write each record back to the disk with the original file name. 

Another way to free up text-file sectors is to read each field into memory 
and then immediately write the field back to the disk under a new file 
name. After you read and write the last field, delete the original file . 

B.3 Track and Sector Allocation 
Each disk contains 35 tracks, three of which are reserved for DOS 
and one of which is reserved for the directory, leaving 31 tracks for 
the user. Each track contains 16 sectors, so 31 *16 or 496 sectors are 
available to you. 

On a freshly initialized disk, sectors are filled starting with sector $F 
and working back to sector $0. Tracks are first filled starting with track 
$12 Uust inside the track for the directory/VTOC) and proceeding 
inward to track $22 (the innermost). When track $22 is full, tracks are 
then filled starting with track $10 Uust outside the directory/VTOC 
track) and working outward to track $3 (the outermost track available 
to the user). 

Appendix B: The Storage Process 



Figure B-2. Tracks and Sectors 

B.4 Addressing Tracks and Sectors: 
The RWTS Subroutine 
As shown in Figure B-2, each sector has an address field and a data 
field. The address field contains information concerning which track 
the head is on, which sector is about to spin past the head, and the 
volume number of the disk. The data field contains the actual 256 
bytes of data that are stored on the sector. 

Address Field 

Data Field 

A Sector 
(16 sectors 

Track O --++• 
Track34 

on each track) 

DOS determines tracks and sectors for you, however, machine­
language programmers can assign track and sector by calling the 
RWTS (Read or Write a Track and Sector) subroutine of DOS from a 
machine-language program. 

The RWTS subroutine writes information to or reads information 
from a particular track and sector on a disk. To use the RWTS, 
you must first create and store in memory an 110 block, a device­
characteristics table, and a controlling subroutine. 

Addressing Tracks and Sectors: The RWTS Subroutine II 



1/0 block, see Table B-10. 

Device-characteristics table, see 
TableB-11 . 

I 

• The 110 block tells the RWTS subroutine which slot and drive 
number to use and specifies volume number, the track and sector 
to access, and whether to read or write. 

• The device-characteristics table describes the device-in this 
case, a disk drive. 

• The controlling subroutine stores the address of the starting 
location of the 1/0 block into the A and Y registers. The A register 
contains the high byte and the Y register, the low byte of the 
address. Finally, the controlling subroutine transfers control (with 
an assembler JSR instruction) to the starting address of the 
RWTS subroutine, location $309. 

B.4.1 Example 
The following sample 110 block, device-characteristics table, and 
controlling subroutine are loaded into memory beginning at location 
$C00. 

This 1/0 block specifies slot 6, drive 1 for input and output. It writes 
256 bytes of memory starting at location $C0A, on track $12, sector 
$06. 

Location Code Purpose 

$C0A 01 1/0 block type indicator, must be $01 
$C0B 60 Slot number times 16 
$C0C 01 Disk drive number 
$C0D 00 Expected volume number 
$C0E 12 Track number 
$C0F 06 Sector number 
$C10 20 Low-order byte of starting address of device-

characteristics table 
$C11 oc High-order byte of starting address of device-

characteristics table 
$C12 00 Low-order byte of starting address of data 

buffer 
$C13 20 High-order byte of starting address of data 

buffer 
$C14 00 Unused 
$C15 00 Unused 
$C16 02 Command code, $02 = write 
$C17 00 Error code 
$C18 00 Actual volume number 
$C19 60 Previous slot number accessed 
$C1A 01 Previous driver number accessed 

Appendix B: The Storage Process 



The following controlling subroutine loads the A and Y registers with 
the address of the starting location of the 1/0 block; then it transfers 
execution to the RWTS subroutine. 

$C00 A9 
$C02- A0 
$C04- 20 
$C07- 60 
$C08- 00 

0C LDA 
0A LDY 
D9 03 JSR 

RTS 
BRK 

#$0C 
#$0A 
$0309 

Load A register with $0C 
Load Y register with $0A 
Jump to the RWTS subroutine 

Store the device-characteristics table in location $C20 following the 
1/0 block. (In this example locations $C10 and $C11 of the 1/0 block 
above point to this starting address.) The device-characteristics table 
contains the following code: 

Location 

$C20 
$C21 
$C22 
$C23 

Code Purpose 

00 contains the device type code 
01 contains the number of phases per track 
EF contains the time count 
DB contains the time count 

After you store an 1/0 block at $C0A, a device-characteristics table at 
$C20, and a controlling subroutine at $C00, run the entire routine by 
issuing either of these two commands: 

C00G or CALL 3072 

Addressing Tracks and Sectors: The RWTS Subroutine • 



BA.2 Formats: 110 Block and Device-Characteristics Table 

Table B-10 shows the format of an 1/0 block. 
Table B-10. Format of an 1/0 Block 

Byte 
Number Name 

01 1BTYPE 

02 1BSLOT 

03 IBDRVN 

04 IBVOL 

05 IBTRK 

06 IBSECT 

07-08 IBBUFP 

0B-0C 

00 IBCMD 

0E IBSTAT 

Purpose 

identifies the type of 1/0 block. Only type code $01 is currently defined. 

contains the number-times-16 of the slotthat holds the drive's controller card. For example, to access slot 
6, store the value $60 in this location. 

contains the number (either $01 or $02) of the drive to access. 

contains the volume number to access; $00 will match all volume numbers. 

contains the number of the track to access. It must be within the range $00 to $22 (0 to 34). 

contains the number of the sector to access. It must be within the range $00 to $0F (0 to 15). 

contains the starting address of the data buffer (256 bytes of memory) that the RWTS uses. When you write 
to a disk, the data is written from the buffer to the disk. When you read from a disk, data is put in the buffer. 
The RWTS reads data only in chunks of 256 bytes. 

Unused 

specifies the operation that the RWTS will perform. The values that can be stored in byte $00 (13) are· 

$00-starts the drive and positions the head. 

$01-reads the 256 bytes stored at the specified track and sector and stores them in the data buffer. 

$02-writes the next 256 bytes from the buffer to the specified track and sector. 

$04-formats the disk, writing self-synchronizing nibbles on every track and sector. Because the entire disk 
is formatted, the values in bytes $05 and $06 are ignored. The entire formatted disk is available for 
use; nothing, not even DOS, is stored on the disk until you put it there . 

contains the code number for errors: 

$00-no error. 

$10-the disk is write-protected. 

$20-the volume number found differed from the number specified in byte $04. 

$40-drive error. 

0F IBSMOD contains the actual volume number. 

10 IOBPSN contains the number-times-16 of the slot last accessed. For example, if you previously accessed a drive 
in slot 5, store the value $05 here. If there is no controller in the specified slot, the Apple II will hang. 

11 IOBPDN contains the number of the drive last accessed, either $01 or $02. 

II Appendix B: The Storage Process 



Table B-11. Format of a Device­
Characteristics Table 

Memory areas used by DOS and both 
BASICs, see Figure 6-3. 

Table B-13 lists the Page-3 addresses 
and their contents that DOS 3.3 uses. 

Table B-11 shows the format of a device-characteristics table. 

Byte 
Number Name Purpose 

01 DEVTPC Device type code tells what type of device to use. If it's a 
drive, store $00 in this byte. 

02 PPTC store $01 here. 

03-04 MONTC store the complement of the motor-on time count in 100 
micro-second intervals. If the device is a drive, put $EF in 
byte 3 and $DB in byte 4. 

B.5 DOS Vectors in Page 3 
DOS occupies 10.SK of RAM. In addition, DOS uses a group of 
vectors in Page 3 (locations $300 through $3FF, below the primary 
text-page 1 ). 

Since DOS can be located in different areas of memory depending 
on the memory size of system and whether or not DOS came in from 
a master disk, the addresses of callable DOS routines will change 
from system to system and from disk to disk. When you place the 
addresses of DOS routines into a vector at a fixed location in Page 3 
of memory, you are no longer dependent on the varying DOS 
locations in high memory. 

You can also use the addresses in Page 3 for locating DOS 
subroutines from versions prior to 3.3. Earlier versions of DOS use 
locations $300 through $3CF to load the BOOT1 program; DOS 3.3 
uses those locations as a data buffer and a disk code translate table. 

DOS Vectors in Page 3 I 



Table B-12. DOS 3.3 Vectors 
($3D0-$3FF) 

Address 

$3D0 

$3D3 

$3D6 

$3D9 

$3DC 

$3E3 

$3EA 

$3EF 

$3F2-
$3F3 

$3F4 

$3F5 

$3F8 

$3FB 

$3FE­
$3FF 

I 

Contents 

A JMP to the DOS warm-start routine that reconnects DOS, keeping the current program and MAXFILES setting. 

A JMP to the DOS cold-start routine that reconnects DOS as if it were rebooted. The current program is lost, 
MAXFILES returns to the default number, and HIMEM is reset. 

A JMP to the DOS file-manager subroutine so your assembly-language program can call it. 

A JMP to the RWTS routine so your assembly-language programs can call it. 

A subroutine that locates the input-parameter list so your program can create one before using the file manager. 

A subroutine that locates the IOB parameter list so your program can create one before calling the RWTS. 

A JMP to the DOS subroutine that re-establishes the 1/0 vectors of DOS. 

A JMP to the routine that handles a BRK machine-language instruction (Autostart ROM only). Normally this vector 
contains the address of the Monitor ROM subroutine that displays registers. 

The low-byte and high-byte address of the routine that handles RESET for the Autostart ROM. Usually the DOS 
restart address is here. 

This is the cold-start byte. It contains the complement of the RESET address to distinguish between cold start and 
1 REsETJ: If a cold start occurs, the Autostart ROM ignores the address at$3F2 (above) and attempts to boot a disk. To 
prevent this when you change $3F2 to handle your own resets, store the new value as an EOR with $AS and then 
store the result in the cold-start byte. 

A JMP to a machine-language routine that is called when the ampersand (&) is used in an Applesoft statement. 

A JMP to a machine-language routine that is called when the Monitor reads a I coNTRoL 1-(~). 

A JMP to a machine-language routine that ROM calls when a nonmaskable interrupt occurs. 

The low-byte and high-byte address of a routine that ROM calls when a maskable interrupt occurs. 

Appendix B: The Storage Process 



Table 8-13. DOS Zero Page Use 

B.6ZeroPageUse 
The zero page, addresses $0 through $FF, is the Monitor and BASIC 
workspace. Machine-language programmers use this memory area 
for indexed indirect commands and special functions that need highly 
condensed code. Table B-13 shows how DOS uses the zero page. 

Byte 

$24 
$26-$27 

$2A 
$2B 

$2C 
$2D 
$2E 
$2F 

$33 
$35 
$36-$37 
$38-$39 
$3C 

$3D 

$3E-$3F 

$40-$41 

$41 
$42-$43 
$44 
$45 
$46-$47 
$48-$49 
$4A-$4B 
$4C-$4D 
$67-$68 
$69-$6A 
$6F-$70 
$73-$74 
$76 
$AF-$B0 
$CA-$CB 
$CC-$CD 
$D6 
$D8·$D9 

Use 

Cursor horizontal (DOS) 
Read buffer used by boot routine 
RWTS workspace 
RWTS workspace 
Boot slot times 16 
RWTS workspace 
Checksum 
Sector number (RWTS) 
Track number (RWTS) 
Volume number (RWTS) 
RWTS workspace 
Prompt character (DOS) 
Drive number in high bit (RWTS) 
CSWL,CSWH (DOS) 
KSWL,KSWH (DOS) 
RWTS workspace 
Device-characteristics table address (RWTS) 
Sector number (BOOT) 
Device-characteristics table address (RWTS) 
Address of ROM sector-read subroutine (BOOT) 
RWTS buffer address 
DOS image address (BOOT) 
DOS file buffer address 
Volume number used in INIT 
DOS buffer address 
Track number used in INIT 
Sync byte used in INIT 
RWTS workspace 
IOB address pointer (RWTS) 
LOMEM address for Integer BASIC (DOS) 
HIMEM address for Integer BASIC (DOS) 
Pointer to beginning of Applesoft program 
Pointer to start of Applesoft variable space 
Pointer to start of Applesoft string storage 
Highest location in memory, plus one, for Applesoft 
Applesoft line number being executed 
Pointer to end of Applesoft program 
Pointer to beginning of Integer BASIC program 
Pointer to end of Integer BASIC variable space 
Applesoft write-protect flag (DOS) 
Integer BASIC line number (DOS) 
Applesoft ONE RR (DOS) 

Zero Page Use I 





AppendixC 

DOS Error Messages 

This appendix discusses only DOS errors. An error message alerts 
you to a problem and indicates that the command you have issued is 
incompatible with DOS. The form of an error message tells you 
whether it comes from DOS or from one of the BASIC languages. 

Form Message Sent By 

SYNTAX ERROR DOS 

?SYNTAX ERROR Applesoft 

*** SYNTAX ERR Integer BASIC 

Errors are always indicated by code numbers from 1 to 15 in 
Applesoft ON ERR routines. 

Section C.1 lists the DOS error messages. Section C.2 discusses 
each message and suggests ways to fix the problem . 

DOS Error Messages • 



Table C-1. DOS Error Messages 

Table C-2. DOS Error Codes 

• 

C.1 DOSErrorMessages 
Table C-1 lists DOS error messages in alphabetic order; Table C-2, in 
numeric order. 

Message Code Meaning 

DISK FULL 9 Too many files on disk 
END OF DATA 5 Reading beyond end of text file 
FILE LOCKED 10 Attempt to overwrite a locked file 
FILE NOT FOUND 6 File misspelled or not on disk 
FILE TYPE MIS MATCH 13 Disk file doesn't match command 
I /0 ERROR 8 Door open or disk not initialized 
LANGUAGE NOT AVAILABLE 1 Requested language is not there 
NO BUFFERS AVAILABLE 12 Too many text files are open 
NOT DIRECT COMMAND 15 Command must be in a program 
PROGRAM TOO LARGE 14 Insufficient memory available 
RANGE ERROR 213 Command parameter too large 
SYNTAX ERROR 11 Bad file name, parameter, or 

comma 
VOLUME MISMATCH 7 Wrong volume parameter 
WR I TE PROTECTED 4 write-protect tab on disk 

Code Message Meaning 

LANGUAGE NOT AVAILABLE Requested language is not 
there 

2,3 RANGE ERROR Command parameter too 
large 

4 WRITE PROTECTED Write-protect tab on disk 
5 END OF DATA Reading beyond end of text 

file 
6 FI LE NOT FOUND File misspelled or not on disk 
7 VOLUME MI SM AT CH Wrong volume parameter 
8 I /0 ERROR Door open or disk not 

initialized 
9 DISK FULL Too many files on disk 

10 FILE LOCKED Attempt to overwrite a locked 
file 

11 SYNTA>( ERROR Bad file name, argument, or 
comma 

12 NO BUFFERS AVAILABLE Too many text files are open 
13 FILE TYPE MISMATCH Disk file doesn't match 

command 
14 PROGRAM TOO LARGE Insufficient memory available 
15 NOT DIRECT COMMAND Command must be in a 

program 

Appendix C: DOS Error Messages 



C.2 Recovering From Errors 
The following DOS error messages are listed in numeric order. 

1 LANGUAGE NOT AVAILABLE 

The commands FP, INT, LOAD, or RUN may initiate a language 
search. LANGUAGE NOT AlJA I LABLE means that DOS cannot 
find the BASIC your program needs. 

You'll see this message after you issue a command that requests 
Applesoft from the disk in the current drive and that disk does not 
contain the APPLESOFT and FPBASIC programs. 

You'll see this message after you issue a command that requests 
Integer BASIC and Integer BASIC is not in your computer. 

So long as your computer has enough memory to use both Applesoft 
and Integer, put a disk that contains the FPBASIC, INTBASIC, 
HELLO, and LOADER.OBJO programs into a drive and issue the 
command again. The SYSTEM MASTER disk has these files. 

When you request Applesoft, DOS first looks for the language in 
ROM, on an Applesoft firmware ROM card, or on the Language Card. 
If Applesoft is not there, DOS looks in RAM. When Applesoft is not in 
RAM, DOS looks on the disk in the current disk drive (the most recent 
values of the Sand D arguments). When you request Integer BASIC, 
DOS looks for that language in ROM or RAM. 

Recovering From Errors • 



Table C-3. Minimum and Maximum 
Values of Arguments 

I 

2 or 3 RANGE ERROR 

RANGE ERROR means that the value of a command argument is 
too large or too small. Table C-3 shows the values that can be used 
with each argument. 

Argument Minimum Maximum 

All Files: Slot s 1 7 
Drive D 1 2 
Volume v 0 254 

Sequential- Byte B 0 32767 
Access Relative Field R 0 32767 
Text Files: Absolute Field (EXEC) R 0 32767 

Random-Access Record Length L 1 32767 
Text Files: Record Number R 0 32767 

Binary Files: Starting Address A 0 65535 
Number of Bytes L 1 32767 

DOS Commands: PR#n n 0 16. 
IN#n n 0 16* 
MAXFILESn n 1 16 

* Issuing PR# and IN# with arguments of 8 to 16 can have unpredictable results. 

A value beyond the allowable range does not always cause the 
RANGE ERROR message. Any DOS command with a value less 
than O or greater than 65535 may return a SYNTAX ERROR 
message. 

4 WRITE PROTECTED 

WR I TE PROTECTED means that DOS is unable to save, write, or 
delete information on a write-protected disk. Either the disk has no 
write-enable notch or the notch is covered with a write-protect tab. 

• If there is a write-protect tab over the disk's notch, remove the tab 
and issue the command again. 

• If you receive this message while running the COPY program, you 
may have inserted the disk into the drive incorrectly. Check the 
disk's position in the drive. 

• Choose another disk to save your file on. A disk without a write­
enable notch is permanently protected from changes and 
deletions. 

Appendix C: DOS Error Messages 



5 ENDOFDATA 

END OF DATA means that your program tried to retrieve 
information from an area of a text file that contains no data. 

Any byte beyond the last field in a sequential-access text file or 
beyond the last field of each record in a random-access text file 
contains the value O, or $00, the ASCII code for a null character. Any 
command that tries to read a null character produces the END OF 
DATA message. 

You'll see an END OF DATA message when 

• a B (byte) argument is too large. In sequential access, do not 
specify a byte beyond the last carriage-return character in the file. 
In random access, do not specify a byte beyond the last carriage­
return character in the currently selected record. 

Remember: The first byte in a fi le or a record is byte 0. 

• an R (relative-field position) argument in a POSITION command is 
too large. In sequential access, do not specify a field beyond the 
last existing field in the file. In random access, do not specify a 
field beyond the last existing field in the currently selected record. 

Remember: The POSITION command moves forward in the file; the 
command's R argument specifies a field in the file relative to the current 
position. 

• an R argument in an EXEC command is too large. It may specify a 
line beyond the end of the command file. 

• an R argument in a READ command specifies an empty random­
access record. Before you can read from a particular record in a 
random-access file, write some information into that record. 

• an L argument of an OPEN preceding a READ differs from an 
L argument of an OPEN preceding a WRITE. 

You'll see an END OF DATA message after an INPUT or a GET 
command when your program has 

• too many successive INPUTs or an INPUT with too many 
variables. Each INPUT or INPUT variable reads an additional, 
adjacent field into the computer. 

Recovering From Errors II 



I 

• too many successive GET statements. Each GET reads one 
additional adjacent byte or character into the computer. 

6 FILE NOT FOUND 

FI LE NOT FOUND means that you specified the name of a file that 
is not on the disk that you are currently using. 

Check the disk's catalog: 

• You may have misspelled the file name by typing it incorrectly or 
by omitting the comma that separates the file name from a 
following argument. 

• The file may have been accidentally deleted or may be on another 
disk. 

If you see a FI LE NOT FOUND message each time you start a 
disk, you must tell DOS the name of a greeting program on that disk. 
If you have no files on the disk that you want to save, you can initialize 
the disk again. If you can remember the name of one of the files on 
the disk, run the MASTER program to rename the greeting program 
with that file name. 

7 VOLUME MISMATCH 

VOLUME MISMATCH means that the volume (V) number used in a 
DOS command differs from the volume number assigned to the disk 
when it was initialized. Use the CATALOG command to check the 
volume number of the disk. 

8 l/OERROR 

I /0 ERROR means that DOS was unable to store information on a 
disk or to retrieve information from a disk. (DOS tries 96 times.) 

Check your disk: 

• It must be correctly inserted in the selected or default disk drive 
and the drive door must be closed. 

• It must be initialized. 

• If it is a 13-sector disk, see Appendix A. 

Appendix C: DOS Error Messages 



Check your command arguments: 

• AD argument may have specified a disk drive that doesn't exist in 
your system and a nonexistent drive is now the default. Specify the 
correct D argument with the next DOS command. 

• The S argument specified a slot that doesn't contain a disk 
controller card. An erroneous slot is now the default, and DOS 
assumes that the disk that isn't connected to the slot is still 
running. Even if the next DOS command specifies the right slot, 
DOS will wait in limbo forever for the nonexistent disk to stop 
running the last command. If you have no program in memory, 
restart DOS. To recover with your program intact, first press I REsErJ 

when the system hangs; then, to change the default, type 
CATALOG , Sn, where n is the correct slot number. 

With a VERIFY command, check to find out if the file was stored 
correctly on the disk. Or, if the file is still in memory, try storing it on 
the current disk again or on a different disk. 

9 DISKFULL 

DI SK FULL means that DOS tried to store information on a disk on 
which no space was available. In this situation, DOS closes all files 
and saves all the information that it can. 

If you get a DI SK FULL message, you can delete a file or two on 
the current disk before trying to save the information in memory. Or 
save it on a disk that has more room. 

By the Way: If you receive this message and try again to save to the full 
disk, the sector length of one of the existing files in that disk's catalog will 
be set to 0. Despite the odd appearance of that catalog entry, the existing 
file itself will not be damaged in any way. 

10 FILE LOCKED 

FI LE LOCKED means you tried to save, write to, change, append, 
or delete a locked file. Check the catalog: the name of a locked file is 
preceded by an asterisk(*). To unlock the file, use the UNLOCK 
command. 

11 SYNTAX ERROR 

SYNTAX ERROR means that you or your program issued a DOS 
command with an incorrect value or incorrect separator (comma or 
space). You will also see this message when the command lacks a 
required argument. Check the command's syntax in this manual. 

Recovering From Errors 



Table C·4. Types of Files According to 
Command 

II 

12 NO BUFFERS AVAILABLE 

Each open file and each DOS command (except PR#, IN#, and 
MAXFILES) requires a file buffer. NO BUFFERS AVAILABLE 
means that you or your program tried to open one more file or issued 
one more DOS command than there were buffers available in 
memory. 

Issue the CLOSE command to release file buffers or issue the 
MAXFILES to increase the number of file buffers. 

13 FILE TYPE MISMATCH 

FI LE TYPE MISMATCH means that a DOS command specified a 
file with a file type that is inappropriate to the present command. 

Use the CATALOG command to look at the file type of the file on the 
disk. Then look at Table C-4 to make sure that the command you are 
using is legal with that file type. 

If you're sure that the command is correct, use a file name that is not 
now on the disk, use a different disk, or rename or delete the existing 
file. 

Command 

LOAD, RUN, SAVE 

CHAIN 

OPEN, READ, WRITE, CLOSE 
APPEND, POSITION, EXEC 

BLOAD,BRUN,BSAVE 

Appendix C: DOS Error Messages 

Legal File Type 

Aorl 

T 

B 



HIMEM is the highest memory location 
available to your program. For your 
system's maximum HIMEM with DOS 
and three file buffers, see Appendix B. 

14 PROGRAM TOO LARGE 

PROGRAM TDD LARGE means that a DOS command tried to load 
a disk file and found insufficient space in main memory for the entire 
file. 

If you are in immediate-execution mode, issue either an FP or INT 
command, whichever is appropriate to your program. 

Use MAXFILES to decrease the number of file buffers that are 
available to your BASIC program. 

Often a previous program set HIMEM or LOMEM to values that will 
not allow the loading of your next program. Use POKE to place the 
correct values into the HIMEM or LOMEM locations. 

By the Way: To determine whether or not a program will fit into memory, 
DOS looks only at the number of disk sectors the program occupies. 
Usually, a program will not completely fill the last file sector (256 bytes), 
but DOS ignores this. DOS compares the high-order byte of LOMEM 
(Integer BASIC) or HIMEM (Applesoft) with the high-order byte of the 
projected end-of-program location. Thus, programs that should fit into 
memory and that leave less than 256 bytes free after loading cause this 
message. Sometimes you can correct this before loading the program by 
moving HIMEM or LOMEM slightly to change the high-order byte. 

15 NOT DIRECT COMMAND 

NOT DIRECT COMMAND means that you tried to use an APPEND, 
OPEN, POSITION, READ, or WRITE command in immediate 
execution. These commands can be used only from PRINT 
statements in a program. 

This message can also occur when a program is stopped and 
restarted. Repairtheerrorbytyping POKE 51; 0:CDNT. 

Recovering From Errors Iii 





AppendixD 

Programs 

D.1 Programs on the SYSTEM MASTER Disk 
These are the programs on the SYSTEM MASTER disk: 

Name Function 

HELLO an Applesoft greeting program that DOS runs automatically if the Applesoft language is available. 

APPLESOFT a greeting program in Integer BASIC that DOS runs automatically when the Applesoft language is not 
available. 

BOOT13 a binary program that loads 13-sector disks created under earlier versions of DOS (before version 3.3). 

CHAIN a binary program that loads and runs a second program without erasing from memory the variables and 
arrays of the first. Both chained programs must be Applesoft BASIC. 

CONVERT13 an Applesofl BASIC program that runs the MUFFIN program to convert 13-sector disks to 16-sector format. 

COPY the copying program to use when you are running Integer BASIC. 

COPY.OBJO a machine-language routine used by COPY and COPYA. 

COPYA the copying program to use when you are running Applesoft BASIC. 

FID a binary program that performs several support functions for DOS. 

FILEM an Applesoft program that runs FID. 

FPBASIC the Applesoft BASIC language on disk, in binary. 

INTBASIC the Integer BASIC language on disk, in binary. 

LOADER.OBJO a machine-language program loaded by HELLO on the SYSTEM MASTER disk. LOADER.OBJO loads the 
alternate language into the language card or into memory. If the alternate language already exists, no action 
is taken. LOADER.OBJO also moves an image of the Monitor ROM from the main logic board to the $F800 
location in the language card or in memory. 

MASTER an Applesoft program that runs the MASTER CREATE program, a binary program, to convert an initialized 
disk into a master disk. 

MASTER CREATE a binary program that creates a master disk that contains a DOS that is placed as high as possible in 
memory. A master disk is useful on an Apple II computer of any size. 

MUFFIN a binary program to convert 13-sector disks to 16-sector format. 

RENUMBER an Applesoft program that renumbers the lines of a BASIC program or merges two programs. 

SLOT# an Applesoft program that returns the current default values for slot and drive. 

START13 an Applesoft program that runs the BOOT13 program. 

Programs on the SYSTEM MASTER Disk II 



Name 

ADDRESS 

ANIMALS 

APPLE PROMS 

APPLEVISION 

BLACK BOOK 

BRICK OUT 

COLOR TEST 

DELETE.ME.1 

DELETE.ME.2 

DELETE.ME.3 

EXEC DEMO 

FPBASIC 

GET TEXT 

HELLO 

INTBASIC 

LOADER.OBJO 

LOCK.ME.1 

LOCKED.UP.1 

LOCKED.UP.2 

MAKETEXT 

ONERRDEMO 

POKER 

PHONE LIST 

RANDOM 

VERIFY.ME 

II 

Function 

D.2 Programs on the SAMPLE PROGRAMS 
Disk 
These are the programs on the SAMPLE PROGRAMS disk. 

a demonstration program written in Applesoft that illustrates reading and writing random-text files. 

a game written in Integer BASIC for which you build a data file. 

a data file for the RANDOM program. APPLE PROMS contains a parts-list inventory. 

a demonstration program written in Integer BASIC. 

a data file that stores the records of the ADDRESS program. 

a game program written in Applesoft. Play the game with the arrow keys on the keyboard or with hand 
controls. 

a demonstration program written in Applesoft to help you adjust a color TV set. 

a demonstration Applesoft file that lets you practice deleting a file. 

a demonstration Applesoft file that lets you practice deleting a file. 

a demonstration Applesoft file that lets you practice deleting a file. 

a demonstration program written in Applesoft that illustrates how an EXEC program is created and runs. 

the Applesoft BASIC language on disk, in binary. 

a demonstration program written in Applesoft that reads text files. 

an Applesoft greeting program. 

the Integer BASIC language on disk, in binary. 

a machine-language program loaded by HELLO on the SYSTEM MASTER disk. LOADER.OBJO loads the 
alternate language into the language card or into memory. If the alternate language already exists, no action 
is taken. LOADER.OBJO also moves an image of the Monitor ROM from the main logic board to the $F800 
location in the language card or in memory. 

a demonstration Applesoft file that lets you practice locking an unlocked file. 

a demonstration Applesoft file that lets you practice unlocking a locked file. 

a demonstration Applesoft file that lets you practice unlocking a locked file. 

a demonstration Applesoft program that illustrates creating sequential-text files. 

a sample program that illustrates error recovery. It checks to see if a file is locked and, if so, lets you unlock it. 

a demonstration program in Applesoft that illustrates translating machine-language into a text file. 

a practice program written in Applesoft. 

a demonstration program written in Applesoft that illustrates reading and writing with a random-access text 
file. It uses APPLE PROMS to hold the data. 

a demonstration Applesoft file that lets you practice verifying a file. 

Appendix D: Programs 



Downloaded from www.Apple20nline.com 

Programs on the SAMPLE PROGRAMS Disk • 





See Chapter 1, DU. 

AppendixE 

Summary of DOS 
Operating Concepts and 
Commands 

References to discussions in the DOS User's Manual are indicated 
as Chapter x, DU. References to discussions in this manual are 
indicated as Chapter x. 

E.1 Operating Concepts 
DOS operates on Apple II, Apple II Plus, and Apple lie computers. If 
information applies only to a specific model, this manual says so 
explicitly. 

E.1.1 Cold Start 
The process of turning on the power to your computer (or simulating 
this same sequence by PR# n) so that DOS is loaded into main 
memory is 

1. Insert a DOS disk into disk drive 1. 

2. Turn on your video display screen. 

3. Find the power switch on the computer and turn it on. 

On an Apple lie computer, you can simulate a cold start once the 
power is on. Hold down~ while you press and release (coNTROLJ and 
(RESET); then release~-

On a standard Apple II or an Apple II Plus, you can simulate a cold 
start by typing Sn (coNrnoLJ-0, (coNTROLJ-(D, or Cn!210G, 
where n is the number of the slot containing the disk controller card . 

Operating Concepts • 



See Chapter 1, DU. 

See Chapter 3, DU. 

See Chapter 5. 

II 

E.1.2 Warm Start (All Apple II computers) 

The process of restarting your computer when the power is already 
on is 

Press I CONTROL I and I RESET 1 simultaneously and then release them. 
On some earlier models of Apple II computers, you need to press 
only (RESET I. 

A warm start does not reload DOS into main memory, and often does 
not erase the program in memory. 

E.1.3 Initializing a Disk 

The process for initializing a disk is 

1. Start DOS and put a blank disk in the disk drive. 

2. Issue the NEW statement of BASIC to clear the Apple I l's memory. 
Then type in a greeting program, for example 

10 PRINT "3ZK DISK INITIALIZED 5 MAY 84" 
20 END 

To test that the greeting program is correct, type RUN. 

3. Assuming you want to name the greeting program HELLO, type 
IN IT HELLO. This formats the disk and writes your program on 
the disk, giving it the name HELLO. 

E.1.4 Creating a Master Disk 

This is the procedure for converting an initialized disk into a master 
disk: 

1. First create a greeting program to reflect the master status of the 
disk by changing an existing greeting program or by typing in a 
new one. Save the greeting program with a new name (for 
example, SAVE BIG HELLO). Removethatdiskfromthedrive. 

2. Insert the SYSTEM MASTER disk in the drive and type RUN 
MASTER. 

3. Enter the new name of your greeting program. This is the name 
used in step 1 with the SAVE command. If you want the disk to run 
some other program-that is, to make a turnkey disk-press I Esc I 

and enter the name of that program. 

4. Replace the SYSTEM MASTER with the initialized disk you want 
to convert. Press I RETURN I to begin the conversion. 

Appendix E: Summary of DOS Operating Concepts and Commands 



See Chapter 2. 

The CHR$(4) function returns the ASCII 
equivalent for I coNTROL i-@. 

See Appendix B. 

E.1.5 Interpreting Commands 

Deferred execution means that a command is issued from a BASIC 
program. Immediate execution means that a command is issued 
from your keyboard. When a command is preceded by~. 
only DOS looks at it. To issue a deferred-execution DOS command, 
use the PRINT command to print a string consisting of (coNTROL I-@) 
followed by the command. For example 

Applesoft only Integer BASIC and Applesoft 

10 0$=CHR$C4l 10 PRINT "CATALOG" 
20 PR I NT 0$ ; "CATALOG" 20 REM (There's an invisible 

30 REM I CONTROL 1-@ before 
40 REM the C inside first quote 

mark). 

E.1.6 Capacity 
A maximum of 496 disk sectors are available to hold your 
information. Each disk sector can store up to 256 bytes. 

An empty text file is 1 sector long; the sector is occupied by the file's 
empty track/sector list. Empty Applesoft, Integer BASIC, and binary 
files are 2 sectors long: one sector is the track/sector list, the other is 
the first program sector, which contains the program's length. 

E.1.7 File Types 

File types are listed, by code, in a disk's catalog. 

E.2 Command Notation 
This section describes the DOS command notation used in this 
manual. 

E.2.1 Notation Conventions 
UPPERCASE indicates the actual name of a command. Type it 

exactly as indicated. 

lowercase indicates an element that you must supply in a 
command, for example, the name of a file. 

[ ] Square brackets enclose an optional argument in a 
command. You may include the option or not, as you 
choose. Do not type the brackets. 

Command Notation 11 



See Chapter 2. 

See Chapter 2. 

See Chapter 2. 

See Chapter 2. 

II 

E.2.2 Syntax 
A file name usually is the first argument following a command word; 
remaining arguments may appear in any order. The file name must 
be separated by a comma from any argument that follows, for 
example 

INIT fn [,Vn] [,Sn] [,Dn] indicates the command's syntax. 

INIT HELLO, V17, 02 is interpreted this way: 

• The command word INIT is uppercase and is typed exactly as 
shown. 

• The argument fn stands for a file name and is replaced by an 
actual file name in uppercase, HELLO in the example. 

• The argument Vn indicates an optional volume number. In the 
example, it is replaced by V17. (This volume number was chosen 
arbitrarily.) 

• The argument Sn indicates an optional slot number; this example 
omits it. 

• The argument Dn, also optional, indicates that DOS should access 
the disk in drive 2. 

E.2.3 Arguments 
fn 

n 

n 

in a command, indicates the name of a file that you 
supply. A file name begins with a letter and may contain 
from 1 to 30 characters. Any typeable character except 
the comma may appear in a file name. 

as an argument of the PR# and IN# commands, 
indicates a slot number from 1 to 7. As an argument of 
the MAXFILES command, indicates the number of 
buffers and may range from 1 to 16. You may use 
decimal or hexadecimal notation. 

in all other arguments, indicates a decimal or 
hexadecimal number. Hexadecimal numbers are 
preceded by a dollar sign, for example, $FE. 

Appendix E: Summary of DOS Operating Concepts and Comnunls 



See Chapter 6. 

Sequential access, see Chapter 3; 
random access, see Chapter 4. 

See Chapter 2. 

See Chapter 6. 

An 

Bn 

Dn 

Ln 

POSITION, see Chapter 3; EXEC, see Rn 
Chapters. 

Random-access text files, see Chapter 4. Rn 

specifies an address in memory. Replace n with a 
number from 0 through 65535. With BSAVE, An 
indicates the address in memory from which the 
transfer starts. With BLOAD and BRUN, it specifies a 
target address in memory for loading the binary file; if it 
is omitted, DOS puts the file in memory starting at the 
address from which it was saved with the BSAVE 
command. 

specifies a byte or character number. Replace n with a 
number from O through 32767; if omitted, DOS defaults 
to 0. In sequential access, Bn specifies an absolute 
byte within the file and, for most programs, is not 
greater than the last byte in the file. In random access, 
Bn specifies an absolute byte within the record 
indicated by Rn and, for most programs, is not greater 
than the last byte in the current record. 

specifies the number of a disk drive. Replace n with 
either 1 or 2. The drive number initially defaults to 1; 
subsequently it defaults to the last Dn specified 
(Chapter 2). 

specifies length: a number of bytes or characters. 
Replace n with a number from O through 32767. With 
the OPEN command for random-access files, it 
specifies the number of bytes that each record holds. 
With BSAVE, it specifies the number of bytes of 
memory, starting at the address specified by An. When 
Ln is omitted, DOS defaults to 1. 

with the POSITION and EXEC commands, specifies 
the number of fields or lines to skip, relative to the 
current position. Replace n with a number from 0 
through 32767. When omitted, DOS defaults to 0, the 
beginning of the file. 

with READ and WRITE commands for random-access 
text files specifies a record number. Replace n with a 
number from O through 32767. After OPEN, Rn initially 
defaults to 0, the first record of the file; after that, it 
defaults to the last record specified. Rn indicates an 
absolute record within a random-access file . 

Command Notation • 



See Chapter 2. 

See Chapter 2. 

• 

Sn 

Vn 

specifies the number of a slot containing the disk 
controller card of the drive to be accessed. Replace n 
with a number from 1 to 7. If omitted, DOS uses the 
default slot number. DOS initially defaults to the 
number of the slot from which it was started; 
subsequently, it defaults to the last Sn specified. 

specifies a volume number of a disk. Replace n with a 
number from 1 through 254. DOS initially defaults to the 
volume number of the disk from which it was started. 
After that, DOS defaults to the last Vn specified or read 
from a disk. When omitted from the INIT command, 
DOS defaults to 254. When omitted from other DOS 
commands or when specified as either O or just V, DOS 
ignores the volume specification. 

E.3 Command Summary 
In this section, the DOS commands are grouped into 5 categories: 

1. Nonprogramming commands for accessing disks: 

CATALOG INIT DELETE RENAME 
LOCK UNLOCK VERIFY RUN 
LOAD SAVE PR# IN# 

2. Commands that control the programming environment: 

FP INT MON NOMON 
EXEC MAXFILES CHAIN 

3. Programming commands for sequential-access text files: 

OPEN CLOSE READ WRITE 
APPEND POSITION 

4. Programming commands for random-access text files: 

OPEN CLOSE READ WRITE 

5. Commands for binary files: 

BRUN BLOAD BSAVE 

Abbreviated descriptions of all DOS commands are listed below; 
each command is followed by an example. At the end of each 
description, you'll find a reference to the chapter where you can find 
more detailed information . 

Appendix E: Summary of DOS Operating Concepts and Coml1Wlds 



See Chapter 3, DU. 

See Chapter 3, DU. 

See Chapter 4, DU. 

See Chapter 4, DU. 

E.3.1 Nonprogrammlng Commands 
for Accessing Disks 

CATALOG [,Sn] [,Dn] 
Example: CATALOG 

displays on the screen the volume number and the names of all the 
files on your disk. It also displays information about each file: its file 
type, its size in sectors, and whether it is locked, as indicated by an 
asterisk(*) beside the file type. 

The file types are: 

I Integer BASIC program file, created by SAVE. 
A Applesoft program file, created by SAVE. 
T Text file, created by OPEN and filled by WRITE. 
B Binary memory-image file, created by BSAVE. 
R Relocatable, created by BSAVE. 
S Reserved for future use. 

When an individual file exceeds 255 sectors, the catalog display of 
that file's length starts over at 000. This gives an erroneous 
impression of remaining space on the disk. 

INITfn [,Sn] [,Dn] [,Vn] 
Example: INIT HELLO, V18 

organizes the surface of a disk into tracks and sectors and writes 
zeros in all data fields. INIT also places a copy of DOS and a greeting 
program on the disk. 

DELETE fn [,Sn] [,Dn] [, Vn] 
Example: DELETE TEXT 

removes an unlocked file from a disk. When the specified file does 
not exist on the disk, DOS displays the message FI LE NOT 
FOUND. To avoid this error, issue an OPEN command before the 
DELETE. 

RENAME fn1 ,fn2 [,Sn] [,Dn] [,Vn] 
Example: RENAME CURRENT, ARCHIVAL, S7, D1 

changes the name of a file from fn1 (CURRENT) to fn2 (ARCHIVAL) 
without affecting the file's contents. If the file was open, it is closed 
and then renamed. RENAME doesn't check to see whether fn2 
already exists. 

Command Summary • 



See Chapter 4, DU. 

See Chapter 4, DU. 

See Chapter 4, DU. 

See Chapter 5, DU. 

See Chapter 5, DU. 

See Chapter 5, DU. 

. • 

LOCKfn [,Sn] [,Dn] [,Vn] 
Example: LOCK LOVE LETTERS, V31 

protects a file from being accidentally destroyed. A locked file is 
indicated by an asterisk (*) in its disk catalog. You cannot rename, 
delete, or change a locked file. 

UNLOCK fn [,Sn] [,Dn] [,Vn] 
Example: UNLOCK DOORS, D2 

removes protection from a locked file and makes it possible to 
rename, delete, and change it. 

VERIFYfn [,Sn] [,Dn] [,Vn] 
Example: VERIFY FACTS 

tests that DOS is able to read the file from a disk into the computer's 
memory. fn must be unlocked. When DOS can read the file, DOS 
displays no confirming message. When DOS cannot read the file, 
you'll see I /0 ERROR. You can verify any type of file. 

RUN fn [,Sn] [,Dn] [,Vn] 
Example: RUN ANNUITY, D1 

copies a BASIC program, file type A or I, from a disk file into memory 
and executes it. 

LOADfn [,Sn] [,Dn] [,Vn] 
Example: LOAD CARGO, S6, D1 

copies a program, file type A or I, from a disk file into memory. Once 
the program is in memory, you can run it, modify it, or save it as a disk 
file. 

Before loading a new program into memory, DOS closes all text files 
that are currently open. When a new program is actually loaded, 
DOS erases any program currently in memory and changes to the 
BASIC that corresponds to fn's file type. 

If the file type is A and Applesoft is not in memory or available from 
the Applesoft firmware ROM card, DOS tries to load Applesoft from 
the disk and runs it. If Applesoft is not on that disk, you'll see the 
message LANGUAGE NOT AVAILABLE. 

SAVE fn [,Sn] [,On] [,Vn] 
Example: SAVE COLOR DEMOS, 02 

writes the BASIC program currently in main memory to a disk file. 
When the program is an Applesoft program, DOS saves it as type A. 
When it is Integer BASIC, DOS saves it as type I. 

Appendix E: Summary of DOS Operating Concepts and Commands 



See Chapter 2. 

See Chapter 2. 

When fn does not exist, DOS creates a file with that name and stores 
the program currently in memory in that file. If the disk already 
contains a file with the same file name and in the same file type, DOS 
writes over its contents with the current BASIC program. When the 
disk contains a file with the same file name and a different file type, 
DOSdisplays FILE TYPE MISMATCH. 

PR#n 
Example: PR# 6 

sends the characters normally printed on the screen to the device 
connected through slot n. The number sign(#) is part of the 
command and must be typed. 

On the standard Apple 11 and the Apple II Plus, the command PR# O 
redirects output to the screen. On the Apple lie, when you have not 
turned on the 80-Column Text Card, use PR#O to return to a 
40-column screen. If the 80-Column Text Card is operating, use 
PR#3 to return to an 80-column display, or use PR#3 followed by 
! Esc I! coNrnoL I-@) to go to a 40-column display. 

When a deferred-execution PR# command is not preceded by 
a~ or when no device controller card is in slot n, DOS 
appears to be disconnected. You have to restart DOS. 

IN#n 
Example: IN# 2 

reads characters from the device connected through slot n (for 
example, an external terminal) instead of from the keyboard. The 
number sign(#) is part of the command and must be typed. 

To return to the keyboard from some other device, use IN# 0. 

When a deferred-execution IN# is not preceded by a! CONTROL I-@ 
or when no device controller card is in slot n, DOS appears to be 
disconnected. You have to restart DOS. 

Command Summary • 



See Chapter 2. 

See Chapter 2. 

See Chapter 2. 

See Chapter 2. 

• 

E.3.2 Commands That Control the Programming 
Environment 
FP [,Sn] [,On] 
Example: FP, 02 

switches to Applesoft. It resets the pointers in memory so they no 
longer point to the previous BASIC program and variables; 
essentially, that program is lost. 

If your standard Apple 11 computer contains the Applesoft firmware 
card or a Language Card, DOS looks there for Applesoft. When your 
system does not contain the Applesoft firmware card, DOS tries to 
load the program FPBASIC from the disk and run it. 

INT 
Example: INT 

switches to Integer BASIC. It resets the pointers in memory so they 
no longer point to the previous BASIC program and variables; 
essentially, that program is lost. If Integer BASIC is not present, you'll 
see LANGUAGE NOT AVAILABLE. 

MON [CJ [,I] [,O] 
Examples: MON 0 and MONICO 

displays the action between the computer and the disk. C displays 
disk commands; I displays the input from the disk to the computer; O 
displays the output to the disk. You may list the arguments in any 
order and in any combination, but at least one of them must be 
present; commas that separate the arguments are optional. 

These values for MON remain in effect until you issue a NOMON, FP, 
or INT command or restart the system; running a program does not 
cancel them. 

NOMON [C) [,I] [,0] 
Examples: NOMON C and NOMON I, C 

suppresses the action display between the computer and the disk 
that was turned on by the MON command. C suppresses display of 
disk commands; I suppresses display of the input from the disk to the 
computer; 0 suppresses display of the output to the disk. You may 
use the arguments in any order and in any combination but at least 
one of the arguments must be present; commas that separate the 
arguments are optional. 

Appendix E: Summary of DOS Operating Concepts and Comnwlda 



See Chapter 5. 

See Chapter 5. 

The command NOMON C, I, 0 returns the system to its initial state: 
no commands and information sent between the computer and the 
disk will be displayed on the screen. 

EXEC fn [,Rn] [,Sn] [,Dn] [,Vn] 
Example: EXEC UTILITY 

directs DOS to take commands from a command file created by a 
BASIC program rather than from the keyboard. fn indicates the name 
of the command file, which can contain DOS commands, data, and 
BASIC statements. 

DOS begins executing the command file at the line specified by Rn. 
When you omit this argument, DOS starts at the first line of the file, 
which is record 0. If you specify a value of R beyond the end of the 
file, you'll see an END OF DATA message . 

.A. Warning 
When a program is running under control of a command file, any INPUT 
statement in the program reads the next field from the command file 
rather than the keyboard. If the input is an immediate-execution DOS 
command, the command is executed before the program continues. 

MAXFILESn 
Example: MAXFILES 6 

where n is an integer from 1 to 16, specifies the maximum number of 
files that can be active at one time. When MAXFILES is executed, 
DOS reserves a file buffer (595 bytes of memory) for each file. When 
DOS is started, three file buffers (1785 bytes) are reserved and you 
can have up to active three files. 

All DOS commands except PR#, IN#, and MAXFILES require a file 
buffer for execution. If you specify MAXFILES 1 and open one file, an 
attempt to perform most DOS commands displays the message ND 
BUFFERS AVAILABLE . 

.A. Warning 
Use of MAXFILES moves HIMEM, erasing Integer BASIC programs and 
Applesoft strings. Use MAXFILES before loading and running a program 
or as the first line in the program. 

Command Summary • 



See Chapter 5. 

A field is a sequence of characters 
(1 to 32767 characters) that ends with a 
carriage return. 

CHAIN fn [,Sn] [,On] [,Vn] 
Example: CHAIN PART TWO, 01, S7 

runs a new program and does not close files that are open. It saves in 
memory the variables from the previous program. Your next program 
can operate on the results of the previous program and can leave 
data for subsequent programs. Only Integer BASIC programs can be 
chained with this command. 

E.3.3 Programming Commands for 
Sequential-Access Text Flies 
A text file (file type T) is a series of fields separated by carriage 
returns and stored on disk. It can be accessed in two ways: 
sequential access or random access. Information is stored with the 
WRITE command and retrieved with the READ command. READ 
and WRITE need the help of OPEN and CLOSE. 

In a sequential-access text file, no length is specified when the file is 
opened and fields are stored one immediately following the other. 
That is, DOS writes the first character of each field immediately 
following the carriage-return character that ended the previous field. 
Each time the file is opened, DOS starts reading from or writing to the 
beginning of the file, accessing the fields sequentially. 

£.. Warning 

See Chapter 3. 

II 

All of these sequential-access commands are used in deferred execution. 
Only CLOSE can be issued in both immediate and deferred execution. 

OPEN fn [,Sn] [,Dn] [,Vn] 
Example: OPEN SESAME, 02 

opens a sequential-access text file so that DOS can read from or 
write to it. When the specified file does not yet exist, DOS creates it 
as a text file (type T). 

When you open a file, DOS designates a file buffer (595 bytes in 
memory) for the file and sets the current position for reading and 
writing to point to the beginning of the file. 

Appendix E: Summary of DOS Operating Concepts and Comll81ds 



See Chapter 3. 

See Chapter 3. 

A field consists of from 1 to 32767 
characters, ending with a carriage-return 
character. 

See Chapter 3. 

CLOSE[fn] 
Example: CLOSE CLOSET 

tells DOS that you have finished accessing a text file. Before ending, 
a program must close all open files to ensure that all characters are 
written and that the file buffers are properly released. 

When your program is writing to a file, CLOSE sends all output 
remaining in the file buffer to the file and then releases the buffer. 
When CLOSE is used without a file name, DOS closes all open files 
except a command file. 

If a program has an error and stops before it can close all open files, 
close them by issuing the CLOSE command from the keyboard. 

READ fn [,Bn] 
Example: READ TLEAVES 

tells DOS which sequential-access file to read from and where to 
start reading. READ is used only after the file is open; fn remains the 
file from which to read until the next DOS command is specified. 

The B option tells DOS to begin reading at the specified byte, relative 
to the current position. 

8yttKJway:''AfflNPUTstatement read&c:m.ractersffornthifiteone field 
atatirne. HoWe\$r,due .. to•lM'limitsqf $firinpandin.~tl@l:lt{il1Jt .. l:)ufW~i•.it.j$ 
dlfficull tq.re~ ~9§. larger ttililn?5§.cll~act~ ... ; 

WRffE fn [,Bn] 
Example: WRITE ADDRESS.DATA 

tells DOS which sequential-access text file to write to and where to 
start writing. WRITE is used only after the file is open; fn remains the 
file to which to write until the next DOS command is specified. 

Command Summary II 



See Chapter 3. 

See Chapter 3. 

II 

The B option tells DOS to begin writing at the specified byte, relative 
to the current position. 

By the Way: After this command, PRINT statements send their output to 
the specified file. Output includes the question-mark prompt character of 
the INPUT statement if INPUT is used after a WRITE, and error 
messages if the program does not have an error-handling routine 
(ONERR GOTO). 

APPEND fn [,Sn] [,On] [,Vn] 
Example: APPEND INFO 

opens a sequential-access text file so that your program can write 
data starting at the end of the file. APPEND opens the file tor writing 
and sets the current position to point to the end of the file. 

After this command, the next character written into the file will follow 
the last sequentially written character presently in the file. APPEND 
must be followed by a WRITE command that specifies the same file. 

POSITION fn [,Rn] 
Example: POSITION ADDRESS.DATA, R277 

sets the current position for reading or writing. POSITION allows you 
to skip forward a specified number of fields in the text file before you 
read or write more information. 

When the R option is omitted, the current position is the beginning of 
the file. When R is specified, the current position is a relative number 
of fields ahead of the current position. 

POSITION scans the contents of the file, character by character, 
looking for the Rth carriage-return character. It then sets the current 
position to point to the first byte following that character. Subsequent 
READ and WRITE commands proceed from that point. If you try to 
position pastthe end of the file, you'll see an END OF DATA error 
message. 

Appendix E: Summary of DOS Operating Concepts and Commands 



A record is one field or a collection of 
fields that DOS treats as a unit. 

E.3A Programming Commands for 
Random-Access Text Flies 

A length argument is specified when a random-access text file is 
opened. It determines the number of characters in a record. 

DOS can start reading from or writing to a specified location in the 
file. That is, you do not have to read all preceding records in the file 
and you do not have to read all preceding characters in a given 
record. DOS accesses subsequent records or a field within a record 
without regard to what was last accessed . 

.A. Warning 

SeeChapter4. 

See Chapter 4. 

All of these random-access commands are used in deferred execution. 
Only CLOSE can be issued in both immediate and deferred execution. 

OPEN fn, ln [,Sn] [,Dn] [,Vn] 
Example: OPEN SESAME, L2 

opens a random-access text file. When the specified file does not 
exist, DOS creates it as a text file (type T). When the file already 
exists, it must not be open. 

The Ln argument, the length of each record, is required. Each time 
you open the file, specify the same length. DOS uses the length 
argument to calculate the starting position of each record. 

When you open a file, DOS designates a file buffer (595 bytes in 
memory) for the file, sets the current position to point to the beginning 
of the file, and sets the record length to the number of bytes specified 
by the length argument. 

CLOSE[fn] 
Example: CLOSE ENCOUNTERS 

tells DOS that you have finished accessing a text file. Before ending, 
a program must close all open files to ensure that all characters are 
written to their files and that the file buffers are properly released. 

When your program is writing to a file, the CLOSE command sends 
all characters remaining in the file buffer to the file and then releases 
the buffer. When CLOSE is used without a file name, DOS closes all 
open files except a command file. 

When a program contains an error and stops before it can close all 
open files, issue CLOSE from the keyboard. 

Command Summary • 



See Chapter 4. 

See Chapter 4. 

READ fn [,Rn] [,Bn] 
Example: READ PALMS,R3,B30 

tells DOS which random-access text file to read from and where to 
start reading. READ is used only after the file is open; fn remains the 
file from which to read until the next DOS command is specified. 

The R (record number) argument causes reading to begin at a 
specified record of the file. When A is omitted, DOS defaults to 0, the 
first record. 

The B (byte) argument causes reading to begin at a specified byte of 
the record indicated by the A argument. When Bis omitted, DOS 
defaults to 0, the first byte in the record. 

By the Way: Subsequent INPUT statements and GETstatements of 
Applesoft read from the specified file rather than the keyboard,'The 
INPUT statement reads characters from the currentrecord, one field at a 
time. , ..:.: , ± 

WRITE fn [,Rn] [,Bn] 
Example: WRITE ADDRESS.DATA, R3 

tells DOS which random-access file to write to and where to start 
writing. WRITE is used only after the file is open; fn remains the file to 
which to write until the next DOS command. 

The R (record number) argument causes writing to begin at a 
specified record of the file. When A is omitted, DOS defaults to 0, the 
first record. 

The B (byte) argument causes writing to begin at a specified byte of 
the record indicated by the A argument. When B is omitted, DOS 
defaults to 0, the first byte in the record. 

• Warning 
After the WRITE statement, all output characters that would normally be 
displayed on the display screen are sent to the file. This includes the 
question-mark prompt character of the INPUT statement if INPUT is used 
before WRITE, and error messages if your program doesn't include an 
error-handling routing (ONERR GOTO). 

• Appendix E: Summary of DOS Operating Concepts and Commands 



See Chapter 6. 

See Chapter 6. 

See Chapter 6. 

E.3.5 Commands for Binary Files 

BRUN fn [,An] [,Sn] [,Dn] [,Vn] 
Example: BRUN SUPER, A$C0A, V75 

tranfers a binary file (file type B) stored on the disk to any part of 
memory and executes the file. 

When A is specified, the data is put in memory beginning at the 
specified address. When the An option is omitted, DOS puts the 
program in memory starting at the address that was specified in the 
BSAVE command used to save the file originally. 

BLOAD fn [,An] [,Sn] [,Dn] [,Vn] 
Examples: BLOAD PICTURE, A8192 (decimal notation) 

BLOAD PICTURE, A$2000 (hexadecimal notation) 

transfers binary information from a disk file to any part of memory. 

When the An option is specified, the data is placed in memory 
beginning at the specified address. When A is omitted, DOS loads it 
starting at the address that was specified in the BSAVE command 
used to save the file originally. 

.. Warning 
When An Is specified, a machine-language program may no longer be 
executable at its new address. 

BSAVE fn, An, Ln [,Sn] [,Dn] [, Vn] 
Examples: BSAVE PICTURE, A16384, L8192 (decimal notation) 

BSAVE PICTURE, A$4000, L$2000 (hexadecimal 
notation) 

transfers binary data from memory to a.file on the disk. When the file 
does not exist, DOS creates it as a binary file (type B). When it does 
exist, DOS overwrites its contents with the specified contents of 
memory. The An (address) and Ln (length) arguments allow transfer 
from any part of memory. 

Command Summary II 





Glossary 

Glossary 

The glossary includes terms that appear in this manual as well as 
some you may encounter in other Apple publications. The first time 
an important term is used in this manual, it is shown in boldface type 
so you will know that the word is defined here. 

address A number used to identify a location in the computer's 
memory. 

Apple lie A personal computer in the Apple II family. 

Apple lie BO-Column Text Card A peripheral card that plugs into 
the Apple lle's auxiliary slot and converts the display of text from 40-
to 80-column width. 

Apple lie Extended BO-Column Text Card A peripheral card that 
plugs into the Apple lle's auxiliary slot and converts the text display 
from 40- to 80-column width. It also extends the Apple ll's memory 
capacity by 64K bytes. 

Applesoft An extended version of the BASIC programming 
language used with Apple II computers and capable of processing 
numbers in floating-point. An interpreter for executing Applesoft 
programs is built into firmware in the Apple lie and Apple II Plus. 

application program A program that puts the resources and 
capabilities of the computer to use for some specific purpose or task, 
such as word processing, data-base management, graphics, or 
telecommunications. 

argument The value on which a function operates. 

array A collection of variables referred to by the same name and 
distinguished by means of numerical subscripts. 

ASCII American Standard Code for Information Interchange; an 
information code in which the numbers from Oto 127 represent 
alphanumeric or control characters. ASCII code is used for 
representing text inside a computer and for transmitting text between 
computers or between a computer and a peripheral device . 

Glossary • 



II 

assembler A language translator that converts a program written 
in assembly language into an equivalent program in machine 
language. 

assembly language A low-level programming language in which 
individual machine-language instructions are written in a symbolic 
form more easily read by a person than machine language. 

auxiliary slot The special expansion slot inside the Apple lie used 
for the BO-Column or Extended BO-Column Text Card. 

BASIC Beginner's All-Purpose Symbolic Instruction Code; a high­
level programming language designed to be easy to learn and use. 
Two versions of BASIC are available for use with Apple II computers: 
Applesoft (built into the Apple lie and the Apple II Plus in firmware) 
and Integer BASIC (provided on the SYSTEM MASTER disk). 

binary A numeric representation in terms of the powers of 2, using 
the digits 0 and 1. Commonly used in computers, since the values O 
and 1 can easily represent such states as the presence or absence 
of electric current, positive or negative voltage, and a white or black 
dot on the screen. 

binary file A file containing information not expressed in terms of 0 
and 1. 

bit A binary digit (0 or 1); the smallest possible unit of information, 
consisting of a simple two-way choice, such as yes or no, on or off, 
positive or negative, something or nothing. 

boot To start a computer by loading a program into memory from 
an external storage medium such as a disk. Often accomplished by 
first loading a small program whose purpose is to read the larger 
program into memory. The program is said to "pull itself up by its own 
bootstraps"; hence the term "booting." 

boot disk A disk containing software recorded in the proper form to 
be loaded into the Apple ll's memory in order to set the system into 
operation. Also called a startup disk. 

buffer An area of the computer's memory reserved for a specific 
purpose, such as to hold graphical information to be displayed on the 
screen or text characters being read from the keyboard or some 
peripheral device. Often used as an intermediary "holding area" for 
transferring information between devices operating at different 
speeds, such as the computer's processor and a printer or disk drive. 
Information can be stored into the buffer by one device and then read 
by the other at a different speed. 

bug An error in a program that causes it not to work as intended. 

Glossary 



byte A unit of information consisting of a fixed number of bits; on 
the Apple II, one byte consists of eight bits and can hold a value from 
Oto255. 

call To request the execution of a subroutine or function. 

character A letter, digit, punctuation mark, or other symbol used in 
printing or displaying information that can be read by people; see 
control character. 

chip The small piece of semiconducting material (usually silicon) 
on which an integrated circuit is fabricated. The word chip properly 
refers only to the piece of silicon itself and is often used for an 
integrated circuit and its package; see integrated circuit. 

code (1) A number or symbol used to represent a discrete piece of 
information in a compact form. (2) Statements or instructions 
comprising a program. 

cold start The process of starting up the Apple II when the power is 
first turned on by loading the operating system into main memory, 
then loading and running a program. Certain commands and control 
characters simulate a cold start. 

command A communication from the user to a computer system 
directing it to perform some immediate action. A command can by 
typed from the keyboard or embedded in a program. 

command file A program that runs other programs. The EXEC 
command runs a command file, which can contain both DOS 
commands and BASIC statements. 

component A part; in particular, a part of a computer system. 

connector The physical joining place for electrical or electronic 
devices. Also a device, such as a plug, socket, or jack, used to 
connect one hardware component of a system to another. 

control character A character that controls or modifies the way 
information is printed or displayed. Control characters have ASCII 
codes between 0 and 31 and are typed from the keyboard by holding 
down I coNTROLJ while typing some other character. For example, pressing 
I coNTRoL 1-@J means "return to the beginning of the line" and is 
equivalent to (RETURN). 

controller card A card that connects a peripheral device such as a 
printer or disk drive to the Apple II and controls the operation of the 
device. 

cursor A marker or symbol displayed on the screen that marks 
where the user's next action will take effect or where the next 
character typed from the keyboard will appear. 

Glossary II 



• 

debug To locate and correct an error or the cause of a problem or 
malfunction in a computer system. Typically used to refer to software­
related problems. 

decimal The common form of number representation in which 
numbers are expressed in terms of the powers of 10, using the digits 
Oto9. 

default A value, action, or setting that is automatically used by a 
computer system when no other explicit information is given. For 
example, if a command to run a program from a disk does not identify 
which disk drive to use, DOS automatically uses the same drive that 
was used in the last operation. 

deferred execution The saving of an instruction in a program for 
execution at a later time as part of a complete program; occurs when 
a statement is typed with a line number. 

digit (1) One of the characters Oto 9, used to express numbers in 
decimal form. (2) One of the characters used to express numbers in 
some other form, such as 0 and 1 in binary or 0 to 9 and A to Fin 
hexadecimal. 

dimension the maximum size of one of the subscripts of an array. 

directory A list of all files stored on a disk; also called a catalog. 

disk An information storage medium consisting of a circular 
magnetic surface on which information can be recorded in small 
magnetized spots, similarly to the way sounds are stored on tape. 

disk controller card A peripheral card that connects one or two 
disk drives to the Apple II and controls their operation. 

disk drive A peripheral device that writes and reads information on 
the surface of a magnetic disk. 

diskette A term sometimes used for the small (5114-inch) flexible 
disks. 

element A member of a set or collection; specifically, one of the 
individual variables making up an array. 

EXEC file A program that runs other programs when it is executed 
by the EXEC command. 

expansion slot A connector inside the Apple II computer in which a 
peripheral card can be installed; also called peripheral slot. 

field A sequence of from 1 to 32767 characters that ends with a 
carriage-return character . 

Glossary 



fixed-point A method of representing numbers in the computer in 
which the decimal point (more correctly, the binary point) is 
considered to occur at a fixed position in the number. Typically, the 
point is considered to lie at the right end of the number, so that the 
number is interpreted as an integer. Fixed-point numbers of a given 
length represent a narrower range than floating-point numbers of the 
same length, but with greater precision. 

floating-point A method of representing numbers in the computer 
in which the decimal point (more correctly, the binary point) is 
permitted to "float" to different positions within the number. Some of 
the bits within the number itself are used to keep track of the point's 
position. Floating-point numbers of a given length represent a wider 
range than fixed-point numbers of the same length, but with less 
precision. 

format (1) The form in which information is organized or 
presented. (2) To specify or control the format of information. (3) To 
prepare a blank disk to receive information by dividing its surface into 
tracks and sectors; also initialize. 

function A preprogrammed calculation that can be carried out on 
request from any point in a program. 

hardware Those components of a computer system consisting of 
physical (electronic or mechanical) devices. 

hexadecimal The representation of numbers in terms of powers of 
16, using the digits 0 to 9 and A to F. Hexadecimal numbers are 
easier for people to read and understand than binary numbers and 
can be converted easily and directly to binary: a hexadecimal digit 
corresponds to a sequence of four binary digits, or bits. 

high-order byte The more significant half of a memory address or 
other two-byte quantity. In the Apple ll's 6502 microprocessor, the 
low-order byte of an address is usually stored first and the high-order 
byte second. 

IC See integrated circuit. 

immediate execution The execution of an instruction of a program 
as soon as it is typed; occurs when the line is typed without a line 
number. 

indexed addressing A method of specifying memory addresses 
used in machine-language programming. 

initialize (1) To set to an initial state or value in preparation for 
some computation. (2) To prepare a blank disk to receive information 
by dividing its surface into tracks and sectors; also format. 

Glossary • 



II 

Initialized disk a disk that is organized into tracks and sectors and 
contains DOS and a greeting program. This disk will contain a DOS 
that is placed in the same memory location that it had in the computer 
on which the disk was prepared. The INIT command is used to create 
an initialized disk. 

input (1) Information transferred into a computer from some 
external source, such as the keyboard, a disk drive, or a modem. (2) 
The act or process of transferring such information. 

instruction A unit of a machine-language or assembly-language 
program corresponding to a single action for the computer's 
processor to perform. 

integer A whole number; represented inside the computer in fixed­
point form. 

Integer BASIC A version of the BASIC programming language 
used with the Apple II computers. Integer BASIC is older than 
Applesoft and capable of processing numbers in integer (fixed-point) 
form only. The SYSTEM MASTER disk includes an interpreter for 
creating and executing programs in Integer BASIC and automatically 
loads it into memory when the computer is started with that disk. 

integrated circuit An electronic component consisting of many 
circuit elements fabricated on a single piece of semiconducting 
material, such as silicon; see chip. 

interface card A peripheral card that implements a particular 
interface by which the computer can communicate with a peripheral 
device such as a printer or modem. 

interrupt A temporary suspension in the execution of a program by 
a computer in order to perform some other task, typically in response 
to a signal from a peripheral device or other source external to the 
computer. 

1/0 Input/output; the transfer of information into and out of a 
computer. See input, output. 

1/0 link A fixed location that contains the address of an input/output 
subroutine in the Apple II Monitor program. 

K Two to the tenth power, or 1024 (from the Greek root kilo, 
meaning one thousand); for example, 64K equals 64x1024, or 
65,536. 

keyboard The set of keys connected to the computer, similar to a 
typewriter keyboard, for entering information into the computer. 

kilobyte A unit of information consisting of 1 K (1024) bytes, or SK 
(8192) bits; see K. 

Glossary 



KSW The symbolic name of the location in the Apple ll's memory 
where the standard input link is stored; stands for "keyboard switch." 
See 1/0 link. 

load To transfer information from a peripheral storage medium 
such as a disk into main memory. 

loader A program that brings BASIC or a binary file from disk into 
main memory. 

low-order byte The less significant half of a memory address or 
other two-byte quantity. In the Apple ll's 6502 microprocessor, the 
low-order byte of an address is usually stored first and the high-order 
byte second. 

machine language The form in which instructions to a computer 
are stored in memory for direct execution by the computer's 
processor. Each model of computer processor has its own form of 
machine language. 

main memory The memory component of a computer system that 
is built into the computer itself and whose contents are directly 
accessible to the processor. 

master disk a disk containing a DOS that is placed as high as 
possible in memory. It can operate on any system 16K or larger. The 
MASTER program creates a master disk from an initialized disk. 

memory A hardware component of a computer system that can 
store information for later retrieval; see main memory, random­
access memory, read-only memory, read-write memory. 

memory location A unit of main memory that is identified by an 
address and can hold a single item of information of a fixed size; in 
the Apple II, a memory location holds one byte of information. 

microprocessor A computer processor contained in a single 
integrated circuit. 

Monitor program A system program built into Apple II firmware, 
used for directly inspecting or changing the contents of memory and 
for operating the computer at the machine-language level. 

output (1) Information transferred from a computer to an external 
destination, such as display screen, disk drive, printer, or modem. (2) 
The process of transferring such information. 

Pascal A high-level programming language. A version called 
Apple II Pascal is used with the Apple II family of computers. 

peripheral card A removable printed-circuit board that plugs into 
one of the Apple ll's expansion slots and expands or modifies the 
computer's capabilities by connecting a peripheral device or 
performing some subsidiary or peripheral function. 

Glossary II 



• 

peripheral slot See expansion slot. 

pointer An item of information consisting of the memory address of 
some other item. For example, Applesoft maintains internal pointers 
to (among other things) the most recently stored variable, the most 
recently typed program line, and the most recently read data item. 

processor The hardware component of a computer that performs 
the actual computation by directly executing instructions represented 
in machine language and stored in main memory. 

program A set of instructions describing actions for a computer to 
perform in order to accomplish some task, conforming to the rules 
and conventions of a particular programming language. 

prompt To remind or signal the user that some action is expected, 
typically by displaying a distinctive symbol, a reminder message, or a 
menu of choices on the display screen. 

prompt character A text character displayed on the screen to 
prompt the user for some action. Often also identifies the program or 
component of the system that is doing the prompting; for example, 
the prompt character] is used by the Applesoft interpreter, > by 
Integer BASIC, and * by the system Monitor program. 

radio-frequency modulator A device for converting the video 
signals produced by a computer to a form that can be accepted by a 
television receiver. 

RAM See random-access memory. 

random-access memory Memory in which the contents of 
individual locations can be referenced in an arbitrary or random 
order. This term is often used incorrectly to refer to read-write 
memory, but strictly speaking, both read-only and read-write memory 
can be accessed in random order. 

read To transfer information into the computer's memory from a 
source external to the computer (such as a disk drive or modem) or 
into the computer's processor from a source external to the 
processor (such as the keyboard or main memory). 

read-only memory Memory whose contents can only be read; 
used for storing firmware. Information is written to read-only memory 
once, during manufacture; it then remains there permanently, even 
when the computer's power is turned off; it can never be erased or 
changed . 

Glossary 



read-write memory Memory whose contents can be both read 
and written; often misleadingly called random-access memory, or 
RAM. The information contained in read-write memory is erased 
when the computer's power is turned off and is permanently lost 
unless it has been saved on a more permanent storage medium, 
such as a disk. 

register A location in a computer processor where information is 
held and modified under program control. 

sector A portion of the recording surface of a disk consisting of a 
fixed fraction of a track. Under DOS 3.3, there are 16 sectors per 
track. 

software Those components of a computer system consisting of 
programs that determine or control the behavior of the computer. 

startup disk A disk containing software recorded in the proper 
form to be loaded into the Apple ll's memory in order to set the 
system into operation. Sometimes called a boot disk. 

statement A unit of a program in a high-level language specifying 
an action for the computer to perform, typically corresponding to 
several instructions of machine language. 

subroutine A part of a program that can be executed on request 
from any point in the program, and which returns control to the point 
of the request on completion. 

subscript An index number used to identify a particular element of 
an array. 

syntax The rules governing the structure of statements or 
instructions in a programming language. 

text (1) Information presented in the form of characters readable 
by humans. (2) The display of characters on the Apple ll's display 
screen. 

text file A file containing information expressed in text form. 

text window An area on the Apple I l's display screen within which 
text is displayed and scrolled. 

track A portion of the recording surface of a disk consisting of a 
single circular band at a fixed distance from the center of the disk. 
Under DOS 3.3, there are 35 tracks on a disk. 

turnkey disk A disk that executes a specific program when you 
start it up. 

Glossary • 



II 

variable (1) A location in the computer's memory where a value 
can be stored. (2) The symbol used in a program to represent such a 
location. 

video monitor A display device that receives video signals by 
direct connection only, and which cannot receive broadcast signals 
such as commercial television. Can be connected directly to the 
Apple II computer as a display device. 

warm start The process of restarting the Apple II after the power is 
already on, without reloading the operating system into main memory 
and often without losing the program or information already in main 
memory. 

wildcard character The equal sign (=),which may represent the 
files within a directory or those files that share a file pattern. 

write To transfer information from the computer to a destination 
external to the computer, such as a disk drive, printer, or modem, or 
from the computer's processor to a destination external to the 
processor, such as main memory. 

write-enable notch A square cutout in one edge of a disk's jacket 
that permits information to be written on the disk. If there is no write­
enable notch, or if it is covered, information can be read from the disk 
but not written onto it. 

write-protect To protect the information on a disk by covering the 
write-enable notch with a write-protecttab, preventing any new 
information from being written onto the disk. 

write-protect tab A small adhesive sticker used to write-protect a 
disk by covering the write-enable notch. 

Glossary 



Downloaded from www.Apple20nline.com 

• 



1 3 5 The UNLOCK Comm nd 

D 

,V] 

1.3.6 The DELETE Command 

c ma le y u em 

EL 

n 

s 

D 

Direct DOS Commands 

f1I fr ma · 

m 
'II 

e 
FILE 



Index 

@ ( CONTROL }-( RESET J 181 
8 33 
8 25, 33 
= 141, 143 
I 15, 21 
> 15, 21 
; 26, 27, 50 
. 27, 29, 57, 173 
# 35 
& 38 
$ 7 
• 7, 24, 124, 173, 187 
> 63999 41 
*** SYNTAX ERROR 167 
#3EAG 127 
?SYNTAX ERROR 167 
13-sector disks 139-145 
16K RAM Card 20 
3D0G 24,29 
*3D0G 124 
3D3G 124 
3D3G 29 
3EAG 124 
6502 Assembler/DOS Tool Kit 149 
80-Column Text Card 33, 189 

A 
A register 160, 161 
ADDRESS program 79, 178 
addresses, binary 118 
addressing tracks and sectors 

159-163 
ampersand 38 
An argument 118, 185 

with BLOAD 121, 197 
with BRUN 120, 197 
with BSAVE 122, 197 

ANIMALS program 178 
APPEND command 28, 69, 175, 

194 
Apple II Reference Manual 24 
Apple Language System 109 

Index 

Index 

Apple Writer 2.0 91 
APPLEPROMS program 178 
Applesoft BASIC 13, 20, 23, 25, 

169, 190 
and CHAIN 103 
and MAXFILES 102 

Applesoft BASIC Programmer's 
Reference Manual 3, 20, 28, 62 

Applesoft Card 20 
Applesoft II BASIC Programming 

Manual 132 
APPLESOFT language file 110 
APPLESOFTprogram 21 , 169, 177 
Applesoft Tutorial 3, 19 
Applesoft/DOS Tool Kit 91 
APPLEVISION program 178 
arguments 184-186 
array(s) 

definition 56 
with CHAIN 103 

ASCII 25 
asterisk 7, 10, 24, 124, 173, 187 
AWAY program 94 

B 
BASIC 20 
BASIC program files 20-24 
BASICS disk 144, 145 
binary addresses 118 
binary files 117-123, 158 

commands 119-123, 197 
BLACK.BOOK 79, 178 
BLOADcommand 119, 121, 134, 

197 
Bn argument 171, 185 

with READ 68, 193, 196 
with WRITE 68, 196 

BOOT13 program 144, 177 
BRICKOUTprogram 178 
BRUN command 119, 120, 197 
BSAVEcommand 119, 120, 122, 

158,197 

• 



II 

buffer, file 65, 85, 101, 191, 195 
buffering 101 
bugs 28 
byte(s) 101 

link 149 

c 
C argument, with MON 29, 190 
C argument, with NOMON 30, 190 
C0GG 161 
CALL-151 123, 124 
CALL -868 30 
CALL 10G2 34, 127 
CALL3072 161 
CALL statement 129 
(CAPS LOCK J 7 
CAPTURE routine 97 
capturing lines 96 
carriage return 27, 28, 47, 192 
CATALOG command 7, 151, 187 
CHAIN command 91, 192 

and Applesoft 103 
and Integer BASIC 103 

CHAIN program 103, 105, 177 
CHR$ function 25 
CLOSE command 48, 100, 174 

with random access 85, 195 
with sequential access 66, 193 

CnOOG 181 
cold start 181 
COLOR TEST program 178 
comma 27, 29, 38, 57, 173 

infields 59 
command 

arguments 184-186 
defaults 6 
description 5 
notation 5, 183 
program environment 190-192 
summary 186-197 
syntax 184 

command file(s) 20, 91-99 
and INPUT 100 
creating 94 

commands 
binary 119-123, 197 
random-access 84-88, 195-196 
nonprogramming 187 
sequential-access 65-71 , 

192-194 
contents of sectors 148 
control characters 25, 33 
(CONTROL J-0 59 
(CONTROL I-® 24 
( CONTROL)-@] 100, 124, 143 

Index 

(CONTROL)-@) 25, 26, 28, 34, 91 , 92, 126, 
127, 183, 189 

(CONTROL J-@ 33 
~24 
(CONTROL)-[g 181 
~ 33 
(CONTROLJ-0 124, 127, 181 
(CONTROL ). ( RESET ) 182 
(CONTROL J·W 64 
( CONTROL J-@) 33 
CONVERT13 program 140, 177 
converting 13-sector disks 140-143 
COPYprogram 170, 177 
COPY.OBJO program 177 
COPYAprogram 177 
COUT1 routine 128 
CSWH 127 
CSWL 127 
current position pointer 50, 69 

D 
D$ variable 26, 28 
debugging 28-30 
defaults 6 
deferred execution 20, 28, 183 
DELETE command 11 , 187 
DELETE. ME.1 program 178 
DELETE.ME.2 program 178 
DELETE.ME.3 program 178 
deleting files 66, 158, 187 
device-characteristics table 160, 

161, 163 
direct DOS commands 7-15 
directory, disk 7, 148, 151-155 
DISK FULL 173 
disk(s) 

13-sector 139-145 
access commands 187 
capacity 183 
initializing 8, 101 , 187 
master startup 108, 182 
protection 10 
startup 108 
turnkey 108, 182 

Dnargument 6, 173, 185 
DO'ER command file 92 
DOIT command file 94 
dollarsign 7 
DOS error messages 167-175 
DOS 

and Monitor 127 
defaults 6 
disks 3 
entry points 133 
environment 3, 4 
reconnect routine 133 
requirements 4 



syntax 5 
vectors 163-164 

DOS User's Manual 3 
drive number option 6 
DUPLICATE LINE NUMBERS 41 

E 
EDASM 91 
En command 37 
END command 37 
END OF DATA 69, 171 , 191 , 194 
equal sign 141, 143 
error messages, DOS 167-175 
errortrapping 30-33 
@33 
@(CONTROL)-@ 33,35, 189 
EXEC command 20, 39, 52, 91, 99, 

191 
EXEC DEMO program 92, 178 
EXECfile 20 
EXTRA IGNORED 54 

F 
FID program 177 
field(s) 

definition 4 7 
random access 4 7 
sequential access 47 
with commas 59 

file buffer 85, 101, 147, 191, 195 
definition 65 

FILE LOCKED 10, 31, 173 
filename 184 
FILE NOT FOUND 9, 11, 12, 13, 

172, 187 
file protection 10, 11 
filetype 13, 15,47, 149, 154 
FILETYPEMISMATCH 13, 174, 

189 
file types 174, 183, 187 
file(s) 

deleting 66, 158, 187 
locking 7, 187, 188 
protecting 188 
renaming 187 
unlocking 188 

files 
binary 117-123, 158 
command 91-99 
random-access 47, 75-88, 151 
sequential-access 47-71 
text 48, 192 

FILEM program 177 
FIRST command 37 
floating point 20, 23 
fn argument 5, 184 

Index 

Fn command 37 
FP command 21 , 22, 23, 29, 100, 

169, 175, 190 
FPBASIC language file 110 
FPBASIC program 169, 177, 178, 

190 
functions 25 

with CHAIN 103 

G 
GET command 171 
GET statement 54, 59, 86, 196 
GET TEXT program 63, 91 , 92, 178 
greater-than-sign 15, 21 

H 
Hcommand 38 
HELLO program 177, 178 

Applesoft 26 
Integer BASIC 26 

hexadecimal 6, 7, 117 
hidden characters 33 
high-resolution graphics 132 
HIMEM 129, 133, 175 

and MAXFILES 102, 132, 191 
values 132 

hold buffer 39 
HOLD command 38 
HOLD FILE IN USE 41 

I 
I argument, with MON 29, 190 
I argument, with NOMON 30, 190 
1/0 block 160, 161 

format 162 
1/0 ERROR 12, 15, 139, 172, 188 
immediate execution 19, 183 
In command 37 
IN#O 36 
IN# command 34, 36, 126, 127, 

170, 189, 191 
INC command 37 
INITcommand 182, 187 
initializing disks 8, 101 , 182, 187 
INPUT command 171 
input registers, DOS 126 
input registers, Monitor 125 
INPUT statement 54, 86, 191, 196 

with command files 100 
INT command 21 , 22, 23, 29, 100, 

169, 175, 190 
INTBASIC language file 110 
INTBASIC program 177, 178 
Integer BASIC 4, 13, 20, 21, 23, 

169, 190 
and CHAIN 103 
and MAXFILES 102 

• 



II 

Integer Card 20 
intercepting errors 30-33 

J 

K 
KEVIN routine 128 
KSWH 127 
KSWL 127 

L 
Language Card 6, 20, 109, 169, 190 
LANGUAGE NOT AVAILABLE 13, 

21,109, 169,188, 190 
left-arrow key 33 
LIMITED MEMORY ... 41 
LINE INCREMENT 41 
LINE INCREMENT TDD 

LARGE 41 
line numbers 37 
LINE TDD LONG 41 
line-number references 39 
link bytes 149 
link pair 149 
LIST command 94 
Ln argument 118, 185 

withOPEN 84 
with BSAVE 122, 197 
with OPEN 171, 195 
with READ 171 
with WRITE 171 

LOAD command 14, 21, 169, 188 
LOADER.OBJO program 109, 110, 

169, 177, 178 
LOADING APPLESDFT... 21 
LOADING INTEGER ... 21 
LOCK command 10, 178 
LOCK.ME.1 program 178 
locked files 7, 187, 188 
LOCKED.UP.1 program 178 
LOCKED.UP.2 program 178 
LOMEM 133, 175 

M 
Mcommand 38 
machine language 98 
MAKE TEXT program 61, 70, 96, 

178 
MAKE.DOIT program 94 
maps, memory 129-133 
MASTER CREATE program 106, 

177 
masterdisk 182 
MASTER program 91, 106, 110, 177 
master startup disk 108 

Index 

MAXFILES command 39, 65, 91, 
101, 174, 175, 191 
and Applesoft 102 
and HIMEM 132 
and Integer BASIC 102 

memory address 118 
memory maps 129-133 
memory pages 132 
memory, and high-resolution 

graphics 132 
MERGE command 38 
MON command 28, 29, 190 

withGET 59 
Monitor and DOS 127 
Monitor 1/0 registers 125 
monitor input link 127 
monitor output link 127 
Monitor program 24, 124, 127 

prompt character 124 
MUFFIN program 140, 177 

N 
n 5,7 
n argument 184 
n! CONTROL I-® command 127 
n! CONTROL 1-0 command 127 
NEW 26, 100 
NO BUFFERS Al,!A I LABLE 102, 

174, 191 
NO LINES IN RANGE 41 
NO PROGRAM IN MEMORY 38, 

42 
NOMON command 28, 29, 30, 190 

withGET 59 
NOT DIRECT COMMAND 175 
notation, command 5, 183 
NOTRACE statement 28 
number sign ( #) 35 
numbers 6 

0 
0 argument, with MON 29, 190 
0 argument, with NOMON 30, 190 
ONERR DEMO program 31, 32, 

178 
ONERR GOTO statement 30, 31, 

32 
OPEN command 28, 48, 87, 94, 

175, 187 
with random access 84, 195 
with sequential access 65, 192 

OUT OF MEMORY 42 
output registers, DOS 126 
output registers, Monitor 125 



p 
Page 3 163-164 
pages 132 
PEEK function 30, 31 , 98 
peripheral device 34 
PHONE LIST program 178 
pointer, current position 50, 69 
POKE function 98, 127, 175 
POKER program 98, 178 
POSITION command 28, 68, 87, 

171, 175 
PR# command 34, 35, 126, 127, 

170, 174, 189, 191 
PR#O 33 
PR#3 33,35 
PRINT command 94 
PRINT to a file 53 
PROGRAM ON HOLD ... 38 
PROGRAM TOO LARGE 175 
promptcharacter(s) 15, 21 

Monitor 24, 124 
protecting files 188 

R 
RAM 4,20 
RANDOM program 77, 178 
random vs. sequential access 49 
random-access commands 84-88 

195-196 ' 
random-access files 47, 75-88, 151 
random-access memory 4, 20 
RANGE ERROR 101, 170 
READ command 28, 175 

with random access 77, 87, 196 
with sequential access 68, 193 

read-only memory 20 
reconnecting DOS 133 
record length 76, 84, 85 
records, 47, 75 
references, line number 39 
registers, 1/0 125-127 
REMARK statement 39 
RENAME command 9, 31, 187 
renaming files 187 
RENUMBER program 36-42, 177 

commands 38 
error messages 41 

(RESET) 39, 182 
resident language 20 
I RETURN) 7 
right bracket 15, 21 
right-arrow key 25, 33 
Rn argument 185 

with EXEC 99, 171, 185, 191 
with POSITION 69, 171, 185, 194 
w~th READ 87, 171, 185, 196 
with WRITE 86, 185, 196 

Index 

ROM 20 
RUN command 13, 14, 21 , 169, 188 
RWTS subroutine 159-163 

s 
SAMPLE PROGRAMS disk 4, 32, 

61,63, 77, 79,91,92,98, 178 
SAVE command 15, 158, 188 
sector(s) 147-149 

addressing 159-163 
allocation 158 
contents 148 
definition 147 
unassigned 151 

semicolon 26, 27, 50 
sequential vs. random access 49 
sequential-access commands 

65-71, 192-194 
sequential-access files 47-71 
slotO 6 
slot number 6 
slot number option 6 
SLOT# program 177 
Sn argument 6, 173, 181, 186 

with RENUMBER 37 
START command 37 
START13 program 144, 145, 177 
starting a program 34 
startup disk 108 
storage 147-165 
summary card 3 
summary, DOS commands 186-197 
summary, DOS operating 

concepts 181-186 
switching languages 22 
SYNTAX 42 
SYNTAX ERROR 167,173 
syntax, command 5, 184 
SYSTEM MASTER disk 3, 36, 103, 

105, 106, 109, 110, 140, 144, 145, 
169, 177, 182 

T 
(fil) 27 
textfiles 48, 192 
TEXT statement 62 
text window 62 
TRACE 28,87 
track bit map 157 
tracks 147-149, 158 

addressing 159-163 
allocation 158 
definition 147 

track/sector allocation 158 

• 



• 

track/sector list 148, 149-151 , 183 
track/sector pairs 150, 151 
translating machine language 98 
turnkey disk 108, 182 

u 
UNABLE TO READ 139 
UNABLE TD WRITE 139 
UNLOCK command 11 , 188 
unlocking files 188 

v 
VERIFY command 12, 173, 188 
VERIFY.ME program 178 
Vn argument 7, 186 
l.lOLUME MISMATCH 172 
volume number 8 
volume number option 7 
volume table of contents 148, 152, 

155-156 
VTOC 155, 157, 158 

w 
warm start 182 
wildcard 141 , 143 
window, text 62 
WRITE command 28, 69, 94, 

158, 175 
with random access 76, 86, 196 
with sequential access 67, 193 

WRITE PROTECTED 170 
write-protection 10 

x 
y 
Y register 160, 161 

z 
zero page 165 

Index 



I 

apple! computC!r 
® 

20525 Mariani Avenue 
Cupertino, California 95014 

(408) 996-1010 
TLX 171-576 030-0536-A 




