Sega SC-3000H hardware notes
by Charles MacDonald
WWW http://cgfm2.emuviews.com

Unpublished work Copyright 2002-2004 Charles Macbonald
Table of Contents

Introduction

Overview

Memory map

Port map

Keyboard and I/0

TMS9929A information
Miscellaneous

Assistance Needed

) Credits and acknowledgements
) Disclaimer

. o e e e
S N e N N N N

1.
2
3
4
5
6.
7
8.
9.
10.

What's New:

[07/29/04]
- Updated memory refresh information.
- Added chip revision information.
- Added power supply and A/V cable notes.
[03/04/04]
- Added cassette custom chip pinout
- Fixed error labeling PPI pins PC3 and PC4.
- Finished MITEC-2 pinout
- Confirmed unused pins in several connectors
- Added information on Z80 / SN76489A clock generation
- Changed /EXCS to be /EXM1 to fit naming conventions
[e3/01/04]
- Added details on DRAM interface. Some guesswork, but mostly accurate.
- Added almost complete MITEC-2 custom chip pinout.
- Finished cartridge connector pin assignments
- Added keyboard ribbon cable pin assignments
- Added serial printer port pin assignments
- Fixed joystick pin assignments
- Expanded coverage of cart types
Fixed several errors
[06/05/02]
- Added notes on PPI control register and work RAM
- Fixed initial values for PPI port B bits 7-5
- Added information on VDP register #1 bit 7
[65/31/02]
- Updated keyboard information
- Added interrupt information

1.) Introduction

The SC-3000H is a personal computer made by Sega. For information about
Sega's 8-bit computers and game systems that came before the Mark III,
check out the documentation for MEKA:

http://www.smspower.org/meka/

To briefly sum things up, here's a list of the different systems:

SG-1000 No keyboard

SG-1000 II No keyboard, but supports the SK-1100 external keyboard
SC-3000 Built-in keyboard with soft rubber keys

SC-3000H Built-in keyboard with hard plastic keys

Expansion hardware

An addition for the SC-3000 was the SF-7000, which adds 64K of RAM, 8K
of ROM (for a disk operating system), Centronics parallel port, and an

RS-232C serial port. Marc Le Dourain has a webpage about it at:
http://www.multimania.com/mavati
2.) Overview

The SC-3000H has the following components:

Manufacturer Part Description

Fujitsu MB82128-15 2Kx8 SRAM (Z86 work RAM)

Fujitsu MB74LS145 1 of 10 decoder (keyboard row select)
Mitsubishi MN74HCo4 Hex inverter (timing related)
Motorola MCM4517P15 (x8) 16Kx1 Page Mode DRAM (TMS9929A VRAM)
NEC uPD9255AC-2 Programmable peripheral interface
SEGA MITEC-2 Custom chip (Z80 address decoding)
Sharp LHOO80A CPU (Z80-A compatible)

Texas Instruments TMS SN76489AN Programmable sound generator

Texas Instruments TMS 9929ANL Video display controller (PAL)

Note that both the SN76489A and TMS9929A are the 'A' versions, as opposed
to the original chips which have no letter suffix.

The TMS9929 has no Graphics II mode, this was added in the TMS9929A.
The SN76489 noise generator works differently compared to the SN76489A.

The main clock runs at 10.738635 MHz, which is used directly by the TMS9929A.
The hex inverter, along with some analog components, is used to divide the
main clock by 3 to generate the Z80 and SN76489A clock of 3.579545 MHz.

It also has several connectors on the back and side panels:

- Two joystick connectors (male DB9)

- Audio / video output (female 5-pin DIN)

- Printer interface (female 7-pin DIN)

- Cassette in and out jacks (2 female mono miniplug jacks)
- 44-pin cartridge connector

Pin assignments

Pin diagram of male DB9 plug on back of console:

12345
6789

: Joystick up

: Joystick down

: Joystick left

: Joystick right

: Unused (not connected to anything)
: Trigger left

: Unused (not connected to anything)
: Common

: Trigger right

VLCoOoONOTUVITSA WN PR

Pin 8 is the common side of all switches in the joystick and is connected
to output line 7 of the 74LS145. It is LOW when the seventh keyboard row
is selected (enabling the joystick ports for input) and HIGH otherwise
(joystick ports disabled).

This is different from the SMS and Genesis/MegaDrive which use pin 8

as ground and pin 5 as +5V. The original type of Master System joypads are
compatible with the SC-3000H, but I would not advise using any special
pads (autofire or programmable) or any Genesis/MegaDrive pads.

1 : Unused (not connected to anything)
2 : PPI PC5 (DATA output)

3 : PPI PC7 (/FEED output)

4 : PPI PB6 (BUSY input)

5 : PPI PC6 (/RESET output)
6 : PPI PB5 (FAULT input)
7 : GND

The pin names are from the SF-7000 documentation, not my own.

Pin diagram of female 5-pin DIN plug on back of console:

1 5
2 4
3

1: Composite video
2: Ground
3: Ground
4: Ground
5: Ground
6: Monoaural audio

Pin numbering goes from left (1) to right (11) for both connectors.
CN7

: 74LS145 output line
: 74LS145 output line
: 74LS5145 output line
: 74LS145 output line
: 74LS5145 output line
: 74LS145 output line
: 74LS145 output line
PPI PA@
PPI PAl
PPI PA2
PPI PA3

OOV WNREO®

R R OOONOTUVIDA WNER
= o

@)
=
(o]

PPI PA4
PPI PAS
PPI PA6
PPI PA7
PPI PBO
PPI PB1
PPI PB2
: PPI PB3
: Ground

CoONOTUVIDA WNER

10 : Not used (see notes)
11 : From RESET key to MITEC-2 pin 3 (NMI-IN)

Pins 1-7 of CN7 are outputs to select rows in the keyboard's key matrix.

Pins 8-11 of CN7 and 1-8 of CN8 are inputs with pull-up resistors to read
data from the selected keyboard row.

Pin 10 is not used by the keyboard. It is connected to the power switch
and could have been intended to control the power LED, which instead has
it's own direct connection to the switch.

Pin 11 of CN8 is an output to the NMI-IN pin of the MITEC-2 chip.

Solder side

A0l : 780 Ao
A02 : 780 Al
A@3 : 780 A2
Ao4 : 780 A3
Ao5 : 780 A4
AG6 : 780 AS
AO7 : 780 A6
AO8 : 780 A7
A0S : 780 A8
Alo : 780 A9

All : 780 Ale
Al12 : 780 All
Al13 : 780 Al12
Al4 : 780 Al13

Al15 : 780 Do
Al6 : 780 D1
Al7 : 780 D2
Al18 : 780 D3
Al19 : 780 D4
A20 : 780 D5
A21 : 780 D6
A22 : 780 D7

Components side

Bol1l : +5V

B2 : +5V

BO3 : Work RAM /CS
Bo4 : /EXM1

BO5 : MEMORY /RD

BO6 : MEMORY /WR

BO7 : I/0 PORT /RD

BO8 : I/O PORT /WR

BO9 : Unused (not connected to anything)
B10 : z80 /MREQ

B11 : /CONT
B12 : /RAS@
B13 : /CASO
B14 : CA7

B15 : /RAS1
B16 : /CAS1
B17 : /RCSEL

B18 : Z80 Al4

B19 : 780 A1l5

B20 : Unused (not connected to anything)
B21 : GND

B22 : GND

The work RAM /CS signal is connected through a resistor to pin B@3 of the

cartridge connector and the /CS pin of work RAM. If pin B@3 is left
unconnected then work RAM is enabled for $C000-$FFFF, if tied to +5V then
work RAM is disabled, freeing up $C@00-$FFFF for on-cart hardware to use.

Pin BO4 appears to be a chip select signal for memory accesses to the
$8000-$BFFF range.

Pins BO@5 and B@6 are /MREQ and /RD,/WR combined for memory read/write strobes.
Pins B@7 and B@8 are /IORQ and /RD,/WR combined for I/O read/write strobes.

Pin B11 is connected to PPI PB4 through a pull-up resistor. The SF-7000
documentation labels this pin /CONT, though it's just another input bit.

Pins B12 to B17 are used for controlling DRAM, managed by the MITEC-2 chip.
3.) Memory map and cartridge types

The memory map is mostly defined by the cartridge. As mentioned earlier
the MITEC-2 chip does provide a /CS signal for the $8000-$BFFF and
$CO0O-$FFFF range, but it's up to the cartridge how to map ROM, RAM, etc.
to memory.

For any memory area that is unused, such as the work RAM area when it is
disabled, reads return the high byte of the address bus (e.g. reading $C1AB
would return $C1).

I only have a Safari Hunting and Basic Level III A cartridge, so some of the
following information may not apply to other cartridge types.

Safari Hunting

This cartridge has two sockets, one for a 16K ROM and another for a 2K RAM.
The Safari Hunting game only uses the ROM and leaves the RAM socket empty.
Here are the pin assignments:

16K ROM (28-pin DIP)

+---\/---+
VCC |e1 28| vcc
A12 |e2 27| vcc
A7 |@3 26| A13
A6 |04 25| A8
A5 |@5 24| A9
AL |06 23| A11
A3 |e7 22| /OE (From Z80 A15)
A2 |es8 21| Ale
A1 |09 20| /CS (from Z80 /MREQ)
A0 |10 19| D7
Do |11 18| D6
D1 |12 17| D5
D2 |13 16| D4
GND |14 15| D3

2Kx8 SRAM (24-pin DIP)

+---\/---+
A7 |e1 24| vccC
A6 |02 23| A8
A5 |e3 22| A9
A4 |04 21| /WR (From pin B@6, memory /WR)
A3 |e5 20| /OE (From pin B@5, memory /RD)
A2 |o6 19| Ale
Al |o7 18| /CS (From pin Be4, $8000-$BFFF /EXM1)
A0 |08 17| D7
Do |09 16| D6
D1 |10 15| D5
D2 |11 14| D4

GND |12 13| D3

This gives the following memory map:

$0000-$3FFF : ROM

$4000-$7FFF : ROM (mirror)

$8000-$BFFF : RAM (mirrored repeatedly every 2K)
$CO00-$FFFF : Work RAM (mirrored repeatedly every 2K)

Basic Level III A (PAL)

This cartridge has a 32K ROM and four 16Kx4 DRAM sockets. Two of them
have TMS4416 16Kx4 DRAMs, the other two are empty. This would allow up to
32K total, but only 16K is present.

32K ROM (28-pin DIP)

VCC |e1 28| vccC

A12 |@2 27| A14

A7 |e3 26| A13

A6 |04 25| A8

A5 |@5 24| A9

A4 |06 23| A11

A3 |o7 22| /OE (From pin B@5, memory /RD)
A2 |e8 21| Ale

Al |@9 20| /CS (From 74LS32)
A0 |10 19| D7

Do |11 18| D6

D1 |12 17| D5

D2 |13 16| D4
GND |14 15| D3

One gate of the 74LS32 is used to enable the ROM only during memory reads

when 780 Al5 is low, giving the following memory map:

$0000-$7FFF : ROM

$8000-$BFFF : DRAM (first 16K)

$CO00-$FFFF : Work RAM (mirrored repeatedly every 2K)

- or‘ -

$CO00-$FFFF : DRAM (latter 16K if work RAM disabled and missing DRAM chips added)
DRAM interface

The MITEC-2 chip provides several output signals for managing DRAM:

MITEC Cartridge Signal Description

pin pin name

19 B14 CA7 DRAM column, bit 7

20 B17 /RCSEL Row/column select (©= row, 1= column)
21 B12 /RASO Row address strobe for DRAM

22 B15 /RAS1 Row address strobe for DRAM

23 B13 /CASO Column address strobe for DRAM

24 B16 /CAS1 Column address strobe for DRAM

The Basic Level III A cartridge uses the above pins like so:

The two TMS4416 DRAM chips mapped to $8000-$BFFF use /RASO and /CASe@.
Their /CAS signal is /RCSEL and /CAS@ logically-OR'd together.

The two unused chips mapped to $C000-$FFFF use /RAS1 and /CAS1.
Their /CAS signal is /RCSEL and /CAS1 logically-OR'd together.

CA7 is common to all four chips.

Two multiplexers are used to break up the 780 address bus into the row

and column words, formatted as follows:

TMS4416 Row (/RCSEL=0) Column (/RCSEL=1)
DRAM A®@ GND 780 A

DRAM A1 780 A8 780 Al

DRAM A2 780 A9 780 A2

DRAM A3 780 A10 780 A3

DRAM A4 780 A1l 780 A4

DRAM A5 780 A12 780 A5

DRAM A6 780 A13 780 A6

DRAM A7 GND cA7

Bits © and 7 of the row for 16Kx4 DRAMs are unused to allow expansion.
64Kx4 DRAMs use these bits for address bits 14 and 15, respectively.
Perhaps the SF-7000 uses this to implement it's 64K RAM.

Z80 A7 is not used for bit 7 of the column. Instead CA7 is used instead.
780 A7 is used by A7 of the 32K ROM only.

Cartridge information from other sources:
Terebi Oekaki

$0000-$1FFF : ROM

$6000 : Graphics tablet axis to read
$8000 : Pen pressure sense / axis data conversion busy flag
$A000 . Axis data

This cartridge connects to a pressure sensitive graphics tablet.
A plastic stylus is used, which can have it's position tracked when
pressed against the tablet.

SF-7000

$0000-$3FFF : ROM (8K, presumably mirrored twice)
$0000-$FFFF : RAM (as 48K from $4000 or 64K from $0000)

On power-up, the first 16K is for ROM and the remaining 48K is for RAM.
The ROM can be switched out through the SF-7000's PPI, allowing all of
the RAM to be used.

4.) Z80 port map

The VDP, PSG, and PPI are enabled according to the following port
addresses:

Range PPI VDP PSG Data returned

$00-1F Y Y Y PPI+VDP

$20-3F N Y Y VDP

$40-5F Y N Y PPI

$60-7F N N Y Instruction referenced by R
$80-9F Y Y N PPI+VDP

$A0-BF N Y N VDP

$Co-DF Y N N PPI

$EO-FF N N N Instruction referenced by R

For each location, data written goes to all devices that are enabled.

For addresses where both the PPI and VDP are enabled (regardless of the
PSG) the data returned is from the PPI but has a few bits corrupted,

most likely due to the VDP trying to place information on the data bus at
the same time.

The officially documented ports for each device are the ones where only
one of them is enabled. The PSG has no readable registers, so even when
it's enabled, there is no change to the data returned.

The SF-7000 maps it's own hardware at ports $E@-FF. I haven't looked
into SF-7000 emulation much, so I can't comment on how these ports are
used.

Memory refresh behavior

The 7280 has a function for providing DRAM refresh. During any opcode fetch
cycle (either a prefix byte or the opcode itself) the following events
occur during states T3 and T4:

- /RFSH goes low

- /M1 goes high

- A15-A8 output I register contents

- A7-A@ output R register contents

- /MREQ goes low for the latter half of the T3 cycle and the first half of
the T4 cycle

So it looks like a regular memory access from the address indicated by
the IR register pair, except /RFSH is used instead of /RD.

Typically, most SC-3000 cartridges are designed where ROM /OE = /MREQ and
ROM /CS = A15. In this case they will respond to a refresh cycle within
addresses $0000-$7FFF and output data to the bus.

The MITEC-2 chip does not enable work RAM during a refresh cycle, so the

data returned during a refresh cycle to $C000-$FFFF is the last value left

on the data bus from a previous operation, unless there is some external
on-cart hardware using this memory range for it's own purpose. (e.g. SF-7000)
This also implies work RAM would be disabled by having cartridge connector
pin B@3 (work RAM /CS) tied to +5V.

This behavior manifests itself when reading I/0 ports $60-$7F and $E@-$FF.
No device will drive the data bus when these ports are read, so the value
returned is the byte read during the refresh cycle. Here is an step-by-step
description of what occurs:

Assume ROM data at offset $2A00 is $AB, $CD, $EF
Sample program is:

Xxor a
1d b, a
1d c, $Ee
1d a, $2A
1d i, a
1d a, %01

1d r, a ; Set refresh address in IR pair. ($2A01)
in a, (c) ; Read from port in BC pair. ($00EQ)

We are interested in the timing for the 'in a, (c)' instruction. In this
case, it has three machine cycles of four T states each. The opcode for
the encoding of this particular instruction is $ED, $78.

[Opcode fetch cycle]

T1 : Address bus outputs PC
T2 : Read opcode $ED

T3 : Refresh cycle start (IR
T4 : Refresh cycle end

$2A01, read $CD)

[Opcode fetch cycle]

T1 : Address bus outputs PC
T2 : Read opcode $78

T3 : Refresh cycle start (IR
T4 : Refresh cycle end

$2A02, read $EF)

[I/0 cycle]

Tl : Address bus outputs BC ($00E®@)

T2 : /IORQ and /RD go low

TW : Forced wait cycle (lengthened if /WAIT low)
T3 : Data bus sampled, /IORQ and /WR go high

In this example, we assume there is ROM that will respond to the memory
access for the reasons listed earlier. (ROM /OE = /MREQ, ROM /CS = Al5)
The value read back from the IN instruction is $EF, that was left over
from the previous refresh cycle.

If there was no device to drive the data bus, the last value on the data
bus is $78, and that is the value that is returned during the IN instruction
read.

An exception is the Basic Level III A cartridge; it's ROM is disabled during
a refresh cycle, but the lower 3 bits of the data bus seem to fluctuate,

so you get values like $7B, $7F, instead of $78. Maybe all of the additional
hardware in the cartridge that is connected to the data bus affects the

bus capacitance somewhat, so it doesn't 'hold' the previous value as well
from the T2 state of the 2nd machine cycle all the way to T3 of the 3rd
machine cycle.

5.) Keyboard and I/0

The keyboard, gamepads, and cassette/printer interface are handled through
an 8255 PPI. This chip has three 24 I/0 pins which are arranged into 3
8-bit I/0 ports called A, B, and C. It also has a control register which
defines if the ports are outputs or inputs, amongst other things.

Port A (input)

D7 : Keyboard/gamepad input data
D6 : Keyboard/gamepad input data
D5 : Keyboard/gamepad input data
D4 : Keyboard/gamepad input data
D3 : Keyboard/gamepad input data
D2 : Keyboard/gamepad input data
D1 : Keyboard/gamepad input data
Do : Keyboard/gamepad input data

Pins PA7-PA@ have pull-up resistors and are active low inputs.
Port B (input)

D7 : From CASSETTE-IN miniplug jack

D6 : BUSY input from printer port

D5 : FAULT input from printer port

D4 : /CONT input from B11l on cartridge connector
D3 : Keyboard/gamepad input data

D2 : Keyboard/gamepad input data

D1 : Keyboard/gamepad input data

DO : Keyboard/gamepad input data

Pins PB6-PB@ have pull-up resistors and are active-low inputs, PB7 is
an active-high input.

With no external devices attached, bits 7,6,5 return 0,1,1 respectively.
Port C (output)

D7 : To printer port pin 3 (/FEED output)

D6 : To printer port pin 5 (/RESET output)

D5 : To printer port pin 2 (DATA output)

D4 : Unused (not connected to anything)

D3 : To CASSETTE-OUT miniplug jack

D2 : To 74LS145 to select 1 of 8 keyboard rows (bit 2)
D1 : To 74LS145 to select 1 of 8 keyboard rows (bit 1)
DO : To 74LS145 to select 1 of 8 keyboard rows (bit 0)

The descriptions of the PPI ports were taken from Marc Le Dourain's
SF-7000 page, which I believe were in turn taken from a SF-7000 manual.
So I can't really elaborate much more on what each bit does, beyond what
I've checked myself.

The SC-3000H has a 64-key keyboard, and two gamepad ports. One of the keys
is called "RESET" and generates a NMI on the 780 when pressed.

Bits 7-0 of port A and 3-0 of port B are used to return data from the
keyboard and gamepads. This data is broken down into 8 groups, with seven
for the keyboard rows and one for the two gamepads.

The keyboard rows are assigned to the following keys, where each bit
returns one for a pressed key and zero if the key has not been pressed.

Columns
PPI Port A PPI Port B
Rows D@ D1 D2 D3 D4 D5 D6 D7 De D1 D2 D3

@ '1' 'Q' 'A' 'Z' ED ',' 'K' 'I' '8 --- --- ---
1 2" W' 'St XY SPC 'L 'L 'O "9 --- a-- -
2 '3 'E' D' 'C'HC /' ;' PO --- --- -
3 '4" 'R" 'F" 'V"ID PI ':' @' "-' --- --- ---
4 's5' 'T' 'G' 'B' --- DA ']' '[' AT --- oo ---
5 '6'" 'Y' 'H'" 'N' --- LA CR --- YEN --- --- FNC
6 ‘7' ‘Ut '3 'M' --- RA UA --- BRK GRP CTL SHF
7 U 1D 1L 1R 1TL 1TR 2Uu 2D 2L 2R 2TL 2TR
ED = "ENG DIER'S"

SPC = (Spacebar)

HC = "HOME CLR"

ID = "INS DEL"

PI = (PI symbol)

DA = (Down arrow on keypad)

LA = (Left arrow on keypad)
RA = (Right arrow on keypad)
CR = "CR" (Enter)

UA = (Up arrow on keypad)
YEN = (Yen symbol)

BRK = "BREAK"
GRP = "GRAPH"
CTL = "CTRL"
FNC = "FUNC"
SHF = "SHIFT"

1U = Joystick #1 up

1D = Joystick #1 down

1L = Joystick #1 left

1R = Joystick #1 right

1TL = Joystick #1 left trigger
1TR = Joystick #1 right trigger
2U0 = Joystick #2 up

2D = Joystick #2 down

2L = Joystick #2 left

2R = Joystick #2 right

2TL = Joystick #2 left trigger
2TR = Joystick #2 right trigger
--- = Key is unused, always returns 1

The keys are arranged in an 8x12 matrix as shown above. Some combinations
of key presses will cause other keys to appear to be pressed.
There are two rules which define this behavior:

If two or more keys on any keyboard row are pressed, pressing any key
on another row that occupies the same columns will cause all other keys
in the same columns to appear to be pressed.

For example, if keys 1, Q, A, Z are pressed, pressing 2 will also make
keys W, S, and X appear to be pressed.

If two or more keys on any keyboard column are pressed, pressing any key
on another column that occupies the same rows will cause all other keys
in the same rows to appear to be pressed.

For example, if keys 1, 2, 3, 4 are pressed, pressing Q will also make
keys W, E, and R appear to be pressed.

The two joystick ports are affected by this behavior too.

Most software writes $92 to the PPI control register and $067 to PPI port C,
which configures ports A and B as inputs and all bits of port C as outputs,
as well as selecting row 7 of the keyboard matrix to access the gamepads.
When port C is configured as an output, reading it returns the last value
written to port C. The PPI control register cannot be read, and always
returns $FF.

6.) TMS9929A information

I'1l include more details later on. For now, just a few notes:

- When writing to a VDP register, bits 6-3 of the byte written are
ignored by the VDP.

- Data written to the data port is also copied to the VRAM read buffer.

Bits 7-3 of register #0 and bit 2 of register #1 have no use.

- Bit @ of register #0 does not turn off the screen when set, but rather
distorts the synchronization of the display. This bit is intended to
enable external video input which is unused in the SC-3000H.

- Bit 7 of register #1 affects how the VDP generates addresses when
accessing VRAM. Here's a table illustrating the differences:

VDP address VRAM address
(Column) 4K mode 8/16K mode
ADO VAO VAO

AD1 VAl VAl

AD2 VA2 VA2

AD3 VA3 VA3

AD4 VA4 VA4

AD5 VAS VAS

AD6 VA12 VA6

AD7 Not used Not used
(Row)

ADO VA6 VA7

AD1 VA7 VA8

AD2 VA8 VA9

AD3 VA9 VA10
AD4 VA10 VAll

AD5 VA1l VA12

AD6 VA13 VA13

AD7 Not used Not used

ADx - TMS9928 8-bit VRAM address/data bus
VAX - 14-bit VRAM address that the VDP wants to access

How the address is formed has to do with the physical layout of memory
cells in a DRAM chip. A 4Kx1 chip has 64x64 cells, a 8Kx1l or 16Kx1l chip
has 128x64 or 128x128 cells. Because the DRAM address bus is multiplexed,
this means 6 bits are used for 4K DRAMs and 7 bits are used for 8K or 16K
DRAMs.

In 4K mode the 6 bits of the row and column are output first, with

the remaining high-order bits mapped to AD6. In 8/16K mode the 7 bits
of the row and column are output normally. This also means that even
in 4K mode, all 16K of VRAM can be accessed. The only difference is in
what addresses are used to store data.

7.) Miscellaneous

In my experience a US SMS 2 power supply and standard Genesis / MegaDrive

A/V cable (composite video + mono audio) will work with a SC-3000H.

It seems that when an interrupt occurs, the value on the 7Z8@'s data bus
is random data. It could be the same as reading unused ports, where the
Z80's R register indexes ROM to select the value read.

This means that interrupt mode © and 2 cannot be used reliably. In the
latter case it may be possible to set the I register to a location in RAM
and fill up all 257 bytes from that point with the same byte, say $08,

so the 780 will jump to $0808 regardless of what data it read as the

low byte for the vector table. I think a similar technique is used in
some Spectrum computer software, though I have not tested this myself.

The SN76489A is not reset when the SC-3000H is powered on. If you cycle the
power to reset the machine, then the PSG plays the same sounds that were
last written to it, and from a cold boot the PSG emits a medium volume tone.

Custom chip pin assignments
Cassette interface control (11-pin SIP)

: From CASSETTE-IN miniplug jack

: Input from PPI PC3 (Tape data out)
: To CASSETTE-OUT miniplug jack

: Ground

: Output to PPI PB7 (Tape data in)

: Unused (not connected to anything)
: Unused (not connected to anything)
: Unused (not connected to anything)
: Unknown (connected to a transistor and some other analog components)
: Unused (not connected to anything)
: 45V

PO WVWOoOONOOTUVTA WNER

[y

This part is a small epoxy-covered PCB with a row of 11 pins on the right
side. It digitizes the incoming tape data to be read through PPI PB7 and
converts the output of PPI PC3 to analog data to be recorded onto the tape.

SEGA MITEC 2 (28-pin DIP)

+----V----+
Z80 /NMI |01 o x 28| vcC
Z80 /MREQ |02 i o 27| TMS9929A /CSW
NMI-IN |03 i o 26| TMS9929A /CSR
Z80 /RD |04 i o 25| SN76489A /CE
Z80 /WR |05 i o 24| /cAs1
Z80 /IORQ |06 i o 23| /CASe
Z80 /RFSH |07 i o 22| /RAS1
MEMORY /RD |@8 o o 21| /RAS@
MEMORY /WR |@9 o o 2@| /RCSEL
I/0 PORT /RD |10 o o 19| CA7
I/0 PORT /WR |11 o i 18| Z8e A7
Z80 A14 |12 i i 17| Z8e A6
Z80 A15 |13 i o 16| /ExM1
GND |14 x o 15| Work RAM /CS

NMI-IN is from the keyboard RESET key. I don't know if it's active high
or low.

The memory /RD, /WR strobes are used by the 2Kx8 work RAM and cartridge
connector.

The I/0 port /RD, /WR strobes are used by the 8255 PPI and cartridge
connector.

The TMS9929A has no chip select input, so it has it's own read/write
strobes.

The SN76489A /WE and /READY pins are tied together to Z80 /WAIT. I think

the MITEC-2 enables the PSG (via /CE) when the 780 has written to the PSG
port and is driving the data bus; then PSG /READY signal will delay the Z80
while the PSG is processing the data being input from the bus.

Things to check:

- Find source of data read during memory read to unused address spaces.

- Find source of data read during interrupt cycle in IM @ and IM 2.

- Determine why TMS9929 VRAM content resets to $FF over a period of time,
only for tiles in the pattern generator that are not accessed. (currently
being displayed)

8.) Assistance Needed

- Is there any information about how the cassette and printer interfaces
work? Does any software support either one (Basic maybe), or are
there any cassette images available?

- I'm looking for datasheets for the MCM4517P15, TMS4027, TMS4108, TMS4116,
TMS4416, MB81416 DRAMs, as well as schematics for any hardware that uses
a TMS9918 or related video chip with only 4K of video RAM.

- I'd be interested in knowing what kind of hardware is inside a Terebi
Oekeki or Rozetta no Shouzou cartridge (chip part numbers, etc.)

- Could anyone tell me what parts are in a SF-7000? If it implements it's
main memory with two 64Kx4 DRAMs, would somebody be willing to trace out
the connections to the cartridge port, for comparison with the way DRAMs
are managed in the Basic Level III A cartridge?

9.) Credits and acknowledgements

- Omar Cornut for MEKA, the cartridge and A/V pinouts, Terebi Oekaki
information, and a lot of advice. :)

- Marc Le Dourain for his great SF-7000 webpage. This is where I got
information about the 8255 PPI and keyboard.

- Chris MacDonald for support and program testing.

Sean Young for the TMS9918 documentation.

10.) Disclaimer

If you use any information from this document, please credit me
(Charles MacDonald) and optionally provide a link to my webpage
(http://cgfm2.emuviews.com/) so interested parties can access it.

The credit text should be present in the accompanying documentation of
whatever project which used the information, or even in the program

itself (e.g. an about box)

Regarding distribution, you cannot put this document on another
website, nor link directly to it.

Unpublished work Copyright 2002-2004 Charles MacDonald

