NWew/Srain

BEGINNERS GUIDE

BEGINNERS GUIDE

SECTIONS

1. Getting started
2. Loading a program from tape and running it
3. Starting programming
4, Interaction
5. Loops
6. Organisation and presentation
7. Saving programs on tape. Inspection of
programs
8. Graphics characters and screen
9. Editing
10. Strings
11. String handling
12. String handling to solve a problem
13. Arrays (1)
14. Arrays (2)
15. Graphics (1)
16. Graphics (2)
17. Data
18. RND, INT, etc.
19. Data files on tape
20. Extras and expansions
ERROR MESSAGES

INDEX TO INFORMATION PANELS

18
26
34
39

48
54
62
64
69
73
81
88
95
101
108
110
114
120

124

130

[SECTION 1-GETTING STARTED j

The aimofthis Guide is to enable you to learnin a practical way by
doing things. So we are starting with some straightforward,
practical information and advice on how to set up your
NewBrain system. '

YOU NEED

— your NewBrain microcomputer, power supply
and leads:

— a television set, or a video monitor;

— a cassette recorder, preferably one with a remote
microphone control socket (usually labelled REM);

— cassette tapes: — the one supplied with this Guide;
— a blank cassette of good quality.

TELEVISION SET OR VIDEO MONITOR

You can use either a domestic television set or a video monitor
with the NewBrain. You can even use both together, although
this may cause some loss of picture quality. Leads are
available for both, and the connections on the back of your
NewBrain are labelled: — UHF for television set;

— MONITOR for video monitor.

CASSETTE RECORDER

To use the Beginner's Guide effectively you need a cassette
recorder. It is, of course, possible to use the NewBrain without
one, but if you write programs of any length you will soon find
that you want to save them for future use, and the cassette
recorder provides an easy and cheap way of doing this.

You should, if at all possible, choose a good quality portable
cassette recorder with a remote microphone control socket.
(This is the small socket usually located beside the
microphone input socket and usually labelled ‘REM’.) You will

5

then be able to control the recorder from the computer
keyboard. However, the remote control socket is not absolutely

essential, and instructions are given in the Guide for recorders
not so fitted.

The Cassette Recorder Lead

0 Grey Plug-m
Earphone Sockeat

(D
{Large)
Microphone Socket
O
Black Plug-m»-
(Small)
Remote Conirol Socket

CASSETTE TAPES

These should be ferric cassettes, C60 or shorter, of high quality
manufacture. It is well worth paying a little more for your
casseties to avoid unnecessary frustration.

PANEL 1-CONNECTING UP

FRINTER TAPE 2
MONITOR

First connect everything up, but do not switch on yet. When switching on, either

1. switch everything on at once, i.e. at the mains, with the television set already
switched to ON.

or

2. make sure the computer is switched on last. The reason for this is that any
surge of current caused by switching may affect the computer.

Having switched on, wait for about 10 seconds. (If you have the AD model, the
built-in visual display will flicker, then blank.) Adjust the television set's tuning to
about channel 36, and you should see this:

NEWBRAIN BASIC
READY
o

IF YOU GET NO SCREEN MESSAGE
CHECK ALL CONNECTIONS
AND TRY AGAIN

\. _/

SECTION 2—-LOADING A PROGRAM FROM TAPE
AND RUNNING IT

Load, program, run — all are common enough words, but in
computing each has a special and quite precise meaning.

PROGRAM

This is a set of instructions for a computer to follow. In a sense
it is a plan of action to solve a problem, but the plan
incorporated in a program is completely inflexible. Once the
program is in the computer and you tell the computer to
implement it, the computer will do exactly what the program
says, no matter how absurd the result may be. The computeris
fast, precise and obedient, but it has no judgement — that's for
you to provide!

Programs can be put into the computer in two ways: you can
type them in on the keyboard; or you can load them from
cassette tape. Once a program is held in the computer, you can
change itas much as you like, using the keyboard.

LOAD

When we say that programs are “put into the computer” once
again we mean something quite precise. To understand this
you need to have a general idea of how your computer system
is made up.

INPUT KEYBOARD TAPE

¥ '
ROM MICROPROCESSOR [—| RAM
(READ ONLY MEMORY) (RANDOM ACCESS MEMORY)
b .— |
Conlains permanent E:ﬁfnsk::g.. This is a “read and
instructions for BASIC : write memony” into
PROCESSING | | janguage and The microprocessor which programs can

operations. Conlants in your NewBrain be loaded {o be

ol ROM are not aflected is a Z80A, interpreted by the programs

by switching off, in ROM and used by the
microprocessor.

Switching olf deslroys
the contents of RAM.

ouTPUT
TELEVISION SET
OR
{| VIDEO MONITOR

The easiest way of thinking of all this is in terms of input,
processing and output. Input to the NewBrain is by keyboard
or tape. Output is to a television set or a video monitor, or both
together. (You can also output to a printer).

At the heart of the processing is the Z80A microprocessor, but
this works at so primitive a level that most of us never even
notice it. For most of us, the language of microcomputers is
BASIC, which is a high-level language containing many words
and commands that closely resemble normal English, although
it has a grammar of its own. :

The computer, therefore, must interpret between the low level
microprocessor language and the high level BASIC.

The programs which do this interpretation are held in ROM
devices, as shown in the diagram. In fact all the programs
associated with the management of the computer's working are
held in this way. ROM devices are not affected by switching the
computer on and off, and the programs permanently stored in
them save you, the user, a great deal of time and effort.

RAM devices are the opposite of ROM in one respect: if you
switch off you lose whatever was stored in them at the time.
What normally is stored in them is a program which you have
put there for the computer to use. The NewBrain has 32K of
RAM fitted as standard, and only a little of this has to be used
in the computer’s internal management, so lengthy programs
can be entered and used. If later you find you need more RAM,
more can be added, up to 2 megabytes.*

Loading from tape, therefore, means taking a program from
- tape and putting it into RAM.

RUN

This is a command in BASIC which tells the computer to start
using the program.

ACTION

Enough of these explanations! It is time to LOAD a PROGRAM
and RUN it.

1. Connect up the computer as in Panel 1.
2. Place the cassette in the tape recorder.

We are going to ask the computer to search the tape, find the
first program in it, tell us what that program is called, load the
program, and run it.

3. Set the volume control of the tape recorder to maximum.
If your recorder is so loud it distorts, you may have to turn the
volume down later, but it is best to start with it high.

If you have a tone control, set it mid-way for the first attempt.

4. Type load and press NEW LINE

(If you typed loafinstead, or made a similar mistake, just press

*The size of RAM is measured by its storage capacity in terms of bytes. A byte
is 8 bits, and a bit is the smallest unit recognised by computers. To give an
idea of scale, a single letter or digit is equivalent to a byte. Memory sizes are
expressed in terms of 'K’ (for thousand) or 'M’ {for mega or million) bytes.

10

NEW LINEjanyway. The computer will probably reply with
ERROR 55 which means “keyword misspelt”. Then try again.

5. Wind back the cassette, if it is not already wound back.
6. Press PLAY on the cassette recorder.

7. THIS IS WHAT SHOULD HAPPEN NOW
a) The cursor disappears (see below).

b) After a few seconds, the name of the first program appears,
which in this case is “NIM”.

c) The screen flickers as the tape runs. Sometimes the tape
recorder stops and starts again, but do not do anything until
the cursor reappears.

d) Finally there is a pause of a few seconds while nothing
happens; then the cursor reappears and the program is ready
to run.

The whole process takes about 40 seconds.

IF YOUR CASSETTE PLAYER HAS A‘REM’' CONTROL

— the tape stops automatically.

IF NOT — STOP THE TAPE YOURSELF by pressing STOP on
the recorder.

After that your screen should look like this (assuming you have
made one mistake).

NEWBRAIN BASIC
READY
loaf
ERROR 55
load
NIM
||

THIS IS
THE -
CURSOR

IF ALL THIS HAS HAPPENED,GOONTO 9

8. PROBLEMS

a) Does the screen show ERROR 130 or something similar? If
you have a tone control,advance it to maximum and try again. Re-

11

checkthatallleads are properly connected and controls properly
set. If you continue to have loading problems, suspect a fault —
the NewBrain should load very easily. Try borrowing another
cassette recorder to check on your own — quality is important
here.

b) Does nothing seem to be happening at all?

STOP THE LOADING PROCESS BY PRESSING *

The program should load in about 40 seconds, even allowing for
the leader tape at the start of the cassette. Check the volume
control — is it too low? Use an ear-piece to check that you are
getting some output from the ear-piece socket. Try varying the
tone control between middle and maximum treble.

9. YOU ARE NOW READY TO RUN THE PROGRAM.

Press stop on the tape recorder to relieve pressure on the pinch
roller.

Type run and press [NEW LINE]

The program is aversion of the well-known mathematical game of
NIM. Those who have met it before know that it is rather too
predictable to be much of a game, but for us that is a virtue: we
shall use it to understand programming. Notice the way in which
the program is controlled through the keyboard.

Play it over a few times, to give you a feel for the NewBrain. If you
should stop the program by mistake, there is no need to load it
again: justtype run and press [NEW LIN

NOTE: the NIM program uses black text on a white background,

so you may find you have to adjust the contrast and brilliance on
your television set.

12

13

PANEL 2-LOADING FROM TAPE

2. Place cassette in recorder
Set volume to maximum
Set tone to midway

3. Type load “program name” and press [NEW LINE]

4. Wind back the cassette, if it is not already wound back.

5. Press PLAY on'the cassette recorder ssesressssssesscssesncancnnns

6. Wait for the cursor to return. When it does, the program igseess«eefe
loaded.

IF YOUR RECORDER HAS A REMOTE CONTROL SOCKET
the tape stops automatically.

IF NOT — stop the tape yourself by pressing STOP on the
recorder.

7. Type run and press [NEW LINE] to start the program working.

LOADING ERRORS
If you get error messages and the program has not loaded, the
most likely reason is that the volume control on your recorder is

set wrongly. Experiment a little, but make sure you use a good
cassette recorder.

NOTE: to stop the tape from the keyboard, press *

1. Connect up as in Panel 1: SWITCH ON #eererseeeeccreeccccs TTTEY XX

[

.

X

PANEL 2 -CONTINUED

-*ON MODEL AD THE BUILT-IN LINE DISPLAY FLICKERS

IFYOU DON'T SEE THIS

— your television set may not be adjusted properly;
— the leads may not be plugged in correctly.

NEWBRAIN BASIC

}--+++ Recorder withREM control. The tape may twitch a little when you

press PLAY but it should not move forward until you type load.
If it does, check Jeads and recorder; wind back and try again.

soeee WHAT SHOULD HAPPEN ON LOADING

a) Cursor disappears.

b) Name of first program appears.

c) Screen flickers as tape runs. Tape stops.

d) When program is loaded, cursor re-appears.

NEWBRAIN BASIC

TYPING ERRORS
If youtype words such as |oad or run incorrectly, just press

NEWLINE]l You will get ERROR 55 or ERROR 26 on the
screen, which means that the computer does not recognise
your instructions. Then type the word correctly.

From now on we shall go into programming, proceeding by
relatively easy stages.

Atthis point, many people have a secret worry that some mistake

of theirs will do untold harm to their new computer. So we would
like to give you the following assurance.

NOTHING YOU TYPE ON THE KEYBOARD CAN EVER
DAMAGE YOUR NEWBRAIN MICROCOMPUTER.

16

(mman)

The NewBrain keyboard is laid out in much the same way as a
typewriter keyboard, with a few extra keys for computer
functions.

Just pressing keys A to Z normally gives you lower-case (small)
letters; and pressing the[SHIFT] key with the letters gives upper
case (capitals).

SHIFT LOCK — i.e. switching the keys to capitals only — is
achieved by holding down[CONTROL}and pressing(il. To
switch back to normal, hold down[CONTROL]and press[0]
(zero).

oaEsBE0EDONDEEB
GNENEDDODEOEBD
S0 EODDODEBD
NEOBUODDEEEEE
CEHCONEEENEDDBD

BACK SPACE — to correct typing errors on the same line:
EITHER 1. Press[d and type over the same space correctly; or
2. Hold down and press[« to wipe out what
you have just typed.

Having assembled the system, loaded a program from tape,
and run it, we are now in a position to go into how programs
work.

17

[SECTION 3-STARTING PROGRAMMING j

First run the NIM program until the computer asks you if you
want another game. Type N for ‘NO' and press iﬁﬂ_ﬂ% The
computer replies Goodbye! and the program comes to an
end.

When this happens, the computer is “out of the program”, i.e.
the program is no longer in control of what the computer does,
so you can take over and tell it to do other things. To start with
something simple, let's look at that part of the program which
places the word “Goodbye!” on the screen.

To do this, type list 590 and press [NEW LINE]

(If you type it wrongly, just do it again.)
The screen shows you

590 PRINT "Goodbye!”

PRINT is a word in the BASIC language, and it means “put
whatever comes after this instruction on to the screen”. The
figure 590 is a line number: every statement in a program has a
line number so that the computer can find its way through in
the right order. (In BASIC, every instruction to the computer is
called a statement.)

You can try out the PRINT command for yourself without using
program line numbers.

Type print“Hello” and press INEW LINE

The rule is that you have to enclose the item you want on the
screen in inverted commas, but the inverted commas do not
appear when the item is displayed. Try a few more of your own.

Now try this.
Typex =25 and press INEW LINE

Type printx and press NEW LINE

This time there are no inverted commas, because we do not
want the computer to print /iterally what follows the command.
We want it to print the value of the VARIABLE ‘x’. We have
already told the computer what the value is, and as you can see
from the screen the computer has remembered it.

18

Type printx * 5 and press [NEW LINE

The resultis 125, because * means ‘multiply’.
Try a few more, using +, — and / which means ‘divide’.

You can even define another variable 'y’ as well and multiply

the two together, or mingle it with x into a complex formula.
Provided you first tell the computer what the value is, it can

work out the answer. If you ask it to print the value of a variable
you have not defined, it assumes that value is zero. (Note that
zero on computer screens is always ‘@, not ‘O’ which is a letter.
So when you are typing, remember to type @ if you mean the
number, and 1 (one) if you mean number 1. The computer cannot
imagine that when you type lower case letter “I” and capital “O”
you really mean number 10.)

CLEARING THE SCREEN

By now you must have a lot of unwanted material all over the
screen. To clear it all, hold down [SHIFT] and press [HOME].

ALTERING A PROGRAM

We said earlier that it is possible not only to write a program
through the keyboard, but to alter it as well. A simple piece of
editing would be to change that “Goodbye!” at the end of the
NIM program into something else.

Type list 590 [NL](From now on we shall use[NL]to mean
[NEW LINH)

The computer replies
590 PRINT “Goodbye!”

Note that although you have been typing “print”, the computer
lists it as “PRINT". In fact, the computer is equally happy with
either, as it is with “Print” or even “pRiNt”

The simplest way to change a line in a program is to type
another one with the same number. Suppose you type:
590 print “Goodbye — sucker!”

(_If %ou make a mistake in typing it, you can just press[NEW
LINEland do it again))

Type list 590 NLito check that you have got it right. Then run
19

the program again and see your new version displayed on the
screen at the end.

WRITING A PROGRAM

Itis never too early to start writing programs. Many programs
are long and complex because we want computers to do
difficult jobs for us, but in principle a program can be very
simple.

Suppose we write a program for the very simple task of doubling
numbers: producing an endless series of numbers,each ofwhich
is double the one before.

First we have to get rid of the program that is in the RAM now.
Type new This clears the RAM.

To check that the program is gone, type list or run NLJ. Now
enter the new program. Type each line separately, pressing NEW
LINE after each. (Yes, that's why it is called NEW LINE).

Again, if you make mistakes, just re-type the line. When you have
finished, type list [NL] to check your work.

The program

10 a = 1
20 b * 2
30 PR b
a
T

'II!—JIT

40

a
NT
b
50 GOTO 20

What it means
Set the value of a to 1 (line 10)

——= Multiply a by 2
and call the answer b (line 20)

|

Display b ({line 30)

}

Make a equal to b (line 40}

I_‘Doit o __l

all again (line 50)

20

The only new word in the programming is goto — which means
simply “go to” and the number 20 means line 20. This is the main
job of line numbers: to direct the computer to which command it
should work on next. Incidentally, programmers usually start by
writing their line numbers in tens because that leaves plenty of

lines to spare for subsequent additions.

Now run the program. If it does notwork and all you getis an error
message ornoresult, list your program and check itvery carefully
to find your mistake.

What should happen is that the screen should be filled with
numbers progressing upward, rapidly passing out of the
computer’'s range for ordinary numbers and appearing after
that in "scientific notation”.

TO STOP A PROGRAM

Press the STOP key. The screen will tell you what line the
computer was on when the program stopped.

A BIT MORE LOGIC

The program above does the job specified, but it is not the
shortest and most economical that could be written to do that
job. The BASIC language allows you not only to set the value of
a variable, but to revise it as often as you like. So it is possible
to write

10 a = 1
20 a = a x 2 (i.e.a = (old) a times 2)
30 PRINT a

so the new value of a is equal to the old value multiplied by 2

How would you finish the program after that? Have a try and
see what happens when you run the result.

EXERCISE

Design a program to print on the screen a series of squares of
numbers starting at 1. For example, 1 squared equals 1; 2
squared equals 4; 3 squared equals 9; 4 squared equals 16.
So your series would begin1 4 9 16 25 36 49 64 81 ...
The answer is on the next page.

21

ANSWER

10 a =1
20 b = a * a
30 PRINT b
40 a = a + 1
50 GOTO 20

SCREEN IMAGES

You probably noticed that when you switch on you get white
characters on a dark background, yet the NIM program uses
black on white. In fact you can select WhICh set of characters
you like from the keyboard.

1. Press [CONTROL|and hold it down while you press
This gives you control over the character sets. Then . ..

2. Forblack on white — press [C]
For white on black — press [B]

As you do this, you can take the opportunity to adjust your

television set or monitor to display both white on black and
black on white to best advantage.

22

PANEL 3—STARTING

PROGRAMMING

To clear the screen press [SHIFT]/ [HOMEJ(.e.
hold down SHIFTland
press [HOME])

To clear a program from memory new [NU([NL}= [NEW LINE))

To start a program run

To stop a program running press

To examine a program list [NL] (lists the whole
program)
list (line number) [NLlists
that line)

list (line no. — line no) [NL]
(lists that block of lines)
e.g list10-100 [NLJ

For black on white characters [CONTROLI/WI (i.e. hold
down [CONTRO[Jand

%ess W])
For white on black characters CONTROL)/ W]

Error messages: ERROR 55 = “keyword misspelt”
ERROR 26 = “keyword begins with
something other than a letter”
(e.g.* print)

BASIC STATEMENTS

PRINT = display whatever follows this statement
— to display literally what follows, use inverted
commas (PRINT “ONE")
~ to display the value of a variable, use the variable
name (PRINT a)
GOTO = go to: continue program execution at the line
specified.

PANEL 3-CONTINUED

VARIABLES

Numeric variables work in much the same way as in algebra:
the symbol stands for a quantity which may change according
to variations in other quantities.
To set a value to a variable: just say what it equals
eg. a=z a=b+5
A variable's value can be changed by adding to it. For example
a=a+ 5 means (new)a = (old) a plus five

TO CHANGE A PROGRAM LINE

Type the line again correctly, with the same number. The old
- - line will be replaced automatically by the new one.

[SECTION 4-INTERACTION J

Getting the computer to display long series of numbers all by
itself is good for showing its capability, but for best effect
computers and people should work together.

The program below displays the fifth power of any number you
enter.* It uses variables, as before, but this time instead of
setting the value of the variable, the program asks the user to
set it. Like this:

10 INPUT a
20 b = a5
30 PRINT b
40 GOTO 10

Type the program into the computer. Notice the special
computer sign (1} in line 20 for “to the power of” — you will find it
sharing a key with the plus sign. Notice particularly the BASIC
word INPUT. This causes the computer to place a question
mark on the screen and to wait until you type a number and
press NEW LINE. The number you type then becomes the
value of a.

ERROR MESSAGES

When you try out this program, you will find that if you make a
mistake and input a letter instead of a number, you get the
message:

ERROR 30 at10
?

ERROR 30 means simply an error on input, and the 10 is line
10. The question mark means that the computer is still at line
10 and is asking you to try again.

*|f this is too much of a strain on your mathematical ability, the “fifth power” of 2
means 2x2x2x2x2, which equals 32. But don't let it worry you — this is the most
complex mathematical idea in the whole Beginner's Guide!

26

Run the program and try it out. |f you try often enough you will
soon notice that if you enter numbers above 39 the answer is
given in scientific notation (e.g. If you input 40 the answer is
1.024E+08). This is because the NewBrain, like most
computers, sets a limit on the range of numbers it will display in
conventional notation. The NewBrain's usual limit is 99 999 999.

Suppose we decide that we will not accept answers in
scientific notation: we will refuse all calculations that give an
answer over 99 999 999. We now have to introduce a condition
into the program — “if the answer is over 99 999 999 then do
not display it".

One way of doing this is shown below:

10 INPUT a

20 b = a*5

25 IF b>99999999 THEN GOTO 50
30 PRINT b

40 GOTO 10

50 END

Study line 25 carefully: it contains one of the most useful and
powerful constructions in BASIC. It means that if b is more than
(>) 99 999 999 then the execution of the program should go on
to line 50. BASIC allows you to write this line in several different
ways, according to taste:

25 1F b > 99999999 GOTO 50
25 1F b > 99999999 THEN 50

All work equally well.

If you run the program as it stands, you will notice a
disadvantage. With numbers up to 39 all goes well and the
program returns to the beginning each time. With higher
numbers, it just stops, and you have to type RUN to start it off
again.

(To stop the program, hold down [STOPland press [NEW LINE])
EXERCISE

Change the program so that the computer displays a message
to tell the user that his number is too large, whenever the result
is over 99 999 999, and then returns to the beginning and asks
for another input.

THE ANSWER IS ON THE NEXT PAGE

27

ANSWER

10 INPUT a

20 b = at5

25 IF b>99999999 THEN GOTO 50

30 PRINT b

40 GOTO 10

50 PRINT "Your number is too large."
60 GOTO 10

Having got one piece of useful information onto the screen,
how about some more, to make the program really “user
friendly”?

EXERCISE

Alter the program to make it

— ask for a number;
— tell the user that he is being given the fifth power of that
number.

Do not forget that you can add new lines in between those
already there, and that you can replace lines by merely typing
another line with the same number.

THE ANSWER IS ON THE NEXT PAGE

28

ANSWER — something like this:

5 PRINT "Type a number and press NEW LINE"
10 INPUT a

20 b = a*5s

25 IF b>99999999 THEN GOTO 50

28 PRINT "The fifth power of the number is"
30 PRINT b

40 GOTO 5

50 PRINT "Your number is too large."

60 GOTO 5

For a smoother version of the program, load from the tape a
program called “FIVE”. Remember to type

load “FIVE”
NOT “Five” or “five”. With names of programs this matters.*

Run the program and see how much clearer it is for the user. This
is what is meant by “user friendly”. The program is set out below.

10 PRINT: PRINT "Type a number"
20 PRINT: PRINT "and press NEW LINE"

30 INPUT a]
SEMI-COLON: IT MEANS “DO NOT GO

= 40 PUT 31 ONTO ANOTHER LINE"
50 b = a5 /

60 PRINT "You entered';a

70 IF b > 99999999 THEN GOTO 100

80 PRINT "The fifth power of this is";b

90 GOTO 110

100 PRINT "That is too large for this program"
110 PRINT: PRINT: PRINT: GOTO 10

T_PRINTaI.one |
means a blank THE COLON ALLOWS YOU TO PUT MORE THAN

line ONE STATEMENT ON A LINE

THIS CLEARS
THE SCREEN

*Sincethe last program loops round itself, you may have difficulty getting outof it.
There are two methods.

1. Swilch off the computer or remove and replace the lead from the power unit.
This destroys the program.

2. Hold down STOP and press NEW LINE. This gets you out of the program |
without destroying it.

29

Finally, in this section, let's turn to something lighter. By now you
will have realised that your NewBrain has a full set of upper and
lower case characters as well as many numbers and signs. Here
is a program that lets you have a look at them.

10 x = 31

20 PRINT CHR$(x);

30 x =x +1

40 IF x < 256 THEN 20
50 END

What is happening is that the program is asking for each
character by number. Up to character number 127 the
NewBrain character numbers follow the ASCII Code (American
Standard Code for Information Interchange). Numbers 128 to
255 are special codes for graphics characters.

Type it in (carefully!l) and run it. You may be surprised to notice
that the program starts with x = 31, i.e. we do not make it ask for
characters 0 to 30.

Can you guess the reason for this?

The best way to check on this is to print the characters’
numbers beside them. We could also take the opportunity to
improve the layout. Type

20 PRINT x; chr$(x),

Note the semi-colen. Note the comma. This

This puts the characler's makes a dramatic difference
number (x) beside the to the layout, as you will
characler. see when you run the program.

When you use a comma in a print statement you are in effect
dividing the screen into four columns.

Try this for yourself,

PRINT “ONE” [NL] puts the word ONE at the left margin,
butPRINT,,“ONE" [NL]puts it half-way across.

With each comma you add you push the statement a set
distance further across the screen. It helps if you imagine that
the use of commas divides the screen into four invisible
columns, each 10 characters wide. This can be very useful in
setting out tables. (Incidentally, giving the computer separate
commands from the keyboard like this, with no line numbers,
does not affect the program in the computer in any way.)

30

If you run the program with the new line in it you will notice that
the display begins with character 32 (which turns out to be a
space). Where is character 317

In fact CHR$(31) is not a character but another form of the
“clear the screen” command we have used already in the form
PUT 31. So when x starts at 31 it simply clears the screen, after
which the other characters appear.

Characters up to and including 31 are what are termed control
characters. They are means of controlling the screen rather than
normal characters, and most of them cause no images to appear
on the screen.

31

PANEL 4-MORE BASIC

SCREEN LAYOUT

BASIC COMMANDS

INPUT Use it in the form: INPUT variable name (e.g.
INPUT x)
Places a question mark on the screen. Program
execution stops until a number key is pressed
followed by NEW LINE.

You can stop the question mark appearing by
using the form INPUT (™) x

IF.. THEN — For example, IF x=10 THEN 1010 (where 1010
is a line number)
THEN may be replaced by GOTO or THEN
GOTO.

The line number may be replaced by an
instruction, such as END or by a statement such
asy=3.(IFx=10THEN y= 3)

: (colon) May be used to divide several statements on the
same line.

SCREEN LAYOUT
PUT 31 clears the screen

PRINT CHR$(X) where X is the ASCI| or code number:
places the character whose number is
quoted onto the screen, unless the
number refers to a control character.

PRINT (by itself) prints nothing — i.e. leaves a blank line

; (semi-colon) inhibits NEW LINE. (NEW LINE is
assumed after each print statement, i.e.
the cursor moves down a line. This can
be prevented by placing a semi-colon at
the end of the statement.)

PANEL 4-CONTINUED

, (comma) Moves the cursor to the next column to
the right, or if the end of the line is
reached onto the next line. This is a
formatting aid: imagine the screen
divided invisibly into 4 equal columns of
10 spaces each. Using a comma at the
end of a statement moves the cursor (and
hence the next item printed onto the
screen) on to the next column.

CONTROL CHARACTERS

These are c'haracters which éontrol such things as clearing the
screen (31), clearing a line (30), or moving the cursor up (11) or

down (10). Most cannot be seen as actual characters on the
screen.

ESCAPING FROM A PROGRAM WHILE INPUT IS
OPERATING

Hold down and press

C SECTION 5-LOOPS |]

Think for a moment how you would design a program to input
twelve numbers and work out their average, using the methods
so far described in this Guide. (If you think you can actually
program it — have a go!)

When you have thought about it, load the program calied
“Average” from the tape. (Type load “Average” [NLI— making
sure you type the title exactly as it appears here.)

10 PUT 31 :
20 PRINT "This program works out the average"
30 PRINT "of twelve numbers.”,,,,,,.-_Commastuprovide

40 x =12 =10 1% lines spacing
50 PRINT "Enter number';x;"and press NEW LINE"
60 INPUT vy .

70 z=7z+y: x=x+1

80 PUT 31

90 IF x < 13 THEN, GOTO 50
100 PRINT "Average of the 12 numbers 15”;2(12
110 END

Line 50 may be puzzling. Run the program and look at what
happens. The semi-colon allows us to print the two pieces of
text with the variable value in the middle, dll on the same line.
The point is that at the end of each PRINT statement the
computer assumes a NEW LINE signal and moves onto a new
line, unless the program tells it not to by inserting a semi-colon.
(Numbers, incidentally, are always printed with a space or a
minus sign before them, and a space after them)

The program structure is a loop. Line 90 sends the computer
round again until all 12 numbers have been entered.
Note how the result is given in line 100.

In this case the loop is managed by the IF ... THEN statement,
combined with GOTO, but there is another, usually more
convenient way of designing loops. This is the FOR ... NEXT
statement.

To see this in action, load “Average 2" from the tape. Run it and

34

you will see that its effect is identical with that of the original
version.

10 PUT 31

20 PRINT "This program works out the average"

30 PRINT "of twelve numbers.",,,,,,

40 z =0

50 FOR x=1 TO 12

60 PRINT "Enter number';x;"and press NEW LINE"
70 INPUT vy '

a0 z=2z+y

90 PUT 31

100 NEXT x

110 PRINT "Average of the 12 numbers is'";z/12
120 END

FOR ... NEXT loops work like this.

The FOR statement tells the computer how many times to go
round the loop.

The NEXT statement tells the computer where the loop ends.
The instructions within the loop are carried out each time the
loop is processed.

Once you get used to this method of constructing loops you
will find it easy to recognise in a program, especially where
there are loops within loops, and easy to construct too.

The variable x behaves just like any other variable, so we can
print its value on line 60.

WARNING

=10 FORx=11to 10 10 FORx=11t010
20 20
30 30
40 FORy=10to 15 40 FORy=10to 15

|: 50 54

60 NEXTy 60 NEXT x
70 70

L— 80 NEXT x 80 NEXTy
This is correct. In fact you This will not work. Crossing
may “nest” any number of loops is bad logic and the

loops, up to the limit of the computer will not accept it.
computer's memory.

35

One common use of loops in a program is for timing. You have
experienced one already in the NIM program, on lines 1200 to
1230.

1200 REM delay Lloop
1210 FOR z = 1 TO 600
1220 NEXT z

1230 RETURN

In NIM it was needed because otherwise everything would
happen so quickly the game would become confusing.

Try altering the value (5000) 10 PRINT “ONE"

in this program (or in the NIM 20 FORI=1 105000
program if you prefer) to see 30 NEXTI

the effect different values have 40 PRINT “TWO”

on the delay time. 50 END

FOR ... NEXT loops may be varied at will. Instead of counting
in ones, they can count in any interval you like including
decimals. For example

20 FOR 1=1TO 5000 STEP 10

will count in steps of 10. They can even count downwards, but if
you do that you must not forget the STEP:

20 FOR I = 5000 TO 2000 STEP -5

36

The following program is called “Zig-zag". You will find it on the
tape under that name, and it provides an interesting illustration
of nested loops. The figures in brackets after the CHR$ are
codes for graphics characters. We shall deal with them later.

10 REM Zig-zag
20 PUT 23,67

> 30 FOR z=1 T0 10
— 40 FOR x=0 TO 11
50 FOR a=1 TO x+13
|: 60 PRINT CHR$(146);
70 NEXT a
80 PRINT CHR$(255);
90 FOR a=x+15 TO 40
{: 100 PRINT CHR$(146);
110 NEXT a
—— 120 NEXT x
— 130 FOR x=10 TO 1 STEP -1
™ 140 FOR a=1 TO x+13
150 PRINT CHR$(146);
— 160 NEXT a
170 PRINT CHR$(255);
~ 180 FOR a=x+15 TO 40
190 PRINT CHR$(146);
— 200 NEXT a
— 210 NEXT x
220 NEXT z
230 END

Line 10 shows the programmer’s friend: the REM statement.
Anything with REM (= reminder) in front of it has no effect on
the program, so you can write explanatory comments all over
your programs if you wish to show how they work. This may
seem totally unnecessary to you at this stage, but it is amazing
how a program which sparkles with clarity and logic on the day
you write it becomes as perverse and obscure as anybody
else’s program three weeks later.

You may be curious about line 20. This is a special code that
sets up an alternative character set to provide the graphics
characters used in the program (characters 146 and 255). We
shall go into all that later.

37

PANEL 5-LOOPS

FOR ... NEXT

COUNTING UPWARD (an ALWAYS NEST LOOPS
interval of 1 is assumed
unless you state otherwise) NEVER CROSS THEM
10FOR1=31t018
20 —10FORI=1to10
30 20—
30—
100 NEXT | 40FORX=11t03
- 50—
COUNTING UPWARD - 60 NEXT X
STEPPED 70 —
10 FORI1=110100 ——80 NEXT |
STEP 20
0
30
100 NEXT | Any number of FOR ...
NEXT loops may be nested,
COUNTING DOWNWARD up to the limit of the
with minus STEP computer's memory.
1QFOR 1= 300to 1
20 STEP-3
30
100 NEXT |

If the loop steps in integers (whole numbers, not decimals), the
value of the variable (| above, for example) AFTER the loop is
finished is always one step more than the limit indicated in the
FOR statement.

For example, after FORI=11t010 NEXT |, the value will
be 11 -

REM STATEMENTS

Anything typed on a program line after the word REM is
disregarded by the program. Note, however, that REM
statements occupy memory space, just like any other program

line.
% ine)

[SEGTION 6—-O0RGANISATION AND I’RESENTATIOQ

Did you notice anything strange about the Zig-zag program in
the last section? Look at lines 50 — 110 and compare them with
lines 140 — 200. Of course, they are the same. Before you
conclude that programming must be a very boring business,
you should know that there are ways of avoiding the boredom
of programming things twice — to say nothing of the risk of
getting it wrong the second time.

One of the most useful techniques in programming is designed
to do this: itis the GOSUB RETURN. It works like this:

MAIN PROGRAM

10 —
20 — SUB ROUTINE

20 GOSUB 1000 e 1000

40 ——
50 —— __~""1010

_ 1020
O GOSUB 1000 1030
80 10007 1040 RETURN

90 ——
100 —

GOSUB means “go to subroutine”. GOSUB 1000 means “go

to the subroutine starting at line 1000". If you put any sequence
that has to be repeated into a subroutine, you can use it as
often as you like at any point in the program. It does not matter
in the least where in the program you locate your subroutine.

In large programs, the main virtue of subroutines is to make the
program easier to understand. If you set out the main building
blocks of your program as routines to be called into action
when you need them, it is much easier to think out what the
program as a whole is doing.

At the end of a subroutine you place the word RETURN.
RETURN has a quite precise meaning: RETURN TO THE
STATEMENT AFTER THE GOSUB WHICH SENT THE
COMPUTER TO THIS SUBROUTINE.

39

Note that word statement: if you have one statement per line in
your program (as you would be well advised to do while
learning to program), it will return to the next line. But if you
have several statements on a line, separated by colons, it will
return to the next statement on that line.

Like loops, subroutines can be “nested”; but it is justas
important not to get your logic tangled up. If the computer
encounters a RETURN without having gone through a GOSUB,
all you will get is an error message.

EXERCISE
Change the Zig-zag program into a more professional form, by
using a subroutine and cutting out the repetition.

THE ANSWER IS ON THE NEXT PAGE

40

ANSWER

10 REM Zig-zag 2
20 PUT 23,67

30 FOR z=1 TO 10
40 FOR x=0 TO 11

50 GosuB 130

60 NEXT x

70 FOR x=10 TO 1 STEP -1
80 Gosus 130

90 NEXT x

100 NEXT z

110 END

120

130 REM SUBROUTINE

140 FOR a=1 TO x+13
150 PRINT CHR$(146);
160 NEXT a

170 PRINT CHR$(255);
180 FOR a=x+15 TO 40
190 PRINT CHR$(146);
200 NEXT a

210 RETURN

GOSUB may be used quite freely. Use itin IF ... THEN
statements if you wish:
IF X=10then GOSUB 1000

If X =10 the program uses the subroutine before passing to
the next statement. If not, it passes on to the next line.

COMPUTED GOTO

Another labour-saving device is the computed GOTO, but
before we describe it you should see it in action.

Load the program on the tape called “Zodiac”. The first display
is an example of what computer people call a “menu” —i.e.a
page from which you choose the item you want.

As you run it, try to imagine how its logic works. (NO PEEPING!)
What kind of statements will be needed to run that menu?

41

You have probably concluded by now that the logic will be on
the lines of:

100 INPUT X

1101F X=1THEN 1000

120 IF X=2THEN 1500

130 IFX=3 THEN 2000and soon.

Infact,the steeringisdoneinline 220. Listlines 10—220and you
will see it all.

Line 160 asks for the number of the month. The computer
remembers this, even though line 200 is asking for something
else. Then line 220 uses the information.

10 REM Zodiac

20 OPEN#0,0: REM Switch to video alone
30 PUT 31: REM Clear the screen

40 PUT 23,87: REM Select black on white
50 PRINT: PRINT: PRINT" S I G N S 0 F
B THE " ZODIAC", psrrrrnr

60 PRINT TAB(6);"1.January"; TAB(22);

B "7, July"

70 PRINT TAB(6);"2.February"; TAB(22);
<] "8. August"”

80 PRINT TAB(6);"2.March"; TAB(22);
B "9. September"

90 PRINT TAB(6);"4.April"; TAB(22);
B "10.0ctober"

100 PRINT TAB(6);"5.May"; TAB(22);

] "11.November"

110 PRINT TAB(6);"6.June"; TAB(22);
"12.December"

120 PRINT: PRINT

130 PRINT"In which month were you born?"
140 PRINT

150 PRINT"Key number and press NEW LINE"
160 INPUT x

170 PUT 31: PRINT

180 PRINT"On what day of the month ";

| "were you born?",,,,,,,,

190 PRINT"Key number and press NEW LINE"
200 INPUT vy

210 PUT31:PRINT: PRINT " Y 0O UR

42

L] S I GN I S“rrlfrrrtr

220 ON X GOTO 230,260,290,320,350,380,41
®0,440,470,500,530,560

Line 220 means that if X = 1 the computer should go to the first
line number listed; if X = 2 then it should go to the second; and
so on. This method makes the use of menus very attractive to
the programmer, as well as easy for the user.

COMPUTED GOSUB

This works in exactly the same way as the computed GOTO.
When the GOSUB has been executed, the computer returns to
the statement after the computed GOSUB.

TAB

Whatever we do on the microcomputer, the result is usually
apparent on the screen sooner or later. Many programmers
concentrate on the logic and let the screen take care of itself,
but this is a mistake, and may well be responsible for the
feeling many people have that computers are obscure and
hard to understand.

So far we have not paid much attention to the screen, apart
from clearing it occasionally. But if you display a menu, you
have to lay it out so that people recognise it for what it is. The
TAB function is very useful here. The normal screen on your
NewBrain is 40 characters wide by 24 deep.

(_ [} \

- 40 >
24

_ -,

43

The TAB command allows you to place words on the screen at
any point along the line. For example:

PRINT TAB (6); “ONE”

places the word ONE on the next line starting at space 6. (Be
careful not to forget the semi-colon.} In the Zodiac program
there is a large collection of TAB commands to set out the
menu.

One item atthe end of the program may puzzle you. Thisisthe S §
on line 950. We shall have a good deal to say about that $ in
Section 10.

PUT 22

If TAB is useful in placing something at a precise point along a
line, PUT 22 can do even more: it can place a character wherever
you like on the screen. For example

PUT 22,10,15, “*"

placesthe *atthe 10thspacealongthelineand 15linesdown.Try
it. (Note that you do not use PRINT in this case: PUT does it for
you.)

You can also determine the pointon the screen where the reply to
aninputis to be typedin,which may be useful ifyou are asking for
information through your computer. Here is an example.

10 PUT 31: PRINT

20 PRINT "Type number here:"

30 PRINT: PRINT "and press NEW LINE"
40 PUT 22,19,2

50 INPUT ("")x

60 END

44

PANEL 6—-GOSUB,COMPUTED GOTO

AND TAB

GOSUB ... RETURN

GOSUB sends the computer to a subroutine. which may be
located anywhere in the program.

RETURN atthe end of the subroutine sends the computer back to
the next statement after the GOSUB.

COMPUTED GOTO

An example of this is

INPUT X
ON X GOTO 100,200,300,400

It replaces a series of IF.. . THEN statements of the type:

CIFX=1 THEN 100
IF_><=2 THEN 200 etc.

COMPUTED GOSUB

This works in a similar way to the computed GOTO and is even
more useful, because if you use it well you can do without a lot of
GOTOs, and program more efficiently.

100 ON X GOSUB 1000,1200,1300,1400,1500

TAB
TAB is used with printstateme_nts toplace words ata precise point

along aline. Thus
PRINT TAB(10); “ONE"

places the word ONE at the 10th space along the next line.
Caution: do not forget the semi-colon.

PANEL 6—-CONTINUED

PUT 22

To place the cursor (and hence the next characterto appear) ata
chosen point on the screen, use :

PUT 22 x,y

wherex is a pointalong the text line (1 —40) andyis the nurnber of
lines down from the top of the screen.

SECTION 7—-SAVING PROGRAMS ON TAPE.
INSPECTION OF PROGRAMS

By now you have loaded several programs from tape. You are
probably beginning to write your own, and soon you will feel the
need to record them. To save your programs on tape, do the
following.

1. Find a blank piece of tape (a blank cassette is best).
2. Make sure the cassette is wound past the leader tape.

3. (@) IF YOUR CASSETTE RECORDER HAS A REMOTE
CONTROL SOCKET
— set recorder to RECORD mode;
~—} pe save “program name” IN_Ti'(Forexample: save
“N I!)

(b) IF YOUR RECORDER DOES NOT HAVE A REMOTE

CONTROL SOCKET
— type save “program name” BUT DO NOT PRESS
NEW LINE*

~ set recorder to RECORD mode;
— press NEW LINE immediately

The screen will flicker as the tape runs. When the cursor has
returned the program should be saved.

(IF YOUR RECORDER DOES NOT HAVE REMOTE CONTROL:
press STOP on the recorder immediately, or it will continue to run
indefinitely.) '

Itis wise to check that your program has been saved correctly. Of
course, you can simply LOAD it again, but if you do that you
destroy your original program in RAM. So the NewBrain offers a
VERIFY facility.

If you are saving a long program — say a screenful or more — use the command save " 1
program name”, This will save the program more slowly than normally, but should ensure
success.

48

To verify a program
— type verify “program name” [NL]
— rewind the tape to a point before that at which the
program starts;
— press PLAY on the cassette recorder.

The computer will compare the program on the tape with the
program in its memory. |f they are the same, it will display the
message: VERIFIED. If not, it will print an error message.

VERIFY is also useful when you want to fast forward or

rewind the tape on a recorder fitted with a REM socket. Most of
these will not permit this while the REMote connector is
plugged in, and you do not want to wear the socket by
continually unplugging it.

If you type verify

the recorder is freed for fast forward and rewind. To cancel this
condition, press *.

CATALOGUE OF PROGRAMS ON TAPE

To get a list of all the programs on your cassetlte, rewind it
completely. Then ask the computer to load a program which
does not exist, for example LOAD “O”. The computer will
search the whole tape, printing out the titles it finds on the
screen.

49

INSPECTION OF PROGRAMS

It is easy enough to list a small program and inspectitas a
whole, since it will all fit onto the screen. With larger programs
this becomes tedious, since you have to ask the computer to
show you a block of lines at a time.

The NewBrain overcomes this problem by making available
not just a screenful of text at a time, but a whole “page”, which
can be very long indeed. It works like this.

i THE PAGE i

THE SCREEN

If your program is 200 lines
long, for example, you can
create a “page” of 200 lines.
The screen will only let you

T

SRR { look at 25 lines at a time, but
R you can use the screen like a
-:l":.cl-?':i.-:ff:-'-:}: window and move it up and
e down in front of the page by
R using the editing keys[}]and

To try it out, load a long program, such as NIM. (!f you choose
NIM, do not run it) Then type (very carefully)*

open #0,0, “200”

This gives you your “page” of 200 lines. Type LIST [NLland
wait for the listing to end. Then press ME] and you are back
at the start of the listing again, i.e. the screen “window” is
looking at the first block of lines on the page.

Hold down [¥]to move downwards; and[§]to move back
upwards again.

*If you type open #0[NLlby mistake, your screen will go blank and pressing
most of the keys will have no effect. To escape from this condition, press *

50

PANEL 7-SAVING AND
INSPECTING PROGRAMS

TO SAVE PROGRAMS ON CASSETTES

1. Find a blank piece of tape. (A blank cassette is best)
2. Make sure the cassette is wound past the leader tape.

3. (a)IF YOUR RECORDER HAS A REMOTE MICROPHONE
CONTROL SOCKET
— set recorder to RECORD mode;
— type SAVE “program name”

(b) IF YOUR RECORDER DOES NOT HAVE A REMOTE
MICROPHONE CONTROL SOCKET
— Type SAVE “program name” BUT DO NOT PRESS
‘NEW LINE' YET

(IF YOU ARE SAVING A LONG PROGRAM
use the command

save “*1: program name” [NL|)

— setrecorder to RECORD mode;
— press NEW LINE immediately.

The screen will flicker as the tape runs. When the cursor
returns, the program should be saved.

(If your recorder does not have remote control: STOP it running
immediately.)

TO VERIFY THE SAVING

— rewind the tape

— type verify “program name”
— set recorder to PLAY

TO FREE THE CASSETTE RECORDER FOR FAST
FORWARD AND REWIND

Type verify To cancel this condition, press *

' PANEL 7-CONTINUED

TO CATALOGUE ALL THE PROGRAMS ON THE TAPE

— type load “0" [NLJ(i.e. ask it to find a program that does
not exist)

— rewind the tape completely;

— press PLAY on the cassette recorder.

TO CREATE A “PAGE” AND INSPECTIT

— type open # 0,0,"200" |NL|(to create a 200-line page)
— list the program;

— to inspect the top block of lines, press

— to move downwards, press

— to move upwards, press

SECTION 8—GRAPHICS CHARACTERS
AND SCREEN

You must have realised by now that there is a good deal more
to the NewBrain's handling of the screen than would appear at
first glance.

When you switch on, you get large white characters on a dark
background, yet when you run the NIM program, for example,
you see black characters on white.

We mentioned earlier that you can switch from one to the other.
Black on white: press CONTROL/W followed by C
White on black: press CONTROL/W followed by B

Holding down Control and pressing W gives you control over
several possible sets of characters on the screen.

Another possibility you may not yet have discovered is the set
of Graphics Characters. Press the Graphics key, hold it down,
and press any letter from A to Z. You should now be looking at
a series of shapes. All these can be put onto the screen in
programs and used to build up diagrams and pictures.

Try it out. A statement suchas PRINT s o % Il B & &= »
will work just as well as with any other characters.

To give you an idea of some of the possibilities your NewBrain
offers, load the program called “GR" from the tape and run it.

The interesting thing about the NewBrain's characters is that it
is possible to exchange one set for another by changing the
screen itself. The Panel at the end of this Section gives the
control codes you need to do this, along with the codes to use
in a program for the same purpose.

Screen switching, clearing lines, clearing the screen and
moving the cursor can all be done by means of control
characters. We have mentioned these before. The basic idea is
of a set of characters which do not print, but cause certain
actions to be performed by the computer instead. You are

54

using a control code whenever you hold down the Control key
and press another key, or occasionally when you hold down
two other keys.

For example, the control action for clearing the screen is
SHIFT/HOME which is control character number 31. The
command PUT is used to set a control character into operation,
which is why we use PUT 31 to clear the screen in a program.

Look at line 20 of the “GR” program.
20 PUT 23,65,31

The 31 at the end clears the screen. Character 23 is in fact
CONTROL/W which is what you press to gain control of the
screen, and 65 is character A. So PUT 23,65 means
CONTROL/W followed by A — and that means switch the
screen to black on white.

One thing you may have found puzzling in the “GR" program is
the small characters on 80-character lines. This is an
alternative presentation which the NewBrain allows you to use
in your program if you wish. To get it you type (or include in a
program line)

OPEN # 0,0,"L”

This gives you a screen with 24 lines, each of 80 characters,
and you can switch from white to black backgrounds as with
the screen you are used to. “L" incidentally means “long”, i.e.
with a long line.

On some television sets, 80-column lines are difficult to read,
television sets are not specifically designed for text.

To return to the normal screen with 24 lines of 40 characters,
type
OPEN # 0,0

or OPEN #0,4

You can add “S"” (for short) to this if you wish, but there is no
need to because “S" is what is known as the “default” value —
i.e. the system assumes “S" unless you tell it otherwise. The
difference between the two instructions above is that OPEN #
0,0 gives output to the television or monitor alone, and

OPEN # 0,4 gives output to the display on the computer itself
as well.

55

PANEL 8-CHARACTERS AND

SCREENS

CHARACTER | TO OBTAIN FROM | TO USE IN
CHARACTERS | BACKGROUND SETS KEYBOARD PROGRAMS

WHITE BLACK 1 CONTROL/W and D | PUT 23,68
BLACK WHITE 1 CONTROL/W and A PUT 23,65
WHITE BLACK 2 CONTROL/W and B PUT 23,66
BLACK WHITE 2 CONTROL/W and C PUT 23,67
WHITE BLACK 3 CONTROL/Wand H| PUT23,72
BLACK WHITE 3 CONTROL/W and | PUT 23,73
WHITE BLACK 4 CONTROL/W and J PUT 23,74
BLACK WHITE 4 CONTROL/W and K | PUT 23,76

It is also possible to print on the screen in reversed letters in
blocks — as a way of emphasising the title of a program, for
example. To try it out, select Character Set 1 (see table above)
and type PUT 14: PRINT “REVERSE": PUT 15

Note: if you should ever get stuck in this mode, press

SHIFT)/ESCAPE]

MOVING THE CURSOR

PUT 11 moves the cursor up

PUT 10 moves it down

CLEARING PART OF THE SCREEN

The “GR” program clears an area at the bottom of the screen,

as follows:

180 PUT 11,11,11,11,11,11,11: REM move cursor upward

190 PUT1,1,1,1,1,1,1,1,1 :REM insert blank lines

The cursor is moved up and then nine lines are inserted, all
blank, so that the text below the cursor is pushed off the screen.

PANEL 8-CONTINUED

LONG AND SHORT LINES

OPEN # 0,0,“L” gives an 80-character line.
OPEN 4 0,0 or OPEN # 0,4 gives a 40-character line.

TO CLEAR THE SCREEN: SHIFT/HOME or PUT 31
TO CLEAR A LINE: CONTROL/HOME or PUT 30

CHARACTER SET 1

g BN Bt B Br-He-BEOOECOESH BoR ol = HmE
0 © o o oDl — o]] -]

mm -M — - ._...I- w - - 3] —= J] o —— o o 2]
LN BN i BB~ HILEZ R BB+ Mol =B B

i \ [rs] r~ L o o ici © -] - 0 @ <]

IJM.. -1 =] - e] L) - ~E= & o ol o o -] o
o Ell Banrtlisl. s H | Bin B i BLUES B H—F ol =K Ok
o = = w w P @ @] = = - o o] <+ w

- -1 - - - 1:.:”_ - -IE b +— [o™ & o o u o ol

e o =] | A = o [=] foa] o Riv] - o O p—— w = o

of ISR TR oI el o 2] o I ol < S < e Rl < el

™ o [W [~- =t P el » Kl - o TlSEB -

] =] ™~ ~ @ b - — [- B A - v
(BN~ ER G- E - Brol CHOEREOR—RHUN Bl B
G BN g B Boi B - HNEO BB ol LR HE
ool —mm SR CkalT N -l R VL] GRS - —d L &

2l T 2 = I R - T < [= O < [S S SR S L R

o 2] - © : I T B =1 - o @ - =
'1:1 1- o - 2 N 1 L 2 o 54 o & o & &
] = o o @ -0 R o o © b — B =] . @
CHEE HEE B _HoHoBoETEG B-cR- BoE ol <k

151

okt 2 g2 138 OF 2 2Mmb
" o™ etz WSS R T e 838 D2 20 8
monl el 52U RN SWEER DS MG S8 O 8
R Nl "LLUEREEL SRR J = N EY T R - E R
I "0 o PMas3= s+ oM 0 205008 —5 10255 1 2 8
B ol oMeY SMoME v TISESNZOZ =8 L INE
o cE RS 8 e M 5L 8 2 CiE -2 D5 = 8 XY NG

oMo JLWMY 8L e@eWEMIT UL, §4°3 LY X8

WHITE ON BLACK: PUT 23, 68: CONTROL/W and D

BLACK ON WHITE: PUT 23, 65: CONTROL/W and A

58

CHARACTER SET 2

L
+ L+ T4
3 -1-132 1&'} 134
r .
139 140 141 142
B~
147 -148 149 150
Ay R
155 156 157 158
p G o= @
16 16

=] r~ o o

Sed S e 2
2 S 8% 5 B
e I L= R

~Ell ON NN Sx
Rty "R

oy S 8 T 2 BT

c M ® lelw

130
s
i
146
154
3

S 20 F00 S

247
w1

254

ST I
m & l..M.."“_,.?g ciofl & =f» o
2] - o [ﬁ
mﬁ_w_.ﬁu“.n..mw.z.w

244

™ [=] -] [:=]
m.ru &.ﬂf_ M"u. o =
- o ~ wn L]
axd ol ko4 & 1S9
o @ w - o
mun_m.Hﬂ*.m“#ME
-4 = & @ by
S w __I—.-Q—U QE EE
@ © o w o
A0 sz S0 € pg Sdn

a
o
3
10
11
1)
11
|

ol o]
R L
o o - @ =
SIQ_H.—wm.OIU pat 0¥
T o 2 3 2
@ & ST e St Tam
B 5 2 5 b

U8 B Pus

i}

it

a

a b
97 a8

L

105 108

q r

1 1M

y z

252 253 255
59

251

123 124 125 126

122

WHITE ON BLACK: PUT 23, 66: CONTROL/W and B
BLACK ON WHITE: PUT 23, 67: CONTROL/W and C

121

120

CHARACTER SET 3

[X]
w e
w

— - _ _ P —
0 1 2 3 4 5 6 7 128 128 130 131 132 133 134
] -] 10 1 12 13 14 15 136 137 138 139 140 141 142
16 17 18 19 20 21 22 23 144 145 146 147 148 14% 150

- u 11 1. d |

1 IR "N

24 25 26 27 28 29 30 N 152 153 154 1558 156 157 158
& Ll 2
. ;e MO@EOE

a3z a4 35 36 a7 38 a8 160 161 162 163 184 165 166
¢ 2 X .- @ B B
40 41 42 43 A4 45 48 47 168 189 170 171 172 173 174
@1z 4 5 § H =
18 48 50 51 52 53 54 55 176 177 178 179 180 181 182

; . — :

& 9 . ; 4 o= » 7 el B A E
56 57 58 59 ;] 61 B2 63 184 185 186 187 188 189 180
= ECDEFGC OEREEENER
B4 65 66 &7 &9 70 71 192 183 194 1856 196 187 198

I J K MM o BHEE® R E

72 73 74 78 79 200 201 202 203 204 208 206
F @RS U EE N
80 81 82 83 85 a6 87 208 209 210 211 212 213 214

.\ "I

4 Z [~ 1+ _EHHUEAEBORAHEG
a8 B9 a0 a1 92 a3 a4 a5 216 217 218 219 220 22 222

1L L MENENYR

L r= - = ms Hn m

96 a7 98 99 100 101 102 103 224 225 226 227 228 229 230

o v - < Bno

P T S

104 105 106 107 108 109 110 111 232 233 234 235 236 237 238

ry £m F] Hi |

P+ oy L |k id c d mm N2

112 113 114 115 118 117 118 119 240 241 242 243 244 _2;5 246

. . "] .

o o= X 0 MO EE D

120 121 122 123 124 126 126 127 248 249 250 251 252 253 254

WHITE ON BLACK: PUT 28, 72: CONTROL/W and H

BLLACK ON WHITE: PUT 23, 73: CONTROL/W and |

60

S Kl
w (41}

-
v

o
o

o
=

3
o

w
w

o

>
©

0

ha
o
=

=]

ra
wu

ha
[
w

™
W

n
(%]
w

;00
& .

CHARACTER SET 4

STE2menéEmd™g
IR R T

5 B LEwWS
B2 S SR 3

104

-~
-

@

- g
r-

w

|
108

*

113
+

121

114

107

A

115

TN PN B

84

R

92

-
100

M“"u
108

w

116

+ + X

122

123

124

101

2
109

L

117

S8y

S F oM

= ©
m'.,-h

L

o

F

118

103

111

T
119

H%E

125

126

127

i
-~ I=]
" =

=

3
o

=
B
o

-
bt
-
~
w

= p—
o
&0

[

o
=

n
Q

N
-4

] IS
o T a

Els

d

249

130

198

146

162

=
o

-]
@

©
-

|

h
2
ra

Exl

L
(=]

T

: §

- - - o
=] 5] &
o i3 =~ o

-

1+

]
b}

(%] _.[J -
= [fe E3s

N
o

M

"
"
-

-

n
(]
o

L]

==

w

132
" 40
148
156

164

172

W
w

2

—“ - -
o -
'ﬂ‘-l_m

_. _. _.
L+-] -~ -]
2 @ o

-
w
w

i

o
=l

—
L
-
[

N
(=]
w

n
w

M
LM

i

(5]
L
o

=
-

R
bt

3

C

n
=3
wm

et

#

“F

ey
o

4_3
e 11 ™ 3%
1 2

oimg] [+
5] =" 1 @

=3
(=]

TI|
[l

na ra =
- =] [1=]
£ o =]

=

N

-, 12

n

[
]
=]

=

WHITE ON BLACK: PUT 28, 74: CONTROL/W and J

BLACK ON WHITE: PUT 23, 75: CONTROL/W and K

JdA__AA,_
o - @ I3] s w
AOEH T HNEE B UE "B

R
(=1
-

-—
!

[[*] na n
o ¢ § 3
- (5] w

na
L
w

L
£
=

265

61

[SECTION 9-EDITING j

You already know that program lines can be changed by retyping
them, i.e. typing a different line with the same number. You may
also have become accustomed to the back-space facility. In fact,
using all the editing keys

B 0 [=

can save you a lot of time and trouble when you want to change
items in a program. This is how you do it.

1. Movethe cursortotheitem you wish to alter,using the editing
keys. As you move it, the cursor changes from B to—, which
means thatthe computeris in EDITING mode. Positioning the
cursor with the editing keys does notchange anyitems on the
screen.

2. TO REPLACE LETTERS
— type the new letters over the old ones;
— pressNEW LINE]Jand the line is amended.

3. TO INSERT LETTERS

— position the cursor so that its left-hand edge is at the point
where the new letter is to be inserted,;

10 PRNT “ONE”

— press[[NSERT;

— type in the new letters, and the old ones will space
themselves out to receive the new material;

— press[NEW LINE]and the line is amended.

4. TO DELETE LETTERS

— position the cursor so that its left-hand edge is to the
RIGHT of the letter you want to delete;

10 PRINOT “ONE”

— hold down[SHIFTJand pressi= The letter will vanish and the
others will close up.

— press|NEW LINE|and the line is amended.

62

PANEL 9 —-EDITING

TO MOVE THE CURSOR
Press E.E] |E| Moving the cursor does not change any

characters.

TO REPLACE LETTERS

— type the new letters over the old ones;
— press|NEW LINE]and the line is amended.

TO INSERT LETTERS

— position the cursor so that its left-hand edge is at the
point where the new letter is to be inserted.

—press[NSERT]:

— type in the new letters, and the old ones will space
themselves out to receive the new material,

— press|[NEW LINE! and the line is amended.

TO DELETE LETTERS

— position the cursor so that its left-hand edge is to the
RIGHT of the letter you want to delete;
— hold down[SHIFTland press [=]
The letterwill vanish,and therest ofthe letters will close up.
— press[NEW LINE]and the line is amended.

NOTE: some people find it easier to remember the general rule
that you position the cursor to the right of the place where the
insertion or deletion is to begin.

[SECTION 10—-STRINGS j

Inthe “GR” program,you may have been puzzled bylines 230 and
510.

230 A$ = “WHITE ON BLACK — SAME GRAPHICS”
510 PRINT: PRINT A$

You have already become accustomed to numeric variables in
expressions such as

10 INPUT A
20IFA=15THEN GOTO 2000

Putting the dollarsign afterthe variable name shows thatitis nota
numeric variable, buta STRING VARIABLE, i.e. a variable which
does not have a value in the sense that variable A above has, but
which contains a string of characters — which may be letters,
spaces, numbers, or graphics characters.

Try it out as you did with numeric variables.

A $ =“READ ONLY MEMORY"
Print A$

and the computer obediently does so.

Note the inverted commas: they should always indicate to you
that what is in a string variable is literally what is between those
quotes.

You can ask for input to a string, just as with numeric variables:

10 INPUT A$
20 PRINT“THIS IS WHAT YOU ENTERED"; A$
30 GOTO 10

When you input, simply type in any letters ornumbers. There is no
need for quotation marks.

You can even add strings together, although computer people
never talk of “adding strings”. They talk of “concatenation of

64

strings”, i.e. putting them together, notadding, which might imply
adding their values.

Run the program called “List” on the tape, to see the effect of
concatenation.

10 REM List

20 FOR I =1 T0 12

30 PUT 31: PRINT

40 PRINT"Enter name'";I;"and press NEW LINE"
50 INPUT AS$

60 B$ =B + " " + A$

70 NEXT I

80 PUT 31: PRINT

90 PRINT "Here is the compLete List of names:
100 PRINT: PRINT B$

110 END

Line 60 involves concatenation. It means “put together what is
alreadyin B$,withaspace,andthe newmaterialin A$,and callthe
result B$”. The space is necessary to provide a break between
the names, as the list is gradually built up.

Of course, the programis rather primitive in its presentation—that
is no way to present a listt We shall have to give it some more
attention later.

First we should deal with one more characteristic which string
variables share with numeric variables: you can usethemin IF...
THEN statements.

You can, for example, make your program ask fora word from the
keyboard, and when it is typed in, check it against a list in the
program itself. A password system could be constructed in this
way.

Load “Zodiac 2" fromthe tape and runit. In this version, instead of

presenting a menuthe computerasks forthe name of the month. It
then checks what you have input against its own list.

65

10 REM Zodiac 2

20 OPEN#0,0: REM Switch to video alone
30 PUT 31: REM Clear the screen

40 PUT 23,87: REM Select black on white
50 PRINT: PRINT: PRINT "S I G N S 0 F
B T HE ZODIAC", srrrrrrs

60 PRINT "Type the name of the month"
70 PRINT:PRINT"in which you were born."
80 PRINT: INPUT X$

90 IF X$="January'" OR X$="january'" OR X
B$="JANUARY" THEN GOTO 230

100 IF X$="February" OR X$="february'" OR
B X$="FEBRUARY" THEN GOTO 260

110 IF X$="March” OR X$="march" OR X$="M
BARCH'" THEN GOTO 290

120 IF X$="April" OR X$="april" OR X$="A
BPRIL'" THEN GOTO 320

130 IF X$="May'" OR X$="may" OR X$="MAY"
BTHEN GOTO 350

140 IF X$="June" OR X$="june'" OR X$="JUN
BE" THEN GOTO 380

150 IF X$="July" OR X$="july" OR X$="JUL
BY" THEN GOTO 410

160 IF X$="August'" OR X$="august'" OR X$=
BE"AUGUST" THEN GOTO 440

170 IF X$="September'" OR X$="september"
BOR X$="SEPTEMBER' THEN GOTO 470

180 IF X$="October" OR X$="october'" OR X
E$="0CTOBER" THEN GOTO 500

190 IF X$="November" OR X$="november'" OR
B X$=""NOVEMBER" THEN GOTO 530

200 IF X$="December'" OR X$="december™ OR
B X$="DECEMBER" THEN GOTO 560

210 GOTO 80

Of course, there is a problem in comparing strings in this way.
Computers can be very literal-minded, and ifthe programmer had
used

IF X$ = “January” THEN 230

the computerwould have ignored “JANUARY”,and itis probably
a good idea to look after the bad typist by including “january” as

66

well. That is what “user friendliness” is all about. One other point
onuser friendliness: suppose the usermakes acomplete mess of
his typing and puts in something like “Jaklixxx". Line 210 looks
after this and causes the whole input program to start again.

Notice how useful the word ORis in this program. The word AND
can be used similarly. For example

IF A$ = “JANUARY"” AND T =50 THEN 500

67

PANEL 10-STRINGS

STRING VARIABLES

Forexample: A$ X$ A3$ XP$

The first item in the variable name must be a letter.

The second (if any) may beany letter or number, unless the result
forms another BASIC word such as TO, ON, OR, IF.

The name mustendin $

STRINGS may be of any length, subject to memory available in
the computer. They may be filled by

— a statement: e.g. A$ = “TELEPHONE NUMBER IS”
—an INPUT: e.g. INPUTA $
-~ concatenation: e.g. A =B $+“AND"+C$

or AS$=B$ & C5%

Strings may be used

—to print: e.g. PRINT X$
— to compare: e.g. IF X$ =“TELEX” then GOSUB 1000

NOTE: acommand such as INPUT X$ may be used in a program
as a temporary stop, when for example you wish the user to read
whatis on the screen and press a keyto goon.See line 850 of the
Zodiac 2 program for such a use. The user presses NEW LINE to
go on, inputting nothing.

AND/OR

These may be used in IF ... THEN statements, e.g.
IFX=5ANDY=3THEN 1000

IFX>3AND X <15THEN 1000 (i.e.if X is greaterthan 3 and
less than 15)

IFX<1ORX>5THEN 1000
IFX$ ="“TELEX" AND Y > =2 THEN 1000 (i.e. if Y is greater
than or equal to 2)

. _J

L SECTION 11-STRING HANDLING j

Since the main output of your computer is onto the screen, it is
necessary to have methods at your disposal to select the words
you want, to place them where you want them and to order them
appropriately. This involves string handling.

For example, we noted that the “List” program did not, in fact,
produce much of a list. All the items came out in a long line with
spaces between the words, but running over awkwardly from one
line to the next. Curing that problem involves string handling.

BASIC has several methods. Try this for a start.

10 A$ = “ABCDEFGHIJKLMNOPQRSTUVWXYZ"
20 PRINT LEN(A$)
30 END

LEN means length, and this gives the number of characters,
including spaces, in the string. You may wonder why anyone
should want to know that, but suspend judgement for a moment.

Three more BASIC functions are used in string handling:

MID $
LEFT $
RIGHT $

You can try them outin the program above byreplacing line 20 as
follows:

20 PRINT MID $ (A$ 5,3) — result: EFG

Start at the fifth Print 3 characters
character

20 PRINT LEFT $ (A$,6) — result: ABCDEF

{Prints the 6 left-mast characlers)

20 PRINT RIGHT $ (A$,6) — result: UVYWXYZ

(Prints the 6 right-most characters)

69

Allthese have beenillustrated as PRINT statements, but they can
equally well be included in such functions as

100 IF MID$(A$,5,6) = “LONDON” THEN 1000
oreven

50 X=5

100 IF MID$ (A$,X,6) = “LONDON" THEN 1000

Enough of the explanations! Load “List 2” and run it. Remember
the items thatyou are entering for your list,becausethere is a fault
in this program.The fault is that although you caninput 12 items,
the program only lists 11 of them.

THE EXERCISE IN THIS SECTION IS TO UNDERSTAND THE
PROGRAM AND CORRECT THE FAULT.

First list the program and have a look. Try to understand the
program for yourself at first. Note that up to line 80 it is much the
same as the previous “LIST"” program. The rest of the lines make
up the vertical list.

NOT SURE WHAT IS WRONG? Then here is how the program
WOrks.

10 REM List 2
20 FOR I=1 TO 12

30 PUT 31: PRINT

40 PRINT "Enter name'";1I;

] "and press NEW LINE"

50 PRINT "(Only one-word names';
| " allowed!",,,,,

60 INPUT AS

70 B = B$ + " " + AS

80 NEXT I

90 PUT 31: y = 2
1700 PRINT: PRINT "Here is the complete';
B " Llist of names",,,,,

70

— 110 FOR x=y TO0O LEN(BS$)
=120 IF MID$(BS,x,1) = " " THEN GOTO0160
130 NEXT x

140 END
150

160 PRINT" " MIDB(BS,y,x-y)
170 y = x + 1: GOTO 110
-~ Line 120 is looking for the spaces

between the names. (Remember

a space is a character)

When a space is found,

the word before thal space
is printed at line 160

—— We need to examine the
whole of B$, bul we do not
know how many characters
there are in it. So the
loop ends at LEN({B$}

The jast space The next space is
was at character 'y' at character ¥

I WORD | | WORD [l [wonn | l Lwonn ’

So line 160 means

From character 'y’
PRINT 'X—Y" characters

PRINT MID$ (B$ y x-y)

After each item is printed, 'y’ is reset to ‘x’ (the next space) in line
170, and the program goes back to find the next space.

NOW WHAT ABOUT THAT FAULT?

The point is that the list-printing routine depends on finding a
space and printing the word before it. tem 12 ends the string, so
there is no space after it and so it does not get printed.

The simplest remedy is to put a space after it.
85B$=B$+""

71

~ PANEL11-STRING HANDLING

LEN(A$) gives the length of A$ in number of
characters,including spaces.

MID$(A$,X)Y) — gives Y characters within A$ starting at
character number X.

LEFT$(AS,X) — gives the X left-most characters in A$

RIGHT$(A$,X) — gives the X right-most characters in A$

MID$(AS$,X) — gives all the characters within A$ starting at

character number X.

These functions may be used in expressions such as

IF MID$(A$,X,2) = “PA” THEN 100
FOR X = 1 TO LEN(A$)

IF RIGHT$(A$,5) = C$ THEN 1000
PRINT MID$(A$,X,A-B)

PRINT MID$(A$ X, A-LEN(T$)

SECTION 12-STRING HANDLING TO SOLVE
A PROBLEM

Suppose you are writing a program which is designed to test
the user's knowledge. The program asks questions, and he has
to type in the answers. The program then tells him whether he is
right or wrong.

Suppose one of your question frames is like this.

(" N

In BASIC there are two types of variable.
One of them is numeric.
WHAT IS THE OTHER?
Type your answer and press NEW LINE.

?

. J

By now you should have little difficulty in clearing the screen
and setting up a layout like that. But what follows? An INPUT
statement? Certainly — the word the user enters must be held
in a string variable and checked against the correct answer
which is held in the program itself.

Obviously the answer is “string”, and we have already dealt
with how to cope with “STRING"” and “String”. You simply
compare each of them with the input variable, so that if the user
answers with either of these we can tell him he is right.

But suppose he enters: “It is a string variable”,"The otheris a
string variable”, or merely “A String Variable”. All would be
quite reasonable answers, from a user's point of view, but a
program worked out on the lines of

73

INPUT X$
IF X$ = “string” then

cannot cope with them.

What we need is a routine which searches the input string for
the key word “string”.

EXERCISE ’

Design a program to do just that. If the correct word is found,
the screen should announce: “Your answer is correct”. If not, it
should tell the user: “Your answer is wrong".

THE ANSWER TO THE EXERCISE IS ON THE NEXT PAGE

If you find this too difficult, at least think about it, and program
the easier bits at the beginning.

74

ANSWER

"

You will find this program on the tape. Its title is "Question”.

10 REM Question

20 PUT 23,65

30 PUT 31: PRINT .
40 PRINT "In BASIC there are two types"
50 PRINT "of variable.": PRINT

60 PRINT "One of these is numeric."

70 PRINT: PRINT

&3 PRINT "WHAT IS THE OTHER?"

90 PRINT: PRINT

100 PRINT "Type the answer = ";

110 PRINT "then press NEW LINE": PRINT
120 INPUT X$

130 FOR I=1 TO LEN(X$)

140 IF MIDS$(XS$,I,6)="String" THEN 210
150 IF MID$(X$,I,6)="string" THEN 210
160 IF MID$(X$,I,6)="STRING" THEN 210
170 NEXT I

180 PRINT: PRINT

190 PRINT "Your answer 1is WRONG': END
200

210 PRINT: PRINT

220 PRINT "Your answer is CORRECT": END

Theroutine atlines 130to 170 steps along the string,character by
character, matching each block of six characters against the
word “string”.

The routine shown above is in normal BASIC, but NewBrain
BASIC goes one better. It has a special function which detects
the presence of one string within another. This function is
INSTR. Try the following.

X$ = “Itis a string variable”
PRINT INSTR(X$, “string”)
If you typed it correctly, you got the answer 9, meaning that

“string” begins on the ninth character of X$. If “string” had not
been in X$, then the answer would have been 0.

75

EXERCISE

Change the program, using the new, labour-saving INSTR
command. The answer is on the next page.

76

ANSWER

You can find this on the tape under the title: “Question 2".

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220

REM Question 2

PUT 23,65

PUT 31: PRINT

PRINT "In BASIC there are two types"
PRINT "of variable.'": PRINT

PRINT "One of these is numeric."”
PRINT: PRINT

PRINT "WHAT IS THE OTHER?"

PRINT: PRINT

PRINT "Type the answer - ";

PRINT "then press NEW LINE": PRINT
INPUT X$

IF INSTR(X$,"String'") > 0 THEN 210
IF INSTR(X$,"string") > 0 THEN 210
IF INSTR(X$,"STRING") > O THEN 210

PRINT: PRINT
PRINT "Your answer is WRONG'": END

PRINT: PRINT
PRINT "Your answer is CORRECT": END

Now suppose you want to check still further on the way the
user is answering. Suppose you want to know whether he is
putting a lot of words into his answers, so that you can give him
a hint to concentrate on the key words and save himself a lot of
typing. To do this we need to count the number of words in his

answer.

77

EXERCISE

Modify the program so that, if he answers correctly, we not only
tell him he is right, but add the information:

“There are X words in the answer.”

If you have no idea as to how to do this, look at the foot of the
page for a hint.

THE ANSWER IS ON THE NEXT PAGE

Hint: try making the program count the spaces between words, rather than the
words themselves.

78

ANSWER

You can find this on the tape under the title “Question 3".

10

20

30

40

50

60

70

80

90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300

REM Question 3

PUT 23,65

PUT 31: PRINT

PRINT "In BASIC there are two types"
PRINT "of variable.'": PRINT

PRINT "One of these is numeric."
PRINT: PRINT

PRINT "WHAT IS THE OTHER?"

PRINT: PRINT

PRINT "Type the answer - ";

PRINT '"then press NEW LINE": PRINT
INPUT X$

IF INSTR(X$,"String') > O THEN 210
IF INSTR(X$,"string'") > 0 THEN 210
IF INSTR(X$,"STRING") > O THEN 210

PRINT: PRINT
PRINT "Your answer is WRONG': END

PRINT: PRINT
PRINT "Your answer is CORRECT"
y =1
FOR I=1 TO LEN(X$)
IF MID$(X$,I,1) =" " THEN y = y+1
NEXT I
PRINT
PRINT "(There are';y;"words in the";

PRINT " answer.)"
END

The routine at 240 — 260 counts the spaces between the
words, not the words. Each time it finds a space, it adds one to

variable y. Since y starts at one, the number of spaces equals the
number of words.

79

PANEL 12—-INSTR

INSTR — detects the presence of a string within
another; gives the position of one string within

another.
EXAMPLE 10 INPUT B$

(Input is “ABCDEFGHIJKLMNOPQ RSTUVWXYZ")

20 PRINT INSTR (B$, “LMN")
(prints 12 — since L is the twelfth character)

INSTR may also be used in IF ... THEN routines:
30 IF INSTR (B$, “LMN”) = 12 THEN 1000

[- SECTION 13—ARRAYS [1] j

Everyone knows that computers are very good at sorting and
ordering information.

In this section, we shall look at a typical case: what one might
call a “League Table”, although the same techniques could be
used for examination results, or the results of surveys or
experiments.

What happens is this: names and points (or scores) are fed into
the computer, and the computer produces an ordered list, with
the highest score at the top, and the rest in descending order
below it.

Load “League Table” from the tape and try it out, but please do
not list it just yet! League Table asks for input on five teams and
their scores, and displays the results in order.

Having tried it, how do you imagine it works? From your
knowledge of numeric and string variables, you may imagine
that the names are held in a set of variables: A$, B$, C$, etc.
and the scores in a parallel set: A, B,C, etc.

It certainly could be done that way, but even loading up these
variables using input statements would involve a lot of program
lines. There would have to be INPUTs for every separate
variable, since you cannot go on from A$ to B$ to C$ by putting
them into a loop and adding something each time. And as for
sorting out the highest and putting them all in order — the mind
boggles at the sheer number of program lines to be written.

Of course, a way has been found to overcome the problem:
arrays. NewBrain BASIC has one-dimensional and two-
dimensional arrays. A one-dimensional array is arranged like
this:

Numeric Arrays A(1) A(2) A(3) A(4) A(5)

String Arrays A$(1) A$(2) A$(3) A$(4) A$(5)

81

You can think of them as a series of pigeon-holes into which
you put data. The great advantage is that the figure in brackets
(the “subscript”) can be replaced by a variable. So if, as in the
League Table program, you have to load five numbers into five
pigeon-holes, you can do it like this:

10 FORI=1TO5
20 INPUT A(l)
30 NEXT |

The only catch about using arrays is that before you use them you
must remember to declare to the computer the maximum
subscript value you intend to use. This is known as
dimensioning the arrays and its purpose is to reserve the
appropriate amount of memory space for them. For the
example above, therefore, we need the line:

5 DIM A(5)

which means that the array will have a maximum of five
elements (the correct word for pigeon-hole).

In fact, NewBrain BASIC saves you to a certain extent even if
you forget to dimension the arrays. It assumes that all
undimensioned arrays have 10 elements. However, it is still
better to do the dimensioning yourself: why use up more
memory than you need?

Now have a look at the “League Table” listing. Lines 50 to 190
are the INPUT loop, loading the names into N$ (1) to N$ (5),
and the scores into P(1) to P(5). The rest of the program sorts
the teams into order by scores and displays the results on the
screen.

82

10 REM

League Table

20 DIM N$(5),P(5)

30 PUT 23,65

40 REM Ask for teams and points

50 FOR I=1 TO 5

60 PUT 31: PRINT

70 PRINT "L E A G U E TABL E"

80 PRINT

90 o B
- " PRINT

100 PRINT "Enter name of team";I

110 PRINT

120 PRINT "and press NEW LINE": PRINT
130 INPUT NS$C(I)

140 PUT 31: PRINT

150 PRINT "T E A M = "“,;N$(I)

160 PRINT:PRINT:PRINT"Enter score"
170 PRINT "and press NEW LINE": PRINT
180 INPUT P(I)

190 NEXT I

200

210 REM Present league table

220 PUT 31: PRINT

230 PRINT"L E A G U E T ABLE"
240 PRINT '

250 PRINT"'—=meer e m e m e m e
B "1 PRINT

260 PRINT " TEAM";TAB(30);"POINTS"
270 PRINT

280 FOR I =1 TO 5

290 IF PCI) > P THEN 310
300 GOTO 320

310 P = P(I): X = I
320 NEXT I
330 IF N$C(X) = "' THEN END
340 PRINT " ";NS(X);TAB(30);P(X)
350 N$(X) = "": P(X) = 0
360 P = 0: GOTO 280
QUESTION

What is the function of line 2907

83

ANSWER

In lines 290 and 310, every time a score (P(l)) is more than P, the
variable P is set to that score, and the program remembers
which score it was by setting X to the value of I.

When the loop is finished, therefore, P(X) is the highest score,
and N$ (X) is the team with that score.

Line 340 then puts the team and its score onto the screen.
Line 350 wipes the array element P(X) and the team name
N$(X) and the program returns to the loop to search for the
highest-score among those left.

When line 330 detects an empty name element all names must
have been listed, and the task is ended.

EXERCISE

The present program destroys the names and scores as it puts
them onto the screen. How could you change the program to
preserve them?

How would you change the program to add more points to
scores already plotted on the screen: i.e. make the program go
round in a circle, continually up-dating the results?

Program it if you can, but at least work out your ideas on how it
could be done.

84

ANSWER

10
20
30
40
50
60

310
320

REM League Table 2
DIM N$(5),P(5),X8(5),Y(5)
PUT 23,65
REM Ask for teams and points
FOR I=1 TO 5
PUT 31: PRINT
PRINT "L E A G U E TABL

"1 PRINT
PRINT "Enter name of team'";I
PRINT

PRINT "and press NEW LINE": PRINT

INPUT N$(I)
PUT 31: PRINT
PRINT "T E A M - ";N$(I)

PRINT:PRINT:PRINT"Enter score"

PRINT "and press NEW LINE": PRINT

INPUT P(I)
X$(I) = N$(I): Y(I) = P(I)
NEXT I

REM Present league table

PUT 31: PRINT

PRINT"L E A G U E T ABL E"
PRINT

PRINT" === == == m e e e e e
—————— ": PRINT

PRINT " TEAM";TAB(30);"POINTS"
PRINT

FOR I = 1 TO0 5
IF P(I) > P THEN 310
GOTO 320
P =P(I): X =1

NEXT I .

L Load contents of N$(1) into X$(1), and contents
of P{l} into Y(l) to preserve them

New arrays

dimensioned

85

330
340
350
360
370
380
390
400
[
410
420
430
440
450
460
470
—480
—=490
500
510

IF N$(X) = "" THEN 380
PRINT "™ ";N$(X);TAB(30);P(X)
N$(X) = "": P(X) =0

P = 0: GOTO 280

REM Updating sequence

PRINT

PRINT "TO UPDATE RESULTS - PRESS '";

"YNEW LINE'"

INPUT S$

FOR I=1 TO 5
PUT 317: PRINT: PRINT "TEAM:";X$(1)
PRINT:PRINT "PREVIOUS SCORE:";Y(I)
PRINT
PRINT "Enter additional points"
PRINT "and press NEW LINE": PRINT
INPUT P(I)

P(I) = P(I) + Y(I): N$(I) = X$(I)
Y(I) = P(I)
NEXT I

GOTO 210

[5 20
Go back to display revised results

——=—Ask for new input and

add to existing scores

The task of sorting information is one of the most common
given to computers. It is also one of the most difficult, and
many ingenious methods have been developed. The method
used in League Table is the simplest and slowest: to go
through the entire list each time. Faster methods, with names
such as “bubble sort”, “shell sort” or “quick sort” are used
when there are thousands of items to be sorted.

86

PANEL 13—ARRAYS [1]

ONE-DIMENSIONAL ARRAYS work in the same way as
numeric and string variables, except that they have subscripts
which can be represented by variables.

EXAMPLE — arrays of 5 elements each
A(1) A(2) A(3) A(4) A(5)
AS(1) AS(2) A$(3) AS$(4) A$(5)

Arrays may have up to 5374 elements.

Each element in a string array may vary in length according to
the program’s requirements.

Subscripts may be varied numerically — for example

10 FORI=1105
20 PRINT A$(1)
30 NEXT |

DIMENSIONING — Before any element of an array is used, the
array must be dimensioned. If any element
is used before dimensioning, the
computer assumes the array's dimensions
to be 10 elements.

TO DIMENSION — use the command DIM

10 DIM A (25)
10 DIM S$(20),A(6), C(101), D$(4)

ONCE AN ARRAY IS DIMENSIONED it must not be re-
dimensioned, unless the dimensioning is cancelled by the
command CLEAR. Note that CLEAR also removes the contents
of the array, and of every other variable in use. CLEAR may also
be used as a restricted command. '

For example, to clear the contents of the array

R$(1) R$(2) R$(3) R$(4)
use CLEARR$()

[SECTION 14 ARRAYS [2] |]

In the last section, we mentioned the computer's value in
sorting and ordering information. The “League Table” is a
simple example of this. By the use of arrays, it is a practical
proposition to design systems that will accept information and
display it according to different criteria. For example, instead of
teams and points, we might design a program to collect
information on products: price, quantity sold, income from
sales, profit, cost — and the results could be displayed and
ordered according to any of these criteria. That is what makes
computers so useful in business.

But a good deal of the information that goes through
computers is not in the form of a single row or column.
Computers often have to process pages of accounts and
statistics, in which lines and columns cross each other, and
individual numbers relate to line and column headings in both
directions in the form of a table. To cope with such
arrangements, the NewBrain has TWO-DIMENSIONAL
ARRAYS.

Our example in this section is taken from cryptography, or the
making of codes. Most people tend to think of codes in terms
of lists of letters accompanied by other symbols which are
substituted for them in the coded message — A=P; B=S, C=E;
and so on. In practice, many codes rely not on substitution but
on transposition, i.e. the letters of the original message remain
the same, but the order is changed according to a set plan,
which can be reversed when decoding. In this section we are
going to use two-dimensional arrays in programs which
ENCODE and DECODE messages.

88

When the transposition method is carried out by hand it
involves a good deal of writing. Suppose the message is:
“MEET ME UNDER THE CLOCK AT WATERLOO STATION".To
encode, you write it out in a table, missing out spaces:

MEETM
Any spaces left in the

matrix are filled in
with nonsense letters.

— o Hrom
>P-=04cC
“0>»0I=
O—IXITIU
nwmM>»Om

I O
NBVET

The code is derived by reading the message in columns
instead of in rows:

MERLTRTNEUTOWLABEDHCAOTVTDEKTOIEMECAESOT

The receiver of the message only needs to know the
dimensions of the table to decode it. Obviously this is a gift for
two-dimensional arrays.

Two-dimensional arrays are, in fact, very like the table above.

A(1,1) A(1,2) A(1,3) A(1,4)
A(2,1) A2,2) A(23) A(2,4)
A@B,1) A(B,2) A(B3) A(3,4)
A4,1) A(4,2) A43) A(44)

To dimension this array:
10 DIM A(4,4)

The array elements can be referred to using variables, just as
with one-dimensional arrays.

Load the program “Encode” from the tape, and try it out. If you
type in the message: “MEET ME UNDER THE CLOCK AT
WATERLOO STATION ON THURSDAY AT TWO" you will get
the message:
MDOEIRW*EECROSOQUERKLND*NT**0*AMD*TAOOYEE

MHT*N*EREE*S*AT***WTTT*TUCAAH*MHNLTTUTEE

89

Note that rather than miss out the spaces the program has
replaced them with “*". On decoding these can be replaced by
spaces again automatically.

Another subtlety of the program is that when it gets to the end
of the message you have typed in, it fills up its matrix by
repeating as much of the message as will go in. All coded
messages are therefore of the same length: 80 characters or
two lines of text. Since 80 characters are used, we can
construct a table 8 by 10, and the dimensioning of the string

array is
DIM A$ (8,10).
170 REM Encode
20 DIM A$(8,10): X =1
30 PUT 23,65 '
40 PUT 31: PRINT
50 PRINT"TRANSPOSITION CODE"
60 PRINT: PRINT "ENCODING PROGRAM"
70 PRINT: PRINT
80 PRINT "Type 1in your message."
90 PRINT"Do not type more than 2 Llines"
100 PRINT "Do not use any commas."
1710 PRINT
120 PRINT"Ignore Lline endings. Type on"
130 PRINT"until you have finished the"
140 PRINT"message.'": PRINT
1750 PRINT "Then press NEW LINE": PRINT
160 INPUT A$: A$ = A$ + " "
170 PUT 31:PRINT
180 PRINT "THE ENCODED MESSAGE 1IS"
190 PRINT: PRINT
200 FOR I = 1 T0 8
210 FOR J = 1 T0 10
220 IF MIDS(AS,X,1)=" " THEN A$(I,J)
B = "x": GOTO 240
230 A$(CI,J) = MIDS(AS$,X,1)
240 X = X + 1
250 IF X > LENCAS) THEN X = 1
260 NEXT J
270 NEXT I
280 FOR J = 1 T0 10

90

290 FOR I =1 7170 8
300 PRINT A$(I,Jd);
310 NEXT I

320 NEXT J

330 END

Lines 200 to 270 work like this:

— X has beensetto1inline 20

— Onlines 210 — 260 the value of X is used to step along the
string A$. (NOTE: this is a string and has nothing to do with
the array A$ (8,10).) As the loop steps along A$ each
character is loaded into a separate array element.

— The I-loop (lines 200 and 270) changes the first digit of the
array subscript, and the J-loop the second; so by the time
both loops are complete the whaole table has been filled.

Note line 160: a space is added to the end of the string, so that
when repeat characters are added on to the end they are
separated from the main message by that space.

EXERCISE
Design the decoding program. (You guessed it, didn't you?)

(Ifyoufind thattoo difficult,atleastexamine “Encode” andforman
opinion as to how the decoding would be done))

91

ANSWER

The decoding program appears on the tape under the title:
“Decode”.

1000 REM Decode
1010 DIM A$(8,10)
1030 PUT 23,65: X =1
1040 PUT 31' PRINT
1050 PRINT '"'TRANSPOSITION CODE”
1060 PRINT: PRINT "DECODING PROGRAM'"
1070 PRINT: PRINT
1080 PRINT"Type 1in the encoded message."
1090 PRINT
1100 PRINT '"Do not use NEW LINE until"
1110 PRINT "you get to the end of the"
1120 PRINT "message.': PRINT
1130 INPUT A%
1140 PUT 31: PRINT
1150 PRINT "THE DECODED MESSAGE IS:"
1160 PRINT: PRINT
" 1170 FOR J=1 TO 10
1180 FOR I=1 TO 8
1190 A$(I,J) = MIDS(AS, X, 1)

1200 X =X+1
1210 NEXT I
1220 NEXT J

1230 FOR I =1 T0 8
1240 FOR J =1 T0 10

1250 IF ASC(I,J)="%" THEN A$CI,J)=""
1260 PRINT AS$(I,J);

1270 NEXT J

1280 NEXT I

1290 END

“Decode” is, of course, virtually a mirror-image of “Encode”. Note
line 1250, which converts the “ * " back into spaces.

92

EXPERIMENTS

Line numbers for Decode begin at 1000, so both Encode (which
has line numbers from 10 to 330) and Decode could exist in the
computer's memory at the same time. This would enable you to
experiment with the coding system, encoding and decoding
without the need to re-load programs continually.

But how do you load two programs atonce? The command LOAD
wipes outany existing program in memory. To avoid this problem,
the NewBrain uses the command MERGE. It works like this.

1. Load Decode in the usual way.
2. Type merge “Encode”
3. To use Encode, type run
To use Decode, type goto 1030

(NOT GOTO 1000 since 1010 dimensions the afray which has
already been dimensioned in line 20. Arrays must not be re-
dimensioned)

You could even type goto 1230. This would feed the array A$,

which is already filled with the coded message, into the decoding
sequence directly, without your having to type it again.

93

PANEL 14—-ARRAYS [2] '

TWO-DIMENSIONAL ARRAYS are in the form A$ (X,Y), where X
and Y identify the elements of the array. The arrays may be either
numerical or string.

EXAMPLE A$(1,1) A$(1,2) A$(1,3) A$(1.4)
A$(21) A$(22) A$(23) A$(24)
A$(31) A$(32) A$(33) A$(3.4)
A$(4,1) A$(42) A$(43) A$(44)

This is a 4 x 4 element array.

DIMENSIONING: this must be done before using any element.
USE: DIM (X,Y)where X and Y are the maximum values of the
subscripts you wish to use. EXAMPLE DIM A$ (4,4)

Where no dimension statements are included, the NewBrain
assumes 10 x 10.

Arrays once dimensioned may not be re-dimensioned unless
cleared.

Dimensioning may be cleared by using the command CLEAR.
Note that CLEAR, cancels not only the dimensioning butalso the
contents of arrays. See Panel 13 forfurtherinformationon CLEAR.

MERGE

This loads a program from tape without clearing the existing
program from memory, and leaving the values of the variables
intact.

Warning: if a line in the merged program has the same number
as an existing line, the existing line will be replaced by the new
line.

Q SECTION 15 GRAPHICS [1])

We had a look at graphics symbols a few sections back, but the
NewBrain has much more to offer.

The high-resolution graphics facility allows you to display a
special graphics screen on your television set or monitor, to
“draw” on it in lines, curves or areas of black and white, and to
place characters on it. You can even vary the size of the graphics
“screen” to allow more or less room for normal text.

Load “Graphics Demo” from the tape. Run it and you will see
everything promised in the last paragraph demonstrated, and
more besides.

Designing good graphics is largely a matter of practice, once the
basic methods are known. In this section and the next, therefore,
we are concentrating on methods, which are summarised in the
Panels.Butdonotforgetthatyou canlistthe Graphics Demoitself
and use it as a source for methods.

SETTING UP GRAPHICS

Type (very carefully!) open # 0,0,“110"

If you get it right, the small display on the computer will darken,
and the screen will show white on black, whatever itwas showing
before. (Technically you are opening a “stream” down which data
flows from the computer. In this case the numbers following
“open” cause data to flow to the screen.)

Now type open # 1,11, “w160"
The “11”is graphics: “w"” means a wide graphics screen which is

320 dots wide. “160” means 160 dots high. So our graphics
screen is

?

320

L |

95

but at the moment we cannot see it because it is in the same
background colour as the rest of the screen and there is nothing
plotted on it. Oddly enough we can detectits presence: try typing
any letters atrandom on the screen and pressing NEW LINE and
you will find you cannot get them to the bottom of the screen
becausetheyscroll afterafewlines.Thatis because the graphics
screen is there, although invisible.

Type plot background(1)
plot wipe

You will soon get used to the word “plot” before all graphics
commands. What you should now see is

S 5
i i
@'.’__:.:1:20‘-";-ar.-;-;-;-;-'.-.-.-.-.-.-.-.-.- et s

(You can easily switch backgrounds, as with text, by using
CONTROL/W andB orC)

This is the graphics screen, but before we can draw on it we have
to set its scale. NewBrain allows us to choose the scale. At the
moment it is 320 by 160, a ratio of 2 to 1. So why not simplify
matters by setting it to 200 by 1007? This is done by typing

plot range (200,100)
We now have to plot a centre, which can be in the actual centre if
we wish (i.e. 100, 50), or any other point we find convenient to start
from. For this experiment, the choice is the bottom left-hand
corner (0,0).

Type plot centre (0,0) [NL]

96

So we now have a screen with a scale of 0 — 200 from left to right
and 0 — 100 from bottom to top.

100
3

0 =200

0

Now to place the pen on the screen. There is, of course, no such
thing as a pen, butitis convenienttoimagine one. The command
PLACE, for example, puts the pen on the screen, but does not
cause itto make a mark. The command MOVE, on the other hand,
moves it to another point, drawing as it goes.

Type plot place (0,0 i
(i.e. put the pen in the bottom left-hand corner)
Type plot move (200,100)
— 200
-~ 1100

Try a few more MOVES of your own. (Don’t worry if you move the
pen offthe screen.) When you have finished, close down graphics
and return to the complete text screen. To do this type

close # 1

Now try the following program. Note how some commands have

97

been puttogetheronthe sameline,usingcommastodividethem.
This reduces the number of times you need to use the word PLOT.

10
20
30
40
50
60
70
80
90

OPEN#0,0,"100"
OPEN#1,11,"n160"

plot background(1) ,wipe

plot range(200,100)

plot centre(0,0)

plot place(10,10)

plot move(10,90), move(190,90)
plot move(190,10), move(10,10)
plot place(70,50)

100 plot "FRAME"
110 END

If you find itdoes not work, or if you get error messages,check the
lines carefully. If youwantto run ittwice, youwill find the computer
objects to your trying to open #1,11 when the stream is already
open. To avoid the problem, type close #1 [NL]before running.
Alternatively you could write a new line:

5 close #1

Now try a graphics program for yourself.

EXERCISE

Write a program which places a cross on the screen like this
(using as much of the present program as you likel).

THE ANSWER IS ON THE NEXT PAGE

98

ANSWER

5

10
20
30
LC
50
50
70
80

CLOSE#1

CPEN#0,0,"100"

OFZN#1,11,"n160"

plot background(1) ,wipe

plot range(200,100)

plot centre(0,0)

plot place(0,50) ,move(200,50)
plot place(100,100) ,move(100,0)
END

99

PANEL 15-GRAPHICS [1]

GUIDELINES ON SETTING UP A GRAPHICS SCREEN

Height: for safety you should limit the height to 220 lines (screen
dots)
You should choose heights in multiples of 10.

Width: the choice is 320 dots — “wide” (w)
256 dots — “narrow” (n)

EXAMPLE COMMANDS
The "150" is the number-of text lines
i n on the page. Its function here is to

10 open # 0'0’ 150 reserve sufficient memory spalce
for 220 lines of wide graphics.

20 open # 1,11, “w220" This opens a wide graphics screen
of 320 lines wide by 220 high

10 open # 0,0,“125" This opens a narrow screen of
256 li ide by 220 high

20 open # 1,11,“n220" ines wide by g

REMEMBER: the larger the graphics screen, the greater the
demand it makes on the computer's memory, and
the less room it leaves for your program.

TO CLOSE A GRAPHICS SCREEN — close # 1

TO CHANGE BACKGROUNDS — plot background(1)

(1 = opposite colour to rest of screen)
(2 = same colour as rest of screen)

TO CLEAR THE GRAPHICS SCREEN — plot wipe
TO PLOT LINES YOU SHOULD

1. SETTHE SCALE — plot range (100,75)
(This is an example — you choose
the range.)

2. SETTHE CENTRE — plot centre (50,20) .
(Again set whatever you find
convenient: itdoes not have to be
the true centre)
TO PLACE THE “PEN" ON THE SCREEN WITHOUT MARKING
plot place (x,y)

TO MOVE THE PEN, MARKING AS IT GOES plot move (x,y)

Here x and y are the destination of the pen from where you last
_ placed it or moved it.)

C SECTION 16 GRAPHICS [2] J

The graphics facilities described in the last section enable you to
plot lines wherever you like on whatever size of graphics screen
you choose, and to vary the background colour too.

In this section, we shall go into NewBrain’s special graphics
facilities. First set up a graphics screen.

open # 0,0,“120”

open # 1,11,“w160"

plot background (1), wipe

plot range (200,100), centre (100,50)

plot place (0,0) [NL]
So now we have the pen in the centre, ready to move and draw
lines. Last time we used the command MOVE, which moves the
pen to a named location, drawing as it goes.
Now try this:

plot draw (50,50,1)

plot draw (50,-50,1)

plot draw (-40-10,1)
Do you see whatis happening? The pen is drawing lines to each
location you name (50,50), but returning again after each line.
The figure (1) is the “colour” — i.e. foreground colour. If you plot

the background colour (2), the line disappears. To wipe out the
first line we drew, type

plot draw (50,50,2)

Now although such facilities as these could be very useful —
when drawing graphs forexample — itwould be even more useful
to be able to “steer” the pen by giving itdirections and distances.

101

All this is possible. Wipe the screen
plot wipe

and try this
plot degrees
plot turn(90),drawby(40)

TURN moves the direction of the pen to 90° from its starting point
at 3 o’clock.

(JECR A
- ~
Ve \\
/
/ \
| o 1 0°
\
\
AN
S
- Y,
Try a few more turns.
Then try this:
10 plOt backg round(1) ,Inl"i pe T;Jr]r; sets the direction
20 plot turn(D) of the pen.
30 FoR 1 = 1 10 35 Rz
40 P LOt th‘nb)' (1 D) ,drawby (40’1) DRAWBY draws a line from
50 NEXT I the centre of length 40 in
60 END colour 1, and returns the

pen lo lhe centre.

This should produce a rotating pattern. If you wantto changeitso
that it starts from the top rather than from the side, replace line 20
with

20 plot turn{90)

If you want the lines to go in a clockwise direction, use
40 plot turnby(-10), drawby(40,1)

Would you liketowipe outthe previoué lineeachtimeanewlineis
plotted, to give a rotating effect? Add the line

35 DlOl drawby(40,2) ‘2" Is the background colour,

50 it wipes out the line

102

Would you like the pointerto make morethan onerevolution? Just
take awaythe FOR ... NEXT loop andreplace itwitha GOTO.The
following goes on for ever.

10 plot background(1) ,wipe

20 plot turn(20)

30 plot drawby(40,2)

40 plot turnby(-10) ,drawby(40,1)
50 GOTO 30

Now for some work. Load “Clock” from the tape. You will see it
presents a format for two dials showing seconds and minutes.

EXERCISE — put the hands on the dials!
Or if that is too tough a proposition, put one of them on.

Hint: we found that the best place for the centres was (50,54) and
(150,54) for the seconds and minutes respectively.

Here is a listing of “Clock”. Before attempting the exercise, look
at the program and at the notes that follow.

10 REM Clock

20 CLOSE#1: OPEN#0,0,'"130"

30 OPEN#1,11,"w160"

40 plot range(200,100) ,centre(50,50)
50 plot degrees

60 plot background(1),wipe

70 PUT 23,65

80

90 REM Label the two dials

100 plot place(50,50) ,move(50,-50)
110 plot ptace(-20,-45),"Seconds"
120 plot place(82,-45),"Minutes"
130

140 REM Put numbers on seconds dial
150 plot place(=10,0),turn(90)

160 FOR D = 5 TO 60 STEP 5

170 plot turn(90=(D*6)) ,colour(2)
180 plot moveby(35),colour(1),D
190 plot place(-10,0)

200 NEXT D

103

210

220 REM Put numbers on minutes dial
230 plot centre(150,50)

240 plot place(-10,0) ,turn(90)

250 FOR D = 5 TO 60 STEP 5

260 plot turn(90=(D*6)) ,colour(2)
270 plot moveby(35) ,colour(1),D
280 plot place(-10,0)

290 NEXT D

300 END

TEXT ON GRAPHICS

You will have noticed the words “Seconds” and "Minutes” and
the numbers printed on the graphics screen. The ease with which
this canbe doneis averyuseful feature ofthe NewBrain.Therules
are

1. place the pen where you want the text to start;
2. use PLOT in the same way as you would use PRINT

For example:
plot place (50,50)
plot “Text”

In practice, the two commands can often be combined:
plot place (50,50), “Text”

Note also the command MOVEBY in line 180. This is a
modification of MOVE, so the pen moves, drawing as it goes,
but it moves only the distance indicated (35). This is a
sequence for printing the numbers on the dials. What the
program does is to move in background colour (so nothing is
printed) from the centre to the number ring of the dials, then
change the colour and print the numbers, which are the value
at that time of the variable D, then move back to the centre
again for the next number.

THE ANSWER TO THE EXERCISE IS ON THE NEXT PAGE

104

ANSWER

320 REM Set minute hand

330 M=96: plot centre(150,54)
340 plot place(0,0),turn(™

350 plot drawby(25,2): M =M - 6
360 plot turn(M),drawby(25,1)
370

380 REM Set second hand

390 plot centre(50,54) ,place(0,0)
400 plot turn(90)

410 FOR S = 1 TO 60

420 plot drawby(25,2),turnby(-6)
430 plot drawby(25,1)

440 GOsSuB 500

450 NEXT S

460 plot centre(150,54)

470 GOTO 340

480

490

500 REM Delay Lloop

510 FOR X = 1 TO 270

520 NEXT X

530 RETURN

The program follows the pattern set in the small program
illustrated earlier in this section. Note the delay inserted at line
440: this makes the clock beat seconds (fairly) accurately.

ARC, FILL, AXES

These three commands are described in the Panel, and are
used in the "Graphics Demo” program. If you wish to become
proficient with graphics, your best plan is.to write a program of
your own using the commands we have used in this section so
far. When you have made it run to your satisfaction, use the
Panel and the “Graphics Demo” to explore the more powerful
commands.

105

PANEL 16— GRAPHICS [2]

DRAW (X,Y,C) — draw a line from the current pen position
to (X,Y) in colour (C). (For colour numbers,
see notes on COLOUR below,))

DEGREES — tells the computer to accept direction
instructions in degrees (You may also
use RADIANS).

TURN(X) — sets the direction of the pen in degrees
or radians.

The pen starts like this
and degrees are measured anti-
clockwise

X°
o™ T T~
~
A

A
\

. i,

TURNBY (X) —turns the pen through (X) degrees. Positive
numbers turn it anti-clockwise, negative
clockwise.

DRAWBY (X) — draws a line of length (X) in whatever

direction the pen is pointing. After the
line has been drawn, the pen returns to
the original point.

MOVEBY (X) — moves the pen distance (X) in whatever
direction itis pointing, drawing as it
goes.

COLOUR(X) — colour(1) is foreground colour, i.e. you

can draw in it; colour(2) is background
colour, i.e. you can use it for rubbing out;
colour (3) draws the opposite of whatever
itis on top of.

PANEL 16-CONTINUED

ARC(d,a) — moves the pen distance (d) while turning
it through angle (a). Remember to set the
direction of the pen before using this
command.

FILL — fills in the area around the pen, i.e. to fill
in an area, place the pen within it and
use plot fill. Warning: make sure there are
no gaps in the lines surround the area you
wish to fill.

AXES(x,y) — draws and marks axes (i.e. vertical and
horizontal lines through a point) crossing
at the point where the pen is placed.

x and y are the intervals at which the axes
are to be marked. |f you do not want
intervals marked, set xand y to 0.

TO PLOT TEXT CHARACTERS ON A GRAPHICS SCREEN

— place the pen where you want the text to
start;

— use PLOTinstead of PRINT

[SECTION 17-DATA j

So far in this Guide, we have put data into programs by means of
the INPUT statement. But there is another way.

Suppose we need a certain set of numbers every time we use a
program or a part of a program and we do notwantto INPUT them
every time. The DATA statement looks after this.

Try the following.

10 DATA 55,45,40,25,55,25,55,10
20 DATA 40,10,40,25,19,39,34,60
30 DATA 55,45,75,45,75,25,55,25
40 OPEN#0,0,"110"

50 OPEN#1,11,"n190"

60 plot background(1) ,wipe

70 plot range(100,75)

80 plot place(55,25)

90 FOR I =1 TO 12

100 READ X,Y

110 plot move(X,Y)

120 NEXT I

130 END

The result of this program may not be startlingly original, but it
makes a point. The READ statement in line 100 is functioning in
much the same way as an INPUT. It is taking the DATA numbers,
two by two, and setting X and Y to these values, which are then
used in the program.

NOTE: the READ statement not only uses the data numbers, it
uses them up. If you want to use them again in the program you
have to insert the command RESTORE. Starting a program with
RUN automatically restores all data.

108

PANEL 17-DATA

To setup data, use the word DATA, followed by the items, divided
by commas.

10 DATA 90,55,72,16,122,123,246,5
Items may be numeric or string

20 DATA NAME,ADDRESS,POSTCODE AGE,SEX,
MARRIED

or even both together
30 DATA SPEED,30,40,50,70,MPH ,40,110,KM
To use data, use the command READ

50 READ X

50 READ X$

50 READ S$,AB,C,D,C$
ltems in READ statements must match those in the
corresponding DATA statements. For example

10 DATA ONE,2,THREE 4

100 READ A$,B,C,D
will not work. Line 100 should be

100 READ A$,B,C$,D o

To re-use data: use the command RESTORE
500 RESTORE — restores all data in the program
500 RESTORE 20 — restores data beginning with the first

item on line 20, and continuing on
subsequent Ilnes "

C SECTION 18-RND, INT, ETC.]

We started this Guide with the idea that computers are
incredibly precise, so that we have to “talk” to them in precise
terms or we shall get the most ridiculous results.

The NIM program was an illustration of that precision: it is
impossible for the computer to lose. Yet as a matter of fact it is
quite possible to make computers act imprecisely, if we give
them precise instructions to do so. This kind of behaviour is
related to their ability to produce random numbers.

Type print rnd

and you get a decimal number between 0 and 1. Do it again
and you get another, Most of the time, however, random
numbers are most useful if they are larger than one. No
problem: type

PRINTRND * 10 [NL]
If you want whole numbers rather than decimal, type
PRINT INT(RND * 10)[NL]

INT, of course, means “integer” — but remember its action is
rather crude: it simply cuts the decimal part off and so rounds
the number down.

But there is more to RND than meets the eye. Type in the
following program and run it.

10 FOR I = 1 TO 10
20 x = INT(RND * 10)
30 PRINT x,

40 NEXT I

50 END

Run it several times, without clearing the screen, and compare
the results. It may come as a surprise to find that each set of
“random” numbers is the same! In fact, RND is not truly
random, but a huge series of numbers which for most purposes
will do equally well.

110

To avoid this problem, NewBrain offers another command:
RANDOMIZE. This starts the series off at a different point each
time. Try it by adding to the program

5 RANDOMIZE
and test the result.
If you want to check how good the randomization is, the

following program will do it for you. It checks how often the
numbers 1,2 and 3 come up.

170 RANDOMIZE

20 A=0:B=0:C=0

30 FOR X =1 TO 10

40 FOR I =1 TO 100

50 R = INT(RND * 4)

60 IF R = 0 THEN GOTO 50
70 IF R=1THEN A = A + 1
80 IF R=2THEN B =8B + 1
90 IF R =3 THEN C = C + 1
100 NEXT I

110 PRINT "Sample';X;'":";100%X;
120 PRINT "numbers:";A; B; C
130 PRINT

140 NEXT X

150 END

NOTES

a) RND is multiplied by 4, not 3, because INT rounds down.

b) Similarly, we have to exclude 0, which would result from
rounding down anything less than 1.

The program takes about 30 seconds to execute.

Having found a way to generate 1, 2, and 3 randomly, we are

now in a position to do something about the unfairness of the
NIM program, which the computer always wins, because the

nature of the game is such that if you make the first move and
play perfectly you must win.

So why not mar the perfection of the computer’'s reasoning by
causing its moves to be based on chance? The program “NIM
2" on the tape works in this way — at least it gives mere
humans a chance!

111

The randomizing sequence follows line 256, but be warned: the

nearer the computer gets to the end of the game, the smarterit

becomes.

112

PANEL 18-USEFUL FUNCTIONS

RND — gives a random number between 0 and 1

RANDOMIZE — varies the start of the random number
series

INT — rounds a number down to the integer
below it

SQR(X) -— means v/

1] — for example, X413 means X°

Pl — means /T (i.e. 3.141592654)

ABS(X) — strips the minus sign from a number
(for example ABS(-22) = 22)

SGN(X) — gives a value of -1 if X is less than 1;

+ 1 if Xis more than 1; and 0 if X is 0.

[SECTION 19-DATA FILES ON TAPE]

You probably felt a little disappointed with the second “League
Table” program. Interesting though it is to make a computer up-
date results and re-arrange them, the trouble is that as soon as
you turn the computer off, you lose all your data. Computers
ought to be able to store data away permanently, so that you
can retrieve it and up-date it, and store it away again, as often
as you like.

In large computer systems, this is normally done by storing the
data on magnetic disks, but there is no reason at all why we
should not do it with cassette tape. Admittedly tape is slower
to use than disks, but itis no less reliable and the procedure is
not especially difficult.

The easiest way to understand what is involved is to experience
a program which uses a data file on tape for yourself. Geta
spare cassette with some blank tape on it. Then load “League
Table 3" from the Beginners Guide tape.

Run it, following the instructions on the screen, and you will see
how useful such a system can be. Ours uses only five items
and saves and retrieves one file, but the same kind of program
could be expanded to many items and several files.

So how does it work? The key command for creating the data
file is in line 1030.

940 REM Write files onto tape

950 PUT 31: PRINT

960 PRINT"1. Make sure you have some"
970 PRINT" blank tape in the recorder"
980 PRINT

990 PRINT"Z2. Set recorder to 'RECORD'"
1000 PRINT

1010 PRINT"3. Then press NEW LINE"
1020 INPUT S$

1030 OPEN OUT#99,1,"Table"

1040 FOR I =1 T0 5

1050 PRINTH99,X$(I)

1060 PRINT#99,Y(I)

114

1070 NEXT I

1080 CLOSE#99

1090 PUT 31: PRINT

1100 PRINT"Your league table 1is"

1110 PRINT

1120 PRINT"recorded in data file 'Table'"
1130 PRINT: PRINT "on the tape."

1140 END

The #99 is an arbitrary number: it would work equally well with
15 or 22 for example. What the command does is to open a
“stream” through which data flows to “device” number 1 —
hence the next figure. Device number 1 is the cassette recorder
plugged into the TAPE 1 socket. Device number 2 would be a
recorder plugged into the TAPE 2 socket. The word “Table" is
the name we are giving the file, and again this can be changed
at the programmer’s choice.

The command PRINT in lines 1050 and 1060 is much the same
as the normal command PRINT, except that the “printing” is
done onto the tape instead of the screen, and the FOR ...
NEXT loop makes sure that all elements in the arrays are
printed.

Having opened a “stream” we have to close it again in line 1080.
The reason for this is that the data does not in fact go directly
from the main processing part of the computer onto the tape.
Instead it is gathered together in an area of memory known as
a “buffer”, where it is made up into batches before being sent
on to the cassette recorder. When the command comes to
close #99, anything left in the buffer is sent out to the tape, so
never forget to close the stream, or you will lose data.

Getting the file back again from the tape involves much the
same process.

780 REM Get files from tape
790 PUT 31: PRINT
800 PRINT '"1. Wind the tape back to"

810 PRINT " before the file: 'Table'"
820 PRINT

830 PRINT "2. Set the cassette recorder"
840 PRINT " to 'PLAY'": PRINT

850 PRINT "3. Press NEW LINE"

116

860 INPUT S$

870 OPEN IN#99,1,"Table"
880 FOR I = 1 TO 5

890 LINPUTH#99,N$(I)
900 INPUT#99,P(I)

910 NEXT I

920 CLOSE#99: GOTO 370

Line 870 opens stream #99 and the file “Table”. Note that
whereas before we opened “out”, now we open “in”, because the
data is flowing inwards from the tape to the computer. You will
probably not be surprised to see the INPUT in line 900, but the
LINPUT in line 890 is something else! In factit is a special form of
INPUT which avoids problems when inputting string items from
tape. A normal INPUT would not accept strings with commas in
them, for example. Again we close the file in line 920.

There is no exercise in this section. Having seen how useful
data files on tape can be, sooner or later you will find an
application for them. So here are a few hints.

The example shows data files with one-dimensional string and
numerical arrays. Using them with two-dimensional arrays is
just as straightforward. You have only to manage the arrays
with FOR ... NEXT loops, as in the ENCODE and DECODE
programs, and save the information into the data files you
create.

If you do not need anything as complex as arrays, and merely
want to save a collection of string variables and/or numeric
variables, you can store them in the same way. For example:

100 PRINT#99,A$
110 PRINT#99,B$
120 PRINT#99,C$
130 PRINT#99,X
140 PRINT#99,Y
150 PRINT#99,Z

This will save the contents of three string and three numeric
variables into any data file you care to create, and you can load
them back again, with INPUT and LINPUT as we did in “League
Table 3",

116

Two words of caution.

1. Itis safestto PRINT and INPUT (or LINPUT) each item
separately, as in the examples.

2. Always PRINT and INPUT (or LINPUT) your variables in
the same order, or you will get some very confusing results
in your program!

117

PANEL 19—-DATA FILES ON TAPE

TO SAVE DATAIN A FILE
1. Load the data into variables or arrays.

2. Open a stream to Device 1, the cassette recorder (or
Device 2, a cassette recorder plugged into TAPE 2). The
stream number may be any you choose, unless you are
already using it for something else.

open out #99,1 “Books”
will make a data file called “Books”
If you prefer you need not name your file at all, in which
case ask the computer to load the first data file it finds on
the tape when you come to retrieve your file. For example
open out #991

3. Save the variables or arrays.
PRINT #99 A% PRINT #99,Z
PRINT #99 ,X$(2) PRINT #99,P(3)
Itis best to use a separate command PRINT for each
variable or array.

4. ' Close the stream: CLOSE #99 (This is most important —
see remarks in Section 19)

TO LOAD DATA FROM A DATA FILE

1. Wind the tape back so that the file can be read.

2. Open a stream to bring data from Device 1 (the cassette
recorder).
open in #99,1,"Books”

PANEL 19— CONTINUED

3. INPUT the data into variables or arrays.
LINPUT #99 A% INPUT #99,Z
LINPUT #99,X$(2) INPUT #99,P(3)

Use INPUT for numeric variables and arrays.
Use LINPUT for string variables and arrays.

ALWAYS INPUT IN THE SAME ORDER AS YOU SAVED
ALWAYS USE SEPARATE INPUTS FOR EACH VARIABLE OR
ARRAY :

4. Close the stream: CLOSE #99

NOTE: if you prefer, you can ask the user of the program to name
thefile.The program canthen storethenameinavariableanduse
the variable to name the file. For example:

100 PRINT “Name the file”

110 INPUT X$

120 OPEN OUT #99,1 X$
and the file name will be whatever the user has INPUT.
You can also find out the name of a file that has been opened by
asking for FILES $. For example:

OPEN IN#1, PRINT “FIRST FILE FOUND IS”; FILES $;"!"

L SECTION 20—EXTRAS AND EXPANSIONS J

Your standard NewBrain will do a great deal, as you should have
discovered by now. But its possibilities for expansion are even
more impressive. The following is a selection.

1. THE PRINTER

There is a socket labelled PRINTER on the back of your
NewBrain. You need a suitable lead (supplied by Grundy
Business Systems).

The NewBrain regards a printer as a “device”, like a cassette
recorder, so you have to open a “stream” and name the device by
number. The printer is device number 8, so it is easiest to
remember if you open stream number 8 as well. The procedure
for making your printer work is as follows.

1. Make sure the printer is switched off.

2. Type open #8,8
3. Switch on the printer.

In theory you should set the “baud rate” too. That is the rate at
which your printer will accept information. For example

open #8,84800” [NL sets a baud rate of 4800.

In practice, if you use the printer recommended by Grundy
Business Systems, this is not necessary, since if no rate is set
the computer will assume it is “9600"” which is right for that
printer.

Once you have set it up, the printer is easy to use.

TO LIST PROGRAMS — LIST#8
TO PRINTANYTHING WITHIN A PROGRAM
100 PRINT#8, “ABCDEFGHIJKLMNOPQRSTUVWXYZ"

The printer changes lines automatically after 80 characters.
More detailed instructions on use and facilities will be supplied
with your printer.

NOTE: you should not attempt to use the TAB command with
the printer.

120

2. NEWBRAINS CAN TALK TO EACH OTHER!

If you have a friend who has a NewBrain too, you can pass
programs between the two computers, provided you have the
right lead. The lead plugs into the COMS sockets on both
machines.

To send a program from one computer to the other
1. Type open #9,9 [NLlon BOTH machines
2.0n the machine which has the program type

save #9
3. On the other machine, type

load #9

Itis also possible to send data. For example, to send the string
A$, type PRINT #9,A$ [NLlon one machine and

LINPUT #9,A%$ [NLJon the other (it does not matter in which
order). While the machine is waiting to send data, the screen
will go blank. While sending, it will flicker.

3. EXPANSION MODULE

The Expansion Modules plug into the large socket at the back
of your NewBrain. In addition to providing certain interfaces,
they allow you

a) toexpand your computer's memory up to a maximum of
2048 k bytes.
(Expansion memory modules will take both RAM and ROM
in increments of 64k bytes)

b) tolink one NewBrain with up to 32 others, or even more
via further NewBrains.

c) toadda DISK MEMORY unit. Disks, like tape, are for long-
term storage, but they are faster to operate, and more
convenient, since they can locate files without having to
check every file stored, as is necessary with tape.

Grundy Business Systems offers a unit which handles disks
each capable of storing upto 1 megabyte of memory. Agreat
deal of software is available on disks only.

121

d) touse ROM software modules. These plug into Expansion
Memory Modules and provide

— other programming languages than BASIC;

— "device drivers”, i.e. means of operating
special equipment such as a graphics plotter;

— special applications, such as text processing
and statistics

4. BATTERY MODULE

The module contains a set of re-chargeable batteries capable
of operating the NewBrain for at least an hour, so providing
some protection against mains fluctuations, and offering the
possibility of using the NewBrain on the train or anywhere else
away from a mains supply. The batteries can be re-charged
using the normal power unit. They can also be re-charged while
the NewBrain is working.

122

CONCLUSION

If you have followed the Guide so far, you should now be in a
position to write your own programs, with a reasonable
awareness of what possibilities are open to you. But the Guide
should still be useful to you for a while yet. Learning to program
is a matter of understanding how to apply rules, but learning to
program well means developing your ability to work in a new
logical language, and that means practice. As you practise,

use the Panels in the Guide, and the index, but above all

your NewBrain microcomputer.

123

(

ERROR MESSAGES]

Errors may be shown on the screen in three forms

ERROR 2 if you are entering commands directly from the

keyboard without using line numbers;

ERROR 2 AT 100 which indicates an error on line 100;

ERROR 2 AT 100:3 which indicates an error on the third

10
14

17

124

statementin line 100.

Arithmetic error. For example, your program may have tried
to divide by zero.

You have forgotten to put END at the end of your program,
so the computer has tried to find another instruction and
failed.

Illegal line number. Line numbers above 65535 are not
allowed.

Illegal value, for example in an array subscript.The value
should be in the range 0 — 65535,

Illegal array subscript value. For example, you may have
written

10 DIM A$ (22)
and subsequently
100 PRINT A$ (30)

The computer has run out of memory space.

You have used open and followed it by something other
than #, or IN# or OUT#. (Look carefully — a common
mistake is open “0,0)

You have typed in a numeric function wrongly. For
example LOG (X-"A")

19

20

21

26

28

29

30

31

33

34

35

36

37
38

Wrong number of subscripts in an array element. For
example, you may have dimensioned an array as a one-
dimensional array and then used it as a two-dimensional
array.

A wrong expression. For example A$ =2
(It should be A$ ="2")

Something unrecognisable in the expression
Forexample: X= A7?3

The keyword you have used begins with something other
than a letter — this is usually caused by trailing your finger
over too many keys. For example *PRINT

You have used a statement involving ON (e.g. ON X GOTO
1000) but the line number is greater than the highest line
number in your program.

Your program tells the computer to GOTO a line that does
not exist.

Input error. For example, INPUT X is executed by the
computer, and the computer waits for a number to be
input. If the user inputs A , the computer replies with
ERROR 30 and waits for the user to try again.

In a PRINT statement, the computer has reached a point
where it expects a comma, or a semi-colon, but it has
found something else. (Look carefully at your work here:
the computer and you may not have the same
expectations, but there is certainly something wrong!)

the computer has come to a RETURN without having met
a GOSUB. Look carefully at your logic.

You have used a computed GOSUB or computed GOTO
routine, but you have missed out (or partly missed out) the
GOSUB or GOTO.

You have tried to type LIST followed by two numbers (for
example LIST 10-100), but you have put something else in
place of the hyphen. Alternatively, you have typed your
listing command correctly, but have touched another key
as you were pressing NEW LINE e.g. LISTa

Bad input: you have included a quotation mark or a
comma in your input reply to the computer.

You have tried to TAB to column 0.

You have used a POKE command with a value greater
than 255. -

- 125

39

40
41

42
44

45
46

47

48

49
52

53
54
55

56
57
63

65

126

Your program has asked the computer to READ more data
than you have in your DATA statement. (Have you tried to
use data twice in the same program without restoring it?)

You have used a CALL command with an illegal item as a
parameter.

The computer has come to a NEXT statement without
having met a corresponding FOR statement.

Empty DATA line.

Illegal control variable in a FOR ... NEXT statement. For
example

FORA$=1TO 10
(Only numeric variables are allowed.)

There is an error inside the FOR ... NEXT loop that starts
on the line number named.

You have missed the TO out of your FOR statement, or
partly missed it out.

You have written a FOR ... TO ... STEP statement (or the
computer thinks you havel) and STEP is missed out or
partly missed out.

The computer cannot find the NEXT statement
corresponding to the current FOR statement.

lllegal FOR ... NEXT loop nesting.

Something you typed has caused the computer to expect
a comma, but there is no comma.

Something you typed has caused the computer to expect
a colon, but there is no colon.

CLOSE not followed by #.

Keyword misspelt (for example PRIJNTO)
or
Equals sign not found where expected.

Open parenthesis (not found where expected.
Closing parenthesis) not found where expected.

You have used an |IF ... THEN statement, but the item that
follows the 'IF’ part is neither a keyword nor THEN.

Closing guotation marks not found where expected.
(Check carefully. You may not expect them, but whatever
you typed caused the computer to do so.)

68
69

70

71

72

73

74
75
80
81

83

84

85

87

88
90
91

92
93

94
95
96

The word OPTION is not followed by BASE.

You have used OPTION BASE after the array has been
created.

You have followed OPTION BASE with something other
than O or 1.

Your program is dimensioning an array that already exists.
You may not re-dimension arrays.

Dimension too large. Arrays may have up to 5374
elements, if memory allows.

You have used dimension O after having specified
OPTION BASE 1.

Error in formatter, other than error 75.
Number in formatter not in range 0 . . 255, or not present.
DEF not followed by FN.

Illegal user defined function name in DEF statement.
E.g. DEF FN$ = A$.

No DEF statement for user defined function.

Redefinition of a user defined function to have a different
number of arguments or references to an array with the
wrong number of dimensions.

Expression too complex to evaluate, or user defined
function references too deeply nested to evaluate.

You have stopped a program and attempted to continue,
using CONT, but the program cannot continue.

CLEAR is followed by something illegal.
Device stream or port not in range 0 — 255.

You have asked the computer to VERIFY the recording of
a program onto tape. The computer's reply is that the
program has failed the verification test.

You cannot close stream 0.

The words ON ERROR are not foliowed by GOTO or
GOsuUB

You have used line number 0. This is not allowed.
You have used VAL, but the string involved is not a number.
You have tried to use LINPUT with a numeric variable.

127

97

98
99
100
105

106
107
108

109
110
111

112

113
114

115
116
117
118
119

120
121
130

131

128

After ON ERROR or ON BREAK you have specified a non-
existent linre number.

You have made an error in using a PUT command.
You have used up all the data in your program.
Insufficient memory to open stream.

You have attempted to use a stream that is not open. For
example you have typed LIST #8 without having opened
stream number 8.

No such device.
Device-port pair already open.

You are trying to open a stream thatis already open. You may
find it convenient to insert a command into your program
which closes the stream before you openit.Closing a stream
that is already closed is allowed.

System error. E.g. attempt to input from a printer.
Syntax error in parameter string.

Attempt to open device which requires mains power when
no mains power connected.

The computer has run out of memory while trying to comply
with a graphics command to FILL.

Linked stream not a screen device.

Requested height too large for memory available to the
linked stream.

Linked stream has been closed.

Position off the screen illegal in this context.

Incorrect PLOT command.

Cannot use input from graphics device (use PEN instead).

Attempt to output to graphics device before input function
completed.

Syntax error in baud rate parameter string.
Port number other than zero for serial device.

Tape read error hardware failure. Check tape recorder and
leads.

Tape read error: attempt to read block into a buffer which is
too small, or hardware failure.

132 Tape read error; hardware failure (Checksum error).
133 Altempttoread pasttheendofatapefile, or hardware failure.

134 Attempt to read a tape file out of sequence, or hardware
failure.

135 Attempt to output a tape file opened for input or vice versa.
136 Syntax error in parameter string.
200 Time out error on software serial input port.

129

(INDEX TO INFORMATION PANELS

ABS
AND
ARC (Graphics)
Arrays
— one-dimensional
— two-dimensional
AXES

BACKGROUND (Graphics)
Battery module

Cassette recorder
— connecting up
— data files
— loading programs
— saving programs
— verifying saving
CENTRE (Graphics)
Characters
— graphics characters
— on high-resolution
graphics
- sets
CHR$
CLEAR
Clearing
— arrays
— line
— part of screen
— program from memory
— screen
CLOSE
— data file
— graphics screen
Colon
COLOUR (Graphics)
Comma
Computed GOSUB, GOTO
Concatenation of strings
Connecting up
Control characters

130

PANEL
18
10
16

13
14
16

15

L — — — —
L0, BUNO WWEROW WkAOoO® 0 I~N~NMNDWO—=

—_

Cursor 24
— moving down, up 8
— placing 6
— use of in editing 9
DATA
— files on tape 19
— statements 17
DEGREES (Graphics) 16
DELETE (editing) 9
Dimensioning arrays 13,14
Disk memory 20
DRAW, DRAWBY (Graphics) 16
Editing 9
Elements in arrays 13,14
Errors
— numbers APPENDIX
— on loading 2
Escaping from a program 4
Expansion module 20
Files, data, on tape 19
FILL (Graphics) 16
FOR ... NEXT 5
Functions 18
GOSUB ... RETURN 6
GOTO 3
— computed GOTO 6
Graphics
— characters 8
— high resolution 15,16
—text on 16
Graphics screen 15
Graphs, drawing 16
Handling of strings 11,12
HOME
—to clearaline 3
— to clear the screen 8

IF ... THEN 4

— use of AND / Or 10
INPUT 4
Insert (Editing) 9
INSTR 12
INT 18
Keyboard Page 17
Leads 1
LEFT $ 11
LEN (length of string) 11
Lines (program)

— editing

— replacing
Lines (screen)

— clearing

— 40 or 80 characters
LINPUT 1
LIST
Loading

— data files from tape 1

— programs from tape
Loops (FOR ... NEXT)

Mathematical functions 1
Memory
— additional RAM 2
— disk 2
MID $ 1
Monitor, connecting up
MOVE (Graphics) 1
MOVEBY (Graphics) 1

Nesting loops

NEW

NEXT (FOR ... NEXT)
Numeric variables

One-dimensional arrays 1
OPEN
— for cassette recorder 1
— for graphics screen 1
— for long and short lines
— for page length
OR 1

PAGE
PEN (Graphics) 15
PLOT (Graphics) 15

Power unit, connecting up
PRINT
Program
— catalogue on tape
— changing a line
— clear from memory
— escaping from
— LIST
— RUN
— SAVE
— STOP
— transferring
—VERIFY
Programming, starting
PUT

n

MO0 -1U~NI~INO -+~ h~LoODIOLO® WO W1WwWwhWWw= [

1 (insert blank line)
10 (cursor down)
11 {cursor up)
14 (for reversed-out characters)
22 (place cursor)
23 (character set control)
30 (clear line)
31 (clear page/screen)

Random numbers
RANGE (Graphics)
READ
Recorder, cassette
— data files
— loading programs
— saving programs
— verifying saving
REM
RESTORE
RETURN (GOSUB ... RETURN)
Reversed-out characters
RIGHT $
RND
ROM software modules
RUN

[R

=

-

My = =k

SAVE -
— programs
— data files

SCALE (Graphics)

Screen
— clearing
— graphics 1
— part clearing

Semi-colon

b —
RooOiw GO

131

SGN

SQR

Starting up

STOP

Strings
— concatenation.
— handling

String variables

TAB

Tape, data files on

Television set, connecting up
Text on graphics screen

132

18
18

10
10
1112
10

19
16

THEN (IF ... THEN)
Transferring programs
TURN, TURNBY (Graphics)
Two-dimensional arrays

Variables

— numeric

— string

— value after loop
VERIFY

WIPE (Graphics)

20
16
13

97 ~NUoOw

(Grumdly| Grundy Business Systems Ltd.

Sales and Administration Marketing and R&D
Somerset Road, Teddington, Science Park, Milton Road,
Middlesex TW1 8TD Cambridge CB4 4BH

Tel: 01 977 1171 Tel: 0223 350355

The NewBrain Beginner's Guide was written by
Information Transfer Ltd, Cambridge

