
 7 Handbook

PREFACE

This handbook is a guide to the use of the NewBrain. It contains a full description of

the essential features of the NewBrain and NewBrain BASIC.

Other documents for the NewBrain include the NewBrain Beginners Guide and the

NewBrain Software Technical Manual.

Grundy Business Systems
Science Park
Cambridge
U.K.

ERRATA CORRIGENDA and ADDENDA Issue 2

Contents, page (i), Chapter 2, Section 2:

Page 6, last line:

Page

Page

Page

Page

Page

10, line 8:

DELETE

Chapter 4, Section

read

11, second column, line 16:

19, line 2:

20, line 3:

Vine 30:

23, line 6:

“CONDITIONS/*

5:

“ERROR 52
“ERROR AND REPORT. . . 51"

“blanks”
‘flashes through the same message and
shows a flashing underline as its cursor.

The user may now choose to select an eighty
column display by typing

OPEN#D, 4, "L"
followed by NEWLINE (see pp 169... .

“page 40"
“page 24"

“edigin
“editin

"NOW IS THE TIME TO COME"
“NOW IS NOT THE TIME TO COME"

3 Save"
"Before recording ensure the cassette
wound past’ the end of the leader tape.

“oPEN#I2, 2"
“OPEN OUT#I2, 2"

“pass”
“press”

"NUMERIC CONDITIONS"
“NUMERIC CONSTANTS"

an).*

is

Page 25, second column, last line:

for read

Page 26, second column, last line:

Page 31, line 19: for

second column, line 16:

read

Page 36, line 11: for
read

Page 45, line 22: for
read

Page 50, second column, line 10:

for
read

"0.000099"
“0.0000099"

see 66)"
"(see page 66)"

‘matetante"andeand"*
‘ate “an"c*and"< "ant"?

“order preceding + or - leave or
change sign”
“order.

preceding + or - leave or change sign"

"4 *6+6-2= 20"
"4*5 46-2 = 20"

“722 723"
“22 23"

20 INPUT (“NUMBER")N
20 INPUT (“GIVE ME A NUMBER")N

ines 10 and 999"
“lines 10, 20 and 999"

Page 51, second column, line 17:

second column, line 26:

for
read

Page 52, line 2: DELETE

Page 58, second column, line 8:

for
read

second column, line 22:

for
read

Page 61, line 11:

Page 65, line 5:

Page 68, second column, line 4:

DELETE

second column, line 23:

4, or
read

|

Page 86: INSERT

Page 87, second columa, line 19:

DELETE

Page 89, line 10:

"120 GOTO 290"
"120 RESUME 20"

"120 END"
"120 REPORT*

"REPORT"

"400 PRINT A,B,C,0,E,F,G,H,J"
"400 PRINT A,B,C,D,E,F,G,H, I,J"

"40 RESTORE: NEXT"
"40 RESTORE: NEXT I"

"system"
"stream"

“Chapter 7"
“Chapter 8"

the 3 lines commencing
“1 of 10 under 9......... .

"2 for cube root"
"3 for cube root”

new line 30

"TURNBY (x) gives unpredictable results
when plotting in radians instead of degrees.’

"(1,0.5)"

“sub-heading is too...
“sub-heading is too long,

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

Page

92, line 10:

line 2:

line 15:

line 12:

line 9:

line 10:

line 2:

line 23;

Vine 24;

line 16:

line 26:

Vine 16:

last line:

first line:

for

for
read

for
read |

“READ or VERIFY"
“read (e.g. LOAD, INPUT, VERIFY)"

“interrupted”
"intercepted"

"109 System error."
“e.g. Attempt to input from a printer."

95575"
"5374"

240
925m

"black" read “white”

“white” read "black"

“district
"distinct"

"225 - 250"
"225 - 254"

"192 - 223"
"193 - 222"

"5461"
"5374"

“compromise”
“comprise”

“records..... "

' OPEN#4, 9, "L254" > OPEN#1,11, “#4w229" *
' OPEN#4, 9, “L1S@" : OPEN#1,11, “#4w229" *

"254"
"150"

HOW TO USE THIS MANUAL

The experienced computer user will find that the Appendices, containing the compre-
hensive information on the NewBrain, and Chapter 1, Introduction, will serve the
majority of his needs. The other chapters provide illustrations of information given
concisely in these Appendices. Those unfamiliar with computers or with BASIC should
read the handbook through and refer to both the Chapters and the Appendix for
reference. As the user gains familiarity with the NewBrain Computer, he will find that
the Appendices provide sufficient reference material for normal needs.

CONTENTS

CHAPTER 1 — INTRODUCTION

CONNECTING UP ...

SWITCHING ON .

THE KEYBOARD
THE DISPLAY .

OPERATING SYSTEM om

USING CASSETTE RECORDER

USING PRINTER............-

N
o
n
a
w
n
a

CHAPTER 2 — BASIC DEFINITIONS

INTRODUCTION...........2-20-0045

NUMERIC CONDITIONS/CONSTANTS .
VARIABLES .

ARRAY VARIABLES -
EXPRESSIONS

ERROR MESSAGES

O
n
a
w
W
N
e

CHAPTER 3 — SIMPLE BASIC

ASSIGNMENT — LET....

PRINT
TAB...

INPUT ...

LIST

RUN, END AND GOTO

STOP AND CONTINUE

REM seeee

O
Y
A
T
D
A
R
W
N
=

CHAPTER 4 — CONTROL

FOR — NEXT .
IF —THEN.

GOSUB ...

ON — GOTO AND ON GosuB

ON ERROR

ON BREAK

M
T
A
W
N
|

24
25

- 27
28

. 28

+ 32

CONTENTS (continued)

Page
CHAPTER 5 — DATA STRUCTURES

1) ARRAYS 2.2... cee cece eee reece reece eee ~. 54

2 DIMANDCLE 56
3 OPTIONBASE ... 57
4 DATA,READAND RESTORE .. . 57

CHAPTER 6 — FURTHER INPUT AND OUTPUT

1 OPEN AND CLOSE - 60
2 STREAMNUMBERS .. 61

3 LINPUT 61
4 PUTANDGET .. 62
5 SAVE, VERIFY, LOAD AND LIST... . 63

CHAPTER 7 — INTRINSIC FUNCTIONS

1
2 TRIGONOMETRIC FUNCTIONS 66

3 LOGARITHMS 67
4 POWERS 68

5 ARITHMETIC....... ° . 69
6 RANDOM NUMBERS..... . 71
7 USER DEFINE FUNCTIONS 7

CHAPTER 8 — STRING HANDLING

O
n
0
r
w
n
a

CONTENTS (continued)

CHAPTER 9 — CONVERSION

1 CHARACTER/ASCII .

2 STRING/NUMERIC

3 TEST STRING FOR NUMBER

CHAPTER 10 — GRAPHICS

SPECIAL SCREEN CHARACTERS . . 84
HIGH-RESOLUTION DISPLAY .

THE GRAPHICS “PEN”
THE PLOT COMMANDS

THE PEN FUNCTION .

GRAPHICS STREAM DEFAULTS

O
N
S
W
n
a

CHAPTER 11 — HELP IN AN EMERGENCY

INTERRUPTION — STOP
CHANGING THE DISPLAY . .

FREEING THE KEYBOARD .

RELEASING MEMORY ..
WHEN TO SWITCH OFF .

Q
a
w
n
s

APPENDICES

ERROR NUMBERS

BASIC TECHNICAL SPECIFICATION

SCREEN EDITOR TECHNICAL SPECIFICATION
BASIC RESERVEDWORDS

LINE AND SCREEN DISPLAY CHARACTER SETS .
BASIC STATEMENT KEYWORDS ..

DEVICE DRIVER SUMMARY
CALL STATEMENT AND O/S ROUTINES

HARDWARE SPECIFICATION

O
N
D
V
O
N
S
W
N
>

CHAPTER 1

INTRODUCTION

The first chapter of the NewBrain handbook explains briefly how to connect up the

computer, and then describes how the computer is used from the keyboard and display

(the console). The chapter continues with a description of the commands used to edit

the displays, and concludes with a brief guide to the operating system,cassette recorders
and printers.
New concepts are introduced by CAPITAL LETTERS and explained in the relevant
section. Any visible display from the NewBrain is shown in GREEN and text typed by
the user is shown in BROWN.

1.

wo

CONNECTING UP
1.1 Power Supply
1.2 Television or monitor
1.3 Cassette recorder(s)

. SWITCHING ON

. THE KEYBOARD

. THE DISPLAY

4.1 Screen Display
4.2 Editing the Screen Display
4.3 Cursor Control Commands
4.4 Screen Editing
45 Line Display (Model AD Only)

. THE OPERATING SYSTEM

5.1 Overview

5.2 The Input-Output System
5.3 Extension

. USING CASSETTE RECORDERS

6.1 Connection

6.2 Load

6.3 Save

64 Verify
6.5 The Tape 2 Socket

. USING A PRINTER

CHAPTER 1 — INTRODUCTION

1 CONNECTING UP

The NewBrain computer is complete with

— a power supply

— a cassette connecting lead

— aT.V. connecting lead
— handbook

Optional extra connecting leads include

— monitor lead

— printer lead
— second cassette lead

TV & MONITOR CONNECTIONS

RECORDER
CONNECTION

BLACK
(SMALL)

POWER EXPANSION UHF PRINTER SENS2 TAPE 2

MONI TOR wopen | oat TAPES

[| [/

| |

CHAPTER 1 — INTRODUCTION

1 CONNECTING UP

The printer, cassette, power and modem connections are best made by first engaging the
luas on the cable connector with the flanae on the machine connector as illustrated

1.1. Power Supply

The mains lead from the power supply is fitted with a mains plug to connect to the
domestic electricity supply. The plug is fitted with a 3 amp fuse. The low-voltage supply
from the power supply unit is connected to the NewBrain by means of a moulded socket
into the plug marked POWER in the rear of the computer.

The embossed legend TOP on the connector must be uppermost with the computer in
its normal position. The power socket is designed to prevent incorrect insertion into

the power plug, or insertion into the wrong plug, by small polarising inserts.

(POWER

—_

CHAPTER 1 — INTRODUCTION

4 CONNECTING UP

1.2 Television or Monitor

MODEL A NewBrain may be connected either to a U.H.F. television, or to a video

monitor. The connection is made from the video output socket to a monitor, or the

U.H.F. output socket to a television, using the miniature screened cable provided.
The T.V. must be tuned to channel 36. Correct tuning is indicated by absence of back-

ground noise on the picture. The contrast and brightness controls should be set low, and

then advanced, until a suitable picture is displayed. The best picture is usually obtained

with low rather than high settings of the contrast control. The same guidelines apply to
monitor adjustment. If desired, both a monitor and a television may be connected,
although the picture quality may be slightly degraded.

MODEL AD has in addition a self contained display. It may therefore be operated as a
stand alone console, or may be connected to a video monitor, or to a television. If the
self-contained display only is to be used it must be activated in the manner described on
Page 14,

CHAPTER 1 — INTRODUCTION

1 CONNECTING UP

1.3. Cassette Recorder(s)

One or two cassette recorders may be connected to a NewBrain for program and data
storage. If a cassette recorder is being purchased specifically for use with the computer
then it should have a remote microphone socket, which will enable the recorder to be

stopped and started automatically by the computer. A cassette recorder with a counter
is beneficial as this permits efficient indexing and retrieval of stored programs. Cheap,
low-quality recorders are to be avoided, since the demands of digital recording are
more severe than those of audio recording. Similarly, good quality cassettes should be
used, of not more than 30 minutes per side, to ensure adequate tape thickness. C12
cassettes (6 minutes per side) are available from many computer shops, and permit all

but the longest programs to be recorded on one side of the cassette.

The cassette lead from the computer is terminated by three miniature jack plugs. These
should be connected as follows:

BLACK (large) — MIC or MICROPHONE SOCKET

GREY — EAR, EARPHONE or MONITOR SOCKET

BLACK — REMOTE SOCKET

The moulded connector should be inserted into either TAPE 1 or TAPE 2 sockets on

the rear of the NewBrain with the moulded legend “TOP” uppermost. The operation
of the cassette recorder is described in 6.1 to 6.5.

The volume control should be set at maximum and any tone control set in the flat or
inoperative state. Only when all else fails should the output level from the NewBrain be
adjusted by the sensitivity control (SENS 1 and SENS 2). Remember to keep the tape
head clean.

PRINTER

A printer with a serial interface may be connected. Both connecting cables and suitable
printers are available from Grundy Business Systems Ltd. Other printers may of course
be used, but a different cable may be needed and switch settings within the printer

may need to be changed.

CHAPTER 1 — INTRODUCTION

2 SWITCHING ON

NewBrain computers will automatically go through an initialisation routine, checking

all the memory, when powered up. The routine lasts for about 10 seconds after which

the computer is ready to start running programs.

MODEL A may briefly display a checker board pattern on the screen, followed by a
pause of 10 seconds and then the message

NEWBRAIN BASIC

READY
.

where @ is the flashing cursor.

MODEL AD in addition displays apparently random characters on its self-contained line

display for the full period of the initialisation, after which the line display blanks.

CHAPTER 1 — INTRODUCTION

3 THE KEYBOARD

The NewBrain keyboard is laid out in the same pattern as a typewriter keyboard, with
some additional keys whose functions are explained in this section. See figure below.
Initially the keyboard will produce lower case letters, and the lower of the characters
on key tops embossed with two legends.

Example:

PRESSA

PRESS B
PRESS C

PRESS 1

PRESS ; w
o
w

“
s
w
o
c
e

BSEEBGBH 0008805
BUaEHoeBenaoaess

CHAPTER 1 — INTRODUCTION

3 THE KEYBOARD

The SHIFT Key behaves as a typewriter shift, producing UPPER CASE letters, and the

upper of the characters on the keytops. NewBrain BASIC will accept letters input from

the keyboard in either UPPER or lower case. In this handbook, when a SHIFTed
character is to be typed in, it-will be indicated as SH/a. Thus, for example:

PRESS SH/A = A

PRESS SH/B = B

PRESS SH/C = c

PRESS SH/1 1

PRESS SH/; =

The alphabetic characters (a-z) may be shifted to upper case (A-Z) by typing
CONTROL/1 (henceforth CTRL/1), giving a function similar to the SHIFT-LOCK on
a typewriter, All non-alphabetic characters will remain unshifted, thus 1 will still appear
as 1 unless SH/1 is pressed.

PRESS CTRL/1 (no visual display)

PRESS

PRESS

PRESS

PRESS

PRESS ;

“
O
O
D

“
3
0
N
D

CTRL/O cancels the effect of CTRL/1, i.e. removes the shift-lock.

Note that pressing SH/t causes an effect (ATTRIBUTE ON— see page 129) used in

advanced input/output. In the context of simple input/output SH/T causes the display
and any input from the user to become unintelligable to the computer, To recover from

this condition press SH/ESCAPE.

CHAPTER 1 — INTRODUCTION

4 THE DISPLAY

As noted in Section 1.2 a variety of means
of display may be used by NewBrain
computers model A and AD. Model A uses

either a monitor connected to the video

output, or a conventional television

connected to the U.H.F. output. To
avoid ambiguity, video or U.H.F. dis-
plays will be referred to as SCREEN
displays. Model AD outputs data either to
the SCREEN or to a 16 character fluor-

escent display, integral with the console,
or to both simultaneously. The 16 charac-
ter display will be referred to as a LINE

display. This section describes how the
screen and line displays are controlled
and explains how the contents of the
displays may be changed or EDITED by
means of the additional keys on the
NewBrain keyboard.

4.1. Screen Display

The screen display initially consists of
24 lines, each forty characters long. The
position on the screen of the next charac-
ter to be displayed is shown by a flashing
CURSOR.

The cursor is initially a flashing block

(@)indicating that unless the next charac-

ter is a CONTROL CHARACTER any

text on the line that the cursor is
Presently on will be cleared, and the

line can be overprinted.

CONTROL CHARACTERS are non-

printing features of the display. Some of

the characters used to edit a display,
discussed in this section, are control

characters. A full list of control characters

4 THE DISPLAY

is in appendix 3. If a non-control charac-
ter. for example an ALPHANUMERIC

(A-Z, @9) is pressed, the character chosen
will be displayed, and the cursor will be

advanced one step to the right, and adopt
its normal form, a flashing underbar (—).

Only one character will appear even if
pressure on the key is maintained. To
obtain multiple entries of a character the
REPEAT key is used along with the

chosen character (RPT/A). If you repeat
a character often enough, it will print to
the end of the first line, and continue on

subsequent lines.

Each subsequent line is a CONTINUA-
TION of the first, and is identified by a

non-flashing block in the leftmost posi-
tion.

READY

AAAA——-~—-AAAA
BAAA-———--AAAA

BAAetc.

Continue repeating a key, until it is close
to the end of the line, then step it to the
last position in the line and you will
notice that the cursor has reverted to a
flashing block. This is an indication that

the next character to be printed will be
on the following line, thus creating a

continuation line. A line in NewBrain
BASIC can be one ‘screen’ in length,

that is one initial line plus continuation
lines.

CHAPTER 1 — INTRODUCTION

4 THE DISPLAY

4.2. Editing the screen display

Editing features are provided in New-
Brain Basic so that mistakes can be

corrected and features can be added or

deleted without affecting the remainder

of the PROGRAM. (PROGRAM is
defined on page 40). The NewBrain
editor is a SCREEN EDITOR, that is

changes may be made to characters

displayed anywhere on the screen. The
fine on which the cursor is placed at any
time is called the CURRENT line. (When
editing a PROGRAM the changes to the

current line of the program must be

followed by NEWLINE, which will

transfer the modified line into memory.

If NEWLINE is not pressed, whilst the

cursor is on the current line, then the
SCREEN dispiay will be edited, but the

program will remain unchanged.)

Prior to editing, the cursor must be

moved to the position on the display

where the edit is to take place. A number

of cursor control commands are available

to facilitate cursor movement. Many of

the cursor control commands and the
editing commands which follow are auto
repeating, that is they will execute the
required action when the appropriate key
is pressed, and after a short delay, will

repeat the action until the key is released.
In the tables which follow, such com-

mands are identified by (R):

10

4 THE DISPLAY

4.3 Cursor Control Commands

> (R)steps cursor to the

+ (R) steps cursor to the left

right

t (R) steps cursor up

+ (R) steps cursor down

CONTROL/> moves cursor to the
right end of current line

CONTROL/< moves cursor to the

left end of current line

HOME moves cursor to the top left
corner of the screen (HOME position)

All the above may be used to position the
cursor prior to edigint either a program

or the display. PROGRAM EDITS change
the content of prpgram memory, whereas
SCREEN EDITS alter the display but
have no effect on program content.
NEWLINE is used to enter the current line

into the computer.

The screen editing commands

SHIFT >

SHIFT <—

INSERT

SHIFT HOME

SHIFT INSERT

CONTROL HOME
SHIFT J

GRAPHICS t

GRAPHICS 4

CHAPTER 1 — INTRODUCTION

4 THE DISPLAY

4.4 Screen Editing
SHIFT >R
Deletes character(s) above the cursor and
moves remainder of the line to the left to
close the gap left by the deleted charac-

ter(s), ie. deletes characters above and
to the right of the cursor.

Example: Type in

NOW IS THE TIME FOR ALL GOOD
MEN TO COME TO THE AID OF
THE PARTY

(Do not enter NEWLINE). Use the < key
to place the cursor in the space between
TO and THE. Pressing SH/+ deletes the
words THE AID OF, resulting in

NOW IS THE TIME FOR ALL GOOD

MEN TO COME TO THE PARTY

SHIFT <(R)

Deletes character(s) preceding the cursor

and moves remainder of the line to the
left to fill the gap left by the deleted
character(s), i.e, deletes characters to the

left of the cursor.

Example: Place the cursor on the space

between MEN and TO. Pressing SH/<—
delete

FOR ALL GOOD MEN

leaving

NOW IS THE TIME TO COME TO
THE PARTY

4 THE DISPLAY

4.4 Screen Editing

INSERT

Subsequently typed characters are
serted immediately before the cursor.

Insertion is terminated by the cursor
control commands > < +t { HOME or
by NEWLINE. If the cursor control

commands are used to terminate the
insert, then NEWLINE must be pressed
whilst the cursor is anywhere on the rele-

vant line for the insertion to be effective.

Example: Move the cursor to the space
between IS and THE. Press INSERT,

SPACE, NOT. The line now reads

NOW IS THE TIME TO COME
TO THE PARTY

SHIFT HOME

Clears the screen, and HOMES the

CURSOR.

The keys discussed above allow con-
siderable freedom to type the lines of a
program; the following keys provide
facilities to move the lines on the page
of the screen. As the use of these keys
is not immediately obvious, the example
should be carefully worked through on
the NewBrain, using a monitor or tele-
vision:

Type SH/HOME to clear the screen, then
enter

FOR 1 =17T0 5: PRINT It2: NEXT I

CHAPTER 1 — INTRODUCTION

4 THE DISPLAY

4.4 Screen Editing

When NEWLINE is pressed, this command
will be obeyed by the computer, which
will print the square of each number
from 1 to 5 on lines 2 to 6 of the screen.

Now press the HOME key then the
INSERT key and type 10.

This will insert a LINE NUMBER in
front of the series of commands on the

screen, so that BASIC will recognise it
as part of a program. That means that
when NEWLINE is pressed, the line will
be saved in memory. So, press NEWLINE.
The cursor will then appear on the next
line, just to the left of the number 1

The cursor now should be a solid flashing
block. This is to tell you that typing any
character now will clear the line the
cursor is on, allowing you to overwrite
that line. To check that, type the single

key R and see how the number 1 dis-
appears. The small flashing underline
form the cursor now has, tells you
that the line will not be cleared when
the next character is typed. Now type
UN to complete the word RUN, and
enter the command with NEWLINE.

The same list of numbers is now dis-

played, but on lines 3 to 7, and below
them an error message to tell you that
your program has no end statement:

4 THE DISPLAY

4.4 Screen Editing

10 for | = 1 to 5: PRINT It2: NEXT I

RUN

1
4
9

16

25.

ERROR 3 AT 10:3

This display will be useful in trying out

the next control codes.

SHIFT INSERT

Moves the current line (i.e. the line on
which the cursor is placed) and lower
lines downwards leaving a blank line. A
line which is scrolled off the bottom of

the screen is lost.

Type HOME and then 4. The cursor will
then be resting on the letter R of RUN
‘on the second line. Now type SH/INSERT.

The word RUN and all the lines below
will shift down one, leaving a blank line

for you to use. On this line, type

20 END

and press NEWLINE to enter this as
another line of your program. The cursor
will again appear as a flashing block,
resting on the R of RUN. Type > once
to move the cursor to the U, then press

NEWLINE, and the program will be
executed again.

CHAPTER 1 — INTRODUCTION

4 THE DISPLAY

4.4 Screen Editing

CONTROL HOME

Deletes the current line, leaving a blank
line.

The cursor is now a flashing block, resting

on the E of the error message given last
time. There was no error this time; but
to prove that, press CTRL/HOME which
will delete the error message, and type
RUN again, using NEWLINE to enter the

command.

The display will now show the 2 line
program at the top, then RUN and its
results, a blank line, then RUN and the
results again.

SHIFT | (R)

Deletes the current line and scrolls the
remaining lines upwards to fill the gap.

Press t and hold it down while the

cursor moves up to the word RUN,
halfway up the screen. If you overshoot,

use 4 to come back down. Then press
SH/{ and the word RUN will disappear.
Press SH/} again and hold it down and

all the lines below will also disappear.

GRAPHICS t

One “line” of text may in fact occupy
more than one row of characters on the
screen. This is shown by aCONTINU-

ATION MARK at the start of the second

and subsequent rows. To see this, type

4 THE DISPLAY

4.4 Screen Editing

HOME then > and hold the > down

until the cursor reaches the first colon,

before PRINT.

Next press the space .bar, which will
overwrite the colon, then INSERT and

hold down RPT/SPACE (dont’ worry

if the P of PRINT seems to disappear)
until the words “PRINT It2: NEXT I”
have all come well onto the second row.

Release the space bar,and a continuation

mark will be visible at the start of the

second row:

10 FOR T=1TO5
. PRINT It2: NEXT I

GR/t functions to split a continued line
into two lines. The row on which the

cursor appears becomes the first row of
the newly formed line.

In the example, with the cursor still on
the P of PRINT, press GR/t. The cursor

will then appear at the start of the line,
and the continuation mark will dis-
appear. Now type 12 and NEWLINE to

enter line 12 into memory:

10 FOR I=1TO5
12 PRINT It2: NEXT I

20 END

Note at this stage that line 10 is still
in the computer’s memory as originally

entered. It may be quickly altered by
pressing HOME and NEWLINE.

CHAPTER 1 — INTRODUCTION

4 THE DISPLAY

4.4 Screen Editing

If the example has been followed up to
this point, it should be fairly easy to again
use INSERT and GR/t to break up line
12 into two lines, say

12 PRINT It2

13 NEXT I

Remember to enter both altered lines

with NEWLINE, however. You may now

enter LIST and NEWLINE to display

the program

10 FOR l=1TO5

12 PRINT It2

13 NEXT I
20 END

GRAPHICS/}

This joins two lines of text on the screen
into a single line, by making the current
line a continuation of the line above and
introducing one continuation mark.

Example: place the cursor on the line

number 20 then press SH/> twice to
delete the number 20. Next type GR/J
introducing a continuation mark, and
hold down SH/< until the word END

has nearly reached NEXT I on the pre-
ceding line. Finally, type INSERT,
then a colon, then NEWLINE. You will

then have formed one line out of the two
lines shown on the screen, numbered 13

and 20.

14

4 THE DISPLAY

4.5 Line Display (Model AD Only)

The NewBrain AD directs output to
either a LINE or SCREEN display, or to
both line and screen, When first switched
on the AD model will default to the
combined display. Line display is
selected by the command OPEN#®3
(see page 4) whereupon the screen will
blank, and a flashing cursor will appear
in the leftmost position of the line
display. Screen display is selected by the
command OPEN#®. Output can be
directed to both displays by the command
OPEN #04.

The line display is a “window”, 16
characters wide, onto the current line.

The window may be moved across the
line by the cursor control keys > and «,
Whatever the position of the cursor in
the display, it first moves to the right or
left end of the window, and then pushes
the window along the fine, stopping when
either end of the line is reached. When
OPEN#0,4 has been used, editing is
exactly as described above for the screen
display, and the window moves from one
line to another. When OPEN#9,3 is used
however, the editor is now a line editor,
that is it will only accept those commands

whose area of ‘operation is confined
within one line. Thus, the following
commands will not work if the fine
display only is being used.

CHAPTER 1 — INTRODUCTION

4 THE DISPLAY

4.5 Line Display (Model AD Only)

tand+

SH/INSERT (insert a blank line)
SH/} (delete the current line)

GR/J (insert continuation mark)
HOME will return the cursor
to the leftmost position in
the line.

Note that all editing commands are

effective if both displays are in use.

The line display will present output
from a program, or LIST a program, one
line at a time, To continue the output,
or the LISTing, press NEWLINE. Thus
the program:

PRINT 1

PRINT 2

PRINT 3
END R

O
N

will print first 1, then 2, then 3, as NEW-
LINE is repeatedly pressed. Similarly, if
LISTed the display will show lines 1, 2,
etc. as NEWLINE is repeatedly pressed.
A program line which is to be edited
using the line display only, must be
listed, thus:

LIST 40

to present line 40 for editing.

The line display can represent all the
characters shown on the NewBrain

keyboard. Alphabetic characters are

always upper case. The limitations of

4 THE DISPLAY

Line Display (Model AD Only)

the line display cause the representations
of a few of the less-frequently used
characters to be somewhat stylised. The
user should therefore make himself

familiar with the display characters, With
the exception of the pound sign (£),
the complete character set may be dis-
played by the following simple program,
which also demonstrates the operation

of the LINE display. This program may be
entered with the screen selected, but
should be RUN with only the line display
selected (OPEN#®,3).

10D=200

20 FOR |=32 TO 95
30 PRINT CHR&(1);

40 FOR T=I TO D:NEXT T
SONEXTI

60END

When the program is RUN the character
set will be displayed, with a small time
delay between characters set by line 10.

Note how the window presented by the
display moves as the characters reach the
end of the display. When the program

has finished the window moves back to

the beginning of the output line, and the
cursor appears in the leftmost position.

The character set may be examined by
using the cursor control keys > and +
to move the window across the output
line. The characters displayed are:

SPACE!" #$%&‘()*+,-./
Otogd
;<=>?AtoZI\t

15

CHAPTER 1 — INTRODUCTION

4 THE DISPLAY

4.5 Line Display (Model AD Only)

and a final character (which is used to
indicate that the character sent to the dis-

play cannot be represented, for example a
graphics symbol, The line display char-
acter set is illustrated in Appendix 5.

5 THE OPERATING SYSTEM

5.1 Overview

The remaining sections of this chapter
provide the experienced computer user
with an introduction to various features
which are specific to the NewBrain, and
should be read in conjunction with the
Appendices. The reader who is not
familiar with BASIC should read the
Introduction to BASIC in Chapter 2-9,
working through the examples with a
NewBrain and a TV screen wherever
possible, before returning to finish this
chapter.

The NewBrain operating software consists
of three parts which are able to function

almost independently from one another.
These parts are the OPERATING SYSTEM

itself, the DEVICE DRIVERS, and the

BASIC COMPILER. The operating sys-
tem includes the control of input and
output (the INPUT-OUTPUT SYSTEM),
all the memory checking and other
routines required on power-up, and a

RESTART mechanism described below,

as well as a powerful mathematics pack-

age. The device drivers handle input and

output to all peripherals, including the
screen display and keyboard, and the
BASIC COMPILER is automatically given

control of the NewBrain after the com-

puter is switched on.

CHAPTER 1 — INTRODUCTION

5 THE OPERATING SYSTEM

5.2 The Input-Output System

In order to move data between the USER

Program (normally BASIC) and the
various peripherals, a set of DEVICE

DRIVERS is provided. Each of these is
designed to “look the same” to the

operating system, and therefore to
BASIC, while meeting . the specialised
needs of each corresponding peripheral

device. The OPEN statement is used to

set up a numbered data STREAM as a
channel from the program itself to a
peripheral. After the OPEN statement has

been executed, the numbered stream
remains associated with the device type
given in the OPEN, e.g.

OPEN#3,8

opens stream number 3 as a printer
stream. Thereafter any output to stream
3 would be directed to the printer con-
nections at the back of the NewBrain.
This association remains in force until the
stream is closed. The available device
drivers are summarised in Appendix 7,
together with examples of the OPEN
statement for each device type.

The Z80 processor provides a number of
hardware PORTS for the input and

output channels to various peripherals.
Certain of these ports are reserved for

specific NewBrain functions, such as TV
control to maintain the screen display,

and the Enable and Status registers which

are related to other aspects of the hard-
ware, A BASIC program may use the
device type 7 to direct a stream to use

5 THE OPERATING SYSTEM

5.2 The Input-Output System

any selected port for byte-oriented input
or output, normally using the USER
INPUT parallel port (21 for model A,

20 for model AD) and the USER OUT-
PUT parallel port (number 3). These can

provide a means of accessing digital
instruments directly from the NewBrain
when it is fitted with a suitable expansion
box, using statements like

OPEN#20, 7, 20
GET# 20, x

5.3 Extension

The NewBrain operating system is design-
ed to make it practicable to extend the
facilities available at any time. This will

be illustrated by reference to the device

drivers. A table of the standard device

drivers is provided, and the starting

address of this table is written into a”
particular memory location. Either firm-
ware or an extra package contained in a

ROM expansion box may extend this
table by copying it into a suitable area of
memory, with any desired alterations or

additions, then inserting the address of

this copy of the table into the correct
location. This method is suitable for
providing an extra type of device driver,

or for making changes to an existing
device driver. In either case, the code
for the new driver or for the alteration
must also be provided.

A similar method of extension makes use

7

CHAPTER 1 — INTRODUCTION

5 THE OPERATING SYSTEM

5.3 Extension

of a RESTART MECHANISM in the
processor. The various functions provided
in the Operating System and in BASIC

are accessed when required through a
table of routines, which can be altered or

extended in the same way. This means
that additional features can be provided

in BASIC, or added to the operating
system, simply by plugging an expan-
sion box into the NewBrain before

switching on. Some of the operating
system routines are described in Appendix

8.

6 USING CASSETTE RECORDERS

6.1 Connection

There are two sockets on the NewBrain
for cassette recorder leads, labelled
TAPE 1 and TAPE 2. Either may be used
for programs or data according to prefer-

ence; however, the BASIC LOAD and

SAVE commands use TAPE 1 as a default,

so it is usual to connect a cassette recorder
to this socket for loading programs.

6.2 Load

In order to load a BASIC program from

tape, first plug in the tape recorder to
the TAPE 1 socket. Insert the tape,

wound forward to the correct position,
and depress the PLAY button on the tape

recorder. Next enter LOAD on the New-
Brain. The tape will be scanned for a file
header, and if the file has a title that

title will be displayed on the screen. The
computer will read the entire program file
into memory, showing a solid cursor

when the file has been completely read
in,

The NewBrain may be interrupted when
reading from a tape by pressing the
asterisk key “*’"; at all other times, it
may be interrupted by pressing the STOP
key.

6.3 Save

To save a BASIC program on tape, plug in
the tape recorder as described above, and
depress the RECORD (or RECORD and
PLAY) switch(es).

CHAPTER 1 — INTRODUCTION

6 USING CASSETTE RECORDERS

6.3 Save

The program may be saved with a title,
by entering e.g.

SAVE “accts program”

or without a title, by entering simply

SAVE

The computer will then output the
BASIC program from its memory to the
tape, displaying a solid cursor when this

has been completed. The program
remains in memory, and may be checked
with the VERIFY command, or a further

copy put on the next part of the tape
by entering SAVE (and a title if wanted)

again.

6.4 Verify

To check that a program has been saved

correctly, after saving as many copies as
desired, press the STOP key on the tape

recorder and then the REWIND. No tape

motion will result at this stage. Then
enter VERIFY on the NewBrain key-

board. The tape will wind back, and must

be stopped just before the first copy of

the program (or at the beginning of the
tape). Then press the PLAY button on
the tape recorder. The NewBrain will

display the title of the file on the tape

if there is one, then read it through,

comparing it with the program in its
memory, If the saved copy matches the
Program in memory, “VERIFIED” will

6 USING CASSETTE RECORDERS

6.4 Verify

be displayed, otherwise an error message
(e.g. ERROR 91) will be displayed. The
VERIFY command may be stopped by
using the asterisk key “*”, as for LOAD
above.

Note that the program in memory is not

changed as a result of VERIFY. The

VERIFY command is often useful as a
way of simply releasing the cassette
recorder from the NewBrain’s control:

enter VERIFY, then use the cassette

recorder controls to position the tape to a
desired point for any operation, e.g.
LOAD. After pressing the STOP button
on the cassette recorder, press the asterisk
on the NewBrain to cancel the VERIFY

command, This method is preferable to
continually unplugging one end or the
other of the cassette lead!

6.5 The Tape 2 Socket

The SAVE command outputs the BASIC:
program in its space-saving form. It may
be specified with a stream number, e.g.

SAVE #12

but in this case the stream must be open.
This form of the command must not
contain a file title, and although the
stream may in fact be of any type, the

most useful application is to save a pro-
gram on a tape recorder that is plugged in
to the TAPE 2 socket, as e.g.

CHAPTER 1 — INTRODUCTION

6 USING CASSETTE RECORDERS

6.5OPEthe?ThAe 2 Socket
SAVE #12

CLOSE #12

The first command in this example
selects a stream called 12 of type 2,

which is the device type that handles the
TAPE 2 outlet. The tape will move at this
stage, to write the file header, and the

cassette recorder must therefore be set to
RECORD. The next command saves the

current BASIC program on the tape via

stream 12, so the cassette recorder must
remain set to RECORD.

\f a short BASIC program is saved in this

way, it may happen that no tape motion
is seen after entering SAVE. This will not

cause any problem, as the last block in

any tape handling process is not written

to the tape until a CLOSE is executed.

1f the entire program is less than one
block, then it will be written out in

response to the CLOSE command.

OPEN # 12,2

The program may also be verified on
TAPE 2. Enter then press

REWIND on the tape recorder to bring
the tape back to the start of the file.
When the tape is correctly positioned,
pass PLAY and the NewBrain will then
read the file header and display the file

titl¥ AF May tRen enter

20

6 USING CASSETTE RECORDERS

6.5 The Tape 2 Socket
CLOSE # 12

to check the program in memory against

the saved copy, and when
the verification is completed. The tape
recorder may then be switched off and

disconnected.

CHAPTER 1 — INTRODUCTION

7 USING A PRINTER

Any “byte-serial” printer which uses
the RS232 standard interface may be
connected to the NewBrain to print

documents, list programs or provide
hard-copy output from a program. First
a printer stream must be opened, e.g.

OPEN #188

then the printer may be switched on and
the printer lead connected to the back of

the NewBrain. Any output statement
may then be used, with output directed
to the selected stream:

LIST #18

prints a copy of the entire program

LIST # 18, 200--

prints the program from line number 200
to the end

PRINT # 18, “Amount payable

£",P [5.2]

prints the legend given in quotes followed
by the value of P.

The formatting specification used in this
example is particularly valuable for
printed output, allowing the digits of
numbers to be correctly aligned with one
another.

21

CHAPTER 2

BASIC DEFINITIONS

This chapter provides introductory definitions of BASIC terms essential to an under-

standing of the remainder of the handbook.

INTRODUCTION

NUMERIC CONDITIONS
VARIABLES

ARRAY VARIABLES
EXPRESSIONS

ERROR MESSAGES M
n
k
W
n
—

23

CHAPTER 2 — BASIC DEFINITIONS

1 INTRODUCTION

NewBrain BASIC will accept input lines

with or without line numbers. Lines

which are entered with line numbers are

not executed, but are added to the
current program in memory. The program
is not executed until a suitable command

is entered, at which time control of the
computer passes to the program. Lines

without the numbers are commands —

they are executed immediately NEWLINE
is pressed. NewBrain BASIC will accept

commands (be in COMMAND MODE)
unless control has already passed to the

computer because it is executing either
another command, or a program.
Command Mode is re-entered when:-

an END or STOP or LOAD state-
ment occurs
an ERROR occurs

the STOP key is pressed

the current command is completed,

unless it transfers contro! to a
program.

A BASIC PROGRAM is a sequence of
numbered lines. Each line consists of a
number of BASIC STATEMENTS separ-
ated by colons, thus:-

NNNN BASIC STATEMENT:

STATEMENT: — — —

BASIC

where NNNN is the line number. Line
numbers must lie in the range 1 to 65,535.
Program lines are executed in numerical
order, commencing with the lowest

24

1 INTRODUCTION

numbered lines. It is good practice to use
an increment of say 10 between successive
line numbers to allow for later insertions,
thus:

10 ~LINE1

20 ~LINE2
30 «LINE3
40 LINE4

A BASIC STATEMENT consists of a

KEYWORD followed by a list of para-
meters in a format which is specific to

each keyword, The keyword identifies
the operation to be performed by the

computer, The parameter(s) refer either

literally or symbolically to the data to be

processed. A parameter may often be an

EXPRESSION.

CHAPTER 2 — BASIC DEFINITIONS

2 NUMERIC CONSTANTS

NewBrain BASIC accepts integers, float-
ing point real numbers, or strings as
constants. Some examples of acceptable
numeric constants are:-

276
3.141592
0.0716

1,.234E05

Numbers input from the console or
numeric constants in a program may have
any number of digits up to the length of a
line, but are stored internally toa precision
of 10 or more significant figures, and are
output, by default, rounded to 8 signifi-
cant figures, Thus the command:-

PRINT 3.141592653589

produces the output:

3.1415927

Numbers are printed in INTEGER,

FLOATING POINT, or SCIENTIFIC

notation. Integers are whole numbers,
with no fractional or decimal component,
e.g.

0,102, +4, —36, 1000

Floating point numbers have a decimal
point, the position of which may vary
from number to number (hence floating

point), thus

3.732, —0.358, 6352.961

2 NUMERIC CONSTANTS

In scientific notation numbers are repre-
sented as a fixed point number, the
MANTISSA, and an EXPONENT, which

indicates how many powers of ten the
mantissa should be multiplied by. The

format of a scientific number is:

SN.NNNNNNNNESMM

where § is the sign (always printed in the

exponent, omitted, if positive, in the
mantissa), NNN——— are the digits of the

mantissa, printed in fixed point format,

‘one digit before the decimal point, E is
an abbreviation of Exponent, and MM are
the digits of the exponent. The following
are equivalent numbers

1.2345E9 123.45E7 0.0012345E12

where the change of position of the deci-
mal point is compensated by the change
of the exponent. NewBrain BASIC will

print the number as:

1.2345E+09

Numbers outside the range 99 999 999

to 0.00001 are printed in scientific nota-

tion.

Number NewBrain BASIC output

100000000 1£+08
99999999 99999999

0.00001 .00001
0.000099 9. 9E-06

25

CHAPTER 2 — BASIC DEFINITIONS

2 NUMERIC CONSTANTS

Numbers are stored internally in the
range —10'S° to +10'5°. Numbers are
output however, in the range --10°° to
+10°°. Thus the command

PRINT 1E60 + 1E90/1E80

(where « is used to mean multiply, see
page 28 correctly yields the result
1E+70.

An attempt to input a number outside
the range — 1£99 to 1E99 will result in

an error message. An attempt to output a

number outside the range — 1E99 to 1E99
will result in a display of *****. Thus:

PRINT 1E60« 1E90/1E80

is acceptable, whereas

PRINT 1£150/1E80

is not.

Note that numbers in scientific notation
must have a mantissa (1E60 is acceptable,
E60 will produce an ERROR message).

The format of a number output by the
computer is thus as follows:

1. If the number is positive, a space is
output, followed by the number. If the
number is negative, a minus sign is output,
followed by the number.

26

2 NUMERIC CONSTANTS

2. If the absolute value of a number is an

integer in the range 0 to 99 999 999 it is

printed as an integer.

3. If the absolute value of a number is

greater than or equal to 0.0001 and less

than or equal to 99 999 999 it is printed

in fixed point notation with no exponent.

4. If the number is outside the ranges in
2 and 3 above, it is printed in scientific
notation (with an exponent). In scientific

notation non-significant zeros are sup-
pressed in the mantissa, but two digits
are always printed in the exponent.

A space is printed after a number in all
formats. Thus the input:

T=1E£15 Y=-56.78: D=.0342

PRINT T:Y:D

yields the result.

1E+15 —56.78 .0342

Certain BASIC reserved words (q.v.)
are constants, for example the mathe-
matical constant 7, which in BASIC is
written Pl. (See 66)

CHAPTER 2 — BASIC DEFINITIONS

3 VARIABLES

Numbers can be represented symbolically
by letters, called variables. The value may

be set explicitly by the programmer,

LET A = 22.35

or may be assigned as a result of calcula-
tions in a program

LETC = 2°PI*R’R

Before a variable is assigned a value, it has
the value zero. Variable names can be one

‘or two characters long, The first character
must be a letter (A—Z), the second may

be a letter or number (A—Z, 0—9). The
letter(s) may be upper or lower case;

NewBrain BASIC does not distinguish
between the two. Examples of valid

variable names are A, A3, AC.

A variable may also represent a STRING
which is any sequence of letters or other
characters. String variables may use any
‘one or two-character name (alphabetic
followed by alphanumeric as for a
variable) followed by a dollar sign $.

Thus string variables may be labelled AS,
A3$, ACS, etc. The string itself is de-
limited by quotation marks at the
beginning and end. Strings are assigned in
the same way as numeric variables,

3 VARIABLES

AS “Hello”
A33 = “NewBrain”

ACS “What is your name?”

DS 72/362?"

and output in the same way,

PRINT ACS

Press NEWLINE

What is your name?

Strings may be of any length from 0 to
32767 characters long.

N.B. Variables cannot be given the

following names, since each is a BASIC

RESERVED WORD (see Appendix 4).

TO TOS

ON ONS

OR ORS

IF IFS
Pi PIS

FN FNS

27

CHAPTER 2 — BASIC DEFINITIONS

4 ARRAY VARIABLES

An array is a table of values, stored with a
common name, where each element of
the table is identified by the array sub-
script. Thus A(3) represents the third
element of the array called A. F(4,2) is
the element in the fourth column, second
row of the array F, The array A above is
one-dimensional, whereas F is two-
dimensional. Arrays may not have more
than two dimensions and the maximum
number of elements in an array is 5374.
The contents of an array may be numbers,

or strings, but string arrays must have a
string name, e.g.:

C$ (4), A3$ (5,3), BBS (17)

In a string array each element is a single
string, e.g. C$ (2) = “Goodbye”.

A name used for an array may also be
used for a different scalar (i.e. single
element) variable of the same type, thus

C3 (4) and C3 may be used concurrently,
as can BBS and BB$ (12). Arrays must be
DIMENSIONED before use (q.v), which
sets all elements of an array to zero.

5 EXPRESSIONS

An expression consists of any or all of the
previously defined items, that is

Constant e.g. 42
String e.g. “Hello”

Variable eg. A

Array Elemente.g. C (4, B+2)

Plus the intrinsic functions of BASIC, for
example SOR (SQuare Root, see Chapter

7), linked by a number of OPERATORS.

5.1 Arithmetic Expressions

— use the arithmetic operators

+ plus
= minus
/ divide

multiply

t raise to the power

and in addition

preceding +leaves the sign of the
following number or
variable unchanged:

ty
Preceding - changes the sign of the

following number or vari-
able: x = -y

x=

Note that the up-arrow f used for raising

to a power is SH/+ and not the cursor
control up-arrow.

CHAPTER 2 — BASIC DEFINITIONS

5 EXPRESSIONS

5.2 Logical Expressions

There are two types of operator in logical

expressions, the logical operators AND,
OR and NOT, and the RELATIONAL
operators. These latter consist of

equals
greater than
less than
greater than or equal! to

less than or equal to
less than or greater than
(not equal)

A
A
V
A
V
"

vu

When used in an expression the relation is

evaluated and the result stored as either

TRUE if the relationship is valid or
FALSE if invalid. These may be linked

by the logical operators AND, OR and

NOT. In order to describe these a few
noteson BINARY ARITHMETIC are

required.

The familiar decimal arithmetic uses the

position of a digit in a number to indicate
the power of 10 corresponding to the

digit, which may be 0 to 9. For example

234, to 74x 10° 43x 10! + 2x 107
=4x1 +3x10 +2x 100

where the subscript , , indicates a decimal
number. Computers however perform
arithmetic using binary numbers, that is
numbers consisting of Binary digiTs
(BITs), 0 or 1. Thus

5 EXPRESSIONS

5.2 Logical Expressions

=1x 2°4+0x2'+1x 2?

+1x 28
=1x1 +0x2 +1x4
+1x8

= 13,5

1101,

where 1101, is a 4-BIT binary number.

The rightmost bit, bit @ is the least-

significant bit, the leftmost bit, bit 3 is
the most-significant bit. In practice
arithmetic within the NewBrain is per-

formed using 8-bit numbers. Bit 7 is
often used as a SIGN-BIT, indicating a

positive number if bit 7 = 0, a negative
number if bit 7 = 1.

NOT
The NOT operation changes each bit in
a number from @ to 1, or from 1 to 0.
This may be shown by a TRUTH TABLE
which lists all the possible short condi-
tions, in this case B = 0 or B = 1, and the
result following the operation.

B NOT B

0 1

1 oO

Therefore

NOT 0000 1011 (11,9)
= 1111 0100 (-12,5)

If N is a decimal number then

NOT (N) = — (N+1)

2.9.
NOT B = -7 and NOT -7=B

CHAPTER 2 — BASIC DEFINITIONS

5 EXPRESSIONS

5.2 Logical Expressions

Results of the relational operations, e.g.
IF A = B, are stored as -1 if TRUE (in

this case A equal to B) or O if FALSE
{A not equal to B). Thus the command

PRINT TRUE, FALSE

produces the result,
-1 0

Note in particular that

NOT -1=0,NOTO=-1

or

NOT TRUE = FALSE, NOT FALSE
= TRUE

AND

AND operates according to the Truth
Table

A B A AND 8B

0 0 0
0 1 0
1 0 0
1 1 1

setting a bit in the result to 1 only if the
corresponding bits in the input words are
both 1, i.e.

(A AND B)=1ifA=1ANDB=1

30

5 EXPRESSIONS

5.2 Logical Expressions

For example

0011 1111 (63,)
AND 0001 1011 (27%)
= 0001 1011 (27,0)

and

1117 1111 (-1= TRUE)

AND 0000 0000 (0= FALSE)

= 0000 0000 FALSE

i.e. TRUE AND FALSE = FALSE

OR

OR has the Truth Table

A B A OR B

oO Oo oO

oO 1 1
1 oO t

1 1 1

that is (A OR B) = 1 if A=10rB=1

0011 #1111 63,0
OR 0001 1011 270
= 0011 1111 63,9

1111 1111 TRUE

OR oo oo FALSE

= 11171 1111 TRUE

ie. TRUE OR FALSE = TRUE

CHAPTER 2 — BASIC DEFINITIONS

5 EXPRESSIONS

5.3 String Expressions

The operation of joining two strings
is called CONCATENATION. Two
operators may be used to concatenate

strings, + or &.

“GOOD” + “BYE”

‘GOOD” & “BYE”
‘GOODBYE”

Thus

Strings may also be tested by the relation-

al operators. Effectively the ASCII

code (q.v.) for each character is compared
on a character by character basis, Thus
this context

ng" = Mal
nat < pH

"A" < "a" (ie. Upper case < Lower
case)

nat < Maal

Thus “a” < “an <“and < ant”

NewBrain BASIC provides functions to

handle parts of strings, described in
Chapter 7,

5 EXPRESSIONS

5.4 Precedence

Where an expression contains more than
one operator these are evaluated in the
order preceding + or - leave or change
sign.

t raising to a power
* / multiplication and division
+-&
<<= =
NOT
AND
oR

>>= <>

The precedence of operators may be

changed by inserting parentheses, thus

4*6+6-2 = 24
4*(5+6—2)= 36
4*(5+6)-2= 42

NESTED parentheses are always eval-
uated from the innermost parentheses
outwards.

31

CHAPTER 2 — BASIC DEFINITIONS

6 ERROR MESSAGES

NewBrain BASIC provides a comprehen-

sive range of error codes to assist the user
in identifying faults in programs, Error
messages take the form

ERROR XXX AT NN

where XXX is the error code number,

and NN is the line number at which the
error occurred, If the error occurred in a

multi-statement line, then the error
message takes the form

ERROR XXX AT NN: P

where P indicates the first invalid state-
ment on the line. Thus

10 PRINT A,B: GOTO 100

produces the message

ERROR 29 AT 10: 2

if line 100 is non-existent when the

Program is executed.

One error is detected on entry, i.e.

following NEWLINE. The line

99999 PRINT A (NEWLINE)

immediately produces

ERROR 4

indicating an illegal line number.

32

6 ERROR MESSAGES

Other errors are detected when a program
is run, or when a command is entered for

immediate execution. A comprehensive
list of error code numbers is contained in

Appendix 1.

CHAPTER 3

SIMPLE BASIC

This chapter outlines the elementary commands necessary to get a program “up and
running”, including the assignment statement (LET), input from the keyboard, output
to the display, and the commands to start and stop execution of a program.

1. ASSIGNMENT — LET

2. PRINT

3. TAB

4, INPUT

5. LIST

5.1 List — Screen Display

5.2 List — Line Display

6. RUN, END AND GOTO

7, STOP AND CONTINUE

8. REM

33

CHAPTER 3— SIMPLE BASIC

1 ASSIGNMENT -- LET

Variables are set to a desired value

using =. Thus, to assign the value 26.35 to

a variable called G the statement

LET G = 26.35

is used. Similarly, one may assign a value
toa string variable

LET Y$ = “YES”

The assignment may consist of equating
a variable to an expression, thus

LETC = 2*PI*R

LET P = C*A*(1—N/R).
LETD=D+1

In BASIC this last example means “take

the value stored in the box with the label

D (four, say), add one to it (making five)
and put this back in the box labelled D”.

Thus D becomes D+1. Variables, like D,

may change. their value during the course
of the program.

Example: Print the surface area of a
cylinder

10 LETR=2

20
30 LETA=PI*R*R

40 LETC=2"PI*R

50 LETS *c

60 LETS=S+2*A
70 PRINTS

80 END

1 ASSIGNMENT — LET

ASSIGNMENT is so frequently used that

the keyword LET may be omitted.

10
20
30
40
50
60
70
80 END

CHAPTER 3 — SIMPLE BASIC

2 PRINT

This is one of the most versatile state-
ments in BASIC. It is used to output data
from the computer, normally to the
screen or line display. PRINT may be
followed by anumber, a numeric variable,
a string, a string variable, or an expression,
as in the examples which follow.

PRINT 32.76 produces the result
32.76

A= 4: PRINT A produces the result
4

The value of the variable is printed, not
its name. Where the item to be printed is

a number, its format may be completely

controlled by using a FORMATTING

SPECIFICATION (Appendix 2 § 4.1.4).

A different formatting specification may
be used for each item. Thus,

X = 1612.24: PRINT X [4.2]; X [5.1]

yields

1612.24 1612.2

The symbol ? may be used as a synonym
for PRINT, as in

2 X (1.3€] giving

1.612E+03

and

?“Hello” giving

2 PRINT

Hello

The test within the quotation marks is
printed, exactly as typed in. Similarly for
a string variable:

AS = “string var’: PRINT AS

results in

String var

1f an expression follows a print statement
then the expression is evaluated and the

value is printed,

PRINT 32 * 5/8
20

A print statement may have any combin-
ation of parameters, so long as the list
will fit on a line (including continuation

lines). The parameters in a print statement

must be separated by semi-colons or
commas. The effect of the semi-colons
or commas is to format the printing. A

semi-colon instructs the display device
not to advance the cursor before printing
the next character:-

PRINT “GOOD”; “BYE”

GOODBYE

A comma will cause the next character to

be printed at the start of the next ZONE.

The page upon which characters are
PRINTed is divided into PRINT-ZONES.

The print-zones on the screen are 10

35

CHAPTER 3 — SIMPLE BASIC

2 PRINT

characters wide. Thus

PRINT “GOOD”, “BYE”

results in

GOOD BYE

where the B of BYE is placed on the 11th

position from the left edge of the display.

PRINT “21

Z2", "23"

will indicate the start of the print zones

‘on the screen,

Zi 222 223

The output from a PRINT statement can

be directed to a PRINT ZONE by preced-
ing it with the appropriate number of
commas. Thus PRINT , , , 21 causes
21 to be positioned in the fourth print
zone. Note that the first character of a
positive number is a blank (in place of the

understood positive sign), so the first

digit of a positive number is placed in the
second character position in the print
zone.

36

3 TAB

TAB may be used to place the output at
any character position along the line.
TAB is used only in PRINT statements.
It has the form TAB(n) which places the
cursor n positions from the start of a
fine.

PRINT TAB (12), “SUM”
SUM

Note that TAB, like other parameters to
the PRINT statement must be separate
from subsequent parameters by a semi-
colon or a comma. However, if a comma
is used, the cursor is immediately advanced
to the start of the next print-zone.

Multiple tabs may be used, thus

PRINT TAB(10);“TEN”;TAB(20);"TWENTY”
TEN TWENTY

but if the tab counts are such as to make
one piece of text overwrite another, then
a new line is forced:-

PRINT TAB(10);"TEN”;TAB(12);“TWELVE”
TEN

TWELVE

A new line is also forced if an attempt is
made to print a number or string towards
the end of a line, where the spaces
remaining at the end of the line are not
sufficient to contain all the characters
making up the number or string, PRINT
PI will output PI to 7 decimal places.
With a leading space and a decimal point
the output will thus occupy ten character

CHAPTER 3 — SIMPLE BASIC

3 TAB

positions. So, when the screen is forty
characters wide,

PRINT TAB(30); PI

will print 3.1415927 tabbed 30 spaces

out in the line following the print state-
ment, whereas PRINT TAB(31), PI
results in a blank line, followed by PI,

printed on the next line, in the normal

Position:

PRINT TAB(31); PI

3.1415927

The same result will be obtained for any
tab from 31 to 40. Tabs greater than 40
are “reduced modulo the line length”,
that is the tab, for example 218, is

divided by the line length (40) and the
remainder (18) is taken as the tab value.
Thus TAB(218) is equivalent to TAB(18).
The maximum number permitted in a tab

statement is 65,535 (equivalent to
TAB(15)), the minimum is 1.

TAB and , are only effective when print-
ing to the screen. For other devices

alternative means must be used for print
formatting.

4 INPUT

INPUT is used to collect data from an

input device, normally the keyboard,
Its function is to request a number or a

string which must then be assigned to a
variable.

Example:

INPUT A — numeric
INPUT AS — string

INPUT A, B,C,A$ — mixed

When this simple form is used a prompt
(question mark, space) is issued to the
display, thus

INPUT A
ro

The computer waits for the requested

data to be entered, followed by NEW-

LINE, thus

INPUT AS
? FRED

Where more than one item is to be input
(third example above) they must be

separated by a comma,

INPUT A, B,C, AS
? 34, 56, 3.87, FRED

If either too many or too few items are
input, an error message will be display.
If a program is being executed, the
prompt will then be repeated.

37

CHAPTER 3 — SIMPLE BASIC

4 INPUT

Where the input is a string, it may not of
course contain a NEWLINE character and

it need not be input with its enclosing
quotes. However, if the string contains
embedded quotes, for example She said
“Help” then the string must have closing
quotation marks and the embedded
quotation marks must be duplicated, thus

INPUT DS
? "She said” “Help” ” ”

PRINT DS
She said “Help”

The prompt (question mark, space)

passed to the console may be usefully
replaced by a prompt expression, in the

form

INPUT (PROMPT EXPRESSION)

VARIABLE(S)

for example

INPUT (“BLACK OR WHITE”) PCS
BLACK OR WHITE —

Again, if an incorrect response is given to
the prompt, then the user is re-prompted

with the prompt expression. If no prompt

whatsoever is desired, the NULL
STRING " ” is used

INPUT ("") A
.

5 LIST

5.1 LIST — Screen Display

LIST is used to output the program to an
output device (screen, printer, etc). By
default, LISTing takes place on the screen,

LIST has two parameters separated by

a minus sign, thus LIST 10-100. The
parameters represent the start and end
points of the LIST. If either parameter
is omitted the start or end of the pro-

gram is assumed.

LIST 10 lists line 10
LIST 10-100 lists lines 10 to 100

inclusive
LIST —100 lists up to and including

line 100
LIST 100- lists from line 100 onwards
LIST — lists complete program
LIST lists complete program

The first parameter must be less than the

second, thus LIST 200-100 has no

effect.

CHAPTER 3 — SIMPLE BASIC

5 LIST

5.2 List — Line Display

When the line display alone is in use,
LIST operates as above, except that only
one line of a program is displayed at a
time. Subsequent lines are displayed by
pressing NEWLINE repeatedly. When it is
desired to edit a program line (say line
50) then LIST 50 must be entered, If

LIST 10-100

were used, then the computer would not
return to command mode (when editing
could commence) until the LIST com-
mand has completed, i.e. lines 10 to 100
had all been displayed.

6 RUN, END AND GOTO

RUN is used to start execution of a
program stored in memory. Prior to
execution, all variables are cleared to
zero. Thus the simple program

10 PRINT a,b,c

200 a=4:b=3:c=2

30 PRINT a,b,c
40 END

always produces the results

0 0 O

4 3 2

each time it is RUN, i.e. a, b, c (set to 4,

3, 2 in line 20) are reset to zero each time
RUN is entered.

Notice that the program finishes with

40 END

This permits more than one program to
be stored in memory at the same time.
RUN will always commence execution at
the lowest numbered line available, and

execution will cease when END is en-
countered. A second or subsequent
Program may be executed by the com-

mand GOTO XXXX where XXXX is the
starting line number of the program to

be executed. If the program above is

extended to read as follows:-

10 PRINT a, b,c

20 a=4:b e=2

30 PRINT a,b,c
40 END

39

CHAPTER 3 — SIMPLE BASIC

6 RUN, END AND GOTO

100 PRINT d,e, f
110 d=5:e=6:f=7
120 PRINT d,e, f
130 END

RUN will cause execution of lines 10 to

40, whereas GOTO 100 will cause execu-

tion of lines 100 to 130. Note that unlike

RUN, GOTO will not clear variables, thus
the first GOTO 100 results in

0 0 oO

5 6 7

whereas subsequent GOTO 100 commands
yield

5 6 7
5 6 7

GOTO may be used within a program to
alter the sequence in which BASIC

executes the lines of a program. The

following trivial program will always loop
back to line 10 from line 30

10 INPUT (“YOUR NAME?)

AS
20 PRINT TAB (7); “HELLO “;

AS
30 GOTO 10
40 PRINT “THIS LINE WILL

NEVER BE PRINTED”

50 END

and the only way to stop the program
(apart from switching off) is to press
STOP, followed by NEWLINE.

40

7 STOP AND CONTINUE

STOP may be pressed at any time. The
computer will halt and a message

STOPPED
or

STOPPED AT NNNN: P

will be displayed, where NNNN is the line
number which is about to be executed.
Execution of a program may be restarted
by the command CONTINUE, or the
abbreviated command CONT . From the

example above

YOUR NAME? FRED
HELLO FRED

YOUR NAME? (STOP, NEWLINE
pressed)

STOPPED AT 20
.

Now CONTinue the program

CONT

HELLO

YOUR NAME? —
etc.

Note that the program continued, on line
20, by printing “HELLO” only, since the
input statement prior to the STOP, was

not followed by an input string (or, the
input string was the NULL STRING).

STOP may be used in a program, particu-
larly during testing and fault finding, to

CHAPTER 3 — SIMPLE BASIC

7 STOP AND CONTINUE

halt a program, so that variables may be
examined. Program execution may then
be continued. Line 30, above, may be
edited, to produce the following:-

10 INPUT “YOUR NAME? ") AS
20 PRINT TAB (7); “HELLO ”; AS

30 STOP
40 PRINT “THIS LINE WILL

NEVER BE PRINTED”

50 END

This will produce the output

RUN
YOUR NAME? BABBAGE

HELLO BABBAGE

STOPPED AT 30

The only variable available in this example

is AS

?AS

BABBAGE
.

after which CONT produces the output
THIS LINE WILL NEVER BE PRINTED.

8 REM

When a BASIC program consists of more
than a few lines, it can be difficult to see
at once what it does. The keyword REM

is used to introduce a REMark, i.e. a line
in the program which will be ignored by

BASIC. As an example, see lines 190 and
195 in the program on page 49 It is good

Practice to use REM:

a) at the beginning of a program listing,
to explain the purpose of a program,

b) at the beginning of any sub-routine
(see Chapter 4) to explain the purpose

of the sub-routine.

c) anywhere where clarification (especial-
ly at some future date) will be helpful.

4

CHAPTER 4

CONTROL

With the exception of GOTO, the commands in the last chapter allowed programs to
execute line by line, in numerical order. The CONTROL commands allow the order of
execution to be determined either by the programmer during program development, or
by the program itself.

. FOR

IF...

. GOSUB

1 .. NEXT

2.

3.

4. ON....GOTO and ON GOSUB

5.

6.

. THEN

. ON ERROR and REPORT

. ON BREAK

CHAPTER 4 — CONTROL

1 FOR — NEXT

Thus

10 FORI=1T08

AE ie INNER OUTER
30 All, J)=10"1 "4 LooR Loop
40 NEXTJ
50 NEXTI
60 END

The inner loop will be executed 10 * 8=
80 times. The loops may not overlap,
thus

10 FORA=1T06 {op 1
20 T=A"4 i

30 FORB=1T04—7

 40 P=T"B Loop 2
50 NEXTA
60 NEXTB

is NOT allowed.

The result of the correct example above

may be seen by running it and then
executing the program below —

100 FORI=1TO8

110 FORJ=1T010

120 PRINTA (I, J);
130 NEXTJ
140 NEXTI

150 END

2 IF—THEN

The !F—THEN statement causes exe-

cution of alternative parts of a program

depending on the CONDITION within
the IF—THEN statement. Ail the
relational operations (<, >, <=, >=,

=, <>) and the logical operations

(AND, OR, NOT) may be used in the

CONDITION.

20 IF C = 4 * A THEN 100 will go to
line 100 only if the condition is met (i.e.

C=4* A). The program

10 INPUTN

20 IF N>=5 THEN 50

30 PRINT “LESS THAN OR = 5”

40 GOTO 10
50 PRINT “GREATER THAN 5”

60 GOTO10
70 END

will print a message LESS THAN OR =
5 or GREATER THAN 5 depending
on the value of the number keyed in, and

then return to request another number.
At line 20, if the number is greater than

5, execution continues at line 50, other-

wise it proceeds to the next line.
PROGRAM FLOW (line numbers)

LESS THAN GREATER THAN
OR EQUAL 10

20
10 .

LINE 20
No. 30

40 50
60

CHAPTER 4 — CONTROL

2 IF -—THEN

The condition must be a logical expres-
sion (see page 29) and may be as complex
as required:

70 IF(A*A+B*B-C*C)<

0.02 THEN 200
or
200 INPUT (“ANOTHER GAME?

YESORNO...”) AS

210 IF AS ="YES” THEN 10

220 PRINT “GOODBYE”

230 END

Where IF statements are used to re-direct
program execution, GOTO may be used
in place of THEN,

IF X <1 THEN 100

is the same as

1F X<1 GOTO 100

(IF X <1 THEN GOTO 100 is also
acceptable.)

IF statements may also be followed by

any keyword. The example above may be

re-written,

10 INPUTN

20 IFN>5PRINT “GREATER

THAN 5”: GOTO 10
30 PRINT “LESS THAN 5”

40 GOTO 10

2 IF —THEN

When the statement following the condi-
tion is a LET, then either LET or THEN

must be used, e.g.

IF A= 1B = 2is NOT allowed
but

IF A= 1 THEN B = 2and
IF A= 1 LET B = 2are allowed

47

CHAPTER 4 — CONTROL

3 GOSUB

In many computer applications there are

routine tasks which are required to be

performed intermittently during the exe-

cution of a program. In games programs,

for example, there is frequently a part
of the program used to re-evaluate the

players score after each move is made. In
the business environment for example, in

stock control, a routine will be used to

re-calculate the stock of items held after

each transaction is completed. In each

case the sequence of instructions required
does not appear several times in the

program listing, but only once, as a

SUB-ROUTINE. When required, control

is passed to the sub-routine by a GOSUB
statement. The sub-routine executes its
operations, and returns control to the
body of the program by a RETURN
statement. Contro! will return to the
program line following the GOSUB. In
the program symbolically represented
below

10 LINE1
20 LINE2
30 GOSUB 1000
40 LINE3

1000 SUBROUTINE LINE 1

1010 RETURN

the computer will execute the line
numbers in the order

10 20 30 1000 1010 40...

As an example, here is a program which

48

3 GOSUB

calculates the length across the base of a

rectangular box, and the length across
the diagonal.

LENGTH
ACROSS
DIAGONAL

z

v
LENGTH

ACROSS BASE

The program uses a small subroutine
which uses Pythagoras’s theorem (the
square of the hypotenuse equals the sum
of the squares of the other two sides) to
evaluate the unknown dimension. The

sub-routine first calculates the length
across the base, using A and B as input,

returning the length as C, then uses the

length across the base and the depth as

input, returning the diagonal length.

The sub-routine is

200 C=SOR (A* A+B “"B)
210 PRINT

220 RETURN

SOR in line 200 is equivalent to SQuare
Root. The PRINT statement in line 210
is included in the sub-routine to improve

legibility in the complete program. The

RETURN statement, which must be the

CHAPTER 4 — CONTROL

3 GOSUB

last statement in any sub-routine, may be
abbreviated RET if desired.

The complete program follows

1@ INPUT (“LENGTH, BREADTH,
HEIGHT?”) A, B, Z

20 IF A=®ORB=0THEN 999

30 GOSUB 200

40 PRINT “LENGTH ACROSS

BASE ="";C

50 A=C:B=Z

68 GOSUB 200
70 PRINT “LENGTH ACROSS

DIAGONAL ="; C

80 PRINT PRINT: GOTO 10
199 REM: SUB-ROUTINE TO

CALCULATE

195 REM SQUARE ROOT OF SUM

OF SQUARES

200 C=SOR(A*A+B"B)
210 PRINT

220 RETURN
999 END

Line 19 Requests the dimensions of the
box, with a suitable prompt.

Line 20 Allows the user to escape from
the program by input of a dim-
ension of zero.

Line 30 Passes contro! to the sub-routine.
Line 49 On RETURN from the sub-

routine prints the base length.
Line 50 Re-assigns the variables to

comply with the requirements of
the sub-routine (it expects A and
B as inputs, and outputs C).

Line 60 Calls the sub-routine for the

3 GOSUB

second time.
Line 7@ On return, prints the diagonal

length.
Line 80 Inserts blank lines to make the

Presentation tidier and returns

control to the start of the
program.

Note that the sub-routine is placed at the
end of the program, but could in fact be
placed anywhere.

RUN

LENGTH, BREADTH, HEIGHT? 3, 4, 12

DISTANCE ACROSS BASE = 5

DISTANCE ACROSS DIAGONAL = 13

Subroutines may be nested, that is one

sub-routine may call another.

49

CHAPTER 4 — CONTROL

4 ON — GOTO and ON — GOSUB

Program control may be transferred to

different lines, as a function of the value

of an expression, using the statement

ON EXPRESSION GOTO LINE No.
LINE No., etc.

NewBrain BASIC evaluates the expres-
sion, rounds it to the nearest integer, then
goes to the line with the first number if
the answer was one, the second number if
the answer was two, and so on. In this
example, because A = 2.7, which is
rounded to 3, the programs jumps to line
300, and prints 300.

0 A=27

20 ONA GOTO 109, 200, 300,

400, 500

30 PRINT “SHOULDN'T GET
HERE”: GOTO 999

100 PRINT 100": GOTO 999

200 PRINT 200”: GOTO 999

300 PRINT ‘300’: GOTO 999
400 PRINT 490’: GOTO 999

500 PRINT “500”

999 END

Note that if the decimal component of

the value @f the expression is greater than

or equal to .6000000000 approximately,
the number is rounded up, otherwise the

number is rounded down. Because
BASIC does arithmetic using Binary

numbers, and then converts the results to
decimal numbers, the rounding is not
exact. In the example, numbers greater
than about 2.49999999980 will be

50

4 ON-— GOTO and ON — GOSUB

rounded to 3, otherwise they will be
rounded down. Additionally, care should
be taken to ensure that the value of the
expression is neither zero nor greater than
the number of options (that is greater
than 5 in the example above) otherwise
an error message results. The program
may be modified, to test differing num-
bers by altering lines 10 and 999:

10 INPUT (“NO. "yN

20 ONN GOTO 190, 200, 300
400, 500

30 PRINT “SHOULDN’T GET

HERE”: GOTO 999

100 PRINT 100": GOTO 999
200 PRINT 200": GOTO 999

300 PRINT “300”: GOTO 999

400 PRINT “401 GOTO 999

500 PRINT “500”

999 GOTO 10

Following an ON . . . GOTO, execution

will always continue at one of the line

numbers on the statement, or else an
error message will be generated, Thus, in
this example, line 30 will never be exe-

cuted. Where it is desired to switch

execution to different points in a pro-
gram, and then continue on a common
path, ON . .. GOSUB is used.

ON GOSUB is very similar to ON GOTO
except that a sub-routine is executed
following the ON statement, and returns

to the statement following the ON
statement. The example from ON-GOTO

may use GOSUB, as below:

CHAPTER 4 — CONTROL

4 ON-— GOTO and ON — GOSUB

10 INPUT (“NO. "yN
20 ONN GOSUB 109, 200, 300,

400, 500
30 PRINT “GOT HERE FROM

SUBROUTINE”: GOTO 10

100 PRINT “100”: RETURN
200 PRINT “200”: RETURN

300 PRINT “300”: RETURN
400 PRINT “400”: RETURN
500 PRINT "500": RETURN

999 END

The flow of the programs may be pictured
thus

ON ...GOTO

>.

LINE 30, which was never executed in

ON . . . GOTO, is always executed in
ON ...GOSUB.

5 ON ERROR AND REPORT

During program development errors are
trapped by the NewBrain operating
system and error messages displayed. It is
possible to redirect the error handling
routines to within the user program, using
ON ERROR

1® ON ERROR GOTO 100
20 INPUT ("NO.2") A

30 PRINT “RECIPROCAL OF “;
ALNS"; VA

40 INPUT (“ANOTHER NO.?”) BS
50 IF BS=“Y" GOTO 20

60 END
100 PRINT “ not valid”
110 PRINT “TRY AGAIN”

120 GOTO 20

In this program when an attempt is made
to calculate the reciprocal of zero, input
in response to line 20, instead of out-
putting an error message the program
jumps to line 100, resulting in the output

RECIPROCAL OF @ IS NOT VALID

TRY AGAIN

If line 120 is replaced by

120 END

then the user may identify the error in
the normal fashion, by the command
REPORT which prints the latest error

message and ends execution.

51

CHAPTER 4 — CONTROL

5 ONERROR

REPORT
ERROR 2AT 30
.

(Note that if an error has not occurred, it

is an error to call REPORT.)

After an ON ERROR transfer execution
may be continued at the line at which the
error occurred by RESUME, or at an
alternative line by RESUME line number.
Two system functions are available for
use by an error handling routine, ERRLIN
and ERRNO.

ERRLIN returns the |,ine number in
which the error occurred, ERRNO

returns the error number.

ON ERROR GOTO @ cancels the trapping
of errors,

52

6 ON BREAK

The STOP key is used to break into a
program and halt execution. The ON
BREAK statements allows the STOP key
to redirect the program in the same
manner as ON ERROR. The example
above may be re-written:-

10 ON ERROR GOTO 100

15 ON BREAK GOTO 200
20 INPUT (“NO.2?") A

30 PRINT “RECIPROCAL OF”;

AVIS"; VA
60 GOTO 20

100 PRINT “NOT VALID”
118 PRINT “TRY AGAIN”

120 GOTO 20
200 PRINT “TERMINATED”

210 PRINT “GOODBYE”
220 END

To stop the program the STOP key is

pressed, and the message

TERMINATED

GOODBYE
.

appears.

The ERRLIN and ERRNO functions may

be used with ON BREAK; ERRNO
returns the system interrupt number @ (for
the STOP key) ERRLIN, RESUME and

REPORT act as in ON ERROR. ON

BREAK GOTO @ cancels the trapping of

the STOP key.

CHAPTER 5

DATA STRUCTURES

Data within a program may be stored either item by item, in DATA statements or in
ordered arrays. This chapter discusses the creation and manipulation of arrays, and the

use of data statements.

1, ARRAYS.

2. DIMENSION (DIM and CLEAR

3. OPTION BASE

4, DATA, READ and RESTORE

53

CHAPTER 5 — DATA STRUCTURES

1 ARRAYS

An array is a means of storing items of
data, under a common name, with each

item identified by a SUBSCRIPT to the
array name. If the array was called A then

the ELEMENTS of the array are called

A(1), A(2), A(3) etc., where 1, 2,3...
are the subscripts. An array of this sort
may be thought of as a list,

A(1) 2.2

A(2) 6.8
A(3) 7.1
A(4) 9.3

where the number of elements, in this case
10, is the DIMENSION of the array. Thus
A is said to be a ONE-DIMENSIONAL
array, of dimension 10. Arrays may also
be TWO-DIMENSIONAL, corresponding
toa table,

T(1,C)

T(2,C) 17.4

T(3,C)
T(4,C)

-0.15

1ARRAYS

where T(1,1) 2.2

T(3, 1) 6.3
T(2, 2) 17.4

T(2,3) = -0.15

etc,

Here T is a two-dimensional array, of

dimensions 4 and 3, i.e. 4 rows and 3
columns. Each element of the array may

be manipulated in the same way as any
numeric variable, thus

10 LETR=2
20 LETA(2,1)=PI*R*R

30 PRINT A (2, 1)

40 END

(RESULT: 12.566371)

or

10 LETR=2

20 LETA(2,1)=PI"R*R

30° LET A (2,2) =P

40 LET A (3, 3) =A (2, 1)/A (2,2)

50 PRINT A (3, 3)
60 END

(RESULT: 4)

The arrays above are NUMERIC

ARRAYS, that is each element contains a
number, STRING ARRAYS are similar,

except that each element contains a
string, String arrays, like string variables,
are identified by the $ suffix in the array

name. Thus

CHAPTER 5 — DATA STRUCTURES

1 ARRAYS

19 A$(1)
20 = AS(2)
30 AS(3)
40 AS(4)

50 FORC=1TO 4: PRINT

AG (C); :NEXT C

69 END

produces

THIS IS ASTRING ARRAY

A variable may have the same name as an

array in a program, thus A$ and AS (_},
and A and A (_), are distinguished by
BASIC. The following has a variable A,
a string A$, and a string ARRAY AS(_).

10
20
30 AS(3)
40 AS(4)
50 FORA=1TO 4: PRINT

AS (A); :NEXTA

60 PRINT

70 A$="THIS IS ASTRING”

80 PRINT AS

90 END

The following program will fill a two
dimensional array with numbers which

represent the array subscripts, that is
A(2, 1) = 21, A(4, 5) = 45 etc., and then
print out the array. The dimensions of
the array are requested from the user, and

must not exceed 9 rows by 7 columns, in
order to retain the format of the display.

1 ARRAYS

10 INPUT (ROWS, COLUMNS ?”)
R,C

20 FORI=1TOR
30 FORJ=1TOC
40 All, J)= 10" 144
50 NEXT J
60 NEXTI
70 PRINT TAB (7);"C =";
80 FORI=1TOC: PRINT

90
100 FORI=1TOR

105 2”A ("51;",C) =";
110 FORJ=1TOC

120 PRINT A (I, J);
130 NEXT J

135 PRINT
140 NEXTI

158 END

The output looks like this:-

ROWS, COLUMNS? 6, 5
c=1 2 3 4 5

A(1,C)= 11 12°13 «14 «15

A(2,C)= 21 22 23 24 25

A(3,C)= 31 32 33 34 35

A(4,C)= 41 42 43 44 45

A(5,C)= 51 52 53 54 55

A(6,C)= 61 62 63 64 65

Arrays may not have more than two
dimensions, and the number of elements

in an array is limited by the amount of

memory space available, up to a maxi-
mum of 5374 elements. The dimension(s)
of arrays which are greater than 10 or 10

by 10 elements should be declared by a

DIMENSION STATEMENT.

55

CHAPTER 5 — DATA STRUCTURES

2 DIMand CLEAR

DIM, short for dimension, is an instruc-

tion to the computer to reserve sufficient

memory space to store the contents of
the arrays in the DIM statement. Several

arrays may be dimensioned by one DIM
statement,

DIMA (20), C (6, 17), CS (12)

DIM statements may contain algebraic
expressions, which are evaluated, and

rounded to the nearest integer number:-

10 N=6.6
20 DIMA (N+10)

results in A having dimension 17.

DIM statements should be placed early in

a program, before the first use of any
array elements, or SUBSCRIPTED
VARIABLES (A(3), B3(17,2), C(4,1)

etc). If any element of an array is en-
countered before the relevant DIM

statement, the array is assumed to have
dimension 10, or 10 by 10. Once an
array has been dimensioned by a
DIM statement or by default, it may

not be re-dimensioned, unless it has

been CLEARED. RUN automatically

CLEARs.

CLEAR reverses the effect of a DIM

statement, in that it releases the memory
used for array variables, and it additionally

resets all variables, thus subsequent

references to variables will produce the
value @ for numbers, and null for strings.

56

2 DIM and CLEAR

Thus the program

10 C (4,5) = 45: F = 22

20 DS= “ANSWER”

30 GOSUB 100

40 CLEAR

50 GOSUB 100
69 END

1090 PRINT C (4,5), F, DS

110 RET

produces the results

ANSWER

Specific variables, may be cleared, thus

CLEAR F (clear a variable)
or

CLEAR C() (clear an array)

or a list may be cleared

CLEAR C{), DS, A, L8()

CHAPTER 5 — DATA STRUCTURES

3 OPTION BASE

The first element of an array A may be
considered as A(@) or A(1), depending on
the programmer, or the version of BASIC
in use. If A(®) is permitted then an array
of dimension 8, A(8), has 9 elements
A(®) to A(8). NewBrain BASIC permits
the programmer to select which alternative
he wishes by the statement

OPTION BASE 0
or

OPTION BASE 1

If the base is @ the first element of a one-

dimensional array will be A(@), the first

element of a two-dimensional array will
be B(0,0). If the base is 1, then the first

elements are A(1)° and B(1, 1). OPTION

BASE may only be followed by @ or 1,
and must be declared before any dimen-

sion statement, or use of arrays. If
OPTION BASE is omitted, base zero is

assumed.

4 DATA, READ and RESTORE

A DATA statement contains numeric or
string constants which are to be used ina
program, and which are assigned to
variables by a READ statement. The

constants in a DATA statement are read,
one ata time, and assigned to the variables
in the list following the READ statement.

Thus

10 DATA 12, 2.7, HELLO, 5, SUM

may be read by

100 READA,C, E$,L, M$

assigning 12 to A, 2.7 to C, HELLO to
E$ etc. Numeric and string constants may
be mixed in both DATA and READ

statements, but they must match, or an
error will result.

10 DATA 3.4, RADIUS
20 READC$,Y

will assign 3.4 to C$, but will not assign

RADIUS to Y, and wili produce an error
message.

Data may be placed in as many DATA
statements as desired and placed any-
where within a program. A DATA

statement, if part of a multi-statement
line, must be the last statement of the
line. BASIC assembles all the data items
in the statements into a list, and main-

tains a pointer into the list, advancing
the pointer each time an item is READ.

87

CHAPTER 5 — DATA STRUCTURES

4 DATA,READ and RESTORE

10 DATA 23.5, 45,2. 54,4.
545, 3.28

20 DATA 2.2, 1.76, 1.0819, 454
100 READA,F,1,G
200 READ Y,K,L,M,D,X

After execution of line 100, A = 23.5,
F = 45, | = 2.54, G = 4.545 and the
pointer will indicate 3.28 as the next data
item to be read, as Y in line 200, There
are more variables in the READ state-
ments than there are data items in the
DATA statements, however, so X cannot
be assigned a value in this instance, and
a, error message will result.

The pointer in the data list can be reset

to either the beginning of the complete
list, or to the first item in any data

statement by RESTORE.

RESTORE _ sets the pointer to the
start of the list

RESTORE 20 sets the pointer to the

first item in line 20,

If line 20 were not a DATA statement,

then the pointer would be set to the first

item in a DATA statement following line

20.

10 DATA1,2,3
20 DATA4,5,6
30 DATA7,8,9
100 READ A,B,C,D
101 REM SETS A=1, B=2, C=3, D=4
200 RESTORE 20
201 REM SETS POINTER TO 4

4 DATA, READ and RESTORE

210 READE,F,G

211 REM SETS E=4, F=5, G=6
300 RESTORE

301 REM SETS POINTER TO 1

310 READH,1I,J
311 REM SETS H=1, I=2, J=3

400 PRINTA,B,C,D,E,F,G,H,J

999 END

RUN
1 2 3 4
4 5 6 1

2 3

The program above would set A = 1,
B = 2,C =3,..1 = 9, and fail to assign
J, were it not for the RESTORE state-
ments.

This example

10 DIM A$ (20)

20 DATA NEWBRAIN

30 FOR I=1 to 20; READ A$ (I)
40 RESTORE : NEXT

sets each element of the string array to
“NEWBRAIN”. In the absence of the
RESTORE statement an error would

occur, as the data would be used up after
the first READ.

CHAPTER 6

FURTHER INPUT AND OUTPUT

For many applications, the PRINT and INPUT commands described in Chapter 2 will
prove sufficient. More advanced input and output handling is available, either by select-
ing a stream other than the console, or by using the commands described in this chapter
and in Chapter 10.

. OPEN and CLOSE

. STREAM NUMBERS

. LINPUT

}. PUT and GET

. SAVE, VERIFY, LOAD and LIST O
P
F
O
N
S

CHAPTER 6 — FURTHER INPUT AND OUTPUT

1 OPEN and CLOSE

A BASIC program may use up to 255

numbered STREAMS in addition to the
console. A STREAM is a data route from

the computer to an input/output device.
Each of these may be assigned to any one

of the device types listed in Appendix 7.
The OPEN statement is used to make this

assignment, e.g.

OPEN #2,3

OPEN OUT #7, 2, “accounts”

In the first example stream number 2 is
opened with device type 3, i.e. the line
(or v.f.) display. Input and output com-
mands which make use of stream 2 are
then allowable, e.g.

PRINT #2, “press any key”:

In the second example, stream number 7
is opened with device type 2, i.e. the
cassette recorder plugged into the TAPE

2 socket. Output commands which make
use of stream 7 are then allowable,

After the OPEN command has been
executed, all input or output operations
which use the same stream number are
directed to the selected peripheral. This
connection may be broken by means of
the CLOSE command:

CLOSE #7

Since the CLOSE command does not give
an error, even when the given stream is
not in fact open, it is easy to close all

60

1 OPEN and CLOSE

streams with a command of the form

FOR | = 1 to 255: CLOSE #1: NEXTI

Note that stream O may not be explicitly

closed. If stream 0 is opened at any time,
BASIC first closes the console stream

then re-opens it. This is to ensure that
there is always a console stream to handle

input commands!

CHAPTER 6 — FURTHER INPUT AND OUTPUT

2 STREAM NUMBERS

All the input and output statements are
acceptable with or without a stream
number, If a stream number is given, the

form of the command is as in

INPUT #5, eS

e, the BASIC keyword is followed by

'#", the stream number, and the remaining
parameters with a comma “’,” after the

stream number if it does not end the
statement. The default system if a stream

number is not used is 0, i.e. the console

stream, except in the case of the PLOT
command described in Chapter 10.

The use of a prompt with the INPUT
and LINPUT statements is not allowed

when a stream number is given after the
keyword.

3 LINPUT

The LINPUT command is very similar to
INPUT when the latter is used to supply

a value to a string variable. All input from

the selected device is collected until a

NEWLINE is received. This means in

Particular that any quotation marks are
placed in the string variable exactly as

typed, thus

LINPUT D$: PRINT DS

?She said “Help”
She said “Help”

When a program is written to use the line
display as the console, LINPUT is often

used with a prompt of less than 16

characters, e.g.

LINPUT (“Enter part no:"’) p&

Note that if the prompt were given as
“Enter part number:”", the display would
actually show only the last 15 characters,
as the window is moved far enough along
the current line to bring the cursor posi-
tion onto the right hand end of the
window:-

ter part number: _

61

CHAPTER 6 — FURTHER INPUT AND OUTPUT

4 PUT and GET

In many control applications it is necessary

to output single bytes to a stream. This is
done using the PUT statement. One or
more bytes may be given in the PUT-list,
and a stream number may be specified:

PUT 22, 8, 10

PUT #8, 13

In the first example, the console stream is

directed to place the cursor at character
position 8 on row 10 of the screen (see
Appendix 3). In the second, a NEWLINE
control code is delivered to stream

number 8. If stream 8 is a printer stream,
this will result in a single paper feed,

The PUT-list consists of one or more

bytes, i.e. numbers in the range 0-255,
Each of these may be a constant, an
expression, or a string; however, if a
string is used, only the first character is
considered. 1f PUT is used to output a
control code, the effect of that code
depends on the peripherat device used;
for the Screen Editor control codes, see
Appendix 3. Certain control codes

require additional bytes to further define
the action to be taken. If the byte is not

a control code, it is equivalent to its
corresponding character, as shown in
Appendix 5. Thus the following two

examples produce the same result:

PRINT “Hello”;
PUT 72, 101, 108, 108, 111

Note the Screen Editor cortrol code 27

62

4 PUT and GET

(ESCAPE) has the effect of ensuring that
the next byte is not treated as a control

code. Thus PUT 27, 12 prints character
number 12, whereas PUT 12 moves the

cursor to the home position.

The command GET may be used to
obtain a single byte from an input stream.
This can be useful in various control
applications, and when a stream is of
type 7 (280 port) or type 9 (modem):

OPEN #1,9
GET #1, X : PUT X

Many real-time games will operate by
opening a keyboard input stream (device
type 5 or 6) and using GET to pick up
single keystrokes.

CHAPTER 6 — FURTHER INPUT AND OUTPUT

5 SAVE VERIFY LOAD and 1 IST

The BASIC program entered by the user
is held in memory in “entokened’ form.
This means that many of the BASIC
reserved words are replaced by a one-byte
TOKEN in order to save space. The
SAVE and LOAD commands allow the
program to be output to any stream
(usually a backup store) or read in, in
this “entokened” form. The LIST com-
mand allows the ordinary, or expanded,
form to be output to any stream, usually
the screen or a printer, Examples of all
these commands are given in Chapter 1.

63

CHAPTER 7

INTRINSIC FUNCTIONS

NewBrain BASIC provides a range of predefined functions. This chapter discusses the
mathematical, utility, and random number functions, and concludes with user-defined
functions, String handling functions are treated in Chapter 8.

1, Pl PI

2. TRIGONOMETRIC FUNCTIONS SINE (SIN)

COSINE (COS)

TANGENT (TAN)
ARCSINE (ASN)

ARC-COSINE (ACS)

ARC-TANGENT (ATN)

3 LOGARITHMS
3.1 Natural Logarithm (LOG)
3.2. Natural Anti-Logarithm (EXP)

4, POWERS
4.1. Square Root (SQR)
4.2 Raising to a Power (+)

5. ARITHMETIC
5.1 Integer Part (INT)

5.2 Absolute Part (ABS)
5.3 Sign (SGN)

. RANDOM NUMBERS

. USER DEFINED FUNCTIONS

RND/RANDOMIZE

DEF FN

65

CHAPTER 7 — INTRINSIC FUNCTIONS

1 Pl

The ratio of the circumferences of a circle

to its diameter, represented by the Greek

letter a (pronounced PI), and often

approximated by 22/7, is provided by
NewBrain BASIC to an accuracy of 10

significant figures.

PRINT PI [1.93

3.141592654

2 TRIGONOMETRIC FUNCTIONS

NewBrain BASIC provides

SIN(X) — The SINE of (X)

COS(X) — The COSINE of (X)
TAN(X) — The TANGENT of (X)

ASN(X) — The angle whose sine is X

or ARCSINE (X)

ACS(X) — The angle whose cosine is
X or ARC-COSINE (X)

ATN(X) — The angle whose tangent is

X or ARC-TANGENT (X)

The angles used with trigonometric func-
tions are always expressed in RADIANS.

There are 7 radians in 180 degrees, thus
N degrees = N * 7/180 RADIANS, i.e.
90° = 7/2, 60° = 7/3 etc. If angles greater
than 360 degrees, 27 radians, are used as
the argument to trigonometric functions,

they are reduced modulo 360° (or 27
radians), that is the angle is divided by
360 or 2z, and the remainder used as the
argument. Thus

Sin 450° = Sine 90°

or in BASIC format

SIN (5 * PI/2) = SIN (PI/2)

Trigonometric functions may be manip-
ulated in the same way as variables. The
following program plots a simple graph of
the sine and cosine functions.

10 GOSUB 20¢
20 FORD =0TO 360STEP 20

CHAPTER 7 — INTRINSIC FUNCTIONS

2 TRIGONOMETRIC FUNCTIONS

30 R=D"PI/180
40 IF SIN(R)>COS(R) THEN 100

50 PRINT AB (22+ 15 * SIN

(R));"S
60 PRINT TAB (22 + 15 * COS

(R));"C"
70 GOTO 120

100 PRINT D; TAB (22 + 15 * COS

(R)); “C";
110 PRINT TAB (22+ 15 * SIN

(R));"S"”

120 NEXTD

130 GOSUB 200

140 END

200 PRINT “DEG”; TAB (6); "-1";
210 PRINT TAB (13); “’-.5";
220 PRINT TAB (22); “0”

230 PRINT TAB (29); “+.5";

240 PRINT TAB (37); “+1”

250 RETURN

The sine curve is plotted using S, the
cosine curve using C.

3 LOGARITHMS

3.1 Log

LOG (X) provides the natural logarithm
(to the base e, e = 2.71828183) of the

argument X thus

? LOG (10)
2.3025851

? LOG (2.71828183)

1

? LOG (1)
0

LOG will not accept an argument which
is zero, or negative

3.2. EXP

EXP (X) produces the value of “e to the

power X” thus EXP(2) = e * e, EXP(3) =
e * e * eetc. EXP (X) is the inverse func-

tion of LOG, i.e. the natural antilogarithm,
thus

PRINT EXP (LOG(X))

produces the result X as does

PRINT LOG (EXP(X))

Reversing the examples in LOG above

? EXP(O)

? ExP(1)

2.7182818

? EXP(2.30258509)

10

67

CHAPTER 7 — INTRINSIC FUNCTIONS

4 POWERS

4.1 SOR

SOR (X) yields the SQuare Root of (X).

? SQR(25)
5

? SOR(62500)
250

The square root of a negative number is
not a real number, and produces an error

message.

42 t

t is read as “TO THE POWER OF”

thus 2 t 3 is read as “TWO TO THE
POWER OF THREE” which equals
2 * 2 * 2 or 8. This short program

illustrates the function of t.

10 INPUT (“NUMBER? “")N

20 A%= “TO THE POWER OF”

30 FOR!=1TO10

40 PRINTN;A$;1;"=";N 41

50 NEXT!

60 PRINT: GOTO 10

producing a table of powers of the input
number, up to a power of 10, thus

NUMBER ? 2

TO THE POWER OF
TO THE POWER OF

TO THE POWER OF
TO THE POWER OF

TO THE POWER OF
TO THE POWER OF

TO THE POWER OF

TO THE POWER OF

N
N
N
N
N
N
N
N

W
Y
H
T
A
W
N
A
=

= 256

4 POWERS

2 TOTHEPOWEROF 9 = 512
2 TOTHE POWER OF 10 = 1024
NUMBER ? ~ 1 of 10 under 9

1 of 1024 under
1 of 512

where each line is N (in this case 2) times
the previous line. The program may be
modified to work up to any power, by
inserting line 15 and modifying line 30:

10 INPUT (“NUMBER ?”) N
15 INPUT (“GREATEST POWER

2")P
20 A$ = "TO THE POWER OF”
30 FORI=1TOP
40 PRINT; AS;1;
50 NEXTI
60 PRINT: GOTO 10

t may be used to evaluate roots of a
number by using the form

PRINT N ft (1/R)

where R is the root required, i.e, 2 for

square root, 2 for cube root, etc. The
following program will evaluate the roots
of a number N, up to the Rth root.

10 A= “ROOT OF”
20 INPUT (“NUMBER ?“) N

30 INPUT (“GREATEST ROOT ?

"YR
40 FORI=2TOR

50 IF 1 >3PRINT’ “71;
“TH ";: GOTO 70

60 ON! GOSUB 100, 110, 120

70 PRINT A$;N; 7Nt (1/1)

80 = NEXTI

CHAPTER 7 — INTRINSIC FUNCTIONS

4 POWERS

100 PRINT: GOTO 10

110 PRINT “SQUARE ”; :RET

120 PRINT “CUBE”; :RET

LINES 50 and 60 are used to preserve the
standard nomenclature, ie. “SQUARE
ROOT”, “CUBE ROOT” instead of 2nd
Root, 3rd Root. The variable | in LINE
60 should only take the values 2, and 3,
switching to lines 110 and 120 respec-
tively, therefore an arbitrary line number
is placed in the list of arguments corres-
ponding to the switch value 1. Note that
the line corresponding to the number
must exist, however, otherwise an error
will be flagged. For “NUMBER” = 64,
and “GREATEST ROOT” = 7, the out-
put is

SQUARE ROOT OF 64 =

CUBE ROOT OF 64 = 4

4TH ROOT OF 64 = 2.8284271
5TH ROOT OF 64 = 2.2973967

6TH ROOTOF 64 = 2

7TH ROOT OF 64 = 1.8114473

5 ARITHMETIC

5.1 INT

INT(X) returns the integral part of X, that
is the largest integer less than or equal to
X. Thus

INT (35.3) = 35

INT (2.1) = 2

INT (-2.3) = -3

INT (-7.1) = -8

INT (1.345E23) = 1.345 E +23
INT (1.234567E5) = 123456

5.2 ABS

ABS(X) strips X of its minus sign, if one
exists, and returns the positive value of X.

ABS(42) = 42
ABS(-42) = 42

Formally

ABS(X) = XifX>0
=-XifX<@

remember that minus a negative number
X (= -4 say) produces a positive number
(4).

ABS(X) is used, for example, where the
sign of a number is immaterial, or where
it is essential to have a positive number,
for example prior to extracting a square
root:-

10 INPUTD

20 Y =SQR (ABS(D))

69

CHAPTER 7 — INTRINSIC FUNCTIONS

5 ARITHMETIC

If it is necessary to strip off the sign, by

ABS(_), and perhaps restore it later, then
SGN(_) may be used.

5.3 SGN

SGN(X) returns the value

+1if X>0

Oif X=0
-1if X<@i.e. X negative

X positive

PRINT SGN(5.3), SGN(®),SGN (-3.2)
1 0 -1

In this example, a number is input,
stripped of its sign, operated upon, and
then has its sign restored.

19 INPUTN

20 S=SGN (N)
30 N=ABS(N)
4...
co.
60 N=S*N

As a practical example, using INT, ABS,
and SGN the following program simulates
a radar “speed trap” which operates by
transmitting radio energy at a known
frequency say F, which is changed in
frequency when it bounces off an ap-
proaching, or receding car, increasing
when the car is approaching, decreasing
when receding. (The change in frequency
is called a Doppler shift after the dis-
coverer of the phenomenom.) This
70

5 ARITHMETIC

Program asks for an input frequency,
converts it to miles per hour, and states
whether the “car” was approaching,
receding, or stationary.

1@ REM DOPPLER SHIFT

20 REM K =CONVERSION

FACTOR FREQ./M.P.H.
30 REM M=SPEED IN M.P.H.

40 FO= 10.00: REM TRANS-

MITTED FREQUENCY

50 INPUT (“RECEIVED
FREQUENCY”) F

60 DF=F—FO

70 = SGN (DF)
80 NT (346.73 * ABS (DF))
90 S=S+2

100 ONS GOSUB 200, 210, 220
119 PRINT “CAR”; S$; "AT"; M,

“M.P.H.””

120 PRINT: GOTO 50
200 S$="RECEDING”: RET
210 S$ = “STATIONARY

220 S$ = “APPROACHING

999 END

NOTES:

LINE 60Calculates the change in fre-

quency DF.
LINE 70Strips off the sign of the fre-

quency change.
LINE 80Converts the change in fre-

quency to M.P.H., ignoring the

sign (by using ABS), and taking
the integer part of the speed, i.e.
the next lowest whole number

of M.P.H.

CHAPTER 7 — INTRINSIC FUNCTIONS

5 ARITHMETIC

LINE 90Converts the sign S from the

range
-1Q0r +1

to 12 3

LINE 100 Uses the new value of S to
choose the appropriate word to
describe the car's speed.

LINE 110 PRINTs the results.
LINE 120 Returns to the beginning.

6 RANDOM NUMBERS

RND is a function which produces a

random number each time it is called.

Thus

10 FORI=1T010

20 PRINT RND

30 NEXTI
40 END

produces

.61393043

.95403863

.076651651

.21306613

.033194093
59871473

.56201019

.97603686
-13175516
.51549558

The numbers lie between O and 1, and
are not truly random, but PSEUDO-

RANDOM in that a very long sequence of
seemingly random numbers is produced,

but given sufficient time and patience the
sequence of numbers would repeat itself.
The sequence starts at the same point,
each time a program is run, unless the

command RANDOMIZE is used, thus

5 RANDOMIZE

10 FORI=1T010
20 PRINT RND

30 NEXT!
40 END

7

CHAPTER 7 — INTRINSIC FUNCTIONS

6 RANDOM NUMBERS 6 RANDOM NUMBERS

The following program plots a simple (POWER OF 10) ”) P
histogram (bar chart) showing the distri- 40 SR=10TP
bution of the random numbers in a series. 50 FORI=1TOSR
The length of the series is determined by 60 =R =INT (10 * RND)
the response to line 30, 2 generates 10” 70 T(R)=T(R)+1
numbers, 3 generates 10° numbers, etc. 80 NEXTI
The more numbers generated, the more 100 FORR=0TO9
even the distribution, but the longer the 110 PRINT R;T (R)
program runs (about 1 sec for 10 samples, 120 FORL=1TOT(R)/
5 for 100, 25 for 1000, etc.). (5 * 10 t (P-3))

130 PRINT “"*";
Essentially, the program generates a 140 NEXTL
random number, multiplies it by 10, and 150 PRINT
takes the integer part of the number, 160 NEXTR
which it uses to point to an element of 999 END
an array which is then incremented by
one. Thus if the random number were

RESULTS
63471925

SAMPLERANGE 1 2 3
X10 = 6.3471925 DECILE
INT= 6 14 86

8 114

Therefore the 6th element of the array is 11 97
incremented. The program thus divides
the range between @ and 1 into 10 sections

O
D
N
A
T
A
W
N
=
0

A
=
N
O
C
C
O
O
N
O
N
Y
W

© (DECILES), which, if the distribution 107
were uniform, would each contain the 10 92
same number. As the sample range 9 114
becomes bigger, the numbers become % "08
more uniform. Line 110 prints the decite
number, followed by the number in the
decile, lines 120 onwards print a simple
bar chart.

10 CLEAR
20 RANDOMIZE
30 INPUT (“SAMPLE RANGE

72

CHAPTER 7 — INTRINSIC FUNCTIONS

«6 RANDOM NUMBERS

SAMPLE RANGE

DECILE

4

1036

980

1015

961

1009
1007

957

1011

1045
979

10127

9893

10143

10044

9901

9892

9999
10049

9952
10000

7 USER DEFINED FUNCTIONS

As well as the intrinsic functions described

in the preceding sections, BASIC provides

a facility for the user to define his own
functions, labelled for example FNB3,

FNC$. A user function is defined in a

DEF statement, thus:-

DEF FNC(X) = PI * X * X/4

Here, FNC calculates the area of a circle

of diameter X. Once defined, user func-

tions are employed exactly as intrinsic

functions.

10 DEF FNC (X) =PI* X * X/4
20 INPUT (“DIAMETER”) D
30 A= FNC (D)
40 PRINT “AREA IS”; A
5@ END

Notice that the variable X used in the
definition in line 10, is not used in the
remainder of the program. If the input to
line 20 were 3 say, then line 30 evaluates
FNC as PI*3*3/4 substituting the value
of D wherever X appeared in the defini-
tion. X, which could be any character,
is called a dummy variable, and its use
does not prevent a true variable with the
same name from being used elsewhere.

NewBrain BASIC permits user defined
string functions.

10 DEF FNF (X$) = “HELLO”

+D$+", HOW DO YOU DO?”

20 INPUT (“YOUR NAME ?”)

DS

73

CHAPTER 7 — INTRINSIC FUNCTIONS

7 USE DEFINED FUNCTIONS

30 AS = FNFS (DS)
40 PRINT AS

50 END

produces the output

YOUR NAME ? NEWTON

HELLO NEWTON, HOW DO YOU

DO?

Any variable that may happen to exist
with the same name as that used in a
defined function, e.g. X$ and FNFS(X8)
is not affected by the use of the defined
function, A function may be defined
which has no parameters thus

DEF FNR = PI/180
DEF FNH =SOR (A *A+B*B)

where the functions use the variables in
the program, A defined function may not
have more than one parameter.

A DEF FN statement may appear at any

point in a program, it does not have to
appear before the function is used. Each
time the computer encounters a FN it

will search the remainder of the program
for the appropriate DEF FN statement.
The commands CLEAR and RUN delete

all records of defined functions, but

commands of the form CLEAR FNA are

not permitted.

74

CHAPTER 8

STRING HANDLING

NewBrain BASIC provides very powerful string handling functions, described in this

chapter.

O
P
M
P
R
w
n
a
 . CONCATENATION

LEN

LEFTS

. MIDS

. RIGHTS.

. INSTR.

75

CHAPTER 8 — STRING HANDLING

1 CONCATENATION

Strings are concatenated, or joined, by
either + or &. Thus

10 INPUT (“YOUR NAME ?")
NS

20 AS= "HAPPY BIRTHDAY”

30 BS=A$ +” TO YOU”

40 C$="DEAR “+ NS
50 PRINT BS

60 PRINT BS
70 PRINT AS+CS

80 PRINT BS
90 END

RUN
YOUR NAME? PASCAL

HAPPY BIRTHDAY TO YOU

HAPPY BIRTHDAY TO YOU

HAPPY BIRTHDAY DEAR PASCAL
HAPPY BIRTHDAY TO YOU

2 LEN

LEN (A$) returns the length of the string
AS. Thus, from the above

PRINT LEN(A$); LEN(BS); LEN(C)
14° 21 «12

The argument to LEN may be a string
variable as above, or a string constant.

PRINT LEN (“THIS WAS THEIR

FINEST HOUR”)

26

CHAPTER 8 — STRING HANDLING

3 LEFTS

LEFTS(AS, |) returns the leftmost |
characters of A$, thus, using the strings

from the “Happy Birthday Program”

10 INPUT (“YOUR NAME?) NS

20 A= “HAPPY BIRTHDAY”

30 BS=AS+ "TO YOU”
40 C$="DEAR” & NS

PRINT LEFTS(A$,5)

HAPPY

The second argument, 5 above, may be a

variable

100
110
120
130
149

FOR | = 1 TO LEN (A$) -1

PRINT LEFTS (AG, |)
FOR T = 1TO 100: NEXT T

NEXT I
END

producing

H

HA

HAP
HAPP

HAPPY

HAPPY

HAPPY B
HAPPY BI

HAPPY BIR

HAPPY BIRT

HAPPY BIRTH

HAPPY BIRTHD.

HAPPY BIRTHDA
HAPPY BIRTHDAY

4 MIDS

MID(A$,1) returns the rightmost char-

acters from the string A$, starting with
the Ith character

PRINT MIDS (AS, 5)
Y BIRTHDAY

If | is greater than the length of the string

A$, MIDS returns the null string.

MIDS (AG, I, J) returns a string of length
J, starting with the Ith character in A$.

PRINT MIDS (AS, 7, 5)

BIRTH

If J is greater than the number of char-
acters in AG to the right of I, MIDS
returns the string from the Ith character:

PRINT MIDS (AS, 7, 15)

BIRTHDAY

The example used for LEFT$, may be
modified for MIDS, LINE 110 should be
changed to

110 PRINT MIDS (AG, |, 1);

The program prints H, followed by a
delay (LINE 120) then A, delay, then P
etc. A further variant is to amend line
120 to

120 PRINT“;

producing spaced printing

HAPPY BIRTHDAY

7

CHAPTER 8 — STRING HANDLING

5 RIGHTS

RIGHTS(AS, |) is analagous to LEFTS
(AS, 1), producing the right most |
characters of AS.

PRINT RIGHTS (AS, 3)
DAY

If 1 is equal to or greater than the length

of A$, RIGHTS returns AS.

78

6 INSTR

INSTR (AS, BS, I) searches the string AS,
from the Ith character for an occurrence
of BS. If the third parameter is missing
INSTR searches the whole of string AS.

? INSTR (A$, “DAY”)
12

? INSTR (AS, “BIRTH”, 10)
®

In the latter case the result is 0, since
“BIRTH” commences before the tenth

character of “HAPPY BIRTHDAY”.
Note however this exception

? INSTR (“ABC”, “"")

gives

CHAPTER 9

CONVERSION

The chapter describes the functions available to convert ASCII codes to their corres-

ponding characters, and vice versa, and functions to convert between string expressions
and numeric expressions. NUM, which tests a string for numeric content, is also

discussed,

1, CHARACTER/ASCII

1.1 Character to ASCII — ASC

1.2 ASCII to Character — CHRS

2. STRING/NUMBERS.

2.1 String to Numeric — VAL
2.2 Numeric to String — STRS

3. TEST STRING FOR NUMBER

3.1 NUM

79

CHAPTER 9 — CONVERSION

1 CHARACTER/ASCII

1.1. ASC

This chapter discusses intrinsic functions

which convert data from one form to

another. Since a computer stores all
forms of data, for example letters,
numbers and punctuation marks, as
numbers, it must have a code to convert
its internal numbers into their corres-

ponding letters etc. A variety of codes are
commonly employed for this purpose, of
which the most widely used is the ASCII

code. (ASCII stands for American

Standard Code for Information Inter-

change). ASCII code is issued by New-
Brain computers both for internal data
storage and transfer, and for communica-

tion, with external devices.

ASC(A$) returns the ASCII code for the

first character of the string AS. If AS =
“ABLE”, or “ANCHOR”, or “A”, then
ASC (A$) returns the code for A.

PRINT ASC (AS)
65

Thus A is gtored internally as 65.

ASC may be made to operate on charac-
ters other than the first in a string, by
using the form ASC (BS) where BS =
(MIDS(A&, I, 1), for example.

10 A$%=“ABCDEFGHIJKLMNOP
QRSTUVWXYZ”"

20 FORI!=1TOLEN (A$)

30 BS = MIDS (AG, I, 1)

40 PRINT BS; ASC (B3),
50 NEXTI

60 END

80

1 CHARACTER/ASCII

BZ need not be defined, explicitly, the
following produces the same result

10 A%=“ABCDEFGHIJKLMNO

PORSTUVWXYZ”

20 FORI=1TOLEN (A$)

30 PRINT MIDS (AS, I, 1);
ASC (MDS (AS, 1)),

40 NEXT!

50 END

A 65 B 66 Cc 67 D 68

E 69 F 70 G71 H 72
1 73 J 74 K 75 L 76

M77 N 78 D 79 P 80

Q 81 R 82 S 83 T 84

U 85 Vv 86 W 87 X 88

Y 89 Z 90

It is easier to derive a table of ASCII
codes, however, by using the function
CHRS.

CHAPTER 9 — CONVERSION

1 CHARACTER/ASCII 1 CHARACTER/ASCII

1.2 CHRS

CHRS(N) converts a number, N, into its and the output is of the form
equivalent CHaracteR.

32 33! 34”

PRINT CHRS(65) 3668 «037° «% 38
A 40 (41 } 42 *

Thus CHR$ is the inverse function to a4, 4s 46
ASC. The ASCII conversion table may be 45 49 1 56 2

derived by a program of the form — 52 52.5 34 6
56 57 9 58

10 FORI=1TON 60 61 62 >
20 PRINT I; CHR$ (1), 34 A 66 8

30 NEXTI 838 oo cE 70 °F 2

40 END 72 7304 74 5 75K
6 77 OM 78 ON 7990

However the first 32 codes (@ to 31) 30 81 Q 82. =R 83 5

are used by the NewBrain as CONTROL B4 8 U 86 OV 87 W
CODES, used for editing etc., and 31 3s 3g. CO 0 2 a1 if
in particular is the code for SH/HOME 22 93} 9a (ft 95

or Clear Screen. Thus 96 97) 4 98 bb 99
100 d 101 a 102 103 g

PRINT CHR&(31) 104 h 105 i 106 j 107 k
108 | 109 m 110 n 1110

will clear the screen of any previously 112 p 113 q 114 6 115 s

displayed characters. (Control codes are 116 t Wu 118 v 119
discussed more fully in Appendix 3.) The 120 x 121 y 122 2 123
ASCII character set is defined up to 124 : 125 126 ~ 127 =

CHR&(127), thereafter NewBrain uses the
internal codes for graphics characters.

The program is thus

10 FORI=32T0 127
20 PRINT I; CHRS (1),
30 NEXT!
40 END

81

CHAPTER 10 — GRAPHICS

1 SPECIAL SCREEN CHARACTERS

Certain types of graphic presentation may
be shown on the normal screen display by
using the MOSAIC GRAPHICS CHARAC-
TERS in the character sets shown in

Appendix 5. These each have a numeric
equivalent in the range O—31 or 128-159.

As each of these occupies the entire
8 x 10 character frame, they can be

placed side by side to form complete
pictures, as is indicated by the name
“mosaic”. As each character set features
different mosaic characters, a sequence

such as CTRL/W B must be typed to
select a character set.

CTRLM sets the TV control mode. This

is best illustrated by an example. Enter
the program

10 FORI=1TO 255
20 PUT 27,1, 26
30 NEXTI
40 END

and RUN it. The character set will be
displayed with a space between each
character. The effect of T.V. control
mode may be seen by typing CTRLIW
followed by A, B, C or D for the lower
character ROM set, and H, 1, J, K for the
upper character ROM set, See Section 5.2
of Appendix 5 for details.

The mosaic characters in the range

129-158 can be typed from the key-
board directly by holding down the

GRAPHICS key; the mosaic characters
in the range 1-30 may be typed by first

84

1 SPECIAL SCREEN CHARACTERS.

typing SH/7 then holding down the
GRAPHICS key while typing A-Z

(-)+= Don‘= forget to type SH/ESCAPE
afterwards! All the mosaic characters
in a selected character set can also

be generated by a suitable BASIC

command, such as

PUT132, 152, 131
or

PUT27, 16, 27, 12, 27, 23

CHAPTER 10 — GRAPHICS

2 HIGH-RESOLUTION DISPLAY

The screen display is normally in a

state described as “low-resolution” or
“character-oriented”. In this state, each

byte in the video area of memory cor-
responds to a single character in the

current character set. It is also possible to
arrange matters so that part of the screen

is in a “high-resolution” state, wherein
the colour (on or off) of each dot may be

individually selected. This is achieved

from BASIC by opening a stream of type

11, which must be linked to a stream
already open of the right type, i.e. 0
(screen only) or 4 (screen and line dis-
play). The type 11 screen then shares the
memory area originally occupied by the
type 0 or type 4 screen. As the high-
resolution display requires more memory
to cover the same area of the screen, the

type 0 or type 4 stream must be opened
with a very large depth,

OPEN#0,4,"200": OPEN#1,11,“150”

For the full syntax of the parameter
string used when opening a type 11
stream, see Appendix 7, As the graphics
stream is “parasitic” upon the linked

stream given in this parameter, it cannot
function after that stream has been closed
(even by an OPEN#O implicit close), and

must therefore also be closed.

3 THE GRAPHICS “PEN”

The PLOT statement is an extension to
BASIC to allow the user to handle the

graphics stream conveniently. It must be
understood in terms of the concept of a

pen” associated with the graphics

stream. This pen may be moved about on
the screen by the various PLOT com-
mands, and will then generally leave

a visible trail. Some of the available
commands change the direction or the
colour of the pen, others alter particular
controlling attributes of the graphics
stream.

It is possible for the pen position to be
off the screen. The pen may still be

moved around, and if it is moved onto or

across the screen (with a suitable colour),

a visible trail will result.

The PEN function allows certain attri-

butes of the pen at a given time to be
determined,

85

CHAPTER 10 — GRAPHICS

4 THE PLOT COMMANDS

The syntax of a PLOT statement is

either PLOT # stream—number, plot-list
or

PLOT plot-list

The stream number should be a Graphics

stream, otherwise unpredictable effects
may be produced. If the stream-number
is not given, the first-opened graphics

stream is assumed if it is still open,

The plot-list consists of one or more of
the following plot items, separated by

commas. Each plot item has a three-
letter mnemonic; many plot items require
one, two or three parameters to be pro-

vided in parentheses.

MOVE (x,y) moves the pen to position
MVE (x,y) (x, y), drawing as it goes.

The pen angle is set to the

direction taken from the
previous pen position.

MOVEBY (d) moves the pen by a dis-
MBY (d) tance d in its current

direction, drawing as it
goes.

TURN (8) turns the pen to face
TRN (6) direction 0.

TURNBY (0) turns the pen through an
TBY (6) angle 6.

PLACE (x,y)
PLA (x,y)

86

moves the pen to position
(x,y) without drawing.

4 THE PLOT COMMANDS

BACK-

GROUND

(b)
BCK (b)

COLOUR (c)
COL (c)

WIPE
wiP

DRAW(x,y,c)
DRW(x,y,c)

DRAWBY

(d,c)
DBY (d,c)

DOT (x,y,c)

RADIANS

RAD

DEGREES

DEG

Sets the background colour
to b, Values are
O — off (“white”)

1 = on (“black”)
other — undefined.

Sets the pen colour to c.

Values are *.

O — leave alone
1. — contrast with back-

ground

2 — same as background

3 — invert
other — undefined.

Clears the entire screen to
background colour.

Draws a line from the pen
position to the point (x,y)
in colour c.

Draws a line of length d in
the colour c, in the direc-
tion of the current pen
angle.

Marks a single point at
position (x,y) in colour c.

Calls for angles to be
given and returned in

radians until DEGREES is

executed.

Calls for
given and
degrees until

angles to be

returned in

RADIANS

CHAPTER 10 — GRAPHICS

4 THE PLOT COMMANDS

is executed,

RANGE (a,b) Sets the horizontal and

RNG (a,b) __ vertical ranges.

CENTRE(x,y) Sets the position of the
CEN (x,y) plotting origin, relative to

the bottom left corner of

the screen.

FILL Fills in the area around

FIL the current pen position

up to a boundary, or the
edge of the screen.

ARC (D, 6) draws a circular
arc of length D, turning
through an angle 0.

Draws annotated axes

crossing at the current pen

position. The X-axis is
marked up with a spacing

a, and the Y-axis is marked
up with a spacing b. If a or
b is zero, the axis is drawn

but not marked,

AXES (a,b)
AXE (a,b)

text The string is ploted, start-

ing from the current pen

position, in a sequence of
8 x 10 frames. The current
setting of the MODE is

used to determine the

surround in which the text
is plotted,

4 THE PLOT COMMANDS

MODE (m)_ Sets the text plotting

MDE (m) mode. Values are as for

colour.

Note only ARC, MOVE, MOVEBY and

PLACE change the pen position, and only

ARC, MOVE, TURN, TURNBY change

the pen angle. However, RANGE and

CENTRE alter the value of the X-co-

ordinate and Y-co-ordinate of the pen,
to correspond to the same point on the
revised co-ordinate system.

Example 1: some boxes

10 OPEN#0,0,’'200" : OPEN#129,

1

20 PLOT RANGE (4,2.4),
CENTRE (2,1.2), DEGREES

30 PLOT PLACE (0,0), AXES (0,0)

(1,0.5)
40 FORI=17TO3: PLOT PLA

(I—2.4,0.4), TURN (0)
50 FOR J=1TO 4: PLOT MBY

(.8), TBY (—90): NEXT J
60 NEXT!
70 END

This will draw the picture

87

CHAPTER 10 — GRAPHICS

4 THE PLOT COMMANDS

Example 2: an “envelope curve”

100 PLOT RNG (250,150)
110 PLOT CENTRE (10,10), WIPE

120 FORI=0TO 20
130 PLOT PLA (I * 10,0), MVE

(0,140—7*1)
140 NEXT!

150 END

GOTO 100 will plot this envelope

Example 3: a “pie chart”

This complete program uses many of the
PLOT facilities. It makes use of a screen
other than the console for the high-
resolution display, to leave the full
depth of a screen available to the console
stream.

10 CLOSE#1:OPEN#1,4,2,"s200"
20 CLOSE#2:OPEN#2,11,

“#1w180"
30 plotrange(8,4.4),cen(4,2),deg
40 plotpla(@,~1),turn(0),arc(2*PI,

360)

8B

4 THE PLOT COMMANDS

50

60
70
80
90
100
110

120

130
140
150
160
170

180
190
200

210

220
230

240

250

260
280

290

300

310
320

330
340

350
360
370

#1,"Title —"
LINPUT#1 a8
plotplace(-2,2.1),a8
?#1,"Total amount:”"
INPUT#1,t
j=2
PUT#1,31

2#1,"Enter subheadings and
amounts”

PUT#1,22,1,3,2,30
2#1,"Sub-heading:”
LINPUT#1,a8
PUT#1,22,1,3,2,30
?#1,""Amount of sub-heading
mags

INPUT#1,x
IF r+x<=t THEN GOTO 220
2#1,"Too large (only’;t—r;""
left)”
GOTO170

a=360+r/t:b=360«x/t

plotpla(@,0),turn(a),dby(1,1)
plotturn(a+b) ,dby(1,1)
plotturn(atb/2),col(@),mby
(1.2),col(1)
IF pen(®) >@ THEN GOTO 290

I=LEN (a8) *.18:plotplace(pen
(0)—L,pen(1))
plotaS
j=i+1 :plot pla (0,0)
IF] <3 THEN GOTO 330
plotcol(@),turn(a+b/2),mby
(.9),col(1) ,fill:j=1
a=atb:r=r+x
IF r<t THEN GOTO 130
?#1,"Type NEWLINE to end”;
LINPUT#1,a3
END

CHAPTER 10 — GRAPHICS

4 THE PLOT COMMANDS

LINE 160 Places cursor and blanks out

two lines.
LINE 250 Positions pen just outside the

circle.
LINE 280 Provides room for the text on

the left (the value 0.18 is
found by experiment).

LINE 300 Allows GOTO 300 if a

sub-heading is too and gives
an error by going off the
screen,

LINE 360 Ensures the completed dis-
play is visible.

5 THE PEN FUNCTION

The function PEN returns as a number

the value of a parameter pertaining to a
graphics stream. It is used like any
function, and has two forms, so that the

stream number may be omitted:

PEN (# stream number, parameter)
PEN (parameter)

If the second form is used, the default
graphics stream number is used, as for
PLOT. Unpredictable results may occur if
the stream number used is not a graphics
stream. The parameters which may be
returned are:

PEN (0) —-X-coordinate of pen
PEN (1) Y-coordinate of pen
PEN (2) pen angle (+)
PEN (3) —_ pen colour
PEN (4) background colour
PEN (5) = mode

PEN (6) colour of point at current

Pen position

(+) The pen angle is given in degrees if
a PLOT DEGREES statement has
been executed, unless cancelled by
PLOT RADIANS.

CHAPTER 10 — GRAPHICS

6 GRAPHICS STREAM DEFAULTS

When a graphics stream is opened, the
pen is set as follows:

Range 11
Centre 0,0

Pen position 0,0
Pen angle 0
Angles in Radians

Pen colour 1
Background 0
Mode O

CHAPTER 11

HELP IN AN EMERGENCY

When using the NewBrain it is sometimes possible to reach a situation where the com-
puter does not seem to respond, or where no sensible display is visible on the screen or
line display. Usually this problem can be cleared fairly easily. However, the misuse of
certain BASIC commands can produce a situation where the only recourse is to switch
off.

1. INTERRUPTION

2. CHANGING THE DISPLAY
2.1 Character Set
2.2 Console Device

3. FREEING THE KEYBOARD

4, RELEASING MEMORY

5. WHEN TO SWITCH OFF

5.1 OPEN #0
5.2 ON BREAK and ON ERROR

5.3 POKE
5.4 CALL

91

CHAPTER 11 — HELP IN AN EMERGENCY

1 INTERRUPTION — STOP

Normally any BASIC command or
program may be interrupted by pressing
the STOP key. The following program
will loop indefinitely:

10 GO TO 10

but pressing STOP will restore control to
the keyboard.

When the command being executed is
a cassette READ or VERIFY, the asterisk
key “#’ is required instead of the STOP
key to interrupt the command,

92

2 CHANGING THE DISPLAY

2.1 Character Set

The various character sets are shown in

Appendix 5, The 8 x 8 characters shown

there are not easy to read. If the display

shows these characters when the keys are
pressed, type CTRL/W followed by B to
obtain the normal display mode. This will

also be effective if the screen is a T.V. set,

as these will not show a black-on-white
display as clearly as white-on-black.

2.2 Console Device

If there is no visible display at all, and no
flashing cursor, then the console stream
may be set to the wrong device for your
model of NewBrain. Note that the
console should be one of the following
device types:

0 — screen only
3. = built-in display only
4 = combined display

If there is no screen device connected to
your NewBrain, but it has a built-in
display, the console stream should be
type 3. If there is no built-in display, a
monitor or TV must be connected and
the console stream should be type 0. The
user should type the following carefully,
although the effect may not be seen until

it is completed:

CHAPTER 11 — HELP IN AN EMERGENCY

2 CHANGING THE DISPLAY

CTRL/HOME to blank the current
line; if any
to clear a STOP condi-
tion in case the STOP
key was pressed earlier.

NEWLINE

to select a screen, or
to select the line display.

OPEN #0,0
OPEN #0, 3

3 FREEING THE KEYBOARD

CTRL/O may be typed to cancel a SHIFT
lock.

SH/ESCAPE may be typed to clear the

condition called “attribute on’, This
condition is entered by means of SH/t
and allows the keyboard to be used to

produce characters which are not nor-

mally obtainable. These “‘attribute on”

characters are not intelligible as BASIC

commands, hence the need to use
SH/ESCAPE.

CHAPTER 11 — HELP IN AN EMERGENCY

4 RELEASING MEMORY

When all available memory is used up, the
NewBrain may respond to even the
simplest command with ERROR 10, i.e.
insufficient memory. The areas in which
memory is used up are:

Program lines
Memory for streams
Variables and arrays

To obtain more memory for use, it may
be necessary to reduce the amount re-
quired in one of these areas.

A single program line may be removed
from memory by simply typing the line

number, followed by NEWLINE. This is

the most effective way of freeing memory,

as no extra memory is required in order to

do so.

An unneeded stream may be closed. The
amount of memory freed by this will

depend on the device driver type.

Storage for variables and arrays may be
released with the CLEAR command.
However, the selective form

CLEAR list of items

requires more memory for its execution

than may be available.

If the insufficient memory error is
frequently encountered, it is probably
necessary to extend the NewBrain config-
uration by adding a RAM extension box.

94

5 WHEN TO SWITCH OFF

The following statements, if misused,
may jam the NewBrain to the extent that
it must be switched off to regain the use

of the console. As switching off the
computer loses the program in memory,

these statements should be used with the
greatest care.

5.1 OPEN #0

The console stream, number 0, should
always be assigned to a device which is
capable of input through the keyboard,
The form

OPEN #0, X

which assigns the console stream to
device type X will only be sensible if X is
0, 3 or 4.

In particular,

OPEN #0

which assigns the console to the default

back-up store device should be avoided.

5.2 ON BREAK and ON ERROR

The STOP key is provided to allow the

user to escape from otherwise impossible
conditions. If this key is interrupted with
an ON BREAK statement then a program
may tie up the computer completely.

CHAPTER 11 — HELP IN AN EMERGENCY

5 WHEN TO SWITCH OFF

E.g. the program

19 ON BREAK GO TO 20
20 GOSUB 20

will fill up all available memory without
any possibility of interruption by the

user.

5.3 POKE

The POKE statement is used to insert a

value into a memory location. As many
locations are used to provide essential
pointers for the operating system on the
hardware, as well as control information
used by BASIC, the operation of the
computer can be completely upset by

misuse of POKE. The best way, for
instance, to enter an assembly coded
routine into memory is shown in this
program.

1 REM echoes characters until “OQ”

1@ RESERVE 100: DELETE 10

20 M=TOP+1
30 FORI=M TOM+39

4@ READ X:POKEI,X

5@ NEXTI

60 DATA 30, 5, 231, 52, 30, 3,
231, 52

70 DATA 30,5,123,231,50,216,
30,3,123,231,51,216,30,5,
62,1

80 DATA 231, 48, 231, 54, 216,
30, 5, 231, 49, 254, 81, 200,
30, 3, 24, 240

5 WHEN TO SWITCH OFF

90 CALLM

108 END

5.4 CALL

The CALL statement allows an assembly-
coded routine to be entered from BASIC,

Such a routine must preserve certain
registers needed by BASIC, and must exit

by means of one of the RET codes. De-
tails are given in Appendix 6. If these

conventions are not observed, or essential
memory locations are changed, then the
routine will not satisfactorily return
control to BASIC.

APPENDICES

ERROR NUMBERS

BASIC TECHNICALSPECIFICATION

SCREEN EDITOR TECHNICAL
SPECIFICATION

BASIC RESERVED WORDS

LINE AND SCREEN DISPLAY
CHARACTER SETS

BASIC STATEMENT KEYWORDS

DEVICE DRIVER SUMMARY

CALL STATEMENT AND O/S
ROUTINES

HARDWARE SPECIFICATION

APPENDIX 1 1

APPENDIX 1 ERROR NUMBERS

4 (Ss)

89

10

11,12,13

14 (S)

15,16

17 (S)

(S) Indicates a syntax error.

(R) Syntax error also a run-time error.

Not used.

Arithmetic error.

E.g. division by @, arc sin of value > 1.

No further statement to execute, but no END or STOP
statement found.

Iegal tine number.
Eg. 1000000 A=1.

Not used.

Ilegal value — value in the range @. . 65535 required,
E.g. in an array subscript or a switch value in ON.

Mlegal array subscript value. A subscript value must

be in the range @ . . dimension of array (or 1 . . dimension,
when OPTION BASE 1 has been used).

Not used.

Insufficient memory space.

Not used.

Something other than IN #, OUT # or # follows OPEN.
Eg. OPEN 72.

Not used.

Error in numeric function argument.
Eg. LOG (x—“A”) LOG (2.

APPENDIX 1 ERROR NUMBERS

18

19

20 (S)

21 (S)

22 = (S)

23,24,25

26 (S)

27

28

29

30

31 (S)

32

33

«4 (Ss)

Not used.

Wrong number of subscripts in array element.
Eg. DIMA(5) : B=A (2,3)

Expression of wrong type.

Eg. AS=2 N=“POR”.

Error in expression: unrecognisable thing.
Eg. X(A?5).

Error in expression: type mismatch.

Eg. AS*4.

Not used.

Name of variable or keyword doesn’t begin with a letter.
Eg. *PRINT2

FOR, = 1 TO 10.

Not used.

Switch value in ON is @ or greater than the number of

line numbers in: the list.

Attempt to GOTO (or goto) a line which doesn’t exist.

Error in input to an INPUT statement. If the input is

from the console the prompt will be repeated.

In a PRINT statement a comma or semicolon was expected

but something else was found.

Not used.

RETURN without corresponding GOSUB.

GOTO or GOSUB not found where expected in ON.

APPENDIX 1 ERROR NUMBERS

35 (S) Hyphen or end of line expected in LIST or DELETE.
Eg. LIST 1000+ 20

DELETE 22,23

36 Bad INPUT.

E.g. quotation mark not allowed in unquoted
INPUT string.

37 Can‘t TAB to column @.

38 Can‘t POKE a value > 255.

39 Insufficient DATA for READ.

40 (S) __Iilegal item in CALL parameter list.

a NEXT without FOR.

42 (S) Empty DATA line.

43 Not used.

44 (S) _ Illegal control variable in FOR statement.
Eg. FOR A$=1 TO 10.

45 (S) Asyntax error exists in a FOR or NEXT statement
within the for-next loop which begins at this statement.

Eg. 10FORI=1T010

20 FOR 2=1TO2
30 NEXT J

40 NEXT I

will give ERR 45 AT 10

46 (Ss) TO not found where expected in a FOR statement,
Eg. FORI=3T7.

47 (Ss) STEP not found where expected in a FOR statement.
Eg. FORI=XTOX+17!2,

101

APPENDIX 1 ERROR NUMBERS

102

48 (Ss)

49 (S)

50,51

52 (S)

(R)

53 (S)

(R)

54 (8)

55 (S)

56 (S)

57 (S)

58,..,62

63 (S)

64

65 (S)
(R)

No NEXT statement found to match the current FOR
statement.

Illegal for-next loop nesting.

Not used.

Comma not found where expected.
Eg. INPUT # 5A,B.
In reply to INPUT, or in DATA.

End-ofJine not found where expected.
Eg. LIST 5—100, 1000-2000.
In reply to INPUT ete.

CLOSE not followed by #.

Equals sign not found where expected, or keyword misspelt.
Eg. PRIUTAB HJGK

FOR 12TO7.

Open parenthesis not found where expected.
Eg. DIM A22,7)

Closing parenthesis not found where expected.
Eg. TAB (2,

Not used.

Neither THEN nor a keyword found after the conditional

expression in an IF statement.
Eg. IF ABG3

IF CD?4THEN A=1

Not used.

No closing quotation marks in a string constant.
In response to INPUT.

APPENDIX 1. ERROR NUMBERS

66,67 Not used.

68 (S) OPTION not followed by BASE.

69 OPTION BASE used after an array has been created.

7o (Ss) OPTION BASE not followed by @or 1.

71 Dimensioning of an array which already exists.

72 Dimension too large.

73 Dimension 6 when OPTION BASE 1 specified.

74 = (S) Error in formatter, other than error 75.

75 = (S) Number in formatter not in range @ . . 255, or not present.

76,..79 Not used.

80 = (S) DEF not followed by FN.

81 (S) Illegal user defined function name in DEF statement.
Eg. DEF FNS= AS

82 Not used.

83 (S) No DEF statement for user defined function.

84 Redefinition of a user defined function to have a different
number of arguments or reference to an array with the

wrong number of dimensions.

85 (S) Expression too complex to evaluate, or user defined
function references too deeply nested to evaluate.

86 Not used.

103

APPENDIX 1 ERROR NUMBERS

87

88 (S)

89

90

91

92

93 (S)

94 (Ss)

95

96

97 (S)

98

100

101,.. 104

105

106

107

Can‘t CONTINUE.

Illegal list of arguments to CLEAR statement.

Not used.

Device stream or port not in range @. . 255.

Failure to VERIFY.

Can‘t CLOSE stream 0.

ON ERROR or ON BREAK not followed by GOTO.

E.g. ON ERROR STOP.

Line number @ not allowed.

VAL error — string is not a number.
Eg. VAL ("1.1").

LINPUT numeric variable.

Attempt to ON ERROR or ON BREAK to a non-existent

line-number.

PUT error.

Out of DATA.

Insufficient memory to open stream.

Not used.

Stream not open.

No such device.

Device-port pair already open.

APPENDIX .1 ERROR NUMBERS

108 Stream already open.

109 System error.

110 Syntax error in parameter string.

111 Attempt to open device which requires mains power when

no mains power connected.

112 Insufficient memory for FILL request.

113 Linked stream not a screen device.

114 Requested height too large for memory available to the
linked stream.

115 Linked stream has been closed.

116 Position off the screen illegal in this context.

117 Unrecognised PLOT command or PEN parameter.

118 Cannot use input from graphics device (use PEN instead).

119 Attempt to output to graphics device before input function

completed,

120 Syntax error in baud rate parameter string.

121 Port number other than zero for serial device.

122,..129 Not used,

130 Tape read error : hardware failure (Tape dropout).

131 Tape read error : attempt to read block into a buffer

which is too small, or hardware failure.

APPENDIX 1 ERROR NUMBERS

132

133

136

137,..

200

199

.- 255

Tape read error : hardware failure (Checksum error).

Attempt to read past the end of a tape file, or

hardware failure.

Attempt to read a tape file out of sequence, or hardware

failure.

Attempt to output to a tape file opened for input or
vice versa.

Syntax error in parameter string.

Not used.

Time out error on software serial input port.

Not used.

APPENDIX 2 5

APPENDIX 2 Basic TECHNICAL
SPECIFICATION

1. DATA TYPES

1.1 NUMBERS These are handled by the mathematics package.
1.1.1, Storage Six bytes are allocated by BASIC for the storage of a number
value. The mathematics package maintains and operates on numbers to a
precision of 10 or more significant figures in a range of 0. .+ 10 * 150,
1.1.2, Output By default output is rounded to 8 significant figures and is
in free format (integer, floating point or scientific “E" notation according
to value). Output to specific field sizes and formats can be forced by format
specifiers for the PRINT statement and the STR$ function. Output range is
0..#10 799,
1.1.3 Input Any output format is accepted as input, additionally any

number of digits is allowed in the mantissa and spaces may be'disregarded,
1.1.4 Constants Any number valid for input may be used as a numerical
constant.

1.1.5 Variables Any simple name consisting of a letter or a letter followed
by a letter or a digit may be used to denote numeric values. A variable may
hold any valid number.

1.2 STRINGS In NewBrain BASIC a string is any sequence of bytes
(i.e. numbers in the range 0 . . 255). Bytes often stand for characters, in

Particular those in the range 32 .. 127 stand for the ASCII printing

characters.
1.2.1 Storage Strings can be of any length between 0 and 32767 bytes.
An additional overhead of four bytes is required for each string stored.

Storage allocation is dynamic (i.e. the length of a string can change during

Program or command execution).
1.2.2. Output Any string can be output. Input and output devices interpret
bytes in different ways. For instance the keyboard screen editor device,
which is usually the console for BASIC, interprets 0 . . 31 as control codes,

32. . 127 as ASCII character codes and 128 . . 255 as mosaic graphics
character codes.
1.2.3 input Any valid string constant may be supplied in response to a

BASIC INPUT or READ statement. If the constant does not contain
quotation marks ("’), commas or TAB (code 09) characters the enclosing

quotation marks may be omitted. Comma and TAB characters are used by

INPUT to separate consecutive strings. In response to LINPUT any string
not containing a NEWLINE (code 13) character may be supplied.

109

APPENDIX 2 asasic TECHNICAL

110

SPECIFICATION

1.2.4 Constants Any string not containing a NEWLINE character may be
enclosed in quotation marks (‘’) and used as a string constant in a BASIC

statement. Quotation marks within a string constant are denoted by doubled
quotation marks (

1.2.5 Variables Any simple name followed by a dollar ($) character may be
used as a string variable name. A string variable may hold any string.

1.3 LOGICAL There is no special logical datatype, but numbers may be
used to store logical values. In those cases where a logical value is required
for a binary choice, —1 is taken as TRUE and all other values are taken as
FALSE. Logical operations are performed bitwise on 16-bit words. In this
sense —1 is TRUE, 0 is FALSE and other values from the range —32768 . .
32767 take intermediate truth value; some operations require arguments
from this subrange.

1.4 ARRAYS Arrays may be of numbers or strings, of 1 or 2 dimensions
to a maximum of 5575 elements. Array storage must be reserved by
DiIMensioning, but each element of a string array may vary in length during
program or command execution. In addition to the storage required for the
values of the elements there is a storage overhead of 6 bytes for an array and
a further overhead of 2 bytes per element for a string array.
There is no provision for input/output of whole arrays.
Individual array elements may be treated the same way as numeric and
string scalars for input/output.
There are no array constants.
Any number (or string) variable name may be used for a numeric (or string)

array. A variable name thus used may also be used for a scalar of the same
type, but may not be used for another array of the other dimension.

APPENDIX 2 sasic TECHNICAL
SPECIFICATION

2. EXPRESSIONS

2.1. ATOMIC EXPRESSIONS The allowed atomic expressions are:

constant variable name array element function call

2.2 MOLECULAR EXPRESSIONS Atomic expressions may be built up to

form molecular expressions.
If X and Y are valid atomic expressions then

unary operation X X binary operation Y (x)
are valid molecular expressions subject to the type restrictions detailed

below.
Constant This may be of any string or number constant.
Variable Name This may be any string’or number variable name.
Array Element This is array name (expression) or

array name (expression, expression). The expressions involved must evaluate

to numbers within the dimensions of the array.
Numbers are rounded to the nearest whole number for this purpose.
Function Call The general form is

function name (arguments)
The number and type of arguments depends on the function, given this an
argument can be any expression of the correct type. Arguments are separated

by commas.
2.2.1 Functions with No Arguments
PI The mathematical constant

RND A pseudo-random number from the uniform distribution of
the unit interval (0,1)

POS The current position of the printhead on the console output
device

TRUE Evaluates always to —1

FALSE Evaluates always to 0

ERRNO The error number of the most recent error or break-in unless

cleared
ERRLIN The line number of line being executed at the time of the most

recent error or break-in

FREE The number of bytes of free store available to but not used by
BASIC

TOP The lowest store address not available to BASIC
FILES The parameter string returned by the most recently OPENed

input device

Ww

APPENDIX 2 sasic TECHNICAL
SPECIFICATION

2.2.2 Functions with One Numeric Argument
INT Integer part (INT(X) is the greatest integer not greater than

(x)
ABS Absolute value (modulus)
SGN Sign (—1 for negative argument, 1 for positive, 0 for zero)
saR Square root

SIN COS TAN Trigonometric functions
ASN ACS ATN inverse trigonometric functions

LOG Natural logarithm

EXP Exponential function
PEEK Contents of memory location whose address is the argument

PEN Value of graphics parameter
CHR The string consisting of the single character whose internal

code is the argument
STRS The string consisting of the numeric output format of the

argument
The format may be forced. The expression

STR$ (X [formatter])
produces a string in the format determined by the
formatter. Allowed formatters are:

n Integer format with n digits
nm Fixed point format with n digits before and m after the

point
n.mE Scientific format with n digits before the point, m after

and 2-digit exponent for the power of 10
nF Free format in a field width of n
In all formats leading zeroes in the mantissa are replaced by
spaces, there is a leading space or minus sign and a trailing
space.

2.2.3 Numeric Valued Functions with One String
Argument
LEN Length of the string
VAL The numeric value of the string, if the string happens to be in a

valid number input format
NUM —1 (TRUE) if the string happens to be in a valid number

input format
= 0 (FALSE) otherwise

ASC The NewBrain internal code for the first character of the string

112

APPENDIX 2 sasic TECHNICAL
SPECIFICATION

(for characters in the ASCII set this coincides with the ASCII
code)

2.2.4 Substring Functions
LEFTS LEFTS(X$,N) extracts the leftmost N character substring

RIGHTS RIGHT$(X$,N) extracts the rightmost N character substring
MIDS MID&XX¢,P) extracts the right hand substring starting at the

P'th character of X$

MID$(X$,P,N) extracts the substring of length N starting at
character P

INSTR INSTR(X$,Y$) finds the numerical position of the string
Yin XS
INSTR(X$,Y$,P) finds the position in MID&X$,P)

2.2.5 User Defined Functions These are numeric or string values with one

or no numeric or string argument. A user defined function name is a simple
name preceded by FN. User defined functions must be declared equal to an

expression in a DEF statement.
2.2.6 Unary Operations These all take numeric arguments and yield
numeric results.

+- unary plus and minus

113

APPENDIX 2 sasic TECHNICAL

114

SPECIFICATION

NOT The bitwise Boolean operation

2.2.7. Binary Operations with Numeric Arguments which Yield Numeric

Results
+-7/ Plus minus times divide
t Raise to a power
<<== Relational operators
> >= <> (less than, less than or equal, equal, greater than,

greater than or equal, not equal)
AND OR The bitwise Boolean operations

2.2.8 Binary Operations with String Arguments which Yield Numeric

Results
<<== Relational operators returning Boolean results as in

> >= <> the numeric case. Characters are ordered according to

the NewBrain internal codes (which ordering agrees

with ASCII and hence with alphabetic order) and

strings are ordered by first difference.

2.2.9 Binary Operations with String Arguments which Yield String Results

+ Concatenation
{also &)

2.3 EXPRESSION EVALUATION
Within an expression atomic expressions and expressions in parentheses are

evaluated first. Operation are evaluated in the order
{unary operations)

(binary operations)

>>=<>

OR having the least binding power

Mathematical operations and functions are evaluated by the mathematics

package. The mathematics package has been specially designed to minimise
cumulative rouding errors and maintain stability in recursive and iterative

calculation, and to obtain maximal computation speed consistent with ten
significant figure accuracy and long term stability.

APPENDIX 2 Basic TECHNICAL

SPECIFICATION

3. INPUT/OUTPUT

This is performed by the NewBrain operating system.

3.1. 1/0 DEVICES
1/O devices are signified by whole numbers in the range 0 to 255. In practice

in a program devices are usually named as numeric variables whose values
signify the device. All input/output peripherals are configured by their device
drivers as byte serial devices.

3.2 DATA STREAMS

Data streams are signified by whole numbers in the range 0 to 255, though in

practice numeric variable names are used. In BASIC, after opening a device on
adatastream all communication with that device is via the datastream. When
appropriate devices and di drivers are connected appropriate control
datastreams can be used to implement all current 1/O modes including
random access.

15

APPENDIX 2 sasic TECHNICAL

116

SPECIFICATION

4. BASIC STATEMENTS, BLOCKS AND PROGRAMS

A BASIC statement generally consists of a keyword followed by certain

arguments. A BASIC line consists of statements (simple statements or
FOR-block statements) separated by colons. A line may be used as a
command, or introduced by a line number as part of a BASIC program. Line
numbers are whole numbers in the range 1 . . 65535.

4.1 SIMPLE STATEMENTS
4.1.1. Declaration

OPTION BASE 0. Sets the array base globally to 0.
OPTION BASE 1 Sets the base globally to 1.

The default base is 0.

DIM array name (dimension)
The dimension must be an appropriate numeric expression or a pair of
expressions separated by a comma, Multiple dimensionings separated by
commas are allowed. Scalars are not explicitly declared, arrays need not be.
In the latter case a default dimension of (10) or (10,10) is assumed.

DEF function name (argument) = expression declares a user defined
function.

4.1.2 Assignment
LET assignee = expression

An assignee may be a variable name or an array element. The assignee must
be of the type of the evaluated expression. The keyword LET may be

omitted.

4.1.3 Control
IF expression THEN fine number
IF expression THEN line

In the latter case the keyword THEN may usually be omitted.

GOSUB line number

RETURN (also RET)
ON expression GOTO fine number list

ON expression GOSUB line number list
ON ERROR GOTO fine number Set error trap.
ON BREAK GOTO /ine number Set interrupt trap.

RESUME Resume after trap.

APPENDIX 2 Basic TECHNICAL
SPECIFICATION

RESUME /ine number

GOTO line number

CONTINUE (also CONT)
STOP

RUN

NEW
CALL expression, arguments

This is to call a machine code or other language routine

4.1.4 Input and Output
OPEN direction #stream, device, port, parameter string Direction is IN or

OUT, it is optional and defaults to IN. Stream is an appropriate numeric
expression. Device and port are numeric expressions which may be omitted.
Parameter string is a string expression which defaults to null. The
information is passed to the operating system which assigns the stream to the
device and opens it.

INPUT assignee list INPUT #stream, assignee list

INPUT (prompt) assignee list
The prompt string expression us used to substitute for the default “?””

prompt when the stream is the default (console) stream.

PRINT print list | PRINT #stream, print list ?
? is a synonym for PRINT.

Print list is a sequence of print items and print separators. Print items must

be separated by at least one print separator, arid can be

expression
numeric valued expression [formatter]
TAB (numeric valued expression)

The format may be forced. The expression
(formatter}

produces output in the format determined by the formatter, Allowed
formatters are:

Integer format with n digits
n.m_ Fixed point format with n digits before and m after the point
n.mE Scientific format with n digits before the point, m after and 2-

digit exponent for the power of 10.

7

APPENDIX 2 Basic TECHNICAL
SPECIFICATION

for-statement blocks next-statement
for-statement is

FOR variable = initial value TO limit STEP increment initial value, limit

and increment are numeric valued expressions.
STEP increment may be omitted.

next-statement is
NEXT variable

The control variable must be numeric and the same in the for and in the next

statement.

4.3 PROGRAMS
A program is both a sequence of lines and a sequence of blocks. An END

statement should be present.

APPENDIX 2 sasic TECHNICAL

AS

SPECIFICATION

5. MODE OF OPERATION

A certain input/output device, called the console, is open when BASIC is
started up. Input from this device is treated by BASIC either as lines which

are commands to be obeyed immediately, or as lines with line numbers which

are added to the current program to be obeyed later when the program is run.
Reserved words in lines are “entokened” in the program in order to minimise

store usage. When a command or block is obeyed it is first “compiled” into
NewBrain BASIC “object code” (this compilation includes the setting up of
appropriate datastructures) and then the “object code” is “executed”. When
a program is being run the object code is kept and so once obeyed a
command can be obeyed again without having to be compiled again. This
mode of operation saves time and optimises the performance of programs.

Despite BASIC being a dynamic compiler, all interactive features are

present. While an ON BREAK trap is not set the user can normally break into
a program by using the STOP key, inspect and alter values and program lines
and then CONTINUE execution with all other states preserved.

121

APPENDIX 2 sasic TECHNICAL
SPECIFICATION

6. NOTES

(a) Spaces
Spaces are insignificant in almost all places in NewBrain BASIC.

(b) Character Set
NewBrain BASIC allows the user a set of 256 distinct characters. It is
assumed that the character set includes the ASCII characters (though it need
not include all of them). BASIC distinguishes between upper and lower case

alphabetic characters only within string constants and REMark strings. The

NewBrain keyboard character set includes all the ASCII characters, viewdata

graphics characters and others as well.

(c) Errors
NewBrain BASIC produces over 90 numerically coded error messages to aid

debugging.

(d)_ Nesting
The depth of nesting of for-blocks, GOSUBs, parentheses etc. is limited only
by the total amount of memory available.

(e) Extension

The NewBrain operating sytem contains an extension mechanism
comparable to but more advanced than simple ‘trapping’. This makes
NewBrain ‘ROM software’ real software, not just ‘firmware’. Programs in

RAM or ROM can replace or extend programs already present in ROM. In
Particular additional features can be added to NewBrain BASIC without

having to replace the original ROMs. The NewBrain paged memory system
enables such extension to be virtually indefinite.

12%

APPENDIX 3

APPENDIX 3 scREEN EDITOR TECHNICAL
SPECIFICATION

Screen Editor — Technical Specification

General Description
The NewBrain keyboard-Screen-vf display editor, X1O, is an interactive

input/output device for communication between a user or operator of the
NewBrain and a NewBrain user-program such as BASIC. The editor interfaces

with the NewBrain Input/Output System, 10S.
Communication between the editor and the program is via the five

standard 1OS commands, OPENIN, OPENOUT, INPUT, OUTPUT and
CLOSE. Since the editor is an Input/Output device OPENIN is equivalent to
OPENOUT.

The Displays
The TV/video display editor holds a page of between 1 and 255 lines of 40 or
80 characters per line. The screen display will show 24 or 30 fines and this
window is scrolled up and down the page. 10S allows for multiple copies of
a device to be open; thus, memory allowing, up to 25 pages can be
simultaneously maintained.

The vf display editor holds a single line between 16 and 254 characters in
length. The 16 character vf display window is scrolled backwards and
forwards over the line. The editor waits for the user to press the NEWLINE
key before displaying a new line. This wait can be suppressed by outputting
the appropriate control codes. During the wait the window can be scrolled
from side to side by the cursor control keys.

The vf display can also be used as a window on a screen page, displaying
the part of the current line around the cursor.

Character Sets
The vf display character set consists of the 64 ASCII upper case characters,
excepting character 95 for which the £ sign is substituted, and 64 graphics

characters. All characters can be blinked. The vf editor uses only 65 of these

characters and reserves blinking as an indication of cursor position.
Characters sent to the editor are recoded before display, so that lower case

letters are displayed as their upper case equivalents, and so the coding agrees
with that used for the screen display.

The screen display character set depends on the character generator ROM

fitted. 512 characters are available, though at most 255 characters can be

displayed at atime. Character set selection is achieved by the “Set TV Mode”

(control W) code. In certain modes 127 characters are available for display,
in normal or reverse field. According to mode the background can also be set

125

APPENDIX 3 scrEEN EDITOR TECHNICAL

128

SPECIFICATION

Output

Calls to output cause a character to be put onto the screen or vf display.

Thirty-two characters are used as control codes, accessing special features of

the editor. The effect of control codes other than NEWLINE is the same
whether entered via OUTPUT or entered via the keyboard interaction in

response to a call to INPUT, when the cursor is at the beginning of a line.

Screen lines, Cursor display, Autodelete feature
Lines on the screen may be of any length up to the size of page. Lines longer
than 40 or 80 characters wrap round, a continuation character being

displayed at the start of each screen line other than the first to indicate that

this is a continuation line. The cursor is displayed as a blinking underline or a
blinking block. The latter mode of display is used for two purposes. When

the cursor is beyond the right end of the line — i.e. the next character entered
will be the first character of a subsequent continuation, it is displayed at the

right-most position in the line as a block. This contrasts with being displayed
in the right-most position as an underline when the next character entered is

to be entered at that position. The other use of the block cursor is at the

left-most position of a line just after a NEWLINE has been entered. This

indicates that if the next character entered is not a control code the
present contents of the line will be cleared to spaces. This ““autodelete”
feature enables a page to be overprinted without having to clear outdated

information. The autodelete mode is cancelled if the first character entered
is a control code, so that overprinting of forms etc, where information
previously printed is to be retained, can be achieved.

Use as BASIC console
BASIC opens an editor device on Stream 0 when started up. The parameters
used for this depend on the hardware. For a NewBrain D, MDB LIIO with a
length of 80 is used, for A or AD TLIO with a length of 40 and depth of 24,
for M, MD TVIO with a length of 80 and depth 24. Port number 0 is used.

APPENDIX 3 scrEEN EDITOR TECHNICAL

SPECIFICATION

CONTROL CODES

HEX DECIMAL CONTROL KEY

0 0 @ Null
1 1 A Sh/insert Insert line
2 2 B Sh/} Delete line

3 3 c Cnti/newline Send page
4 4 D End of file

5 5 E Send Line
6 6 F ‘Show cursor

7 7 G Cursor off
8 8 H aad Cursor left

9 9 1 Cntl/escape Tab 8 spaces
A 10 J + Cursor down

B W K t Cursor up
c 12 L Home Cursor home
D 13 M Newline Newline
E 14 N sh/t Attribute on
Fr 15 oO Sh/escape Attribute off
10 16 P Graphics escape
11 7 Q Insert Enter insert mode

12 18 R Grph/t Make new line
13 19 s Grph/} Make continuation line
14 20 T Send cursor character
15 21 U Send x, y
16 22 v Set cursor x, y
17 23 Ww Set TV control

18 24 x Sh/— Delete left
19 25 Y Sh/> Delete character
1A 26 z > Cursor right
1B 27 { Escape Escape next character
1c 28 / Cnti/<— Cursor home left

1D 29 J Cntl/> Cursor home right
1E 30 t Cntl/nome Clear line
1F 31 Shift/home Clear page

APPENDIX 3 scREEN EDITOR TECHNICAL

130

SPECIFICATION

Interpretation of Control Codes

Oo

1

10

11

No action.

A line of spaces is inserted at the cursor, the cursor line and subsequent

lines are shifted down. The last line is lost.

The whole cursor line including the lines of which it is a continuation

(if any) and any continuation of it is deleted. Subsequent lines are
shifted up, sufficient lines of spaces being inserted at the end.

Subsequent calis to INPUT will return all the characters of the page,
including NEW LINEs. This mode is cancelled when all characters are
returned, or by a call to OUTPUT. After returning all characters the
cursor will be in the top left “home position” on the screen.

No action (this code has a special meaning in BASIC).

Subsequent calls to INPUT will return all the characters of the current

line, including the NEWLINE, Cancelled as code 3.

The cursor will be displayed at all times until code 7 is entered.

The cursor will not be displayed, except during keyboard interaction,
until code 6 is entered.

Move cursor left one space. This is not possible if at the top left-most
position on a line.

Move cursor right at least one space and sufficiently many spaces to
bring it to a screen column a multiple of 8 spaces from the start, or
failing that, to the start of the next line or to the space after the
continuation character on the next line.

Move cursor vertically down one space. This is not possible if on the
bottom line of the screen.

Move cursor vertically up one space. This is not possible if on the top
line of the screen.

Home cursor to top left of screen.

APPENDIX 3 scrREEN EDITOR TECHNICAL

13

14

15

16

17

20

21

22

SPECIFICATION

Move cursor to the start of the next line. In INPUT end keyboard
interaction. On the bottom line scroll screen up losing top line.

Invert the top bit of all subsequent non-control codes before
displaying. Subsequent characters 32 . . 127 will become 160. . 255,
129 . . 255 will become display codes 1 .. 127. (128 will become 0
which is not displayable and is always treated as a NULL control
code). This mode is cancelled only when code 15 is entered.

Cancel mode introduced by code 14.

No action — this code is reserved for use by a high resolution display
editor.

Subsequent characters will be inserted at the cursor position, characters

to the right on the line being scrolled right and, when appropriate,
down (causing subsequent lines to be scrolled down and the bottom

line lost). If the fine already fills the “line image”’ (LIIO) or the screen
page (TVIO or TLIO) this is not possible. This mode is cancelled when

any control code is entered.

The current screen line, if it is a continuation line, is made the start of

a new line. Continuations of it are scrolled back and up if required.

The current screen line is made a continuation of the line above it.

Subsequent continuations of it are scrolled down and right if necessary.

A subsequent call to INPUT will return the character at the cursor

Position. This mode is cancelled in the same way as code 3.

‘Two subsequent calls to INPUT will return the “x-y cursor address”,
firstly the x address which is the horizontal displacement of the cursor
from the left of the screen starting at 1, then the y address which is the

vertical displacement from the top of the screen, starting at 1 (irrelevant
in the case of LIIO). Cancelled as code 3.

The two bytes next entered are interpreted as an x-y cursor address (see
code 21), and the cursor is set to the given position. This mode is
cancelled when the two bytes have been received by the editor, or if a

call to INPUT intervenes.

131

APPENDIX 3 screen EDITOR TECHNICAL

132

23

24

25

26

27

28

29

31

SPECIFICATION

Set TV control, certain bits of the next byte entered are loaded into the
video hardware “TV control register”. The bits are currently used as
follows:

bit

3 1 =8 lines/character, upper Character ROM set
0 = 10 lines/character, lower Character ROM set

1 1= full character set
0 = half character set, top bit used to reverse character field

0 1= black background
0= white

This mode is cancelled in the same way as code 22.

Delete the character to the left of the cursor moving the cursor left one
space. This has no effect if at the start of a line (not a continuation
line) or if the character is outside the L110 window. The rest of the
line to the right of the cursor is scrolled to the left, and it and
subsequent lines up if necessary.

Delete the character at the cursor. Otherwise as code 24.

Move cursor right one space, this is not possible if at the end of a line.

Put the next character directly into the display — i.e. do not treat it
as a control code. This mode is cancelled after the next character has
been entered, or if a call to INPUT intervenes.

Send cursor to the left-most position on this line.

Send cursor to the right-most position on this line.

Replace the current line by a line of spaces, scrolling up subsequent lines
if appropriate. Send cursor to beginning of line.

Clear the whole screen to spaces and send cursor to ‘home’ top left.

APPENDIX 4

APPENDIX 4 asic RESERVED worDs

NEWBRAIN RESERVED WORDS

These are of 4 types:

1 Words which introduce a BASIC command.

2. Words which continue the syntax of a BASIC command. These must
appear in the right context, as defined by type 1 words.

3. Functions, which return a value.

4. Symbols which represent operations or relations.

Many of the reserved words have a shorter alternative form.

Reserved word, alternative type context

ABS
AND
ACS
ARC
ASC
ASN
ATN
AXES, AXE

BACKGROUND, BCK
BASE

BREAK
CALL
CENTRE, CEN
CHRS
CLEAR
CLOSE
COLOUR, COL
CONTINUE, CONT
cos
DATA
DEF
DEGREES, DEG

PLOT

PLOT

OPTION

ON

PLOT

PLOT

after STOP

with READ, RESTORE

N
A
A
W
A
N
H
=
O
N
A
N
N
H
N
N
W
W
W
N
W
A
D

PLOT

135

APPENDIX 4 asic RESERVED WORDS

Reserved word, alternative type context

DELETE *
DIM 1

DOT 2 PLOT

DRAW, DRW 2 PLOT
DRAWBY, DBY 2 PLOT

END 1
ERRLIN 3

ERRNO 3

ERROR 2
EXP 3

FALSE 3

FILES 3

FILL, FIL 2
FN 2

FOR 1

FREE 3

GET 1
GO SUB, GOSUB 1

GO TO, GOTO 1
IF 1

INPUT 1

INSTR 3
INT 3

2

3
3

1

1
1

7

3

1

3
=

2

2

after REPORT

after REPORT

ON

after OPEN
PLOT

DEF

,2 also ON
+2 alsoON

IN# OPEN

LEFTS

LEN
LET

LINPUT

LIST

LOAD
LOG

MERGE

MIDS
MODE, MDE

MOVE, MVE

MOVEBY, MBY

136

APPENDIX 4 asic RESERVED WoRDS

Reserved word, alternative type context

NEW
NEXT

NOT
NUM

ON
OPEN

OPTION

OR
OUT#
PEEK

PEN
PL

PLACE, PLA
PLOT
POKE

POS

PRINT

PUT

RADIANS, RAD
RANDOMIZE
RANGE, RNG
READ

REM

REPORT
RESERVE

RESTORE

RESUME

RETURN, RET

RIGHTS
RND

RUN
SAVE

SGN

‘SIN
SOR
STEP

N FOR

OPEN

PLOT

PLOT

PLOT

after ON

with DATA

after ON

after GOSUB

N
W
W
W
F
2
H
W
F
B
B
s
s
n
a

N
a
n
o
s

w
o
e

N
H
N
W
W
N
E
S
o
S
w
W
E
S
S

FOR

APPENDIX 4 Basic RESERVED WORDS

138

Reserved word, alternative

sTOP
STRS
TAB
TAN
THEN
To
TOP
TRUE
TURN, TRN
TURNBY, TBY
VAL
VERIFY

WIPE, WIP

+

-
@

=m

>
Y
V
V
I
A
A
A
~
I
 +

Vi
l

z 3
N
N

A
S
A
D

R
A
R
A
A
D
R
A
A
N
N
A
N
N
=
W
N
N
W
W
N
N

W
N
O

context

PRINT

IF

FOR

PLOT

PLOT

PLOT

OPEN, CLOSE

formatter
formatter

APPENDIX 5

APPENDIX 5 Line AND SCREEN DISPLAY
CHARACTER SETS

LINE DISPLAY CHARACTER SET 5.1

(LE).
a
o
l

eg;
tas

4

A

.
S
T

a

R
e
y

m
s

CM
o
y

epioebry
2

AU]

ww
i

a
n

F155,
—

+146) eR
wig

& ia

UNPRINTABLE, £§

stat
Nou!

*!
1K

S
i
C

a
l
s
a

O
R

zy
-
f
'
2

WES)
ity

ofg
* EE

EQ
ee

S
Q

os
eee

GIES
IS

~ie'§)
wl

m0 {S13
O
E
R

-E
<

&

-
SQ

ecm
pics

oss
ox

SS «i
<Sg] 21

4g
Sz

maT
a

7
PIPE] fT]

of
SIEENETG

I
N
=

=

~
—

[NS]
afi.

S
e

s
q

>
sR

‘st
C
S

OE)
|

52] (
7

MSZ]
EE

+
-!5)

i
m

.icaS
=
,

—

EE
O
P
S

w | SI
P
S
Y

S
E
Z

P
S
T

L
e

visa
ec

S
S
N
S

V
S

TI
=}

Pleis
-BG

oS
je

eee
ose

24
-b>

-Ee
sir

ag

141

APPENDIX 5 Line AND SCREEN DISPLAY

142

CHARACTER SETS

5.2 SCREEN DISPLAY CHARACTER SETS

There are four district character sets which may be selected by using one
of the key sequences given below. In addition, the background may be
white with black characters (“black on white”), or the background may be
black with white characters (‘white on black”).

CTRL/WA _ Black on white, 8 x 10 characters, character set 1.

CTRL/WB_ White on black, 8 x 10 characters, character set 2.
CTRL/WC _ Black on white, 8 x 10 characters, character set 2.
CTRL/WD_ White on black, 8 x 10 characters, character set 1.
CTRL/WH _ White on black, 8 x 8 characters, character set 3.

cTRLWW) Black on white, 8 x 8 characters, character set 3.

CcTRLW J White on black, 8 x 8 characters, character set 4.
CTRLMW K Black on white, 8 x 8 characters, character set 4.

Having selected a character set using the appropriate CONTROL/W
sequence, most of the characters can be generated directly from the
keyboard by means of the GRAPHICS key and the “Attribute On’ mode,
which may be set by typing SHIFT/t and cleared by typing SHIFT/
ESCAPE. For the keys A—Z, (, —,) and + the following simple rules

apply:

Attribute Off: Unshifted: As key tops (lower case)
Shifted: As key tops (upper case)
With GRAPHICS: Characters 129—158

Attribute On: Unshifted: Characters 225—250

Shifted: Characters 193-223

With GRAPHICS: Characters 1-30

All 255 characters may be generated by a BASIC program, as the
following example will quickly demonstrate:

FOR | = 1 TO 255: PUT 27,1: NEXT I

The value 27 is the ESCAPE code, and is included here so that the screen

editor will display the next number as a character instead of obeying it as a
control code (see Appendix 3 for a list of control codes).

APPENDIX 5 LINE AND SCREEN DISPLAY
CHARACTER SETS

Keyboard Mode

The character set generated by the keyboard may be changed by typing
CONTROL with a number key. This is purely a keyboard function and has
nothing to do with the editor control codes. (When using a keyboard
device driver these functions are not accessed by typing but instead by
PUTting the appropriate byte to the driver). The character sets generated
by the different keyboard modes are summarised below:

CONTROL Unshifted keys Shifted keys With GRAPHICS.

0 normal upper case characters 129-158
1 upper case (shift lock) upper case characters 129-158
2 normal characters 225-254 characters 129-158

3 upper case characters 225-254 characters 129-158
4 normal upper case characters 161—190
5 upper case upper case characters 161-190

6 normal characters 225-254 characters 161—190
7 upper case characters 225—254 characters 161-190

8 normal characters 225-254 characters 193-222
9 upper case characters 225-254 characters 193—222

APPENDIX 5 Line AND SCREEN DISPLAY
CHARACTER SETS

B
e

“
S
P
E
R

R
e
a
i
s

E
e
e

e
e
k
:

OC:

A
a
h

V
R
E

e
e
e

S
e
e

e
e
e

ee

7

R
E
E

e
c

B
e
e

WP
S
0
2

2

2 9

2
B
e
?

BP:
E
S

ee
e
e

e
e

ee
e
e

S
l

2
ee”

ER
BS

2 2
:

ml:
(
R
E

B
e
n
:

S
e
e

E
e

E
e

MR
a

2
© Rg”

©
SBN

2 CD ©
2 DY

>
(
S
S

2

Be
MM
c
h
e
s

ch
e
r
m
e
e

ec
c
O
e
e
s

m
o
:

s
e
m
e

Bo
Ses

Macchi
-
S
t
o
s
A
s
l
e
D
e
D
s
e

saws
CP

B
e
?

we
oe
b
e
e
r
s

b
i
n
e

i
s
s

e
D
e
o
s

as
Es

a
i
s
e

128

wc
Bs

oe?
Beste

c
e
e

sO
s
i
i
e
p

se
s
s

a
8

e
n
s

Too
s
D
a
c
M
a
s
t
e

e
t
e
r
s

s
s
s

e
i
n
s

s
u
s
s

d m
i
n
?

2
Mm

of
o
l
e
s

s
s
e
s
q
y
s

-
8
M

s
e

s
n
e
o
s

8

L
i
n
s

e
g

re e
e
e

Be
e
G

s
y

8

a
s

8
 o
e

He

o
M
o

g
e
s

s
w
u
e
m
@
m
e
c
s
M
s
L
l
r
h
e
x
s
r

secs
a
t

xk

CHARACTER SET 1

144

APPENDIX 5 Line AND SCREEN DISPLAY
CHARACTER SETS

' =", Fr -|[4++-74
os "2 Ink J 5 or? fa

s .

ase ts PEPER eh > eT Tacha eee
o * “ a

1“ # a & ° Toa yo = gp y

C > Fe +, fone KOA yoo

61234567 «es gag tTAGac¢

89. ;,¢=5 > ? u o¢PtAR

BABCDEF SG EA e+ek

HIJKLMNO § i 4b 6 6 BA SG

PGRSTUuUYW 426i itt 4
80 8t a2 63 ea 85 86 7 208 209 210 au 212 213, aie “a8

®Y¥ 2 0* 1 tft @ &@ 66 Goo GO

“abedefg AgNCEA I
Pe a
hijktmno OU04¢4% #4

p rstuY aE # J =

2

IM
E

w
i
t

Te 13 e156 nyt 92a zeta RE ks ons 2a

{ot } a ¢ “Hl y 4 4 ~
to Fie? van tae tts ae a? a8 e808) 2828

CHARACTER SET 2

145

APPENDIX 5 LINE AND SCREEN DISPLAY
CHARACTER SETS

-- -— _ ae | eee os =f oh ee 4 6 8 5 m= = oF = = oo ws
== ne| | @ au _ a Bee = — 2 eee wu 4% a ar oe oe ae om i"

8 PiitJbnrFa | 8

“# ¢%& - BHROA @ =o = oe # mi ee ne ten ae -
a

sh
e w g

W
e
e

t
w

g
e

ol
l

e
e

+ I

mh

E
W
E
S

8

S
a

Ga
l
s
l
 =

s
a

B
i
g

+
t

G
s
m

o a gO

M
e
s
a

we

9 3 2? BRA eG
AaB FoBBESB8 HERS
I J Noo HH SBEO® Ss

Q q un B
e
e

3 3

Oo}

Ww al & a

8
+ ® 5 a En

M
e
m
e
s
C
i
z

rc
c

s
l

3k

Ec
 rE as
?

™ re
<

e
t
e
n

1 e
a

*

“
s
d
s
e
w
r
e
d
o
s
M
s
t
h
s
A
s
h
e
s

-E

E =

a5

s
b
e
x
e
D
s
L
e
M
s
m
s
Q
s
e
r
e

” * a
, is) 2 o + F 105 “los “for toe) 100 tno tna amas as aren

*+¢e¥l b>, OR DOU Es a Es os 2 0113 4 11567, te tg 2K 2a? Dada 2A
a ¥

+ + H * al ool te rd &
120 121122128 as 12512627 KB 2a 2502512525324 TS

CHARACTER SET 3

146

APPENDIX 5 LIne AND SCREEN DISPLAY
CHARACTER SETS

a eo Ey
-— — &

o 1 e 8 8 8 Oe te ee
= 1 | a ® wf _ & 2 Te we ea tae a

td tt i = I L cee oe oe a me wm oe ia =
. 3 ‘ i

i i | aa * a = a a so | ie m 7
“ ee

! # $k & a a = 2 oF 2% we

! ~

i
]

B
s

us
t

@ Ga

8

B
i
a

fl

sa

sO
)e
--

s
t

se

O
e

I
r
e
m
s
a
g
s
s

P
e
w

s
e

L @ Ba
=

ei

S
d
e
r
v
e
d
q
s
e
P
e
t
e
r
s
p
e

= - a

PGQRs uv ik Han fw

x YZ lt _ G8 i
j

Jdotb+r, ook cdef#
: :

re a a ee ee RK ot om A

44 woke Qqrestuyv

+ Mo y rr ae

CHARACTER SET 4

am
y

m
i
e

8
a

£

147

APPENDIX 6

APPENDIX 6 sasic sTATEMENT
KEYWORDS

BASIC STATEMENT KEYWORDS

Denotes stream identifier in input/output statements. See
OPEN, INPUT, PRINT, LIST, CLOSE etc. A stream

identifier is a numeric expression whose value is in the

range @. . 255.

? Synonym for PRINT (q.v.).
Also output as the default INPUT prompt — see INPUT.

BASE See OPTION.

BREAK See ON.

CALL Enter machine code sub-routine and supply pointers to
BASIC variables.

E.g. CALL 1000, A, BS, C(1)
will go to machine memory address 1000 with the Z80 HL

register pointing at a six byte block of addresses.

a — Address of C(1)

(C(2), C(3) can be found at
subsequent locations)

I~ Address of BS descriptor
(A string descriptor looks like

HL
 It relative address of string
 4

Address of A L~-iength of string

 |<-reserved for expansion)

The address is computed as in POKE (q.v.).

151

APPENDIX 6 asic sTATEMENT

152

CLEAR

CLOSE

CONT

CONTINUE

DATA

DEF

DELETE

KEYWORDS

Releases memory used for variables. CLEAR by itself releases

memory used by all numeric and string variables and arrays.
Future references to variables will return value @ for numbers

and null for strings; arrays can be redimensioned.
CLEAR list of variables and arrays
E.g. | CLEAR X, A1, BS, L$(), A() clears only those
variables and arrays in the list.

Closes input/output stream.
Eg. CLOSE#1 CLOSE #PR.
CLOSE #9, i.e. close the console, is not allowed.
See OPEN #@.

Synonym for CONTINUE (q.v.).

Continue execution after a STOP or END statement is
encountered, after an error or after the STOP key is pressed.
If a radical change has been made to the program in the
meantime then this may not be possible.

See READ.

Define user defined function. A user defined function may
be numeric or string valued and have no arguments or a
single string or numeric argument. A user defined function
name must be of the form EN letter. FN letter letter, or
FN letter digit, with a $ for a string valued function. The
definition must consist of a single expression.
Eg. DEF FNA(X) = SOR(Xt2+1)

DEF FNF&A$) = MIDS(AS, 1, 1)
DEF FNA1(A8) = ASC(A$)—65
DEF FNE = PEEK (8 * 256 + 7).

Deletes program lines.
DELETE by itself deletes no lines,

DELETE — 100 deletes lines up to and including 100.
DELETE 250 — deletes line 250 and those above it.

DELETE 150 deletes line 150.

APPENDIX 6 asic sTATEMENT
KEYWORDS

DELETE 30—150 deletes lines 30 to 150 inclusive.
DELETE — deletes all lines.

DIM Dimension array.
An array may be string or numeric and have one or two
dimensions. Several arrays may be dimensioned in one
DIM statement.
Eg. DIM A6(15), X$(5,20) DIM AS(N + 1).

An array may not be redimensioned unless cleared by a
CLEAR statement. If an array is referred to before a
DIM statement for it has been encountered it is assumed

to have dimension 10 or 10,10 and it may not be

redimensioned.

The base of arrays is set by OPTION BASE (q.v.). The
greatest dimension allowed is limited by the amount of
memory available, but in any case an array may not have
more than 5461 elements.

END End execution of program and await command.

ERROR See ON.

FOR Initiate for-next loop.
A for-next loop has the form

FOR-statement

block of statements
NEXT-statement.

Eg. 10FORI=1TO53STEP.5
20 PRINT 1, SQR (1)
30 NEXT |

or FOR I = 1 TO 255: CLOSE #1: NEXT I.
The block of statements is executed repeatedly while the
“control variable”, | in the above examples, is incremented
each time by the STEP value (.5 in the first example) until
the TO value (53 in the first example) is reached.
If the STEP value is omitted, as in the second example, it
is assumed to be 1. The first value and the TO and STEP
values may be any numeric expressions,
Eg. FOR | = SIN(X) to SIN(Y) STEP (Zt 2 + 1)/2.

153

APPENDIX 6 sasic statEMENT
KEYWORDS

FOR continued . . .

GET

The block of statements may contain “nested” for-next loops.
E.g. 10 FOR! = 1T010

20 FOR J = 1 TO 20: PRINT A(J,J): NEXT J

30A(1+1,1) = X

40 FOR K = 2T020

5OA (1+ 1,K) = All+1,K —1)* K
60 NEXT K

70 NEXT I

But the control variable in the NEXT-statement must always

match that in the FOR statement, so for-next loops may not
overlap.
E.g. 10FORI = 1TO10

20 A(I) = (X +1)/1
30 FOR J = 1T010
40 A(J) = A(I)/S

50 NEXT I: NEXT J
is not allowed.

The STEP value may be negative,
E.g. FOR I= 50 TO 1 STEP—1: PRINT I: NEXT I.
The block of statements will not be executed at all if the

control variable is already past the TO value. When a for-next
loop finishes the value of the control variable is the first
value not used — e.g. after FOR |= 1 TO 10: NEXT 1, | will

equal 11.
FOR and NEXT statements may not be used immediately
after THEN in IF statements (q.v.).

Get single characters or bytes from an input stream.
E.g. GET#1,A$ GET #3, A,B
The stream must be open.

APPENDIX 6 sasic staTEMENT

GOSUB

GOTO

KEYWORDS

Execute a subroutine.

A subroutine is a sequence statements ending with a RETURN

statement.
E.g. 20 GOSUB 1000

30.

1000 PRINT #1,A,B,C,
1010 RETURN

GOSUB 1000 cause the subroutine at line 1000 to be
executed, after the RETURN execution continues at line 30.
See also ON.

Continue execution at a new line number.

Eg. GOTO 60 transfers to line 60.

See also ON.

Execute a sequence of statements depending on a condition.

E.g. IF AS=“HI" PRINT “HELLO”: G=2.

The sequence of statements must be on a single line. The

conditional expression (A$ = “HI” in the example) may be
any numeric valued expression.
Eg. 10A=TRUE

20 FOR I= 1 TO 100

30 A= AAND X$(I) =
40 NEXT!

50 IF AGOTO 100

IF X= 1 THEN 100 is the same as IF X = 1 GOTO 100
IF X= 1 THEN PRINT 22 * X is the same as

IF X=1 PRINT 22* X

When the statement immediately following the condition is

a LET statement with the LET keyword omitted, a THEN
keyword must be used;

155

APPENDIX 6 sasic sTATEMENT
KEYWORDS

IF continued . . .
E.g. IF A=1 B = 2is not allowed; but

IF A=1 THEN B = 2 and

IF A=1 LET B = 2 are allowed

The statement immediately following the condition may

not be a FOR or NEXT statement.

Denotes input stream identifier in OPEN statement (q.v.).

Input variables from an input stream. The stream must be

open.
Eg. INPUT # KB, AS

INPUT # 3,A,B,AS
INPUT A1,YL(23),Z

If the stream identifier is omitted, as in the third example,

stream @, the console, is assumed.
In response to INPUT a sequence of characters corresponding

to a string or numeric constant is expected from the input

stream. When there is more than one variable to be input by
a single input statement, the corresponding constants must be

separated by comma or tab characters (ASCII 44 or 69). The

end of the list of constants from the input stream must be
denoted by a new-line character (ASCII 13). A string constant
cannot, of course, contain a new-line chracter. A string

constant without its enclosing quotes (ASCII 34) may be
supplied by the input stream but in that case it may not
contain comma or tab characters, or “quote images”
(repeated quotes in a string constant used to denote the
presence of a quote character rather than the end of the
constant). When the input stream is the console and
designated thus by the omission of a stream identifier in

the INPUT statement a prompt (question-mark space) is
output to the console. This can be suppressed by the form

INPUT (string expression) list of variables

in which case the string expression is issued as a prompt.
E.g. INPUT ("””) A_ issues no prompt at all.
Furthermore if an error arises in the input, input is
requested again — i.e. execution is not stopped.

APPENDIX 6 sasic staTEMENT

LET

LINPUT

List

KEYWORDS

Assigns a value to a variable. The keyword LET may be
omitted.
Eg. LET A=1

B(2,7) = ©

X2 = SIN(P/14) — 1/X2
Ag = “HELLO”

ME$ = CHR&(X) + MIDS(S$,2,Y)
A numeric variable or array element may be assigned any
value which is acceptable to the maths pack, this gives a

larger range than allowable for a constant.
Eg. although 99 is the largest exponent allowed in a

constant, A = 2 * 9999999999 is allowed.
A string variable or array element may be assigned any
sequence of characters or bytes up to a maximum length of
32767 (whereas a string constant cannot contain a newline

character);
Eg. A$ = CHR (10) + CHR$ (13) + MES + CHRS (244)
is allowed.

Input a line from an input stream.
Eg. LINPUT #S1, AS

LINPUT X$ (N + 1)
Characters are collected from the stream until newline
(ASCII 13) is received. The sequence of characters is
assigned to the string (A$ and X$ (N + 1) in the examples).
If the stream designator is omitted then stream @, the
console, is presumed. In this case a prompt (””?") is issued
on the console stream. This prompt may be substituted for
by using the form

LINPUT (string expression) string as in INPUT.

Output the program in ASCII text to an output stream.
Eg. LIST #PR, 30-100

List #1
LIST

157

APPENDIX 6 asic sTaTEMENT

158

LOAD

MERGE

NEW

NEXT

KEYWORDS

If the stream identifier is omitted the console stream is
assumed.

LIST 10 lists line 10

LIST 10—100 lists lines 10 to 100 inclusive
LIST —100 's up to and including line 100

LIST 100— __ lists from line 100 upwards
LIST— and LIST by itself list the entire program

Input the whole program from an input stream. The program
must begin with a blank line and finish with a line containing
only the character EOF (ASCII 04).
The lines may be in any order and in interal or ASCII text
format.

Eg. LOAD #TP
The stream must be open.
After loading execution stops.

All variables are cleared by LOAD.
The form LOAD filename where filename is any string
expression is equivalent to
OPEN #128, def, 0, filename LOAD # 128 CLOSE # 128
Here def is the default back-up store device, an operating
system parameter, usually tape drive 1 or disc drive @.
LOAD by itself is equivalent to LOAD filename where the
filename is null.

The same as LOAD (q.v.), except that variables are not
cleared, previous program lines are overwritten only when

an input line has the same line number, and execution does
not stop.

E.g. MERGE #1
MERGE “seg 2”

Note that LOAD is equivalent to NEW MERGE END.

Delete the entire program and clear all the variables.

See FOR.

APPENDIX 6 sasic sTaTEMENT

ON

OPEN

KEYWORDS

Transfer execution on a condition,
ON X GOTO 100, 200, 300

= 1 then execution continues at line 100, if 2 at line 200,
if 3 at line 300. If none of these values an error arises. The
general form is

ON numeric-expression GOTO line-number-list.
The expression is rounded to the nearest integer.

ON X GOSUB line-number-list is the same as ON..GOTO

except that the sequence of lines to which transfer is made is
treated as a subroutine. When a RETURN statement is

encountered transfer is made back to the statement following
the ON statement.

ON ERROR GOTO line-number
causes control to be transferred to the given line if an error

arises (instead of execution stopping as normal). This
condition can be cancelled by a subsequent ON ERROR

GOTO @. After an ON ERROR transfer execution can be
resumed at the statement in which the error occurred or

elsewhere by the RESUME statement (q.v.). The system

function ERRNO will give the error number, the system
function ERRLIN will give the number of the line in which

the error occurred. The REPORT statement will cause an

error message to be issued and execution to stop as in normal
error handling.

ON BREAK GOTO line number

is the same as ON ERROR except that depressions of the

STOP key (“break-ins”) rather than errors are trapped.
ERRNO will give the system interrupt number (@ for the

STOP key). RESUME, REPORT, ERRLIN act as in ON. .

ERROR. ON BREAK GOTO @cancels the trapping of
the STOP key.
ON ERROR and ON BREAK traps should be left via
RESUME or REPORT statements — executing a series of such

traps without exiting in this way will cause system performance
to be degraded.

Open an input/output stream. A stream identifier is associated

with a physical device and necessary parameters are passed via

159

APPENDIX 6 asic sTaTEMENT

160

KEYWORDS

the operating system to open

Eg. OPEN #1, 1, “file 1
OPEN #PR, 8
OPEN #UP, 6, 9

The full form is
OPEN # stream, device, port, parameter, string. Stream

is a numeric expression by the value of which the stream is
referenced in subsequent input/output statements until the

stream is closed. Certain devices are input or output: these
may require IN#stream or OUT#stream — see device specifi-
cations (Appendix 7),
Eg. OPEN OUT #1, “file”.
Device is a numeric expression by the value of which the
device is known to the operating system. For instance Ois
the video keyboard editor, 1 is the tap» ~assette drive 1.
The device may be omitted, in which case the default back-
up store device assumed by the operating system is used —
usually tape drive 1 or disc drive @,
Port is a parameter for the device and its meaning will depend
on the device. In general distinct port numbers may be used
to OPEN multiple copies of a device,
Eg. OPEN #1,4, 1 will open a copy of the video keyboard
editor on stream 1 (the first copy may be the console on stream

®. A Port may only be specified in an OPEN statement when
a device is specified. Stream, port and device must evaluate
to @. . 255, the value is rounded to the nearest integer.
Parameter string is a string expression the value of which is

Passed via the operating system to the device. It is often a

filename. It may be omitted, in which case null is assumed.
A stream already open may not be opened, except the
console (stream Q). OPEN # @ first closes the console (CLOSE
#9 is not allowed as this would end communication with the
machine) and then open the new one.
OPEN #@by itself is not recommended as the default back-up
store device is seldom a sensible console.
A device-port pair already open may not be opened — a
distinct port number must be used.

APPENDIX 6 asic sTtaTEMENT

OPTION

ouT#

POKE

PRINT

KEYWORDS

Only used in OPTION BASE 0
and OPTION BASE 1
Set the base of arrays (which is usually @). OPTION BASE, if

used, must precede any DIM statements or use of arrays. If the

array base is @an array A of dimension 5 will have an element

A(@), an array B of dimension 5, 5 will have elements B(@, 9),

B(@, 1), . . B(@, 5) and B(1, 0), B(2, @), . . B(5, 0). If the base is
1 then the first element of A will be A(1) and the first element
of B will be B(1, 1).

Denotes output stream identifier in OPEN statement (q.v.).

Put value into machine memory.

Eg. POKEA+B,34
POKE BA, FNX(3) +1

The first argument is evaluated and rounded to an integer in
the range @ . . 65535 to give an “address” in the machine

memory. The second argument is evaluated and rounded to an
integer in the range @. . 255 and this value is put into the

address. This can cause the machine to cease to function.

Output values of expression to an output stream.

E.g.
PRINT 1 + 2;
PRINT #1, “HI THERE STREAM ONE”, “374/88="; 374/88
If the stream is omitted, the console, stream @is assumed. The

stream must be open. String expressions are evaluated and
output as the precise sequence of characters (or bytes) which

they compromise, except that if output is to stream @ and the
device on stream zero supports formatting (see device
specification) a newline will be output if there is insufficient

space to fit the string on the current line.
Numeric expressions are output by first applying the equivalent
of the STR$ function and then outputting them as strings are
output. Numeric expressions may be followed by a formatter

as in STR& Commas or semicolons are used to separate items
in a print-list. Semicolons cause no output, but commas, when
output is to stream @ and the device concerned supports

161

APPENDIX 6 asic staTEMENT

162

PUT

RANDOMIZE

READ

KEYWORDS

formatting, cause sufficiently many spaces to be output to
Position the next print-item at the start of a print-zone. On
output to other devices a comma causes single tab character
(ASCII 89) to be output.
Eg. | PRINT,,, 19. usually causes 19 to be printed in the
fourth print-zone. !f a print statement does not end in a semi-

colon or comma a newline will be output after all the items.

The TAB function may only appear in a PRINT statement.
If the output is to stream @ and the device connected supports
formatting then TAB (54), for example, moves the print head

forwards, to the 54’th column. Otherwise a single tab character
(ASCII 99) is output regardless of the TAB value. The general
form is TAB (numeric expression) — the expression must
evaluate, when rounded, to an integer in the range @. . 65535.
This is reduced modulo the line length and the sufficiently
many spaces are output to reach the desired column — this
may mean moving to a new line.

Output single characters or bytes to an output stream.
Eg. PUT #P, (A+B +C)/2, “HELLO”
A numeric expression is evaluated and must be rounded to a
value in the range @. . 255.
Only the first character of a string is output. If the string is
null, zero is output.
The stream must be open.

Re-initialize the random number generator to a new unknown
value.

Read the next data-item.
Data items are found in DATA statements. The items in a
DATA statement are numeric and string constants (or

unquoted string constants of the sort valid for INPUT inputs —
see INPUT) separated by commas. After RUN the data item
pointer points to the first DATA item in the first DATA.
statement in the program (a DATA statement, if part of a
multistatement line must be the last statement on that line).
As DATA items are read the pointer is advanced until all are

APPENDIX 6 asic sTATEMENT

REM

REPORT

RESERVE

KEYWORDS

used. A DATA statement may not exceed 255 characters in
length — the surplus will be ignored.
RESTORE sends the data pointer back to the start. RESTORE

100 sends the data pointer to the first data item in the first
DATA statement in or after line 100.
Eg. 10 READ A, B,C

20 DATA 1, 2,3
30 END

Sets A=1,B=2,C=3.
10 DIM A$ (20)
20 DATA HELLO

30 FOR | = 1 to 20: READ A$ (1)

40 RESTORE: NEXT!
Sets each element of the string array A$ to “HELLO”. In the

absence of the RESTORE statement an error would arise as
the data would be used up after the first read.

Aremark or comment.
Any sequence of characters may follow REM. A REM

statement must be the last in any line.
Eg. 10 END: REMa very dull program.

Print the latest error message and end execution. If there is no
error it is an error to call report. See ON ERROR, ON

BREAK.

Set aside an area of machine memory to be inaccessible to

BASIC. The start address of this area will be returned by the

TOP system function after a RESERVE statement has been
executed,

Eg. RESERVE 1000

reserves 1000 bytes at the top of memory.
The number of bytes to be reserved is evaluated as a numeric

expression rounded in range @ . . 65535. This is treated as a

2's complement number, so RESERVE 65534 will be treated
as a request to return 2 bytes previously reserved — this can
sometimes cause loss of memory contents and a system
failure.

163

APPENDIX 6 asasic sTATEMENT

RESTORE

RESUME

RET

RETURN

RUN

SAVE

STEP

sToP

THEN

TO

KEYWORDS

See READ.

Resume execution after an error or break-in, provided ON
ERROR or ON BREAK condition is set. RESUME by itself

resumes at the statement in which the error occurred or at
the start of the statement before which the break-in occurred.

RESUME line-number resumes execution at the start of the
given line. See ON ERROR, ON BREAK.

Synonym for RETURN (q.v.).

Transfer execution to the statement following that at which
the most recent GOSUB was encountered. See GOSUB,

ON .. GOSUB.

Clear all variables and start execution at the lowest numbered
line,

Save program in internal format on an output stream. The

stream must be open.

Eg. SAVE #3.
The alternative form

SAVE filename is equivalent to
OPEN #128, def, 0, filename SAVE # 128
CLOSE #128

Where def is as in LOAD (q.v.).

See FOR.

End execution and print a message saying where execution
ended.

See IF.

See FOR.

APPENDIX 6 sasic staTEMENT

VERIFY

KEYWORDS

The same as LOAD (q.v.) except that variables are not
cleared, no program lines are loaded and execution does not
necessarily stop.
The program on the input stream (which must be internal
format) is compared with that in memory. If there are no
differences the message ‘VERIFIED’ is output to the console,
if there are differences an error occurs.

APPENDIX 7

APPENDIX 7 bevice DRIVER SUMMARY

TvIO

Number:

Function:

Ports:

Parameters:

Examples:

CASS1

Number:

Function:

Ports:

Parameters:

NEW BRAIN DEVICE DRIVER SUMMARY

®

Screen Editor, 1/O

Ignored by the driver — may be used to make multiple

copies of the device.

Width — Height

Width is “S"' for short (4@ character) lines,
“L"" for long (80 character) lines,

and defaults to “S””.
Height is an integer, between 2 and 255, the number of
lines on the page, the default is 24,

OPEN #0,0,"L40”
re-opens the console as a 80 character by 4@ line screen.
OPEN #0,0: OPEN #1,9,1
re-opens the console as a 4@ character by 24 line screen and
makes another 4@ character by 24 line screen on stream 1.
OPEN #7, 6, “s100”
makes a 190 line by 4 character screen on stream 7.

1

Tape Cassette 1,1 or 0.

Must be @

buffer size print option filename

“ ake buffer size is “* integer” (or “* integer:” if another
Parameter follows), and determines the tape buffer size as
multiple of 256 bytes. The default is 4 (i.e. a 1K byte
buffer).

169

APPENDIX 7 bevice DRIVER SUMMARY

170

Examples:

CASS2

Number :

Function:

Ports:

Parameters:

Example:

LUO

Number:

Function:

print option is)" or null and defaults to null. A ““)”, if
Present, suppresses the printing of filenames on the console

while searching for a file during tape OPEN IN.
filename is any string not beginning with “*” or up to
256 characters in length. It is used as a file identifier on the

tape. Default is null (for input first file found).

OPEN OUT #1, 1, “my file”
records a filename “mvfile”’ on stream 1.
OPEN IN #3, 1, “*10:) my file”
searches for a file called “my file” but does not print the
names of the files found while searching. A buffer length
‘of two and a half kilobytes is available.
OPEN OUT #1, “*20"
opens a file for output on stream 1 with a null filename and
a buffer size of 5K.
records a filename “myfile” on stream 1.
OPEN #1,1
searches for a file on stream 1 and opens it for input.

2

Tape Cassette 2, | or 0.

Must be @.

As device 1, CASS1.

OPEN #1,2
Search for and open a file on stream 1 from tape cassette

drive 2.

3

VF display editor, 1/0.

APPENDIX 7 Device DRIVER SUMMARY

Ports:

Parameters:

Examples:

TLIO

Number:

Function:

Ports:

Parameters:

Example:

KBWIO

Number:

Function:

Ports:

As device 0, TVIO.

length
length is an integer between 16 and 254, the number of
characters in the line. The default is 80.

OPEN #0,3
opens an 89 character VF display as the console.
OPEN #1, 3,1
opens (possibly a copy of) the VF display editor on
stream 1,
OPEN #11, 3, “150”
opens a VF display editor for a 150 character line on
stream 11.

4

Screen editor with VF display, I/O.

As device 8, TVIO.

As device 6, TVIO.

OPEN #6,4
Open combined screen and VF display as the console.

5

Keyboard input.
(Note output to this device sets the “keyboard mode” —

i.e. the way in which keys are interpreted as characters, for

input from the corresponding stream).

May be used to create multiple copies.

171

APPENDIX 7 bevice DRIVER SUMMARY

Parameters:

Example:

KBIIO

Number:

Function:

Ports:

Parameters:

Example:

UPIO

Number:

Function:

Ports:

Parameters:

Examples:

None.

OPEN #1,5
Open keyboard input on stream 1.

6

Keyboard input, as device 5, KBWIO, but with immediate
return — i.e. will return immediately on call to INPUT

(i.e. GET) regardless of whether a key has been pressed —
will return character @ (NULL) if no key entered.

May be used to create multiple copies.

None.

OPEN #12, 6
opens keyboard input, with immediate return, on stream 12.

7

User port, 1/0.

Set the Z80 hardware port address.

None.

OPEN #1,7,3
opens Z8@ port 3 on stream 1.
OPEN #25, 7, 25
opens Z8@ port 25 on stream 25.

APPENDIX 7 bevice DRIVER SUMMARY

LPIO

Number:

Function:

Ports:

Parameters:

Examples:

JGIO

Number:

Function:

Ports:

Parameters:

Examples:

8

Software serial line printer output. The line printer output

interprets TAB and NEWLINE codes in the conventional

way.

Irrelevant.

“T" baud rate.
The “T” is optional. Baud rate is an integer between 75
and 19200 , and defaults 9600. This sets the transmit

baud rate.

OPEN #8,8
‘opens 9600 baud printer on stream 8.
OPEN #1,8, "110"
opens 119 baud printer on stream 1.

9

Software serial port, 1/O.

Irrelevant.

“T" baudrate “R" baud rate
The “T” and “R” are optional, except that the “R” is

required if a receive baud rate is specified. The baud rates
are the transmit and receive baud rates as for LPIO
(device 8). They default to 9600.

OPEN #9,9, “110R110”

opens the software serial interface to transmit and receive
at 110 baud on stream 9.

173

APPENDIX 7 bevice pRIVER SUMMARY

174

DUMMY

Number:

Function:

Ports:

Parameters:

Example:

OPEN #1, 9, “4800”

opens the serial interface on stream 1 with a transmit baud

rate of 4809 , and receive baud rate of 9600.

10

None.

Irrelevant.

None.

OPEN #2, 10
opens the dummy device on stream 2.

APPENDIX 7 Device DRIVER SUMMARY

Number:

Function:

Ports:

Parameters:

Examples:

GRAPH

11

High resolution screen display, shared with a screen editor.

May be used to make multiple copies.

linked stream width option height

Linked stream is ‘'# integer” or null and defaults to 0, i.e.
the console device, and determines the stream whose
display area is to be shared. The selected stream must be a

screen device, whose height is sufficient to accommodate
the requested height. Graphics lines require up to ten times

as much memory as the character lines they replace.

width option is "W" or'N" (default is “W"), and
determines whether the full width of the screen or a
narrower part of it is to be used. Selecting “N’” reduces the
memory requirement by 20%.

height is “integer” (or ", integer” if the width option is
omitted), and determines the number of graphics lines on
the page. The default is 150. The height must be a multiple
of 10.

OPEN #0,0, “s100” : OPEN#1,11, “80°

re-opens the console as a 40-character by 100 line screen,

then opens a graphics stream using the full width and the

lower third of that screen. The console would then be

reduced to 17 character lines.

OPEN#4,0, “L254” : OPEN#1,11, “#4w229”

175

APPENDIX 7 bevice DRIVER SUMMARY

176

opens a 80 character by 254 line screen as stream 4, then
opens a graphics stream using the full width and all but two
lines of that screen.

The width given when the linked stream was opened
determines the resolution of each of the graphics line: 320

(wide) or 256 (narrow) pixels when the linked stream uses

40-character lines, 640 or 512 pixels when it uses

80-character lines.

APPENDIX 8

APPENDIX 8 cate STATEMENTS AND 0/S

Syntax is

ROUTINES

CALL statement and O/S routines

CALL expression [, argument] *

expression must be numeric valued and is the Z80 address
which is to be called.
argument may be a string or number variable or array ele-
ment or a numeric constant. On entry to the CALLed
routine HL will point to a block of addresses of the
arguments.

offset-2n+1 LE 4 address of last
from (HL) (n’th) argument

offset -3 from address of second
(HL) - 7 argument

offset ~ Tfrom address of first
a E 4 argument

The C register contains a count of the arguments. The
addresses are stored in the usual Z80 manner — with the
low order byte at the low address.

The arguments are found at their respective addresses in their standard
NewBrain formats. In the case of a numeric argument this is a six byte floating
point number (such numbers may be manipulated by the maths pack). When
the argument is an array successive six byte blocks will contain successive ele-
ments of the array. In case of a string argument a six-byte block containing
a “string descriptor” will be found. This is

argument address —>{_ _lposition (2’s complement negative)

relative to ARBAS

| length of string

 reserved for expansion

179

APPENDIX 8 CALL STATEMENTS AND 0/S
ROUTINES

The string itself will be found at the address of the position; ARBAS (the
base below which strings are stored) will be found at IY + 26, IY + 27. As
with numbers, for an array successive six byte descriptors refer to succes-
sive elements of the array. Note that two dimensional array elements are
stored in the order (0, 0), (0, 1),. . (1,0), (1, 1), (1, 2),..

Example: CALL 32000, A, B(1), X$, 12, Y8(14, 2)
will cause the Z80 program counter to be set to 32000 and the HI register
will point into a block of 5 addresses (the C register will have value 5):

noe aS 4 address of Y$ (14, 2) descriptor

L a4 4 address of constant 12

te a3 4 address of X$ descriptor

- a2 4 address ot 3(1)

aot al 4 address of A

al ——»

 six byte f.p. value of A

T 1

six byte f.p. value of B (0)

six byte f.p. value of B (1)

di
ti

t

Tr
TT
T

six byte f.p. value of B (2)

TT
TT
T

ti
ti
t

APPENDIX 8 CALL STATEMENTS AND 0/S
ROUTINES

Six byte string descriptor

a3 —>| relative position (To find absolute position
add to ARBAS and ignore carry.)

length

(IY + 26) + (IY +27) * 256

+ ((a3)) + ((a3)+1) * 256
n byte string

six byte f.p. value of 12 &

a

d
i
p
i
t

six byte descriptor YS (14, 1)

a5 six byte descriptor for Y$ (14, 2)
(see above for method to find string itself)

six byte descriptor for Y$ (14, 3)

181

APPENDIX 8 CALL STATEMENTS AND 0/S

182

Notes a)

(2)

(3)

(4)

ROUTINES

A user machine code program can return to BASIC by
means of the Z80 RET instruction (op-code C9H). On

return to BASIC an error will be flagged if and only if the

carry flag is set and then an error message will be printed
with error number equal to the contents of the A register.

A program returning to BASIC must preserve the 1X and IY
registers.

A user program should not use the alternate register set, or

the restarts.

There is no easy way to assign to a string and change its
length. The user must ensure that a string’s length is
correct before CALLing a user machine code program.

Operating system routines may be called by the Z80
instruction RST 26H. The byte immediately following the

restart op-code is interpreted by the operating system as a
calling code and this determines which operating system
routine is called.

Eg.
1E00 LDE,@ jset stream @
E7 RST 20H ; call operating system
31 DEFB 31H ; code for INPUT

57 LDD,A ; Transfer input byte to D
calls the operating system routine INPUT to get a byte
from stream @ to the D register.

Useful operating system routines are as follows:

INPUT input a byte from stream to accumulator

Entry: Register E = stream number
Exit: CY clear, A = byte

or CY set, A = error number
BCDEGHL preserved.

Action: As BASIC GET #stream, byte
Calling code: 31H

APPENDIX 8 CALL STATEMENTS AND 0/S
ROUTINES

OUTPUT

BRKTST
Entry:
Exit:

Action:

Calling code:

LDF
Entry:

Exit:

Action:

Calling code:

Calling code:

output accumulator to stream
E = stream number A = byte

CY clear — no error
or CY set — A = error number

BCDEHL preserved.

As BASIC put #stream, byte
30H

test to see if STOP key has been pressed

CY set, A = @ if stop key pressed,

CY clear otherwise

BCDE preserved.

Checks if a STOP key interrupt has

occurred since last check
36H

load floating point accumulator
HL = address of floating point number to
be loaded
BCHL preserved
Copies number into floating point
accumulator, FACC (which is inaccessible

to the user)
2BH

store floating point accumulator
HL = address at which to store
BCHL preserved
Copies number from FACC to the address
given
ZDH

Zero argument Maths — load FACC with value

No conditions
CY clear
load FACC with floating point constant
7 1,0 or-1

183

APPENDIX 8 CALL STATEMENTS AND 0/S
ROUTINES

184

Calling codes: Pt, @1H; FPONE, 03H; FPZER, 05H;

FPMON, 04H

One argument Maths — perform maths operation on FACC
Entry:
Exit:

Action:

Calling codes:

No conditions

CY clear if operation ok, CY set if maths

error,
apply floating point function to FACC.
E.g. FACC := log (FACC). Functions
available are absolute value, arc cosine

arc sine, arc tangent, cosine, exponential
function, logarithm, negative, sign (-1 for
negative, @ for zero, +1 for positive), sine,
square root, tangent and integer part.

ABS, 09H; ACOS, 14H; ASIN, 13H;
ATAN, @ AH; COS, @ BH; EXP, @CH;
LOG, @EH; NEG, 7H, SIGN, 6 FH;
SINE, 10H; SORT, 11H; TAN, 12H; INT,
@DH.

Two arguments Maths — perform maths operation of FACC
Entry:
Exit:

Action:

Calling codes:

INP

Entry:

DE = address of second argument .
CY clear if operation ok, CY set if maths
error,
Perform dyadic floating point operation
on FACC and (DE), leaving answer in

FACC. E.g. FACC: ‘ACC - (DE).
Operations are plus, minus, times,
raise to power
ADD, 16H; SUB, 17H; MULT, 18H; DIV,
19H; RAISE, 1AH.

Convert ASCII to floating point
DE points to an ASCII string

APPENDIX 8 CALL STATEMENTS AND 0/S
ROUTINES

Exit:

Action:

Calling code:

ouT
Entry:
Exit:

Action:

Calling code:

comP
Entry:

Exit:
Action:

Calling code:

FIX

Entry:
Exit:
Action:

Calling code:

DE points to first character not read.
Floating point number read into FACC.
CY set if and only if error
Read floating point ASCII to FACC,
comparable to BASIC X = VAL(Y3)
2AH.

Convert floating point to ASCII

BC = format code
HL will point to a string containing the
ASCII equivalent of FACC. C = count of

length
Convert FACC to ASCII string according

to format specified in BC

(256(64f + i) + t, where f = @ for fixed
point, 1 for free format and 2 for

exponential format; i = digits before
point, t = total digits)
2CH.

floating point compare.

HL point to first floating point argument,

DE to second,
CY and Z set as for (DE) — (HL).

Compares two floating points numbers
and sets flags accordingly,
26H.

Fix floating point number to integer.
HL points to argument ,
CY set if and only if error. DE = answer «

Fixes (HL) to positive binary in range @. .
65535 (taking integer part),

27H.

185

APPENDIX 8 caLt STATEMENTS AND 0/S

ROUND
Entry:

Exit:

Action:

Calling code:

FLT

Calling code:

Round to integer
HL points to argument.
CY set if and only if error,
DE = answer
Rounds (HL) to positive binary in range
0. . 65535.
29H

Float binary number
DE = argument
{Answer in FACC)
Float positive 16 bit binary into FACC.
28H

APPENDIX 9

APPENDIX 9 HARDWARE SPECIFICATION

Model A and AD

Z80A microprocessor running at 4MHz
COP 420M micro controller with 1K system ROM

32K byte RAM

28K ROM
Dual 1200 baud cassette ports with drive motor control

75 ohm UHF channel 36 output
CCITT 1v, 75 ohm composite video output

RS232/V 24 Bi-directional port
RS232/V 24 Printer port
(Both RS232/V 24 ports are software dirven and non-autonomous)

Character Generator provides 512 characters including the 96 upper and
lower case ASCII/ISO printing characters, 64 viewdata mosaic graphics
symbols, Western European accented characters, full Greek upper and
lower case characters, line drawing graphics, games graphics and other
symbols generated in 8 x 10 and 8 x 8 matrices.

Video and UHF outputs provide a display of up to 25 or 30 lines of 40 or
80 characters per line. A high resolution display of up to 250 dots
vertically by 256, 320, 512 or 640 dots horizontally may be mixed with a
separately scrollable character mode display.

Mode! AD

An on-board blue-green vacuum fluorescent 16 character, 14 segment
display behind a brown tinted filter.

INDEX

ABS...
ACS...
Accuracy
Alphabetic order
Alpha numeric
AND eens
Argument (see also parameter)

Arithmetic expression .
Arithmetic operator —
Alay scccarcsarosasasoancnseansne

Assignment
Attribute on.
ARC

ASC...

ASCII...
ASN...
ATN :
Auto-delete . .
Auto-repeat . .
AXES.

BACKGROUND

Background . .
BASE

BASIC compiler

BASIC definitions . .
BASIC statement . .
Baud rate

BCK

{see BACKGROUND)

Binary-
Boolean Operation

BREAK

Break-in ...

69,112,135,184

66,112,135,184
25,26,66,109
114

9

29,30,31,46,114,135
99,103,104,111-114,116,

179-186
28
28
28,54—55,99,100,103,110,
111,119,152,153,161

34,116,157
8,93,129,131,142

87,135
80,81,112,135
31,80,81,109,113,114,122

125, 157,184,185
66,112,135,184
66,112,135,184
9,12,128

86,135
86,90, 125,132,142
57,99,103,116,135,151

16
23-32
24,116
105,173,189

29
114

52,94—95,135,151
111,159,164

191

192

BRKTST...
Buffersize . .

Cassette recorder (see tape)
CENTRE
Channel .
Character

Character set

Check-sum

CHRS

COLOUR q

Comma (,) . .

Command

Command mode

Concatenation . . .
Condition ..
Connecting up .

Console

INDEX

183
169
63,109,111,118,132,154,
161,162,182
115

95,101,117,135,151,179—

186
169

170

87,90,135
17

15,16,31,35,80-81,92,109,
122,125,142-143,161,189

15,16,92,122,125,132,141

18,81,112,135
39,56,74,94,104,119,132,
135, 152,158,164
20,60,102,104,118,125,

135,138,152
126
24,116
86,135
35,100,102,109,111,116,
118,156,161-162
12,24,60,109,110,116,119
121,135,153
24
31,76,114
46,155
25
4,61,92,100,109,111,117,
118,121,128,152,156,158,

160,161,169,171,175

INDEX

Constant... 26... eee eee ee eee eee 25-26,57,109,110,111,119
156,157

CONTinue . 2... eee ee eee eee eee 40-41,104,117,121,135,
152

Continuation line, etc. 9,13,15,128,130,131,132
CONTROL key 127,143

CONTROL/O 8,92,127
CONTROL/1.. 8,127

Control/Escape 129
Control/Home . 10,13,129

Control/Newline 129
ControlW . . 142
Control/> . 10,129

Control/- 10,129
Control. . weve 19,43-52,116-117
Control characters. . 9
Control code ..

62,109,125,126,127,128,

129—132,142—143

Control variable 44,101,120,153,154
Conversion 79—82,185—186

cos.... 66,112,135,184

Current line 10,12,13,14,15,125,130,

131,132,161
Cursor .. 9,10,11,12,13,14,15,19,

125,127,128,130,131
Cursor address . 131

Cursor control . 10,11,125,129

Cursor position 61,126,127,131

DATA statement0-0020 00s 57—58,101,102,104,119,

135,137 ,152,162—163
Datastream ... 17,115

Data structure . . 53—-58,121
DBY (see DRAWBY)
Declaration . : 116

DEF...... . . sees 73,103,113,116,135,152
Default backup store device ... 94,119,158,160

193

194

INDEX

Degrees... 86,89,135
DELETE... 101,119,136,152--153

Depth. . 85,126,128
Device . 60,104,105,111,115,117,

125,126,159,160

Device driver .. .
Device type
{also device number, driver number)

16,17,115,169—175

17,60,92,169—175

DiMension statement 28,55,56,102,110,116,

136,153
Dimension... . 0.02... e ee eee eee eee 28,54,55,99,103,110,111,

116,152,153,161

Direction 117
Display ... 9—16,35,38,39,61

Divide (/) 28,114,184

DOT 86,136

DRAW . 86, 136

DRAWBY . 86,136

DRW
(see DRAW)
DUMMY 174

Dummy variable . 73

Editing 10—14,15

Element . . 28,54,57,100,110,111,116,
157

END 24,39—40,120,136,152,153
EOF...... 158
Equal to (=) . 29,46,114
ERRLIN... 52,111,136,159
ERRNO ... 52,111,136,159
ERROR 12,13,24,32,52,94—95,

111,122,136,153,156,159,
163,165,182

Error code... 6.0... cece eee eee eee ee 32,99-106,122
ERMOFMENSEG 66 ccnsccencaeeseco ee na 32,57 ,58,60,99—106, 122,

159,163,182

INDEX

ESCAPE

Execution

EXP 2... cece eee ee . : one
Expansion box . i.

Exponent
Expression

Extension 0... cece cece ee eee eee

File
(see also TAPE) 2.0.0.0... ce cee eee eee
Filename

(see also Title)
FILL
Floating point .
FN. eee

FOR-NEXT .

Format specification

Formatter
FREE.......
Free format . .
Function

126,129
39,40,41,46,121,152,158,
164,165
67,112,136,184
17,18
25,112,157
24,28,29—31,100,102,
103,111
17,94,122

29,30,82,110,111,112,136

111,136

18,19,106,170

119,158,160,164,169-170
87,105,136
25,109,179,181,183—186
27,73,103,113,136
11,12,15,44—46,101,102,
119-120, 136,137,138,153
26,35,109,112,117—118,
161,162
21,112,117-118
21,35,103,112,117—118,
138,161
111,136
112,117-118
65—74,75—78,79-82,85,
89,99,111—114,116,135

62~63,118,136,154,172
48—49,100,116,122,136,
137,155,159
39-40,47,100,104,117,
136,155,159
175,

195

INDEX

GRAPHICS key ... 0... 2-0-2 ee eee eee 10,127,142-143

GRAPHICS/t . wees 10,13,14,129

GRAPHICS/4 - oe . oe » 10,14,129

Graphics 83—90,118,175

Graphics characters-2--.005 See mosaic characters

Graphics pen-.-2-0-02+4-.- 85,90
Greater than (>)... ... o- oe . . 29,46,114

Greater than or equal to (>=! 29,46,114

Height00ee ee eeee 105,169,175

High resolution display . 85,131,175,189

Help inemergency wee e eee 91-95

HOME----000- 10,11,13,129,130,131,132

IF nccceesessaeneverss . 27 46—47,116,136,155
IF —THEN . 46—47,116,136,138,155

Increment . . 24,44,120

INF 22... eee e eens Si veees 117,136,156

INPUT0.0 ee eee . * . 37-—38,100,101,102,109,

117,125,127,128,130,131,
132,156,169,170,171,172,

182

Input/Output. 2.2... ee ee ee eee 16,59—64,115,151,169,
170,171,172,173

Input-Output system . 17,125
INSERT ... 10,11,12,13,14,129

INSTR 78,113,136

INT .. 69,112,136,184

Integer 25,112,185—186

Integer format 109,112,117
Internal code
{see also character set) 80,81,112

Internal reader . . . sees 119

Interruption-5% . . + 18,92,116,183

Intrinsic function»... 6... eee eee eee 65-74

SGI0 eee cece eee 173

INDEX

Keyboard .

Keyword
(see also reserved word) beeen

LEFTS .
LEN...
Length .

Less than (<)......
Less than or equal to (-
LET...
L110... .
Line display . .

Line editor . .
Line number

Linked stream

LINPUT

Logical operator . .

Lower case ..

LP10

Machine code. . . .
Mains power .
Mantissa
MBY

(see MOVEBY)

7-8,16,37 62,125,127,

128,130,131,143,160,171,
172

24,61,100,102,109,116,
151

77,113,136
76,112,136
76,109,112,126,128,157,
162,171
29,46,114
29,46,114
27,34,47,116,136,155,157
126,128,131 ,132,170
14—15,39,61
14,170
12,21,24,99,100,104,111,
116,121,155,158,164

85,175
61,104,109,118,136,157
21,38—39,63,101,102,118,
136,157—158
18,24,63,119,136,158
67,112,136,184
29,110
20,46,110
8,27,122,125,127,142,143
173

95,117,119,151,182
3,105
25,109,112,118

197

198

INDEX

MDE

(see MODE)
Memory
Memory space (storage). .

MERGE .
MIDS ...
Minus (—)
Monitor .
MODE ..

MOVE ..
MOVEBY
Mosaic characters, etc.
(see also character set)
Multiple copies
Multi-statement line
(see also colon)

MVE

(see MOVE)

NEG

NEW ...

NEWLINE

NOT

Null string

NUM .

Number . .
Numeric constant

94
55,56,85,94,99,104,105,
109,110,122,125,152,153,
163,175
119,136,158
77,113,136
28,113,114,184

84,109,122,125,189
122,129,160,169—175

57,162

184
117,137,158
10,11,12,13,109,118,125,
127,128,129,130,156,157,
161,162,173
44—46,101,102,119,137,
154,158
29,31,46,114,137
29,46,114

38,40
82,109,112,137
25,26,28,82,109
25-26,57,109

INDEX

Object code
ON seins

ON BREAK.

ONERROR-02-e eee eeee

ON-—GOSUB .

ON-—GOTO
OPEN....

OPEN IN

OPEN OUT .
Operating system
OPTION

OR .
OUT#...
Output ...
PRE caveacsseses
Paged memory
Parameter

(see also argument)202 000 ee

Parameter string .

Parenthesis ...
PEEK

PEN . .
Pen colour .
Peripheral .

Pl i.
Pixel

121
27,50—51,52,53,94-95,
99,100,135,136,137,159
52,94—-95,104,116,119,
121,159,164
52, 94—95,104,116,119,
159,164
50—51,116,159
50-51,116,159
14,15,17,20,21,60,93,94,
99,111,126,136,137,138,
159-160
125
125
16,115,117,122,160
57,99,103,116,135,137,
161
27,29,30,31,46,114,137
117,161
17,21,26,54—59,109,117,
125,128,130,169,170,173

125
122

24,38,45,74,78,86,89,101,
159

105,106,111,117,160,169—
176

31,102,111,122
112,137
89,105, 112,137
85,86
16,17
26,27,66,111,137,184
176

INDEX

PLOT... 2... cece eee eee eee eee 61,85-89,105,118,135—138,
161

Plus (+) 28,113,114,184
POKE......... cece eee eee ee es 95,101,119,137,161
POs . . 111,137

Port 17,62,104,106,117,126,
160,189

Power...0-5 eveeeeeeees 3,28,31,68-69
Precedence of operators . 31
PRINT 12,15,21,26,32,34,35—36,

100,109, 117,137,151,161—

162,173

Printer 2... cece cece eee eee wees 5,21,62,189

Printhead * . wees 111,118,162

Print option. 169-170
Print zone . 35,36,162

Processor 17,18,189
Program .. 5,10,12,18,19,21,24,41,

109,110,115,118,119,120,

121,158,164

Program execution

(see Execution)
Program testing- 2-2 eee eee eee 40,41,122

Prompt... 1.022 s secs nccccscccsess 37,100,117,118,127,156,

157

Prompt expression60-02 000s 38,49,61,156,157
PUT Lecce eee eee eee 62—63,104,118,137,143

Quotation mark... 6.2... eee ee eee 102,109,110,156

RADIANS . 86,89,137

Radian 66,86
Raise to a power (t) 28,31,68—69,114,184

RANDOMIZE 71,119,137,162

Random access... . 115

Random number

RANGE

71—73,111,119,162

87—90,137

INDEX

Range 118
READ 57—58,101,119,135,137,

162
Relational operator 29,46,114
REM 41,119,122,137,163
REPEAT Key 9,13
REPORT 51-52,119,136,137,159,

163
RESERVE 95,119,137,163
Reserved word ieee 26,27,121,135—138
RESTORE00.00050000- 57—58,119,135,137,163,

164
RESUME 52,116,137,159,164
RETurn 48-49, 100,116, 137,155,

159,164
Reverse field 125,126,132
RIGHTS . 78,113,137
RND ... 71,111,137
RNG
(See RANGE)
RUN 12,39—40,117,137,162,164

SAVE 19,63,118,137,164
Scientific format, notation . . 25,26,109,112,117-8
Screen eee 9—14,35,38,105

9—-14,35,38

10,109,125—132,169,171,

175

Screen display .

Screen editor

Scroll... os 12,13,125,130,131,132,189

Semi-colon (;) . 35,100,118,161—162

SENSI 5

SENS2 5
Serial device, port . . coer sees 105,106,115,173

SGN........ : oeee see eee 70-71,112,137,184

SHIFT key sees seee. 8-10,127

SHIFT/ESCAPE 8,93,129,142

SHIFT/HOME . 10,11,81,129

201

202

INDEX

SHIFT/INSERT

SHIFT/> ...
SHIFT/<—

SHIFT/}

SHIFT/t
Shift Lock

Stream number ..

String .

String constant... 2... 6-2. eee eee eee

String descriptor . .

String expression .
String handling. . .

String variable
Subroutine
Subscript
(see also Array Element)
Substring

Switching on .

Switch settit

TAB...

10,12,129

10,11,129

10,11,129
°10,13,129

884,142
8,93,127,143
66,112,137,184
28,68,112,137,184
44,45,101,120,137,
154,164
18,19,24,40—41,
52,92,117,121,135,
138,152,158,164,183
82,109,112,138,161
17,19,20,21,60,85,92,
94,104,105,115,117,
151,152,154,156,158,
160,161,162,165,183
61,86,89
27,31,35,87,101,109,
112,114,118,184
57,102,109,110,122,
162
179,181
31,117
75-78
35,110
41,48,49,151,155

54,99,100
113
6
5

36-37,45,101,102,
109,117—118,138,156,
162,173

TAN
Tape

TAPE! .

TAPE2
Tape error
Tape recorder

(see Tape)
TBY

(see TURNBY)

Television ..
Test plotting ..

THEN (see IF)
Title.

Token
Tone control...
TOP..........
TRN
see TURN

Traps... 2...

Trigonometric fun:

TRUE ..
Truth tables
TURN ...

TURNBY ..
TV control
FV10 5.5.5.

TV mode

UP10
Upper Case

INDEX

66,112,138,184
5,18—20,160,169,
189
18
19-20

105,106

49

87

18,19
28,114,184
126,128,131,171

27 A4—46,101,120,
138,154,164
63,118,119,121
5
95,111,138,163

52,116,121,122,159

66,112
29,30,82,110,111,112

29,30

86,138

86,138

17 84,132
126,128,131,169

125

172
8,27,122,125,127,

142,143

203

204

INDEX

User defined functions...2.2.05

User port 2... 2. eee eee eee eee eee ee

Variable .

VERIFY 2. cccccccsncsvecearoccenes

Viewdata graphics.

Volume control
Width...
Window . : . eae

WIPE 2 ccc ccc ccc cc recccaccccsnes

73—74,103,113,116,
152
17,172

82,104,112,138,185

27,28,35,39,41,44,55,
73,100,104,109,110,
111,116,119,151,152,
157
19,63,104,119,138,
165
See mosaic characters
5

169,175
14,15,125,126,132

86,138

125

17,172,179,180,

182,189

 Grundy | Grundy Business Systems Ltd.

Sales and Administration Marketing and R&D
Somerset Road, Teddington, Science Park. Milton Road.
Middlesex TW11 8TD Cambridge CB4 4BH
Tel: 01-977 1171 Tel: 0223 350355

