Handbook

PREFACE

This handbook is a guide to the use of the NewBrain. It contains a full description of
the essential features of the NewBrain and NewBrain BASIC.

Other documents for the NewBrain include the NewBrain Beginners Guide and the
NewBrain Software Technical Manual.

Grundy Business Systems
Science Park

Cambridge

UK.

ERRATA CORRIGENDA and ADDENDA

Issue 2

Contents, page (i), Chapter 2, Section 2:

Page 6, last line:

Page

Page

Page

Page

Page

10, line 8:

DELETE

Chapter 4, Section

read

for
read

second column, line 14:

for
read

11, second column, line 16:

19, line 2:

20, line 3:

line 30:

23, line 6:

“CONDITIONS/"

5:

"ERROR . . . 52"

“ERROR AND REPORT . . . 51"

"blanks"
'flashes through the same message and
shows a flashing underline as its cursor,

The user may now choose to select an eighty
column display by typing

OPEN#D, 4, “L"
followed by NEWLINE (see pp 169 . . . 171)."

”page 40"
"page 24"

"edigint"
“editing"

“NOW IS THE TIME TO COME"
“NOW IS NOT THE TIME TO COME"

.n6_3 Sayve"

“Before recording ensure the cassette is
wound past the end of the leader tape."

"OPENET2, 2"
“OPEN OUT#12, 2"
"DGSS"

"press”

"NUMERIC CONDITIONS™
"NUMERIC CONSTANTS"

Page 25, second column, last line:

for "0.000099"
read "0.0000099"

Page 26, second column, last line:

for “(see 66)"
read "(see page 66)"

Page 31, line 19: for '"al'c"an"¢"andeand""
read '"a"¢ “an"¢"and"¢ "ant""*

second column, lines 5-6:

for "order preceding + or - leave or
change sign"
read “"order.
preceding + or - leave or change sign"

second column, line 16:

for "4 x5 +6-2=24"

read "g x5 +6-2=24"
Page 36, line 11: for nzee 23"

read "z2 3"
Page 45, line 22: for ‘20 INPUT ("NUMBER")N®

read '20 INPUT (“GIVE ME A NUMBER™)N'
Page 50, second column, line 10:

for "lines 10 and 999"

read “lines 10, 20 and 999"

Page 51, second column, line 17:

for "120 GOTO 20" -
read "120 RESUME 20"

for "120 END"
read "120 REPORT"
Page 52, line 2: DELETE “REPORT"

Page 58, second column, line 8:

for "400 PRINT A,B,C,D,E,F,G,H,J"
read "400 PRINT A,B,C,D,E,F,G,H,1,J"
second column, line 22:
for “40 RESTORE: NEXT"
read "40 RESTORE: NEXT I*
Page 61, line 11: for "system"
read "stream"
Page 65, line 5: for "Chapter 7"
read "Chapter 8"
Page 68, second column, line 4:
DELETE the 3 lines commencing
"1 of 10 under 9......... »

second column, line 23:

for "2 for cube root"
read "3 for cube root"
Page 86: INSERT new line 30

"TURNBY (x) gives unpredictable results
when plotting in radians instead of degrees.’

Page 87, second column, line 19:

DELETE "(1,0.5)"

Page 89, line 10: for "sub-heading is to0.............. *
read "sub-heading is too 1ong..........”

Page

Page

Page
Page
Page

Page

Page

Page
Page

Page

Page

Page

92, line 10:

read

94, second column, line 25:

105,

110,

125,

132,

142,

153,

161,

line 2:
line 15:
Tine 12:

line 9:

line 10:
line 2:
Tine 23:

Tine 24:
Tine 16:
line 26:

line 16:

last line:

first line:

for
read

=
E
=]

“"READ or VERIFY"
“read (e.g. LOAD, INPUT, VERIFY)"

“interrupted"
"intercepted”

109 System error."”
“e.g. Attempt to input from a printer."

"5575"
"5374"

"24"

ll25n

“black" read "white"
“white" read "black"
lldi str ictll
“distinct”

||225 - 25011
¥225 - 254"

"192 - 223"
#3193~ 222"

“5467"
li53?4 "

“compromise"
"comprise"

“records..... i

' OPENK4, §, "L254" : OPENK1,11, “#dw229"
' OPEN#4, @, “L15@" : OPEN#1,11, “#4w22p"

“254"
U150l¢

HOW TO USE THIS MANUAL

The experienced computer user will find that the Appendices, containing the compre-
hensive information on the NewBrain, and Chapter 1, Introduction, will serve the
majority of his needs. The other chapters provide illustrations of information given
concisely in these Appendices. Those unfamiliar with computers or with BASIC should
read the handbook through and refer to both the Chapters and the Appendix for
reference. As the user gains familiarity with the NewBrain Computer, he will find that
the Appendices provide sufficient reference material for normal needs.

CONTENTS

page
CHAPTER 1 — INTRODUCTION
1 CONNECTINGUP ST W R R 2
2 SWITCHINGON P -
3 THEKEYBOARD - uaisiiveis on s sebiiasismm e 7
4 THEDISPLAY ... eitiirenneeenanraananns 9
5 OPERATINGSYSTEM SRR AR A 16
6 USING CASSETTE RECORDER A |
7 USINGPRINTER.......... e R, 21
CHAPTER 2 — BASIC DEFINITIONS
1 INTRODUCTION . . oottt eeeee et e e ee e 24
2 NUMERIC CONDITIONS/CONSTANTSoooo.. 25
B RBIRBLER o viiore 55 Ao s s S e S B A S -
4 ARRAY VARIABLES.ooooiin, sl ve... 28
B EXPBESSIONS iusvicu o o e sridiranip o asuisiis 45 24 5 28
6 ERRORMESSAGESuvviineinenennnnananns 32
CHAPTER 3 — SIMPLE BASIC
1 ASSIGNMENT —LET........ e TP <
2 PRINT ottt et ieneeennennnenanns . A 35
8 TABLueomeansas o 95 6 AR e SR s i s 36
N 1T P 37
B B conmnisi e i mndeinasssiene it 59
6 RUN,ENDANDGOTO0'vvvevnennnn. ek wei 39
7 STOPANDCONTINUEccvvnneneneenee.. 40
8 REM G B EE R e T e A S a1
CHAPTER 4 — CONTROL
1 FOR—NEXT s Mo U . B PO S U D) (5
2 WmTHEN icvsenee i s smaeasais S sk BB
. GOBUB’ . ivviiir o s sus o s moeme i s i we asw w88
4 ON-GOTOANDON —GOSUB teteeenenaa.. 50
B ONEBROR «ivuineviias o5 ovessiys e emvaey s ey & 52
6

ONBREAK............. . R AT 52

CONTENTS (continued)

CHAPTER 5 — DATA STRUCTURES

T CARBAYS .ovs e diaae e ieiess e e
2 DIMANDCLEARcotiuinnnnnnnnn
3 OPTIONBASE¢c0iieiincnnnnann
4 DATA, READANDRESTORE

CHAPTER 6 — FURTHER INPUT AND OUTPUT

1 OPENANDCLOSEciicecaeianonns
2 STREAMNUMBERS000vuiennn
& LINPUT . o com mompmmsnme s e .0 i e st i 850
A PUTANDGET o ssim e aiee e e v eie
5 SAVE,VERIFY,LOADANDLIST............

CHAPTER 7 — INTRINSIC FUNCTIONS

NONHWN =

CHAPTER 8 — STRING HANDLING

DN HWN=
=
o
L2

INSTR . ccii v siman va seamaiimeaesaianess

e T
TRIGONOMETRIC FUNCTIONS
LOGARITHMS' i cucs is s sliasiieie @ dan s
POWERS 5 iov v winas arv e awiiom i wm s e e
ARITHMETICo vovsvsnnmsnsnnasass
RANDOMNUMBERS00t
USERDEFINEFUNCTIONS

CONTENTS (continued)

page
CHAPTER 9 — CONVERSION
1 CHARACTER/ASCH e 80
2 SYRINGINUMERIC ;. 5si0ic s i ina i@t aais ideme 82
3 TESTSTRING FORNUMBERovvvuennnnnnnnns 82
CHAPTER 10 — GRAPHICS
1 SPECIAL SCREEN CHARACTERScvvvvunnunnnns 84
2 HIGH-RESOLUTION DISPLAY e 85
3 THE GRAPHICS “PEN" ..\ vvvreenrnennnnnnnnns 85
4 THEPLOTCOMMANDS R .e... 86
5 THEPENFUNCTION........oovuuun. e o s ol S 89
6 GRAPHICS STREAMDEFAULTSv0vvvunnenenn. 90
CHAPTER 11 — HELP IN AN EMERGENCY
1 INTERRUPTION —STOP . ..ot vvevnrecnnenonsnns 92
2 CHANGINGTHEDISPLAY . .. oo ot ee e eeeeaeen 93
3 FREEING THE KEYBOARD I T
4 RELEASINGMEMORY . ..'vvrenrnenenenenenns 94
5 WHENTOSWITCHOFF ..ottt i eninennnnnns 94
APPENDICES
1 ERRORNUMBERS B N— LB 97
2 BASIC TECHNICAL SPECIFICATION 107
3 SCREEN EDITOR TECHNICAL SPECIFICATION 123
4 BASIC RESERVEDWORDScvn... T 133
5 LINE AND SCREEN DISPLAY CHARACTER SETS 139
6 BASIC STATEMENT KEYWORDSo0vuvunnenn.. 149
7 DEVICEDRIVERSUMMARYouoennnnnnn. 167
8 CALL STATEMENT AND O/S ROUTINES 177
9 HARDWARE SPECIFICATION o o 3 A 187

CHAPTER 1
INTRODUCTION

The first chapter of the NewBrain handbook explains briefly how to connect up the
computer, and then describes how the computer is used from the keyboard and display
(the console). The chapter continues with a description of the commands used to edit
the displays, and concludes with a brief guide to the operating system,cassette recorders

and printers.

New concepts are introduced by CAPITAL LETTERS and explained in the relevant
section. Any visible display from the NewBrain is shown in GREEN and text typed by
the user is shown in BROWN.

1.

(5]

CONNECTING UP

1.1 Power Supply

1.2 Television or monitor
1.3 Cassette recorder(s)

. SWITCHING ON
. THE KEYBOARD
. THE DISPLAY

4.1 Screen Display

4.2 Editing the Screen Display

4.3 Cursor Control Commands
4.4 Screen Editing

45 Line Display (Model AD Only)

. THE OPERATING SYSTEM

5.1 QOverview
5.2 The Input-Output System
5.3 Extension

. USING CASSETTE RECORDERS

6.1 Connection

6.2 Load
6.3 Save
6.4 Verify

6.5 The Tape 2 Socket

. USING A PRINTER

CHAPTER 1 — INTRODUCTION

1 CONNECTING UP
The NewBrain computer is complete with

a power supply

a cassette connecting lead
— aT.V. connecting lead
handbook

|

Optional extra connecting leads include

— monitor lead
— printer lead
— second cassette lead

TV & MONITOR CONNECTIONS

RECORDER
CONNECTION

MONITOR .
{(v.D.U.) ; MiC
w SOCKET

" BLACK
(LARGE)

POWER EXPANSION UHF PRINTER SENS 2 TAPE 2

S I &y

CHAPTER 1 — INTRODUCTION

1 CONNECTING UP

The printer, cassette, power and modem connections are best made by first engaging the
lugs on the cable connector with the flanae on the machine connector as illustrated

1.1 Power Supply

The mains lead from the power supply is fitted with a mains plug to connect to the
domestic electricity supply. The plug is fitted with a 3 amp fuse. The low-voltage supply
from the power supply unit is connected to the NewBrain by means of a moulded socket
into the plug marked POWER in the rear of the computer.

The embossed legend TOP on the connector must be uppermost with the computer in
its normal position. The power socket is designed to prevent incorrect insertion into
the power plug, or insertion into the wrong plug, by small polarising inserts.

CHAPTER 1 — INTRODUCTION

1 CONNECTING UP

1.2 Television or Monitor

MODEL A NewBrain may be connected either to a U.H.F. television, or to a video
monitor. The connection is made from the video output socket to a monitor, or the
U.H.F. output socket to a television, using the miniature screened cable provided.
The T.V. must be tuned to channel 36. Correct tuning is indicated by absence of back-
ground noise on the picture. The contrast and brightness controls should be set low, and
then advanced, until a suitable picture is displayed. The best picture is usually obtained
with low rather than high settings of the contrast control. The same guidelines apply to
monitor adjustment. |f desired, both a monitor and a television may be connected,
although the picture quality may be slightly degraded.

D=300

FOR 1 =32 TO 08
PRINT Crh8(1]

FORA T=1 TO D: NEXT T

NEXTY
END

MODEL AD has in addition a self contained display. It may therefore be operated as a
stand alone console, or may be connected to a video monitor, or to a television. If the
seif-contained display only is to be used it must be activated in the manner described on
Page 14,

CHAPTER 1 — INTRODUCTION

1 CONNECTING UP

1.3 Cassette Recorder(s)

One or two cassette recorders may be connected to a NewBrain for program and data
storage. If a cassette recorder is being purchased specifically for use with the computer
then it should have a remote microphone socket, which will enable the recorder to be
stopped and started automatically by the computer. A cassette recorder with a counter
is beneficial as this permits efficient indexing and retrieval of stored programs. Cheap,
low-quality recorders are to be avoided, since the demands of digital recording are
more severe than those of audio recording. Similarly, good quality cassettes should be
used, of not more than 30 minutes per side, to ensure adequate tape thickness, C12
cassettes (6 minutes per side) are available from many computer shops, and permit all
but the longest programs to be recorded on one side of the cassette.

The cassette lead from the computer is terminated by three miniature jack plugs. These
should be connected as follows:

BLACK (large) — MIC or MICROPHONE SOCKET
GREY — EAR, EARPHONE or MONITOR SOCKET
BLACK — REMOTE SOCKET

The moulded connector should be inserted into either TAPE 1 or TAPE 2 sockets on
the rear of the NewBrain with the moulded legend “TOP" uppermost. The operation
of the cassette recorder is described in 6.1 to 6.5.

The volume control should be set at maximum and any tone control set in the flat or
inoperative state, Only when all else fails should the output level from the NewBrain be
adjusted by the sensitivity control (SENS 1 and SENS 2). Remember to keep the tape
head clean.

PRINTER

A printer with a serial interface may be connected. Both connecting cables and suitable
printers are available from Grundy Business Systems Ltd. Other printers may of course
be used, but a different cable may be needed and switch settings within the printer
may need to be changed.

CHAPTER 1 — INTRODUCTION

2 SWITCHING ON

NewBrain computers will automatically go through an initialisation routine, checking
all the memory, when powered up. The routine lasts for about 10 seconds after which
the computer is ready to start running programs.

MODEL A may briefly display a checker board pattern on the screen, followed by a
pause of 10 seconds and then the message

NEWBRAIN BASIC

READY
]

where ® js the flashing cursor.

MODEL AD in addition displays apparently random characters on its self-contained line
display for the full period of the initialisation, after which the line display blanks.

CHAPTER 1 — INTRODUCTION

3 THE KEYBOARD

The NewBrain keyboard is laid out in the same pattern as a typewriter keyboard, with
some additional keys whose functions are explained in this section. See figure below.
Initially the keyboard will produce lower case letters, and the lower of the characters
on key tops embossed with two legends.

Example:

PRESS A
PRESS B
PRESS C
PRESS 1
PRESS ;

wowononwon

a0 T

Seaoo0n0noo0nDneen

(o f QR QR -Jof Bol-d - J
C Q- d-Qof-Jof-JoQ-Q Q Q]
—

CHAPTER 1 — INTRODUCTION

3 THE KEYBOARD

The SHIFT Key behaves as a typewriter shift, producing UPPER CASE letters, and the
upper of the characters on the keytops. NewBrain BASIC will accept letters input from
the keyboard in either UPPER or lower case. In this handbook, when a SHIFTed
character is to be typed in, it'will be indicated as SH/a. Thus, for example:

PRESS SH/A
PRESS SH/B
PRESS SH/C
PRESS SH/1
PRESS SH/;

([}

A
B
Cc
!

nn

The alphabetic characters (a-z) may be shifted to upper case (A-Z) by typing
CONTROL/1 (henceforth CTRL/1), giving a function similar to the SHIFT-LOCK on
a typewriter, All non-alphabetic characters will remain unshifted, thus 1 will still appear
as 1 unless SH/1 is pressed.

PRESS CTRL/1 (no visual display)

- 0Om>

PRESS
PRESS
PRESS
PRESS
PRESS

=-0Ow)
LI T

CTRL/@ cancels the effect of CTRL/1, i.e. removes the shift-lock.

Note that pressing SH/t causes an effect (ATTRIBUTE ON— see page 129) used in
advanced input/output. In the context of simple input/output SH/* causes the display
and any input from the user to become unintelligable to the computer, To recover from
this condition press SH/ESCAPE.

CHAPTER 1 — INTRODUCTION

4 THE DISPLAY

As noted inSection 1.2 a variety of means
of display may be used by NewBrain
computers model A and AD. Model A uses
either a monitor connected to the video
output, or a conventional television
connected to the U.H.F. output. To
avoid ambiguity, video or U.H.F. dis-
plays will be referred to as SCREEN
displays. Model AD outputs data either to
the SCREEN or to a 16 character fluor-
escent display, integral with the console,
or to both simultaneously. The 16 charac-
ter display will be referred to as a LINE
display. This section describes how the
screen and line displays are controlied
and explains how the contents of the
displays may be changed or EDITED by
means of the additional keys on the
NewBrain keyboard.

4.1 Screen Display

The screen display initially consists of
24 lines, each forty characters long. The
position on the screen of the next charac-
ter to be displayed is shown by a flashing
CURSOR.

The cursor is initially a flashing block
(Windicating that unless the next charac-
ter is a CONTROL CHARACTER any
text on the line that the cursor is
presently on will be cleared, and the
line can be overprinted.

CONTROL CHARACTERS are non-
printing features of the display. Some of
the characters used to edit a display,
discussed in this section, are control
characters. A full list of control characters

4 THE DISPLAY

is in appendix 3. If a non-control charac-
ter. for example an ALPHANUMERIC
(A-Z, B9) is pressed, the character chosen
will be displayed, and the cursor will be
advanced one step to the right, and adopt
its normal form, a flashing underbar (—).
Only one character will appear even if
pressure on the key is maintained. To
obtain multiple entries of a character the
REPEAT key is used along with the
chosen character (RPT/A). If you repeat
a character often enough, it will print to
the end of the first line, and continue on
subsequent lines.

Each subsequent line is a CONTINUA-
TION of the first, and is identified by a
non-flashing block in the leftmost posi-
tion.

READY
AAAA—-———-——AAAA
BEAAA-————AAAA
B A A etc.

Continue repeating a key, until it is close
to the end of the line, then step it to the
last position in the line and you will
notice that the cursor has reverted to a
flashing block. This is an indication that
the next character to be printed will be
on the following line, thus creating a
continuation line. A line in NewBrain
BASIC can be one ‘screen’ in length,
that is one initial line plus continuation
lines.

CHAPTER 1 — INTRODUCTION

4 THE DISPLAY

4.2 Editing the screen display

Editing features are provided in New-
Brain Basic so that mistakes can be
corrected and features can be added or
deleted without affecting the remainder
of the PROGRAM. (PROGRAM is
defined on page 40). The NewBrain
editor is a SCREEN EDITOR, that is
changes may be made to characters
displayed anywhere on the screen. The
line on which the cursor is placed at any
time is called the CURRENT line. (When
editing a PROGRAM the changes to the
current line of the program must be
followed by NEWLINE, which will
transfer the modified line into memory.
If NEWLINE is not pressed, whilst the
cursor is on the current line, then the
SCREEN display will be edited, but the
program will remain unchanged.)

Prior to editing, the cursor must be
moved to the position on the display
where the edit is to take place. A number
of cursor control commands are available
to facilitate cursor movement. Many of
the cursor control commands and the
editing commands which follow are auto
repeating, that is they will execute the
required action when the appropriate key
is pressed, and after a short delay, will
repeat the action until the key is released.
In the tables which follow, such com-
mands are identified by (R):

10

4 THE DISPLAY

4.3 Cursor Control Commands

— (R)steps
< (R) steps cursor to the left

cursor to the right

t (R) steps cursor up
4 (R) steps cursor down

CONTROL/~ moves cursor to the
right end of current line

CONTROL/< moves cursor to the
left end of current line

HOME moves cursor to the top left
corner of the screen (HOME position)

All the above may be used to position the
cursor prior to edigint either a program
or the display. PROGRAM EDITS change
the content of prpgram memory, whereas
SCREEN EDITS alter the display but
have no effect on program content,
NEWLINE is used to enter the current line
into the computer.

The screen editing commands

SHIFT =

SHIFT «
INSERT

SHIFT HOME
SHIFT INSERT
CONTROL HOME
SHIFT |
GRAPHICS t
GRAPHICS {

CHAPTER 1 — INTRODUCTION

4 THE DISPLAY

4.4 Screen Editing

SHIFT —=R

Deletes character(s) above the cursor and
moves remainder of the line to the left to
close the gap left by the deleted charac-
ter(s), i.e. deletes characters above and
to the right of the cursor.

Example: Typein

NOW IS THE TIME FOR ALL GOOD
MEN TO COME TO THE AID OF
THE PARTY

(Do not enter NEWLINE). Use the + key
to place the cursor in the space between
TO and THE. Pressing SH/— deletes the
words THE AID OF, resulting in

NOW IS THE TIME FOR ALL GOOD
MEN TO COME TO THE PARTY

SHIFT <(R)

Deletes character(s) preceding the cursor
and moves remainder of the line to the
left to fill the gap left by the deleted
character(s), i.e, deletes characters to the
left of the cursor.

Example: Place the cursor on the space
between MEN and TO. Pressing SH/+
delete

FOR ALL GOOD MEN

leaving

NOW IS THE TIME TO COME TO
THE PARTY

4 THE DISPLAY

4.4 Screen Editing

INSERT

Subsequently typed characters are in-
serted immediately before the cursor.
Insertion is terminated by the cursor
control commands - < 1t | HOME or
by NEWLINE. If the cursor control
commands are used to terminate the
insert, then NEWLINE must be pressed
whilst the cursor is anywhere on the rele-
vant line for the insertion to be effective.

Example: Move the cursor to the space
between IS and THE. Press INSERT,
SPACE, NOT. The line now reads

NOW IS THE TIME TO COME
TO THE PARTY

SHIFT HOME

Clears the
CURSOR.

screen, and HOMES the

The keys discussed above allow con-
siderable freedom to type the lines of a
program; the following keys provide
facilities to move the lines on the page
of the screen. As the use of these keys
is not immediately obvious, the example
should be carefully worked through on
the NewBrain, using a monitor or tele-
vision:

Type SH/HOME to clear the screen, then
enter

FOR1=1TO 5: PRINT I12: NEXT |

11

CHAPTER 1 — INTRODUCTION

4 THE DISPLAY

4.4 Screen Editing

When NEWLINE is pressed, this command
will be obeyed by the computer, which
will print the square of each number
from 1 to 5 on lines 2 to 6 of the screen.

Now press the HOME key then the
INSERT key and type 10.

This will insert a LINE NUMBER in
front of the series of commands on the
screen, so that BASIC will recognise it
as part of a program. That means that
when NEWLINE is pressed, the line will

be saved in memory. So, press NEWLINE.
The cursor will then appear on the next
line, just to the left of the number 1.

The cursor now should be a solid flashing
block. This is to tell you that typing any
character now will clear the line the
cursor is on, allowing you to overwrite
that line. To check that, type the single
key R and see how the number 1 dis-
appears. The small flashing underline
form the cursor now has, tells you
that the line will not be cleared when
the next character is typed. Now type
UN to complete the word RUN, and
enter the command with NEWLINE.

The same list of numbers is now dis-
played, but on lines 3 to 7, and below
them an error message to tell you that
your program has no end statement:

12

4 THE DISPLAY

4.4 Screen Editing

10for 1 =1to 5: PRINT I12: NEXT |
RUN
1
4
9
16
25

ERROR 3 AT 10:3

This display will be useful in trying out
the next control codes.

SHIFT INSERT

Moves the current line (i.e. the line on
which the cursor is placed) and lower
lines downwards leaving a blank line. A
line which is scrolled off the bottom of
the screen is lost.

Type HOME and then {. The cursor will
then be resting on the letter R of RUN
on the second line. Now type SH/INSERT.
The word RUN and all the lines below
will shift down one, leaving a blank line
for you to use. On this line, type

20 END

and press NEWLINE to enter this as
another line of your program. The cursor
will again appear as a flashing block,
resting on the R of RUN. Type - once
to move the cursor to the U, then press
NEWLINE, and the program will be
executed again.

CHAPTER 1 — INTRODUCTION

4 THE DISPLAY

4.4 Screen Editing

CONTROL HOME

Deletes the current line, leaving a blank
line.

The cursor is now a flashing block, resting
on the E of the error message given last
time. There was no error this time; but
to prove that, press CTRL/HOME which
will delete the error message, and type
RUN again, using NEWLINE to enter the

command.

The display will now show the 2 line
program at the top, then RUN and its
results, a blank line, then RUN and the
results again.

SHIFT | (R)

Deletes the current line and scrolls the
remaining lines upwards to fill the gap.

Press * and hold it down while the
cursor moves up to the word RUN,
halfway up the screen. If you overshoot,
use | to come back down. Then press
SH/! and the word RUN will disappear.
Press SH/} again and hold it down and
all the lines below will also disappear.

GRAPHICS 1

One “line” of text may in fact occupy
more than one row of characters on the
screen. This is shown by a CONTINU-
ATION MARK at the start of the second
and subsequent rows., To see this, type

4 THE DISPLAY

4.4 Screen Editing

HOME then — and hold the — down
until the cursor reaches the first colon,
before PRINT.

Next press the space bar, which will
overwrite the colon, then INSERT and
hold down RPT/SPACE (dont" worry
if the P of PRINT seems to disappear)
until the words “PRINT [12: NEXT I
have all come well onto the second row.
Release the space bar,and a continuation
mark will be visible at the start of the
second row:

10FORI=1TO5
L] PRINT I12: NEXT I

GR/t functions to split a continued line
into two lines. The row on which the

" cursor appears becomes the first row of

the newly formed line.

In the example, with the cursor still on
the P of PRINT, press GR/1. The cursor
will then appear at the start of the line,
and the continuation mark will dis-
appear. Now type 12 and NEWLINE to
enter line 12 into memory:

10FORI=1TOS5
12 PRINT I12: NEXT I
20 END

Note at this stage that line 10 is still
in the computer's memory as originally
entered. It may be quickly altered by
pressing HOME and NEWLINE.

13

CHAPTER 1 — INTRODUCTION

4 THE DISPLAY

4.4 Screen Editing

If the example has been followed up to
this point, it should be fairly easy to again
use INSERT and GR/? to break up line
12 into two lines, say

12PRINT I12
13NEXT I

Remember to enter both altered lines
with NEWLINE, however. You may now
enter LIST and NEWLINE to display

the program

10FORI=1TOS5
12 PRINT I12
13NEXT |

20 END

GRAPHICS/!

This joins two lines of text on the screen
into a single line, by making the current
line a continuation of the line above and
introducing one continuation mark.

Example: place the cursor on the line
number 20 then press SH/~ twice to
delete the number 20, Next type GR/{
introducing a continuation mark, and
hold down SH/« until the word END
has nearly reached NEXT I on the pre-
ceding line. Finally, type INSERT,
then a colon, then NEWLINE. You will
then have formed one line out of the two
lines shown on the screen, numbered 13
and 20.

14

4 THE DISPLAY

4.5 Line Display (Model AD Only)

The NewBrain AD directs output to
either a LINE or SCREEN display, or to
both line and screen. When first switched
on the AD model will default to the
combined display. Line display is
selected by the command OPEN#0,3
(see page 4) whereupon the screen will
blank, and a flashing cursor will appear
in the |eft-most position of the line
display. Screen display is selected by the
command OPEN#9,0. Output can be
directed to both displays by the command

OPEN #9,4.

The line display is a “window”, 16
characters wide, onto the current line.
The window may be moved across the
line by the cursor control keys = and «.
Whatever the position of the cursor in
the display, it first moves to the right or
left end of the window, and then pushes
the window along the line, stopping when
either end of the line is reached. When
OPEN#0,4 has been used, editing is
exactly as described above for the screen
display, and the window moves from one
line to another. When OPEN#0,3 is used
however, the editor is now a line editor,
that is it will only accept those commands
whose area of 'operation is confined
within one line. Thus, the following
commands will not work if the line
display only is being used.

CHAPTER 1 — INTRODUCTION

4 THE DISPLAY

4.5 Line Display (Model AD Only)

tand §

SH/INSERT ({insert a blank line)

SH/! (delete the current line)

GR/{ (insert continuation mark)
HOME will return the cursor
to the leftmost position in
the line.

Note that all editing commands are
effective if both displays are in use.

The line display will present output
from a program, or LIST a program, one
line at a time. To continue the output,
or the LISTing, press NEWLINE. Thus
the program:

1 PRINT 1
2 PRINT 2
3 PRINT 3
4 END

will print first 1, then 2, then 3, as NEW-
LINE is repeatedly pressed. Similarly, if
LISTed the display will show lines 1, 2,
etc. as NEWLINE is repeatedly pressed.
A program line which is to be edited
using the line display only, must be
listed, thus:

LIST 40
to present line 40 for editing.

The line display can represent all the
characters shown on the NewBrain
keyboard. Alphabetic characters are
always upper case. The limitations of

4 THE DISPLAY

Line Display (Model AD Only)

the line display cause the representations
of a few of the less-frequently used
characters to be somewhat stylised. The
user should therefore make himself
familiar with the display characters. With
the exception of the pound sign (£),
the complete character set may be dis-
played by the following simple program,
which also demonstrates the operation
of the LINE display. This program may be
entered with the screen selected, but
should be RUN with only the line display
selected (OPEN#0,3).

10 D=200

20 FOR 1=32TO 95
30PRINT CHRS(1);
40FOR T=I TOD:NEXT T
SONEXT |

60END

When the program is RUN the character
set will be displayed, with a small time
delay between characters set by line 10.
Note how the window presented by the
display moves as the characters reach the
end of the display. When the program
has finished the window moves back to
the beginning of the output line, and the
cursor appears in the leftmost position.
The character set may be examined by
using the cursor control keys = and <«
to move the window across the output
line. The characters displayed are:

SPACE | "#3% &' ()s+,—./
Oto 9
;<=>7At0Z [\ 1t

15

CHAPTER 1 — INTRODUCTION

4 THE DISPLAY

45 Line Display (Model AD Only)

and a final character I’ which is used to
indicate that the character sent to the dis-
play cannot be represented, for example a
graphics symbol. The line display char-
acter set is illustrated in Appendix 5.

16

5 THE OPERATING SYSTEM

5.1 Overview

The remaining sections of this chapter
provide the experienced computer user
with an introduction to various features
which are specific to the NewBrain, and
should be read in conjunction with the
Appendices. The reader who is not
familiar with BASIC should read the
Introduction to BASIC in Chapter 2-9,
working through the examples with a
NewBrain and a TV screen wherever
possible, before returning to finish this
chapter.

The NewBrain operating software consists
of three parts which are able to function
almost independently from one another,
These parts are the OPERATING SYSTEM
itself, the DEVICE DRIVERS, and the
BASIC COMPILER. The operating sys-
tem includes the control of input and
output (the INPUT—QUTPUT SYSTEM),
all the memory checking and other
routines required on power-up, and a
RESTART mechanism described below,
as well as a powerful mathematics pack-
age. The device drivers handle input and
output to all peripherals, including the
screen display and keyboard, and the
BASIC COMPILER is automatically given
control of the NewBrain after the com-
puter is switched on,

CHAPTER 1 — INTRODUCTION

5 THE OPERATING SYSTEM

5.2 The Input-Output System

In order to move data between the USER
Program (normally BASIC) and the
various peripherals, a set of DEVICE
DRIVERS is provided. Each of these is
designed to “look the same” to the
operating system, and therefore to
BASIC, while meeting the specialised
needs of each corresponding peripheral
device. The OPEN statement is used to
set up a numbered data STREAM as a
channel from the program itself to a
peripheral. After the OPEN statement has
been executed, the numbered stream
remains associated with the device type
given in the OPEN, e.g.

OPEN#3,8

opens stream number 3 as a printer
stream. Thereafter any output to stream
3 would be directed to the printer con-
nections at the back of the NewBrain.
This association remains in force until the
stream is closed. The available device
drivers are summarised in Appendix 7,
together with examples of the OQPEN
statement for each device type.

The Z80 processor provides a number of
hardware PORTS for the input and
output channels to various peripherals.
Certain of these ports are reserved for
specific NewBrain functions, such as TV
control to maintain the screen display,
and the Enable and Status registers which
are related to other aspects of the hard-
ware. A BASIC program may use the
device type 7 to direct a stream to use

5 THE OPERATING SYSTEM

5.2 The Input-Output System

any selected port for byte-oriented input
or output, normally using the USER
INPUT parallel port (21 for model A,
20 for model AD) and the USER OUT-
PUT parallel port {(number 3). These can
provide a means of accessing digital
instruments directly from the NewBrain
when it is fitted with a suitable expansion
box, using statements like

OPEN#20, 7, 20
GET# 20, x

5.3 Extension

The NewBrain operating system is design-
ed to make it practicable to extend the
facilities available at any time. This will
be illustrated by reference to the device
drivers. A table of the standard device
drivers is provided, and the starting
address of this table is written into a
particular memory location. Either firm-
ware or an extra package contained in a
ROM expansion box may extend this
table by copying it into a suitable area of
memory, with any desired alterations or
additions, then inserting the address of
this copy of the table into the correct
location. This method is suitable for
providing an extra type of device driver,
or for making changes to an existing
device driver. In either case, the code
for the new driver or for the alteration
must also be provided.

A similar method of extension makes use

17

CHAPTER 1 — INTRODUCTION

5 THE OPERATING SYSTEM

5.3 Extension

of a RESTART MECHANISM in the
processor. The various functions provided
in the Operating System and in BASIC
are accessed when required through a
table of routines, which can be altered or
extended in the same way. This means
that additional features can be provided
in BASIC, or added to the operating
system, simply by plugging an expan-
sion box into the NewBrain before
switching on. Some of the operating
system routines are described in Appendix
8.

18

6 USING CASSETTE RECORDERS

6.1 Connection

There are two sockets on the NewBrain
for cassette recorder leads, labelled
TAPE 1 and TAPE 2. Either may be used
for programs or data according to prefer-
ence; however, the BASIC LOAD and
SAVE commands use TAPE 1 as a default,
so itisusual to connect a cassette recorder
to this socket for loading programs.

6.2 Load

In order to load a BASIC program from
tape, first plug in the tape recorder to
the TAPE 1 socket. Insert the tape,
wound forward to the correct position,
and depress the PLAY button on the tape
recorder. Next enter LOAD on the New-
Brain. The tape will be scanned for a file
header, and if the file has a title that
title will be displayed on the screen. The
computer will read the entire program file
into memory, showing a solid cursor
when the file has been completely read
in,

The NewBrain may be interrupted when
reading from a tape by pressing the
asterisk key “*"; at all other times, it
may be interrupted by pressing the STOP

key.

6.3 Save

To save a BASIC program on tape, plug in
the tape recorder as described above, and
depress the RECORD (or RECORD and
PLAY) switch(es).

CHAPTER 1 — INTRODUCTION

6 USING CASSETTE RECORDERS

6.3 Save

The program may be saved with a title,
by entering e.qg.

SAVE “accts program’’

or without a title, by entering simply

SAVE

The computer will then output the
BASIC program from its memory to the
tape, displaying a solid cursor when this
has been completed. The program
remains in memory, and may be checked
with the VERIFY command, or a further
copy put on the next part of the tape
by entering SAVE (and a title if wanted)
again.

6.4 Verify

To check that a program has been saved
correctly, after saving as many copies as
desired, press the STOP key on the tape
recorder and then the REWIND. No tape
motion will result at this stage. Then
enter VERIFY on the NewBrain key-
board. The tape will wind back, and must
be stopped just before the first copy of
the program (or at the beginning of the
tape). Then press the PLAY button on
the tape recorder. The NewBrain will
display the title of the file on the tape
if there is one, then read it through,
comparing it with the program in its
memory. If the saved copy matches the
program in memory, “VERIFIED" will

6 USING CASSETTE RECORDERS

6.4 Verify

be displayed, otherwise an error message
{e.g. ERROR 91) will be displayed. The
VERIFY command may be stopped by
using the asterisk key “**, as for LOAD
above.

Note that the program in memory is not
changed as a result of VERIFY. The
VERIFY command is often useful as a
way of simply releasing the cassette
recorder from the NewBrain's control:
enter VERIFY, then use the cassette
recorder controls to position the tape to a
desired point for any operation, e.g.
LOAD. After pressing the STOP button
on the cassette recorder, press the asterisk
on the NewBrain to cancel the VERIFY
command. This method is preferable to
continually unplugging one end or the
other of the cassette lead!

6.5 The Tape 2 Socket

The SAVE command outputs the BASIC:
program in its space-saving form. It may
be specified with a stream number, e.g.

SAVE #12

but in this case the stream must be open,
This form of the command must not
contain a file title, and although the
stream may in fact be of any type, the
most useful application is to save a pro-
gram on a tape recorder that is plugged in
to the TAPE 2 socket, as e.q.

CHAPTER 1 — INTRODUCTION

6 USING CASSETTE RECORDERS

6.50PEMMe"Th 2 Socket
SAVE #12
CLOSE #12
The first command in this example

selects a stream called 12 of type 2,
which is the device type that handles the
TAPE 2 outlet, The tape will move at this
stage, to write the file header, and the
cassette recorder must therefore be set to
RECORD. The next command saves the
current BASIC program on the tape via

stream 12, so the cassette recorder must
remain set to RECORD.

If a short BASIC program is saved in this
way, it may happen that no tape motion
is seen after entering SAVE. This will not
cause any problem, as the last block in
any tape handling process is not written
to the tape until a CLOSE is executed.
If the entire program is less than one
block, then it will be written out in
response to the CLOSE command.

OPEN # 12,2

The program may also be verified on
TAPE 2. Enter then press
REWIND on the tape recorder to bring
the tape back to the start of the file.
When the tape is correctly positioned,
pass PLAY and the NewBrain will then
read the file header and display the file
titld, BRLF ia¥ tRen enter

20

6 USING CASSETTE RECORDERS

6.5 The Tape 2 Socket

CLOSE # 12
to check the program in memory against
the saved copy, and when
the verification is completed. The tape
recorder may then be switched off and
disconnected,

CHAPTER 1 — INTRODUCTION

7 USING A PRINTER

Any “byte-serial’”” printer which uses
the RS232 standard interface may be
connected to the NewBrain to print
documents, list programs or provide
hard-copy output from a program. First
a printer stream must be opened, e.g.

OPEN # 18,8

then the printer may be switched on and
the printer lead connected to the back of
the NewBrain. Any output statement
may then be used, with output directed
to the selected stream:

LIST #18

prints a copy of the entire program

LIST # 18, 200~

prints the program from line number 200
to the end

PRINT # 18, “Amount payable
E”,P[5.2]

prints the legend given in quotes followed
by the value of P.

The formatting specification used in this
example is particularly valuable for
printed output, allowing the digits of
numbers to be correctly aligned with one
another.

21

CHAPTER 2
BASIC DEFINITIONS

This chapter provides introductory definitions of BASIC terms essential to an under-
standing of the remainder of the handbook.

INTRODUCTION
NUMERIC CONDITIONS
VARIABLES

ARRAY VARIABLES
EXPRESSIONS

ERROR MESSAGES

D WN =

23

CHAPTER 2 — BASIC DEFINITIONS

1 INTRODUCTION

NewBrain BASIC will accept input lines
with or without line numbers. Lines
which are entered with line numbers are
not executed, but are added to the
current program in memory. The program
is not executed until a suitable command
is entered, at which time control of the
computer passes to the program. Lines
without the numbers are commands —
they are executed immediately NEWLINE
is pressed. NewBrain BASIC will accept
commands (be in COMMAND MODE)
unless control has already passed to the
computer because it is executing either
another command, or a program.
Command Mode is re-entered when:-

— an END or STOP or LOAD state-
ment occurs

— an ERROR occurs

— the STOP key is pressed

— the current command is completed,
unless it transfers control to a
program.

A BASIC PROGRAM is a sequence of
numbered lines. Each line consists of a
number of BASIC STATEMENTS separ-
ated by colons, thus:-

NNNN BASIC STATEMENT:
STATEMENT: — — —

BASIC

where NNNN is the line number. Line
numbers must lie in the range 110 65,535.
Program lines are executed in numerical

order, commencing with the lowest

24

1 INTRODUCTION

numbered lines. It is good practice to use
an increment of say 10 between successive
line numbers to allow for later insertions,
thus:

1@ LINE1
20 LINE 2
30 LINE3
40 LINE4

A BASIC STATEMENT consists of a
KEYWORD followed by a list of para-
meters in a format which is specific to
each keyword. The keyword identifies
the operation to be performed by the
computer. The parameter(s) refer either
literally or symbolically to the data to be
processed. A parameter may often be an
EXPRESSION.

CHAPTER 2 — BASIC DEFINITIONS

2 NUMERIC CONSTANTS

NewBrain BASIC accepts integers, float-
ing point real numbers, or strings as
constants. Some examples of acceptable
numeric constants are:-

276
3.141592
0.0716
1.234E05

Numbers input from the console or
numeric constants in a program may have
any number of digits up to the length of a
line, but are stored internally to a precision
of 10 or more significant figures, and are
output, by default, rounded to 8 signifi-
cant figures, Thus the command:-

PRINT 3.141592653589

produces the output:

3.1415927
Numbers are printed in INTEGER,
FLOATING POINT, or SCIENTIFIC

notation. Integers are whole numbers,
with no fractional or decimal component,
e.g.

0,102, +4, —36, 1000

Floating point numbers have a decimal
point, the position of which may vary
from number to number (hence floating
point), thus

3.732, —0.358, 6352.961

2 NUMERIC CONSTANTS

In scientific notation numbers are repre-
sented as a fixed point number, the
MANTISSA, and an EXPONENT, which
indicates how many powers of ten the
mantissa should be multiplied by. The
format of a scientific number is:

SN.NNNNNNNNESMM

where S is the sign (always printed in the
exponent, omitted, if positive, in the
mantissa), NNN——— are the digits of the
mantissa, printed in fixed point format,
one digit before the decimal point, E is
an abbreviation of Exponent, and MM are
the digits of the exponent. The following
are equivalent numbers

1.2345E9 123.45E7 0.0012345E12

where the change of position of the deci-
mal point is compensated by the change
of the exponent. NewBrain BASIC will
print the number as:

1.2345E+09
Numbers outside the range 99 999 999
to 0.00001 are printed in scientific nota-
tion.
Number NewBrain BASIC output

100 000 000 1E+08

99999999 99999999
0.00001 .00001
0.000099 9.9E-06

25

CHAPTER 2 — BASIC DEFINITIONS

2 NUMERIC CONSTANTS

Numbers are stored internally in the
range —10'°% 1o +10'%%, Numbers are
output however, in the range --10°° to
+10%?. Thus the command

PRINT 1E60 » 1E90/1E80

(where « is used to mean multiply, see
page 28 correctly yields the result

1E+70.

An attempt to input a number outside
the range — 1E99 to 1E99 will result in
an error message. An attempt to output a
number outside the range — 1E99to 1E99
will result in a display of ****", Thus:

PRINT 1E60« 1E90/1E80

is acceptable, whereas

PRINT 1E150/1E80

is not.

Note that numbers in scientific notation
must have a mantissa (1E60 is acceptable,
E60 will produce an ERROR message).

The format of a number output by the
computer is thus as follows:

1. If the number is positive, a space is
output, followed by the number. If the
number is negative, a minus sign is output,
followed by the number.

26

2 NUMERIC CONSTANTS

2. If the absolute value of a number is an
integer in the range O to 99 999 999 it is
printed as an integer.

3. If the absolute value of a number is
greater than or equal to 0.0001 and less
than or equal to 99 999 999 it is printed
in fixed point notation with no exponent.

4. If the number is outside the ranges in
2 and 3 above, it is printed in scientific
notation (with an exponent). In scientific
notation non-significant zeros are sup-
pressed in the mantissa, but two digits
are always printed in the exponent.

A space is printed after a number in all
formats. Thus the input:

T=1E15 ¥=-56.78: D=.0342
PRINTT:Y.D

yields the result.

1E+15 —56.78 .0342

Certain BASIC reserved words (q.v.)
are constants, for example the mathe-
matical constant T, which in BASIC is
written Pl. (See 66)

CHAPTER 2 — BASIC DEFINITIONS

3 VARIABLES

Numbers can be represented symbolically
by letters, called variables. The value may
be set explicitly by the programmer,

LET A = 2235

or may be assigned as a result of calcula-
tions in a program

LETC=2"PI"R"R

Before a variable is assigned a value, it has
the value zero. Variable names can be one
or two characters long. The first character
must be a letter (A—2), the second may
be a letter or number (A—2Z, 0—9). The
letter(s) may be upper or lower case;
NewBrain BASIC does not distinguish
between the two. Examples of valid
variable names are A, A3, AC.

A variable may also represent a STRING
which is any sequence of letters or other
characters. String variables may use any
one or two-character name (alphabetic
followed by alphanumeric as for a
variable) followed by a dollar sign 8.

Thus string variables may be labelled A3,
A38, AC3, etc. The string itself is de-
limited by quotation marks at the
beginning and end. Strings are assigned in
the same way as numeric variables,

3 VARIABLES

A% = "Hello”

A3% = “NewBrain”

ACS = “What is your name?”
Dg - 72/362"

and output in the same way,
PRINT AC3

Press NEWLINE
What is your name?

Strings may be of any length from 0 to
32767 characters long.

N.B. Variables cannot be given the
following names, since each is a BASIC
RESERVED WORD (see Appendix 4).

TO TO$
ON ONS8
OR OR$
IF IF8
Pl PI$
FN FN$

27

CHAPTER 2 — BASIC DEFINITIONS

4 ARRAY VARIABLES

An array is a table of values, stored with a
common name, where each element of
the table is identified by the array sub-
script. Thus A(3) represents the third
element of the array called A. F{4,2) is
the element in the fourth column, second
row of the array F. The array A above is
one-dimensional, whereas F is two-
dimensional, Arrays may not have more
than two dimensions and the maximum
number of elements in an array is 5374.
The contents of an array may be numbers,
or strings, but string arrays must have a
string name, e.g.:

C$ (4), A33 (5,3),BBS (17)

In a string array each element is a single
string, e.g. C3 (2) = “Goodbye”.

A name used for an array may also be
used for a different scalar (i.e. single
element) variable of the same type, thus
C3 (4) and C3 may be used concurrently,
as can BB and BBS (12). Arrays must be
DIMENSIONED before use (g.v), which
sets all elements of an array to zero.

5 EXPRESSIONS

An expression consists of any or all of the
previously defined items, that is

Constant e.g. 42
String e.g. "Hello”
Variable eg. A

Array Elemente.g. C (4, B+2)

plus the intrinsic functions of BASIC, for
example SOR (SQuare Root, see Chapter
7), linked by a number of OPERATORS.

5.1 Arithmetic Expressions

— use the arithmetic operators

+ plus 3+2=5
— minus 3-2=

/ divide 3/2=1%
* multiply 3*2=6
t raise to the power 312=9

and in addition

preceding + leaves the sign of the
following number or
variable unchanged:
+y

preceding - changes the sign of the
following number or vari-
able: x = -y

X =

Note that the up-arrow 1 used for raising
to a power is SH/+ and not the cursor .
control up-arrow,

CHAPTER 2 — BASIC DEFINITIONS

5 EXPRESSIONS

5.2 Logical Expressions

There are two types of operator in logical
expressions, the logical operators AND,
OR and NOT, and the RELATIONAL
operators. These latter consist of

equals

greater than

less than

greater than or equal to
less than or equal to
less than or greater than
{not equal}

AAV AV
1

Vo

When used in an expression the relation is
evaluated and the result stored as either
TRUE if the relationship is valid or
FALSE if invalid. These may be linked
by the logical operators AND, OR and
NOT. In order to describe these a few
notes on BINARY ARITHMETIC are
required.

The familiar decimal arithmetic uses the
position of a digit in a number to indicate
the power of 10 corresponding to the
digit, which may be 0 to 9. For example

234, =4x10°+3x10" +2x 10
=4x1 +3x10 +2x100

where the subscript 1 o Indicates a decimal
number. Computers however perform
arithmetic using binary numbers, that is
numbers consisting of Blnary digiTs
(BITs), 0 or 1. Thus

5 EXPRESSIONS

5.2 Logical Expressions

=1x2°+0x2" +1x2?
+1x23

=1x1 +0x2 +1x4
+1x8

=13]o

1101

where 1101, is a 4-BIT binary number.
The rightmost bit, bit @ is the least-
significant bit, the leftmost bit, bit 3 is
the most-significant bit. In practice
arithmetic within the NewBrain is per-
formed using 8-bit numbers. Bit 7 is
often used as a SIGN-BIT, indicating a
positive number if bit 7 = 0, a negative
number if bit 7 = 1.

NOT

The NOT operation changes each bit in
a number from @ to 1, or from 1 to @.
This may be shown by a TRUTH TABLE
which lists all the possible short condi-
tions, in this case B = 0 or B = 1, and the
result following the operation.

B NOT B
0 1
1 0

Therefore

NOT 0000 1011 (11,,)
= 1111 0100 (-12,,)

If N is a decimal number then

NOT (N) = — (N+1)

€.g.
NOTB=-7and NOT -7=8B

CHAPTER 2 — BASIC DEFINITIONS

5 EXPRESSIONS 5 EXPRESSIONS
5.2 Logical Expressions 5.2 Logical Expressions
Results of the relational operations, e.g. For example
IF A = B, are stored as -1 if TRUE (in
this case A equal to B) or 0 if FALSE 0011 1111 (63y0)
(A not equal to B). Thus the command AND 0001 1011 (27,,)
= 0001 1011 (27,0)
PRINT TRUE, FALSE and
produces the result, 1111 1111 (-1=TRUE)
=3 0 AND 0000 0000 (0=FALSE)
Note in particular that B 0000 0000 FALSE
NOT -1=0,NOT 0= -1 i.e. TRUE AND FALSE = FALSE
or OR
NOT TRUE = FALSE, NOT FALSE O hastheTruth Table
o A B A OR B
AND 0 0 0
AND operates according to the Truth ? g] :
Table 1 1 1
A B A AND B thatis (AORB)=1ifA=10rB =
0 0 0
0 1 0 0011 1111 63,
1 0] 0 OR 0001 1011 27,0
1 1 1 = 0011 1111 63,
setting a bit in the result to 1 only if the 1111 1111 TRUE
corresponding bits in the input words are OR 0000 0000 FALSE
both 1, i.e. = 1111 1111 TRUE
(AANDB)=1ifA=1ANDB=1 i.e. TRUE OR FALSE = TRUE

30

CHAPTER 2 — BASIC DEFINITIONS

§ EXPRESSIONS

5.3 String Expressions

The operation of joining two strings
is called CONCATENATION. Two
operators may be used to concatenate
strings, + or &.

“GOOD" + “BYE"
= “GOOD"” & “BYE"
= “GOODBYE"

Thus

Strings may also be tested by the relation-
al operators. Effectively the ASCII
code (q.v.) for each character is compared
on a character by character basis. Thus
this context

fa 0t fa e

a” = "a
l!all < !lb!l
“A" < 3" (i.e. Upper case < Lower

case)
"a” < ﬂ'a al’l’

Thus “a" < "8“" <tl’and < ant"
NewBrain BASIC provides functions to

handle parts of strings, described in
Chapter 7.

5 EXPRESSIONS

5.4 Precedence

Where an expression contains more than
one operator these are evaluated in the
order preceding + or - leave or change
sign.

1 raising to a power

* |/ multiplication and division
+ - &
<<=
NOT
AND
OR

=>>= <>

The precedence of operators may be
changed by inserting parentheses, thus

4*6+6-2 = 24
4*(5+6-2) = 36
4*(5+6)—2= 42

NESTED parentheses are always eval-
uated from the innermost parentheses
outwards.,

3

CHAPTER 2 — BASIC DEFINITIONS

6 ERROR MESSAGES

NewBrain BASIC provides a comprehen-
sive range of error codes to assist the user
in identifying faults in programs. Error
messages take the form

ERROR XXX AT NN
where XXX is the error code number,
and NN is the line number at which the
error occurred, If the error occurred in a
multi-statement line, then the error
message takes the form

ERROR XXX AT NN: P

where P indicates the first invalid state-
ment on the line. Thus

10 PRINT A, B: GOTO 100
produces the message
ERROR 29 AT 10: 2

if line 100 is non-existent when the
program is executed.

One error is detected on entry, ie.
following NEWLINE. The line

99999 PRINT A (NEWLINE)
immediately produces

ERROR 4

indicating an illegal line number,

32

6 ERROR MESSAGES

Other errors are detected when a program
is run, or when a command is entered for
immediate execution. A comprehensive
list of error code numbers is contained in
Appendix 1.

CHAPTER 3
SIMPLE BASIC

This chapter outlines the elementary commands necessary to get a program “up and
running”, including the assignment statement (LET), input from the keyboard, output
to the display, and the commands to start and stop execution of a program.

1.

ASSIGNMENT — LET

2. PRINT

3.
4.
5,

~J

TAB
INPUT

LIST
5.1 List —Screen Display
5.2 List — Line Display

. RUN, END AND GOTO
. STOP AND CONTINUE
. REM

33

CHAPTER 3 — SIMPLE BASIC

1 ASSIGNMENT - LET

Variables are set to a desired value
using =. Thus, to assign the value 26.35 to
a variable called G the statement

LET G =26.35

is used. Similarly, one may assign a value
to a string variable

LET Y% = “YES"

The assignment may consist of equating
a variable to an expression, thus

LETC =2"PI*R
LET P = C*A*(1-N/R).
LETD=D+1

In BASIC this last example means “take
the value stored in the box with the label
D (four, say), add one to it (making five)

and put this back in the box labelled D". .

Thus D becomes D+1. Variables, like D,
may change. their value during the course
of the program.

Example: Print the surface area of a
cylinder

10 LETR=2

20 LETH=3

30 LETA=PI*R*R
40 LETC=2"PI*R
50 LETS=H"C

60 LETS=S+2*A
70 PRINTS

80 END

1 ASSIGNMENT — LET

ASSIGNMENT is so frequently used that
the keyword LET may be omitted.

1 R=2
20 H=3
30 A=PI*R*R
49 C=2"PI*R

50 S=H*C
60 S=S+2%A
70 PRINTS
80 END

CHAPTER 3 — SIMPLE BASIC

2 PRINT

This is one of the most versatile state-
ments in BASIC. It is used to output data
from the computer, normally to the
screen or line display. PRINT may be
followed by a number, a numeric variable,
a string, a string variable, or an expression,
as in the examples which follow,

PRINT 32,76 produces the result
32.76

A =4: PRINT A produces the result
4

The value of the variable is printed, not
its name. Where the item to be printed is
a number, its format may be completely
controlled by using a FORMATTING
SPECIFICATION (Appendix 2 § 4.1.4).
A different formatting specification may
be used for each item. Thus,

X =1612.24: PRINT X [4.2]; X [5.1]
yields

1612.24 1612.2

The symbol ? may be used as a synonym
for PRINT, as in

? X [1.3E] giving
1.612E+03
and

? “Hello" giving

2 PRINT

Hello

The test within the quotation marks is
printed, exactly as typed in. Similarly for
a string variable:

AZ = “string var”: PRINT AS
results in

String var

If an expression follows a print statement
then the expression is evaluated and the
value is printed.

PRINT 32 * 5/8
20

A print statement may have any combin-
ation of parameters, so long as the list
will fit on a line (including continuation
lines). The parameters in a print statement
must be separated by semi-colons or
commas. The effect of the semi-colons
or commas is to format the printing. A
semi-colon instructs the display device
not to advance the cursor before printing
the next character:-

PRINT “GOOD"; “BYE"
GOODBYE

A comma will cause the next character to
be printed at the start of the next ZONE.,
The page upon which characters are
PRINTed is divided into PRINT-ZONES.

The print-zones on the screen are 10

35

CHAPTER 3 - SIMPLE BASIC

2 PRINT

characters wide, Thus

PRINT “GOOD", “"BYE"

results in

GOOD BYE
where the B of BYE is placed on the 11th
position from the left edge of the display.

PRINT "21", 22", "Z3"

will indicate the start of the print zones
on the screen.

Z1 222 223

The output from a PRINT statement can
be directed to a PRINT ZONE by preced-
ing it with the appropriate number of
commas. Thus PRINT , , , 21 causes
21 to be positioned in the fourth print
zone. Note that the first character of a
positive number is a blank (in place of the
understood positive sign), so the first
digit of a positive number is placed in the
second character position in the print
zone.

36

3 TAB

TAB may be used to place the output at
any character position along the line.
TAB is used only in PRINT statements.
It has the form TAB(n) which places the
cursor n positions from the start of a
line.

PRINT TAB (12), “SuUm*”

SUumM

Note that TAB, like other parameters 1o
the PRINT statement must be separate
from subsequent parameters by a semi-
colon or a comma. However, if a comma
is used, the cursor is immediately advanced
to the start of the next print-zone.

Multiple tabs may be used, thus

PRINT TAB(10);"TEN'; TAB(20);"TWENTY"
TEN TWENTY

but if the tab counts are such as to make
one piece of text overwrite another, then
a new line is forced:-

PRINT TAB{10);"TEN";TAB(12);"TWELVE"
TEN
TWELVE

A new line is also forced if an attempt is
made to print a number or string towards
the end of a line, where the spaces
remaining at the end of the line are not
sufficient to contain all the characters
making up the number or string. PRINT
Pl will output Pl to 7 decimal places.
With a leading space and a decimal point
the output will thus occupy ten character

CHAPTER 3 — SIMPLE BASIC

3 TAB

positions. So, when the screen is forty
characters wide,

PRINT TAB(30); PI

will print 3.1415927 tabbed 30 spaces
out in the line following the print state-
ment, whereas PRINT TAB(31), PI
results in a blank line, followed by PI,
printed on the next line, in the normal
position:

PRINT TAB(31); Pl
3.1415927

The same result will be obtained for any
tab from 31 to 40. Tabs greater than 40
are '"reduced modulo the line length”,
that is the tab, for example 218, is
divided by the line length (40) and the
remainder (18) is taken as the tab value.
Thus TAB(218) is equivalent to TAB(18).
The maximum number permitted in a tab
statement is 65,535 (equivalent to
TAB(15}), the minimum is 1.

TAB and , are only effective when print-
ing to the screen. For other devices
alternative means must be used for print
formatting.

4 INPUT

INPUT is used to collect data from an
input device, normally the keyboard.
Its function is to request a number or a
string which must then be assigned to a
variable.

Example:
INPUT A — numeric
INPUT AS — string

INPUT A, B,C, AS — mixed

When this simple form is used a prompt
(question mark, space) is issued to the
display, thus

INPUT A
—

The computer waits for the requested
data to be entered, followed by NEW-
LINE, thus

INPUT A%
? FRED

Where more than one item is to be input
(third example above) they must be
separated by a comma,

INPUT A, B, C, A3
? 34, 56, 3.87, FRED

If either too many or too few items are
input, an error message will be display.
If a program is being executed, the
prompt will then be repeated.

37

CHAPTER 3 — SIMPLE BASIC -

4 INPUT

Where the input is a string, it may not of
course contain a NEWLINE character and
it need not be input with its enclosing
quotes., However, if the string contains
embedded quotes, for example She said
““Help’ then the string must have closing
quotation marks and the embedded
quotation marks must be duplicated, thus

INPUT D3
? “She said” “Help” " "

PRINT D%
She said "“Help”

The prompt (question mark, space)
passed to the console may be usefully
replaced by a prompt expression, in the
form

INPUT (PROMPT EXPRESSION)
VARIABLE(S)

for example

INPUT ("BLACK OR WHITE") PC8
BLACK OR WHITE —

Again, if an incorrect response is given to
the prompt, then the user is re-prompted
with the prompt expression. If no prompt
whatsoever is desired, the NULL
STRING " " is used

INPUT ‘u n, A
]

5 LIST

5.1 LIST — Screen Display

LIST is used to output the program to an
output device (screen, printer, etc). By
default, LISTing takes place on the screen.

LIST has two parameters separated by
a minus sign, thus LIST 10-100. The
parameters represent the start and end
points of the LIST. If either parameter
is omitted the start or end of the pro-
gram is assumed.

LIST 10 lists line 10

LIST 10—-100 lists lines 10 to 100
inclusive

LIST —100 lists up to and including
line 100

LIST 100- lists from line 100 onwards

LIST — lists complete program

LIST lists complete program

The first parameter must be less than the
second, thus LIST 200-100 has no
effect.

CHAPTER 3 — SIMPLE BASIC

5 LIST

5.2 List — Line Display

When the line display alone is in use,
LIST operates as above, except that only
one line of a program is displayed at a
time. Subsequent lines are displayed by
pressing NEWLINE repeatedly. When it is
desired to edit a program line (say line
50) then LIST 50 must be entered, If

LIST 10-100

were used, then the computer would not
return to command mode (when editing
could commence) until the LIST com-
mand has completed, i.e. lines 10 to 100
had all been displayed.

6 RUN, END AND GOTO

RUN is used to start execution of a
program stored in memory. Prior to
execution, all wvariables are cleared to
zero. Thus the simple program

10 PRINTa, b, ¢

20 a=4:b=3:¢c=2
30 PRINTa,b,c

40 END

always produces the results

0 0 0
4 3 2

each time it is RUN, i.e. a, b, c (set to 4,
3, 2in line 20) are reset to zero each time
RUN is entered.

Notice that the program finishes with
40 END

This permits more than one program to
be stored in memory at the same time.
RUN will always commence execution at
the lowest numbered line available, and
execution will cease when END is en-
countered. A second or subsequent
program may be executed by the com-
mand GOTO XXXX where XXXX is the
starting line number of the program to
be executed. If the program above is
extended to read as follows:-

1@ PRINTa, b, c

20 a=4:b=3:c=2

30 PRINTa, b, c

40 END

39

CHAPTER 3 — SIMPLE BASIC

6 RUN, END AND GOTO

100 PRINT d, e, f
110 d=5:e=6:1f=7
120 PRINT d, e, f
130 END

RUN will cause execution of lines 10 to
40, whereas GOTO 100 will cause execu-
tion of lines 100 to 130, Note that unlike
RUN, GOTO will not clear variables, thus
the first GOTO 100 results Iin

0 0] 0
5 6 7

whereas subsequent GOTO 100 commands
yield

5 6 7
5 6 7

GOTO may be used within a program to
alter the sequence in which BASIC
executes the lines of a program. The
following trivial program will always loop
back to line 10 from line 30

10 INPUT (“YOUR NAME? ”)

A3

20 PRINT TAB (7); “HELLO ;
A3

30 GOTO 10

40 PRINT “THIS LINE WILL
NEVER BE PRINTED"
50 END

and the only way to stop the program

(apart from switching off) is to press
STOP, followed by NEWLINE.

40

7 STOP AND CONTINUE

STOP may be pressed at any time. The
computer will halt and a message

STOPPED
or
STOPPED AT NNNN: P

will be displayed, where NNNN is the line
number which is about to be executed.
Execution of a program may be restarted
by the command CONTINUE, or the
abbreviated command CONT . From the
example above

YOUR NAME? FRED

HELLO FRED
YOUR NAME? (STOP, NEWLINE
pressed)

STOPPED AT 20
=

Now CONTinue the program

CONT

HELLO
YOUR NAME? —
etc.

Note that the program continued, on line
20, by printing “HELLO" only, since the
input statement prior to the STOP, was
not followed by an input string {or, the
input string was the NULL STRING).

STOP may be used in a program, particu-
larly during testing and fault finding, to

CHAPTER 3 — SIMPLE BASIC

7 STOP AND CONTINUE

halt a program, so that variables may be
examined, Program execution may then
be continued. Line 30, above, may be
edited, to produce the following:-

10 INPUT “YOUR NAME? ') AS

20 PRINT TAB (7); “"HELLO ”; A%

3@ STOP

40 PRINT “THIS LINEWILL
NEVER BE PRINTED"

50 END

This will produce the output

RUN
YOUR NAME? BABBAGE
HELLO BABBAGE

STOPPED AT 30

The only variable available in this example
is A

?A%
BABBAGE

after which CONT produces the output
THIS LINE WILL NEVER BE PRINTED.

8 REM

When a BASIC program consists of more
than a few lines, it can be difficult to see
at once what it does, The keyword REM
is used to introduce a REMark, i.e. a line
in the program which will be ignored by
BASIC. As an example, see lines 190 and
195 in the program on page 49 It is good
practice to use REM:

a) at the beginning of a program listing,
to explain the purpose of a program,

b) at the beginning of any sub-routine
(see Chapter 4) to explain the purpose
of the sub-routine.

c) anywhere where clarification (especial-
ly at some future date) will be helpful,

41

CHAPTER 4
CONTROL

With the exception of GOTO, the commands in the last chapter allowed programs to
execute line by line, in numerical order. The CONTROL commands allow the order of
execution to be determined either by the programmer during program development, or
by the program itself.

. FOR....NEXT

0 THEN

. GOsuB
ON....GOTOandON....GOSUB
. ON ERROR and REPORT

. ON BREAK

O U A WN =

CHAPTER 4 — CONTROL

1 FOR — NEXT

1 FORI1=1T08
20 FORJ=1T010 ——

30 ANLN=10"1"3 oo °|_‘;'J-Ic-f-f
40 NEXTJ

50 NEXT I

60 END

The inner loop will be executed 10 * 8=
80 times. The loops may not overlap,
thus

10 FORA=1TO6 ~Qop1
20 T=A"4 o
30 FORB=1T04 —]

40 P=T*B LOOP 2
50 NEXTA
60 NEXTB

is NOT allowed.

The resuit of the correct example above
may be seen by running it and then
executing the program below —

100 FOR1=1T08
110 FORJ=1TO 10
120 PRINT A (1, J);
130 NEXTJ

140 NEXTI

150 END

2 IF — THEN

The IF-THEN statement causes exe-
cution of alternative parts of a program
depending on the CONDITION within

the |F—-THEN statement. All the
relational operations (<, >, <=, >=,
=, < >) and the logical operations

(AND, OR, NOT) may be used in the
CONDITION.

20 IF C =4 * A THEN 100 will go to
line 100 only if the condition is met (i.e.
C=4"* A). The program

10 INPUTN
20 IFNZ>=5THEN 50
30 PRINT "“LESS THAN OR = 5"

40 GOTO 10

50 PRINT “GREATER THAN 5"
60 GOTO 10

70 END

will print a message LESS THAN OR =
5 or GREATER THAN 5 depending
on the value of the number keyed in, and
then return to request another number.
At line 20, if the number is greater than
5, execution continues at line 50, other-
wise it proceeds to the next line.
PROGRAM FLOW (line numbers)

LESS THAN GREATER THAN
OR EQUAL 10
20
10 ”
LINE 20
No. 30
40 50
60

CHAPTER 4 — CONTROL

2 IF — THEN

The condition must be a logical expres-
sion (see page 29) and may be as complex
as required:

7 IFIA*A+B*B-C*C)<
0.02 THEN 200

or

200 INPUT (“ANOTHER GAME?
YES ORNO...") A%

210 IF A% = “YES” THEN 10

220 PRINT “GOODBYE"

230 END

Where |IF statements are used to re-direct
program execution, GOTO may be used
in place of THEN,

IF X<1THEN 100
is the same as
IF X<1GOTO 100

(IF X < 1 THEN GOTO 100 is also
acceptable.)

IF statements may aiso be followed by
any keyword. The example above may be
re-written,

10 INPUTN

20 IFN>5PRINT “GREATER
THAN 5”: GOTO 10

30 PRINT “LESS THAN 5"

49 GOTO 10

2 IF —THEN

When the statement following the condi-
tion is a LET, then either LET or THEN
must be used, e.g.

IF A=1B=2is NOT allowed
but

IFA=1THENB =2and

IF A=1LETB = 2are allowed

47

CHAPTER 4 — CONTROL

3 GOsuB

In many computer applications there are
routine tasks which are required to be
performed intermittently during the exe-
cution of a program. In games programs,
for example, there is frequently a part
of the program used to re-evaluate the
players score after each move is made. In
the business environment for example, in
stock control, a routine will be used to
re-calculate the stock of items held after
each transaction is completed. In each
case the sequence of instructions required
does not appear several times in the
program listing, but only once, as a
SUB-ROUTINE. When required, control
is passed to the sub-routine by a GOSUB
statement. The sub-routine executes its
operations, and returns control to the
body of the program by a RETURN
statement. Control will return to the
program line following the GOSUB. In

the program symbolically represented
below

10 LINE1

20 LINE 2

30 GOSUB 1000

40 LINE 3

1060 SUBROUTINE LINE 1
1010 RETURN

the computer will execute the line

numbers in the order
10 20 30 1000 1010 40 ...
As an example, here is a program which

48

3 GosuB

calculates the length across the base of a
rectangular box, and the length across
the diagonal.

LENGTH
ACROSS
DIAGONAL

LENGTH
ACROSS BASE

The program uses a small subroutine
which uses Pythagoras's theorem (the
square of the hypotenuse equals the sum
of the squares of the other two sides) to
evaluate the unknown dimension. The
sub-routine first calculates the length
across the base, using A and B as input,
returning the length as C, then uses the
length across the base and the depth as
input, returning the diagonal length.

The sub-routine is

200 C=SQR(A*A+B"B)
210 PRINT
220 RETURN

SQR in line 200 is equivalent to SQuare
Root. The PRINT statement in line 210
is included in the sub-routine to improve
legibility in the complete program. The
RETURN statement, which must be the

CHAPTER 4 — CONTROL

3 GOsuB

last statement in any sub-routine, may be
abbreviated RET if desired.

The complete program follows

10 INPUT (“LENGTH, BREADTH,
HEIGHT?”) A,B, 2

20 IFA=00ORB=0THEN 999

30 GOSUB 200

40 PRINT “LENGTH ACROSS
BASE =";C

50 A=C:B=Z

60 GOSUB 200

70 PRINT “LENGTH ACROSS
DIAGONAL ="; C

80 PRINT PRINT: GOTO 10

1990 REM: SUB-ROUTINE TO
CALCULATE

195 REM SQUARE ROOT OF SUM
OF SQUARES

200 C=SQR(A*A+B"B)

210 PRINT

220 RETURN

999 END

Line 10 Requests the dimensions of the
box, with a suitable prompt.

Line 20 Allows the user to escape from
the program by input of a dim-
ension of zero.

Line 30 Passes control to the sub-routine.

Line4d On RETURN from the sub-
routine prints the base length.

Line 5@ Re-assigns the variables to
comply with the requirements of
the sub-routine (it expects A and
B as inputs, and outputs C).

Line 60 Calls the sub-routine for the

3 GOosuB

second time.
Line 70 On return, prints the diagonal

length.

Line 80 Inserts blank lines to make the
presentation tidier and returns
control to the start of the
program.,

Note that the sub-routine is placed at the
end of the program, but could in fact be
placed anywhere.

RUN
LENGTH, BREADTH, HEIGHT? 3, 4, 12

DISTANCE ACROSS BASE =5
DISTANCE ACROSS DIAGONAL =13

Subroutines may be nested, that is one
sub-routine may call another.

CHAPTER 4 — CONTROL

4 ON — GOTO and ON — GOSUB

Program control may be transferred to
different lines, as a function of the value
of an expression, using the statement

ON EXPRESSION GOTO LINE No.
LINE No., etc.

NewBrain BASIC evaluates the expres-
sion, rounds it to the nearest integer, then
goes to the line with the first number if
the answer was one, the second number if
the answer was two, and so on. In this
example, because A = 2.7, which is
rounded to 3, the programs jumps to line
300, and prints 300.

0 A=27
20 ON A GOTO 100, 200, 300,
400, 500

30 PRINT "SHOULDN'T GET
HERE": GOTO 999

100 PRINT “100": GOTO 999

200 PRINT "200": GOTO 999

300 PRINT ""300": GOTO 999

400 PRINT "“400": GOTO 999

500 PRINT 500"

999 END

Note that if the decimal component of
the value @f the expression is greater than
or equal to .5000000000 approximately,
the number is rounded up, otherwise the
number is rounded down. Because
BASIC does arithmetic using Binary
numbers, and then converts the results to
decimal numbers, the rounding is not
exact, In the example, numbers greater
than about 249999999980 will be

50

4 ON — GOTO and ON — GOSUB

rounded to 3, otherwise they will be
rounded down. Additionally, care should
be taken to ensure that the value of the
expression is neither zero nor greater than
the number of options (that is greater
than 5 in the example above) otherwise
an error message results. The program
may be modified, to test differing num-
bers by altering lines 10 and 999:

1@ INPUT ("NO. ") N
20 ONN GOTO 100, 200, 300
400, 500

30 PRINT “SHOULDN'T GET
HERE": GOTO 999

100 PRINT “100": GOTO 999

200 PRINT *“200": GOTO 999

300 PRINT ""300": GOTO 999

400 PRINT "“400": GOTO 999

500 PRINT '500"

989 GOTO 10

Following an ON . . . GOTO, execution
will always continue at one of the line
numbers on the statement, or else an
error message will be generated. Thus, in
this example, line 30 will never be exe-
cuted. Where it is desired to switch
execution to different points in a pro-
gram, and then continue on a common
path, ON . .. GOSUB is used.

ON GOSUB is very similar to ON GOTO
except that a sub-routine is executed
following the ON statement, and returns
to the statement following the ON
statement. The example from ON-GOTO
may use GOSUB, as below:

CHAPTER 4 — CONTROL

4 ON — GOTO and ON — GOSUB

10 INPUT (”NO. “}N

20 ON N GOSUB 100, 200, 300,
400, 500

30 PRINT “GOT HERE FROM
SUBROUTINE": GOTO 10

1080 PRINT “100”: RETURN

200 PRINT “200”: RETURN

300 PRINT “300”: RETURN

400 PRINT "“400": RETURN

500 PRINT “500": RETURN

999 END

The flow of the programs may be pictured
thus

ON...GOTO

GOSUB

/

1 {fi—fr.‘Ox 400

500

LINE 30, which was never executed in
ON . . . GOTO, is always executed in
ON ...GOSUB.

5 ON ERROR AND REPORT

During program development errors are
trapped by the NewBrain operating
system and error messages displayed. It is
possible to redirect the error handling
routines to within the user program, using
ON ERROR

10 ON ERROR GOTO 100

20 INPUT (“NO.2’) A

30 PRINT “RECIPROCAL OF *;
AIS™; /A

40 INPUT (“ANOTHER NO.?"”) B$

50 IFB3="Y"GOTO 20

60 END

100 PRINT “ not valid”

118 PRINT “TRY AGAIN"

120 GOTO 20

In this program when an attempt is made
to calculate the reciprocal of zero, input
in response to line 2@, instead of out-
putting an error message the program
jumps to line 100, resulting in the output

RECIPROCAL OF @ IS NOT VALID
TRY AGAIN

If line 120 is replaced by

120 END
then the user may identify the error in
the normal fashion, by the command

REPORT which prints the latest error
message and ends execution.

51

CHAPTER 4 — CONTROL

5 ONERROR

REPORT
ERROR 2 AT 30

(Note that if an error has not occurred, it
is an error to call REPORT.)

After an ON ERROR transfer execution
may be continued at the line at which the
error occurred by RESUME, or at an
alternative line by RESUME line number.
Two system functions are available for
use by an error handling routine, ERRLIN
and ERRNO.

ERRLIN returns the l,ine number in
which the error occurred, ERRNO
returns the error number.

ON ERROR GOTO @ cancels the trapping
of errors.

52

6 ON BREAK

The STOP key is used to break into a
program and halt execution. The ON
BREAK statements allows the STOP key
to redirect the program in the same
manner as ON ERROR. The example
above may be re-written:-

10 ON ERROR GOTO 100

15 ON BREAK GOTO 200

20 INPUT (“NO.?") A

30 PRINT “RECIPROCAL OF"';
A”IS”; 1/A

60 GOTO 20

100 PRINT “ NOT VALID"

110 PRINT “TRY AGAIN"

120 GOTO 20

200 PRINT “TERMINATED"

210 PRINT “GOODBYE"

220 END

To stop the program the STOP key is
pressed, and the message

TERMINATED

GOODBYE
[]

appears.

The ERRLIN and ERRNO functions may
be used with ON BREAK; ERRNO
returns the system interrupt number @ (for
the STOP key) ERRLIN, RESUME and
REPORT act as in ON ERROR. ON
BREAK GOTO @ cancels the trapping of
the STOP key.

CHAPTER 5
DATA STRUCTURES

Data within a program may be stored either item by item, in DATA statements or in
ordered arrays. This chapter discusses the creation and manipulation of arrays, and the
use of data statements.

1. ARRAYS

2. DIMENSION (DIM and CLEAR
3. OPTION BASE

4. DATA, READ and RESTORE

53

CHAPTER 5 — DATA STRUCTURES

1 ARRAYS

An array is a means of storing items of
data, under a common name, with each
item identified by a SUBSCRIPT to the
array name,. |f the array was called A then
the ELEMENTS of the array are called
Al(1), A(2), A(3) etc., where 1,2, 3. ..
are the subscripts. An array of this sort
may be thought of as a list,

A1) 2.2
A(2) 6.8
A(3) 71
Al4) 9.3

1

| 1

| I

. I 1

A(10)

where the number of elements, in this case
10, is the DIMENSION of the array. Thus
A is said to be a ONE-DIMENSIONAL
array, of dimension 10. Arrays may also
be TWO-DIMENSIONAL, corresponding
to a table,

= 1 2 3
T(1,C) 2.2
T(2,C) 17.4 | -0.15
T(3.C) 6.3
T(4,C)

1ARRAYS

where T(1,1) = 22
T(3,1) = 6.3
T(2,2) = 174
T(2,3) = -0.15
etc.

Here T is a two-dimensional array, of
dimensions 4 and 3, i.e. 4 rows and 3
columns. Each element of the array may
be manipulated in the same way as any
numeric variable, thus

10 LETR=2

20 LETA(2,1)=PI*R*R
30 PRINTA (2, 1)

40 END

(RESULT: 12.566371)
or

10 LETR=2

20 LETA(2,1=PI"R*R

30 LETA(22) =PI

40 LETA(3,3)=A(2,1)/A(2,2)
50 PRINT A (3, 3)

6@ END

(RESULT: 4)

The arrays above are NUMERIC
ARRAYS, that is each element contains a
number, STRING ARRAYS are similar,
except that each element contains a
string. String arrays, like string variables,
are identified by the 8 suffix in the array
name, Thus

CHAPTER 5 — DATA STRUCTURES

1 ARRAYS

10 Ag(1)="THIS"

20 A8(2)="ISA"

30 A$(3)="STRING "

49 A3 (4) = “ARRAY "

50 FORC=1TO 4: PRINT
A8 (C); :NEXTC

60 END

produces
THIS IS ASTRING ARRAY

A variable may have the same name as an
array in a program, thus A3 and A (),
and A and A (), are distinguished by
BASIC, The following has a variable A,
a string A8, and a string ARRAY A%().

10 AB(1)="THIS "

20 A8(2)="ISA"

30 A8 (3) = “STRING "

40 A3 (4) = “ARRAY "

5@ FORA =1TO 4: PRINT
A8 (A); :NEXT A

60 PRINT

70 A% ="THISIS ASTRING"
80 PRINT A%

99 END

The following program will fill a two
dimensional array with numbers which
represent the array subscripts, that is
A(2, 1) = 21, A(4, 5) = 45 etc., and then
print out the array. The dimensions of
the array are requested from the user, and
must not exceed 9 rows by 7 columns, in
order to retain the format of the display.

1 ARRAYS

10 INPUT (“ROWS, COLUMNS ?")
R,C

20 FORI=1TOR

30 FORJ=1TOC

44 A(lLJ=10"1+J

50 NEXTJ

60 NEXTI

76 PRINT TAB (7);"C =",

80 FORI=1TOC:PRINT
1" NEXT |

90 PRINT: PRINT

100 FORI=1TOR

105 ?"A(";1;",C) =";

118 FORJ=1TOC

120 PRINT A (1, J);

130 NEXTJ

135 PRINT

140 NEXTI

150 END

The output looks like this:-

ROWS, COLUMNS? 6, 5
cC=1 2 3 4 5

A(1,C= 11 12 13 14 15
A(2,C)= 21 22 23 24 25
A(3,C)= 31 32 33 34 35
A(4,C)= 41 42 43 44 45
A(5,C)= B1 52 563 54 55
A(6,C)= 61 62 63 64 G5

Arrays may not have more than two
dimensions, and the number of elements
in an array is limited by the amount of
memory space available, up to a maxi-
mum of 5374 elements. The dimension(s)
of arrays which are greater than 10 or 10
by 10 elements should be declared by a
DIMENSION STATEMENT.

CHAPTER 5 — DATA STRUCTURES

2 DIMand CLEAR

DIM, short for dimension, is an instruc-
tion to the computer to reserve sufficient
memory space to store the contents of
the arrays in the DIM statement. Several
arrays may be dimensioned by one DIM
statement,

DIM A (20),C (6, 17),C3 (12)

DIM statements may contain algebraic
expressions, which are evaluated, and
rounded to the nearest integer number:-

1 N=6.6
20 DIMA (N+10)

results in A having dimension 17.

DIM statements should be placed early in
a program, before the first use of any
array elements, or SUBSCRIPTED
VARIABLES (A(3), B3(17,2), C(4,1)
etc). If any element of an array is en-
countered before the relevant DIM
statement, the array is assumed to have
dimension 10, or 10 by 10. Once an
array has been dimensioned by a
DIM statement or by default, it may
not be re-dimensioned, unless it has
been CLEARED. RUN automatically
CLEARs.

CLEAR reverses the effect of a DIM
statement, in that it releases the memory
used for array variables, and it additionally
resets all variables, thus subsequent
references to variables will produce the
value @ for numbers, and null for strings.

56

2 DIM and CLEAR

Thus the program

18 C(4,5) =45 F =22
20 D% ="ANSWER"

30 GOSuUB 100

40 CLEAR

50 GOSUB 100

60 END

10@ PRINT C (4, 5), F, D8
110 RET

produces the results

ANSWER

Specific variables, may be cleared, thus

CLEARF (clear a variable)
or

CLEARC() (clear an array)
or a list may be cleared

CLEARC(),DS8, A, L3()

CHAPTER 5 — DATA STRUCTURES

3 OPTION BASE

The first element of an array A may be
considered as A(0) or A(1), depending on
the programmer, or the version of BASIC
in use. If A(@) is permitted then an array
of dimension 8, A(8), has 9 elements
A(0) to A(8). NewBrain BASIC permits
the programmer to select which alternative
he wishes by the statement

OPTION BASE 0
or
OPTION BASE 1

If the base is @ the first element of a one-
dimensional array will be A(@), the first
element of a two-dimensional array will
be B(0,0). If the base is 1, then the first
elements are A(1)" and B(1, 1). OPTION
BASE may only be followed by @ or 1,
and must be declared before any dimen-
sion statement, or use of arrays. If
OPTION BASE is omitted, base zero is
assumed.

4 DATA, READ and RESTORE

A DATA statement contains numeric or
string constants which are to be used in a
program, and which are assigned to
variables by a READ statement. The
constants in a DATA statement are read,
one at a time, and assigned to the variables
in the list following the READ statement.

Thus

10 DATA 12, 2.7, HELLO, 5, SUM
may be read by

100 READ A, C, ES, L, Mg

assigning 12 to A, 2.7 to C, HELLO to
E$ etc. Numeric and string constants may
be mixed in both DATA and READ
statements, but they must match, or an
error will result,

10 DATA 3.4, RADIUS
20 READCS,Y

will assign 3.4 to C3%, but will not assign
RADIUS to Y, and wili produce an error
message.

Data may be placed in as many DATA
statements as desired and placed any-
where within a program. A DATA
statement, if part of a multi-statement
line, must be the last statement of the
line. BASIC assembles all the data items
in the statements into a list, and main-
tains a pointer into the list, advancing
the pointer each time an item is READ.

57

CHAPTER 5 — DATA STRUCTURES

4 DATA,READ and RESTORE

10 DATA 235, 45,2. 54 4.
545, 3.28

20 DATA 2.2, 1.76, 1.0819, 454

100 READA,F,1,G

200 READY, K, L, M,D, X

After execution of line 100, A = 235,
F =45, 1 = 254, G = 4545 and the
pointer will indicate 3.28 as the next data
item to be read, as Y in line 200. There
are more variables in the READ state-
ments than there are data items in the
DATA statements, however, so X cannot
be assigned a value in this instance, and
ai. error message will result.

The pointer in the data list can be reset
to either the beginning of the complete
list, or to the first item in any data
statement by RESTORE.

RESTORE sets the pointer to the
start of the list
RESTORE 20 sets the pointer to the

first item in line 20.

If line 20 were not a DATA statement,
then the pointer would be set to the first
item in a DATA statement following line
20,

10 DATA1,2,3

20 DATA4,5,6

30 DATA7,8,9

100 READA,B,C,D

101 REM SETS A=1, B=2, C=3, D=4
200 RESTORE 20

201 REM SETS POINTER TO 4

4 DATA, READ and RESTORE

210 READE,F,G

211 REMSETS E=4, F=5, G=6
300 RESTORE

301 REM SETS POINTER TO 1
310 READH,I,J

311 REM SETS H=1, I=2, J=3
400 PRINTA,B,C,D,E, F,G,H,J
999 END

RUN

1 2 3 4

4 5 6 1

2 3

The program above would set A = 1,
B=2C=3,..1=29, and fail to assign
J, were it not for the RESTORE state-
ments.

This example

10 DIM ASZ (20)

20 DATA NEWBRAIN

30 FORI=1to 20; READ AS (I)
40 RESTORE : NEXT

sets each element of the string array to
“NEWBRAIN". In the absence of the
RESTORE statement an error would
occur, as the data would be used up after
the first READ.

CHAPTER 6
FURTHER INPUT AND OUTPUT

For many applications, the PRINT and INPUT commands described in Chapter 2 will
prove sufficient. More advanced input and output handling is available, either by select-
ing a stream other than the console, or by using the commands described in this chapter
and in Chapter 10.

. OPEN and CLOSE

. STREAM NUMBERS

. LINPUT

. PUT and GET

. SAVE, VERIFY, LOAD and LIST

O B W N =

CHAPTER 6 — FURTHER INPUT AND OUTPUT

1 OPEN and CLOSE

A BASIC program may use up to 255
numbered STREAMS in addition to the
console. A STREAM is a data route from
the computer to an input/output device.
Each of these may be assigned to any one
of the device types listed in Appendix 7.
The OPEN statement is used to make this
assignment, e.g.

OPEN #2, 3
OPEN OUT # 7, 2, "accounts”’

In the first example stream number 2 is
opened with device type 3, i.e. the line
(or v.f.) display. Input and output com-
mands which make use of stream 2 are
then allowable, e.g.

PRINT # 2, “press any key'’;

In the second example, stream number 7
is opened with device type 2, i.e. the
cassette recorder plugged into the TAPE
2 socket, Qutput commands which make
use of stream 7 are then allowable,

After the OPEN command has been
executed, all input or output operations
which use the same stream number are
directed to the selected peripheral. This
connection may be broken by means of
the CLOSE command:

CLOSE #7

Since the CLOSE command does not give
an error, even when the given stream is
not in fact open, it is easy to close all

60

1 OPEN and CLOSE

streams with a command of the form
FOR1=11t0255: CLOSE #1 : NEXTI

Note that stream 0 may not be explicitly
closed. If stream O is opened at any time,
BASIC first closes the console stream
then re-opens it. This is to ensure that
there is always a console stream to handle
input commands!

CHAPTER 6 — FURTHER INPUT AND OUTPUT

2 STREAM NUMBERS

All the input and output statements are
acceptable with or without a stream
number, If a stream number is given, the
form of the command is as in

INPUT #5, e8

i.e. the BASIC keyword is followed by
“#", the stream number, and the remaining
parameters with a comma ,” after the
stream number if it does not end the
statement. The default system if a stream
number is not used is 0, i.e. the console
stream, except in the case of the PLOT
command described in Chapter 10.

The use of a prompt with the INPUT
and LINPUT statements is not allowed
when a stream number is given after the
keyword.

3 LINPUT

The LINPUT command is very similar to
INPUT when the latter is used to supply
a value to a string variable. All input from
the selected device is collected until a
NEWLINE is received. This means in
particular that any quotation marks are
placed in the string variable exactly as
typed, thus

LINPUT D% : PRINT D$
?She said “Help”
She said “Help”*

When a program is written to use the line
display as the console, LINPUT is often
used with a prompt of less than 16
characters, e.qg.

LINPUT (“Enter part no:"') p$

Note that if the prompt were given as
"Enter part number:”" | the display would
actually show only the last 15 characters,
as the window is moved far enough along
the current line to bring the cursor posi-
tion onto the right hand end of the
window:-

ter part number:

61

CHAPTER 6 — FURTHER INPUT AND OUTPUT

4 PUT and GET

In many control applications it is necessary
to output single bytes to a stream. This is
done using the PUT statement. One or
more bytes may be given in the PUT-list,
and a stream number may be specified:

PUT 22, 8, 10
PUT #8, 13

In the first example, the console stream is
directed to place the cursor at character
position 8 on row 10 of the screen (see
Appendix 3). In the second, a NEWLINE
control code is delivered to stream
number 8. If stream 8 is a printer stream,
this will result in a single paper feed.

The PUT-list consists of one or more
bytes, i.e. numbers in the range 0—255.
Each of these may be a constant, an
expression, or a string; however, if a
string is used, only the first character is
considered. If PUT is used to output a
control code, the effect of that code
depends on the peripheral device used;
for the Screen Editor control codes, see
Appendix 3. Certain control codes
require additional bytes to further define
the action to be taken. If the byte is not
a control code, it is equivalent to its
corresponding character, as shown in
Appendix 5. Thus the following two
examples produce the same result:

PRINT “Hello”’;
PUT 72, 101, 108, 108, 111

Note the Screen Editor cortrol code 27

62

4 PUT and GET

(ESCAPE) has the effect ef ensuring that
the next byte is not treated as a control
code. Thus PUT 27, 12 prints character
number 12, whereas PUT 12 moves the
cursor to the home position.

The command GET may be used to
obtain a single byte from an input stream,
This can be useful in various control
applications, and when a stream is of
type 7 (Z80 port) or type 9 (modem):

OPEN #1,9
GET #1, X : PUT X

Many real-time games will operate by
opening a keyboard input stream (device
type 5 or 6) and using GET to pick up
single keystrokes.

CHAPTER 6 — FURTHER INPUT AND OUTPUT

5 SAVFE VERIFY LOAD and | IST

The BASIC program entered by the user
is held in memory in “entokened’’ form.
This means that many of the BASIC
reserved words are replaced by a one-byte
TOKEN in order to save space. The
SAVE and LOAD commands allow the
program to be output to any stream
{usually a backup store) or read in, in
this “entokened” form. The LIST com-
mand allows the ordinary, or expanded,
form to be output to any stream, usually
the screen or a printer., Examples of all
these commands are given in Chapter 1,

63

CHAPTER 7
INTRINSIC FUNCTIONS

NewBrain BASIC provides a range of predefined functions. This chapter discusses the
mathematical, utility, and random number functions, and concludes with user-defined
functions. String handling functions are treated in Chapter 8.

1. P Pl

2. TRIGONOMETRIC FUNCTIONS SINE (SIN)
COSINE (COS)
TANGENT (TAN)
ARCSINE (ASN)
ARC-COSINE (ACS)
ARC-TANGENT (ATN)

3 LOGARITHMS
3.1 Natural Logarithm (LOG)
3.2 Natural Anti-Logarithm (EXP)

4. POWERS
4.1 Square Root (SQR)
4.2 Raising to a Power (1)

5. ARITHMETIC
5.1 Integer Part (INT)
5.2 Absolute Part (ABS)
5.3 Sign (SGN)

6. RANDOM NUMBERS RND/RANDOMIZE
7. USER DEFINED FUNCTIONS DEF FN

65

CHAPTER 7 — INTRINSIC FUNCTIONS

The ratio of the circumferences of a circle
to its diameter, represented by the Greek
letter 7 (pronounced Pl), and often
approximated by 22/7, is provided by
NewBrain BASIC to an accuracy of 10
significant figures.

PRINT PI [1.9]
3.141592654

2 TRIGONOMETRIC FUNCTIONS

NewBrain BASIC provides

SIN(X) — TheSINE of (X)

COS(X) — The COSINE of (X)

TAN(X) — The TANGENT of (X)

ASN(X) — The angle whose sine is X
or ARCSINE (X}

ACS(X) — The angle whose cosine is
X or ARC-COSINE (X)

ATN(X) — The angle whose tangent is
X or ARC-TANGENT (X)

The angles used with trigonometric func-
tions are always expressed in RADIANS.

There are w radians in 180 degrees, thus
N degrees = N * 7/180 RADIANS, i.e.
90° = 7/2, 60° = 7/3 etc. If angles greater
than 360 degrees, 2m radians, are used as
the argument to trigonometric functions,
they are reduced modulo 360° (or 27
radians), that is the angle is divided by
360 or 2w, and the remainder used as the
argument. Thus

Sin 450° = Sine 90°
or in BASIC format

SIN (5 * P1/2) = SIN (P1/2)
Trigonometric functions may be manip-
ulated in the same way as variables. The
following program plots a simple graph of

the sine and cosine functions.

10 GOSUB 20¢
20 FORD=0TO 360STEP 20

CHAPTER 7 — INTRINSIC FUNCTIONS

2 TRIGONOMETRIC FUNCTIONS

30 R=D"PI/180

49 IFSIN (R)>COS (R) THEN 100

50 PRINT D;TAB (22 + 15 * SIN
(R)); “S";

60 PRINTTAB (22+ 15" COS
(R)); "C”

70 GOTO 120

180 PRINT D; TAB (22 + 15 * COS
(R)): “C";

110 PRINT TAB (22+ 15 * SIN
(R)); 8"

120 NEXT D

130 GOSUB 200

140 END

20@ PRINT “DEG”; TAB (6); "-1";

210 PRINT TAB (13); "-.5";

220 PRINT TAB (22); "0";

230 PRINT TAB (29); "+.5";

240 PRINT TAB (37); "+1”

250 RETURN

The sine curve is plotted using S, the
cosine curve using C.

3 LOGARITHMS

3.1 Log

LOG (X) provides the natural logarithm
(to the base e, e = 2.71828183) of the
argument X thus

? LOG (10)
2.3025851

? LOG (2.71828183)
1

? LOG (1)
0

LOG will not accept an argument which
is zero, or negative

3.2 EXP

EXP (X) produces the value of e to the
power X thus EXP(2) = e " e, EXP(3) =
e * e * eetc. EXP (X) is the inverse func-
tion of LOG, i.e. the natural antilogarithm,

thus
PRINT EXP (LOG(X))
produces the result X as does
PRINT LOG (EXP(X))
Reversing the examples in LOG above
? EXP(@)
? E1XP[1}
2.7182818

? EXP(2.30258509)
10

67

CHAPTER 7 — INTRINSIC FUNCTIONS

4 POWERS

4.1 SQR
SQR (X) yields the SQuare Root of (X).

?SQR(25)
5

? SQR(62500)
250

The square root of a negative number is
not a real number, and produces an error
message.

42 #t

1t is read as “TO THE POWER OF”
thus 2 1 3 is read as “TWO TO THE
POWER OF THREE"™ which equals
2 * 2 * 2 or 8. This short program
illustrates the function of 1.

10 INPUT (“NUMBER ? ") N
20 A% ="TO THE POWER OF"
30 FORI=1T0O 10

40 PRINTN;A$;1;"=";N 11
50 NEXT |

60 PRINT: GOTO 10

preducing a table of powers of the input
number, up to a power of 10, thus

NUMBER ? 2

2 TOTHEPOWEROF 1 = 2

2 TOTHEPOWEROF 2 = 4

2 TOTHEPOWEROF 3 = 8

2 TOTHEPOWEROF 4 = 16
2 TOTHEPOWEROF 5 = 32
2 TOTHEPOWEROF 6 = 64
2 TOTHEPOWEROF 7 = 128
2 TOTHEPOWEROF 8 = 256

&

4 POWERS

2 TOTHEPOWEROF 9 = 512
2 TOTHE POWER OF 10 = 1024
NUMBER 7 - 1 of 10 under 9
1 of 1024 under
1 of 512
where each line is N (in this case 2} times
the previous line, The program may be
modified to work up to any power, by
inserting line 15 and modifying line 30:

10 INPUT (“NUMBER ?) N

15 INPUT (“GREATEST POWER
27 P

20 AS = "TO THE POWER OF”

30 FORI=1TOP

40 PRINT N;A8;I;"=";N 11

50 NEXTI

60 PRINT: GOTO 10

t may be used to evaluate roots of a
number by using the form

PRINT N 1 (1/R)

where R is the root required, i.e, 2 for
square root, 2 for cube root, etc. The
following program will evaluate the roots
of a number N, up to the Rth root.

10 A3 = "ROOT OF”
20 INPUT (“NUMBER ? “) N
30 INPUT ("GREATEST ROOT ?
“) R
40 FORI=2TOR
50 IF1>3PRINT"";I;
“TH ";: GOTO 70
60 ON 1 GOSUB 100, 110, 120
70 PRINT AS;N; "="; Nt (1/1)
80 NEXTI

CHAPTER 7 — INTRINSIC FUNCTIONS

4 POWERS

180 PRINT: GOTO 10
110 PRINT “SQUARE ", :RET
120 PRINT “CUBE";:RET

LINES 50 and 60 are used to preserve the
standard nomenclature, i.e. “SQUARE
ROOT", “CUBE ROOT" instead of 2nd
Root, 3rd Root. The variable | in LINE
60 should only take the values 2, and 3,
switching to lines 110 and 120 respec-
tively, therefore an arbitrary line number
is placed in the list of arguments corres-
ponding to the switch value 1. Note that
the line corresponding to the number
must exist, however, otherwise an error
will be flagged. For “NUMBER" = 64,
and “GREATEST ROOT" = 7, the out-
put is

SQUARE ROOT OF 64 = 8

CUBE ROOT OF 64 = 4

4TH ROOT OF 64 = 2.8284271
5TH ROOT OF 64 = 2.2973967
6TH ROOT OF 64 = 2

7TH ROOT OF 64 = 1.8114473

o

5 ARITHMETIC

5.1 INT

INT(X) returns the integral part of X, that
is the largest integer less than or equal to
X. Thus

INT (35.3) = 35

INT (2.1) = 2

INT (-2.3) = -3

INT (-7.1) = -8

INT (1.345E23) = 1.3456E +23
INT (1.234567E5) = 123456

5.2 ABS

ABS(X) strips X of its minus sign, if one
exists, and returns the positive value of X,

ABS(42) = 42

ABS(-42) = 42
Formally
ABS(X) = XifX=0
=-XifX<0

remember that minus a negative number
X (= -4 say) produces a positive number
(4).

ABS(X) is used, for example, where the
sign of a number is immaterial, or where
it is essential to have a positive number,
for example prior to extracting a square
root:-

1@ INPUTD
20 Y =SQR (ABS(D))

69

CHAPTER 7 — INTRINSIC FUNCTIONS

5 ARITHMETIC

If it is necessary to strip off the sign, by
ABS(), and perhaps restore it later, then
SGN() may be used.

53 SGN
SGN(X) returns the value
+1if X>0i.e. X positive
0if X=0
-1if X<@i.e. X negative

PRINT SGN({5.3), SGN(@),SGN (-3.2)
1] -1

In this example, a number is input,
stripped of its sign, operated upon, and
then has its sign restored.

i@ INPUTN
20 S=SGN (N)
30 N =ABS(N)
40 o

60 N=S*"N

As a practical example, using INT, ABS,
and SGN the following program simulates
a radar “‘speed trap’ which operates by
transmitting radio energy at a known
frequency say F, which is changed in
frequency when it bounces off an ap-
proaching, or receding car, increasing
when the car is approaching, decreasing
when receding. (The change in frequency
is called a Doppler shift after the dis-
coverer of the phenomenom.) This

70

5 ARITHMETIC

program asks for an input frequency,
converts it to miles per hour, and states
whether the ‘car” was approaching,
receding, or stationary.

1@ REM DOPPLER SHIFT

20 REM K = CONVERSION
FACTOR FREQ./M.P.H.

30 REM M =SPEED IN M.P.H.

40 FO=10.00: REM TRANS-
MITTED FREQUENCY

50 INPUT (“RECEIVED
FREQUENCY") F

60 DF=F-—F0

7@ S =SGN (DF)

80 M =INT (346.73 * ABS (DF))

99 S=5+2

100 ON S GOSUB 200, 210, 220

110 PRINT “CAR";S8; "AT"; M,
“M.P.H."

120 PRINT: GOTO 50

200 S% = "RECEDING": RET

210 S$ = “STATIONARY": RET

220 S% = “APPROACHING": RET

998 END

NOTES:

LINE 60 Calculates the change in fre-
quency DF.

LINE 70Strips off the sign of the fre-
quency change.

LINE 80Converts the change in fre-
quency to M.P.H., ignoring the
sign (by using ABS), and taking
the integer part of the speed, i.e.
the next lowest whole number
of M.P.H,

CHAPTER 7 — INTRINSIC FUNCTIONS

5 ARITHMETIC

LINE 90Converts the sign S from the

range
-10or +1
to 12 3

LINE 100 Uses the new value of S to
choose the appropriate word to
describe the car's speed.

LINE 110 PRINTSs the results.

LINE 120 Returns to the beginning.

6 RANDOM NUMBERS

RND is a function which produces a
random number each time it is called.
Thus

1@ FORI=1TO 10
20 PRINT RND

30 NEXTI

40 END

produces

.61393043
.95403863
.076651651
.21306613
.033194093
59871473
56201019
.97603686
.13175516
51549558

The numbers lie between 0 and 1, and
are not truly random, but PSEUDO-
RANDOM in that a very long sequence of
seemingly random numbers is produced,
but given sufficient time and patience the
sequence of numbers would repeat itself.
The sequence starts at the same point,
each time a program is run, unless the
command RANDOMIZE is used, thus

5 RANDOMIZE
1 FORI=1TO 10
20 PRINT RND

30 NEXT!

40 END

7

CHAPTER 7 — INTRINSIC FUNCTIONS

6 RANDOM NUMBERS

The following program plots a simple
histogram (bar chart) showing the distri-
bution of the random numbers in a series.
The length of the series is determined by
the response to line 30, 2 generates 10?
numbers, 3 generates 10° numbers, etc.
The more numbers generated, the more
even the distribution, but the longer the
program runs (about 1 sec for 10 samples,
5 for 100, 25 for 1000, etc.).

Essentially, the program generates a
random number, multiplies it by 10, and
takes the integer part of the number,
which it uses to point to an element of
an array which is then incremented by
one. Thus if the random number were

.63471925

X 10 = 6.3471925
INT= 6

Therefore the 6th element of the array is
incremented. The program thus divides
the range between @ and 1 into 10 sections
(DECILES), which, if the distribution
were uniform, would each contain the
same number. As the sample range
becomes bigger, the numbers become
more uniform. Line 110 prints the decile
number, followed by the number in the
decile, lines 120 onwards print a simple
bar chart.

1@ CLEAR
20 RANDOMIZE
30 INPUT (“SAMPLE RANGE

72

40
50
60
70
80
100
110
120

130
140
150
160
999

6 RANDOM NUMBERS

(POWER OF 10) ") P
SR=101P
FOR1=1TOSR

R =INT (1@ " RND)
T(R)=T (R} +1
NEXT |
FORR=0TO9
PRINT R: T (R)
FOR L =1TO T(R)/
(5" 101t (P-3))
PRINT “*",
NEXT L

PRINT

NEXTR

END

RESULTS

SAMPLE RANGE 1 2

DECILE

CO~NOOAEWN=O

14

- NOOCOONONW
w

CHAPTER 7 — INTRINSIC FUNCTIONS

. 6 RANDOM NUMBERS

SAMPLE RANGE
DECILE

4

1036
980
1015
961
1009
1007
957
1011
1045
979

10127
9893
10143
10044
9901
9892
9999
10049
9952
10000

7 USER DEFINED FUNCTIONS

As well as the intrinsic functions described
in the preceding sections, BASIC provides
a facility for the user to define his own
functions, labelled for example FNB3,
FNC%. A user function is defined in a
DEF statement, thus:-

DEF FNC(X) =PI * X * X/4

Here, FNC calculates the area of a circle
of diameter X. Once defined, user func-
tions are employed exactly as intrinsic
functions.

10 DEFFNC (X} =P1* X * X/4
20 INPUT ("DIAMETER") D
30 A =FNC (D)

49 PRINT “"AREA IS"; A

50 END

Notice that the variable X used in the
definition in line 10, is not used in the
remainder of the program. If the input to
line 20 were 3 say, then line 30 evaluates
FNC as P1*3"3/4 substituting the value
of D wherever X appeared in the defini-
tion. X, which could be any character,
is called a dummy variable, and its use
does not prevent a true variable with the
same name from being used elsewhere,

NewBrain BASIC permits user defined
string functions.

10 DEF FNF$ (X$) = “HELLO
+D$+"", HOW DO YOU DO?"

20 INPUT (“YOUR NAME ?")
D%

73

CHAPTER 7 — INTRINSIC FUNCTIONS

7 USE DEFINED FUNCTIONS

30 A3 =FNF$ (DS)
40 PRINT A%
50 END

produces the output

YOUR NAME ? NEWTON
HELLO NEWTON, HOW DO YOU
DO?

Any variable that may happen to exist
with the same name as that used in a
defined function, e.g. X8 and FNF3(X3)
is not affected by the use of the defined
function. A function may be defined
which has no parameters thus

DEF FNR = P1/180
DEFFNH=SQR (A *A +B * B)

where the functions use the variables in
the program. A defined function may not
have more than one parameter,

A DEF FN statement may appear at any
point in a program, it does not have to
appear before the function is used. Each
time the computer encounters a FN it
will search the remainder of the program
for the appropriate DEF FN statement.
The commands CLEAR and RUN delete
all records of defined functions, but
commands of the form CLEAR FNA are
not permitted.

74

CHAPTER 8
STRING HANDLING

NewBrain BASIC provides very powerful string handling functions, described in this
chapter.

. CONCATENATION
LEN

. LEFTS

MID$

. RIGHT3

. INSTR.

OO s WwN =

75

CHAPTER 8 — STRING HANDLING

1 CONCATENATION 2 LEN

Strings are concatenated, or joined, by LEN (A$%) returns the length of the string

either + or &. Thus AS%. Thus, from the above

10 INPUT ("YOUR NAME ? ") PRINT LEN(AS); LEN(BS); LEN(CS)
N$ 14 21 12

20 A% ="HAPPY BIRTHDAY"”

30 B$ =A% +"TO YOU" The argument to LEN may be a string

40 C% ="DEAR "+ N% variable as above, or a string constant.

50 PRINT BS

60 PRINT B3 PRINT LEN (“THIS WAS THEIR

70 PRINT A% + C3 FINEST HOUR")

80 PRINT BS 26

90 END

RUN

YOUR NAME? PASCAL

HAPPY BIRTHDAY TO YOU
HAPPY BIRTHDAY TO YOU
HAPPY BIRTHDAY DEAR PASCAL
HAPPY BIRTHDAY TO YQU

76

CHAPTER 8 — STRING HANDLING

3 LEFTS

LEFT®(AS, 1) returns the leftmost |

characters of A$, thus, using the strings

from the ““Happy Birthday Program”

10 INPUT (“YOUR NAME?) N3
20 A% ="HAPPY BIRTHDAY"
30 B$=A%+"“TOYOU"

40 C38="DEAR"” & Ng

PRINT LEFT3(AS,5)
HAPPY

The second argument, 5 above, may be a
variable

100 FOR 1 =1TO LEN (A8) -1
110 PRINT LEFTS (A8, 1)

120 FORT =1TO 100: NEXTT
130 NEXT I

149 END

producing

H

HA

HAP

HAPP

HAPPY

HAPPY

HAPPY B

HAPPY BI

HAPPY BIR
HAPPY BIRT
HAPPY BIRTH
HAPPY BIRTHD
HAPPY BIRTHDA
HAPPY BIRTHDAY

4 MID3

MID(AS,1) returns the rightmost char-
acters from the string A%, starting with
the Ith character

PRINT MIDS (A$, 5)
Y BIRTHDAY

If | is greater than the length of the string
AS, MIDS returns the null string.

MID$ (A$, 1, J) returns a string of length
J, starting with the Ith character in AS.

PRINT MID$ (AS, 7, 5)
BIRTH

If J is greater than the number of char-
acters in A% to the right of I, MID$
returns the string from the Ith character:

PRINT MIDS (AS, 7, 15)
BIRTHDAY

The example used for LEFT$, may be
modified for MID$, LINE 110 should be
changed to

110 PRINT MIDS (A3, 1, 1);

The program prints H, followed by a
delay (LINE 120) then A, delay, then P
etc. A further variant is to amend line
120 to

120 PRINT * *;
producing spaced printing
HAPPY BIRTHDAY

77

CHAPTER 8 — STRING HANDLING

5 RIGHTS

RIGHTS(AS, 1) is analagous to LEFTS
(A8, 1), producing the right most |
characters of AS.

PRINT RIGHTS (AS, 3)
DAY

If | is equal to or greater than the length
of A8, RIGHTS returns AS.

78

6 INSTR

INSTR (AS, BS, |) searches the string A8,
from the Ith character for an occurrence
of BE. If the third parameter is missing
INSTR searches the whole of string AS.

? INSTR (A8, "DAY")
12

? INSTR (A8, “BIRTH", 10}
(7]

In the latter case the result is @, since
“BIRTH" commences before the tenth
character of “HAPPY BIRTHDAY".
Note however this exception

? INSTR ("ABC"”, ")

gives

CHAPTER 9
CONVERSION

The chapter describes the functions available to convert ASCII codes to their corres-
ponding characters, and vice versa, and functions to convert between string expressions
and numeric expressions, NUM, which tests a string for numeric content, is also
discussed.

1. CHARACTER/ASCII
1.1 Character to ASCIl — ASC
1.2 ASCII to Character — CHRS$

2. STRING/NUMBERS
2.1 String to Numeric — VAL
2.2 Numeric to String — STRS

3. TEST STRING FOR NUMBER
3.1 NUM

79

CHAPTER 9 — CONVERSION

1 CHARACTER/ASCII

1.1 ASC

This chapter discusses intrinsic functions
which convert data from one form to
another. Since a computer stores all
forms of data, for example Iletters,
numbers and punctuation marks, as
numbers, it must have a code to convert
its internal numbers into their corres-
ponding letters etc. A variety of codes are
commonly employed for this purpose, of
which the most widely used is the ASCII
code. (ASCIl stands for American
Standard Code for Information Inter-
change). ASCII code is issued by New-
Brain computers both for internal data
storage and transfer, and for communica-
tior, with external devices.

ASC(AS) returns the ASCII code for the
first character of the string AS. If A% =
“ABLE"”, or “ANCHOR", or “A", then
ASC (A8) returns the code for A.

PRINT ASC (A3)
65

Thus A iSQtored internally as 65.

ASC may be made to operate on charac-
ters other than the first in a string, by
using the form ASC (BE) where B$ =
(MIDZ(AS, I, 1)), for example.

10 A% ="ABCDEFGHIJKLMNOP
QRSTUVWXYZ"

20 FORI=1TO LEN (A8}

3@ B3 =MIDS (Ag, I, 1)

40 PRINT B$; ASC (BS),

50 NEXTI

60 END

80

1 CHARACTER/ASCII

BE need not be defined, explicitly, the
following produces the same result

10 A% = “ABCDEFGHIJKLMNO
PQRSTUVWXYZ"

20 FOR | =1TO LEN (A$)

30 PRINT MIDS (A8, I, 1);
ASC (MDS (AZ, 1)),

40 NEXTI

5@ END
A 65 B 66 C 67 D 68
E 69 F 70 G 71 H 72
I 73 J 74 K 75 L 76
M 77 N 78 D 79 P 80
Q 81 R 82 S 83 T 84
U 85 V 86 W 87 X 88
Y 89 Z 90

It is easier to derive a table of ASCII
codes, however, by using the function
CHRS.

CHAPTER 9 — CONVERSION

1 CHARACTER/ASCII 1 CHARACTER/ASCII

1.2 CHR$

CHR3$(N) converts a number, N, into its and the output is of the form
equivalent CHaracteR.

32 33 ! 34 " 3b =
PRINT CHR3(65) 36 g 37 % 28 & 39
A 40 { 41) 47 ' 43 +
Thus CHR$ is the inverse function to 44 45 - 46 47 7
ASC. The ASCII conversion table may be 45 0 49 5¢ 2 51 3
derived by a program of the form — 52 4 52 5 54 & 55 7
56 3 57 9 58 : 5O
1@ FORI=1TON 60 < o1 = 62 ™ 63 ?
20 PRINTI; CHRS (1), o4 @ a5 A 66 8 67 <
30 NEXTI 58 D 69 E 0 = 7T G
40 END /2 H 73 | 74 J 78 K
a L 77 M 8 N 79 O
However the first 32 codes (@ to 31) 8@ @ 31 Q@ 82 R 83 5
are used by the NewBrain as CONTROL 34 7 85 U 8 Vv 87 W
CODES, used for editing etc., and 31 38 X 389 Y 20 Z 91 |
in particular is the code for SH/HOME 22\ 93 |} 94 1t 95 _
or Clear Screen. Thus 9% g7 i 98 b 99 ¢
100 d 1M1 a 102 f 103 g
PRINT CHR$(31) 104 h 105 106 | 107 k
108 | 109 m 110 n 1110
will clear the screen of any previously 12 p 113 q 114 r 115 s
displayed characters. (Control codes are 116 t 117 u 118 v 119w
discussed more fully in Appendix 3.) The 120 x 121 y 122 2 123
ASCIl character set is defined up to 124 125 126 -~ 127 =

CHR$(127), thereafter NewBrain uses the
internal codes for graphics characters.
The program is thus

10 FORI=32TO0 127
20 PRINT I;CHRE (1),
30 NEXTI

49 END

81

CHAPTER 10 — GRAPHICS

1 SPECIAL SCREEN CHARACTERS

Certain types of graphic presentation may
be shown on the normal screen display by
using the MOSAIC GRAPHICS CHARAC-
TERS in the character sets shown in
Appendix 5. These each have a numeric
equivalent in the range 0—31 or 128—159,
As each of these occupies the entire
8 x 10 character frame, they can be
placed side by side to form complete
pictures, as is indicated by the name
“mosaic’’. As each character set features
different mosaic characters, a sequence
such as CTRL/W B must be typed to
select a character set.

CTRL/W sets the TV control mode. This
is best illustrated by an example. Enter
the program

10 FOR|=1TO 255
20 PUT 27,1,26

30 NEXTI

40 END

and RUN it. The character set will be
displayed with a space between each
character. The effect of T.V. control
mode may be seen by typing CTRL/W
followed by A, B, C or D for the lower
character ROM set, and H, 1, J, K for the
upper character ROM set. See Section 5.2
of Appendix 5 for details.

The mosaic characters in the range
129—158 can be typed from the key-
board directly by holding down the
GRAPHICS key; the mosaic characters
in the range 1—30 may be typed by first

84

1 SPECIAL SCREEN CHARACTERS

typing SH/T, then holding down the
GRAPHICS key while typing A-2Z
(—)+= Don’= forget to type SH/ESCAPE
afterwards! All the mosaic characters
in a selected character set can also
be generated by a suitable BASIC
command, such as

PUT132, 152, 131
or

PUT27, 16,27, 12, 27,23

CHAPTER 10 — GRAPHICS

2 HIGH-RESOLUTION DISPLAY

The screen display is normally in a
state described as ‘“low-resolution” or
“character-oriented’’. In this state, each
byte in the video area of memory cor-
responds to a single character in the
current character set. It is also possible to
arrange matters so that part of the screen
is in a "high-resolution” state, wherein
the colour (on or off) of each dot may be
individually selected. This is achieved
from BASIC by opening a stream of type

11, which must be linked to a stream
already open of the right type, i.e. 0
(screen only) or 4 (screen and line dis-
play). The type 11screen then shares the
memory area originally occupied by the
type 0 or type 4 screen. As the high-
resolution display requires more memory
to cover the same area of the screen, the
type 0 or type 4 stream must be opened
with a very large depth,

OPEN#0,4,"200"": OPEN#1,11,"150"

For the full syntax of the parameter
string used when opening a type 11
stream, see Appendix 7. As the graphics
stream is ‘’parasitic’”” upon the linked
stream given in this parameter, it cannot
function after that stream has been closed
(even by an OPEN#0 implicit close), and
must therefore also be closed,

3 THE GRAPHICS “PEN"

The PLOT statement is an extension to
BASIC to allow the user to handle the
graphics stream conveniently. [t must be
understood in terms of the concept of a
“pen’” associated with the graphics
stream. This pen may be moved about on
the screen by the various PLOT com-
mands, and will then generally leave
a visible trail. Some of the available
commands change the direction or the
colour of the pen, others alter particular
controlling attributes of the graphics
stream.

It is possible for the pen position to be
off the screen. The pen may still be
moved around, and if it is moved onto or
across the screen (with a suitable colour),
a visible trail will result.

The PEN function allows certain attri-

butes of the pen at a given time to be
determined,

85

CHAPTER 10 — GRAPHICS

4 THE PLOT COMMANDS

The syntax of a PLOT statement is
either PLOT # stream—number, plot-list
or

PLOT plot-list

The stream number should be a Graphics
stream, otherwise unpredictable effects
may be produced. If the stream-number
is not given, the first-opened graphics
stream is assumed if it is still open.

The plot-list consists of one or more of
the following plot items, separated by
commas. Each plot item has a three-
letter mnemonic; many plot items require
one, two or three parameters to be pro-
vided in parentheses.

MOVE (x,y) moves the pen to position

MVE (x,y) (x, y), drawing as it goes.
The pen angle is set to the
direction taken from the
previous pen position,

MOVEBY (d) moves the pen by a dis-

MBY (d) tance d in its current
direction, drawing as it
goes.

TURN (6) turns the pen to face

TRN (0) direction 0.

TURNBY () turns the pen through an

TBY (6) angle 6.

PLACE (x,y) moves the pen to position

PLA (x.,y) (x,y) without drawing.

86

4 THE PLOT COMMANDS

BACK-
GROUND
(b)

BCK (b)

COLOUR (c)
COL (c)

WIPE
WIP

DRAWI(x,y.c)
DRW(x,y.c)

DRAWBY
(d,e)
DBY (d,c)

DOT (x.,y,c)

RADIANS
RAD

DEGREES
DEG

Sets the background colour
to b, Values are

0 — off {"white”)

1 — on {"black")

other — undefined.

Sets the pen colour to c.
Values are :

0 — leave alone

1 — contrast with back-
ground

2 — same as background

3 — invert

other — undefined.

Clears the entire screen to
background colour.

Draws a line from the pen
position to the point (x,y)
in colour c.

Draws a line of length d in
the colour ¢, in the direc-
tion of the current pen
angle,

Marks a single point at
position (x,y) in colour c.

Calls for angles to be
given and returned in
radians until DEGREES is
executed.

Calls for
given and
degrees until

angles to be
returned in
RADIANS

CHAPTER 10 — GRAPHICS

4 THE PLOT COMMANDS

is executed.

RANGE (a,b) Sets the horizontal and
RNG (a,b) vertical ranges.

CENTRE(x,y) Sets the position of the

CEN (x.,y) plotting origin, relative to
the bottom left corner of
the screen.

FILL Fills in the area around

FIL the current pen position
up to a boundary, or the
edge of the screen.

ARC (D,) draws a circular
arc of length D, turning
through an angle 0.

Draws annotated axes
crossing at the current pen
position. The X-axis is
marked up with a spacing
a, and the Y-axis is marked
up with a spacing b. If a or
b is zero, the axis is drawn
but not marked,

AXES (a,b)
AXE (a,b)

text The string is ploted, start-
ing from the current pen
position, in a sequence of
8 x 10 frames. The current
setting of the MODE is
used to determine the
surround in which the text
is plotted.

4 THE PLOT COMMANDS

MODE (m) Sets the text plotting
MDE (m) mode. Values are as for
colour.

Note only ARC, MOVE, MOVEBY and
PLACE change the pen position, and only
ARC, MOVE, TURN, TURNBY change
the pen angle. However, RANGE and
CENTRE alter the value of the X-co-
ordinate and Y-co-ordinate of the pen,
to correspond to the same point on the
revised co-ordinate system.

Example 1: some boxes

10 OPEN#0,0,“200" : OPEN#129,
11

20 PLOT RANGE (4,2.4),
CENTRE (2,1.2), DEGREES

30 PLOT PLACE (0,0), AXES (0,0)
(1,0.5)

40 FORI=1TO 3: PLOT PLA
(1-2.4,0.4), TURN (0)

50 FORJ=1TO 4: PLOT MBY
(.8), TBY (—90): NEXT J

60 NEXTI

70 END

This will draw the picture

87

CHAPTER 10 — GRAPHICS

4 THE PLOT COMMANDS

4 THE PLOT COMMANDS

Example 2: an “‘envelope curve' 50 ?#1,"Title -~
60 LINPUT#1,a%
100 PLOT RNG (250,150) 70 plotplace(-2,2.1),a3
110 PLOT CENTRE (10,10), WIPE 80 ?#1,"Total amount:”’
126 FOR1=0TO 20 90 INPUT#1,1
13¢ PLOT PLA (I = 10,0), MVE 100 =2
{0,140—-7+1) 110 PUT#1.31
140 NEXTI 120 ?2#1,”Enter subheadings and
150 END amounts”’

130 PUT#1,22,1,3,2,30

140 ?#1,'Sub-heading:”

150 LINPUT#1,38

160 PUT#1,22,1,3,2,30

170 ?#1,”Amount of sub-heading
“ag; -

180 INPUT#1,x

190 IF rtx<<=t THEN GOTO 220

200 ?#1,”Too large (only” ;t—r;"
left)”

210 GOTO170

220 a=360xr/t:b=360xx/t

230 plotpla(@,0),turn(a),dby(1,1)

240 plotturn(a+b),dby(1,1)

250 plotturn{a+b/2),col{@),mby
(1.2} ,col(1)

260 |IF pen(B) >0 THEN GOTO 290

GOTO 100 will plot this envelope

Example 3: a "pie chart”

This complete program uses many of the 280 1= « 18:pl

PLOT facilities. 1t makes use of a screen :BJLE?;?‘”‘;SP otplaseiben
other than the console for the high- 200 plotaS'

resolution display, to leave the full 300 j=j+1:plot pla (0,0)

depth of a screen available to the console 310 IFj<3 THEN GOTO 330
stoam. 320 plotcol(@),turn{a+b/2),mby

10 CLOSE#1:0PEN#1,4,2,"s200" (.9),col(1) fill:j=1

20 CLOSE#2:0PEN#2,11, 330 a=atb:r=r+x
“#1w 180" 340 |IF r<t THEN GOTO 130

30 plotrange(8,4.4),cen(4,2) deg 350 ?#1,Type NEWLINE to end”;

40 plotpla(@,-1),turn(®), arc(2*PI, 360 LINPUT#1,a8
360) 370 END

88

CHAPTER 10 — GRAPHICS

4 THE PLOT COMMANDS

LINE 160 Places cursor and blanks out
two lines.

LINE 250 Positions pen just outside the
circle.

LINE 280 Provides room for the text on
the left (the value 0.18 is
found by experiment).

LINE 300 Allows GOTO 300 if a
sub-heading is too and gives
an error by going off the
screen.

LINE 360 Ensures the completed dis-
play is visible.

5 THE PEN FUNCTION

The function PEN returns as a number
the value of a parameter pertaining to a
graphics stream. It is used like any
function, and has two forms, so that the
stream number may be omitted:

PEN (# stream number, parameter)
PEN (parameter)

If the second form is used, the default
graphics stream number is used, as for
PLOT. Unpredictable results may occur if
the stream number used is not a graphics
stream. The parameters which may be
returned are:

PEN (0) X-coordinate of pen

PEN (1) Y-coordinate of pen

PEN (2) pen angle (*)

PEN (3) pen colour

PEN (4) background colour

PEN (5) mode

PEN (6) colour of point at current

pen position

(#*) The pen angle is given in degrees if
a PLOT DEGREES statement has
been executed, unless cancelled by
PLOT RADIANS.

CHAPTER 10 — GRAPHICS

6 GRAPHICS STREAM DEFAULTS

When a graphics stream is opened, the
pen is set as follows:

Range 1.1
Centre 0,0

Pen position 0,0

Pen angle 0
Angles in Radians
Pen colour 1
Background 0

Mode 0

CHAPTER 11
HELP IN AN EMERGENCY

When using the NewBrain it is sometimes possible to reach a situation where the com-
puter does not seem to respond, or where no sensible display is visible on the screen or
line display. Usually this problem can be cleared fairly easily. However, the misuse of
certain BASIC commands can produce a situation where the only recourse is to switch
off.

1. INTERRUPTION

2. CHANGING THE DISPLAY
2.1 Character Set
2.2 Console Device

3. FREEING THE KEYBOARD
4. RELEASING MEMORY

5. WHEN TO SWITCH OFF
5.1 OPEN #0
52 ON BREAK and ON ERROR
5.3 POKE
54 CALL

91

CHAPTER 11 — HELP IN AN EMERGENCY

1 INTERRUPTION — STOP

Normally any BASIC command or
program may be interrupted by pressing
the STOP key. The following program
will loop indefinitely:

10GOTO 10

but pressing STOP will restore control to
the keyboard.

When the command being executed is
a cassette READ or VERIFY, the asterisk
key ““#" is required instead of the STOP
key to interrupt the command.

92

2 CHANGING THE DISPLAY

2.1 Character Set

The various character sets are shown in
Appendix 5. The 8 x 8 characters shown
there are not easy to read. If the display
shows these characters when the keys are
pressed, type CTRL/W followed by B to
obtain the normal display mode. This will
also be effective if the screen isa T.V. set,
as these will not show a black-on-white
display as clearly as white-on-black.

2.2 Console Device

If there is no visible display at all, and no
flashing cursor, then the console stream
may be set to the wrong device for your
model of NewBrain. Note that the
console should be one of the following
device types:

0 - screen only
3 - built-in display only
4 - combined display

If there is no screen device connected to
your NewBrain, but it has a builtin
display, the console stream should be
type 3. If there is no built-in display, a
monitor or TV must be connected and
the console stream should be type 0. The
user should type the following carefully,
although the effect may not be seen until
it is completed:

CHAPTER 11 — HELP IN AN EMERGENCY

2 CHANGING THE DISPLAY

CTRL/HOME to blank the current
line; if any

NEWLINE to clear a STOP condi-
tion in case the STOP
key was pressed earlier.

OPEN #0,0 toselecta screen, or

OPEN #0,3 to select the line display.

3 FREEING THE KEYBOARD

CTRL/0 may be typed to cancel a SHIFT
lock.

SH/ESCAPE may be typed to clear the
condition called ‘‘attribute on’. This
condition is entered by means of SH/t
and allows the keyboard to be used to
produce characters which are not nor-
mally obtainable. These “attribute on"
characters are not intelligible as BASIC
commands, hence the need to use
SH/ESCAPE.

CHAPTER 11 — HELP IN AN EMERGENCY

4 RELEASING MEMORY

When all available memory is used up, the
NewBrain may respond to even the
simplest command with ERROR 10, i.e.
insufficient memory. The areas in which
memory is used up are:

Program lines
Memory for streams
Variables and arrays

To obtain more memory for use, it may
be necessary to reduce the amount re-
quired in one of these areas.

A single program line may be removed
from memory by simply typing the line
number, followed by NEWLINE. This is
the most effective way of freeing memory,
as no extra memory isrequired in order to
do so.

An unneeded stream may be closed. The
amount of memory freed by this will
depend on the device driver type.

Storage for variables and arrays may be
released with the CLEAR command.
However, the selective form

CLEAR list of items

requires more memory for its execution
than may be available.

If the insufficient memory error is
frequently encountered, it is probably
necessary to extend the NewBrain config-
uration by adding a RAM extension box.

94

5 WHEN TO SWITCH OFF

The following statements, if misused,
may jam the NewBrain to the extent that
it must be switched off to regain the use
of the console. As switching off the
computer |loses the program in memory,
these statements should be used with the
greatest care,

5.1 OPEN #0

The console stream, number 0, should
always be assigned to a device which is
capable of input through the keyboard.
The form

OPEN #0, X

which assigns the console stream to
device type X will only be sensible if X is
0,3 o0r4.

In particular,

OPEN #0
which assigns the console to the default
back-up store device should be avoided.
5.2 ON BREAK and ON ERROR
The STOP key is provided to allow the
user to escape from otherwise impossible
conditions. If this key is interrupted with

an ON BREAK statement then a program
may tie up the computer completely.

CHAPTER 11 — HELP IN AN EMERGENCY

5 WHEN TO SWITCH OFF

E.g. the program

10 ONBREAK GO TO 20
20 GOSUB 20

will fill up all available memory without
any possibility of interruption by the
user.

5.3 POKE

The POKE statement is used to insert a
value into a memory location. As many
locations are used to provide essential
pointers for the operating system on the
hardware, as well as control information
used by BASIC, the operation of the
computer can be completely upset by
misuse of POKE. The best way, for
instance, to enter an assembly coded
routine into memory is shown in this
program.

1 REM echoes characters until “Q""
10 RESERVE 100 : DELETE 10

20 M=TOP+1

3 FORI=MTOM+39

40 READ X : POKE I, X

50 NEXTI
60 DATA 30,5, 231,52, 30, 3,
231,52

70 DATA 30,5,123,231,50,216,
30,3,123,221,51,216,30,5,
62,1

80 DATA 231, 48, 231, 54, 216,
30, 5, 231, 49, 254, 81, 200,
30, 3, 24, 240

5 WHEN TO SWITCH OFF

99 CALLM
100 END

54 CALL

The CALL statement allows an assembly-
coded routine to be entered from BASIC,
Such a routine must preserve certain
registers needed by BASIC, and must exit
by means of one of the RET codes. De-
tails are given in Appendix 6. If these
conventions are not observed, or essential
memory locations are changed, then the
routine will not satisfactorily return
control to BASIC.

APPENDICES

ERROR NUMBERS
BASICTECHNICALSPECIFICATION

SCREEN EDITOR TECHNICAL
SPECIFICATION

BASIC RESERVED WORDS

LINE AND SCREEN DISPLAY
CHARACTER SETS

BASIC STATEMENT KEYWORDS
DEVICE DRIVER SUMMARY

CALL STATEMENT AND O/S
ROUTINES

HARDWARE SPECIFICATION

APPENDIX 1 1

APPENDIX 1 ERROR NUMBERS

4 ()

8,9
10
11,12,13

14 (S)

15,16

17 (S)

{S) Indicates a syntax error.
(R} Syntax error also a run-time error.

Not used.

Arithmetic error.
E.g. division by @, arc sin of value > 1.

No further statement to execute, but no END or STOP
statement found.

Illegal line number.
E.g. 1000000 A=1.

Not used.

Illegal value — value in the range @ . . 65535 required.
E.g. in an array subscript or a switch value in ON.

lilegal array subscript value. A subscript value must

be in the range @ . . dimension of array {or 1 . . dimension,
when OPTION BASE 1 has been used).

Not used.

Insufficient memory space.

Not used.

Something other than IN #, OUT # or # follows OPEN.
Eg. OPEN ?2.

Not used.

Error in numeric function argument.
Eg. LOG (X —"A") LOG (2.

APPENDIX 1 ERROR NUMBERS

100

18
19
20 (S)
21 (S)
22 (S)
23,24,25
26 (S)
27
28
29
30
31 (8)
32
33
34 (s)

Not used.

Wrong number of subscripts in array element.
Eg. DIMA(5) : B=A(2,3)

Expression of wrong type.
Eg. A% =2 N="PQR".

Error in expression: unrecognisable thing.
Eg. X(A?5).

Error in expression: type mismatch.
Eg. A%* 4.

Not used.
Name of variable or keyword doesn’t begin with a letter.
E.g. *PRINT 2

FOR,=1TO 10.

Not used.

Switch value in ON is @ or greater than the number of
line numbers in the list.

Attempt to GOTO (or goto) a line which doesn’t exist.

Error in input to an INPUT statement. If the input is
from the console the prompt will be repeated.

In a PRINT statement a comma or semicolon was expected
but something else was found.

Not used.
RETURN without corresponding GOSUB.

GOTO or GOSUB not found where expected in ON.

APPENDIX 1 ERROR NUMBERS

36

37

40

4

42

43

45

46

47

(s)

(s)

(s)

(S)

(8)

(S)

(s)

Hyphen or end of line expected in LIST or DELETE.
E.g. LIST 1000 + 20
DELETE 22,23

Bad INPUT.
E.g. quotation mark not allowed in unquoted
INPUT string.

Can’t TAB to column @,

Can‘t POKE a value > 255.

Insufficient DATA for READ.
lllegal item in CALL parameter list.
NEXT without FOR.

Empty DATA line.

Not used.

lllegal control variable in FOR statement.
E.g. FOR A$=1TO 10.

A syntax error exists in a FOR or NEXT statement
within the for-next loop which begins at this statement.
Eg. 10FORI=1TO 10

20FOR2=1T02

30 NEXT J

40 NEXT |

will give ERR 45 AT 10

TO not found where expected in a FOR statement.
Eg. FORI=3T7.

STEP not found where expected in a FOR statement.
Eg. FORI=XTOX+17!2,

10

APPENDIX 1 ERROR NUMBERS

102

48 (S)
49 (S)
50,51
52 (S)
(R)
53 (S)
(R)
54 (S)
55 (S)
56 (S)
57 (S)
58,..,62
63 (S)
64
65 (S)
(R)

No NEXT statement found to match the current FOR
statement.

Illegal for-next loop nesting.

Not used.

Comma not found where expected.
Eg. INPUT# 5A, B.

In reply to INPUT, or in DATA.
End-of-ine not found where expected.
E.g. LIST 5-100, 1000—-2000.

In reply to INPUT etc.

CLOSE not followed by #.

Equals sign not found where expected, or keyword misspelt.
E.g. PRUTAB HJGK
FOR 12TO7.

Open parenthesis not found where expected.
E.g. DIM A22,7)

Closing parenthesis not found where expected.
Eg. TAB (2,

Not used.

Neither THEN nor a keyword found after the conditional
expression in an |F statement.

E.g. IF ABG3
IFCD?4THEN A=1
Not used.

No closing quotation marks in a string constant.
In response to INPUT.

APPENDIX 1 ERROR NUMBERS

70
n
72
73
74
75

76, .

81

82

85

(s

(s)

(S)
(S)

.79

(s)

(S)

(S)

(s)

Not used.

OPTION not followed by BASE.

OPTION BASE used after an array has been created.
OPTION BASE not followed by @or 1.
Dimensioning of an array which already exists.
Dimension too large.

Dimension @ when OPTION BASE 1 specified.
Error in formatter, other than error 75.

Number in formatter not in range @ . . 255, or not present.
Not used.

DEF not followed by FN.

Illegal user defined function name in DEF statement.
E.g. DEF FN$= A3

Not used.

No DEF statement for user defined function.
Redefinition of a user defined function to have a different
number of arguments or reference to an array with the

wrong number of dimensions.

Expression too complex to evaluate, or user defined
function references too deeply nested to evaluate.

Not used.

103

APPENDIX 1 ERROR NUMBERS

87 Can't CONTINUE.

88 (S) Illegal list of arguments to CLEAR statement.
89 Not used.

a0 Device stream or port not in range @ . . 255.
91 Failure to VERIFY.

92 Can’t CLOSE stream 0.

93 (S) ON ERROR or ON BREAK not followed by GOTO.
E.g. ON ERROR STOP.

94 (S) Line number @ not allowed.

95 VAL error — string is not a number.
E.g. VAL (".1.17).

96 LINPUT numeric variable.

97 (S) Attempt to ON ERROR or ON BREAK to a non-existent
line-number.

98 PUT error.

99 Out of DATA.

100 Insufficient memory to open stream.

101,..104 Not used.

105 Stream not open.
106 No such device.
107 Device-port pair already open.

104

APPENDIX 1 ERROR NUMBERS

108
109
110

111

112
113

114

115

116

117

118

119

120

121

122;::

130

131

129

Stream already open.
System error.
Syntax error in parameter string.

Attempt to open device which requires mains power when
no mains power connected.

Insufficient memory for FILL request.
Linked stream not a screen device.

Requested height too large for memory available to the
linked stream.

Linked stream has been closed.

Position off the screen illegal in this context.
Unrecognised PLOT command or PEN parameter.

Cannot use input from graphics device (use PEN instead).

Attempt to output to graphics device before input function
completed.

Syntax error in baud rate parameter string.

Port number other than zero for serial device.

Not used.

Tape read error : hardware failure (Tape dropout).

Tape read error : attempt to read block into a buffer
which is too small, or hardware failure.

105

APPENDIX 1 ERROR NUMBERS

106

132

133

134

135

136

137,..

200

201,.

199

. 265

Tape read error : hardware failure (Checksum error).

Attempt to read past the end of a tape file, or
hardware failure,

Attempt to read a tape file out of sequence, or hardware
failure.

Attempt to output to a tape file opened for input or
vice versa.

Syntax error in parameter string.
Not used.
Time out error on software serial input port.

Not used.

APPENDIX 2 ,

APPENDIX 2 BAsIC TECHNICAL
SPECIFICATION

1. DATATYPES

1.1 NUMBERS These are handled by the mathematics package.

1.1.1 Storage Six bytes are allocated by BASIC for the storage of a number
value. The mathematics package maintains and operates on numbers to a
precision of 10 or more significant figures inarange of 0..* 10 £15q,
1.1.2 Output By default output is rounded to 8 significant figures and is
in free format (integer, floating point or scientific “’E’* notation according
to value). Output to specific field sizes and formats can be forced by format
specifiers for the PRINT statement and the STR$ function. Output range is
0..+10%99,

1.1.3 Input Any output format is accepted as input, additionally any
number of digits is allowed in the mantissa and spaces may be disregarded.
1.1.4 Constants Any number valid for input may be used as a numerical
constant.

1.1.5 Variables Any simple name consisting of a letter or a letter followed
by a letter or a digit may be used to denote numeric values, A variable may
hold any valid number.

1.2 STRINGS In NewBrain BASIC a string is any sequence of bytes

(i.e. numbers in the range O . . 255). Bytes often stand for characters, in
particular those in the range 32 . . 127 stand for the ASCII printing
characters.

1.2.1 Storage Strings can be of any length between 0 and 32767 bytes.
An additional overhead of four bytes is required for each string stored.
Storage allocation is dynamic (i.e. the length of a string can change during
program or command execution).

1.2.2 Output Any string can be output. Input and output devices interpret
bytes in different ways. For instance the keyboard screen editor device,
which is usually the console for BASIC, interprets 0 . . 31 as control codes,
32..127 as ASCII character codes and 128 . . 255 as mosaic graphics
character codes,

1.2.3 Input Any valid string constant may be supplied in response to a
BASIC INPUT or READ statement. If the constant does not contain
quotation marks ("), commas or TAB (code 09) characters the enclosing
quotation marks may be omitted. Comma and TAB characters are used by

INPUT to separate consecutive strings. In response to LINPUT any string
not containing a NEWLINE {code 13) character may be supplied.

108

APPENDIX 2 BAsIC TECHNICAL

110

SPECIFICATION

1.2.4 Constants Any string not containing a NEWLINE character may be
enclosed in quotation marks (*‘) and used as a string constant in a BASIC
statement. Quotation marks within a string constant are denoted by doubled
quotation marks (““*’).

1.2.5 Variables Any simple name followed by a dollar ($) character may be
used as a string variable name. A string variable may hold any string.

1.3 LOGICAL There is no special logical datatype, but numbers may be
used to store logical values. In those cases where a logical value is required
for a binary choice, —1 is taken as TRUE and all other values are taken as
FALSE. Logical operations are performed bitwise on 16-bit words. In this
sense —1 is TRUE, 0 is FALSE and other values from the range —32768 . .
32767 take intermediate truth value; some operations require arguments
from this subrange.

1.4 ARRAYS Arrays may be of numbers or strings, of 1 or 2 dimensions
to a maximum of 55675 elements. Array storage must be reserved by
DIMensioning, but each element of a string array may vary in length during
program or command execution. In addition to the storage required for the
values of the elements there is a storage overhead of 6 bytes for an array and
a further overhead of 2 bytes per element for a string array.

There is no provision for input/output of whole arrays.

Individual array elements may be treated the same way as numeric and
string scalars for input/output.

There are no array constants.

Any number (or string) variable name may be used for a numeric (or string)
array. A variable name thus used may also be used for a scalar of the same
type, but may not be used for another array of the other dimension.

APPENDIX 2 BAsiC TECHNICAL
SPECIFICATION

2. EXPRESSIONS

2.1 ATOMIC EXPRESSIONS The allowed atomic expressions are:
constant variable name array element function call

2.2 MOLECULAR EXPRESSIONS Atomic expressions may be built up to
form molecular expressions.
If X and Y are valid atomic expressions then

unary operation X X binary operation Y (X)
are valid molecular expressions subject to the type restrictions detailed
below.

Constant This may be of any string or number constant.

Vaariable Name This may be any string’or number variable name.

Array Element This is array name (expression) or

array name (expression, expression). The expressions involved must evaluate
to numbers within the dimensions of the array.

Numbers are rounded to the nearest whole number for this purpose.
Function Call The general form is

function name (arguments)

The number and type of arguments depends on the function, given this an
argument can be any expression of the correct type. Arguments are separated

by commas.
2.2.1 Functions with No Arguments
Pl The mathematical constant
RND A pseudo-random number from the uniform distribution of
the unit interval (0,1)
POS The current position of the printhead on the console output
device

TRUE Evaluates always to —1

FALSE Evaluates always to 0

ERRNO The error number of the most recent error or break-in unless
cleared

ERRLIN The line number of line being executed at the time of the most
recent error or break-in

FREE The number of bytes of free store available to but not used by

BASIC

TOP The lowest store address not available to BASIC

FILES The parameter string returned by the most recently OPENed
input device

APPENDIX 2 BaAsic TECHNICAL
SPECIFICATION

2.2.2 Functions with One Numeric Argument

INT Integer part (INT(X) is the greatest integer not greater than
(X))

ABS Absolute value (modulus)

SGN Sign (—1 for negative argument, 1 for positive, O for zero)

SQR Square root

SIN COS TAN Trigonometric functions

ASN ACS ATN Inverse trigpnometric functions

LOG Natural logarithm

EXP Exponential function

PEEK Contents of memory location whose address is the argument

PEN Value of graphics parameter

CHR% The string consisting of the single character whose internal
code is the argument

STRS The string consisting of the numeric output format of the
argument

The format may be forced. The expression

STRS (X [formatter])
produces a string in the format determined by the
formatter. Allowed formatters are:

n Integer format with n digits
n.m Fixed point format with n digits before and m after the
point

n.mE Scientific format with n digits before the point, m after
and 2-digit exponent for the power of 10

nF Free format in a field width of n

In all formats leading zeroes in the mantissa are replaced by

spaces, there is a leading space or minus sign and a trailing

space.
2.2.3 Numeric Valued Functions with One String

Argument

LEN Length of the string

VAL The numeric value of the string, if the string happens to be in a
valid number input format

NUM = —1 (TRUE) if the string happens to be in a valid number
input format
=0 (FALSE) otherwise

ASC The NewBrain internal code for the first character of the string

112

APPENDIX 2 BAsIC TECHNICAL
SPECIFICATION

(for characters in the ASCII set this coincides with the ASCI|
code)

2.2.4 Substring Functions
LEFTS LEFT3(X% N) extracts the leftmost N character substring
RIGHTS RIGHT3(X$,N) extracts the rightmost N character substring
MID3 MID$(X$,P) extracts the right hand substring starting at the
P’th character of X$
MID$(X8 P ,N) extracts the substring of length N starting at
character P
INSTR INSTR(X$,Y®) finds the numerical position of the string
Y$in X3
INSTR(X$,Y$3,P) finds the position in MID$(X$,P)
22,5 User Defined Functions These are numeric or string values with one
or no humeric or string argument. A user defined function name is a simple
name preceded by FN. User defined functions must be declared equal to an
expression in a DEF statement.
2.2.6 Unary Operations These all take numeric arguments and yield
numeric results.
+ - unary plus and minus

113

APPENDIX 2 BAsIC TECHNICAL

114

SPECIFICATION
NOT The bitwise Boolean operation
2.2.7 Binary Operations with Numeric Arguments which Yield Numeric
Results
+ ="/ Plus minus times divide
t Raise to a power
<<== Relational operators

> >= <> (less than, less than or equal, equal, greater than,
greater than or equal, not equal)
AND OR The bitwise Boolean operations
2.2.8 Binary Operations with String Arguments which Yield Numeric
Results
<<L<== Relational operators returning Boolean results as in
> >= <> the numeric case. Characters are ordered according to
the NewBrain internal codes {(which ordering agrees
with ASCII and hence with alphabetic order) and
strings are ordered by first difference.
2.2.9 Binary Operations with String Arguments which Yield String Results
+ Concatenation
(also &)

2.3 EXPRESSION EVALUATION
Within an expression atomic expressions and expressions in parentheses are
evaluated first. Operation are evaluated in the order
+ — {unary operations)
t
=/
+ - & (binary operations)
< <L<==>>=<>
NOT
AND
OR

OR having the least binding power

Mathematical operations and functions are evaluated by the mathematics
package, The mathematics package has been specially designed to minimise
cumulative rouding errors and maintain stability in recursive and iterative
calculation, and to obtain maximal computation speed consistent with ten
significant figure accuracy and long term stability.

APPENDIX 2 BASIC TECHNICAL
SPECIFICATION

3. INPUT/OUTPUT

This is performed by the NewBrain operating system.

3.1 1/O DEVICES

1/O devices are signified by whole numbers in the range 0 to 255. In practice
in a program devices are usually named as numeric variables whose values
signify the device. All input/output peripherals are configured by their device
drivers as byte serial devices.

3.2 DATA STREAMS

Data streams are signified by whole numbers in the range O to 255, though in
practice numeric variable names are used. In BASIC, after opening a device on
a datastream all communication with that device is via the datastream. When
appropriate devices and device drivers are connected appropriate control
datastreams can be used to implement all current 1/O modes including
random access.

APPENDIX 2 BAsic TECHNICAL

SPECIFICATION

116

4. BASIC STATEMENTS, BLOCKS AND PROGRAMS

A BASIC statement generally consists of a keyword followed by certain
arguments. A BASIC line consists of statements (simple statements or
FOR-block statements) separated by colons. A line may be used as a
command, or introduced by a line number as part of a BASIC program. Line
numbers are whole numbers in the range 1 . . 65535.

4.1 SIMPLE STATEMENTS

4.1.1 Declaration
OPTION BASE 0 Sets the array base globally to 0.
OPTION BASE 1 Sets the base globally to 1.

The default base is 0.

DIM array name (dimension)
The dimension must be an appropriate numeric expression or a pair of
expressions separated by a comma. Multiple dimensionings separated by
commas are allowed. Scalars are not explicitly declared, arrays need not be.
In the latter case a default dimension of (10) or (10,10) is assumed.

DEF function name (argument) = expression declares a user defined
function.

4.1.2 Assignment

LET assignee = expression
An assignee may be a variable name or an array element. The assignee must
be of the type of the evaluated expression. The keyword LET may be
omitted.

4.1.3 Control
IF expression THEN fine number
IF expression THEN line
In the latter case the keyword THEN may usually be omitted.
GOSUB line number
RETURN (also RET)
ON expression GOTO line number list
ON expression GOSUB line number list

ON ERROR GOTO /ine number Set error trap.
ON BREAK GOTO line number Set interrupt trap.
RESUME Resume after trap.

APPENDIX 2 BASsIC TECHNICAL

SPECIFICATION

RESUME line number
GOTO line number
CONTINUE (also CONT)
STOP
RUN
NEW
CALL expression, arguments
This is to call a machine code or other language routine

4.1.4 Input and Output

OPEN direction #stream, device, port, parameter string Direction is IN or
OUT, it is optional and defaults to IN. Stream is an appropriate numeric
expression. Device and port are numeric expressions which may be omitted.
Parameter string is a string expression which defaults to null. The
information is passed to the operating system which assigns the stream to the
device and opens it.

INPUT assignee list INPUT #stream, assignee list

INPUT (prompt) assignee list
The prompt string expression us used to substitute for the defauit **?"*
prompt when the stream is the default (console) stream.

PRINT print list ~ PRINT #stream, print list ?

? is a synonym for PRINT.
Print list is a sequence of print items and print separators. Print items must
be separated by at least one print separator, and can be

expression

numeric valued expression [formatter]

TAB (numeric valued expression)

The format may be forced. The expression

[formatter]
produces output in the format determined by the formatter, Allowed
formatters are:

n Integer format with n digits

n.m Fixed point format with n digits before and m after the point

n.mE Scientific format with n digits before the point, m after and 2-
digit exponent for the power of 10.

117

APPENDIX 2 BasiC TECHNICAL

120

SPECIFICATION

for-statement blocks next-statement
for-statement is

FOR variable = initial value TO limit STEP increment initial value, limit
and increment are numeric valued expressions.

STEP increment may be omitted.
next-statement is

NEXT variable
The control variable must be numeric and the same in the for and in the next
statement.

43 PROGRAMS

A program is both a sequence of lines and a sequence of blocks. An END
statement should be present.

APPENDIX 2 BAsIC TECHNICAL

SPECIFICATION

5. MODE OF OPERATION

AS

A certain input/output device, called the console, is open when BASIC is
started up. Input from this device is treated by BASIC either as lines which
are commands to be obeyed immediately, or as lines with line numbers which
are added to the current program to be obeyed later when the program is run.
Reserved words in lines are “entokened”” in the program in order to minimise
store usage. When a command or block is obeyed it is first “‘compiled” into
NewBrain BASIC ““object code” (this compilation includes the setting up of
appropriate datastructures) and then the “object code’ is “‘executed’’. When
a program is being run the object code is kept and so once obeyed a
command can be obeyed again without having to be compiled again. This
mode of operation saves time and optimises the performance of programs.

Despite BASIC being a dynamic compiler, all interactive features are
present. While an ON BREAK trap is not set the user can normally break into
a program by using the STOP key, inspect and alter values and program lines
and then CONTINUE execution with all other states preserved.

121

APPENDIX 2 Basic TECHNICAL
SPECIFICATION

6. NOTES

{a) Spaces
Spaces are insignificant in almost all places in NewBrain BASIC.

(b) Character Set

NewBrain BASIC allows the user a set of 256 distinct characters. It is
assumed that the character set includes the ASCI| characters (though it need
not include all of them). BASIC distinguishes between upper and lower case
alphabetic characters only within string constants and REMark strings. The
NewBrain keyboard character set includes all the ASCI| characters, viewdata
graphics characters and others as well.

(c) Errors
NewBrain BASIC produces over 90 numerically coded error messages to aid
debugging.

(d) Nesting
The depth of nesting of for-blocks, GOSUBs, parentheses etc. is limited only
by the total amount of memory available.

(e) Extension

The NewBrain operating sytem contains an extension mechanism
comparable to but more advanced than simple ‘trapping’. This makes
NewBrain ‘ROM software’ real software, not just ‘firmware’. Programs in
RAM or ROM can replace or extend programs already present in ROM. In
particular additional features can be added to NewBrain BASIC without
having to replace the original ROMs. The NewBrain paged memory system
enables such extension to be virtually indefinite.

122

APPENDIX 3

APPENDIX 3 SCREEN EDITOR TECHNICAL
SPECIFICATION

Screen Editor — Technical Specification

General Description

The NewBrain keyboard-Screen-vf display editor, X10O, is an interactive
input/output device for communication between a user or operator of the
NewBrain and a NewBrain user-program such as BASIC. The editor interfaces
with the NewBrain Input/Output System, 10S.

Communication between the editor and the program is via the five
standard 10S commands, OPENIN, OPENOUT, INPUT, OUTPUT and
CLOSE. Since the editor is an Input/Output device OPENIN is equivalent to
OPENOUT.

The Displays

The TV/video display editor holds a page of between 1 and 255 lines of 40 or
80 characters per line. The screen display will show 24 or 30 lines and this
window is scrolled up and down the page. 10S allows for multiple copies of
a device to be open; thus, memory allowing, up to 255 pages can be
simultaneously maintained.

The vf display editor holds a single line between 16 and 254 characters in
length. The 16 character vf display window is scrolled backwards and
forwards over the line. The editor waits for the user to press the NEWLINE
key before displaying a new line. This wait can be suppressed by outputting
the appropriate control codes. During the wait the window can be scrolled
from side to side by the cursor control keys.

The vf display can also be used as a window on a screen page, displaying
the part of the current line around the cursor,

Character Sets

The vf display character set consists of the 64 ASCI| upper case characters,
excepting character 95 for which the £ sign is substituted, and 64 graphics
characters. All characters can be blinked. The vf editor uses only 65 of these
characters and reserves blinking as an indication of cursor position.
Characters sent to the editor are recoded before display, so that lower case
letters are displayed as their upper case equivalents, and so the coding agrees
with that used for the screen display.

The screen display character set depends on the character generator ROM
fitted. 512 characters are available, though at most 255 characters can be
displayed at atime. Character set selection is achieved by the *“Set TV Mode"
(control W) code. In certain modes 127 characters are available for display,
in normal or reverse field. According to mode the background can also be set

125

APPENDIX 3 ScREEN EDITOR TECHNICAL

128

SPECIFICATION

Output

Calls to output cause a character to be put onto the screen or vf display.
Thirty-two characters are used as control codes, accessing special features of
the editor. The effect of control codes other than NEWLINE is the same
whether entered via OUTPUT or entered via the keyboard interaction in
response to a call to INPUT, when the cursor is at the beginning of a line.

Screen lines, Cursor display, Autodelete feature

Lines on the screen may be of any length up to the size of page. Lines longer
than 40 or 80 characters wrap round, a continuation character being
displayed at the start of each screen line other than the first to indicate that
this is a continuation line. The cursor is displayed as a blinking underiine or a
blinking block. The latter mode of display is used for two purposes. When
the cursor is beyond the right end of the line — i.e. the next character entered
will be the first character of a subsequent continuation, it is displayed at the
right-most position in the line as a block. This contrasts with being displayed
in the right-most position as an underline when the next character entered is
to be entered at that position. The other use of the block cursor is at the
left-most position of a line just after a NEWLINE has been entered. This
indicates that if the next character entered is not a control code the

present contents of the line will be cleared to spaces. This “autodelete’
feature enables a page to be overprinted without having to clear outdated
information. The autodelete mode is cancelled if the first character entered
is a control code, so that overprinting of forms etc, where information
previously printed is to be retained, can be achieved.

Use as BASIC console

BASIC opens an editor device on Stream 0 when started up. The parameters
used for this depend on the hardware. For a NewBrain D, MDB LII0 with a

length of 80 is used, for A or AD TLIO with a length of 40 and depth of 24,

for M, MD TVI10 with a length of 80 and depth 24. Port number 0 is used.

APPENDIX 3 SCREEN EDITOR TECHNICAL

SPECIFICATION

CONTROL CODES

HEX DECIMAL CONTROL KEY

0 0 @ Null

1 1 A Sh/insert Insert line

2 2 B Sh/d Delete line

3 3 C Cntl/newline Send page

4 4 D End of file

5 5 E Send Line

6 6 F Show cursor

7 7 G Cursor off

8 8 H e Cursor left

9 9 I Cntl/escape Tab 8 spaces

A 10 J 4 Cursor down

B 1 K t Cursor up

C 12 L Home Cursor home

D 13 M Newline Newline

E 14 N Sh/t Attribute on

F 15 0 Sh/escape Attribute off

10 16 P Graphics escape
1 17 Q Insert Enter insert mode
12 18 R Grph/t Make new line

13 19 S Grph/) Make continuation line
14 20 T Send cursor character
15 21 U Send x, ¥

16 22 A" Set cursor x, y

17 23 w Set TV control

18 24 X Sh/« Delete left

19 25 Y Sh/—~> Delete character
1A 26 Z =¥ Cursor right

1B 27 [Escape Escape next character
iCc 28 / Cntl/< Cursor home left
1D 29 1 Cntl/~ Cursor home right
1E 30 t Cntl/home Clear line

1F 31 Shift/home Clear page

129

APPENDIX 3 SCREEN EDITOR TECHNICAL

130

SPECIFICATION

Interpretation of Control Codes

0

1

10

11

12

No action.

A line of spaces is inserted at the cursor, the cursor line and subsequent
lines are shifted down. The last line is lost.

The whole cursor line including the lines of which it is a continuation
(if any) and any continuation of it is deleted. Subsequent lines are
shifted up, sufficient lines of spaces being inserted at the end.

Subsequent calls to INPUT will return all the characters of the page,
including NEW LINEs. This mode is cancelled when all characters are
returned, or by a call to OUTPUT. After returning all characters the
cursor will be in the top left “home position’’ on the screen.

No action (this code has a special meaning in BASIC).

Subsequent calls to INPUT will return all the characters of the current
line, including the NEWLINE, Cancelled as code 3.

The cursor will be displayed at all times until code 7 is entered.

The cursor will not be displayed, except during keyboard interaction,
until code 6 is entered.

Move cursor left one space. This is not possible if at the top left-most
position on a line.

Move cursor right at least one space and sufficiently many spaces to
bring it to a screen column a multiple of 8 spaces from the start, or
failing that, to the start of the next line or to the space after the
continuation character on the next line.

Move cursor vertically down one space. This is not possible if on the
bottom line of the screen.

Move cursor vertically up one space. This is not possible if on the top
line of the screen.

Home cursor to top left of screen.

APPENDIX 3 SCREEN EDITOR TECHNICAL
SPECIFICATION

13 Move cursor to the start of the next line. In INPUT end keyboard
interaction. On the bottom line scroll screen up losing top line.

14 Invert the top bit of all subsequent non-control codes before
displaying. Subsequent characters 32 . . 127 will become 160 . . 255,
129 .. 255 will become display codes 1 .. 127. (128 will become 0
which is not displayable and is always treated as a NULL control
code). This mode is cancelled only when code 15 is entered.

15 Cancel mode introduced by code 14.

16 No action — this code is reserved for use by a high resolution display
editor.

17 Subsequent characters will be inserted at the cursor position, characters
to the right on the line being scrolled right and, when appropriate,
down (causing subsequent lines to be scrolled down and the bottom
line lost). If the line already fills the “line image’’ (L110) or the screen
page (TVIO or TLIO) this is not possible. This mode is cancelled when
any control code is entered,

18 The current screen line, if it is a continuation line, is made the start of
a new line. Continuations of it are scrolled back and up if required.

19 The current screen line is made a continuation of the line above it.
Subsequent continuations of it are scrolled down and right if necessary.

20 A subsequent call to INPUT will return the character at the cursor
position. This mode is cancelled in the same way as code 3.

21 Two subsequent calls to INPUT will return the “x-y cursor address”,
firstly the x address which is the horizontal displacement of the cursor
from the left of the screen starting at 1, then the y address which is the
vertical displacement from the top of the screen, starting at 1 (irrelevant
in the case of LI110). Cancelled as code 3.

22 The two bytes next entered are interpreted as an x-y cursor address (see
code 21), and the cursor is set to the given position. This mode is
cancelled when the two bytes have been received by the editor, or if a
call to INPUT intervenes,

131

APPENDIX 3 SCREEN EDITOR TECHNICAL

132

23

24

25
26
27

28
29

31

SPECIFICATION

Set TV control, certain bits of the next byte entered are loaded into the
video hardware TV control register”. The bits are currently used as
follows:

bit
3 1 =8 lines/character, upper Character ROM set
0 = 10 lines/character, lower Character ROM set
1 1 = full character set
0 = half character set, top bit used to reverse character field
0 1 = black background
0 = white

This mode is cancelled in the same way as code 22.

Delete the character to the left of the cursor moving the cursor left one
space, This has no effect if at the start of a line (not a continuation
line) or if the character is outside the LI1O window. The rest of the
line to the right of the cursor is scrolled to the left, and it and
subsequent lines up if necessary.

Delete the character at the cursor., Otherwise as code 24,
Move cursor right one space, this is not possible if at the end of a line.

Put the next character directly into the display — i.e. do not treat it
as a control code. This mode is cancelled after the next character has
been entered, or if a call to INPUT intervenes.

Send cursor to the left-most position on this line.
Send cursor to the right-most position on this line,

Replace the current line by a line of spaces, scrolling up subsequent lines
if appropriate. Send cursor to beginning of line.

Clear the whole screen to spaces and send cursor to ‘home’ top left.

APPENDIX 4

APPENDIX 4 BAsiC RESERVED WORDS

NEWBRAIN RESERVED WORDS
These are of 4 types:
1. Words which introduce a BASIC command.

2 Words which continue the syntax of a BASIC command. These must
appear in the right context, as defined by type 1 words.

3. Functions, which return a value.
4. Symbols which represent operations or relations.

Many of the reserved words have a shorter alternative form.

Reserved word, alternative type context

ABS

AND

ACS

ARC

ASC

ASN

ATN

AXES, AXE
BACKGROUND, BCK
BASE

BREAK

CALL
CENTRE, CEN
CHRS

CLEAR

CLOSE
COLOUR, COL
CONTINUE, CONT
cos

DATA

DEF
DEGREES, DEG

PLOT
PLOT
OPTION
ON

PLOT

PLOT
after STOP

with READ, RESTORE

MNe 2 WaN=S SN RNNRNNNNWWWN WS W

PLOT

135

APPENDIX 4 BASIC RESERVED WORDS

Reserved word, alternative type context

DELETE 1
DIM 1
DOT 2 PLOT
DRAW, DRW 2 PLOT
DRAWBY, DBY 2 PLOT
END 1
ERRLIN 3
ERRNO 3
ERROR 2
EXP 3
FALSE 3
FILE® 3
FILL, FIL 2
FN 2
FOR 1
FREE 3
GET 1
GO SuB, GGSUB 1
GO 7O, GOTO 1
IF 1
INPUT 1
INSTR 3
INT 3
2
3
3
1
1
1
1
3
1
3
2
2
2

after REPORT
after REPORT

ON

after OPEN
PLOT
DEF

,2 also ON
,2 also ON

IN#

LEFTS

LEN

LET
LINPUT
LIST

LOAD

LOG
MERGE
MIDg
MODE, MDE
MOVE, MVE
MOVEBY, MBY

OPEN

136

APPENDIX 4 BASIC RESERVED WORDS

Reserved word, alternative type context

NEW

NEXT

NOT

NUM

ON

OPEN
OPTION

OR

OUT#

PEEK

PEN

PI

PLACE, PLA
PLOT

POKE

POS

PRINT

PUT
RADIANS, RAD
RANDOMIZE
RANGE, RNG
READ

REM
REPORT
RESERVE
RESTORE
RESUME
RETURN, RET
RIGHTS
RND

RUN

SAVE

SGN

SIN

SQR

STEP

%]

FOR

OPEN

PLOT

PLOT

PLOT

after ON

with DATA
after ON
after GOSUB

NWWWS =W === a a0 s NaN= =2 W= NOWWN D = == Wb =

FOR

137

APPENDIX 4 BASIC RESERVED WORDS

Reserved word, alternative type context
STOP 1
STR$ 3
TAB 2 PRINT
TAN 3
THEN 2 IF
TO 2 FOR
TOP 3
TRUE 3
TURN, TRN 2 PLOT
TURNBY, TBY 2 PLOT
VAL 3
VERIFY 1
WIPE, WIP 2 PLOT
2 OPEN, CLOSE
& 4
(2
) 2
* 4
+ 4
= 4
/ 4
< 4
<= 4
<> 4
= 4
> 4
= 4
? 1
t 4
[2 formatter
] 2 formatter

138

APPENDIX 5

APPENDIX 5 LINE AND SCREEN DISPLAY

CHARACTER SETS

LINE DISPLAY CHARACTER SET

5.1

VLE] - Cgolz rEBs _£_WM_

- N] - - B
o .r grrl__ H Frr.nhr.._ S l._ _ —AI*I.I....
2 (=g
= 15

sjgsiunzjm

=}

| \T~ =

*.w, D_ﬂ_ _Q_Av_ ._L\ n_

ﬂﬂLELJCiJPWIJWJ

=i

_ -
L .,/_ |- <1 BF.A._J oL _v <

~ _w 4_1.11_ AWA_V_ N_\ __I.rrh a

<)

& - =
E@afu@ﬁLMﬁL27a
I~

%/_2__ /m?ﬂ/ .L_I.V“Y.uﬂﬂulmr_
=

@ == = 1..._..._ A = TS, K_r..z._\ﬁvn_./

*Hory v s~ ER a0z

fENET visH-E3 v_ﬂ.,

. -5 Iy <!>
~BEF — = =
KL _Mr.r. = m H_Hn U_M w,

141

APPENDIX 5 LINE AND SCREEN DISPLAY

CHARACTER SETS

5.2 SCREEN DISPLAY CHARACTER SETS

There are four district character sets which may be selected by using one
of the key sequences given below. In addition, the background may be
white with black characters (“‘black on white"), or the background may be
black with white characters {““white on black").

CTRL/W A Black on white, 8 x 10 characters, character set 1.
CTRL/WB White on black, 8 x 10 characters, character set 2.
CTRL/W C Black on white, 8 x 10 characters, character set 2,
CTRL/W D White on black, 8 x 10 characters, character set 1.
CTRL/WH White on black, 8 x 8 characters, character set 3.
CTRL/W i Black on white, 8 x 8 characters, character set 3.
CTRL/W J White on black, 8 x 8 characters, character set 4.
CTRL/W K Black on white, 8 x 8 characters, character set 4,

Having selected a character set using the appropriate CONTROL/W
sequence, most of the characters can be generated directly from the
keyboard by means of the GRAPHICS key and the “Attribute On’’ mode,
which may be set by typing SHIFT/? and cleared by typing SHIFT/
ESCAPE. For the keys A—Z, (, —,) and + the following simple rules
apply:

Attribute Off: Unshifted: As key tops (lower case)
Shifted: As key tops (upper case)
With GRAPHICS: Characters 129—158

Attribute On: Unshifted: Characters 225—250
Shifted: Characters 193—-223
With GRAPHICS: Characters 1-30

All 255 characters may be generated by a BASIC program, as the
following example will quickly demonstrate:

FOR 1 =1TO 255;: PUT 27, |: NEXT |
The value 27 is the ESCAPE code, and is included here so that the screeﬁ

editor will display the next number as a character instead of obeying it as a
control code (see Appendix 3 for a list of control codes).

APPENDIX 5 LINE AND SCREEN DISPLAY
CHARACTER SETS

Keyboard Mode

The character set generated by the keyboard may be changed by typing
CONTROL with a number key. This is purely a keyboard function and has
nothing to do with the editor control codes. {When using a keyboard
device driver these functions are not accessed by typing but instead by
PUTting the appropriate byte to the driver). The character sets generated
by the different keyboard modes are summarised below:

CONTROL Unshifted keys Shifted keys With GRAPHICS
0 normal upper case characters 129—-158
1 upper case {shift lock) upper case characters 129—-158
2 normal characters 225—254 characters 129—158
3 upper case characters 225—254 characters 129—-158
4 normal upper case characters 161—190
5 upper case upper case characters 161—190
6 normal characters 225—254 characters 161190
7 upper case characters 225—254 characters 161—-190
8 normal characters 225—254 characters 193-222
9 upper case characters 225—254 characters 193—222

143

APPENDIX 5 LINE AND SCREEN DISPLAY

CHARACTER SETS

p B Bl B Hr-He- HOHCOH=H §of of - Hm b
s o] @ i~ E =] - = PG —]
o2 D™ ey "o I - O o (T I ¢) < 0 < IS I I
e e e R N) < < - D

- - -4 - = = - = = & ~ Y o ol [o o
o o @] . o — 3) o] o T o4
(g ENE b R+ BB+ H--HOH BB HOH—H~H-_E
W ol e o™ 202 - (R = O o O < O ¢ T < I I ¢ I
o "o 1517 =" —
ol =l ol < ™ * O 2 < () < D 2) <) ¢) < [0 S < < T D
Il " I N ¢ Y - (< e [< [< < I < ¢ < B
- 1 - o - o =
r:-mrn'a/ w.lau?ﬁﬂr.ﬂGrDme _%gmonun.w

e L TL " EIENERV ELUEY | R el eI T R i -
m ool et s sz sl E ez e S8 58
RN R TETEIREE- R = Y R I s R R
I PP+ 9ms w30 el ~s Us s mia?

2 2lm.-m.-ﬁ# 33 Y0NY3 ..ﬂBmJNRMZmb%.Jm

qr s
m3 114
g oz 4
121 122

il B L Lt R o L TP e O | PP

112
x
120

oMo, el s @rs@sTrlesxXer 3032 A

CHARACTER SET 1

144

APPENDIX B LINE AND SCREEN DISPLAY
CHARACTER SETS

"

N
=

x
]

5 & 134 135

14

r
=
irr
E

|
e
-
i
-
-

L

~
-

1
o
™

142 143

=
=
&
&
&
=1
&
)
=
]
i

||
..n...
[]
Ju
l“l
r
4
s ¢
(|
[|
o
i

- ==
= |
16 17 18 19 20 21 22 144 145 147 148 149 150 151
r, Y i C:]
o I e N . = s
24 25 26 27 28 29 a0 a1 152 153 154 155 156 157 158 159
e L & = -
I EA p D £ "
a2 a3 a5 as a8 as 160 162 163 164 i85 187

Fat
et

TS5

T -
[Jg— ¢

3

S

-

3

"

-

&

EN R
o
~
D

B I

o

0 R

g g=Ce a3 I
TN 2em2 N 20) B

3
]

EmEs 2 36
&

-3

g

k o
= Fvh

a6

-~

o

54

"

~
57 58 62 63 184 186 187 189 i3]

-

5 F G JO - = 1.,_._, 14
GE] m 192 193 194 195 1986 a7 198 199
- . -
", “ £ - -
o M O % i & & a 3
74 78 78 200 201 202 203 204 205 206 207
BT & & & {11]
2 = 2 L) [=
a2 85 H6 a7 208 200 210 21 212 213 214 218
. B .

e i = Rt -

o
w

—
n 2k
o
2
150
-
-
=
=

N
"
@
]
°
]
=1
~
"

222 223

11

- 2
ud sl
Ch|
=
il
M 2
I
m
—

b=
o
L]
£Y)

1 02 230 2n

Tg s TMxTeig 023
gr
) 3
5

o
b4
&
]

109 o

n
o
=3
n
]
@
o
3
b
n
@
o
n
W
@
o
[
~

238 239

o
u|
=5
n
o
<
[
=
it
B v,
|
b

248 247

(]
o
a
w»
o
L
&
o
2
(]
o
]
(5
B
(X1
o
B
o™

17 118

——im gm0
=
-
o
Oy
-
.9.
>
L
=

3
B
Lo)
Y
by
0
]
[|

124 125 126

)
=S
K
5
®
r
o
g
N
o

252 253 254 255

CHARACTER SET 2

145

APPENDIX 5 LINE AND SCREEN DISPLAY
CHARACTER SETS

i e e DTz 00 6@ 8™ ¢

8

146

DareDew e 2oy go- sl —o

gdeN D

r-%"'c

10

18

26
L d

sy 2% ¢

1]
o

f=3
@

N

=

+

122

1

19

27

s+ 2 8

€:78d s/ -:sMedeneh o

17

116

123

R

116

124

=

—
6 7 128
14 15 138
22 23 144

" N l
3c 1) 152
38

= :E:Hl

=1
@

0

@
&

]
N

T}

[
o

FiO2gre-d 8] a™m g o
@

T

-~
=::<n| @
o =4
ll:’ 3
L] =

=]
L)
=]
@
N
"
-

(=]
N
[
L]

)
o
r
=
n
&
=

120

137

145

153

181

< L & —

&
B
&

o
]

|

~
-

10

@
o

|
¥
E
[l

@
bl

£l I
~id ©

*EH B

)
4

=
s
m
-
o
(L

m
o
o

(X
o
o

r——
]
130

@ -
o @

o
£

|
|
K
sl sl

n
i=3
L]

£l
[

[
=1

a
@

R
“HE

(]
[x]
4

M
K

n
r
"

[0
@
o

CHARACTER SET 3

_D

w
(]

~ —

&

g H

o
n

2

¥
b |
[
s |
[

SN - B 3

M

2
o
~ [
S ol

N
]
~

]
5
w

"
]

~ o W r
] [@ @

g

T

o ®
S -

o
o
&

N
N
)
w

]
[x]
@

[]
& W
[y @

L]
o
~

w

hl

2 @ ® 3 2
@ o = w b

"
o
@

=+

LB - B LB
m -l I -

n
o
(2]

]
m
@

= H H Hl|
—
mimil

@
@

-
o

ih,

a]
(] ~N

] b n n
am & 8 8 Y

n
&
-1

w " - - m =4 -] (7] [}
e HEEOECE EE-E - E

gl

8

APPENDIX 5 LINE AND SCREEN DISPLAY
CHARACTER SETS

13

I
]
=
%

o &
) WA
:3#

-

o
n
w
'
[T
[
~
£
@
]
©
]
(X
)
1]
4
w
o

S

&
e
8

|

i

i

§i

u
LR

u ? .,
< A
a 9 10 " 12 13 14 15) 137 138 139 140 141 142 143
R T N O N = 1" k
16 17 18 19 20 21 22 23 144 145 148 147 148 149 150 151
I E - -—
. . .. | I | F. = l':. - .
24 25 26 27 28 9 a0 M 152 153 V84 155 156 157 188 159
o =)
w K
az as 38 ar as as 160 161 162 163 164 165 166 167

+
|
&
B
[
|
A

&
-
&
=
o
i
be]
]
=
]
=
w
~
'y
S
o

on
2

a3

=

=

@

-+

&

i

.,
o
por}
-]
8
b
=
-]
3
@
=
o
-]
=
3
@
w

0|

[: [
[l : 6N
=
11]

W :

=)

M|

T 1
=

®
&
&
o
o

N 1)
g1

©
(4]
]
@
©
-
@
[

@
2
o
p-r’
]
(=]

i
r
=
o
T}
=
)
ZHEOE
|
=]
=
(=] = (]

74

~
-]
~
by
@
d
o
=
8
n
o
n
[~]
]
&
[~
"
L~
b4
n
o
o
e
-
2
=

i a
2 —
i
=
T
&l
ki
[
-]
[
(el
= |

®
n
@
*
@
a2
g
"
c
@
N
o
n
"
o
L]
[
"~
-
~
[

-
-
|

I

s

o
@
"]
B
@
o
Ll
o
]
e}
N
@
N
w

L

-

&

L]

-

m 3

. 2B
R
&
8

o
o
()
i1
=3
n
(]
4
M
- ma
th
"N
[
m
~
[
b
o
[
@
"o
8
N
@

L]

L
"
_
-
38
2
o

"
w
B
N
W
]
]
(%]
-3

o7 109 110 1 232 233 237

"
(%]
e
b
w

Ai~ s3beX:D:T:Rs @ 8~
&z Sz @DaorzaD oD s 2o 8=
wix e

1

p: €z :d o~

-
i Vi
J

Nu]

L]

=

E

12 13 ma 115 ur 118 119 240 241 242 243 244 245 248 247
» "
+ *' MR gz 4 -
120 121 122 123 124 126 126 127 24a 249 250 281 252 253 254 255

CHARACTER SET 4

147

APPENDIX 6

APPENDIX 6 BAsIC STATEMENT

HL

BASE
BREAK

CALL

KEYWORDS

BASIC STATEMENT KEYWORDS

Denotes stream identifier in input/output statements. See
OPEN, INPUT, PRINT, LIST, CLOSE etc. A stream
identifier is a numeric expression whose value is in the
range @. . 255.

Synonym for PRINT (q.v.).
Also output as the default INPUT prompt — see INPUT.

See OPTION.
See ON.

Enter machine code sub-routine and supply pointers to
BASIC variables.

E.qg. CALL 1000, A, B3, C(1)
will go to machine memory address 1000 with the Z80 HL
register pointing at a six byte block of addresses.

a— Address of C(1)
] (C(2), C(3) can be found at

subsequent locations)
1= Address of B$ descriptor

(A string descriptor looks like

}-relative address of string

A
Address of A 3 =-length of string

ta—reserved for expansion)

The address is computed as in POKE (qg.v.).

151

APPENDIX 6 BAsIiC STATEMENT

152

CLEAR

CLOSE

CONT

CONTINUE

DATA

DEF

DELETE

KEYWORDS

Releases memory used for variables. CLEAR by itself releases
memory used by all numeric and string variables and arrays.
Future references to variables will return value @ for numbers
and null for strings; arrays can be redimensioned.

CLEAR list of variables and arrays

E.g. CLEAR X, A1, BS, L3(), A() clears only those
variables and arrays in the list.

Closes input/output stream.

Eg. CLOSE#1 CLOSE #PR.

CLOSE #@, i.e. close the console, is not allowed.
See OPEN #0.

Synonym for CONTINUE (q.v.).

Continue execution after a STOP or END statement is
encountered, after an error or after the STOP key is pressed.
If a radical change has been made to the program in the
meantime then this may not be possible.

See READ.

Define user defined function. A user defined function may
be numeric or string valued and have no arguments or a
single string or numeric argument. A user defined function
name must be of the form FN letter. FN letter letter, or
FN letter digit, with a for a string valued function. The
definition must consist of a single expression.
E.g. DEF FNA(X) = SQR(X12+1)

DEF FNF$(A3) = MIDS(A%, 1,1)

DEF FNA1(A8) = ASC(A3)—65

DEF FNE = PEEK (8 * 256 + 7).

Deletes program lines.

DELETE by itself deletes no lines.

DELETE — 100 deletes lines up to and including 100.
DELETE 250 — deletes line 250 and those above it.
DELETE 150 deletes line 150.

APPENDIX 6 BAsIC STATEMENT

KEYWORDS

DELETE 30—150 deletes lines 30 to 150 inclusive.

DELETE —
DIM

END
ERROR

FOR

deletes all lines.

Dimension array.

An array may be string or numeric and have one or two
dimensions. Several arrays may be dimensioned in one
DIM statement.

E.g. DIM A6(15), X%(5,20) DIM AZ(N + 1).

An array may not be redimensioned unless cleared by a
CLEAR statement. If an array is referred to before a
DIM statement for it has been encountered it is assumed
to have dimension 10 or 10,10 and it may not be
redimensioned.

The base of arrays is set by OPTION BASE (q.v.). The
greatest dimension allowed is limited by the amount of
memory available, but in any case an array may not have
more than 5461 elements.

End execution of program and await command.
See ON.

Initiate for-next loop.
A for-next loop has the form

FOR-statement

block of statements

NEXT-statement.
E.g. 10 FOR1=1TO 53 STEP.5

20 PRINT 1, SQR (1)

30 NEXT I
or FOR | = 1 TO 255: CLOSE #1: NEXT |I.
The block of statements is executed repeatedly while the
“control variable”, | in the above examples, is incremented
each time by the STEP value (.5 in the first example) until
the TO value (53 in the first example) is reached.
If the STEP value is omitted, as in the second example, it
is assumed to be 1. The first value and the TO and STEP
values may be any numeric expressions,
E.g. FOR | = SIN(X) to SIN(Y) STEP (212 + 1)/2.

163

APPENDIX 6 BAsiC STATEMENT

154

KEYWORDS

FOR continued . . .

GET

The block of statements may contain ““nested’’ for-next loops.
E.g. 10FORI = 1TO 10

20 FOR J = 170 20: PRINT A{J,J): NEXT J

30A(1+1,1) = X

40FORK = 2TO20

50A(I+1,K) = Al+1,K—-1)"K

60 NEXT K

70 NEXT I
But the control variable in the NEXT-statement must always
match that in the FOR statement, so for-next loops may not
overlap.
E.g. 10 FORI = 1T0O10

20 A(l) = (X+1)N1

30FORJ = 1TO10

40 A(J) = AN

50 NEXT I: NEXTJ
is not allowed.
The STEP value may be negative,
E.g. FOR1=50TO 1 STEP—1: PRINT I: NEXT I.
The block of statements will not be executed at all if the
control variable is already past the TO value. When a for-next
loop finishes the value of the control variable is the first
value not used — e.g. after FOR | =1 TO 10: NEXT |, | will
equal 11.
FOR and NEXT statements may not be used immediately
after THEN in IF statements {q.v.).

Get single characters or bytes from an input stream.
E.g. GET#1,A$ GET#3,AB
The stream must be open.

APPENDIX 6 BAsIiC STATEMENT

GOsuB

GOTO

KEYWORDS

Execute a subroutine.
A subroutine is a sequence statements ending with a RETURN
statement.
E.g. 20 GOSUB 1000
30 .

1000 PRINT #1,A,B,C,

1010 RETURN
GOSUB 1000 cause the subroutine at line 1000 to be
executed, after the RETURN execution continues at line 30.
See also ON.

Continue execution at a new line number.
E.g. GOTO 60 transfers to line 60.
See also ON.

Execute a sequence of statements depending on a condition.
E.g. IF A% ="HI” PRINT “HELLO": G=2.
The sequence of statements must be on a single line. The
conditional expression (A% = “HI" in the example) may be
any numeric valued expression.
E.g. 10 A=TRUE

20FORI=1TO 100

30 A=A AND X&(I) ="y

40 NEXT |

50 IF A GOTO 100

60 ..

-

-

100 .

IF X=1THEN 100 is the same as IF X =1 GOTO 100
IF X =1THEN PRINT 22 * X is the same as

IF X=1PRINT 22 * X

When the statement immediately following the condition is
a LET statement with the LET keyword omitted, a THEN
keyword must be used;

156

APPENDIX 6 BAsIC STATEMENT

156

KEYWORDS

IF continued . . .

IN #

INPUT

E.g. IF A=1B = 2 is not allowed; but

IF A=1 THEN B = 2 and

IF A=1 LET B = 2 are allowed

The statement immediately following the condition may
not be a FOR or NEXT statement.

Denotes input stream identifier in OPEN statement (q.v.).

Input variables from an input stream. The stream must be
open.
E.g. INPUT # KB, AS

INPUT # 3,A,B,A%

INPUT A1,YL(23),Z
If the stream identifier is omitted, as in the third example,
stream @, the console, is assumed.
In response to INPUT a sequence of characters corresponding
to a string or numeric constant is expected from the input
stream. When there is more than one variable to be input by
a single input statement, the corresponding constants must be
separated by comma or tab characters (ASCII 44 or 39). The
end of the list of constants from the input stream must be
denoted by a new-line character (ASCII 13). A string constant
cannot, of course, contain a new-line chracter. A string
constant without its enclosing quotes (ASCI1 34) may be
supplied by the input stream but in that case it may not
contain comma or tab characters, or “‘quote images'
(repeated quotes in a string constant used to denote the
presence of a quote character rather than the end of the
constant). When the input stream is the console and
designated thus by the omission of a stream identifier in
the INPUT statement a prompt {question-mark space) is
output to the console. This can be suppressed by the form

INPUT (string expression) list of variables
in which case the string expression is issued as a prompt.
E.g. INPUT (') A issues no prompt at all.
Furthermore if an error arises in the input, input is
requested again — i.e. execution is not stopped.

APPENDIX 6 BAsic STATEMENT

LET

LINPUT

LIST

KEYWORDS

Assigns a value to a variable. The keyword LET may be
omitted.
E.g. LET A=1

B(2,7) = @

X2 = SIN(P/14) — 1/X2

A% = “HELLO"”

ME® = CHR&(X) + MID$(S%,2,Y)
A numeric variable or array element may be assigned any
value which is acceptable to the maths pack, this gives a
larger range than allowable for a constant.
E.g. although 99 is the largest exponent allowed in a

constant, A = 2 * 99999999E99 is allowed.
A string variable or array element may be assigned any
sequence of characters or bytes up to a maximum length of
32767 (whereas a string constant cannot contain a newline
character);

E.g. A3 = CHR$ (10) + CHR$ (13) + MES + CHRE (244)

is allowed.

Input a line from an input stream.
E.g. LINPUT #81, AS

LINPUT X8 (N + 1)
Characters are collected from the stream until newline
(ASCII 13) is received. The sequence of characters is
assigned to the string (A% and X% (N + 1) in the examples).
If the stream designator is omitted then stream @, the
console, is presumed. In this case a prompt (**?") is issued
on the console stream. This prompt may be substituted for
by using the form

LINPUT (string expression) string as in INPUT.

Output the program in ASCI| text to an output stream.
E.g. LIST #PR, 30-100

LIST #1

LIST

167

APPENDIX 6 BASIC STATEMENT

158

LOAD

MERGE

NEW

NEXT

KEYWORDS

If the stream identifier is omitted the console stream is
assumed.

LIST 10 lists line 10

LIST 10—100 lists lines 10 to 100 inclusive

LIST —100 lists up to and including line 100

LIST 100— lists from line 100 upwards

LIST — and LIST by itself list the entire program

Input the whole program from an input stream. The program
must begin with a blank line and finish with a line containing
only the character EOF (ASCI1I @4).

The lines may be in any order and in interal or ASCII text
format.

E.g. LOAD #TP

The stream must be open.

After loading execution stops.

All variables are cleared by LOAD.

The form LOAD filename where filename is any string
expression is equivalent to

OPEN # 128, def, @, filename LOAD # 128 CLOSE # 128
Here def is the default back-up store device, an operating
system parameter, usually tape drive 1 or disc drive @.

LOAD by itself is equivalent to LOAD filename where the
filename is null.

The same as LOAD (q.v.), except that variables are not
cleared, previous program lines are overwritten only when
an input line has the same line number, and execution does
not stop.
E.g. MERGE #1

MERGE “‘seg 2"
Note that LOAD is equivalent to NEW MERGE END.

Delete the entire program and clear all the variables.

See FOR.

APPENDIX 6 BAsIC STATEMENT

ON

OPEN

KEYWORDS

Transfer execution on a condition.
E.qg. ON X GOTO 100, 200, 300
If X =1 then execution continues at line 100, if 2 at line 200,
if 3 at line 300. If none of these values an error arises. The
general form is

ON numeric-expression GOTO line-number-list.
The expression is rounded to the nearest integer.
ON X GOSUB line-number-list is the sameas ON..GOTO
except that the sequence of lines to which transfer is made is
treated as a subroutine. When a RETURN statement is
encountered transfer is made back to the statement following
the ON statement.

ON ERROR GOTO line-number
causes control to be transferred to the given line if an error
arises (instead of execution stopping as normal). This
condition can be cancelled by a subsequent ON ERROR
GOTO @. After an ON ERROR transfer execution can be
resumed at the statement in which the error occurred or
elsewhere by the RESUME statement (q.v.). The system
function ERRNO will give the error number, the system
function ERRLIN will give the number of the line in which
the error occurred. The REPORT statement will cause an
error message to be issued and execution to stop as in normal
error handling,

ON BREAK GOTO line number
is the same as ON ERROR except that depressions of the
STOP key (“break-ins’’) rather than errors are trapped.
ERRNO will give the system interrupt number (@ for the
STOP key). RESUME, REPORT, ERRLIN actasin ON ..
ERROR. ON BREAK GOTO @ cancels the trapping of
the STOP key.
ON ERROR and ON BREAK traps should be left via
RESUME or REPORT statements — executing a series of such
traps without exiting in this way will cause system performance
to be degraded.

Open an input/output stream. A stream identifier is associated
with a physical device and necessary parameters are passed via

159

APPENDIX 6 BAsIC STATEMENT

160

KEYWORDS

the operating system to open it.
E.g. OPEN #1, 1, “file 1"
OPEN #PR, 8
OPEN #UP, 6, 9

The full form is

OPEN # stream, device, port, parameter, string. Stream
is a numeric expression by the value of which the stream is
referenced in subsequent input/output statements until the
stream is closed. Certain devices are input or output: these
may require IN# stream or OUT#stream — see device specifi-
cations (Appendix 7),
E.g. OPEN OUT #1, “file”.
Device is a numeric expression by the value of which the
device is known to the operating system. For instance @is
the video keyboard editor, 1 is the tap~ -1ssette drive 1.
The device may be omitted, in which case the default back-
up store device assumed by the operating system is used —
usually tape drive 1 or disc drive @.
Port is a parameter for the device and its meaning will depend
on the device. In general distinct port numbers may be used
to OPEN multiple copies of a device,
Eg. OPEN # 1, @, 1 will open a copy of the video keyboard
editor on stream 1 (the first copy may be the console on stream
@). A Port may only be specified in an OPEN statement when
a device is specified. Stream, port and device must evaluate
to @. . 255, the value is rounded to the nearest integer.
Parameter string is a string expression the value of which is
passed via the operating system to the device. It is often a
filename. It may be omitted, in which case null is assumed.
A stream already open may not be opened, except the
console (stream @). OPEN # @ first closes the console (CLOSE
#0 is not allowed as this would end communication with the
machine) and then open the new one.
OPEN #@by itself is not recommended as the default back-up
store device is seldom a sensible console.
A device-port pair already open may not be opened — a
distinct port number must be used.

APPENDIX 6 BASIC STATEMENT

OPTION

OUT#

POKE

PRINT

KEYWORDS
Only used in OPTION BASE @
and OPTION BASE 1

Set the base of arrays (which is usually @). OPTION BASE, if
used, must precede any DIM statements or use of arrays. If the
array base is @ an array A of dimension 5 will have an element
A(@), an array B of dimension 5, 5 will have elements B(@, @),
B(@, 1), .. B(@, 5) and B(1, @), B(2, @), . . B(5, @). If the base is
1 then the first element of A will be A(1) and the first element
of B will be B(1, 1).

Denotes output stream identifier in OPEN statement (q.v.).

Put value into machine memory.
E.g. POKE A + B, 34

POKE BA, FNX(3) + 1
The first argument is evaluated and rounded to an integer in
the range @ . . 66535 to give an ““address’ in the machine
memory. The second argument is evaluated and rounded to an
integer in the range @ . . 255 and this value is put into the
address. This can cause the machine to cease to function.

Output values of expression to an output stream.

E.g.

PRINT 1+ 2;

PRINT #1, “Hl THERE STREAM ONE", “374/88=""; 374/88
If the stream is omitted, the console, stream @ is assumed. The
stream must be open. String expressions are evaluated and
output as the precise sequence of characters (or bytes) which
they compromise, except that if output is to stream @ and the
device on stream zero supports formatting (see device
specification) a newline will be output if there is insufficient
space to fit the string on the current line.

Numeric expressions are output by first applying the equivalent
of the STR$ function and then outputting them as strings are
output. Numeric expressions may be followed by a formatter
as in STR3 Commas or semicolons are used to separate items
in a print-list. Semicolons cause no output, but commas, when
output is to stream @ and the device concerned supports

161

APPENDIX 6 BASIC STATEMENT

162

PUT

RANDOMIZE

READ

KEYWORDS

formatting, cause sufficiently many spaces to be output to
position the next print-item at the start of a print-zone. On
output to other devices a comma causes single tab character
(ASCII @9) to be output.

E.g. PRINT ,,, 19 usually causes 19 to be printed in the
fourth print-zone. If a print statement does not end in a semi-
colon or comma a newline will be output after all the items.
The TAB function may only appear in a PRINT statement.

If the output is to stream @ and the device connected supports
formatting then TAB (54), for example, moves the print head
forwards, to the 54'th column. Otherwise a single tab character
(ASCII 99) is output regardless of the TAB value. The general
form is TAB (numeric expression) — the expression must
evaluate, when rounded, to an integer in the range @ . . 65535.
This is reduced modulo the line length and the sufficiently
many spaces are output to reach the desired column — this
may mean moving to a new line.

Qutput single characters or bytes to an output stream.

E.g. PUT #P, (A + B+ C)/2, “HELLO"

A numeric expression is evaluated and must be rounded to a
value in the range @. . 255.

Only the first character of a string is output. If the string is
null, zero is output.

The stream must be open.

Re-initialize the random number generator to a new unknown
value.

Read the next data-item.

Data items are found in DATA statements. The items in a
DATA statement are numeric and string constants (or
unquoted string constants of the sort valid for INPUT inputs —
see INPUT) separated by commas. After RUN the data item
pointer points to the first DATA item in the first DATA
statement in the program (a DATA statement, if part of a
multistatement line must be the last statement on that line).
As DATA items are read the pointer is advanced until all are

APPENDIX 6 BASIC STATEMENT

REM

REPORT

RESERVE

KEYWORDS

used. A DATA statement may not exceed 255 characters in
length — the surplus will be ignored.
RESTORE sends the data pointer back to the start. RESTORE
100 sends the data pointer to the first data item in the first
DATA statement in or after line 100.
E.g. 10 READ A, B,C

20 DATA1,2,3

30 END
Sets A=1,B=2,C=3.

10 DIM A% (20)

20 DATA HELLO

30 FOR | = 1 to 20: READ A$ (1)

40 RESTORE: NEXT |
Sets each element of the string array A% to “HELLO"”. In the
absence of the RESTORE statement an error would arise as
the data would be used up after the first read.

A remark or comment,

Any sequence of characters may follow REM. A REM
statement must be the last in any line.

E.g. 10 END : REM a very dull program.

Print the latest error message and end execution. If there is no
error it is an error to call report. See ON ERROR, ON
BREAK.

Set aside an area of machine memory to be inaccessible to
BASIC. The start address of this area will be returned by the
TOP system function after a RESERVE statement has been
executed,

E.g. RESERVE 1000

reserves 1000 bytes at the top of memory.

The number of bytes to be reserved is evaluated as a numeric
expression rounded in range @ . . 65535. This is treated as a
2's complement number, so RESERVE 65534 will be treated
as a request to return 2 bytes previously reserved — this can
sometimes cause loss of memory contents and a system
failure.

163

APPENDIX 6 BAsiC STATEMENT

164

RESTORE

RESUME

RET

RETURN

RUN

SAVE

STEP

STOP

THEN

TO

KEYWORDS

See READ.

Resume execution after an error or break-in, provided ON
ERROR or ON BREAK condition is set. RESUME by itself
resumes at the statement in which the error occurred or at
the start of the statement before which the break-in occurred.
RESUME line-number resumes execution at the stait of the
given line. See ON ERROR, ON BREAK.

Synonym for RETURN (q.v.).

Transfer execution to the statement following that at which
the most recent GOSUB was encountered. See GOSUB,
ON .. GOSUB.

Clear all variables and start execution at the lowest numbered
line.

Save program in internal format on an output stream. The
stream must be open.

E.g. SAVE #3.

The alternative form

SAVE filename is equivalent to
OPEN # 128, def, @, filename SAVE # 128
CLOSE #128

Where def is as in LOAD (qg.v.).
See FOR.

End execution and print a message saying where execution
ended.

See IF.

See FOR.

APPENDIX 6 BASIC STATEMENT
KEYWORDS

VERIFY The same as LOAD (q.v.) except that variables are not
cleared, no program lines are loaded and execution does not
necessarily stop.

The program on the input stream (which must be internal
format) is compared with that in memory. If there are no
differences the message ‘'VERIFIED' is output to the console,
if there are differences an error occurs.

165

APPENDIX 7

APPENDIX 7 DEVICE DRIVER SUMMARY

NEW BRAIN DEVICE DRIVER SUMMARY

TVIO
Number: @
Function: Screen Editor, I/O
Ports: Ignored by the driver — may be used to make multiple
copies of the device.
Parameters: Width Height
Width is "S" for short (4@ character) lines,
“L* for long (8@ character) lines,
and defaults to “S".
Height is an integer, between 2 and 255, the number of
lines on the page, the default is 24.
Examples: OPEN #0,0, “L40 "
re-opens the console as a 8@ character by 4@ line screen.
OPEN #0@,0: OPEN #1, 0,1
re-opens the console as a 4@ character by 24 line screen and
makes another 40 character by 24 line screen on stream 1.
OPEN #7,0, "s100"
makes a 100 line by 4@ character screen on stream 7.
CASS1
Number: 1
Function: Tape Cassette 1, | or 0.
Ports: Must be
Parameters: buffer size print option filename

¥

buffer size is "'* integer' {or “’* integer;"’ if another
parameter follows), and determines the tape buffer size as
multiple of 256 bytes. The default is 4 (i.e. a 1K byte
buffer).

169

APPENDIX 7 DEVICE DRIVER SUMMARY

170

Examples:

CASS2
Number:
Function:

Ports:

Parameters:

Example:

LIIO
Number:

Function:

print option is)" or null and defaults to null. A *)", if
present, suppresses the printing of filenames on the console
while searching for a file during tape OPEN IN.

filename is any string not beginning with “*** or)", up to
256 characters in length. Itis used as a file identifier on the
tape. Default is null (for input first file found).

OPEN OQUT #1, 1, “my file”
records a filename "myvfile” on stream 1.
OPEN IN#3, 1, “*10:) my file”
searches for a file called “my file’” but does not print the
_names of the files found while searching. A buffer length
of two and a half kilobytes is available.
OPEN OUT #1, "*20”
opens a file for output on stream 1 with a null filename and
a buffer size of 5K.
records a filename “myfile’’ on stream 1.
OPEN #1,1
searches for a file on stream 1 and opens it for input.

2

Tape Cassette 2, | or 0.
Must be @.

As device 1, CASS1.
OPEN #1, 2

Search for and open a file on stream 1 from tape cassette
drive 2.

3

VF display editor, 1/0.

APPENDIX 7 DEVICE DRIVER SUMMARY

Ports: As device @, TVIO.

Parameters: length
length is an integer between 16 and 254, the number of
characters in the line. The default is 80,

Examples: OPEN #0, 3
opens an 8@ character VF display as the console.
OPEN #1, 3, 1
opens (possibly a copy of) the VF display editor on
stream 1.
OPEN #11, 3, “150"
opens a VF display editor for a 15@ character line on

stream 11.
TLIO
Number: 4
Function: Screen editor with VF display, 1/0.
Ports: As device @, TVIO.
Parameters: As device @, TVIO.
Example: OPEN #0,4
Open combined screen and VF display as the console.
KBWIO
Number: 5
Function: Keyboard input.
{Note output to this device sets the “keyboard mode” —
i.e. the way in which keys are interpreted as characters, for
input from the corresponding stream).
Ports: May be used to create multiple copies.

17m

APPENDIX 7 DEVICE DRIVER SUMMARY

172

Parameters:

Example:

KBHO
Number:

Function:

Ports:

Parameters:

Example:

UPIO
Number:
Function:

Ports:

Parameters:

Examples:

None.

OPEN #1,5
Open keyboard input on stream 1.

6

Keyboard input, as device 5, KBWIO, but with immediate
return — i.e. will return immediately on call to INPUT
(i.e. GET) regardless of whether a key has been pressed —
will return character @ (NULL) if no key entered.

May be used to create multiple copies.

None.

OPEN #12,6
opens keyboard input, with immediate return, on stream 12,

5
User port, 1/0.

Set the Z8@ hardware port address.
None.

OPEN #1,7,3

opens Z8@ port 3 on stream 1.

OPEN #25, 7, 25
opens Z8@ port 25 on stream 25.

APPENDIX 7 DEVICE DRIVER SUMMARY

LPIO

Number:

Function:

Ports:

Parameters:

Examples:

JGIO
Number:
Function:

Ports:

Parameters:

Examples:

8

Software serial line printer output. The line printer output
interprets TAB and NEWLINE codes in the conventional
way.

Irrelevant.

“T" baud rate.

The “T" is optional. Baud rate is an integer between 75
and 19200 , and defaults 96@@. This sets the transmit
baud rate.

OPEN #8, 8

opens 9600 baud printer on stream 8.
OPEN #1,8, “110 "

opens 110 baud printer on stream 1.

9
Software serial port, 1/0.
Irrelevant.

T baudrate “R" baud rate

The “T* and ““R* are optional, except that the “R" is
required if a receive baud rate is specified. The baud rates
are the transmit and receive baud rates as for LPIO
(device 8). They default to 9600 .

OPEN #9,9, “118R110”

opens the software serial interface to transmit and receive
at 110 baud on stream 9.

173

APPENDIX 7 DEVICE DRIVER SUMMARY

174

DUMMY
Number:
Function:

Ports:

Parameters:

Example:

OPEN #1, 9, “4800
opens the serial interface on stream 1 with a transmit baud
rate of 480@ , and receive baud rate of 9600 .

10

None.
Irrelevant,
None.

OPEN #2, 10
opens the dummy device on stream 2.

APPENDIX 7 DEVICE DRIVER SUMMARY

Number:
Function:
Ports:

Parameters:

Examples:

GRAPH

11

High resolution screen display, shared with a screen editor.
May be used to make multiple copies.

linked stream width option height

Linked stream is “'# integer’’ or null and defaults to 0, i.e.
the console device, and determines the stream whose
display area is to be shared. The selected stream must be a
screen device, whose height is sufficient to accommodate
the requested height. Graphics lines require up to ten times
as much memory as the character lines they replace.

width option is ‘W’ or “N"* (default is “W"), and
determines whether the full width of the screen or a
narrower part of it is to be used. Selecting “N"’ reduces the
memory requirement by 20%.

height is “integer”’ (or , integer”” if the width option is
omitted), and determines the number of graphics lines on
the page. The default is 150. The height must be a multiple
of 10.

OPEN#0,0, “s100" : OPEN#1,11, "'80"

re-opens the console as a 40-character by 100 line screen,
then opens a graphics stream using the full width and the
lower third of that screen. The console would then be

reduced to 17 character lines.

OPEN#4,0, “L254"" : OPEN#1,11, “#4w229"

175

APPENDIX 7 DEVICE DRIVER SUMMARY

176

opens a 80 character by 254 line screen as stream 4, then
opens a graphics stream using the full width and all but two
lines of that screen.

The width given when the linked stream was opened
determines the resolution of each of the graphics line: 320
(wide) or 256 (narrow) pixels when the linked stream uses
40-character lines, 640 or 512 pixels when it uses
80-character lines.

APPENDIX 8

APPENDIX 8 cALL STATEMENTS AND 0O/S

Syntax is

ROUTINES

CALL statement and O/S routines

CALL expression [,argument] *

expression must be numeric valued and is the Z80 address
which is to be called.

argument may be a string or number variable or array ele-
ment or a numeric constant. On entry to the CALLed
routine HL will point to a block of addresses of the
arguments.

offset - 2n + 1 L] address of last
from (HL) {n"th) argument
offset -3 from address of second
{HL) B argument
?::’;t - 1from address of first

I = argument
HL 9

The C register contains a count of the arguments. The
addresses are stored in the usual Z80 manner — with the
low order byte at the low address.

The arguments are found at their respective addresses in their standard
NewBrain formats. In the case of a numeric argument this is a six byte floating
point number (such numbers may be manipulated by the maths pack). When
the argument is an array successive six byte blocks will contain successive ele-
ments of the array. In case of a string argument a six-byte block containing

a "string descriptor” will be found. This is

argument address —a=|

_|position (2's complement negative)
relative to ARBAS

_|length of string

reserved for expansion

179

APPENDIX 8 CcALL STATEMENTS AND 0O/S
ROUTINES

The string itself will be found at the address of the position; ARBAS (the
base below which strings are stored) will be found at 1Y + 26, 1Y + 27. As
with numbers, for an array successive six byte descriptors refer to succes-
sive elements of the array. Note that two dimensional array elements are
stored in the order (0, 0), (0, 1), .. (1,0}, (1,1),(1,2),..

Example: CALL 32000, A, B(1), X%, 12, Y$(14, 2)
will cause the ZB0 program counter to be set to 32000 and the HI register
will point into a block of 5 addresses (the C register will have value 5):

(HL)-0 a5 — address of Y$ (14, 2) descriptor
i a4 - address of constant 12
&= a3 — address of X$ descriptor
- a2 — address ot g(1)
ne _’|— al — address of A
al ——=" -
I i six byte f.p. value of A

six byte f.p, value of B (@)

TT 1T
5 I I

32 ——»

six byte f.p. value of B {1)

TTTTT
11 i1l

six byte f.p. value of B (2)

TTTTT
Litil

180

APPENDIX 8 CcALL STATEMENTS AND O/S
ROUTINES

Six byte string descriptor

ald —»

(1Y +26) + (1Y +27) * 256

+ ((a3)) + ((a3)+1) * 256

relative position (To find absolute position
add to ARBAS and ignore carry.)

ength

n byte string

 Sm———

a4 —“"l“|__ A six byte f.p. value of 12
E 4
- = six byte descriptor Y$ (14, 1)
ab b - six byte descriptor for Y$ (14, 2)
= = (see above for method to find string itself)
= = six byte descriptor for Y$ (14, 3)

181

APPENDIX 8 cALL STATEMENTS AND 0O/S

182

Notes

(1)

(2)

(3)

(4)

ROUTINES

A user machine code program can return to BASIC by
means of the Z80 RET instruction {(op-code C9H). On
return to BASIC an error will be flagged if and only if the
carry flag is set and then an error message will be printed
with error number equal to the contents of the A register.
A program returning to BASIC must preserve the 1X and 1Y
registers.

A user program should not use the alternate register set, or
the restarts.

There is no easy way to assign to a string and change its
length. The user must ensure that a string’s length is
correct before CALLing a user machine code program.

Operating system routines may be called by the Z80
instruction RST 20H. The byte immediately following the
restart op-code is interpreted by the operating system as a
calling code and this determines which operating system
routine is called.

E.g.

1EG@ LDE,Q ; set stream @

E7 RST 20H ; call operating system

31 DEFB 31H ; code for INPUT

57 LD D, A ; Transfer input byte to D

calls the operating system routine INPUT to get a byte
from stream @ to the D register.

Useful operating system routines are as follows:

INPUT input a byte from stream to accumulator
Entry: Register E = stream number
Exit: CY clear, A = byte

or CY set, A = error number
BCDEGHL preserved.
Action: As BASIC GET #stream, byte
Calling code: 31H

APPENDIX 8 cALL STATEMENTS AND O/S

ROUTINES

OUTPUT

Entry:
Exit:

Action:
Calling code-

BRKTST
Entry:
Exit:
Action:

Calling code:

LDF
Entry:

Exit:
Action:
Calling code:
STF

Entry:

Exit:
Action:

Calling code:

output accumulator to stream
E = stream number A = byte
CY clear — no error

or CY set — A = error number
BCDEHL preserved.

As BASIC put #stream, byte
30H

test to see if STOP key has been pressed
CY set, A = @ if stop key pressed,

CY clear otherwise

BCDE preserved.

Checks if a STOP key interrupt has
occurred since last check

36H

load floating point accumulator

HL = address of floating point number to
be loaded

BCHL preserved

Copies number into floating point
accumulator, FACC (which is inaccessible
to the user)

2BH

store floating point accumulator

HL = address at which to store

BCHL preserved

Copies number from FACC to the address
given

2DH

Zero argument Maths — load FACC with value

Entry:
Exit:
Action:

No conditions

CY clear

load FACC with floating point constant
m™ 1,8 or-1

APPENDIX 8 cALL STATEMENTS AND O/S
ROUTINES

184

Calling codes:

Pl,@1H; FPONE, @ 3H; FPZER, B5H;
FPMON, @4H.

One argument Maths — perform maths operation on FACC

Entry:
Exit:

Action:

Calling codes:

No conditions.

CY clear if operation ok, CY set if maths
error,

apply floating point function to FACC.
E.g. FACC := log (FACC). Functions
available are absolute value, arc cosine
arc sine, arc tangent, cosine, exponential
function, logarithm, negative, sign (-1 for
negative, @ for zero, +1 for positive), sine,
square root, tangent and integer part.
ABS, @9H; ACOS, i4H; ASIN, 13H;
ATAN, @ AH; COS, @ BH; EXP, @ CH;
LOG, @EH; NEG, @7H, SIGN, 8 FH;
SINE, 10 H; SQRT, 11H; TAN, 12H; INT,
@DH.

Two arguments Maths — perform maths operation of FACC

Entry:
Exit:

Action:

Calling codes:

INP
Entry:

DE = address of second argument ,

CY clear if operation ok, CY set if maths
error,

Perform dyadic floating point operation
on FACC and (DE), leaving answer in
FACC. E.g. FACC:= FACC - (DE).
Operations are plus, minus, times, divide,
raise to power

ADD, 16H; SUB, 17H; MULT, 18H; DIV,
19H; RAISE, 1AH.

Convert ASCI| to floating point
DE points to an ASCII string

APPENDIX 8 CALL STATEMENTS AND 0O/S
ROUTINES

Exit: DE points to first character not read.
Floating point number read into FACC.
CY set if and only if error

Action: Read floating point ASCII to FACC,
comparable to BASIC X = VAL(Y3)

Calling code: 2AH.

ouT Convert floating point to ASCII

Entry: BC = format code

Exit: HL will point to a string containing the
ASCII equivalent of FACC. C = count of
length

Action: Convert FACC to ASCII string according

to format specified in BC
{256(64f + i) + t, where f = @ for fixed
point, 1 for free format and 2 for
exponential format; i = digits before .
point, t = total digits)

Calling code: 2CH.

COMP floating point compare.

Entry: HL point to first floating point argument,
DE to second .

Exit: CY and Z set as for (DE) — (HL).

Action: Compares two floating points numbers

and sets flags accordingly,
Calling code: 26H.

FIX Fix floating point number to integer.
Entry: HL points to argument ,

Exit: CY set if and only if error. DE = answer ,
Action: Fixes (HL) to positive binary in range @. .

65535 (taking integer part) ,
Calling code: 27H.

185

APPENDIX 8 cALL STATEMENTS AND 0/S

186

ROUND
Entry:
Exit:

Action:

Calling code:

FLT
Entry:
Exit:
Action:

Calling code:

Round to integer

HL points to argument .

CY set if and only if error,

DE = answer

Rounds (HL) to positive binary in range
@..655635.

29H

Float binary number

DE = argument

(Answer in FACC)

Float positive 16 bit binary into FACC .
28H

APPENDIX 9

APPENDIX 9 HARDWARE SPECIFICATION

Model A and AD

Z80A microprocessor running at 4AMHz

COP 420M micro controller with 1K system ROM

32K byte RAM

28K ROM

Dual 1200 baud cassette ports with drive motor control

75 ohm UHF channel 36 output

CCITT 1v, 75 ohm composite video output

RS232/V 24 Bi-directional port

RS232/V 24 Printer port

{Both RS232/V 24 ports are software dirven and non-autonomous)

Character Generator provides 512 characters including the 96 upper and
lower case ASCI1/1SO printing characters, 64 viewdata mosaic graphics
symbols, Western European accented characters, full Greek upper and
lower case characters, line drawing graphics, games graphics and other
symbols generated in 8 x 10 and 8 x 8 matrices.

Video and UHF outputs provide a display of up to 25 or 30 lines of 40 or
80 characters per line. A high resolution display of up to 250 dots
vertically by 256, 320, 512 or 640 dots horizontally may be mixed with a
separately scrollable character mode display.

Model AD

An on-board blue-green vacuum fluorescent 16 character, 14 segment
display behind a brown tinted filter.

189

INDEX

Accuracy
Alphabetic order
Alpha numeric
AND
Argument (see also parameter)

Arithmetic expression
Arithmetic operator
Array

Assignment
Attribute on
ARC

BXES .. cox v v e e s avie siwseime 40w e

BACKGROUND . . is iis an svssmnin sis sane’s
Background
BABE o v i i o e e e
BASIC compiler .,0,
BASIC definitions. . owan s se v saenies
BASIC statement
Baud rate
BCK

(see BACKGROUND)

BiNaWY: = o5 55050 60 ik b e e B e i
Boolean QOperation
BREAK

69,112,135,184
66,112,135,184
25,26,66,109
114

29.30,31,46,114,135
99,103,104,111-114,1186,
179-186

28

28
28,54—55,99,100,103,110,
111,119,152,153,161
34,116,157
8,93,129,131,142

87,135

80,81,112,135
31,80,81,109,113,114,122
125,157,184,185
66,112,135,184
66,112,135,184

9,12,128

86,135
86,90,125,132,142
57,99,103,116,135,151

114
52,94-95,135,1561
111,159,164

191

192

Cassette recorder (see tape)

CENTRE ... voas i ws
Champel = 5 a5 9 25 sd s
Character

CHBS covcavon wm s i v iva

Command mode
Concatenation .,
Condition
Connectingup
Console

INDEX

............. 169
............. 63,109,111,118,132,154,

161,162,182

............. 115

............. 95,101,117,135,151,179—

............. 87,90,135
............. 17
............. 15,16,31,35,80-81,92,109,

122,125,142-143,161,189

............. 15,16,92,122,125,132,141

-147

............. 106
............. 15,81,112,135

............. 39,56,74,94,104,119,132,

135,152,158,164

............. 20,60,102,104,118,125,

135,138,162

............. 126

............. 24,116
............. 86,135
............. 35,100,102,109,111,1186,

118,156,161-162

............. 12,24,60,109,110,116,119

121,135,153

............. 24

............. 31,76,114
............. 46,155

............. 25

............. 4,61,92,100,109,111,117,

118,121,128,152,156,158,
160,161,169,171,175

INDEX

CONBERAL oo mnrnsdes son KT8 s aie e e
CONTINUR s v cuiduniiaies o s a2 W

Continuation line,etc.:..
CONTROL key
CONTROL/O
CONTROL/1
Control/Escape
Control/HOmM@: iy o o o s ors aov s e eiei
Control/Newline . ..o cv v s oo smisiss s
Control/W s iin s e 55 5 53 s esms o
CotTOl ™ coci iy iionn 25 R R T
Control/<ttt iiennnnn
Control. o sasivais wa 8 i al e e e e
Control characters
Control code

Control variable
Conversion coprepmss o S 05 G0 NS RSE
COS ..t e et

Cursor address
Cursor control
Cursor position

DATA statementc000muueun
Datastream . ooiee os oe wd s dieine Sae et
Datastructureccneuvennns
DBY (see DRAWBY)

DeClar&toN: . vv o s sve s wm sramses soases
DEF e s 86 5 s dietaa S8 eiama

25-26,57,109,110,111,119
156,157
40-41,104,117,121,135,
152
9,13,15,128,130,131,132
127,143

8,92,127

8,127

129

10,13,129

129

142

10,129

10,129
19,43-52,116—117

9
62,109,125,126,127,128,
129-132,142—143
44,101,120,153,154
79-82,185-186
66,112,135,184
10,12,13,14,15,125,130,
131,132,161
9,10,11,12,13,14,15,19,
125,127,128,130,131

131

10,11,125,129
61,126,127,131

57-58,101,102,104,119,
135,137,152,162—-163
17,115

53-58,121

116
73,103,113,116,135,152
94,119,158,160

193

INDEX

Degrees.c.uverennonnnnnnnnn- 86,89,135

PELETE s wianian @ 5 s &0 o 101,119,136,152--163

Depthttt e et e e ee e 85,126,128

Devlee oo uatamiaae S N S 5 e 60,104,105,111,115,117,
125,126,159,160

Device diWer- o e wemaais ais e 906 30 6% 308 16,17,115,169-175

Device type

(also device number, driver number) 17,60,92,169-175

DIMension statement0.... 28,65,566,102,110,1186,
136,153

BDimension s shnsse dr e eia e i i 9 28,54,55,99,103,110,111,
116,152,153,161

Directiont nesnnenannn 117

RIPIY s ssiiiviani i wes e e 9-16,35,38,39,61

Divide (/) . oo v i i et e e e e e e 28,114,184

2] 8) R e e T P R e 86,136

DBEAW: e mss e s e s i e RS s 86, 136

DRAWBY . .. ittt et 86,136

DRW

(see DRAW)

DUMMY . . sisnivesdisieiesasesn & 174

Dummyvariable 73

Editingc.iit it 10-14,15

BIOMBAE oo oo s o oo sl S0 s e b 28,54,57,100,110,111,1186,
157

END: 5o o o a0 35 55 S da e et adan 24,39-40,120,136,152,153

BOF s sis s e on sos ae e s aiessnnsde s e 158

Equalto(=)........, 29,46,114

ERRLING: oo i ciae s i e i smisisem s 52,111,136,159

ERRNO i 52,111,136,159

ERROR = :s v i 65 o0 o3 Sisien ciainine 12,13,24,32,52,94-95,
111,122,136,153,156,159,
163,165,182

Erroreode.., . ;. on os an snasies ensnieis 32,99-106,122

Erformessageoeumunnnnnn 32,57,58,60,99—-106,122,
159,163,182

194

INDEX

ESCAPE i i ave ais e mmm i e m sy ioes 126,129

EXCCULION ..o vcconin 018 sog sidis) s o S D A 39,40,41,46,121,152,158,
164,165

EXP ittt et e e e e 67,112,136,184

Expansion Box:: . o0k st i e e die 17,18

EXPONENT oo ow aie akim s dss e miame s e s wieis s 25,112,157

EXDISSSION: .. o0 son wom s 5 b e e 5 SR 24,28,29-31,100,102,
103,111

EXTensiont eenennnnean 17,94,122

FRLBE i iov v b aosissce simim e o0 a6 s sins sieio s 29,30,82,110,111,112,136

EILES' .5 is o0 5 G s niEeismyemess 111,136

File

(seealso TAPE) unennn. 18,19,106,170

Filename

(seealsoTitle)o vee e e i eennnnn 119,158,160,164,169—-170

BIEL & o5 o oo s e e B e i bl ot i 87,105,136

FIoatingPDOINE & v v ane oimasnn mwim e wow w0 s 25,109,179,181,183—186

ENG .- i i ik ad s sw s 27,73,103,113,136

EOR-NEXT .onovemsmme wie sesemie 11,12,15,44—-46,101,102,
119-120,136,137,138,153

BOrNat ;- cocag s e misinme s aia s 26,35,109,112,117-118,
161,162

Format specification 21,112,117-118

FOIMEHIET . . ociesiniin onvs wtanim i s a e 21,35,103,112,117-118,
138,161

EREE: ;= oo i s sl S e lel s a e s aig 111,136

Freeformat¢c0cuivumunnn 112,117-118

FuneHeam: (i iy ossses svmein s shee s 65—74,75-78,79—82,85,
89,99,111-114,116,135

GET o on oo wws@uate wine s sidhte sl e 62-—-63,118,136,154,172

GOSUEB: . covimmmm mosmmm e s e s 48-49,100,116,122,136,
137,155,159

T P 39-40,47,100,104,117,
136,155,159

GRAPH! z oy svwainisiivaismemme iee e 175

196

196

INDEX

GRAPHICS key i v s aiadin e e v 855 4% ai4e 10,127,142—-143
GRAPHIESIT . v svmimn v eisn s s @ 5is 2w 10,13,14,129
GRAPHICS/Y comsvicnessmssnnss 10,14,129

Graphits -« s o o o5 i i o e w0 oA e e 83-90,118,175
Graphicscharacters00 See mosaic characters
GraphicsPen: i: o uis & 55 ais wis ae ois & Fiss 85,90

Greater than) i i o woasis dos wiw s s 29,46,114

Greater thanorequalto (>=) 29,46,114

FIEHINE: ... oo sne oos i Gomawas munims s e Wi wimis 105,169,175

High resolutiondisplay 85,131,175,189

Help I emergeney ... oo wus s wes s sow e 91-95

HOME: oo v sis o i v mne s i mod b0 4 10,11,13,129,130,131,132
IF e e e e ittt 27,46—47,116,136,155
E="FHEN = o sswi e @ disdrd s aies 46—-47,116,136,138,155
INCYEMIBAT i wn in s v mvm dioa siaiass s i Ja s 24,44,120

] SRS g O it SR S 117,136,156

INPEEYI o i s o o o o s i e s R S 37-38,100,101,102,109,

117,125,127,128,130,131,
132,156,169,170,171,172,

182
INpUt/OUtPUTttt e e e e enas 16,69—64,115,151,169,
170,171,172,173
Input—Qutputsystem 17,125
INSERT ;. owin s dsGaaiyes sy s 10,11,12,13,14,129
INISTR oo i smmmome s s o mims: srsims s e 78,113,136
N 52 i g b ik e amms S e E 69,112,136,184
POREEBE i omw i ami i o e R W A R L 25,112,185—186
Integer formatt inan 109,112,117
Internal code
(see also characterset)00... 80,81,112
Internal reader o v v it et te e e e 119
INLEFPUPRION . s s i seata eoarsiiia onansvanss 18,92,116,183
Intrinsicfunction00 65—74
SO 5 iv oo o amess asa i s 173

INDEX

Keyword
(see also reserved word)

Lessthan () oo e o i o wuiadale vk s 96
Less than or equal to (<=)
LET
ETHO) G cn aos ari smaanane el s taime et ains ais
Linedisplayc0iiinnnn.
Line editor

Line number

Linked stream
LINPUT
LIST

Logical expression
Logical operator
Lower case

Machinecode
Mains power
Mantissa
MBY

(see MOVEBY)

171
7-8,16,37,62,125,127,
128,130,131,143,160,171,
172

24,61,100,102,109,116,
151

77,113,136

76,112,136
76,109,112,126,128,157,
162,171

29,46,114

29,46,114
27,34,47,116,136,155,157
126,128,131,132,170
14-15,39,61

14,170
12,21,24,99,100,104,111,
116,121,155,158,164
85,175
61,104,109,118,136,157
21,38—39,63,101,102,118,
136,157—158
18,24,63,119,136,158
67,112,136,184

29,110

20,46,110
8,27,122,125,127,142,143
173

95,117,119,151,182
3,105
25,109,112,118

197

198

INDEX

MDE

(see MODE)

Memoryttt itee e s nasasnnnnas 94

Memory space (storage). 55,56,85,94,99,104,105,
109,110,122,125,152,153,
163,175

MERGE ...oovnusmmommmims e s oy $96 sHme 15 4 119,136,158

MIBS i ininai iesive s b ia b ie 5 77,113,136

MRS {=) . odiaarvemsmias s an st e & 28,113,114,184

Monitor00iciimenrnnnannan 4,9

MODE:! coivsie S ains= W o ol 3aiin 5 & 82,136

MOVE ittt ie e 86,136

MOVEBY: .. cocianains o8 50 5 0% 5w s 86,136

Mosaic characters, etc.

(see alsocharacterset) 84,109,122,125,189

MUdLiplecopies < v csa s wn i e wE W 122,129,160,169—-175

Multi-statement line

{s0e:alsO e0lON) . . iivin o vl v i sd s o 57,162

MVE

(see MOVE)

NEG ittt it enennn 184

NEW See R N o5 5W 5E 6F 38 N 117,137,158

NEWEINE .. .o vans as ae i ave asi 50 10,11,12,13,109,118,125,
127,128,129,130,156,157,
161,162,173

NEKT o ous sus s s ssm ans wgw (58 S scs s i 44-46,101,102,119,137,
154,158

NOT o v avs sn wie i s ara e o B o Be 29,31,46,114,137

Notequalto (<) ciiinnnnnnn 29,46,114

Nullstring00uiinenennennenn 38,40

NUM Gooan an o 5 o vid 63 an i s as 3 82,109,112,137

MUMBEE . v wos e wn w o0 o s e s & 25,26,28,82,109

Numericconstant0.uuuun. 25-26,57,109

INDEX

ONBREAK & ¢nivmiin 5aen a4 sw g

ON ERROR

ON-GOSsUB
ON=-GOTO e e an ok i dissenns

OPENIN i,
OPENOUT oo os wa o s o s v
Operating system
OPTION

PO €0 5 nie e i manmiy b o e B
Paged memory
Parameter

(see also argument)

Parameter stang s s s srmaTae i s i

Parenthesis¢00cuiunuunn.
PEEK iiivus v siewmiesn e &4 o5 &
PEN 50 o wimsinng imeneiniee: e ieg sratms sose e Whese

pp R v s v sl e 4 e wis

121
27,50—51,52,53,94—95,
99,100,135,136,137,159
52,94-95,104,116,119,
121,159,164

52, 94-95,104,116,119,
159,164

50-51,116,159
50-51,116,159
14,15,17,20,21,60,93,94,
99,111,126,136,137,138,
159—160

125

125

16,115,117,122,160
57,99,103,116,135,137,
161
27,29,30,31,46,114,137
117,161
17,21,26,54—59,109,117,
125,128,130,169,170,173

125
122

24,38,45,74,78,86,89,101,
159
105,106,111,117,160,169—
176

31,102,111,122

112,137

89,105,112,137

85,86

16,17
26,27,66,111,137,184

176

199

INDEX

PLOT .x v s shesesior @ semmmss = 61,85—89,105,118,135—-138,
161

PIUS IE: oo cnimvenmammars e s e e e 28,113,114,184

POKEttt ettt eee e 95,101,119,137,161

POIS!n 1 o e e SR e 111,137

POFE co0a svn vt o s i o S A R S e 17,62,104,106,117,126,
160,189

PIOWEE v o an s doi e iie st o ina B i asis 3,28,31,68—69

Precedence of operators 31

PRINT b oo wn o e uaiseise Soass 12,15,21,26,32,34,35—-36,
100,109,117,137,151,161—
162,173

PRINIEY i iv o i i o srial s s ST St oo 5,21,62,189

Printhead imunnnn 111,118,162

Printoplion .o o vae e iies vieals e s e s 169—-170

PrimtZone. , o oo s wsses we e o s wsism s 35,36,162

ProCessor: ., c.. ... comiesais o sos as eie @ie o 5 17,18,189

Program R A S R B 5,10,12,18,19,21,24,41,
109,110,115,118,119,120,
121,158,164

Program execution
(see Execution)

Program 1estiNg. : :.vw e vivaasaaiiasi e 40,41,122

Brompl oo o cem e e s S s s s e 37,100,117,118,127,156,
157

Prompt expressioneeuennn 38,49,61,156,157

1 I S Up 62—63,104,118,137,143

Quotationmark0c0ouuu.. 102,109,110,156

RABIANS : . s o iaisisdishide s e aeias 86,89,137

BAGIAN vio v ami00s ave avnocs wmimos g e s s 66,86

Raisetoa:power{t) ;i cniimnsisimusias 28,31,68—69,114,184

RANDOMIZE: e wame s 71,119,137,162

Randomaccess.oiveiinuwenns 115

Randomnumber 71-73,111,119,162

RANGE: o vssssasams e wmness 87-90,137

INDEX

REDGE 5o e e el T i e i 118

READ oo wvsinusue: s i vsime eimmem i 6/ 57-58,101,119,135,137,
162

Relational OPErator o o v e wre e e i s 29,46,114

REM ...ttt et it e ann 41,119,122,137,163

RERPEAT KeY s o @aEmilevieaivies 9,13

REPORT iiuisionw euoera o mime i s s a6 51-52,119,136,137,159,
163

RESERME. .oonae conmionsa s aimiiaiewias 95,119,137,163

Reservedword00u.nn 26,27,121,135-138

BESTORE: oo aimssss e o s aieling 57-58,119,135,137,163,
164

RESUME oiiviiviveiiesiEes s salaniaiaas 52,116,137,159,164

BETOITE i snsm e o o oo [V o 6 48-49,100,116,137,155,
159,164

Beversehield: .oucvuis vavvasane svesoaei 125,126,132

RIGHT® ittt eiieanansrn 78,113,137

BND: oouaimismisedaiaisaie e immos s 3 71,111,137

RNG

(See RANGE)

BUINE ccn oo asa s o s s o 12,39-40,117,137,162,164

SAVE: ¢ s aie st e is e g e s e 19,63,118,137,164

Scientific format, notation 25,26,109,112,117-8

SEPORIY 5 0 i i, a0, s S 8 R B N8 AR e A 9-14,35,38,105

Screen display . .. v sneiseie s e e 9-14,35,38

Screeneditor .,ttt 10,109,125—-132,169,171,
175

OO e s i i, i B S 12,13,125,130,131,132,189

Semi-colon (;)0ttt 35,100,118,161—162

SENSI' smpasinmammnsinom s smiogisaeii 5

BENSZ oo meummani s ss e i e: semies s 5

Serialdevice,port 0. 105,106,115,173

BON s s T e e 70-71,112,137,184

SHIFTKkeycuiiiinnnnnnnnnn 8-10,127

SHIET/ESCAPE . s usasssideiesese s @i 8,93,129,142

SHIETIHOME: .« oo e i esse b e i 10,11,81,129

2m

INDEX

SHIFT/INSERTci i i i innnnnnn 10,12,129

SHIELSE cooceoavarsasve sdlenss sy o5als 10,11,129

SHIFT/«< iu... T W 10,11,129

SHIFT/d AT A e 6% a5 4 -10,13,129

SHIET/T . ivvivminos e s sas s s 8,84,142

ShiftLock0vvvunn. ve.... 893,127,143

SIN cuspwmpesesnpenia o5 o o e S 66,112,137,184

SOR. ¢ oovimnsia e wmm s s s sa-smie 28,68,112,137,184

STER oovsiisssdndneiess ok o S 44,45,101,120,137,
154,164

STOR .= oo orsmrvome s 1 39505 i 5. 18,19,24 4041,
52,92,117,121,135,
138,152,158,164,183

STRE v mmananwasasiam 56 e a2 s 82,109,112,138,161

Streamt . 17,19,20,21,60,85,92,
94,104,105,115,117,
151,152,154,156,158,
160,161,162,165,183

Streammumber . .. es o s va s s 61,86,89

String00uiunn I R —— 27,31,35,87,101,109,
112,114,118,184

Stringconstantc0o00u0e0n. 57,102,109,110,122,
162

Stringdescriptor00 0in.nn 179,181

Stringexpressionc0000..- 31,117

Stringhandling.0.... 75—-78

Stringvariable 35,110

Subroutine00f.eiiineeean 41,48,49,151,155

Subscript

(see also Array Element) 54,99,100

SUDSTING oo s aveiasans o als oy o Givw 113

SWIERINOON . v wvmmnie s o7s in o 576 wias 6

Switchsettingc00uuuennnn 5

TAB v e w6 &5 an &h i s 36—37,45,101,102,
109,117—-118,138,156,

162,173

INDEX

TAN: . ioe on sin wim = wmm Smkib o a5 o6 w0 66,112,138,184

THPE: & o ok e s o S el e e TaE TS 5,18—20,160,169,
189

FAPEL .. 4% ises diel e e s e e 18

FAPEZ iy ini ava o wowsmiwaim aumaym e wie ssas sy 19-20

Tapeerror ovoveoecnsnssnansonas 105,106

Tape recorder

(see Tape)

TBY

(see TURNBY)

TOIBVISION oiv vov sow wn sis win oo e wnierese oy 4.9

Testplotting v 87

THEN (see IF)

1L e - T 18,19

TS (™). oo in v en o e svmvas s 28,114,184

TLTI0 .. e e e et 126,128,131,171

TO s ss s 59 e iR eiesnmaaess 27,44—46,101,120,
138,154,164

Token e 63,118,119,121

Toneeontrol .. oo svsvssnyesesismies 5

TOP e 95,111,138,163

TRN

see TURN

TERDIGS 555 0 Sl anamr S io o e casios o e e rerrm o 52,116,121,122,159

Trigonometric function 66,112

TRUE it 29,30,82,110,111,112

Truthitables ;s scaenevssemisaain. o 29,30

BURM - oo s s s s aamma ass 3a s 86,138

TURNBY ...ttt e 86,138

TYHEOREOE < vovnisumewmaanc sowews o 17,84,132

L 22 A 126,128,131,169

EMINOLE o gowisusly s el e e &5 &% 125

VP10 consemsvsmasssminmin Sa s i . 172

UDHERCRASE oo oo ammsmsrais Svenete @ &% o 8,27,122,125,127,
142,143

203

INDEX

User defined functions 73-74,103,113,116,
152

USErport. «oivsess an eov sime s e e a5 17,172

VAL ovcsimod ou on in esra e aenmas o 82,104,112,138,185

Mariable o s s i v e saE T e e i 27,28,35,39,41,44,55,
73,100,104,109,110,
111,116,119,151,152,

: 167

VERIFY . e e et e e e 19,63,104,119,138,
165

Viewdata graphics cv sovmso cmisin sme se as See mosaic characters

Volumegontrol . iisieisvsomanases o 5

Width i e e 169,175

WHRAOW: oo oo o o srersssnm SR o o 14,15,125,126,132

WIPE ittt ittt et e nnnn 86,138

T s wmaisnn v §506 R REeTE R SRR She 125

ZBO wcavss as 0% SRR SN 17,172,179,180,

182,189

Grundy Business Systems Ltd. IE—

Sales and Administration Marketing and R&D
Somerset Road, Teddington, Science Park. Milton Road.
Middlesex TW11 8TD Cambridge CB4 4BH

Tel: 01977 1171 Tel: 0223 350355

