PROGRAMS
for BEGINNERS

on theTRS.s)

FRED BLECHMAN

extensive explanations,

line-by-line descriptions of
programming techniques tor
both Model | (level | and
level Il)and Model /1!
itlustrating how

programs work

Unlock the mysteries of BASIC!

Many useful, simple programs . . . no printers, disks, or fancy
interfaces needed . . . (also, useful Appendices containing helpful

aids for beginners on the TRS-80™)

| HAYDEN |

TRS-80 is a trademark of RADIO SHACK, A TANDY CORPORATION.

A cassette containing the programs in this
book is available from the publishers for
$10.95. Please address orders to Hayden
Book Company, Inc., 50 Essex Street,
Rochelle Park, NJ 07662.

PROGRAMS
FOR BEGINNERS
ON THE TRS-80"

PROGRAMS
FOR BEGINNERS
ON THE TRS-80"

FRED BLECHMAN

H

HAYDEN BOOK COMPANY, INC.

Rochelle Park, New Jersey

To my patient and understanding wife, Ev, who—although she
doesn’t know a bit from a byte—allowed me to spend countless
hours in my “cave” with my “mistress” (the TRS-80).

Library of Congress Cataloging in Publication Data

Blechman, Fred.

Programs for beginners on the TRS-80TM.

Includes index.)

1. TRS-80 (Computer)—Programming. |. Title.
QA76.8.T18B57 001.64'2 80-27365
ISBN 0-8104-5182-4

Copyright © 1981 by HAYDEN BOOK COMPANY, INC. All rights reserved.
No part of this book may be reprinted, or reproduced, or utilized in any
form ‘or by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying and recording, or in any infor-
mation storage and retrieval system, without permission in writing from
the Publisher.

Printed in the United States of America

1 2 3 4 5 6 7 8 9 PRINTING

81 82 83 84 85 86 87 88 89 YEAR

PREFACE

Professional programmers might laugh at this book for
being ‘‘too simple.”’ But, if you’re a beginner in personal computer
programming, this book is for you! You’ll learn step-by-step how 21
sample TRS-80 programs ‘‘work.’’ Various program techniques are
described line-by-line within the programs, and the unique Matri-
Dex™ matrix index will help you find other programs using the same
BASIC commands and statements. If you have a computer other
than the TRS-80, the BASIC language you use is probably very
similar so that you can still learn a lot. A slight modification of the
sample programs given here will make them suitable for running on
your computer.

For the Programs section of this book, I am going to assume
that you’ve had no past experience in either computers or
programming but that you have a TRS-80 and the Level I Basic
manual (and the Level II manual as well if you have a Level 11
machine). You see, it is not my purpose to teach you what the
BASIC language is but to show you how to use the essentials of the
BASIC language. If BASIC were a foreign language, this might be
considered as a course in conversational BASIC, not in BASIC
vocabulary, syntax, and grammar.

While some of the sample programs are relatively simple,
others are more challenging; all of them illustrate various
programming methods. With a little imagination, you’ll be able to
apply the examples in this book to generate programs fitting your
specific needs.

Most of these programs are designed to run in 4K RAM in
either Level I or Level II. Therefore, most Level I abbreviations are
not used (since they are not available in Level II). Also, many math
functions directly available in Level II are not used. Since these are
pointed out in the discussion of each program, however, you can
substitute Level II language where appropriate. In addition, none of
the programs in this book requires the use of a printer, disk, or
expansion interface. Some programs have printer options if you do
have a printer. All sample programs are short enough for you to
enter them via the keyboard.

If you’re a nonbeginner, you might find Appendices B, C,
and D particularly valuable. Appendix A is a video display
worksheet that may be used as a reference for many of the
programs. Appendix B covers various cassette loading aids and
includes a complete schematic and description of a simple cassette
audio/visual control monitor you can build from a kit. Appendix C
will save you lots of head-scratching when converting Level I
programs to RUN in Level II. Appendix D has six extremely handy,
short, simple programs that will make a world of difference in using
and programming your TRS-80, especially if you have a printer.
Appendix E (Matri-Dex™) provides you with a quick way to
determine which programs contain operations or statements you
want to know more about.

To help you understand the programs, photos show how
they will appear on your screen. The introduction to each program
tells you what new things you’ll learn. A description explains the
purpose and use of each program. A complete listing (and usually a
run) is followed by a line-by-line explanation of any special
programming techniques not covered in detail in previous programs.
A list of variables and suggested modifications are also included for
each program.

This book is not intended to be an exhaustive treatise on all
the TRS-80 will do. Its BASIC vocabulary includes only the most
common and easy-to-use commands and statements. For more
elaborate or sophisticated techniques, you should consult any of
various books that go into BASIC programming in great detail.

Once more, let me make the point that this book is aimed at
the beginner, not the professional programmer; thus it has the
advantage that beginners will be able to understand it and use it right
away!

FRED BLECHMAN

Program 1
Program 2
Program 3
Program 4
Program 5
Program 6
Program 7 .
Program 8
Program 9
Program 10
Program 11
Program 12
Program 13
Program 14
Program 15
Program 16
Program 17
Program 18
Prbgram 19
Program 20
Program 21

CONTENTS

Display Alignment 1
Computer Interview 8
Fortune Teller e 15
Ask Your Government 21
Racing Alphabet 25
Run, Spot, Run! | .. 33
B-I-N-G-O 39
My $600 Digital Clock! 50
My $600 Adding Machine! 55
Order Form Totals 60
Simplified Bookkeeping 65
Interest Calculation and Tabulation 71
Invest—OrSave? 77
Mortgage Loan Amortization Program82
Pay Now or PayMonthly? 94
Phone Toll-Charge Program 99
Spirangle 106
Custom Screen Displays 110
Changing Billboard Program 118
The MagicSquare 122

Piano Keyboard Frequencies 127

Appendix A:

Appendix B:

Appendix C:
Appendix D:

Matri-Dex™

Video Display Worksheet 132
Cassette Loading Aids 133
Level I/II Conversions 141
“Slick Tricks” 144

PROGRAMS
FOR BEGINNERS
ON THE TRS-80"

PROGRAM 1

DISPLAY ALIGNMENT
(4K, Level | or 1l)

You’ll learn: Loops; simple graphics; random numbers; print
formatting and blanking

Description: If you have a TRS-80 Video Display to use with
your TRS-80 Microcomputer System, you may have noticed that the
top or bottom line is partially cut off by the display bezel. This
program will not only help you properly position the display on the
screen, it also contains several little programming tricks that you
might want to add to programs of your own.

Explanation: The program first draws a border at the graphic
limits, using SET commands. Then a short message is printed 14
times within the border. The message can have as many as 61
characters and spaces, but the shorter the better. Each line is printed
in a random position from the left border but does not break the
right border. After the 14 lines are printed—each line with the same
“‘message’’—the area inside the border is cleared, and the randomly
positioned 14 lines are printed again. All this happens five times;
then the entire screen is cleared and the sequence repeated.

Before we explain how the program does all this, type the
program as listed here into your TRS-80. Be sure to observe every
punctuation mark carefully. For lines 1170 and 1180, use exactly 30
spaces between the quotation marks. Note that PRINT@ is
PRINTAT in Level I.

Once the program is entered, type RUN and enter. First
you’ll see the top and bottom borders being drawn, then the left and
right side borders. If you are using Level I, watch carefully and
you’ll see the upper left corner disappear just as the border is
completed and then reappear after the first line of printing (this has
to do with cursor control in Level I only). Let the program run a few
sequences; it’s fascinating to watch, since it keeps changing. If it
doesn’t run properly, and you have entered via the keyboard, you
could easily have made a punctuation error. The omission of a
semicolon, for example, can change the entire display! To stop the

PROGRAM 1: DISPLAY ALIGNMENT

PROGRAMS FOR BEGINNERS ON THE TRS-80™

R R R R R R R PR R SR S R R R R R R R R R R LR A T

4 X HAYDEN BOOKS X ¥
¥ ¥ -HAYDEN BOOKS X i
¥ ¥ HAYDEN BOOKS X ¥
2 X -HAYDEN BOOKS X ¥
2 X HAYDEN BOOKS X k3
1 ¥ HAYDEN BOOKS X ¥
b 4 ¥ HAYDEN BOOKS X T
E 4 X HAYDEN BOOKS X ¥
¥ X HAYDEN BOOKS X ¥
E E X HAYDEN BOOKS X T
4 ¥ HAYDEN BOOKS X ¥
¥ ¥ HAYDEN BOOKS X ¥
¥ X HAYDEN BOOKS X) 3
E 3 X HAYDEN BOOKS X k-
PR R R S S T R R R R R R R N R R S R R T R R R R R R E

program, hit BREAK. Changing the message line is easy, and we’ll
discuss that operation later.

Now let’s put the border of this program to use. BREAK the
program after the border has been drawn. Are all four corners

LEVEL /il LISTING

- COPYRIGHT FRED BLECHMAM 1
17 BERKRLTME ko
‘ELT R OLEVEL TT Ak w

AL IGRMERT PROGRA

W RETOL M

HEST %

REM + CIOUMT THE FRAMES «
FR TS
REM # ESTHEL IS FRINT FORMART +

FR

. T ¢ STEFR &4
LUPFER ILEFT CORMER

Tad, 2%

* IWNT MESSAGE AT RAMNDOM LIHE FOSITIONS #
R=RNDCET
FRINTE P, TRECRY: "+ TRS-28 MICROCOMPUTER #';
REM # MNEXT LIME CONMTROLS PRIMTING INTERVAL +

FOR D=1 T 1688 NEXST
9 REM + ADYANCE FRINT FORMAT COUNTER o+
HEWT F
2 REM + CLEAR AREAR IMSIDE THE BORDER =+
FoR P t STEP &4
FRINTE P,
PRIMTE® P+, " "
t MEXT P
? REM + ADVAMCE FRAME COUNTER +
HEMT ™
* REM » RERLIM +
GOTO LRES

B e
= e E

[ESRyEY

PROGRAM 1: DISPLAY ALIGNMENT

visible, or have they been cut off from view by the TRS-80 Video
Display front bezel? If you can see all four corners, then your
display is properly positioned. If not, carefully remove the back of
the display (it’s held on with five screws) after unplugging it. Leave
the microcomputer on, however, so as not to lose the program. After
you remove the display back, look at the back end of the picture tube
and you’ll find two metal tabs sticking out radially. These are the
centering tabs, of which one primarily effects the horizontal
positioning of the display, and the other the vertical positioning.
Move them slightly until the display is positioned so that all four
corners of the border appear on the screen. Of course, since you’ll
have to plug in the Video Display to do this, be sure you keep away
from everything but the centering tabs.

Although you could adjust two potentiometers in the
microcomputer to achieve the same effect, this method of centering
the display is easy and does not involve opening the sealed
microcomputer case (thus voiding the warranty).

Since the program itself may puzzle you, let’s go through it
more or less line by line. Lines 1000 thru 1003 are REMARKS that
don’t affect the program operation. Since there’s plenty of memory
available for this short program, lots of REM statements have been
used to help guide you through the program. Refer to Appendix A
for the Video Screen layout system.

Line 1005 clears the screen. Line 1010 starts a FOR-NEXT
loop to “light” spots on the screen defined by line 1020. The
TRS-80 has 128 vertical ‘‘columns’’ and 48 horizontal ‘‘rows’’ that
can be addressed with a SET (column, row) command. Line 1810
establishes X =0 for the first ‘loop.’’ Line 1020 therefore starts with
position 0,0 (the upper left corner) and 8,47 (the lower left corner),
lighting the screen at these locations. Now line 1030 increases the
value of X by 1 (since it was not directed in line 1010 to step by any
other value) so that the next SET command from line 1626 is 1,0 and
1,47. This process continues drawing horizontal borders across the
top and bottom of the screen, one column at a time, until the
maximum X of 127 established by line 1016 is reached. Now the
program proceeds to lines 1040, 1050, and 1060, which draw the left
and right screen borders in a similar fashion by setting columns @, 1,
126, and 127 from row @ at the top to row 47 at the bottom of the
screen. (Since the columns are narrower than the rows, we SET two
columns on each side for an equal-width border all around).

Line 1070 starts counting another FOR-NEXT loop that
repeats five times on the command of line 120@. All lines between
1070 and 1200 are ‘‘nested”’ within that primary loop. Line 1080 tells

PROGRAMS FOR BEGINNERS ON THE TRS-80™™

the computer that you want to let the variable P start at the value of
66 and advance, when told to, in steps of 64 to the maximum value
of 898. Line 1150 tells P when to advance. You’ll see the significance
of this in a moment. .

Lines 1090, 1100 and 1110 can be deleted in Level II; in
Level I, however, they ‘‘patch’’ the upper left corner of the border,
which gets blanked by a built-in Level I command that returns the
cursor to that location for an instant at the first PRINT command.

The print formatting is controlled by lines 1120 and 1130.
Line 1120 selects a random number from 1 to 37, and line 113 tells
the computer to print the statement enclosed in quotes (in this
example, * TRS-80 MICROCOMPUTER *) at a particular location
on the screen. The TRS-80 screen is divided into 1024 printing
locations, numbered @ to 1023. This figure represents 16 lines of 64
locations each. (See the TRS-80 Video Display Worksheet in your
Level I or Level II manual). Line 1130 instructs the computer to
print at location P (which is 66 the first time around) and then to
indent this position (‘*‘TAB’’) by an additional R spaces. Since Ris a
random number up to 37 (from line 1120), this means that the
printed message will be indented up to 37 spaces from position P.
The semicolon at the end of line 113@ keeps the right border from
being deleted at the end of that line.

Line 1140 is a timing-delay FOR-NEXT loop. You can
speed up the printing by eliminating this line altogether. To increase
the time delay between printed lines, increase the top value of D. For
Level I, a top value of 500 will give about a one-second delay as the
computer counts to itself. For Level 11, use a value of about 400 for
a one-second delay. Incidentally, these counts vary with what the
computer is doing at the time, as well as the temperature. As you’ll
see in a later program (Program 8), however, this kind of a loop can
actually be used to keep track of real time with fair accuracy.

Line 115@ now increases the value of P by 64, as instructed
by line 1080, and the sequence repeats until P equals 898 (14 message
lines). Then the program falls through to lines 1160 through 1196,
which clear the screen inside the border.

You may wonder why the blanking is done with two lines,
1170 and 1180, rather than just one line. In Level I, there is not
enough room on a program line for the 60 needed spaces; that’s why
both lines 1170 and 1180 have exactly 30 spaces between the
quotation marks. In Level II, which allows program lines up to 255
characters in length, a single line with 60 spaces between quotation
marks is possible.

PROGRAM 1: DISPLAY ALIGNMENT

Line 1200 sends the program back to line 1970 for four more
printing sequences. At the end of the fifth sequence, the program
falls through to line 1210, which sends it back to line 1095. The
screen clears and the whole program runs again.

Modifications: Whether you understand the inner workings of
the program or not, it’s quite easy to customize the message. You’ll
probably, for example, want to have the display print out your name
in random fashion. The only lines that will have to be changed are
lines 1126 and 113@. First change line 1130 by putting what you want
printed between the quotation marks. Be very careful not to change
anything else on that line; every punctuation mark has a purpose!
Now add the number of characters and spaces between the quotation
marks. Subtract this number from 61, and the result is the random
number you need to put in line 1120. In other words, your message
and the maximum random number must add up to exactly 61.
(Actually, you can go to 62, but a space has intentionally been left at
the left and right sides so that the printing will not come too close to
the border). If you exceed 62, you’ll find occasional chunks taken
out of the right border!

If you’d like to program the message very easily (limited to
16 characters and spaces in Level I; 50 characters and spaces in Level
II), and or change the following lines:

999 CLS

1009 INPUT“TYPE IN THE DESIRED MESSAGE AND
ENTER. . .””;A$

1091 PRINT:INPUT‘“HOW MANY LETTERS AND SPACES
IN THE MESSAGE’*;A

1004 B=61—-A

1120 R=RND(B)

1130 PRINT@P,TAB(R);AS;

(Note: Remember that PRINT@ in Level II becomes PRINTAT in
Levell.)

Variables:

X—horizontal position counter
X—{frame counter

Y —vertical position counter
P—printing location

P—print blanking location
R—random number from 1 to 37
D—delay time counter

PROGRAMS FOR BEGINNERS ON THE TRS-80™

Note: X and P are each used twice in this program for different
purposes. For example, X is first used with the SET command, then
used to count the number of times the screen is filled within the
border. The same variable may be used any number of times within a
program for different purposes, but for only one purpose at a time.
This fact may be important for you to realize, especially in Level I
where nonarray variables are limited to 26 (A-Z)

PROGRAM 1: DISPLAY ALIGNMENT

7

PROGRAM 2

COMPUTER INTERVIEW
(4K, Level | or Il

You'll learn: Screen prompts; strings; branching; variations in
Level I/11 use.

Description: The computer asks for a lady from the observing
group. When she hits ENTER, the computer asks her name, which
she types in and enters. Then the computer asks her five questions
that she answers with a Y for yes or an N for no. The last question is
arequest for a date!

Explanation: This program, simple as it is, will not run the same
way in Level I and Level II. Let’s first discuss how it works in Level
I, and then we’ll see what changes are needed for Level II.

Lines 4, 5, and 6 format the printing of the computer
““introducing’’ itself and asking for a lady from the audience. While
P.AT statements are used here, you could use regular PRINT (or P.)
statements with blanks to space the text toward the middle of the
screen and P. to space lines. If you have a printer, you will have to
do it that way, or with TAB instructions, since most printers ignore
the PRINTAT command (even in Level II). They just print at the
beginning of the next line if you use the PRINTAT command
(PRINT@ in Level II). However, the TRS-80 makes print locations
easy for screen use. This was mentioned briefly in Program 1 and is
discussed in detail in Chap. 22 of your Level I Manual if you need
help.

Line 7 is just a short time-delay loop to allow you to read
-and understand the screen before line 8 clears the screen (C.) and
then prints I’'M WAITING. in the center of the screen. Line
9 skips three display lines (P.:P.:P.:) and then uses an input prompt
(L) followed by a semicolon and BS$. The input statement
automatically does two things: It puts a question mark on the screen
and brings the program to a halt to wait for a keyboard input. Since
there’s text and a semicolon after the text, the question mark appears
right after the text. If you leave out the text, the question mark will

PROGRAMS FOR BEGINNERS ON THE TRS-80™

LEVEL | LISTING

I 2 LR RN 5 YRR R SN YO0
h

S (]
[l

Y e,
e LN

ol
1]

N fa
SHSI

~J ‘-‘
&
&5
7a
=l
a6
235

186
185

FEM # COPYRIGHT 1572 FRED BLECHMAN =

REM # 7217 BERNADINE AVE. . CANOGA PARK. CR 94267

.

F. AT 15%: "HELLB": ATZ7E: "I°M YOUR FRIENDLY TRS-28 COMPUTER®
P. AT4el; "1% THERE SOME LADY OUT THERE THAT WILL®

P. ATS2S: "AMSHER A FEW SIMPLE GUESTIOMS? 2"

FOF ¥=1 TO Z006:H ¥

CocP AT4ES: "IM MARITING "
[P SR SR T CPRESS EMTER LHEN REFADYH"; Bf
¥ =4

N=28

C

I, "MHAT IS YOUR HAME. MY DERR": A%

F. :F..

F.A%: 1. ", ARE YOU OYER 18 YEARS OLD": R

IF A=1 T. &8

F. "EGADS, “:R%: ". YOU'RE JRIL-BRIT!'®

F.Gva

P, "HEY. THAT"S SHWELL. ":A$: ", YOU'RE AN ADLLT.
F' -

I. "ARE YO SHORTER THAW 5 FEET 18 IWNCHES": B
IF B=1 T. 108
Fo"WOM. YiAE: Y, YORYRE A OGIANMT!"
P.Godde
P "THATYS MICE, ":A%:". YOU'RE JUST THE RIGHT SIZE. "
F.

116 PoA$ LY. DO YOU HAYE BLUE EYES™:C

1z IF C=1 T. 148

1z@ P.UTOO BAD. ... I REALLY HAYE A THIMG FOR ELUE EYES "

1z5 PG 458

143 P U"THATYS GREAT. ":A$: ", SINCE BLUE EYES TURMW ME OW!"
145 F

158 P, "HOM ABOUT YOUR HAIR. ":A%: (I "7 ARE YOU A BLONDE": D
188 IF D=1 T. 188

178 P, "AW. HECK! T RERLLY DIG BLOWDES. ... "

175 P. G485

126 P "THAT/S TERRIFIC! I<YE GOT TO GET TO KNOW YOU BETTER.
185 FOR H=1 TO 4582:H X

188 CLS:P

19d . MARE YOLY BUSY TOMIGHT. “'Hi"I E

Zea IF E=41 T. 228

218 P."I LL FICK Y0 UF AT EIGHT @7 CLDPV SHARF! JUST YOU AND"
241 P ME. BREY......

245 0. 239

2200 P "OKAY. “:A$: M. IF THRTYS THE WAY YOU WANT TO BE! BUT. "
221 P, "REMEMBER. UNMDER THIS SLICK GRAY EXTERIOR. IVE GOT"
222 P. "FEELINGS, TOQ.. ... MAYEBE HEXT TIME..... cs0E» ("
2E8 PP PO "(TYPE IN RUNY AMD ENTER FOR ANOTHER INTERWIEWD
248 END

appear at the beginning of the next line. The semicolon is one of the
most powerful formatting tools in BASIC. It simply means ‘‘Don’t
go to the next line until there’s no more space left on this line!”’

The B$ is a ‘‘string variable,” and there are only two of

these (A$ and BS$) in Level I. It allows you to use numbers or letters
(alphanumerics), such as names and addresses, rather than just
numbers. Level I is restricted to 16 character strings; Level II, to

PROGRAM 2: COMPUTER INTERVIEW

LEVEL Il LISTING

1
4
e
[
v
a2
2

REM + COPYRIGHT 1578 FRED BLECHMAM # .
REM #+ 7217 BERNADIMNE AVE. . CRMOGA PARK., CA 91307 *

CLS

FRINTELSS, "HELLO": FRIMTOZ7PE, "I°M YIUR FRIEWNDLY TES-26 COMPUTER"
FRINTE4E8. “I5 THERE SOME LADY OUT THERE THAT WILL"
PRINTESZS. "ANSHER R.FEW SIMPLE QUESTIOMST? "

FOR H¥=1 TO 2568 MNEHTH
CLE:FRINTE4S2, "1°M WRITIMG "

FRINT :PRIMNT:PRINT: INPUT"

LS

FRINTRSE:

FRIMT

TECg=tgh

THT®
FREINT

TF D=t
FRINT®
FRIMT :
FRIWNT"
FRINT

IF E$="
FREMT®

PRINT"

CLS: PR
FRIMNT"A
IF Fg="

FRINT"

FPRINT"

EMD

PP] FLT M A,

PRINT"HM) A

. PRINT : GOTD 1.8

CPRESS ENTER WHEM READYIM; B$

INFPLITUWHAT IS YOUR NAME. MY DERR"; A%
PRIMNT :FPRINT

SIMPUTY. ARE YOU OVER 18 YERRS OLD“: B

IF BE="%" GOTO &6
FRINT"EGRDS,
FRINT :GOTOFH
PETNT"HEY., THRT 2 SHELL, “:A%: ", YOLYRE AM ADULT.

iAE: . WOUCRE JATL-BARIT!Y

THPUT"ARE YO SHORTER THRAN S FEET 1@ INCHES!: 0$

GOT0 166/
FRES Y YOILITRE R GIARMT Y

: MICE. " R#: ", $OLPRE JUST THE RIGHT SIze »

THHT

FREINTRE: TMHRUTY, [Y04 HAVE BLUE EYES': 0

YYOGOTR 148

TOO BAC. .. T REALLY HAYE A THIMG FOR BLUE EYES
GOTD
THAT

) l;‘:‘F—ZEFI'T.- UiRE Y, STINCE BLUE EVES TURM ME OMt“

T OPOLRE HATR, Y AE: THRPUTY? ARE YOU B BLIONDEY; E$
[1%

Ak, HECK! -1 RERLLY DTG BLONGES. 0"

iy

THAT S TERRIFIC! I<YE GOT TO GET TO KMOW YOU BETTER.

FOR H=1 TO 1586 :HEXTY

INT

RE YOUE BUSY TOMIGHT, “: A$: : IMPUTF$

YOGOTO 228

ICLL PICK YOO UP AT EIGHT @-CLOCK SHARP! JUST YoLb AMNG
ME, BRABRY. "

GOTOZ2ZE

PRINTU"OEAY. 'A% Y. IF THAT-S THE WAY YO WANT TO BE! BUT, "
FRINT"REMEMBER., LINDER THIS SLICK GRAY EXTERIOR., I-VE GOT
PRINT"FEELTHMGS, ToOo, ... MAYBE MNEXT TIME. cEORy LM

FRIMT PRINT:FRINT"CTYPE IN “RUM” AND ENTER FOR RNOTHER INTERVIEMW

255. When the computer is expecting a string entry, all you have to
do to continue the program is hit ENTER. This actually enters a
blank for that string value, and the program proceeds. This is a very
handy programming technique, not mentioned in the Level I
Manual, for ‘“‘paging’’ text or tables so that they won’t scroll up off

the screen until you press ENTER.

Lines 10 and 20 tell the computer that from here on (unless
changed later) the variable Y will be equal to 1 and the variable N
will be equal to @. In Level I, since the variables are not all set to @

10

PROGRAMS FOR BEGINNERS ON THE TRS-80™

PROGRAM 2 RUN

HELLO

I’M YOUR FRIENDLY TRS-8@ COMPUTER

IS THERE SOME LADY OUT THERE THAT WILL
ANSWER A FEW SIMPLE QUESTIONS??7?

I'M WAITING.

(PRESS ENTER WHEN READY)?

WHAT IS YOUR NAME, MY DEAR? MARY

MARY, ARE YOU OVER 18 YEARS COLD? N
EGADS, MARY, YOU’RE JARIL-BAIT!

ARE YOD SHORTER THAN 5 FEET 1@ INCHES? N
WOW, MARY, YOU’RE A GIANT!

MARY, DO YOU HAVE BLUE EYES? Y
THAT’S. GREAT, MARY, SINCE BLUE EYES TURN ME ON!

HOW ABOUT YOUR HAIR, MARY? ARE YOU A BLONDE? N
AW, HECK! I REALLY DIG BLONDES.

ARE YOU BUSY TONIGHT, MARY? Y
REMEMBER, UNDER THIS SLICK GRAY EXTERIOR, [’VE GOT
FEELINGS. TOO..... MAYBE NEXT TIME..... (S0B)

(TYPE IN "RUN’ AND ENTER FOR ANOTHER INTERVIEW)

when RUN, as they are in Level 11, it’s necessary to assign values in
the program to all of the variables used—even those that are equal to
Zero.

Line 21 clears the screen. Line 25 asks the first question with
an input statement and waits for the keyboard entry of A$, the
lady’s name. The lady ‘‘victim”’ (let’s call her Mary) simply types in
her name first and then ENTER. The computer now keeps her name
in memory as A$ for the rest of the program.

Line 26 ‘‘linefeeds’’ twice, for spacing to the next question.
Line 30 prints MARY and follows immediately on the same line (see

PROGRAM 2: COMPUTER INTERVIEW 11

the semicolon?) with the input statement for the next question. The
computer then waits for variable A from the keyboard.

Mary responds by pressing the Y or N key. In Level I, each
key is ‘“‘initialized’’ at computer turn-on with some random value
(usually around plus or minus .5). You can verify this by-turning on
your Level I machine and typing PRINT A,B,C,D,E,F,G,H,1,J.K,
L,M,N,O,P,Q,R,S, T,U,V,W,X,Y,Z and then ENTER. You’ll get
four columns of values, with each figure representing the computer’s
memory value for that letter. (Read across and then down. C is the
third value on the top row; F is the second column, second row; etc.

Since you assigned specific values for Y and N in lines 19
and 20, they are no longer the computer turn-on values. If Mary
presses Y, the computer sets variable A equal to 1; if she presses N,
the computer sets variable A equal to @. Now line 49 looks at the
value of A. If it is equal to 1, then the program jumps to line 6@ and
prints that computer reply. If A is not equal to 1, the program
ignores line 40 and “‘falls through’’ to the next line, 50, printing that
comment instead.

Since IF-THEN and GOTO statements are so important for
“branching’’ any program, let’s follow this example through in
detail. Suppose Mary types N and ENTER, setting the value of A to
@. She is telling the computer that she’s under 18 years old. The
computer ignores line 40, since A is not equal to 1, goes on to line 50
and prints EGADS, MARY, YOU’RE JAIL-BAIT!, and then
moves to the next instruction. If, however, Mary answered the
question with a Y, the computer sees A equal to 1 and obeys line 44,

~ jumping over the ‘‘wrong’’ response to line 60, and the screen

displays HEY, THAT’S SWELL, MARY, YOU’RE AN ADULT,
and moves to the next instruction. Notice, incidentally, the spaces in
the proper places in lines 56 and 60 so that the text doesn’t run
together. The quotation marks define the beginning and end of
what’s printed, and blank spaces must be included where needed for
proper spacing.

Now that we have a computer response to her entry, what
happens next? Go back to Mary entering an N. The next operable
line is 50, followed by 55. Line S5 spaces one line and then goes to
line 70 (G. is the abbreviation for GOTO). Do you see how this
bypasses the incorrect response, which appears in line 60? Line 70 is
the next question.

If, however, Mary answered with a Y, the computer obeys
line 40, jumps lines 5@ and 55, prints the message in line 6@, followed
by the line space directed by line 65, and then goes on to ask the
question in line 70.

12

PROGRAMS FOR BEGINNERS ON THE TRS-80™

In either case, the program stops after asking the question in
line 70 and waits for the next answer,

The remainder of the program proceeds in the same manner,
with IF-THEN and GOTO statements routing the program around
incorrect computer responses. A variation occurs in line 175, where
the computer is told to go to a timing loop (line 185) instead of the
next question. Why? By this time the screen is full, and the timing
loop allows you to see the answer to the last question before the
screen is cleared (line 186) and the next question is asked (line 190).

Variables A, B, C, and D are used for the answers to the five
questions arbitrarily. Actually, any variable—even the same one
each time—could be used for each question. However, false
responses could be generated more easily using only one variable,
since no ‘‘error-trapping’’ techniques—covered in a later program—
are used here.

Level 11 is different from Level I in many ways affecting the
programming. One difference is that Level 11 will not accept a letter
entry for a simple variable (such as A, B, C, etc.). Letter entries
(such as Y or N) will be accepted only by string variables in Level II.
Look at the Level II version of this program and you’ll see that A, B,
C, etc., have been replaced with B, C$, DS, etc. Also, the IF-THEN
statements use string comparisons to recognize a Y or N entry. Note
that the comparison under inspection must be enclosed in paren-
theses (such as line 44). Lines 10 and 20 of the Level I program are
therefore no longer needed.

The other obvious difference in the Level I and Level 1I
listings is that hardly any abbreviations are allowed in the Level II
‘‘language.’”” Commands like PRINT and GOTO must by typed out
in full. Also, let us remind you again of the following facts because
they are so important: PRINTAT in Level I is PRINT@ in Level 11,
and the @ is not shifted with the shift key as on a regular typewriter.
(If you do shift the @, it will appear to be normal on your screen,
but the program will reject it with an SN—syntax—error message.)
Also, very important is the requirement in Level II that PRINT@ be
followed by a comma, Level I also allows a semicolon.

Modifications: Obviously, you can ask other questions and
program other computer responses, limited only by your
imagination and the memory of your computer. You could make the
program a ‘‘compatibility test’’ by adding variables that count the Y
and N answers and come up with a compatibility score. The basic
idea here of interaction with the computer to access stored responses
is the heart of most computer education programs.

PROGRAM 2: COMPUTER INTERVIEW

13

Variables:

X—timing loop counter

AS$—name

B$-F$—Y or N responses to questions
B$—ready for next screen

Note: BS is first used for continuing the program, then for
response to the question in line 30. Since these two distinct functions
occur at different points in the program, there is no conflict.

14

PROGRAMS FOR BEGINNERS ON THE TRS-80™

PROGRAM 3

FORTUNE TELLER
(4K, Level | or I1)

You’ll learn: Pseudo-random numbers; computerized ques-
tions and answers; ON-GOTO; automatic rerun

Description: After you type in your name and birth month,
the computer prints a group of questions on the screen and asks
you to choose one or type in your own question. When you do,
the screen clears and responds with a two-line answer, after which
it prints another question. You can keep on asking questions and
getting (usually) different answers until you terminate the program
by hitting the BREAK key.

Explanation: This program will run in either Level I or Level
IT; note, however, that PRINTAT is used in Level I rather than
PRINT@. ‘

Line 197 clears the screen, and lines 114-180 provide the
instructions. When you press ENTER, the screen clears (line 199),
and line 200 asks your name. Type in your name (anything over
16 characters will be “‘truncated’’—cut-off—in Level I). When
you press ENTER again, line 205 asks for your birth-month
number, such as 7 for July. Actually, this number provides a
‘“‘seed”’ for advancing the random number generator, which is not
really random at all!

When the computer is turned on, a series of numbers is
held in the read-only-memory (ROM) for every random number
limit you choose, but these numbers remain the same every time
you turn on the computer.

What? You don’t believe this? You think random
numbers should really be random? Alas, they should be, but your
TRS-80 uses a pseudo-random number technique. Here’s how you
can prove it to yourself. Turn off your computer (you can leave
the display on); then turn it on again and get a READY. (For
Level II, you’ll have to answer ‘“MEMORY SIZE?__’’ by pressing
ENTER.) Now type and RUN the following program:

PROGRAM 3: FORTUNE TELLER

15

LEVEL I/ll LISTING

‘, 4.'."El.- IT 48

PPTNT FRIMTY FORTLIME TELLTHG PROGRAM"

FRIMT :PRINTY THE COMPLTER MTILL LIST L-F'--‘FF‘F!L TYRFICAL CHIESTTONSY
FRINT"FOR SO T A THE “FORTUNE TELL YOLE MAY £ T
FRIMTYASK YOLR ENTER THE APPROPRIATE!
PRIHT"NUMEEt......fFWP FNTFPTHTNMFNT F RFOSES (ML Y "

PRINT INPUT"WHEN READY TO START. PRESS ENTER": A$

CLS

PRIMT INPLUT"UHHAT IS YOUR HNAMEY: B

INFUTHWMHAT MOMNTH WERE YOl BORN? CMONTH MUMBER?": M

M= E+M

FORI=1TON: J=RND(Z2VET Y MEXTI

PRIMT :PRIMT" ;BE: M. CHODSE OMNE OF THE NUMBERS BELOM:“
PRIMNT:PRINT" (4> SHOULD I MAKE THRT TRIF I“WM THIMEING ABOUT?®
PRINT" (22 IS HES/SHE SERIOUS, OR JUST PLAYING THE FIELD?"

PRINT"(Z) SHOULD I TELL HIMAHER THE WHOLE TRUTH?Y

PRINT" (4 SHOULD I ASK MY BOISS FOR A RRISE?"

PRINT“(S2 WILL I BE RICH ARMD FAMOUS SOME DAY?Y

PRINT"(&> IS THE INYESTMENT 1M CONSIDERIMG R GOOD OME?Y

PRINT"CV SHOULD I ACCEPT HISAHER IMVITATIOM?Y

PRINT" (22 SHOULD I GET OUT OF TOMN FAST? 2"

FRINT"(G» IS IT TIME FOR A JOB CHARMNGE?"

PRINTY (162 83K RANY YES OR NO TYPE OF QUESTION"

PRINT :PRINT:PRINT"WHAT MUMBER DO YO WANT, Y BE; INPUTH

IF A=16 GOTO SeA

H=RND LAY

LS
ON X GOTO 4860, 4Q5, 442, 415, 4268, 425, 436, 435, 443, 445

PRINTRE4SZ, "YES, IT APFEARRS S0 BUT BE AMARE THRTY : GOTO4353

PRIMNTE4SZ, "CERTRINLY! HOMEVER, OMN THE OTHER HAMDL, " GOTOGSG

FRIMNTH4 ML TT DOESHNCT LOMK LIEE TT. BUT": GOTO456
PRIMTE4ASZ, "THRT S FOR 3 N THE OTHER HAND, * GOTO453
FRINTELEE, " T SAY YO ¢ LIMT OM T, F?LlT":GDTEMﬁﬁ
PRIMNTELSE, "HRE Y00 }IDDTNU T°0 TELL w0l EXCEPT THAT!
PRIMT@45Z, “THE FUTURE IS CLOUDY. ESPECIALLY SINEE":GDTU4SE
FRINTE4TE, HOW HHHH!“ T OENOWY T7WE GOT PROBLEMST. LIKEY GOTOS55
PRINTES SO RO YO MUST IﬂN¥I“FP THAT! GOTOM5R
J JPFTNH T MY CRYSTHL BALL, YES! BUTY

PPTMT"HII M?
FRINT"I MEFD
PRINT"UMDER THIS S0 ICK
PRINTYIT WOH.D TAKE A $393 PERSOMAL SEAMCE TH PF L}
PRINT"MY CRYSTAL BALL IS ~ L] SOME PEOPLE — CRACKER! !
FRINT"IMN CASE I°M WROMGE, REMEMBER WHAT THIS READIMEG COST ?HU"
FRINT'THAT S R REALLY DIFFICULT QUESTIOM. % BE: "0 GOTOSSR
FRIMT"MY MAGIC CARPET COULD RE STEERIMG ME WROMG. “;E$;"!":GDTDSSB
PRINT"THE FUTURE IS RERLLY WHAT YOLI MAKE OF IT.“: LM GOTOS2s
PRINMTYIF Y0t DONCT LIKE MY ANSHER OH. FRITHLESS UNE TPV ASTROLOGY !
GOTOSSE

CLSPRINT PRIMNT :PRINT*TYFE IN QUESTIONM. THEM HIT “ENTER““: : INPUTR$
GOT =48

FOR D=1 TO 15600 HERT G070 248

EM)

GEOTOSSE

HY ERTERTOR HFF?":GDTUSQQ

- BOTOSSE

10 FOR X =1 TO 20:R =RND(25):PRINT R;:NEXT X

- The screen will display 20 numbers. Write them down on
a piece of paper, and RUN the program again. There will be 20

16 PROGRAMS FOR BEGINNERS ON THE TRS-80™

PROGRAM 3 RUN

FORTUNE TELLING PROGRAM

THE COMPUTER WILL LIST SEVERAL TYPICAL QUESTIONS
FOR YOU TO ASK THE ’FORTUNE TELLER’. YQU MAY CHOOSE TO
ASK YOUR OWN QUESTION INSTEAD. JUST ENTER THE AFPROPRIATE
NUMBER. (FOR ENTERTAINMENT PURPGSES ONLY).

WHEN READY TO START. PRESS ENTER?

WHAT IS YOUR NAME? HARRY
WHAT MONTH WERE YOU BORN? (MONTH NUMBER)? 7

HARRY, CHOOSE ONE OF THE NUMBERS BELOW:

(1) SHOULD I MAKE THAT TRIP I’M THINKING ABOUT?
(2) IS HE/SHE SERIOUS. OR JUST PLAYING THE FIELD?
(3) SHOULD I TELL HIM/HER THE WHOLE TRUTH?

(4) SHOULD I ASK MY BOSS FOR A RAISE?

(5) WILL I BE RICH AND FAMOUS SOME DAY?

(6) IS THE INVESTMENT I’M CONSIDERING A GOCD ONE?
(7) SHOULD I ACCEPT HIS/HER INVITATION?

(8) SHOULD I GET OUT OF TOWN FAST?7?7

(9) IS IT TIME FOR A JOB CHANGE?

(10) ASK ANY YES OR NO TYPE OF QUESTION

WHAT NUMBER DO YOU WANT,HARRY? 4
NO, IT DOESN’T LOOK LIKE IT, BUT
IN CASE I'M WRONG, REMEMBER WHAT THIS READING COST YOU!

HARRY, CHOOSE ONE OF THE NUMBERS BELOU:

(1) SHOULD I MAKE THAT TRIP I’M THINKING ABOUT?
(2) IS HE/SHE SERIOQUS. OR JUST PLAYING THE FIELD?
(3) SHOULD I TELL HIM/HER THE WHOLE TRUTH?

(4) SHOULD I ASK MY BOSS FOR A RAISE?

(5) WILL I BE RICH AND FAMOUS SOME DAY?

(6) IS THE INVESTMENT I’M CONSIDERING A GOOD ONE?
(7) SHOULD I ACCEPT HIS/HER INVITATION?

(8) SHOULD I GET OUT OF TOWN FAST???

(9) IS IT TIME FOR A JOB CHANGE?

(18) ASK ANY YES OR NO TYPE OF QUESTION

WHAT NUMBER DO YOU WANT,HARRY? 10

TYPE IN QUESTION, THEN HIT ’ENTER’? WILL TOMORROW BE A BETTER DAY?
ACCORDING TO MY CRYSTAL BALL. YES!' BUT
IF YOU DON’T LIKE MY ANSWER OH. FAITHLESS ONE. TRY ASTROLOGY!

more numbers. Write them down as well. Now turn your
computer off and wait about S seconds for the internal capacitors
and the power supply to discharge. Then turn the computer on
again, type in and RUN the above program, and check the
numbers on the screen against those on your paper from the last
time. They will be the same numbers in the same sequence. Not
only that, but they will also be exactly the same in Level I and
Level II!

PROGRAM 3: FORTUNE TELLER

17

Somewhere in some dark cave some genius developed
random number tables that simulate actual randomness. These
have been programmed into ROM for every random number
limit. For example, run the foregoing tests after inserting any
number from 1 to 32767 in the program in place of the 25 located
between the parentheses after RND. The resulting number series
will differ but will remain the same every time you turn on the
computer.

This random number series apparently repeats after every
string of 32767 numbers; thus, if we can somehow advance the
series to some point beyond the beginning—and do it in such a
way that it’s likely to be different at each trial—then we can
eliminate nonrandom consistency every time we turn on the
computer and use a random number command. To do so is
particularly important in games, where random numbers
supposedly prevent prediction of the next event. If you’ve noticed
a certain ‘‘winner’’ sequence in some games, this consistency is
the probable reason!

Assuming that you’re now convinced that your random
number statement does not really generate random numbers,
you’ll want to know how to minimize the effects of this on your
programs. Let us go back to the ‘‘seed’’ in line 205. When you
enter your birth-month number, you enter a number from 1 to 12.
This is multiplied by 10 in line 206 and then used the same
number of times in line 207 to run up the random number list.
(The 32767 in line 207 could be any number from 1 to 32767; it
doesn’t make any difference which. The computer simply moves
up—or is it down?—the internal random number table N times, as
instructed by the FOR-NEXT loop in line 207.)

So much for all this random chatter. Now the screen
prints lines 210-320 (personalized with your B$ name in lines 210
and 320) and waits for your choice of the ‘‘menu’’—list—of
choices. Notice that line 3260 has two PRINT commands for line
spacing, another PRINT command for the question, and then
INPUT A. An input statement can generate text or follow a
PRINT statement. The choice is yours, but don’t forget to use
semicolons to prevent ‘‘carriage return’’ and colons to separate
statements on the same line.

Type in your chosen number and press ENTER. Line 330
takes a look to see if you’ve chosen number 10. If you have, the
program jumps to line 560 and asks you to type in your own
question. Level I limits your question to 16 characters, but Level

18

PROGRAMS FOR BEGINNERS ON THE TRS-80™

IT allows you 255 characters. Type in your question, hit ENTER,
and line 570 will send the program to line 344. v

Notice that regardless of the number you type in from the
menu (1 through 10), you finally get to line 349. (If you typed in
any number from 1 through 9 in response the the question in line
320, the program falls through line 33@ to line 344.)

Line 349 sets the value of X at some integer (nondecimal)
number from 1 to 10. Line 345 clears the screen. Line 350
contains a new and very useful command, ON-GOTOQO. The 10
numbers listed here, separated by commas and following GOTO,

represent line numbers to which the program is to jump, -

depending on the value of X. If X is 1, the program jumps to the
first line number, 409; if X is 2, it jumps to 405; if X is 3, it
jumps to 419; and so forth.

To illustrate how this works, let’s say you pick question 4
as your menu choice: ‘‘Should I ask my boss for a raise?’’ The
computer selects a random number for X in line 340; let’s say 7.
Since X is now equal to 7, the computer looks for the seventh
number listed after ON X GOTO in line 350 and finds 430. The
program jumps over all intervening lines to line 430 and prints
THE FUTURE IS CLOUDY, ESPECIALLY SINCE near the
center of the screen (print location 453) and then goes to line 450.
Here Y is set equal to another random number from 1 to 10; let’s
say 3. The program now jumps to the third number listed in line
460, or line 520, and prints, right below the previous line,
UNDER THIS SLICK GRAY EXTERIOR I'M ONLY WIRES &
STUFF!; it then goes to line 580.

At line 580, a time-delay loop keeps the printing on-screen
for a few seconds (determined by the top value of D). The
program then goes to line 210 and reprints the menu for another
choice.

“Foul!”’ you say. ‘““This is fixed!’’ Well, since the num-
bers in lines 340 and 450 are random—unknown in advance—
aren’t the computer responses “‘fate’’?

If you analyze the responses in lines 400-445, you’ll see
that they are yes, no, or maybe statements, followed by a “‘cop-
out’’ that’s completed in lines 510-555. Another way to put it:
each statement in lines 400-445 giveth; each statement in lines
510-555 taketh away!

Notice that the ending of lines 400-440 are all the same—
GOTO450. Line 445 doesn’t need this command since the next
line is 450. You might wonder why line 556 is not just added to

PROGRAM 3: FORTUNE TELLER

19

line 555, like the previous lines. Not enough room! In Level I, a
line is limited to 70 characters affer the line number prompt; Level 11
allows up to 240 characters after the prompt (nof 255 as you might
expect). ‘

Modifications: Once again, as in Program 2, your imagination
and computer memory size are the only limitations to enlarging
this program. It’s fun to play at parties, but providing more
choices of answers—about 25 instead of 10—would result in less
frequently repeated wisecracks. Also, obviously, you could ask
much more personal questions—all the questions you’ve been
afraid to ask—and program much more revealing answers!

Variables:

A$—continue

B$—name

N—birth month (random seed)

I-—-random seed loop

J—random series advance

A—menu selector

X—random number (first response line)
Y-—random number (second response line)
D—time delay loop counter

20

PROGRAMS FOR BEGINNERS ON THE TRS-80™

PROGRAM 4

ASK YOUR GOVERNMENT
(4K, Level | or II)

You’ll learn: Entry-error trap; using a subroutine

Description: Have you ever written a government agency or
politician and gotten back a letter that was full of odd words that
made no sense at all? Well, now you can generate these kind of
letters on your TRS-80, using any words you like. This program
produces a similar but different letter each time it is run.

Explanation:- The program starts by printing on the screen the
title and instructions (lines 101-104) followed by a menu of five
questions (lines 105-109). It then stops and waits for your
keyboard selection (line 11¢). Line 111 is a simple entry-error
“‘trap,”’ since it rejects any entry greater than 5 with an error
message and returns you to line 110 for another choice. Line 111
does not reject @ or negative number entries. If you want it to do
so, change the beginning of line 111 to read IF N=<@ or N>5
PRINT . . . etc. (The word THEN is not always needed in an IF-
THEN statement; it is not used in line 111, for example.)

Line 112 checks to see if you entered number 5 as your
menu selection. If you have, the computer asks you to type in
your question, BS. Remember that B$ is limited to 16 characters
in Level I and to 255 in Level II.

Lines 113 and 114 clear the screen and ask for your name,
AS. Line 115 clears the screen again, and line 120 starts printing
out the governmental letter regardless of the question! Isn’t this
just like bureaucracy in action? The A$ in line 120 personalizes
the letter with your last name. Line 130 prints the first four words
of the letter text and then goes to the subroutine starting at line
500.

The first thing that happens in this subroutine is that
random numbers from 1 to 16 are established for variables A, B,
and C. Line 505 uses the value of variable A in an ON A GOTO
statement to send the program to one line of the group of lines

| PROGRAM 4: ASK YOUR GOVERNMENT

21

LEVEL I/ll LISTING

LEVEL T QR IT 4w COPYRIGHT FRED DLECHMAM 1372 «
< YOUR GOVERMMENT "

NHHT MUUL[\ YO LIKE TO ASE YOUR CONGRESS
OF ENTER S T2 ASK POUR DMK Gl

MR
STION,

184 FFIHT A TYPICAL REPLY. ...

185 " ; M MY TRSES 20 HIGH?™

18 F'F:INT“ UHHT S OHOLDIWNG UP THE MEM FREEWAYT?"

187 PRINT™ WILL WE BE GETTING STREET LIGHTS So0d?

182 PRINT"(WHAT ARE YOU DOING REOUT CRIME INM THE STREETS?"
183 PRINT“CS: RSK YOUR QMM GUESTION

116 FRINT: IMPUT"MHAT HUMBER. PLEASE": M

111 IF W3S FRINTUEMTER 4 TD 5 OMLY, FLERSE'®:G0TO 4419

132 IF H=5 THEN CLS:PRINT:IMFUT"TYPE AND EMTER GUESTION":BF
11Z CLZUPRINTEZEE, "OH. BY THE WAY. "

114 IHPUT"WHAT S YOUR LAST HAME": A%

115 CLS

128 PRINTUDEAR MR, OF MRS COR MS 3" REs "

1z8 PRINT® IN THE INTEREST OF *: :GOSUR So@

145 PRINT"IT HAS BEEM DECILED THRT THE " (GOSUE S6@

158 PRINT"PLAN BE IMPLEMENTED IMMEDIATELY. THIS *: GOSUE 508
168 PRINTUAPFROACH TO *; :50SUE 569

176 PRINT"MEETS WITH THE CONCEFTURL APPROVAL OF HEW, SBR.
128 PRINT"FHA. FAR. CAB. IRS, OSHA. FTC AMND FDA. IN ORCER TO
198 PRIMT'MINIMIZE THE EFFECTS OF THE * :GOSUB Sag

286 PRINT"ON THE "; :GOSUE 560

218 PRINT"IT HAS BEEM MNECESSARY TO REDUCE THE “; (GOSUB Se@
228 PRINT"AND ITS AFFILIATED COMTIMGEMCIES.

238 FRINT® WE KMOW YO WILL AGREE THAT THIS “; :GOSUR S04
248 PRINT"CAM ONLY IMPROYE THE OVWERALL ™ :GOSUB S86

258 PRINT"IMMEASURARELY. THANKS FOR YOUR INQUIRY. ©

FRINT" SINCERELY. ¥
PRINT" WOUR CONGRESSHMAM, "
GOTO 26
HOOMLY SELECT THREE WORD-STRINGS =
=RNDCLa

REM
A=FND {180 B=RND (18
OH A GATO 518, 526
FRINT"IMTEGRATED
FRINT"TOTRL *: ul'lTﬂ
PRINTEYE TEMHTI"ED "3
PRINT"PARALLEL ;
FRIMTFU |Hf_TIDNF'*L “.
FRINT'RESPONSIY
FRINT"OPTIMAL *;
FREINT"ZYMOHROMIZED v:
PRINTYCOMPATIBLE ": 0
PREINT"BALAMCED ";

DI I o S O LR N

DRt I OO VR S i i B Y v e B]
B AR A B RN s]

1
&)
[

D))
w0
g
)
FAxy
oy

FRINT"MAHAGEMENT OTO 7es
FRINT"ORGANIZATIONAL ; (GOTD 78s
PRINT " MOHITO ED R

| S

b

FRINT'DIGIT
F‘F:I!‘-!T"L':

Pl:ilr—iT“Liu
oM oo GoTo
FF INTHORT

D)
=
&

ARILITY ¥
ILITY %

AR A AR I

[
B

22 PROGRAMS FOR BEGINNERS ON THE TRS-80™

FER PRINTUYCONCERT ¥ :GOTO 265
Y78 PRINTUTIME-PHASE "; (GOTO 85
728 FRINTUPROJECTION " (GOTO- 265
738 PRINT"HARDWARE “: :GOTO 269
288 PRINTOCONT IMGENCY ":

2ES RETURM

PROGRAM 4 RUN

WHAT WOULD YOU LIKE TO ASK YOUR CONGRESSMANT? .
JUST PICK A NUMBER, OR ENTER 5 TO ASK YOUR OWN QUESTION.
THE COMPUTER WILL PRINT A TYPICAL REPLY....

(1) WHY ARE MY TAXES SO HIGH?

(2) WHAT’S HOLDING UP THE NEW FREEWAY?

(3) WILL WE BE GETTING STREET LIGHTS SOON?

(4) WHAT ARE YOU DOING ABOUT CRIME IN THE STREETS?
(5) ASK YOUR OWN QUESTION.......

WHAT NUMBER, PLEASE? 2
OH, BY THE WAY. WHAT’S YOUR LAST NAME? SMITH
DEAR MR. OR MRS. (OR MS.)SHMITH,
IN THE INTEREST OF FUNCTIONAL DIGITAL PROJECTION
. IT HAS BEEN DECIDED THAT THE SYSTEMATIZED MONITORED CONCEPT
PLAN BE IMPLEMENTED IMMEDIATELY. THIS OPTIMAL LOGISTICAL MOBILITY
APPROACH TO SYNCHRONIZED THIRD-GENERATION PROGRAMMING
MEETS WITH THE CONCEPTUAL APPROVAL OF HEW. SBA.
FHA, FAA. CAB. IRS. O0SHA. FTC AND FDA. IN ORDER TO
MINIHMIZE THE EFFECTS OF THE TOTAL TRANSITIONAL CONTINGENCY
ON THE BALANCED THIRD-GENERATION FLEXIBILITY
IT HAS BEEN NECESSARY TO REDUCE THE INTEGRATED MANAGEMENT CONTINGENCY
AND ITS AFFILIATED CONTINGENCIES.
WE KNOW YOU WILL AGREE THAT THIS BALANCED LOGISTICAL FLEXIBILITY
CAN ONLY IMPROVE THE OVERALL RESPONSIVE INCREMENTAL PROJECTION
IMMEASURABLY. THANKS FOR YOUR INQUIRY.
SINCERELY.
YOUR CONGRESSMAN.

510-600. For example, if the random number chosen for A is 3,
then the program jumps to the third line number in line 5@5—Tline
530—and the computer prints the word SYSTEMATIZED and
goes to line 605. Line 605 selects a line number based on the
random value established for B. The word on that line number is
printed, and the program then goes to line 705 where the same
action takes place with the random number chosen for C. The
program then goes to line 805 where RETURN sends it back to
the line where the subroutine was called—line 13@. Since there is
nothing after GOSUB 500 on line 130, the program moves on to
line 140 and continues with more of the same bureaucratic
skulduggery.

PROGRAM 4: ASK YOUR GOVERNMENT

23

Confused? This all happens so fast on the screen that it
seems unbelievable, but read through the last paragraph again,
follow it through in the program listing, and everything will fall into
place. The subroutine simply picks out three words—one each from
three groups of ten words each—and the semicolons hold the whole
thing together on the screen, except at the end of lines, where words
are sometimes broken off and continued on the next line. These
broken words could be avoided, but the programming to do so
would be somewhat too sophisticated for this book.

Lines 140, 150, 160, 190, 200, 210, 230, and 240 also use the
subroutine to add randomly selected word groupings into the text at
the designated points. Some lines (17@, 188, 220, 25@, 260, and 270)
do not use the subroutine, being complete in themselves.

Line 280 puts the computer into an endless loop, which

. allows the 15-line letter to reside on the screen for an indefinite

period. If line 280 were END, the READY prompt would appear at
the bottom left of the screen and the text would scroll up, losing the
top line.

To end the program and regain keyboard control, hit the
BREAK key.

Modifications: The fixed text and randomly chosen words can
be changed any way you like. You could even change the whole letter
to respond to bill collectors, say, with some well-chosen words! Be
careful that the groups from which individual words are selected
follow a reasonable structure. For example, group 1 could be
superlatives (very, extremely, highly, extraordinarily, etc.), group 2
could be adjectives (high, short, fat, wide, etc.), and group 3 could
be nouns (house, farm, building, mountain, etc.).

Variables:

N—menu selection

B$—Specific question

A$—last name

A—selects word from first group
B—selects word from second group
C—selects word from third group

24

PROGRAMS FOR BEGINNERS ON THE TRS-80™

PROGRAM 5

RACING ALPHABET
(4K, Level | or I})

You’ll learn: Simple graphic movement; speed control; logic
statements

Description: We’re off to the races! Choose A, B, C, or D as
your winner, and each letter races to a finish line. When any letter
reaches the finish line ahead of the others, the program stops and
announces the winner, waits a short time, and asks for another
choice. Press BREAK to exit the program at any time.

Explanation: We’ll explain the Level I listing first and then the
changes that must be made for Level II. You’ll find several REM

RA-C-IHG A-LPHABE-T

HILL #BC OR B UIND? _

PROGRAM 5: RACING ALPHABET

25

YOU PICKED D 10 HIN. GOOD LuCK!

B HINGH

PROGRAMS FOR BEGINNERS ON THE TRS-80™

LEVEL | LISTING

I REM # ORIGINAL FPROGRAM BY LEONARD . DUBDSE*
4 REM * REVISED EXTENSIVELY EY FRED BLECHMAN *
5 GOSUE 168

9 REM * ADYANCE EACH LETTER 4 TD 4 SPACES *

18 L=L+RNDCEY i M=M+RND (4D N=N+RND (4) 0=0+RND 4>

14 REM % FRINT HEW POSITION OF ERCH LETTER *

15 P ATOE4+L), "AY;

28 PATCAS24M, "BY;

25 P ATCZEZE+NY, O

38 P RTCA43+00, "L

24 REM * CHECK TO SEE IF FINISH LINE REACHED *

35 IFCE4+L02122 G 7S

48 IFCA92+MIS256 5. 7S

45 IF(Z28+NIDETVS G 75

S8 IFC443+40005086 G, 7S

T1 REM = LINE 52 SETS RACING SFEED. ELIMINATE FOR FRST RACE *
D2 FOR XN=1 T3 189 :NEXT X

34 REM * DELETE LETTERS, BUT LERYE FINISH LINE *

55 POATOS4+L), "

&8 P. ATCASZ2+M>,. " i

&5 P AT(3204+N), " "5

78 P.AT442+00, ¢ "i

i GOTO 26

74 REM % HIGHEST LETTER YWALUE WINS. TIES LOOF AGRIN #
I IFCLOMI LN LI0P. ATPSE, "A WINS!!": 6. 9@

76 IFCHMPL)*CMINYH(M>00F. RT7SS, "B WINS!!"“:G, 96

77 IFCNZLYSCNSMI®CNDDOP. ATPSS, "0 WINS! "G 96

7E IFCOBL#COMI®CONOP. ATPSS, "D WINS!!":G. 96

a8 GOTO 1@

98 FOR ¥=1 TO 1508:MN X%

S5 GOTO S

168 CLS:P. AT149, "R-A-C~I-N-G A-L—-P-H-A-B~E-T"

185 A=1:B=2:C=3:D=4

193 EEM * USE WIN CHOICE TO CYCLE RANDOM NUMBERS

118 P.INM WILL A B, C OR D WIN?';E
111 IF CECL)4(E>4D P "FICK A.E.C OR DG 118
115 E=18«E

116 FOR X=1 TO E:J=RNDZ4> :NEXT X
126 CLS:P. AT &54, "YOU PICKED *;

121 IF E=18 P. "R":

122 IF E=2@ P "B";

132 IF E=z@ P. "C";

124 IF E=48 P "D";

435 P.O" TO WIN GOOD LuCk:!

148 L=8:M=0:N=8: 0=04

158 FOR Y=3 TO 2E:SETCA28, Y2 NEKT ¢
168 RETURN

statements throughout to clarify what’s happening in each section of
the program. These remarks have no effect on the program itself.
Line 5 sends the program to a subroutine. Why a GOSUB
subroutine rather than a simple GOTO? In this case, there is no
particular reason, since the subroutine (lines 1800-160) is used only
once for each race. Normally, subroutines are used several times in a
program. .
The next obvious question is, why weren’t lines 100-165 put
at the beginning of the program in the first place? The answer is that
the author got so involved in generating the ‘‘code’’ for making the

PROGRAM 5: RACING ALPHABET

27

LEVEL Il LISTING

1 REM * RACIMNG ALPHABET PROGRAM

2 REM # TRS-2A LEVEL II 4k *

Z REM # ORIGINAL PROGRAM BY LEOMARD V. DUBDSEw

4 REM * REVISED EXTENSIVELY BY FRED BLECHMAN *

S GOSUE 188

9 REM * ADVAMCE EACH LETTER 1 T0 4 SPACES *

10 L=L+RND(4) : M=M+RNEC4) :N=N+RHDC4) 1 O=N+RNDC4)

14 REM * PRINT MEW POSITION OF EACH LETTER *

1S PRINTEC(E4+L), "A";

20 PRINTECAS2+M), "B";

25 PRINTECZ204+NY, “C*;

2@ PRINTEC448+0), 0"

34 REM * CHECK TO SEE IF FINISH LINE REFCHED

35 IFCE4+LID122 ROTO?S

48 IFCA92+M>>258 GOTO?S

45 IF(328+N)>278 GOTO?S

50 IF(448+0)>506 GOTO?S

51 REM * LINE 52 SETS RACING SPEED. ELIMINATE FOR FAST RACE

52 FOR ®=t TO 4188:NEXT ¥

54 REM * DELETE LETTERS, BUT LERAVE FINISH LIME

55 PRINTR(E4+LY, " "

60 PRINT@CL92+M), " “;

€5 PRINT®CIZB+M), " "

72 PRINTBC448+0), " ",

71 BOTO S0

74 REM # HIGHEST LETTER VALUE WINS. TIES LOOP AGAIM =

TS IFCLIMI#CLONI*CLIDIPRINTE?ESE, "R WINS! ! " GOTOSA

76 IFCMBL s CMINTRCHMDPDPPRINTRPES, "B WMING!V GOTOSR

7P OIFCNSLY# NI NI PRINTE?ES, "L WINS! " GOTO98

72 IR CO>MIRCOSMIPRINTE?S2, “D WINS! (" GOTO9E

8A GOTO 19

98 FOR %=1 TO 1509 :MEXTX

95 BOTO S

106 CLS: FRINTEL4E, "R=F-C~I~N~G A—L—-P-H-FA-B-E~T"

189 REM # USE WIM CHOICE TD CYCLE RANDOM NUMBERS

148 PRINT: INPUT™ WILL F. B, £ OR D WIN?Y; ES

114 IF¢E$="R"IORCE$S="B"INR(ES="C" YORCES="D") THEN1LS

142 PRINTYPICK A, B, C. OR D!1Y:30TOLLR

115 E=RND(4@)

146 FOR %=1 TO £:J=RNDC4Y NEXT X

138 CLS:PRINTE €54, "wOU PICKED ":E£4: " TO WIN. GOOD LUCK!"

148 L=8:M=B:N=8:0=0

158 FOR ¥=3 TO 23:SETC126, Y)Y NEXT ¥

168 RETURN

165 END
program work that he didn’t leave room for instructions. It’s really a
better idea to start programs at line 100 so that you will have plenty
of room before line 100 for any instructions or explanation you
might like to add after the program is running to your satisfaction.

Incidentally, ‘‘renumber’’ programs are now available that
will clean up your line number sequence. The programs in the book
were written and listed without that luxury.
To get back to the Racing Alphabet Program, line 100

simply prints out the title, with dashes between the letters for graphic
effect. Line 105 sets the values of A through D at 1 through 4,
respectively. Line 116 asks you to type in the letter of your choice for

28 PROGRAMS FOR BEGINNERS ON THE TRS-80™

PROGRAM 5 RUN

R-A-C-1-N-G A-L-P-H-A-B-E-T
WILL A.B.C OR D WIN?? F
PICK A.B.C, OR D!!

WILL A.B.C OR D WIN?? C

YOU PICKED C TO WIN. GOOD LUCK!

the winner and assigns this value to variable E. In other words, if
you enter A, the computer assigns the value of 1 to E, since line 105
assigned the value of 1 to A. Similarly, if you typed in B, the E
would equal 2, and so on. However, suppose that you type in some
letter other than A, B, C, or D. The value of E would then probably
be plus or minus .5, the typical Level I start-up values for all
variables. Line 111 is an entry-error trap to see if you entered the
values of 1, 2, 3, and 4 for A, B, C, and D, respectively. This line
says, in effect, that IF the value assigned to E is less than 1 OR
greater than 4, the entry is wrong and therefore rejected; the screen
then prints PICK A, B, C, OR D and goes back to line 110 for
another entry for variable E. (The plus sign in line 111 represents the
logical OR.) Notice the use of parentheses in line 111 to collect the
terms. While parentheses can sometimes be omitted, it’s safest to use
them when in doubt.

Line 115 multiplies E by 10 and then uses this value in line
116 as a random number seed to move up the random number series
as explained in Program 3. The FOR-NEXT loop uses X to count E
random numbers in the RND(4) internal random number table.
Each number is assigned to variable J just for counting purposes.

To follow the screen formatting from this point on, refer to
the Video Display Worksheet in Appendix A.

PROGRAM 5: RACING ALPHABET

29

Line 130 clears the screen and prints the beginning of a line
near the bottom of the screen (print location 654). The semicolon
stops the printing until the program determines what to print next.
Lines 131-134 then determine which letter was picked by looking at
the value of E (which was multiplied by 10 in line 115). The proper
letter is printed, and the semicolon here reserves further printing for
line 135, which finishes the statement. This is a good example of how
the semicolon allows derived values or text to be printed within an
otherwise predetermined sentence.

Now line 140 sets L, M, N, and O to #. Line 150 puts the
“finish line’’ on the screen with a FOR-NEXT loop that lights screen
blocks from (120, 3) to (120, 23). Remember that there are 128
horizontal block positions (#-127) and 48 vertical positions (#-47),
as defined by the instruction SET (horizontal number, vertical
number). Usually, X is used for the horizontal dimension, Y for the
vertical, although any variables can be used.

Line 160 simply returns the program to the line where the
subroutine was called—line 5. Since there is no additional statement
on line 5, the program moves on past the REM to line 10.

Line 140 established each of the variables L, M, N, and O
equal to zero. Now line 10 increases each of them by a separately
chosen random number from 1 to 4. Line 15 prints A—on the second
screen line—at print position 64 plus the number of spaces equal to
the new value of L. Similarly, B, C, and D are printed on the screen
on separate lines, with each at an initial position determined by the
value of M, N, and O éstablished in line 10 and the directions given
in lines 20, 25, and 30, respectively.

To determine when there is a winner, the program checks in
lines 35, 40, 45, and 50 to see if any letter has reached or crossed the
finish line. It does so by determining whether the values of L, M, N,
and O, when added to the starting values on each line, have reached
more than 58 spaces beyond the starting point. Why ‘“more than 58’
spaces? Well, the vertical finish line drawn in line 150 (SET 120, Y)
is on the left side of print locations 124, 188, 252, 316, 380, 444, and
508. (See the Video Display Worksheet in Appendix A or page 106 of
the Level I Manual or Page E/1 of the Level II Manual.) The initial
letter print locations (64, 192, 320, and 448) are chosen so that the
letters will be separated vertically by two lines as they move
horizontally across the screen.

Take the letter A as an example. It starts out at print
position 64 plus L and moves ahead each time the program is
incremented (as you’ll see later) by a random number from 1 to 4.
The finish line is at print location 124. If A has reached position 123,

30

PROGRAMS FOR BEGINNERS ON THE TRS-80™

which is the first number ‘‘greater than’ 122, it would have just
reached the finish line. If A is past that point, it has crossed the
finish line. Line 35 checks to see if A has reached or crossed the
finish line. If 64 plus L is greater than 122, it has, and the program
then goes to line 75. If A has not, then line 40 checks to see if B has
reached or crossed the finish line at location 252. Remember that
““greater than 250"’ is 251 or more since 251 touches the finish line at
252. Similarly, lines 45 and 5@ check the positions of C and D.

If none of the letters has reached the finish line, the program
falls through to line 51 and then line 52, which uses the variable X in
a time-delay FOR-NEXT loop of about two-tenths of a second. You
can change the 100 in line 52 to a smaller number for a faster race
(shorter time delay) or a larger number for a slower race. For the
fastest race, leave line 52 out altogether.

Lines 55-7@ are very important. They ‘‘erase’’ each letter on
the screen by printing blanks at the last location of each letter. Were
it not for this, a trail of letters would be left across the screen.
(Although five blanks are shown between the quotation marks, one
is enough.)

Line 71 sends the program to line 88, which sends it back to
line 10. This process keeps repeating, with the letters advancing
across the screen until one reaches or crosses the finish line, as
determined by lines 35-5@. (Since each letter can be incremented by
as many as four spaces on each ‘““move,”’ it could cross the finish line
and go three spaces beyond it before being caught by lines 35-50.)

Ah, but suppose two or more letters reach the finish lines
together—a tie? The first one caught by lines 35-50 sends the
program to line 75. Here computer logic comes into play, since the
asterisk (*) means AND. Line 75 says ‘“‘IF L is greater than M,
AND L is greater than N, AND L is greater than @, PRINT at
location 788, A WINS!!, and then GOTO line 94.”’ In other words,
A wins only if it is the farthest advanced of the letters. If this is not
so, then B’s. advance is checked by line 76, C’s is checked by line 77,
and D’s is checked by line 78. Unless one letter is ‘‘ahead’’ of all the
others, there is no winner, and the program falls through to line 84,
goes back to line 10 for another advance, and is then checked again
for a single winner.

Finally, after one letter wins, the program ‘‘freezes’’ on the
screen for about 3 seconds (line 9@ time-delay FOR-NEXT loop) and
then goes to line 5 for another race.

The Level II version of this program is similar but requires
some necessary changes in the handling of Level I. Of course, P.
becomes PRINT, P.AT becomes PRINT@, and G. becomes GOTO.

PROGRAM 5:. RACING ALPHABET

31

At line 119, we must use a string variable (E$) for the chosen letter
since, as discussed in Program 2, we cannot enter a letter as the input
for a simple variable. This alteration changes the entry-error trap in
line 111. It now must use string comparisons to make sure that an A,
B, C, or D has been entered. If none has been, line 111 falls through
to line 112, which prints a reminder and returns the program to line
110 for another input. If line 111 is satisfied, however, the program
jumps to line 115, picks a random number from 1 through 40 as a
“seed,”” and runs up the random number table in line 116. Line 130
clears the screen, prints the chosen letter message, and proceeds in
the same manner as Level 1.

Modifications: You could use numbers instead of letters. You
could also allow for more ‘‘racers’’—perhaps as many as 10—
without slowing the program too much and still leaving room for a
winner statement. You could add a variable to be used as a counter
to note the number of each race on the screen. You could make
provisions for betting and even for race odds. And, in the next
program, we’ll show you how to use graphic symbols for the racers.

Variables:

L—A track position

M—B track position

N—C track position

O—D track position

X— counter, FOR-NEXT loops
E— chosen letter (Level I)

E$— chosen letter (Level II)
E—random seed

J—random series advance
Y—finish line vertical limits

32 PROGRAMS FOR BEGINNERS ON THE TRS-80™

PROGRAM 6
RUN, SPOT, RUN!
(4K, Level 1l Only)

You’ll learn: Level II graphic code

Description: Five graphic ‘‘dogs’’ race across the screen to a
finish line. When one ‘‘wins,”’> movement stops and the winner is
announced.

Explanation: Although this program appears to do about the
same thing as Program 5 (Racing Alphabet), it does it quite
differently. The most obvious change is the use of graphic symbols,
which are not available in Level 1.

To understand the Level II Graphic Code, take a look at
Fig. 6-1. Each printing location on the TRS-80 display is a rectangle
composed of six segments—two wide by three high. Lighting one or
more segments at the same time, or none at all (leaving a blank),
provides 64 possible permutations. Each permutation is assigned a
special number (starting at 128) within the TRS-80 ROM and is
called by this CHR$ number.

Incidentally, the lighted segments within the rectangle each
have a “‘value’’ that will allow you to determine the CHR$ number
without referring to Fig. 6-1. Just add the values of the lighted
segments in Fig. 6-2 to 128 to get the CHRS number.

Example: Suppose that segments 2, 8, and 16 in Fig. 6-2 are
lighted. Then 128 plus 2 plus 8 plus 16 equals 154. Now. check this
value against Fig. 6-1. They agree. Isn’t that amazing? Here’s a
simple but effective binary coding system.

With that under your belt, let’s see how we can come up with
a symbol for a dog. Use the Video Display Worksheet in ‘Appendix A
or one in your manual and lightly fill in adjoining rectangles to form
a figure of a dog. Of course, you could also create a turtle, an
airplane, a boat, or any shape on the screen (with resolution limited
to the size of the rectangular segments)—but we’re doing a dog. Now,
using either Fig. 6-1 or the value system just describegd, determine

PROGRAM 6: RUN, SPOT, RUN!

33

8p02%o0jq ojydeib || jeae -9 "B

il
|
#]
I8 I ESD 0 E.1%: 10NN HEC) i AE3SCNIEN NES3CLINNNN OEC 10N EC THI E2Y
1B 1] :
- =][J - ¢ I8 NEC3 STHURRN ECLE 000NN EZX: SINNNN) Eo [T
=18] 1] [L IIGH T i e
[T il] i el I
1T 1] i T 1]
T 11 11 ___.;‘ IFEPNIRRARE 1Y N .-.p_ [T 11
"JON3Y3434 404 NMOHS S3NIT ¥3a408 310N

PROGRAMS FOR BEGINNERS ON THE TRS-80™

34

Fig.6-2. Values of lighted segments

which graphic code numbers represent the required rectangle
configurations, reading from left to right. For example, our dog is
composed of 157, 1408, 172, 131, and 129, as shown in Fig. 6-3. To
display this dog on the screen, simply type PRINT CHR$(157);
CHRS$(148); CHRS$(172); CHR$(131); CHRS$(129) and then
ENTER. Notice the parentheses and semicolons.

157 140 172 131 129

Fig.6-3. Graphic dog

B g

¥ uinsHi

PROGRAMS FOR BEGINNERS ON THE TRS-80™

LEVEL Il LISTING

5 REM X DOGRACE WITH GRAPHIC DOGS — LEVEL II X

6 REM X COPYRIGHT 1378 FRED BLECHMAN X
7 REM X SET SPEED AT LINES 60-108 (A=A+1 OR A=A+2, ETC.)

10 CLS

1S FOR Y=3 TO 29:SET(123,Y):NEXT

20 A=64:B=192:C=329:D=448:E=576

21 PRINT@A, CHR$(157);"1";CHR$(172) ; CHR$(131); CHR$(129);
22 PRINTEB.CHR$(157);"2"; CHR$(172); CHR$(131);CHR$(129);

23 PRINTEC,CHRS$(157);"3";CHR$(172);CHRS(131) ;CHR$(129);

24 PRINTED, CHR$(157);"4"; CHR$(172);CHR$(131) ;CHR$(129);

25 PRINTEE,CHR$(157);"5";CHRS$(172);CHR$(131); CHR$(129);

26 GOTO 55

38 PRINTE@A.CHRS$(157):"1";CHRS$(172);CHR$(131); CHRS(129); : GOTO50
31 PRINTEB,CHR$(157);"2"; CHR$(172); CHR$(131):CHRS(129); :GOTO50@
32 PRINTEC, CHR$(157);"3";CHR$(172); CHR$(131}; CHR$(129); : GOTO50
33 PRINT@D,CHR$(157);"4"; CHR$(172) ; CHR$(131) ; CHR$ (129) ; : GOTO50
34 PRINTEE,.CHR$(157);:"5";CHR$(172); CHR$(131); CHRS$(123);

52 IF A>120 PRINT@730."%1 WINS!!!":END

51 IF B>248 PRINT&730."%#2 WINS!!I1":END

52 IF C>376 PRINT&730,"#3 WINS!!!":END

53 IF D>504 PRINTE@730."#4 WINS!!!I":END

54 IF E>632 PRINTE@730."$5 WINS!I!":END

55 X=RND(5)

56 ON X GOTO 69.70.80.90,100

6@ PRINT@a," " A=A+l GOTO3Q

70 PRINTEB," ®;.:B=B+1:G0T031

8@ PRINTEC," ";:C=C+%:G0T0O32

9@ PRINTED.," ";:D=D+1:GOTO33

100 PRINTEE, * ®; :E=E+1:GOTO34

Now we can explain the program at hand. Although REM
statements are not functional within the program, they can contain
some vital information. Look at line 7, for example, which tells how
to change the speed of the race (as you’ll see further on).

Line 1@ clears the screen, and line 15 draws the finish line at
horizontal location 123 between the vertical locations of 3 and 29.
Line 20 sets the values of A, B, C, D, and E at numbers equal to
print locations at the left side of the screen. Lines 21-25 print our
graphic dogs at these locations, with a minor change. Notice that
each ‘‘dog’> has a number in the location formerly held by
CHR$(140). You can mix regular characters with graphic codes so
long as you don’t forget parentheses, quotation marks, and
semicolons as shown!

Up to this point we’ve placed the dogs on the starting line,
but that’s all. Now line 26 jumps the program to line 55, where X, a
random number from 1 to 5, is chosen. Line 56 looks at X and sends
the program to a line number determined by the value of X; if Xis 1,
the program goes to line 6@; if X is 2, the program goes to line 70;
and so on. Let’s assume the random number chosen for X in this
instance is 4. The program jumps to line 94, since this is the fourth
ON-GOTO number in line 56. Line 90 tells the computer to print five

PROGRAM 6: RUN, SPOT, RUN!

37

blank spaces (since the graphic dog uses five spaces) at the present
position of dog No. 4, thus “‘erasing’’ dog 4 from the screen. Then
the computer is instructed to add 1 to the existing value of D for a
new D, then to go to line 33. Line 33 prints a new dog 4 image on the
screen one space ahead of where it was a moment ago. The last
instruction on line 33 is to go to line 50.

Lines 50-54 check to see if any of the dogs have reached or
crossed the finish line, prints a winner message on the screen if one
has, and then ends the program. If there is no winner yet, the
program drops through to line 55, selects another X, and advances
one dog by one space, continuing in this fashion until one dog
crosses the finish line. Since each dog is five spaces “‘long,”’ the
““greater than’’ numbers in lines 5@-54 are five /ess than the printing
location of the finish line, allowing any dog to ‘‘win by a nose.”’

- For a faster race, increase the add-on number in lines 66100
from 1to 2 or 3. ‘

Modifications: Make up your own graphic symbols and have a
tortoise/hare race. You can program the advances so that the hare
jumps four spaces, but only on every fourth turn.

Also, you can assign the code for each dog as a string
variable, such as F$=CHR$(157)+1” + CHR$(172) +
CHRS$(131) + CHR$(129) for dog 1. From then on, you need use
only the variable F$ to print dog 1. Notice the use of plus signs in-
stead of semicolons in this case, a practice called ‘‘string con-
catenation’’—adding strings together.

You may also want to ‘‘seed’’ the random number table. If
you don’t, your winning dog sequence from computer turn-on will
probably be 5-5-1-2-5-5-3-4-4-4-5-2-1-1-4-3-3-5-1-3-3-4-
3-1-3 for the first 25 races. That’s five wins for dog 1, two for dog 2,
seven for dog 3, five for dog 4, and six for dog 5.

Of course, betting and odds are a natural thing to add to any
race, but since we don’t want to encourage gambling, we’ll leave that
up to you! '

Variables:

Y—finish line vertical limits

A—print location, dog 1

B—print location, dog 2

C—print location, dog 3

D—print location, dog 4

E—print location, dog 5

X—random number to advance one dog

38 PROGRAMS FOR BEGINNERS ON THE TRS-80™

PROGRAM 7
B-1-N-G-0
(4K, Level | or 1)

You’ll learn: - Single-dimension array; READ-DATA statements;
selecting nonrepetitive random numbers

Description: The numbers 1 through 75 are displayed on the
screen in five columns of 15 consecutive numbers under B-I-N-G-O
headings. Lines separate the columns to improve readability. The
computer selects and displays random numbers and then puts an
asterisk (*) on the screen next to each number when it is chosen (see
the display format in Fig. 7-1).

You use regular BINGO cards and markers to play the
game. The purpose of this program is just to call a different number
each time and show the numbers that have already been chosen at
any point in the game.

Why use a computer to pick and post numbers? It is faster,
doesn’t make posting errors, and creates some suspense in long
games as it takes time to ‘‘seek’’ a number not previously chosen.

Explanation: This program is almost the same for Levels I and
II. Let’s discuss Level I first and then the minor changes necessary
for Level I1.

Lines 5-12 introduce the program on the screen. When there
is sufficient memory, it’s a good idea to do so. If the instructions are
very long, they can be bypassed with a yes/no input statement such
as the following, in line 3:

INPUT “INSTRUCTIONS? (1=YES, 2=N0)"’; I

Of course, the proper GOTO statement must also be used,
such as the following, in line 4:

IF I=2 GOTO 13

In this case, since the program introduction fits on one
screen-full (‘‘page’’), why not include it?

Line 13 stops the program with a request for a number from
5 to 25. When this number is entered, it is used as the random
generator *‘seed’’ later in the program (line 230).

PROGRAM 7: B-I-N-G-O

39

yeuno} Aejdsiq

Video Display Worksheet

EHHO NN
A
pra | | o
5585 | a5t
368 | | 208
]
see] Tieloas
ind PG
£02 Gvh
BE9)
428 L
itg ey
Lpei P
£88 e
BiEie Cusz
223 Z61
[(343
=g Tigve
€% i
%
ot
-

PROGRAMS FOR BEGINNERS ON THE TRS-80™

40

LEVEL I LISTING

REM #* COPYRIGHT FRED BLECHMAM 1372 #

REM # 7217 BERMADINE AVE. . CANOGR PARK. CA 91287 =*
CLS:P, P " BINGD NUMEER CHLLER & YERIFIER"

S THIS PROGRAM WILL SELECT AND NOTE BINGO HUMBERS!

P. "FROM B-1 TO 0-75. WITHOUT REPEATING ANY HNUMBER. THE #¢

PO "NEKT TO A MUMBER IN THE TAELE INDICARTES IT HRS BEEM CRLLED.
P.oiPo" WHEN THE COMPLTER IS LOOKING FOR A NUMBER NOT

P "ALREADY CHOSEN. IT WILL PRINT “SEEK!“ UNTIL IT FINDS ONE!'"
e P FLAYERS USE BINGD CARDS AND MARKERS IN THE®

p* REGULAR WARY..... "

P, P IN "TO PLAY, ENTER A NUMBER FROM 5 - 25.... R

REM # SET ARRAYS FOR NUMEERS AND ASTERISE POSITIONS *
15 CLSs

16 M=181 :N=115:5=71:T=5
17 FOR X=M TO H
18 RAXH=S
13 S=5+64
26 N X -
21 M=M+HLSN=MN+AS:S=T+11:T=5
22 IF N=198 GOTO 24
22 GOTOD 17
24 B=66:C=111
25 P M
25 =1, : A=l
36 D=D+i
48 F.Y=B

POO~N® AN

s
W B

(5
Y

78 A=A+1S

S8 N Y

98 B=B+&4 :0=C+64

ia8 IFY>ieln G 158

118 G 26

142 REM * DRAW YERTICAL COLUMNS
158 FOR ¥=3 TO 47

155 FOR 2=1 TO 14

158 READ X

ive SET(HE. Y

175 M. 2

i7& PESTORE

isa N Y

133 D, X, 49, 25, 41, 47, 63, €3, 85, 91, 187
195 REM # SET ARRAY 1-75 TO ZERD *
208 FOR ®=1 TO 75

218 R(Xr=@

228 NoXH

225 REM * RANDOMIZE AMD SELECT A NUMBER HWOT ALRERDY USED *
228 FOR ¥=1 TO R:N=RHDI7?S) N ¥

231 HK=RND(?55

235 IF ACKI<CO8 P ATL2Z. "SEER! Y

248 IF ACKYC>A THEN 226

245 REM * PRINT NUMBER AND ASTERISKE *
258 F.A=1 TO X

268 P AT 12X, A3

273 N A

273 =H-1

288 ACHI=A

285 P ATACLBA+AD, "+

286 IF X<1& POAT122. "B-"i X :G. 295
287 IF XCR1 P OATL22, "I-":: :G. 295
288 IF M<46 P ATL22, "N-"; ¥ 16, 295
289 IF X<B1 POAT122, "G-"; ¥ G, 295

290 P.ATLZ2, "0-"3 ¥
295 P AT248, " %

208 IN. "AGAIN"; A%

305 P AT243, " "
38 P ATL2L. " "
z2@ 0. 238

PROGRAM 7: B-I-N-G-O

41

LEVEL Il LISTING

1 REM % COFYRIGHT FRED BLECHMEN 1978

2 REM « 7217 BERMNADIME AVE. . CANOGA PARK. TR 913207 #

Z REM * TRS-298 LEVEL I =*

4 DIMRCLTSS

S CLS:PRIMT" BINGD MUMEER CALLER AMD VYERIFIER®"

& . PRIMT:PRINT® THIS PROGRAM WILL SELECT AND MOTE RINGO MUMBERS"
¥ OPRINT"FROM B-1 TO O-75, WITHOUT REPEATIMG AMY MNUMBER. THE *"’

3 PRINTUNEXT TO A NUMBER IN THE TRBLE IMDICRTES IT HRS BEEN CALLED, *
Q

2 PRINT:PRINT" WHEM THE COMPUTER IS LOQKING FOR A NUMBER MOT"
18 PRINT"ALREADY CHOSEN, IT WILL PRINT “SEEK!“ UNTIL IT FINDS DME!"
11 PRIMT:PRINT" PLAYERS USE BINGO CARDS AMND MARKERS IM THE"

12 PRIMT® REGULAR WAY. . . . "

12 PRINT:PRINT:INPUT"TO PLAY. EMTER A MUMBER FROM S - 25 .. ";R

14 REM # SET ARRAYS FOR NUMBERS FMD ASTERISK POSITIONS *
15 LS |

16 M=181:N=115:S=71 : T=S

17 FOR V—H TO N

18 ACKI=S
19 S=S+a4
2R MENTY

24 M=M+15: N=N+15:S=T+11:T=5
22 IF N=19/ GOTO 24
2% G0TO A7
24 B=fgG:C=144
25 PRINT® 2 1 M G o
25 D=1 A=D:GOTI48
Z6 D=D+1:R=D
48 FORY=B TO C STEP 14
58 PRINTEY, A;
7@ A=R+15
8@ MNEXTY
98 B=B+€4:C=C+E4
188 IFY>19ie GOTOLSA
118 GOTORE
148 REM *» DRAW VERTICAL COLUMNS =
158 FOR ¥=32 T0O 45 ’
155 FOR Z2=1 TN 418
168 READ X
178 SETK. ¥
175 MEXTZ
176 RESTORE
188 NEXTY
198 DRTAZ, 19, 25, 41, 47, B2, 69, 85, 91, 167
195 REM * SET RRRAY 1-75 TO ZERO *
288 FOR ¥=1 TO 7S
218 RMI=@
228 NEXTX
225 REM * RAMDOMIZE AMD SELECT A MUMBER NOT ALREADY USED *
228 FOR ¥=1 TO R:MN=RNDC(?S) MEXTH
221 X=RNHD{TS)
235 IF AMICOB PRINTELIZR, "SEEK' Y
IF ACKIC>R THEM 228
PRINTEL2Z, "
REM * PRIMNT MNUMBER AND RSTERISK *
FiaRA=1 TO X
FRINTE 12%. A:
MEXTH
R=H—1
ST
PPINT@Hr1UB+H> B]
e PRIMTELE -“8—“;1;:unTn
S ol s:hDTnQQR
XL4€ PRINTEY "N—":,-:GUTD;MS
IF R<8L PRINTELZE. "G="; ¥ GOTO29S

42 PROGRAMS FOR BEGINNERS ON THE TRS-80™

298 PRIMNTELZZ2, “0-"; b

235 PRINTE24E. "AGRIN?";

IA8 AE=INEEYS: IF Af="" THEM 0@
ZAT PRIMTEZ4S, # "5

218 PRIMTELZL, "]

328 GOTO232a8

PROGRAM 7 RUN

BINGO NUMBER CALLER AND VERIFIER
THIS PROGRAM WILL SELECT AND NOTE BINGO NUMBERS
FROM B-1 TO 0-75, WITHOUT REFEATING ANY NUMBER. THE ¥
NEXT TO A NUMBER IN THE TABLE INDICATES IT HAS BEEN CALLED

WHEN THE COMPUTER IS LOOKING FOR A MUMBER NOT
ALREADY CHOSEN, IT WILL PRINT "SEEK!’ UNTIL IT FINDS ONE'!

PLAYERS USE BINGO CARDS AND MARKERS IN THE
REGULAR WAY.

TO PLAY. ENTER A NUMBER FROM 5 - 25. .. .7 18

B I N G

1 16 31 46 X N- 36
2 17 32 47

3 18 x 33 48 AGAIN?
q 19 34 49

5 20 35 50

3 21 36 x 51

7 22 37 52

8 X 23 38 53

9 24 39 54

10 25 490 55 X

11 % 26 41 56

12 27 % 42 X 57

13 % 28 43 58

14 29 44 59 b 4

15 30 45 % 60

* ¥

Line 15 clears the screen, and line 16 assigns values to
variables M, N, S, and T. These variables put numbers into an
‘“‘array”’ for later use. An array is merely a way of storing data in an
organized fashion. Think of it as a bunch of empty boxes that can be
stacked in the desired number of columns (up and down) and rows
(across). In this program you can think of the array as being 35 rows
high and 5 columns across for a total of 175 ‘‘array locations.’’ We
won’t use all these locations, but in some we’ll store data. First, we
are going to use Array A, the only one available in Level I, to hold
the printing locations of the 75 possible asterisks we may need later

PROGRAM 7: B-I-N-G-0 a1

in the program for numbers chosen. At this point, we’ll ignore the
first 100 array locations and start with number 101.

Since this is tricky, dig in your heels and let’s go! Lines
17-20 are a FOR-NEXT loop using X as the counter, with limits
from M (equals 101) to N (equals 115). In other words, we start out
with X equal to 101. Line 18 sets array location A (161)—since X
equals 181—to the value of S, which is 71 (line 16). This puts a value
of 71 into “‘box’’ number 101 in our array.

‘The value of 71, in this case, occupies a print location in
which we may need to print an asterisk later. This is a way of putting
this print location in memory to be retrieved later, if needed.

Why a value of 71? You’ll need to refer to Fig. 7-1 to make
any sense out of what follows. The print locations start at # in the
upper left corner and first go left to right, and then from top to
bottom, with 64 spaces per line, and finally end with print location
1623 in the lower right corner. Print location 71 is eight spaces from
the left edge on the second line. Later on, if the computer chooses
number 1 when selecting random numbers, an asterisk will be
printed at print location 71. This location number is now stored in
A-array 101.

Line 19 increases the value of S by 64—one line on the
display—to 135. Line 20 tells the computer to go back to line 17 and
advance the loop counter, X, by 1 since no other STEP was specified
in line 17. Thus, X is now equal to 102. Line 18 sets array location
102 to the new value of S, which is 135. Line 19 advances S again by
64 to 199, line 20 sends the program back to line 17, and the next
value of X, 103, is established. The program continues this process
until X is equal to 116, since line 17 set the limit of X to 115, the
value of N set in line 16. What has all this accomplished? It has
stored numbers in array locations 181-115. These numbers represent
print locations along the left side of the screen, each eight spaces in
from the left side, and one below the other. The program may call
for these locations later (the array is where they’re stored in an
organized fashion so that they can be ‘‘found’” later). Put another
way, the program can be directed to a particular array location and
use whatever number is stored there.

Confused? Read the last few paragraphs over again until
you follow what’s happening. Arrays are superpowerful in program-
ming and can be used as variables—an especially important role for
them in Level I where conventional variables are limited to A
through Z.

Line 21 simply advances the array location limits by 15—

_ think of it as the next column—and the print locations by 11, further

44

PROGRAMS FOR BEGINNERS ON THE TRS-80™

to the right. The variable T was initially set to equal the original
value of S in line 16; now line 21 increases the original S by 11 to 82,
and then T is set to the new value of S.

Line 22 checks to see if the new value of N is equal to 190.
Since N equals 13@ at this point, the program continues to line 23,
which sends the program back to that blasted FOR-NEXT loop in
line 17! Take it easy, however; things aren’t as bad as they appear.
All that happens is that the computer now stuffs array locations
116-130 with 15 numbers starting at 82 and increasing by 64 to 978.
If you look at Fig. 7-1, you’ll see that these are print locations 19
spaces from the left side of the screen, one below the other, from the
second to last row. These form the second column of asterisk
locations that might be needed later.

Similarly, the program continues operating between lines 17
and 23 until N equals 199 (after five times through line 21); then the
program jumps to line 24. By this time, A-array locations 161-175
are all filled with numbers.

So far, nothing has happened on the screen while A-array
locations 101-175 were being loaded (a job that takes only a little
over a second). Fortunately, even if you didn’t understand a thing
you just read about loading the array, the computer does, and fast!

Line 24 assigns values of 66 to B and 111 to C. These will be
used in line 44. Line 25 prints B I N G O spaced across the screen as
column headings on the first line. Be very careful about the spacing
on this line. Leave three spaces after the starting quotation mark and
10 spaces between letters.

Line 35 sets D equal to 1 and A equal to D and then sends
the program to line 40, skipping over line 36 at this point. This
process of establishing values for variables is called ‘‘initialization.”’
Now line 40 sets up another FOR-NEXT loop (through line 110).
This one will print the numbers 1 through 75 on the screen in five
columns of 15 consecutive numbers. Line 40 starts with Y equal to
66 (initialized in line 24). Line 60 prints the value of A (initialized in
line 35 as 1) at print location Y, which is 66. However, since the
TRS-80 leaves a blank in front of numbers (for a possible plus or
minus sign), the number 1 is actually printed at location 67. Line 70
increases the value of A by 15 to 16, and line 80 sends the program
back to line 4. Here, the value of Y is increased from 66 to 77, since
the end of line 40 says STEP 11. Now line 6 prints the number 16 at
print locations 77 and 78 (actually, because of the blank space, 78
and 79). Then A increases by 15 again, and so forth, printing the
numbers 31, 46, and 61 across the second screen line, 11 spaces
apart. However, the next execution of line 40 sets the value of Y to

PROGRAM 7: B-I-N-G-0O

45

121. Since this is greater than the value of C (set at 111 in line 24),
the program moves on to line 99, where B and C are both increased
by 64 to move the printing locations down one line. Line 100 inspects
the value of Y to sec if it exceeds 1014. Since it doesn’t, line 110
sends the program to line 36. Here D is advanced by 1 to a value of
2, and A is set equal to the new D. Now the program goes through
the FOR-NEXT routine again, printing the numbers 2, 17, 32, 47,
and 62 across the next screen line. Do you see what’s happening?
The screen is being printed from left to right with five columns of
numbers (which read from top to bottom).

This looping continues until all 75 numbers are on the
screen. The last one is printed at screen location 1007 (Y = 1006).
Since Y next becomes greater than 1910, line 100 sends the program
to line 150. '

Lines 150-190 draw 10 lines down the screen to separate the
75 numbers into five distinct columns. It does so with the SET
command and DATA statements. We’ve run into the SET command
before, but DATA statements are a new, and extremely handy,
programming tool. They will be used extensively in some later
programs.

Line 150 sets up a Y-variable FOR-NEXT loop, with values
for Y of from 3 to 47. Line 155 uses Z in a FOR-NEXT loop to count
from 1 to 10. Line 160 says READ X. What does that mean? It
means that somewhere in the program there’s a program line that
starts with DATA (or D.). Conveniently, it is right nearby—at line
190. Actually it could be anywhere in the program.

Now that the computer has found DATA, it reads the first
value of that line (in this case, the number 3) and sets the variable X
(since line 160 said READ X) equal to that value. So X equals 3. Line
170 says to use this value, together with the current value of Y

* (which is also 3, from line 150), and to set (light) that point on the

screen. Now line 175 says to go back to the Z FOR-NEXT statement

(line 155) and increase Z to 2. Line 160 reads the next DATA value

(19) and assigns this value to X, and line 17 lights point (19,3) on

the screen (X equals 19; Y is still equal to 3). Check Fig. 7-1 to see

where these X and Y positions are located; they are the small
numbers on the chart.

This process continues until all 1§ DATA numbers have
been used. At this point, Z becomes 11, so that line 175 falls through
to line 176, RESTORE. RESTORE is another new command; it
simply means to put the DATA numbers back in the DATA memory
as if they had never been ‘‘used.”’ Thus, line 190 is ‘‘restored’’ with
all the values shown.

46

PROGRAMS FOR BEGINNERS ON THE TRS-80™

Line 180 sends the program back to line 150, where Y is
increased to 4. Now 10 more spaces are lighted across the screen at X
locations 3, 19, 25, 41, 47, 63, 69, 85, 91, and 107 and Y location 4.

This whole process keeps drawing 10 lines down the screen
until Y equals 48 and Z equals 11. The program then moves on to
lines 200-220, another FOR-NEXT loop. This one is simple. It
quickly sets the values in A-array locations 1-75 equal to zero.
You’ll see why later.

Let’s pause for a moment to see what’s happened so far. The
screen shows 10 vertical lines, with the numbers 1 through 75 in
columns of 15 numbers, with each column headed by a letter.
Unseen, but in the A-array memory, array locations 1-75 are all set
at zero, and array locations 161-175 contain asterisk print locations.

It’s finally time for the computer to choose a number from 1
to 75. But first, the simple FOR-NEXT loop in line 230 “‘seeds’’ the
random-number sequence R times (almost instantly). R is the
number you entered back in line 13. This precaution makes it
unlikely that games starting from computer turn-on will choose the
same numbers (unless you make R the same).

Line 231 selects a number from 1 to 75. Lines 235 and 240
check to see if this number has been selected previously by looking at
the value stored in the array location corresponding to that number.
If the value is zero, then this is a ‘‘new’’ number, and the program
falls through to line 250, which starts yet another FOR-NEXT loop.
The purpose of lines 25¢-270 is to print numbers near the upper
right corner of the screen, starting with number 1, and increasing by
1 up to, and stopping at, the randomly chosen number, X. The
variable A is used, and the FOR-NEXT loop is completed when A is
equal to X plus 1 in line 27@. Line 275 brings the value of A back to
the chosen number, X. Now line 280 inserts this value in A-array
location X so that that location is no longer zero.

For example, suppose that the random number X chosen by
the computer in line 231 is 17. Since all A-array locations 1-75 were
previously set at zero (lines 200-220), then lines 235 and 240 are
ignored. Lines 250-27@ print at location 123 (actually, at location
124 because of the blank) first the number 1, then 2, then 3, etc., up
to 17. Line 270 sets the value of A at 18, which stops the FOR-NEXT
loop (since A is now larger than X in line 256), and line 275 resets the
value of A to 17. Line 28@ inserts the value 17 into A-array location
17.

The next time the number 17 is chosen, it will be ““caught’’
by lines 235 and 240. The word SEEK! will be printed (however
briefly) and another random number chosen. You do see why, don’t

PROGRAM 7: B-I-N-G-O

47

you? Because that array location is not zero anymore, as a result of
line 280.

Another thing happens when the program moves on to line
285. The asterisk we mentioned earlier is printed on the screen to the
right of the chosen number. The printing location is the value held in
the A-array location corresponding to the number chosen plus 100.
(Remember that we stored the asterisk print locations in array
locations 101-175.) In this example, since A is 17, the computer
looks in array location 117 and finds the number 146, then prints an
asterisk at print location 146—three spaces to the right of the 7 in
number 17. It’s like magic!

Next, lines 286-290 determine if the number chosen should
be preceded by a B, I, N, G, or O as a column designator. They do so
simply with IF LESS THAN inspections, PRINT AT, and GOTO.
Obviously, as soon as the proper prefix is found, it is printed with a
hyphen just before the number selected, and the program jumps to
line 295. Are you puzzled by line 295? This prints a blank two lines
below the selected number, and the semicolon establishes the
printing position of AGAIN? as called by the input statement of line
300, which halts the program. When ready for another number,
press ENTER. Lines 305 and 310 clear the printing in the upper right
corner, and the program then goes back to line 230 to pick another
number.

You can continue doing this until all 75 numbers are chosen.
As you begin to fill up the display with asterisks, the word SEEK!
will tell you that the computer is frantically looking for a previously
unselected number, and this search can take several seconds.

Press BREAK to exit the program.

The Level II version of this program removes most of the
abbreviations, adds line 4, and changes lines 295 and 300. Line 4
adds the DIM statement needed by Level II whenever more than 16
array locations are used to ‘‘dimension’’ the array. In this case, line
4 tells the computer that the program will use as many as 175 A-
array locations. The DIM statement is not used in Level I.

A peculiarity of Level II is that an input query, such as line
300 of the Level I program, wipes out the entire next line of the
display. In Level II you should thus use a print location to ask the
question and the INKEY$ function, as shown in line 300 of the Level
II program, to make the computer wait for your response. Almost
any keyboard entry—not just ENTER—allows the program to
continue. ‘

48

PROGRAMS FOR BEGINNERS ON THE TRS-80™

Modifications: With a graphic subroutine, you could print the
chosen number larger on the screen, but this trick is not exactly for
beginners (translation: I don’t know how!).

Variables:

A (X)—A-array location

R—random number seed

M-—asterisk array location (column start)

N—asterisk array location (column end)

S—asterisk print location

T—asterisk location shift

X—array counter; horizontal SET coordinate; random
number

B—number print location (start)

C—number print location (end)

D—number advance

A—numbers 1 through 75

Y—number print location; vertical SET coordinate

Z—READ-DATA counter

AS$—select number command

PROGRAM 7: B-I-N-G-O

49

PROGRAM 8

MY $600 DIGITAL CLOCK!
(4K, Level | or I)

You’ll learn: Setting timing loop duration; counting to a limit

Description: This program displays hours, minutes, and seconds
on the screen in a 12- or 24-hour format. You set the starting time
from the keyboard and can adjust the running speed within the
program.

Explanation: With only minor changes, this program will run in
Level I or Level II. The listing shown is in Level II language and
needs the following changes for Level I:

Lines 168 and 175: Change PRINT@ to PRINTAT
Line 170: Change 340 to 450

You can also use the normal abbreviations for Level I, such as P. for
PRINT and I. for INPUT.

Keyboard in the program; then type RUN and ENTER. The
REM statements, lines 96-103, provide information not displayed
on the screen. It is common for programmers to imbed nonessential
information in REM statements so that if you’re having difficulty
running or understanding a program, it’s always a good idea to
LIST the program and look for REM statements that could provide
additional information.

Lines 116-123 clear the screen and print instructions near its
top. When you press ENTER, the program continues on line 125,
where the PRINT command prints a blank line (since this is totally
unnecessary, it must have been ‘left over’” from program
development). Next, H, M, S, F, and X are set to zero in Level I but
not in Level II since the RUN command sets all variables to zero in
Level II but not Level 1. If you had run a previous program in Level
I using these variables, they would be held in the computer mem-
ory at the last value set. Line 130 defines the meanings of H, M, S,
and F.

Line 131 clears the screen, and the three PRINT commands
print three blank lines on the screen. This has the effect of moving

50

PROGRAMS FOR BEGINNERS ON THE TRS-80™

LEVEL I/l LISTING

96 REM X DIGITAL CLOCK PROGRAM X

97 REM X TRS-80 LEVEL I OR LEVEL II X

98 REM X SET CLOCK SPEED AT LINE 170 X

99 REM X APPROXIMATE COUNT FOR LEVEL I IS 4508; FOR LEVEL 11 340%

100 REM X COPYRIGHT FRED BLECHMAN 1978 X

181 REMW ¥ 7217 BERNADINE AVE., CANOGA PARK. CA 391307 X

183 REM X CLOCK SPEED IS SET AT LINE 170 X

110 CLS:PRINT

126 PRINT" MY $600 DIGITAL CLOCK!"™

121 PRINT:PRINT:PRINT" SET THE HOURS, MINUTES AND SECONDS YOU WANTY
122 PRINT"AS A STARTING TIME. IN EITHER 12 OR 24 HOUR FORMAT...."

123 PRINT:PRINT: INPUT"WHEN READY TO SET STARTING TIME, HIT ’ENTER’ " A%
125 PRINT:H=0:M=0:5=0:F=0:X=0

1306 REM X LET H=HOURS.M=MINUTES,S=SECONDS.,F=FORMAT X%

131 CLS:PRINT:PRINT:PRINT

135 [INPUT"12 OR 24 HOUR FORMAT";F

136 IF (FO12)X(F<>24) PRINTYINVALID ENTRY! TRY AGAIN":GOTO 135

148 INPUT" STARTING HOURS";H

145 IF F=12 THEN IF H=0 PRINT“INVALID ENTRY! TRY AGAIN":GOTO140

146 IF F=12 THEN IF H>12 PRINT"INVALID ENTRY! TRY AGAIN":GOTO14¢

147 IF H>23 PRINT"INVALID ENTRY! TRY AGAIN":GOTO 140

1580 INPUT"STARTING MINUTESYM

155 IF M>59 PRINT"INVALID ENTRY! TRY AGAIN":GOTO 150

168 PRINT:PRINT"THE CLOCK WILL START COUNTING WITH THE NEXT ENTRY. .. .®
164 PRINT: INPUT"STARTING SECONDS";S

165 IF S>53 PRINT"INVALID ENTRY! TRY AGAIN":GOTO 164
166 CLS

167 PRINT:PRINT:PRINT" MY $600 ";F;"HOUR DIGITAL CLOCK!"
168 PRINT@404, "HOURS", "MINUTES" , "SECONDS"
169 GOTO180

170 FOR X=1 TO 340:NEXT X

175 PRINTE468.H.M.S;

180 8=S+1

199 IF S=60 THEN M=M+1

208 IF 5=60 THEN S5=0

210 IF M=60 THEN H=H+1

229 IF M=6® THEN M=0

225 IF H=24 THEN H=0

226 IF F=24 GOTO 250

230 IF H=13 THEN H=1
250 GOTO 17e

the first printed line down from the very top of the screen. Line 135
asks you to enter 12 or 24 to define the time format. Most people in
the United States use the familiar 12-hour AM or PM method. of
describing time. However, the military, and many foreign countries,
use the 24-hour format, where ““0’’ hours is midnight, ¢‘12’’ hours is
noon, and ‘“15°” hours, for example, is 3 PM. Figure 8-1 shows this
relationship. Minutes and seconds are the same in both systems.

USTME 121 234567 89WNIRT 234567898012
MILITARY 61 2345678 9161 213411617 1819202 2225 §
FOREoN ‘

MIDNIGHT NOON MIDNIGHT

Fig.8-1. Time relationship

PROGRAM 8: MY $600 DIGITAL CLOCK!

PROGRAM 8 RUN

My $662 DIGITAL CLOCK!

SET THE HOURS, MINUTES AND SECONDS YOU WANT

AS A STARTING TIME. IN EITHER 12 OR 24 HOUR FORMAT.. ..

WHEN READY TO SET STARTING TIME., HIT 'ENTER” °?

12 OR 24 HOUR FORMAT? 12
STARTING HOURS? 7
STARTING MINUTES?Y 34

THE CLOCK WILL START COUNTING WITH THE NEXT ENTRY.. ..

STARTING SECONDS? 15

MY $600 12 HOUR DIGITAL CLOCK!

HOURS MINUTES SECONDS
7 34 21

Line 136 is an entry-error trap to prevent you from entering
any number other than 12 or 24. If you do, the program prints the
error message and sends you back to line 135.

Line 140 asks for the starting hours. If you establish that
you want the 12-hour format in line 135 (variable F), then you must
enter a number from 1 to 12 here. If you choose a 24-hour format,
then the number you enter here cannot be greater than 23. Lines
145-147 check your entry to be sure you haven’t ‘‘goofed’’; they
won’t accept an improper entry.

Lines 150 and 155 allow you to set starting minutes,
rejecting anything over 59 since 60 and over are invalid entries.

Line 160 prints a blank line and then the warning that
counting starts with the next entry. Line 164 prints a blank line and
asks for starting seconds. Enter a number a few seconds ahead of
actual time, and then press ENTER when the two coincide. Line 165
checks to be sure you didn’t enter a number over 59. Line 166 clears
the screen. Line 167 prints two blank lines and then the title on the
third line from the top of the screen. Line 168 prints headings
starting at print location 404. Since the commas place the printed
headings at the beginning of printing ‘‘zones’’ located 16 spaces
apart, don’t forget them. Line 169 sends the program to line 180.

Line 180 adds 1 to S. Line 198 checks the new value of S to
see if it has reached 6@. If it has, 1 is added to the value of M, since

52

PROGRAMS FOR BEGINNERS ON THE TRS-80™

60 seconds equal 1 minute. Line 200 then sets S equal to zero if it has
reached 60. Therefore, S goes from zero to 59, which represents 60
counts.

Line 210 looks at the new value of M to see if it has reached
60, since there are 6@ minutes in an hour. If it has, then 1 is added to
H, and line 220 sets M equal to zero.

Line 225 inspects the new value of H. If it has reached 24,
then it is reset to zero. Line 226 examines the value of F to see if you
asked for a 12- or 24-hour format. If you did, the program jumps to
line 250. If not, line 230 checks to see if it equals 13. Since, in the 12-
hour mode, the hour after 12is 1, not 13, H is set equal to 1 if H has
reached 13.

Line 250 sends the program back to line 170.

Line 179 is a timing loop to insert a delay so that all
processing from line 170 to line 250 takes 1 second. This timing loop
is different for Levels I and II. Surprisingly, Level II loops at a
slower rate; that is, each loop takes longer than the same loop in
Level I. As a result, the TRS-80 in Level I must count to a higher
number—around 450. Changes in this number (450 in Level I, 370 in
Level IT) determine the counting accuracy. Even a change of 1 count,
such as changing 378 to 369 or 371, will have an observable effect
after about 30 seconds if you compare the seconds-counting with an
accurate clock or chronograph.

You may have to experiment a while with the number you
use in line 170 in order to get an exactly 1-second time loop from
lines 170 to 25@. The proper number depends on the running speed
of your particular machine as well as on temperature and humidity.
Unfortunately, the TRS-80 was not designed to be a precision time-
piece!

Line 175 prints the values of hours, minutes, and seconds
under the respective headings, properly spaced by the commas. Lines
180-250 have already been described.

The process of adding seconds and inspecting, changing,
and printing values for S, M, and H continues until you press the
BREAK key.

Modifications: You could use graphic commands (SET or
CHRS) to draw boxes around the numbers, making the display look
fancy. You could even use subroutines and the CHR$ command to
create large graphic digits and call these subroutines from the
program for each digit. To do so adds considerable complexity to an
otherwise simple program, without increasing accuracy.

PROGRAM 8: MY $600 DIGITAL CLOCK!

53

Variables:

AS$—any keyboard entry to continue program
H—hours

M—minutes

S—seconds

F—12- or 24-hour format designator
X—timing loop counter

54 PROGRAMS FOR BEGINNERS ON THE TRS-80™

PROGRAM 9

MY $600 ADDING MACHINE!
(4K, Level | or Level ll)

You’ll learn: Column placement; simple branching; number
accumulation '

Description: This is an example of ‘‘computer overkill,’”’ but if
you don’t have a “‘printing”’ calculator or adding machine, it will do
the job!

This program adds and subtracts, displaying the amounts
one below the other. You ENTER a ‘@’ to get a subtotal and a ‘‘1”’
to continue with some more numbers. ENTER a ‘@’ after a
subtotal and you will get a total. You can then use the program again
or exit the program. !

The only change in the listing to make it suitable for Level I'

occurs in line 620. Use PRINTAT instead of PRINT@.

Explanation: This program illustrates a number of simple
techniques that will be used in later programs. Its primary purpose is
to serve as an introduction to adding numbers and formatting their
display.

Notice that the first line number is 50@. Where is it written
that you must start a program at line 16 or 100? Although most
programmers start with low line numbers, you can start anywhere
within the line number range of the computer (32767 for Level I,
65529 for Level II).

Lines 500-502 identify the programmer, computer
language, and memory. It’s a good idea to incorporate this feature
in every program. If you keyboard in a program designed for
another version of BASIC, it may not work on your TRS-80. Also,
some programs that look short enough to run in 4K may use large
arrays or lots of ‘‘strings,’’ and they may require a larger memory.
Line 502 makes it clear that this program will operate with a TRS-80
Level I or Level II machine with a 4K memory. Line 508 starts out
with CLS for “‘clear screen.”’ Although we’ve used this statement in
earlier programs, we haven’t talked about it. CLS is one of the most

PROGRAM 9: MY $600 ADDING MACHINE!

55

LEVEL I/l LISTING

5
b=
S
=
=1

R U B
LRV K]

-

¥

)

FEM # COPYRIGHT FRED BLECHMAM 12758

REM # 7247 BERMADIME AVE. . CANOGR PARK., CA SL1207 0+
REM + TRES-39 LEVEL T OR LEWVEL T7 <4k =
CLE:PRINT:PRIMT

PRINTY S MY SR ADDING MACHTNEY (PRINT
PRINT :PRIMT" THIS PROGRAM DISPLAYS AND ARLS DR SLBTRACTS
FRINTYAND GIVES YOU SURTOTALS AND TOTARLS. JUST FOLOW THE"

FRINTUINSTRUCTIONS., REMEMEER., T0O GET A SUBTOTAL. JUST EMTER"
FRINT"A ZERD AND FOR THE GRAKND TOTAL. EMTER ZERD AGRIN ..

FRINT :PRINT FRINT IMFUT"MHEN YOLIYRE RERADY TO START. HIT "EMTER-

s

PRINT PRINT"ENMTER EACH AMOUMT. LSE A MNEGATIVE SIGN. FOR MIMUS®
FRIMT"NUMBERS., ENTER @ FOR SUBRTOTAL.

B=3:FRINT

PRINT" i IMPLITHR

IF A=@ GOTO S8

E=B+R

GOTO S2H

FRINT:PRINT"THE SUBTOTAL IS B

FPREINT

IMPUTHTO COMTINUE. ENMTER 1. FDOR FIMAL TOTAL. EMTER 8 “:C

IF C=1 GOTO 5ZA

PRIMNT :PRINT"THE FIMAL TOTAL IS':B

FRINT

INPLITYAGRTIMT? YES=1, NO=@ “:D

IF D=1 G070 515

CLS:PRIMTRE4RA4, "GLAD T HELF. GOODERYE. . " PRIMT:PRINT FRIMT
END

powerful formatting statements in BASIC. What? A simple thing
like clearing the screen is ‘“‘powerful?’’ Yes! It accomplishes several
things: (1) You start anew with a blank screen, thus eliminating
previous distracting text, tabulations, graphics, or whatever; (2) you
have the upper left corner of the screen as a new ‘‘starting point”’ for
whatever you wish to display next; and (3) you can highlight what
comes next, since there’s nothing else on the screen. It’s just like
starting a new page in a book. Properly used, CLS will make your
programs easier to understand and use.

The two PRINT statements in line 508 print blank lines so
that the PRINT statement in line 59 will not be at the very top of
the screen. When formatting instructions, such as those on lines
516-514, place them somewhere near mid-screen. Notice how the
ending PRINT on line 539 and the first PRINT on line 514 “‘skip”’
two lines. Also notice how the three PRINTS at the beginning of line
514 move the ‘‘ready to start’’ prompt to the fourth line below the
instructions. While these formatting considerations make no
difference in program operation, they do create a more professional
appearance. Furthermore, there are times when knowing how to
space lines properly can prevent unwanted erasure of those already
on the screen or allow you to intentionally erase those no longer
needed.

56

PROGRAMS FOR BEGINNERS ON THE TRS-80™

PROGRAM 9 RUN

MY $600 ADDING MACHINE

THIS PROGRAM DISFLAYS AND ADDS OR SUBTRACTS
AND GIVES YQOU SUBTOTALS AND TOTALS. JUST FOLLOW THE
INSTRUCTIONS. REMEMEER, TO GET A SUBTOTAL. JUST ENTER
A ZERD AND FOR THE GRAND TOTAL. ENTER ZERO AGAIN. . ..

WHEN YOU’RE READY TC START., HIT "ENTER’ 7

ENTER EACH AMOUNT. USE A NEGATIVE SIGN FOR MINUS
NUMBERS . ENTER @ FOR SUBTOTAL......

? 123.45
? 53.36
? -17.65
7O

THE SUBTOTAL 1S 159.18

TO CONTINUE. ENTER 1. FOR FINAL TOTAL., ENTER © 7 1

14.78
-34.56
456.66
@

3)))

THE SUBTOTAL 1S 596.04
TO CONTINUE. ENTER 1. FOR FINAL TOTAL. ENTER © 7 @

THE FINAL TOTAL 15 596.04

AGAIN? YES=1, NO=@ 7 @

GLAD TO HELP. GOODBYE.....

Now that we’ve covered these general points, let’s get back
to the purpose of the program—to add and display numbers in a
column. When you press ENTER, line 515 clears the screen again,
and lines 520 and 521 summarize the instructions near the top of the
screen. Line 525 assigns a value of @ to variable B and skips one line.
Line 530 prints a series of blank spaces that move the following
INPUT prompt ““?”! almost halfway across the screen. Why?
Because it looks better than having the question marks and numbers
you enter hugging the left side of the screen. The number of blank

PROGRAM 9: MY $600 ADDING MACHINE!

57

spaces in line 530 determines the spacing across the screen. Don’t
overlook the semicolon and colon before INPUT A. Incidentally,
you. could also change the word PRINT in line 530 to INPUT and
delete the colon and the word INPUT near the end of the line (but
leave the semicolon and A) with no change in operation. Even
BASIC frequently allows more than one way ‘‘to skin a cat.”’

The INPUT A statement in line 530 stops everything until
you make a keyboard entry of a number. Type 123.45 and then
ENTER, for example. Line 535 checks to see if you entered a zero; if
you did, the program jumps to 560 to give you a subtotal. However,
since you typed in a number other than zero (even a negative number
is okay), the program moves on to line 540. Here the peculiar
notation B=B+ A appears. To anyone familiar with algebra, this
equation is ridiculous. However, to your friendly TRS-80 BASIC
interpreter, it simply means ‘‘make B a new value equal to the
present value of B plus the present value of A.”” Since B was set to
zero in line 525 and has not changed in value until now, and since
you entered a value of 123.45 for A, the computer assigns a new
value to B of @ plus 123.45, or 123.45.

Line 550 sends the program back to line 530, which asks for
another INPUT A with a question mark. Let’s say that you type in
53.36 and then ENTER. Since you didn’t enter a zero, line 535 is
ignored. Line 540 now establishes a new value for B of 123.45 plus
53.36, or 176.81. Although this number doesn’t show on your
screen, the computer holds the value for variable B in its memory.

Once again the computer goes back to line 530 and displays
a question mark on the next line to await your entry. Type and enter
—17.65. Line 535isignored, but line 540 calculates a new value for
B again. This time it’s the last value of B (176.81) plus a negative
17.65, for a result of 159.16 that is held in memory for the new value
of B.

You can do this as many times as you like, with numbers
scrolling up and off the screen after the fifteenth entry. However,
we’ll make the next entry a zero. Now line 535 jumps the program to
line 560, where a blank line is printed, followed by ‘“THE
SUBTOTAL IS’’;B. Finally, here’s where the variable B comes out
of hiding. The value printed is, of course, 159.16.

Line 565 skips a line. Line 570 gives you a choice of con-
tinuing by entering 1 or getting a final total by entering @. Up to 11
previous entries will still be displayed. If you enter 1, line 584 sends
the program back to line 530 for another entry. If you enter @, line
590 skips a line and prints the final total, B.

58

PROGRAMS FOR BEGINNERS ON THE TRS-80™

Line 595 skips a line. Line 600 gives you an opportunity to
add a whole new series of numbers from zero, and line 616 sends the
program back to line 515. If you don’t want to g0 again, the com-
puter politely exits the program in lines 620 and 634.

While much of the above is very elementary and quite basic
to computer programming, its very simplicity tends to make it
overlooked in many texts; consequently, we’ve covered it here in
detail. This is, after all, a beginners’ book!

Modifications: Programs 10 and 11 show how the basic column
adding technique can be expanded to many columns and how more
totals can be held in memory. As an exercise, try to develop your
own multiplication or division program but don’t try dividing by
zero!

Variables:

A$—start program

B—total of entries

A—this entry ‘
C—select continue or total
D—select repeat or exit program

PROGRAM 9: MY $600 ADDING MACHINE!

59

PROGRAM 10

ORDER FORM TOTALS
(4K, Level | or II)

You’ll learn: Multiple column formatting; bottom-of-screen
prompting; line erasing; print formatting.

Description: With this program you can add four columns of
figures, such as are used in ordering or invoicing forms. The figures
are displayed in their respective columns under headings. The entry
prompt appears at the bottom of the screen, and the entries print on
lines one below another on the screen. After the eleventh line, the
figures scroll upward with each new line.

When totals are requested, a line is drawn beneath the last
entries, totals for each column are displayed, tax and handling are
added, and a grand total is shown.

Explanation: Lines 95-107 are introductory REM statements
that don’t appear on the screen (except when the LIST command is
used) and program instructions that do appear on the screen when
the RUN command is used. The INPUT and A$ on line 147 hold the
instructions on the screen until ENTER is pressed.

Line 108 clears the screen, and line 110 prints column
headings on the top line. Other headings, such as “WHOLESALE,”’
“DISCOUNT,” ‘“DEALER COST,” ‘“SUGG. RETAIL,” or
“AREA#1,” ““AREA#2,” ““AREA#3,” ‘““AREA#4,” can be used to
suit your needs. The important thing to know is that print zones,
each 15 characters wide, are being used because of the commas
between the quotation marks. Therefore, don’t use column headings
with more than 15 characters, or you’ll bump into the next zone.

You might also wonder why PRINT@# is used, instead of
just PRINT. Since the screen was cleared in the previous line, either
will work. :

Line 111 sets variables P, B, C, and R to and variable X to
64. Any letters can be used for these variables, but it’s always a good
idea, when you can, to use variable letters that bear some relation to
the use. For example, when this program was originated, P was

60

PROGRAMS FOR BEGINNERS ON THE TRS-80™

LEVEL I/l LISTING

95 REM X TRS-80 LEVEL I OR LEVEL II 4K X

96 REM X THIS PROGRAM TOTALS FOUR COLUMNS X

97 REM X TAX AND HANDLING CAN BE CHAMGED OR OMITTED X
98 REM X COPYRIGHT FRED BLECHMAN 1978 X

99 REM X 7217 BERNARDINE AVE.. CANOGA PARK. CA 91307 X
10e CLS

181 PRINT:PRINT" ORDER FORM TOTALS"

102 PRINT:PRINT®" ENTER THE FIGURES FOR EACH OF THE COLUMNS ACRGSS"

163 PRINT"EARCH LINE OF THE ORDER FORM AS REQUESTED. WITH A COha"
184 PRINT"BETWEEN EACH FIGURE. WHEN YOU*VE REACHED THE END OF THE"
185 PRINT"FIGURES, ENTER 9.9.,@,0 FOR TAX. HANDLING AND TOTALS."
1866 PRINT" (TAX AND HANDLING CALCULATED IN LINES zZ40-260)"

107 PRINT: [NPUT"WHEN READY TO START., PRESS ENTER...";A$

188 CLS . '

110 PRINTE&9,"COLUNMN 1","COLUMN 2", "COLUMN 3%, "COLUMN 4"

111 P=0:B=8:C=0:R=0:X=64

115 PRINT@R32," »

116 PRINTE&896." "
121 PRINT@83%6." *;

125 INPUT*ENTER COL.1,COL.2.COL.3.COL.4";E.F.G.H

126 IF G=0 GOTO 2¢9

127 IF X=768 GOTO 136

138 PRINTE® X.E.F.G.H

135 X=X+64: GOTO 140

136 PRINT:PRINTE® 704.E.F.G.H

149 P=P+E:B=B+F:C=C+G:R=R+H

160 GOTO115S

200@ PRINT®896." "

210 PRINTEX,"

230 FRINTP.B.C.R
240 T=.06XR
250 S=.02%R
260 M=C+T+S

265 PRINT® 6% SALES TAX. ... *;
270 PRINTTAB(33);T
276 PRINT*® HANDLING. "
280 PRINTTAB(33):S
299 PRINT® GRAND TOTAL..... "

380 PRINTTAB(31):HM]

310 PRINT:-INPUT"ANOTHER ORDER?(YES=1,N0=8)";A
3206 IF A=1 THEN 108

330 PRINT:PRINT"SEE YOU ANOTHER TIME. ’BYE...."™
349 END

chosen as a variable because the first of the four columns to be
added was “‘points.”’ Since the second column was ‘‘bonus,’”” a B
was used. C stood for ““cost,”” and R for “‘retail.”’

Lines 115 and 116 are used to clear the screen for 47 spaces
from the beginning of screen locations 832 and 896. These locations
are the beginning of screen lines 14 and 15 (see Appendix A). While
this area of the screen is clear right now, it won’t be for long, and
lines 115 and 116 will be used again later. The semicolon at the end
of line 116 is not required.

Line 121 merely serves to put the printing cursor back at
location 896 and prints one blank space. Since the semicolon
prevents cursor movement, the INPUT statement prints at that

PROGRAM 10: ORDER FORM TOTALS

61

PROGRAM 10 RUN

ORDER FORM TOTALS

ENTER THE FIGURES FOR EACH OF THE COLUMNS ACROSS

EACH LINE OF THE ORDER FORM AS REQUESTED. WITH & COMMA
BETWEEN EACH FIGURE. WHEN YQOU’VE REACHED THE END OF THE
FIGURES. ENTER 0.0.8,0 FOR TAX, HANDLING AND TOTALS.

(TAX AND HANDLING CALCULATED IN LINES Z40-260)

WHEN READY TO START, PRESS ENTER...7?

COLUMN 1 COLUMN 2 COLUMN 3 COLUMN 4
2.15 3.25 2.67 3.8
2.95 4.5 3.38 4.95
4.85 7.75 5.99 8.7
19.45 18.9 16.72 - 20.5
20.4 34.4 28.76 37.95

6% SALES TAX. ... z2.277
HANDLING. 759
GRAND TOTAL..... 31.796

ANOTHER ORDER? (YES=1.NO=@)7? @

SEE YOU ANOTHER TIME. ’BYE....

location. You now type in four numbers, separated by commas, and
press ENTER. The program holds these four numbers as variables
E, F, G, and H, in the same order as entered.

Line 126 looks to see if the third number, assigned to
variable G, is zero. If it is, the program jumps to line 209 for
totaling. Since we’re not ready for that yet, we’ll assume you typed
in some number (positive or negative) for the third entry, and line
126 is ignored. Line 127 checks the value of X to see if it is 768. Since
it isn’t, having been set to 64 in line 111, the program goes right to
line 130. ,

After all this investigation, line 130 finally does something.
It pgints, at screen location X (which is 64 at this time), the values of
E, F, G, and H. The commas insure that these values will be printed
under the column headings. This practice is called ‘‘zone printing.”’
Line 135 adds 64 to the present value of X for a new total of 128, and
the program branches to line 144.

Here’s some more of that ‘‘new math’’ you’ll get used to in
BASIC programming. Line 140 simply takes the existing values for
each column and adds them together to get new values. You might
think of P, B, C, and R as the accumulated values, and E, F, G, and
H as the last added values. A

Line 160 sends the program back to line 115 for another row
of entries. (Vertical lines on the screen are called ‘‘columns,’’ and
horizontal lines are called ‘‘rows.”’) Now you can see that lines 115

62

PROGRAMS FOR BEGINNERS ON THE TRS-80™

and 116 are necessary. They erase the printing created by line 125.
Actually, line 115 isn’t really necessary until the screen fills with
enough rows to scroll upward with each new set of entries. If you
substitute REM on this line, you’ll see the effect after eleven rows of
entries. In Level II, line 116 also isn’t necessary, although it is in
Level I. Level T and Level II do not handle print formatting exactly
the same way.

As you keep making entries in response to line 125 and the
program keeps adding 64 to the value of X in line 135, X equals 768
after the eleventh go-around and line 127 branches the program to
line 136. The value of X no longer increases, and all further rows of
inputs start at the twelfth screen line (location 704). The PRINT
statement at the beginning of line 136 causes the entire screen to
move up one line so that nothing is erased as the new line is printed
at location 704.

When you want a total, enter @, 8, 9, 9 (or 9,,,). Now line
126 sees G equal to zero and jumps the program to line 20@. The last
prompt is erased by line 200. Line 210 prints a dashed line right
below the last entry, and the last values of P, B, C, and R—the
column totals—are printed below the line.

Lines 240-260 calculate tax and shipping charges. The
variable T, which stands for “‘tax,”” is shown as 6 percent of the
“retail,”” R. The variable S, which stands for ‘‘shipping’’ or
handling, is shown in line 250 as 2 percent of the retail. Obviously,
you can make this a different percentage, and use cost or any other
basis you desire. Line 260 simply adds the cost, tax, and shipping for
- the grand total, M.

Lines 265-30@ title and print the tax, handling, and total.
The PRINTTAB statements put the results under the third column.
This position can be changed to suit your needs.

Lines 316-348 allow you to handle another order or end the
program.

Modifications: You might want fewer columns. If you do, just
leave out one or more. You can also add more columns, but be
careful! If you use large numbers (over 99,999.99), don’t use more
than four columns if you want to assure proper space separation.
For smaller numbers, you can go to six columns—perhaps even
eight—but you’ll have to work at formatting the columns with blank
spaces, PRINT@ or TAB. The advantage of only four columns is
the simplicity of zone printing.

What if you want to make changes after the totals? Add the
following lines:

PROGRAM 10: ORDER FORM TOTALS

63

305 PRINT:INPUT‘“CHANGES?(YES =1,NO =0)"’;D
306 IFD=1GOTO 115

This will allow you to add or subtract and get new totals, tax, and
handling. Some ‘‘old”’ lines won’t erase, but that’s only an aesthetic
consideration; the program will still give the correct figures.

Variables:

AS$—ready to continue
P—total, column 1
B—total, column 2
C—total, column 3
R—total, column 4
X—print position locator
E—column 1 entry
F—column 2 entry
G—column 3 entry
H—column 4 entry
T—tax
S—shipping/handling
M-—grand total
A—repeat prgram control

64

PROGRAMS FOR BEGINNERS ON THE TRS-80™

PROGRAM 11

SIMPLIFIED BOOKKEEPING
(4K, Level | or |l

You’ll learn: How to stop initial overscrolling in Level I;
formatting more than four columns with selected-column entry

Description: This program helps you to do simple income or
expense bookkeeping using a 12-column ledger. You can use it for a
small business or for personal finance accounting. Column 1 is used
for the amount of an income or expense. The other 11 columns are
“‘categories’’ into which this income or expense falls. This program
does not actually make ledger entries, but it allows you to add all
columns sequentially and display the totals at any time, including the
grand total.

Explanation: The listing for this program is the same for Level I
and Level II, expect that no Level I abbreviations are shown. If you
enter this program in a Level I machine and then LIST the program,
it will fill the screen and stop. To continue the listing, you must press
the up-arrow for each new line. However, you may find that some
line listings actually take up two lines on the screen, and when they
do, the displayed portion of the list scrolls up more than one line. As
a result, on initial listing, the first line or two may actually get
scrolled up and off the screen before you can read them. Unless the
screen prompt and LIST (or L.) are at the top of the screen, you may
not be able to see the first line or two of your program. The remedy
is to insert REM statements as line numbers before the regular
program. You’ll need from two to four of these, depending on the
lengths of the lines that list at the bottom of the screen. In this
program, lines 96-99 serve this purpose.

This precaution is not required for Level II listings, which
scroll up automatically but can be stopped by pressing the SHIFT
and @ keys at the same time.

Lines 109 and 101 identify the program author. Lines
105-129 clear the screen and print the program title and purpose.
Notice that the totals are limited to 9999.99. This restriction is due to

PROGRAM 11: SIMPLIFIED BOOKKEEPING

65

LEVEL I/l LISTING

& REM + THESE REM STATEMEMTS KEEP THE LIST FROM

VOREM SCROULLING TN LEVEL I LISTING =

REM + TRS-23@ LEWEL T OR LEVEL 11 =+

REM
REM # COPYRIGHT FRED BLECHMAN 1978 +
FEM & 7217 BERNADINE AVE. . CRANOGR PARK, OA 91387 +
CLS:PRINT
FPRINTY STMPLIFIED BOOKKEEPIMG" :PRINT :PRINT
PRINT" THE PURPOSE OF THIS PROGRAM IS TO RALLOW 0L TOW
FRINTYADD UP TO TWELYE COLUMMS OF FIGURES AT ONCE. SUCH &S TN
PRINT"A SIMPLE LEDGER BOOK. FOR EXAMPLE. USE COLUMM 4 RS THEY
PRINT"AMOUNT OF AM EXPENSE. AND THE OTHER ELEVEN DOLUIMNS FORY
PRINT"EXPENSE CATEGORIES. COLUMN 2 MIGHT BE MERCHRMDISE. COLUMMY
PRINT"Z MIGHT BE UTILITIES. AMD SO OM THE AMOUNTS ENTERED ALL"
PRINT"FALL IM COLUMM 1 AND ARE TOTALLED WHEN & ENTERED. "
FRINT:PRINT"TOTALS ARE LIMITED TO 9995 99! :PRIMNT:PRINT
IMPUT"WHEN READY TQ PROCEED. HIT “ENTER‘ ;A

CLE:PRINT :PRINT
PRINT® ENTER THE AMOLUNT AND COLUMN # FOR ERCH EXPEMSEY : PRINT
PRINT" ENTER 8 FODOR COLUMM TOTHLS

REM * INITIALIZE VALUES AT ZERD =
A=@:B=8:C=0:D=0:E=@:F=0:G=8: H=%: I=0: J=R

K=8:L=0:5=8:%=0 Y=@: =3

PRINT:PRINT

INPUT"AMOUMNT"; A

IF A=8 THEMN 24&

S=5+A

INPUT" COLLIMMY &,

IFCHC2+CADA20PRINT"COLYMN ENTRY ERROR ! DMLY 2-42 VALIDY : GOTCOL98
REM #* SELECT COLUMN AMD ADD TO PREVIOUS TOTAL *

OM W-1 GOTO 2008, 210, 228, 2360, 242, 253, 260, 278, 280, 290, 208

B=B+A: GOTOZ1LG
C=C+A: GATOZ18
D=0+F : GOTOZ16
GOTOZ48
GEOTOZLGA
GEOTOZLG

L GOTOZ
{GOTDZLA
.GOTOZ1A

GOTO 156

FEM # FORMAT HERDINGS AND PRINT COLUMM TOTALS +
PRINTYCOULIMN #95 TRRCLED, "1 TABCLD Y “2%; TREL 28 3%
FPRINTTABCET 2 "4 THECH YA TABCSS: e
PRINT"TOTALS="; TRB{9Y: S; TABC 127 TREC2?3: C
PRINTTABCZE: Du TREC45Y: E: TRBCSE): F

PRINT :FRIMT

PRINT"COLUMN #%: TARCLAY: "7V TABCAD) V8" TRRC2S) e,
PRINTTRECI7 2 “1RY; TABCAE: "44%: TARCSS); "42v
FRIMT"TOTALS=": TRECS: G: TRECAR H; TRBC27): 1;
FRINTTRBCZED: I TRBCAS Y 4G TABCSHY: L PRINT

REM #+ DRAW LINES TO SET ASIDE GRAMD TOTRAL *

V=0 FORM=26 TO 34:SETCW. ¥ NEXTH

41E FORV=24 TiJ 36:SETCW. Y2 NEXTY

428 INPUTYDO YOU WAMT TO ADD MORE ENTRIEST YES=1, NO=aY; ¥
4@ IF Y=1 GAOTO 15&

458 PRINT

el TNPUT" WOULED w0ou LIKE T STRART OWER? WES=1, NO=@"; 7
47@ IF Z=1 GOTA 129

475 QLS FRINT:PRIMT .PRIMT :FRIMNT

483 PRINTY EMD 0OF FPROGRAM -~ SEE YOLI AGAIN SOMETIME. ., . "
433 FRINT PRINT :PRIMT:PRINT :FRIMT
Sea EMD

66 PROGRAMS FOR BEGINNERS ON THE TRS-80™

PROGRAM 11 RUN

SIMPLIFIED BOOKKEEPING

THE PURPOSE OF THIS PROGRAM IS TO ALLOW YOU TO
ADD UP TO TWELVE COLUMNS OF FIGURES AT ONCE, SUCH AS IN
A SIMPLE LEDGER BOOK. FOR EXAMPLE., USE COLUMN 1 AS THE
AMOUNT OF AN EXFENSE, AND THE OTHER ELEVEN COLUMNS FOR
EXPENSE CATEGORIES. COLUMN Z MIGHT BE MERCHANDISE., COLUMN-
3 MIGHT BE UTILITIES, AND SO ON. THE AMOUNTS ENTERED ALL
FALL IN COLUMN 1 AND ARE TOTALLED WHEN 9 ENTERED.

TOTALS ARE LIMITED TO 89999.99!

WHEN READY TO PROCEED., HIT ’ENTER’ 7

ENTER THE AMOUNT AND COLUMN # FOR EACH EXPENSE
ENTER © FOR COLUMN TOTALS

AMOUNT? 123.45

COLUMN? 1
COLUMN ENTRY ERROR!! ONLY 2-12 VALID
COLUMN? 3
AMOUNT? 12.45
COLUMN? 7
AMOUNT? 314 .56
. -COLUMN? §
AMOUNT? ©
COLUMN £ 1 =4 3 4 5 6
TOTALS= 450.46 R @ 123.45 0 314.56 0
COLUMN ¥ 7 8 9 1e 11 12
TOTALS= 12.45 o (4 o} 0 1

DO YOU WANT TO ADD MORE ENTRIES? YES=1.N0O=0? @
WOULD YOU LIKE TO START OVER? YES=1,N0=07 @

END OF PROGRAM - SEE YOU AGARIN SOMETIME. ...

formatting, as you’ll see later, not the limits of the TRS-80
calculating ability.

The AS at the end of the INPUT statement in line 129 gives
you time to press ENTER, although any combination of as many as
15 letters or numbers can be typed before ENTER. Line 130 clears
the screen, and the two PRINT statements move the first line of text
down two lines, for a pleasing display. '

Lines 135 and 140 print the instructions, with a reminder to
enter @ for column totals. Notice how spaces are used after the first
quotation mark in these two lines to approximately center the

PROGRAM 11: SIMPLIFIED BOOKKEEPING

67

printing from left to right. Although these spaces use memory, they
are an easy way to format the screen display, and they also work the
same way with a printer, whereas TAB or PRINTAT statements do
not.

Lines 141-146 set various variables to zero. This operation
is not necessary in Level II for the initial RUN, but it is necessary for
reruns. Line 150 skips two lines, and line 160 asks for an amount to
be entered—either a positive or negative number. The computer will
hold this number in memory as variable A. Line 178 looks at this
value of A to see if it’s zero; if it is, that means you want totals, and
the program branches to line 344. But let’s say, instead, that you
type and ENTER 123.45. Line 17@ is therefore ignored, and Line 180
adds the value of A, 123.45, to the value in memory for S (set to zero
in line 149) and comes up with a “‘new”’ value of S equal to 123.45.
Not very exciting so far, but just wait a bit.

Line 199 now asks you into what column this amount (A in
line 160) should go and calls this column number variable X. The
blank spaces in this line move the word ‘““COLUMN”’ to the right to
make it very noticeable. Line 191 rejects any entry here except the
numbers through 2 through 12. Since the plus sign means OR, the
line reads, in plain English, ““IF the value of X is less than 2 or
greater than 12, print ‘COLUMN ENTRY ERROR!! ONLY 2-12
VALID’ and then go to line 190.”” Thus, if you enter any number
other than 2 through 12, you’ll be asked for the column number
again. Why isn’t the number 1 a valid entry? Because al// numbers
entered as “AMOUNT?”’ fall in column 1 automatically. The object
in this ledger system is to break down all column 1 entries into
categories, called columns 2-12. If you don’t understand this
scheme, go back and read lines 120-129.

Now we come to another ON X GOTO statement, first
encountered in Program 3, but here there’s a slight twist. Notice that
line 195 starts with ON X-1 GOTO. What’s that X-1 doing in there?
Well, remember that since we’ve eliminated 1 as a valid column
entry, the first valid column number, which the program calls
variable X, is 2. Therefore, by subtracting 1 from X, we’ve modified
the ON X GOTO statement so that an X value of 2 sends the
program to line 20@; a value of 3 to line 210; a value of 4 to line 22;
and so on. This method of offsetting X is also used in multiple-line
ON X GOTO statements.

Lines 200-300 keep track of the totals of each column with
variables B through L—B for column 2, C for column 3, and so on.
Since variables B through L were set to zero in lines 145 and 146,

68

PROGRAMS FOR BEGINNERS ON THE TRS-80™

each column total starts out at zero. Each new entry, A, is directed
to a particular column by line 190, and line 195 adds this value to the
variable for that column. In every case, line 310 is the next
instruction, which in turn sends the program back to line 160 for
another ““AMOUNT?”’ entry. Actually, line 160 could be specified
directly at the end of lines 200-309 instead of at line 310, and line
310 could be deleted. Unnecessary residual jumping is common in
programs as they develop from a simple framework.

Remember that at line 170 the computer looked at the
amount entered to see if it was zero. Assume that you enter a zero
now (after various amount and column entries, such as those shown
in the sample RUN). The program then leaps ahead to lines 340 and
350, which print column numbers formatted by TAB statements.
Column numbers 1-6 are printed nine spaces apart, and then line
360 prints the column totals (S, B, C, D, E, and F) under these
headings. Line 375 skips two lines, and lines 380-410 print column
numbers and totals for columns 7-12. Notice how the TAB
statements line up everything neatly.

Lines 415 and 416 use SET statements in two simple FOR-
NEXT loops to place a horizontal line under, and a vertical line to
the right of, the ‘‘grand total,’’ column 1. Program 1 explained how
SET statements are used.

Lines 420 and 430 allow you to add additional entries. If you
choose to, notice that the program goes back to line 150 and does not
reset the variables to zero. If you would like to start over, however,
lines 460 and 470 send the program back to line 129 and all variables
‘affecting column totals are reset to zero as the program moves on to
lines 145 and 146.

Lines 475-500 end the program gracefully with an invitation
to return. All the print statements do is to put the message down
from the top of the screen and to move the READY prompt five
lines below the message.

Modifications: You can hold the final column totals in memory
by assigning them different variable names and thus have ‘‘page”’
totals, with a ‘‘“month’’ total where requested. You can also keep
“month”’ totals in memory for ‘‘year’’ totals. This practice, of
course, complicates programming but can be accomplished without
too much difficulty by using arrays.

Also, if you use fewer columns per line, you can handle
larger numbers. With six columns per screen line, 9999.99 is the
practical limit, unless you let numbers from one column extend into

PROGRAM 11: SIMPLIFIED BOOKKEEPING

69

the next column or even into the next line. Arrange your format for,
say, four columns across, with three sets of column headings—a

total of 12 columns.

Variables:

A$—ready to continue
A—amount, column 1
B—total, column 2
C—total, column 3
D—total, column 4
E—total, column 5
F—total, column 6
G—total, column 7
H—total, column 8
I—total, column 9
J—total, column 10
K—total, column 11
L—total, column 12
S—grand total, column 1
X—column entry number
Y—additional entry control
Z—rerun control
V—uvertical screen position
W—horizontal screen position

70

PROGRAMS FOR BEGINNERS ON THE TRS-80™

PROGRAM 12
INTEREST CALCULATION AND

TABULATION
(4K, Level | or II)

You’'ll learn: How to make the TRS-80 calculate from a formula
and tabulate the results; handling integer exponents in Level I the
easy way; basic interest formula

Description: This program calculates and tabulates the amount
of interest for a given principal, interest rate, and period—daily,
monthly, quarterly, or annually. It displays the total value, interest
total, and, if requested, the interest and totals for each period.

Explanation: Here we go into the world of high finance. This
will involve a little mathematics if you really want to follow program
operation, and it will also give you a healthy respect for the way in
which your TRS-80 can tirelessly grind through formulae.

Probably the most often requested information among
savers is ‘“‘How much will I make if I invest my money in a savings
account?’’ For example, suppose that you deposit $10,000 in a
savings account that pays 6 percent annual interest, compounded
daily, for 30 days. The formula, with the variables used in this
program, is as follows:

G = A[B/(N+1)€
where: ,
G =total principal plus interest at end of C periods
A =initial deposit ($10,000)
B = annual interest rate, in percent (6%)
N =number of compounding periods per year (365)
C =number of periods in this calculation (30)

Notice that since we’ve established values for A, B, N, and
C, the formula can be solved for G. You could use a log slide rule
(remember them?) or a scientific calculator to solve this equation,
since an exponent (C) is involved. Or, of course, you could do it
longhand, but your TRS-80 will do it very quickly once it has been
programmed. Let’s follow the approach of this program.

PROGRAM 12: INTEREST CALCULATION AND TABULATION

71

LEVEL I/l LISTING

2 REM # COPYRIGHT FRED BLECHMAN 1978

Z REM # 7217 BERMADINE AVE. . CANOGR PARK. CA 91207 =

4 REM * TRZ-20 LEVYEL I OR LEYEL IT 4K =

5 CLS:PRIMT:PRIMNT" INTEREST CARLCULATION & TREULATION®

13 PRINT:PRIMT :FRIMT" THIS PROGRAM WILL PLLOM YOU TO DETERMINE®
11 PRINT"AND TABULRTE THE AMOUNT OF IMTEREST OM ANY PRIMCIPAL"

= PRIMTUFOR AMY PERIOD AMD AT AMY INTEREST RATE COMPOLIMDED "
12 PRINTYANNUALLY. QUARTERLY. MONTHLY DR DRILY. (SOME *

14 PRINT"MNUMBERS MAY EXCEED THE LIMITS OF THE TRS-28, SO

15 PRIMT"BE RERSOMNABLE. *":PRINT

IMPUIT "LUHAT IS THE PRIMCIPAL <) “:f

ITHPUTH"WHAT TS THE ANNUAL IMTEREST RATE LR

THPLIT" L. 4, 412 OR 35 COMPOUMNDING PERIODS PER YERR ik

EE TR OHNCRL ok ONC 4y CNC AR CHE D ZES IPRINTYERROR ! TRY AGRIM" : GOTOZS
43 INPUT"TOTAL NUMBER OF PERINDSY:

45 REM # CONVERT ANMUAL INTEREST RATE TO PERIOD RATE *

46 IF H=1 THEN [D=8/106

47 IF M=d THEM [D=B-4@33

THEN [=R.1.268&

s 265 THEN D=B/2&580

3 REM + IMTEREST CALCULATION

54 CLS

SE IF M=1 PRINTMINTEREST IS BEIMNG COMPOUNDED ANMUAL LYY

B2 IF N=4 PRINT"IMNTEREST IS BETNG COMPOLINDED QUARTERLY"™

54 IF N=12 PRINT"INTEREST IS BEIMG COMPOLINDED MONTHLY Y

58 IF N=3€5 PRIMTUINTEREST IS BEING COMPOLINDED DRILYY

36 PRINT:PRINT"- HOLD EVERYTHIMNG. . .. I°M CALCULATIMNG . "
57 PRINT:PRINT

58 REM % INTEREST CRLCULATION *

&8 E=D+1

@ IF C=1 GOTO 1418

88 FOR H=1 TO <=1

98 E=Ek(D+1) .

MNEMT x

G=E+A

PRINT"THE VRLUE OF $"; Q: "RT"; B; "% FORY; 2; "PERIDDS IS $': G
PRINT

PRINT" THE INTEREST ALOMNE IS #";: G-A

PRINT

INFUT"WANT A TRBULAR PRIMTOUT? YES=1.MO=@"; J

IF J=1 GOTQO 165

INFUT"AGARIN? YES=1, NO=8"; H

IF H=1 GOTD 5

CLE PRINT:PRINT :PRINT:PRINT

PRIMNT" SEE YOU RGAIMN SOMETIME. BYE. "
PRINT PRINT :PRINT :PRINT

h

IMT. ", "TOTRL “ALLE"

TR ATION" (PRINT : 50T 133

FF’ IHT
THEUTYTO CONTIMUE THE TABULATION. HIT “ENTERS : A%

196 5]

0avs

72 PROGRAMS FOR BEGINNERS ON THE TRS-80™

PROGRAM 12 RUN

INTEREST CALCULATION & TABULATION

THIS PROGRAM WILL ALLOW YOU TO DETERMINE
AND TABULATE THE AMOUNT OF INTEREST ON ANY PRINCIFAL
FOR ANY PERIOD AND AT ANY INTEREST RATE COMPOUNDED
ANNUALLY. QUARTERLY. MONTHLY OR DAILY. (SOME
NUMBERS MAY EXCEED THE LIMITS OF THE TRS-8a, SO
BE REASONABLE.)

WHAT 1S THE PRINCIPAL ($) 7 10000

WHAT IS THE ANNUAL INTEREST RATE (%X)7 6

1, 4, 12 OR 365 COMFOUNDING PERIODS PER YEAR ? 365
TOTAL NUMBER OF PERIODS? 3@

INTEREST IS BEING COMPOUNDED DAILY

HOLD EVERYTHING. .. .I’M CALCULATING

THE VALUE OF ¢ 10000 AT 6 % FOR 30 PERIODS 1S ¢ 1004S.4
THE INTEREST ALONE IS § 49.4336

WANT 4 TABULAR PRINTOUT? YES=1,NO=07 1

PERIOD INT/PERIOD TOTAL _INT. TOTAL VALUE
i 1.64384 i.64384 10001 .6
2 1.64411 3.28794 19003.3
3 1.64438 4.93232 10004 .9
4 1.64465 6.57697 100066
5 1.64492 8.22188 10008.2
6 1.64519 9.86707 10009.9
7 1.64546 11.5125 10011.5
8 1.64573 13.1583 10013.2
8 1.646 14.8043 10014.8
10 1.64627 16.4505 10016.5
11 1.64654 18.0971 10018.1
1z 1.64681 19.7439 10019.7

TO CONTINUE THE TABULATION., HIT ’ENTER’ ?

25 1.65033 41.1771 10041.2
26 1.6506 42.8277 10042.8
27 1.65088 444785 16044 .5
28 1.65115 46.1297 10046.1
23 1.65142 47.7811 10047.8
30 1.65169 494328 10049.4

END OF TABULATION
AGAIN? YES=1,N0O=07? @

SEE YOU AGAIN SOMETIME. BYE.....

As usual, the initial REM lines identify the author and
machine requirements. The listing is designed to run in either Level I

PROGRAM 12: INTEREST CALCULATION AND TABULATION

73

or Level II with no changes (although you can use abbreviations for
many statements in Level I).

Lines 5-15 clear the screen, introduce the program, and
point out that the TRS-80 does have some number limits; for
numbers over a million, the output will be in exponential notation
(such as 1.025E + 06). Be reasonable, therefore, with your inputs.

Line 20 asks you to enter the principal and stores this as
variable A. Line 30 asks for the annual interest rate, in percent, and
stores this as variable B. Line 35 gives you a choice of four typical
yearly compounding periods. The 1 represents annual; 4, quarterly;
12, monthly; and 365, daily periods. This data is stored in the
computer memory as variable N. Line 36 makes sure that you don’t
enter any number other than 1, 4, 12, or 365. The asterisks (*) in this
case mean ‘“‘AND‘‘; some Level II machines may require you to type
in AND instead of the asterisk.

Line 49 asks for the total number of periods for this
calculation and stores this input as variable C.

Now we get into a simple conversion—dividing the annual
interest rate (B) by 100 to get a percentage and then dividing by the
number of compounding periods (N) to get a ‘‘period rate,’’ D.
These operations are accomplished in lines 46-49; of course, only
one of these lines is used, depending on the value of N chosen in
response to line 35.

Now line 51 clears the screen, and the TRS-80 prints a quick
one-liner (line 52, 53, 54, or 55), skips a line, and prints the text in
line 56 so that you don’t think the program has ‘‘bombed’’ while the
interest is being calculated. If you ask for a year of daily
compounding (365 periods), the machine has to loop through lines
80-100 364 times, which takes about 6 seconds. Obviously, five
years of daily compounding (365 x 5 = 1825 periods) would take
about 30 seconds.

To explain how the formula is handled, let’s use the
numbers from our example, as shown in the sample RUN. A is
10000, B is 6 percent, N is 365, and C is 30. At this point, then, D,
from line 49, is equal to B/36500, or .000164384 (which is the same
as 1.64384E-04 in TRS-80 notation). Line 60 simply adds 1 to this
and calls the result (1.000164384) the variable E at this point. You
should recognize that this is the value inside the parentheses of our
formula.

Now, somehow we have to get the computer to multiply this
value of (D+1) by itself for (C—1) times—in other words, raise
(D +1) to the C power. Doing so is easy in Level I1. You just use the
up-arrow, and the program reads E=(D+1)* C. However, since
Level I has no exponent function, an involved series of subroutines

74

PROGRAMS FOR BEGINNERS ON THE TRS-80™

would normally be necessary, as shown in the back of the Level I
Users’ Manual. But these are not necessary here since the exponent is
a full number—an integer. All you need do is multiply E by (D + 1)
for (C—1) times, ‘‘updating’’ E to its latest value each time.

Line 70 looks at C. If C s 1, the program jumps to line 110.
In our example, since C is 30, line 70 is ignored. Line 80 starts a
FOR-NEXT loop, using X as the variable, starting at 1, and
counting to 1 /ess than C. (This procedure may seem strange, but
since (D + 1) is raised to the second power the first time through this
loop, and so on, we must stop at C—1). Line 99 establishes a new
value of E equal to the old value of E (from line 60) times the value
of (D+1). Line 100 loops back and does this calculation again,
except that now the second E in line 99 is the last value calculated for
E. Notice that (D + 1) remains unchanged. Finally, after 29 loops
(sinceC — 1 = 30 — 1 = 29), the program falls through to line 110.
Here, the last value of E [which is (D + 1) raised to the C power] is
multiplied by the original principal, A, to yield the principal plus
interest, G.

Line 120 prints the results, line 125 skips a line, and line 126
prints the interest alone (the total minus the original principal). Line
127 skips a line, and line 128 asks if you want a tabulation. If you
answer @ (for NO), you are asked by line 130 if you want to use the
program again. A 1 (for YES) triggers line 140 to send the program
back to line § to start over. A @ (for NO) ends the program with lines
150-164.

Suppose, however, that you want a tabulation and you
respond to the request in line 128 with a 1. Line 129 then sends the
program to line 165. Here a new variable, I, is introduced and made
equal to the principal, A, times the period rate, D. Using our
numbers, I is equal to 10,000 times .000164384, or 16.4384. This is
the interest for one period (day) for $10,000 at 6 percent,
compounded daily.

However, compounding means that for each new period the
interest is calculated on a new principal, consisting of the last
principal plus the latest period’s interest. We’re therefore going to
need some more variables to keep track of things. Let’s use M as the
total interest, Z as the period number, and K as the total of principal
and interest. Line 166 sets the total interest at zero and then
immediately adds the interest, I. (This line could have been written
simply as M =1I). Line 167 sets Z to zero. Line 168 establishes K as
equal to the principal plus the first period interest. Line 175 clears

the screen. .))
Line 176 prints tabulation headings on the screen’s top lines,

using zone printing (note the commas). Line 180 starts a FOR-NEXT

PROGRAM 12: INTEREST CALCULATION AND TABULATION

75

loop to count to 12. Line 181 advances the value of Z by 1, making it
now equal to 1, since it was set to zero in line 167. Line 182 checks to
see if the required number of periods, C, has been exceeded. If not,
line 183 prints the values of Z, I, M, and K under the four
headings—zone printing again. Line 185 calculates the new interest,
which is the latest total, K, times the period rate, D. Line 186
calculates the new total interest, line 187 calculates the new total of
principal and interest, and line 199 sends the program back to line
180 for another loop, until the X in line 199 has advanced to 13. At
this point, 12 lines of tabulation are on the screen, and the program
falls through line 190 to lines 191 and 195, where everything stops
until you hit ENTER. This is a method of ‘‘paging”’ your tabulation
so that it doesn’t just Keep running and scroll up and off the screen
as new lines appear at the bottom. Line 196 sends the program to line
175 to clear the screen, reprint the column headings, and display up
to 12 more rows of tabulation.

" However, as soon as line 182 finds that you’ve tabulated the
required number of periods, C, the “END OF TABULATION”’
statement is printed, and the program is routed to line 130 to see if
you want another calculation. Your TRS-80 awaits your pleasure.

Modifications: It’s easy to eliminate the tabulation ‘‘paging’’ if
you’d like to do so. Just change line 180 to FOR X=1TO C+1 and
delete lines 195 and 196. Remember that you can stop the tabulation
at any time in Level I by holding down the up-arrow and in Level 11
by holding down the SHIFT key and pressing the @ key.

Variables:
A—principal
B—annual interest rate, in percent
N—number of compounding periods per year
C—number of periods for this calculation

. B
D—period rate (100 < N)
E—D+1)¢

X—loop counter

G—final principal plus interest

J—tabulation control

H-—rerun control

I—interest for each period

M—total interest for each period

Z—period number

K—total principal plus interest for each period
AS$—pause control

PRNCRAMSK FNR RFEGINNFRKQ ON THF TRQ-RNTM

PROGRAM 13

INVEST—OR SAVE?
(4K, Level | or II)

You’ll learn: Subroutine for counting days between two dates;
simple daily interest calculation; comparison of values.

Description: Before making an investment, you may want to
compare its present value with that of money left in an interest-
compounded-daily savings account. This program allows you to do
this and also to compare the future value of savings to those of a
proposed investment. The program also has a subroutine that counts
the days between two dates.

Explanation: Line 109 clears the screen and the top line. Lines
195-107 specify the author and the equipment required. As listed,
this program will run in both Levels I and II, except for the
PRINT@ in line 360, which must be changed to PRINTAT in Level
I. Of course, if you’re using Level I, you may use the permitted
abbreviations.

Lines 110-120 print the introductory text, and line 125 waits
for you to type and ENTER your first name. Line 126 asks for your
social security number. Why? Computers a/ways want your social
security number, especially when finances are involved. Actually,
you could eliminate these two lines, but they personalize later
results. :
Lines 130-132 set variables A through Z to zero, even
though some are not used in the program. In Level I, they comprise
all the numerical variables you have, except for the A-array.
Initialized at zero on the first run, they are reset to zero by the same
lines on subsequent evaluations.

" Lines 140-15@ allow you to input the amount to be invested
(or being considered for that purpose) and the annual interest rate of
your regular savings. The program assumes daily compounding,
which is virtually standard in savings institutions. If you have other
compounding (monthly, quarterly, or annual), this program will be
slightly in error.

PROGRAM 13: INVEST—OR SAVE?

77

LEVEL I/l LISTING

CLS:PRINT

REM *COPYRIGHT 1978 FRED BLECHMAN =

REM #* 7247 BERNADIME AVE. . CANOGR PRARK. CA 91287 +
REM * TRS-28 LEVEL I OR LEYEL IT *

PRINT" INVEST — OR SAWEZ???Y
PRINT
PRINT" THIS PROGRAM COMPRRES THE INTEREST IN A SAYIMNGEY

PRINT"ACCOUNT., COMPOUNDED DRILY. WITH THE VALUE OF ANY
PRINTYIRVESTMENT. IN OTHER WORDS. IT AMSHERS THE QUESTION,
PRINT""HAYE I MADE MORE IM MY IMVESTHMEMT. OR WOULL I HRAVE"
PRINT"BEEN BETTER OFF LEAVING THE MONEY IN SAVINGS?T Yo
PRINTYCAN ALST COMPARE THE FUTURE VALUE NF SAYINGS COMPAREDR!
FPRINT"TO A PROPOSED INVESTMENT. "

PRINT

INFLITHWHAT IS YOUR FIRST MAME":
TNPUT"UHAT TS YR SODTAL
A=@: 8= C~a: D=0 E=2: F‘G G
T—R V— : —R'M ﬂ N— :

HUMBER": B

1NPHT"HHHT Iq THF DHLLHP [S1gi NT TNYVESTER": P

ITHPLITYWHAT 1S YOUR REGHLAR SAVINGS THTEREST RATECRM:R

CLE PRINT

FRINT" HOW MAMY THYESTMENT DAYS?!

PRIMTYCIF WO WANT THIS NUMBER OF DRYIS CRLCULATED — WITHIMN THE"
PRINT"2ATH CEMTURY OMLY — THEM ENTER @3" :PRINT: TMPLUTD

IF D>8 G0TO194

IF D= GOSLE S0k
PRIMT". PETIENCE!. . . T-M CALDL_ATING THE ANSHER. . '
PRINT"CLEWEL T: TREES ARODUT 1@ SECONDS FOR 35 DRYSHY

3 PPINT"fLEVEL I1: THVF? ABCUT 45 SECONDS FOR 265 DAY

=RAZTEIED W=P
REM # CALCULARTE INTEPEqT AND RDD T PRIMCIPAL #+
FOR ¥=1 TO D
T=NS Y=+ T=T+I
NEAT %
LS PRINT
PRINT® THE TOTAL INTEREST IS ™7
PRINTHTHE WWRLUE OF $":P; "AFTER": [; "DAYS AT"; R "X IS $': W
PRINT
PRIMTYQKRY. NOM LET S COMPARE THIS WITH YOUR INVESTMENT. . ™
REM * COMPARE PRESENT WRLUE OF INVESTMENT TO SAVIMNGE *
PRINT
PRINT" HOW MANY OQUNCES, BRRS, SHARES OR WHATEYER ARE"
INPUTYTHERE IN THE IMYESTMENT Y0OU WAMT EMALUARTED “;H
PRINT
INPUT"WHAT IS THE PRESENT WALLE OF EACH SHARE. BAR. ETC "; M
A=+
CLS:PRINT PRINT:PRINT

FRINTY THE VALUE OF YOUR THYESTHENT IS 0

Z=y-it

PRINT

IF Z38 PRINTAS$: "~V B$: =400 HAYE LOST £Y: Z: "COMPARED TO SAYIMG!Y
IF 248 FRINTAS: "—Y; BE: "=wii) HAYE EARMED $': —F: "MORE THAM SAVING!

FRINT :FRINTUTHE “BRERK-EVEM" POTNT IS &9: W H "PER SHERE, BAR, ETOC
PRIMNT:PRINT INPUT"ANOTHER EVARLLIATIONT wES=1 HO=@ "“; ¥

TF W=l CLS:FRINT PRIMT PRINT GOTOLEER

CLs

FRIMTE 294, "WELL, IT WAS NICE TN HELFP Y0 SEE YO SOMETIME. . ¢
FRINT (PRINT :PRINT

END

REM * ZSUBROUTIMNE FOR CALCULATING NUMEER OF DAYS +

REM » BRSED OM JUL.TAN CALEMDRR +

REM + RAMNGE: MARCH 1. 1983@ TO FERRURRY 28, 2108 +

LS E=1

78

PROGRAMS FOR BEGINNERS ON THE TRS-80™

528 INPUT “WHAT IS THE INVESTMEMNT START DRTECMM, DRy Weeys v @, B o

5328 IFAC=2 THEN C=C-1: A=A+13: GOTOSSR

S4@ R=A+1

858 F=265#C+INTC 254C+INTC 38, SO8LFA Y +R+1L72R582

568 IFE=1 THENG=F :E=2:PRINT:PRINT: INPUTYEND DATE MM, DO, YW AL B O GOTOSZA
578 D=F-G

58 PRIMT"THE NUMBER OF INVESTMENT DAYS IS":D

598 RETURNMN

PROGRAM 13 RUN

INVEST — OR SAVE??7??

THIS PROGRAM COMPARES THE INTEREST IN A SAVINGS
ACCOUNT., COMPOUNDED .DAILY. WITH THE WYALUE OF AN
INVESTHENT. IN OTHER WORDS, IT ANSWERS THE QUESTION,
HAVE 1 MADE MORE IN MY INVESTMENT., OR WOULD I HAVE
BEEN BETTER OFF LEAVING THE MONEY IN SAVINGS?’ YOU
CAN ALSO COMPARE THL FUTURE VALUE OF SAVINGS COMPARED
TO A PROPOSED INVESTMENT......

WHAT IS YOUR FIRST NAME? FRED

WHAT IS YOUR SOCIAL SECURITY NUMBER? 123-45-5789
WHAT IS THE DOLLAR AMOUNT INVESTED? 120

WHAT IS YOUR REGULAR SAVINGS INTEREST RATE(X)? 5.25

HOW MANY INVESTMENT DAYS?
(IF YOU WANT THIS NUMBER OF DAYS CALCULATED — WITHIN THE
20TH CENTURY ONLY ~ THEN ENTER ©)
70
WHAT IS THE INVESTMENT START DATE(MM.DD,YYYY)? 1.1,77

END DATE (MM, DD, YYYY)? 1.,1.,79

THE NUMBER OF INVESTMENT DAYS IS 730

....... PATIENCE!. . . I'M CALCULATING THE ANSWER. ...
(LEVEL I: TAKES ABOUT 1@ SECONDS FOR 365 DAYS)
(LEVEL Il: TAKES ABOUT 15 SECONDS FOR 365 DAYS)

THE TOTAL INTEREST IS $ 110.70Z2
THE VALUE OF $ 1000@ AFTER 730 DAYS AT 5.25 % IS ¢§ 11i0.7
OKAY. NOW.LET'S COMPARE THIS WITH YOUR INVESTMENT...

HOW MANY OUNCES. BARS. SHARES OR WHATEVER ARE
THERE IN THE INVESTMENT YOU WANT EVALUATED 2 202

WHAT IS THE PRESENT VALUE OF EACH SHARE.BAR.ETC.? 7.65

THE VALUE OF YOUR INVESTMENT IS & 1545.3
FRED-123-45-6789-Y0U HAVE EARNED $ 434 598 MORE THAN SAVING!
THE ’BREQK—EVEN’ POINT IS $ 5.49852 PER SHARE.BARLETC.

ANOTHER EVALUATION? YES=1 NO=0 ? ©
WELL, IT WAS NICE TO HELP YOU. SEE YOU SOMETIME. ..

Line 155 clears the screen and the first line. Lines 160-170
ask you how many investment days you want considered, with the
option of having the number of days calculated from the starting
and ending dates. If you enter any positive number, line 175 sends
the program to line 199, and the calculations begin. Let’s assume,
however, that you want the number of days calculated. Just enter
zero in response to the line 170 prompt, and line 18@ jumps the
program to a subroutine starting at line 500.

Lines 500 to 502 point out that since this subroutine for
calculating the number of days is based on the Julian Calendar, it is
correct only from March 1, 1900 to February 28, 2100. The Julian
Calendar was prescribed by Julius Caesar, which, although it uses a
form of leap year, contains an error of one day in 128 years and is
now 13 days behind the Gregorian Calendar, which is presently in
use in most parts of the world. In any case, lines 510 through 570 ask
you for the starting and ending dates and go through the necessary
calculations; line 589 prints the final results and returns the program
to line 190.*

We get to line 199 with a value for D (days) either input in
line 170 or calculated by the subroutine in lines 500-598. Lines
190-196 let you know that you might have to wait awhile, especially
if you’re dealing with years rather than weeks. Oddly, Level I runs
through the calculations faster than Level II.

Line 200 divides the interest rate by 36500 to come up with a
daily period rate and assigns this value to variable S. Also, V, the
running total of principal and interest, is set equal to P, the principal
(amount invested).

Lines 210-230 set up a FOR-NEXT loop to calculate the
interest for each day (previous total times daily period rate), adds the
new interest to the last running total to get a new total, and adds the
new interest to the previous total interest to get a new total interest,
T. Line 230 repeats the calculations for D times and then allows the
program to fall through to lines 235-28@, which display the results
and ask the amount and value of your investment.

Line 290 simply multiplies the quantity of shares, ounces, or
whatever by the value per share or ounce to come up with a total
value, Q. Lines 295 and 300 display this total. Line 314 subtracts this
total from V, the value of savings after this period. If the result is
negative (less than @), then line 320 prints its message. If the result is
positive, line 330 is printed. Line 335 calculates and prints the
“‘break-even’’ point—the value per share or ounce that would be

*This subroutine was suggested by a correspondent, G. A. Barton of Teheran, Iran, and it
works beautifully, although the author must admit he doesn’t know exactly how!

80

PROGRAMS FOR BEGINNERS ON THE TRS-80™

equal to the savings total. Lines 340-380 allow you to perform
another evaluation or exit the program. Notice that if you choose
another evaluation, in line 340, line 350 sends the program to line
130 so that all variables will be reset to zero.

Modifications: You could use the approach of Program 12 to
allow monthly, quarterly, or annual compounding.

Variables:

AS$—first name

B$—social security number

A—subroutine (month)

B—subroutine (day)

C—subroutine (year)

D—investment days

E—used within subroutine

F—used within subroutine

G—used within subroutine

H—amount of shares, ounces, etc., to be evaluated
I—daily interest

M—present value of each share, ounce, etc.
P—dollar amount invested

Q—investment value

R—saving interest rate, percent

S—daily period rate

T—running total of interest

V—running total of principal and interest
X—loop counter; evaluation repeat control
Z—value of earnings or loss compared to savings

PROGRAM 13: INVEST—OR SAVE?

81

PROGRAM 14
MORTGAGE LOAN AMORTIZATION

PROGRAM
(4K, Level | or Hl)

You’ll learn: Loan calculations; putting a printer option in your

- program; rounding off numbers to two decimal places; converting

programs from Level I to Level 11

Description: This program calculates the monthly payment on a
typical loan and tabulates the principal and interest for each
payment, as well as the running totals. If you prefer, you can select a
monthly payment, and the program computes the final ‘‘balloon’’
payment.

Explanation: If you’ve ever purchased a home or taken out a
large loan, the term ‘‘amortization schedule’’ may be familiar to
you. It’s just a tabulation of each monthly payment, showing how
much of the payment is for interest, how much to reduce the
principal, and the balance still owed after the payment. This new
balance is then used to determine the next amount of interest due,
and so on. Each month’s interest is therefore lower, since it is based
on a declining balance. Since the monthly payment is the same each
month, the amount paid toward the principal (the amount originally
borrowed) increases each month. What a natural for a computer to
churn through!

Ah, but there’s a problem! How do you figure out the
amount of the monthly payment? You could, of course, set an
arbitrary amount, but if it’s to small, you will end up with a big
““balloon’’ payment at the end. If you choose a payment too large,
yow’ll pay off the loan sooner than you planned. This program
allows you to take this approach, if you desire, but why not let the
computer calculate the correct payment for you?

Skip the following comments if you’re not into mathe-
matics, since the water gets a bit deep. The traditional formula for
calculating the payment on a declining balance (which bankers call a
“‘present value annuity’’) is

82

PROGRAMS FOR BEGINNERS ON THE TRS—SOTM

Monthly payment = [Original loan amount] [T-:—(l&:m]

where:

R = monthly interest rate
Y = number of months

Multiply the numerator and denominator of the fraction by
(1 + R)¥ and you get the following:

_ _ . . R)(1 + R)]
Monthly payment = [Original loan amount] [————(1 TR -1
Now, we canlet Q = (1 + R)Y, and the bracketed part of the
equation becomes

RQ

Q-1
If we let T equal the monthly payment and F equal the
original loan amount, then we have

s 3 RQ
T=F (Q—_ 1)
This is the equation we’ll use in the program for calculating
the monthly payment.
To calculate the monthly interest, we use the following
equation:

I=L xR
where:

I = monthly interest
L = balance still due
R = monthly interest rate

With the mathematics under control and the proper
program to do the calculations, all we have to do is enter the figures
into the computer. The Level I listing for doing this provides only a
screen display since printer commands are not supported by Level I.
We’ll explain this listing line by line and then go into the changes for
Level II, which allows a printer option. Follow the explanation by
referring to the screen printout.

' As usual, the initial lines (100-135) introduce the program
author, title, and purpose. The INPUT statement (abbreviated IN.)
of line 135 holds the text on screen until ENTER is pressed. Line 140
clears the screen, skips a line, and then requests the loan amount, F.

PROGRAM 14: MORTGAGE LOAN AMORTIZATION PROGRAM

83

LEVEL | LISTING

10a
14
185
114
145
128
125
i1za
125
148
145
150
155
16a
162
1632
164
169

171
172
17z
175
18a
1853
156
191
195
19¢
137
198
199
208
214
245
228
24
245
250
2668
261
262
2ra
275
276
282
294
zae
214
15
220
2za
258
255
26
261
262
263
264
365
zra
7S
276
280

REM * COPYRIGHT FRED BLECHMAN 1378 *

REM # 7247 BERNADIME AVE. . CANOGA PARK. CA 24367
CLS:P. AT146: "MORTGAGE LOAN AMORTIZATION FROGRAM®

P.R" THIS PROGRAM MILL CALCULATE YOUR PRYMENT OMY
P. "A MORTGAGE LOAN AND TABULATE THE AMOUMT OF PRINCIPAL
P. "AND INTEREST FOR EACH PAYMENT. AS WELL AS THE RUNNIMG"
F. "TOTALS. IF ¥0OU PREFER. YOU CAM SELECT A MONTHLY"

F. "PAYMENT AMD THE BALLOON PAYMENT WILL BE COMPUTED.
PP D IN "HHEW READY, PRESS CENTERS ": A%
CLS:P. :P. :IN "WHAT IS5 THE AMOUNT OF THE LOAN"F

o

Iﬁ.“NHHT 15 THE INTEREST RATE <) “: R

F

IN. "WHAT IS THE LENGTH OF THE LOAM IN MONTHS "%
IF Y<OINTOYY PO "ENTRY ERROR! TRY AGRIN":@G. 19

P

IN "DO YO WANT PAYMENT CALCULATED? YES=1.NO =@":D

CcLS

P. RTAZE6; "THE LOAN IS FOR #£"; F; "FORY: % "MONTHS ATY; R: "n"
IF D=1 GOTO 175

IF DR GOTO 164

P IN "WHAT MOMTHLY PAYMENT MOULD Y0U LIKE ": 7T

REM CONVERT INTEREST RATE FROM PCT#YR TO DECIMAL/MONTH
R=R/1208

IF D<>1 THEN 228

REM CALCULATE MONTHLY PAYMENT AND ROUMD UP TO CENTS
PR PATIENCE! I“M CALCULATING. "
H=14+R

H=1

FOR 2=1 TO ¥

U=l %%

HEXT 2

Q=U

T=F*((R#0D /LO-1D

IF T4327¢. 67 THEN T=INTC(T+ @@853%108> /4188

PP THE MONTHLY PARYMENT IS 7T

REM # PRIMT A MONTHLY TABULATION OR ONLY TOTALS *

P

IN, "DO YOU WANT A MONTHLY BREAKDOWN? (YES=1.HNO=23"; D
IF D=6 F. :P." CALCULATING": ¥ "MONTHLY FAYMEMTS. . .. "
IF D=8 P. " (AT THE RATE OF &7 EVERY 18 SECONDSY™
IF D=8 GOTO 29&

IF D<A GOTO 258 .

CLS:P. :P. "PRESS } TO HOLD TRELE: RELEASE TO CONTINUE. .. "
P

F.O"MONTH BRLAMCE INTEREST INT. T.D. PRINCIPARL PRIN. T.D
L=F (N=8;¥=8:W=6

FOR K=1 TO ¥

I=L*R

IF I<Z27. 67 THEN I=cI#1@@o+1 I=INT{I»:I=I /108

IF K=Y THEN T=L+I

W=+T

S=T~1:L=L~S N=N+I :¥=VY+S

IF D=8 THEHN 278

P. TABC(4: K

P. TABCED: L;

P. TREC(1G);: I;

P. TRBC263;: N;

P. TABC2ED: S;

P. TREBC47): ¥

NEKXT K

PP THE FIMAL PAYMENT WILL BE $": T

P. "CHOTE: IF MNEGATIYE HUMBER. SELECT LOWER PAYMENT
P.:P" THE TOTAL PAYMENTS RRE $": W:P. :F

84

PROGRAMS FOR BEGINNERS ON THE TRS-80™

398 IM "WANT TO DO ANOTHER OME? YES=1 NO=@ ;D

488 IF D=1 THEN 1482

418 IF D<>B THEN 39m

426 CLS:P. :P. P P SEE YU AGAIN. “EBYE

SCREEN OUTPUT

MORTGAGE LOAN AMORTIZATION PROGRAM

THIS PROGRAM WILL CALCULATE YOUR PAYMENT ON
A MORTGAGE LOAN AND TABULATE THE AMOUNT OF PRINCIPAL
AND TNTEREST FOR EACH PAYMENT, AS WELL AS THE RUNMING

TOTALS. IF YOU PREFER, YOU CAN SELECT A MONTHLY
PAYHMENT AND THE BALLOON PAYMENT WILL BE COMPUTED.

WHEN READY, PRESS "ENTER” ?

WHAT 1S THE AMOUNT OF THE LOAN? 50000
WHAT IS THE INTEREST RATE (%) ? 9.75
WHAT IS THE LENGTH OF THE LOAN IN MONTHS 7 358

DO YOU WANT PAYMENT CALCULATED? YES=1.NO =07 1
THE LOAN IS FOR $ 50000 FOR 358 MONTHS AT 9.75 %

..... PATIENCE! I’'M CALCULATING.....
THE MONTHLY PAYMENT IS & 429.981

DO YOU WANT A MONTHLY BREAKDOWN? (YES=1,N0=0)7? 1
PRESS UP-ARROW TO HOLD TABLE, RELEASE TO

CONTINUE IN LEVEL I. FOR LEVEL I1, PRESS SHIFT-@ TO
STOP TABLE, ANY KEY TO CONTINUE.

MONTH BALLANCE INTEREST INT.T.D. PRINCIPAL PRIN.T.

D.

1 49976 .3 486 .25 406.25 23.730e5 23.7385
2 43952 .3 486 .057 812.307 23.8223 47 6538
3 43928 .2 405 .863 1218.17 24 117 71.7715
4 49383.9 405 .667 1623.84 243136 96 9851
5 498793 .4 405 .469 2929.31 24 51172 120.596
6 49854 .7 405.27 2434 .58 24 .7103 145 307
7 49829 .8 495 .069 2839 .65 24 9111 170 .218
8 49804 .7 484 867 3244 .51 25.1135 195.331
351 2915.35 26.97 103339 493.011 47884 .7
352 2509.06 23.69 103862 406 .291 47450.9
353 2099.47 20.39 193883 409 591 47990 .5
354 1686.55 17.66 103968 412 321 43313.5
355 1270.28 13.71 103913 416.271 48729.7
356 850.63 10 .33 103824 419 .651 49149 .4

PROGRAM 14: MORTGAGE LOAN AMORTIZATION PROGRAM

85

357 427.57 6.92 1083931 423 .061 48572 .4
358 0 3.48 103934 427 .57 50000

THE FINAL PAYMENT WILL BE $§ 431.0S5

(NOTE: IF NEGATIVE NUMBER. SELECT LOWER PAYMENT)

THE TOTAL PAYMENTS ARE $ 1533835

WANT TO0 DO ANOTHER ONE? YES=1 NO=0Q ? 0

SEE YOU AGAIN. "BYE.....

LEVEL Il LISTING

1ee
ie1
103
105
i1e
115
12e
125
132
135
136
140
145
15e
155
160
162
163
i64
169
170
171
172
173
175
180
. 185
19e
191
195
196
187
198
129
200
21e
215
23e
235
24@
245
25
269

REM X COPYRIGHT FRED BLECHMAN 1979 X

REM X 7217 BERNADINE AVE., CANOGA PARK, CA 91307 X

REM X TRS-80 LEVEL 1l 4K, WITH PRINTER OPTION X
CLS:PRINT@140, "MORTGAGE LOAN AMORTIZATION PROGRAM"

PRINT: PRINT" THIS PROGRAM WILL CALCULATE YOUR PAYMENT ON“
PRINT"A MORTGAGE LOAN AND TABULATE THE AMOUNT OF PRINCIPAL"
PRINT"AND INTEREST FOR EACH PAYMENT, AS WELL AS THE RUNNING™
PRINT"TOTALS. IF YOU PREFER, YOU CAN SELECT A MONTHLY"
PRINT"PAYMENT AND THE BALLOON PAYMENT WILL. BE COMPUTED."
PRINT:PRINT: INPUT"WHEN READY, PRESS ’ENTER’ ;A%
CLS:PRINT: PRINT: INFUT"PRINTER ON-LINE? (YES=1,MO=0)";P

CLS:PRINT:PRINT: INPUT"WHAT IS THE AMOUNT OF THE LOAN";F
PRINT

INPUT"WHAT IS THE INTEREST RATE (%) “;R

PRINT

INPUT"WHAT IS THE LENGTH OF THE LOAN IN MONTHS ":Y

IF Y(XINT(Y) PRINT"ENTRY ERROR! TRY AGAIN":GOTO160

PRINT

INPUT"DO YOU WANT PRYMENT CALCULATED? YES=1,NO=@":D
CLS:PRINT@136,"THE LOAN IS FOR $";F.,"FOR";Y;"MONTHS AT";R;"X"
IF P=1 LPRINT"THE LOAN IS FOR 8" ;F;"FOR";Y:"MONTHS AT";R,"%"
IF D=1 GOTO 175

IF D{>& GOTO 1E4

PRINT: INPUT" WHAT MONTHLY PAYMENT WOULD YOU LIKE ;T

REM CONVERT INTEREST RATE FROM PCT/YR TO DECIMAL/MONTH
R=R/1200

IF D¢(>1 THEN 230

REM CALCULATE MONTHLY PAYMENT AND ROUND UP TO CENTS

PRINT: PRINT" PATIENCE! I'M CALCULATING. "
X=14R

u=1

FOR Z=1 TO Y

U=UxX

NEXT Z
Q=U
T=FX((RXQ)/(Q-1))

IF T(327 .67 THEN T=INT((T+.005)X190) /100

PRINT:PRINT*® THE MONTHLY PAYMENT 1S §$";T

IF P=1 LPRINT:LFRIMT"THE MONTHLY PaTYMENT 13 ", T:LPRINT

REM X PRINT A MONTHLY TABULATION OR ONLY TOTALS %

PRINT

INPUT"DO YOU WANT A MONTHLY BREAKDOWN? (YES=1.NO=91";D

IF D=0 PRINT:PRINT" CALCULATING"; Y. "MONTHLY PAYMENTS. L

86

PROGRAMS FOR BEGINNERS ON THE TRS-80™

261 IF D=0 PRINT* (AT THE RATE OF 123 EVERY 1@ SECONDS)"

262 IF D=0 GOTO 290

276 1IF D(>1 GOTO 25@

275 CLS:PRIHT: PRINT"PRESS SHIFT AND @ KEYS TO STOP TABLE. ANY KEY TO CONTINUE "
276 PRINT

Z20 PRINT"MOHTH ROLANCE INTEREST INT.T U FRIMC I PR .
Z85 IF P=1 LPRINT"MONTH BALAMCE IMTEREST INT.T.D. FRIMOIFPSGL FRIM.T. L™
298 L=F:N=0:V=0:U4=0

20@¢ FOR K=1 TO Y

312 I=LXR

315 IF 1(327.67 THEN I=(I¥102)+1:I=INT(1):I=1/100

320 IF K=Y THEN T=L+I

330 W=W+T

358 S=T-1:L=L-8:N=N+1:V=V+S

355 IF D=0 THEN 370

360 PRINTTAB(1)KTAB(EILTAR(16) ITABIZGINTAR{ZB)STAR(47)Y

366 IF P=1 LPRINTTAB(1)KTAB(GILTAR(1E) ITAB(ZE)INTAB(36)STAB(47)V

370 NEXT K

375 PRINT:PRINT" THE FINAL PAYMENT WILL BE $";T

376 PRINT"(NOTE: IF NEGATIVE NUMBER, SELECT LOWER PAYMENT)"

378 IF P=1 LPRINT" THE FINAL PAYMENT WILL BE #$";T:LPRINT

380 PRINT:PRINT" THE TOTAL PAYMENTS ARE $";W:PRINT:PRINT

385 IF P=1 LPRINT" THE TOTAL PAYMENTS ARE $",W:LPRINT:LPRINT

39@ INPUT"WANT TO DO ANOTHER ONE? YES=1.N0=0Q ";D

490 IF D=1 THEMN 148

416 IF D2 THEN 390

42@ CLS:PRINT:PRINT:FRINT: PRINT" SEE YQU AGAIN. "BYE.. ... "
43@ PRINT:PRINT:PRINT: FRINT

440 END

PRINTER OUTPUT

THE LOAN IS FOR § 50@0@ FOR 358 MONTHS AT 9.75 %

THE MONTHLY PAYMENT IS & 429.98t

MONTH BALANCE INTEREST |INT.T.D. PRINCIPAL PRIN.T.D.

1 49976.3 406 .25 406 .25 23.7305 23.73e5
2 48952 .3 406 . 057 812.307 23.9233 47 .6538
3 49928 .2 4085.863 1218 .17 24 1177 71.7215
4 49903.9 405.667 1623 .84 24 .3136 96.0851
5 49879 .4 405 .463 2029 321 24 .5112 120.586
[49854 .7 405.27 2434 .58 24.7103 145 307
7 49829 8 405 .969 2839.65 24.9111 170 218
8 48804 .7 404 867 3244 .51 25.1135 195.331
9 49779.4 404 .663 3649.18 25.3176 220 .649
ie 49753.8 404 457 49053,63 25.5233 246.172
37 48989.5 388.225 148289 .8 31.756 1919.5

38 48948 .5 397 .966 15287 .7 32.014 1851 .52
39 48916.2 397.706 15685.5 32.2742 1083.79
490 48883.7 397 .444 16082.9 32.5364 1116.33

PROGRAM 14: MORTGAGE LOAN AMORTIZATION PROGRAM 87

41 48850.9 397.18 16480.1 32.8008 1149.13

42 48817.8 396.913 16877 33.0673 1182.19
351 2915.35 26.97 103839 403 .9011 47084 .7
352 2569.06 23.69 103862 496.291 47490.9
353 2059.47 2e.39 103883 499 .591 47900 .5
354 1686.55 17.06 1039¢0 412.921 48313 .56
355 1270.28 13.71 103913 416.271 48729 .7
356 859.63 10.33 103824 419.651 49149 .4
357 427.57 6.92 103921 423.061 48572 .4
358 @ 3.48 103834 427 .57 50000

THE FINAL PAYMENT WILL BE $& 431.85

THE TOTAL PAYMENTS ARE § 153935

When this is entered, line 145 skips a line, and line 150 asks for the
interest rate, R, which should be the annual percentage. Line 155
skips a line, and line 160 asks for the loan period, Y, in months.
Note that this is months, not years, since monthly payments are
assumed.

Line 162 is an entry-error trap that makes sure that a
fractional number is not entered. If anything but a whole number
(integer) is entered, the program prints the error message and returns
to line 160.

Line 163 skips a line,and line 164 asks if you want the
monthly payment calculated. Your response, a 1 or zero, is held in
memory as variable D. Line 169 clears the screen. Line 170 prints a
summary of your inputs starting at print location 136 (third line
down, ninth space from left side, as shown in appendix A). Line 171
looks in memory to see if the variable D is a 1, which means that you
want the payment calculated (see line 164). If so, the program skips
over lines 172 and 173. However, if you did not type a 1 in response
to line 164, line 172 now checks to see whether you entered a zero. If
you entered a number less than or greater than zero, the program
goes back to line 164 and asks you again.

Line 173 is used only if you entered a zero in line 164, which
means that you want to enter the monthly payment yourself. Line
173 lets you do so.

Line 175 explains line 180, which divides the annual interest
rate percentage by 100 (to convert from percentage to rate) and then
divides-again by 12 to get the monthly rate. It’s all done at once by
dividing by 1200. From here on in the program, R equals the
monthly interest rate.

Line 185 looks at D again. If the value is less than or greater
than 1, it means that you don’t want the payment calculated, and the
program goes to line 23@. Let’s assume, however, that you want the

88

PROGRAMS FOR BEGINNERS ON THE TRS-80™

payment calculated in order to avoid a ‘“balloon’ payment at the
end. This calculation is performed by lines 19¢9-215, using the
formula derived earlier:

T-F(go)

Line 191 skips a line and then reminds the viewer that any
delay is due to calculating time. Line 195 sets variable X equal to 1
plus the monthly interest rate, R. This value, (1 + R), must be raised
to the Y power (see formula derivation) to give us the value of Q.
First, we set variable U in line 196 equal to 1. Then line 197 sets up a
loop, with variable Z counting from 1 to Y, the number of months of
the loan. Line 198 establishes a new value for U equal to the old
value of U (which is 1 at this point) times the value of (1 + R), which
was set as X in line 195. Since line 199 sees the value of Z as 1 at this
time, the program goes back to line 197, where Z is set at 2. Line 198
multiplies the last value of U by (1 + R) again and establishes a new
value for U. This new value of U is actually (1 + R) raised to the
second power. Can you see now that each time the program loops
through lines 197-199 the value of (1 + R) is raised to the next
higher power? If Y is 24, for example, then (1 + R) is raised to the
24th power before line 199 sees a value of Z greater then Y and drops
through to line 200.

Why this Mickey Mouse way of raising a value to an
exponent? Because Level I, unlike Level I1, cannot do it directly. An
elaborate subroutine is needed in Level I for raising a number to a
fractional power, but if the exponent is an integer (whole number),
then lines 197-199 actually provide a fast, efficient way to do the
job.

Now that we have U, which is (1 + R) raised to the Y power,
line 200 sets Q equal to U, since our formula uses Q for this value.
Line 210 simply puts all the variables of the formula together, and
the result, T, is the calculated monthly payment.

Line 215 in Level L is a tricky way to display the value of T as
a two-place decimal. The line starts out with ““IF T is less than
327.67. . .”” The TRS-80 can’t handle input integers greater than
32767. (Later in the line the value of T is multiplied by 100.)
However, if T is less than 327.67, then line 215 is enabled and says,
in effect, ‘‘take the present value of T, add .005 to it, then multiply
the sum by 100, then divide the result by 100, and call this the new
value of T.”’ This calculation is simpler than it sounds if we consider
an example. Suppose that T comes into line 215 as 137.516. First
.005 is added to 137.516, making it 137.521. Now this is multiplied

PROGRAM 14: MORTGAGE LOAN AMORTIZATION PROGRAM

89

by 100, making it 13752.1. The integer (whole number) portion is
now extracted, giving 13752. This is divided by 100, and the end
result, the new value of T, is 137.52. Notice how the .005 causes T to
be ‘““‘rounded up’’ to the next penny. If the entry number had been
137.514, then T plus .005 would be 137.519; the integer, after being
multiplied by 100, would be 13751, and the result for T would be
137.51. This is a common method for changing decimal numbers to
two places.

After all this, we’re back to line 230, which skips a line and
prints the monthly payment—either calculated or entered. Line 249
gives you an indication of what’s coming next. Line 245 skips a line,
and line 250 asks if you want a monthly breakdown. Lines 260-262
look to see if you entered a zero (for NO). If you did, the computer
tells you that it’s calculating and jumps to line 296. If you answer
line 250 with a 1 (for YES), it means you want a tabulation. Line 270
makes sure that you didn’t enter something other than 1 by mistake;
if you did, back to line 250! Of course, if you enter a zero, line 262
causes the program to bypass the entry-error trap in line 274.

We’ll assume that you want a breakdown. Line 275 clears
the screen, skips a line, and then prints instructions on how to stop
the tabulation about to take place. For Level I, holding down the up-
arrow halts the program until the up-arrow key is released. Line 276
skips another line, and line 280 prints the tabulation headings.
“T.D” means ‘“TO DATE,” or totals, including the last shown
payment.

Line 290 sets variable L equal to F (principal) and variables
N, V, and W to zero. Line 300 starts a loop to make the monthly
interest calculations, determine the table values, and print them.
Variable K is the loop counter, which starts at 1 and goes to Y, the
number of loan months.

Line 310 takes the initial principal, L, multiplies it by the
monthly interest rate, R, and sets this product equal to the monthly
interest, I. Line 315 is merely another way of making I a two-place
decimal. (Actually, the ‘“plus 1”’ in this line should be ““plus .5”’ for
greater accuracy.)

Line 320 checks to see if the loop has reached the last month
yet. If so, it makes T, now used for the final payment, equal to the
last balance plus interest. Line 330 sets variable W equal to the last
value of W plus the monthly payment. Line 350 updates various
tabular values. Variable S is set equal to the monthly payment minus
the interest—that’s the amount going to pay off the principal for
that month. The new balance, L, equals the last balance minus the
principal paid this month. The total interest paid to date, N, is equal

90

PROGRAMS FOR BEGINNERS ON THE TRS-80™

to the previous interest total plus the latest interest payment. The
total principal paid to date, V, is the last total principal paid plus the
latest monthly principal paid.

Line 355 looks at variable D to see if you wanted a
tabulation. If D is equal to zero, you didn’t, and thus the next lines
are bypassed and the program jumps to line 370, where the loop is
repeated.

However, since we’re assuming that you do want a
tabulation, line 355 is ignored by the program (D is equal to 1), and
lines 360-365 print out the tabular values under the headings, using
TAB statements. On each of these lines, the semicolon before each
variable is optional, but don’t omit the semicolon after K, L, I, N,
and S. Actually, these statements could all be put on one program
line without any semicolons, as you’ll see in the Level II version.

Line 370 repeats the loop until K is greater than Y,
calculating and displaying a new line of values each time.

Finally, the program moves on to line 375, where a line is
skipped and the final payment (calculated in line 320) shown. Line
376 is printed to remind you that, if you selected a monthly payment
arbitrarily and this final payment is a negative number, you should
try again with a lower payment amount.

Line 380 skips a line, prints the total payment, and then
skips two more lines. Lines 399-440 allow you to use the program
again or to exit. »

Level II offers many features superior to those of Level I,
including PRINT USING (to format numbers), LPRINT (to printer
instead of screen), and direct calculation of exponents. Rather than
extensively reprogram for Level II, however, we’ll just use the same
framework and line numbers, examining only those changes that
must be made to the Level I program. This will show you how easy,
relatively speaking, it is to convert a Level II-compatible program.
Refer to both the Level II listing and its printer output during this
explanation of the Level I/Level II conversion.

To begin with, most abbreviations are not recognized by
Level II. Therefore, where the Level I listing shows P., Level 11
requires PRINT. Likewise, IN. becomes INPUT and P.AT must be
changed to PRINT@. (Note: Do nof hold down the shijft-key when
pressing the @ key!) In Level I, P.AT number can be followed by a
semicolon or a comma. In Level II, PRINT@ number must be
followed by a comma, not a semicolon. Line 103 identifies this
version of the program.

Level II allows the use of a printer, and the command
LPRINT will direct the output to the printer instead of the screen.

PROGRAM 14: MORTGAGE LOAN AMORTIZATION PROGRAM

91

However, there will be a problem if you don’t have a printer or
printer-driver software ‘‘online,’’ that is, connected to the TRS-80
or loaded in memory. Any LPRINT statement causes the TRS-80 to
look for the printer. If the printer isn’t there, the TRS-80 ‘‘locks
up’’ in an endless loop, the program will not move forward, and you
have no control at the keyboard. You must press the RESET button
(left rear of keyboard, under the expansion port PC board) to regain
control. Fortunately, this situation does not destroy your program,
which remains in memory, but it does stop the program from
running past the LPRINT statement.*

To avoid it, you must tell the TRS-80 when to ignore
LPRINT statements. Line 136 allows you to do so. If you respond to
variable P with a zero (for ‘“NO, there is no printer on line’’), then
the program jumps over all line numbers containing an LPRINT
statement, since LPRINT is preceded by “‘IF P=1"" (lines 176, 235,
285, 366, 378, and 385). If P is 1 (for *“YES, a printer is on line”’),
then these lines are operative.

Notice that not all PRINT statements have LPRINT
statements following. The printer should summarize the program
results and need not print every question. For example, line 170
prints the results of the entries made in lines 149, 150, and 160.

Look at line 360. This is a combination of lines 360-365 of
the Level I program with all semicolons removed.

Changes were. also made to line 169 (added PRINT
statement), line 170 (P.AT becomes LPRINT), line 261 (different
calculation rate), and line 275 (different operator instruction, since
in Level II you must press the SHIFT and @ key simultaneously to
halt program operations).

You can see, then, that getting a Level I program to run
properly in Level II is not always (in fact, not even usually) just a
matter of running the Level I program through the Level I program
conversion tape supplied with Level II.

Modifications: You might prefer to have the screen display show
a ‘‘page’’ of the tabulation and then stop. To do so, add a loop
counter that allows, for example, 12 lines of the tabulation to be
shown at one time on the screen. (See Program 12 for an example of
how this works.) Typically, mortgage loans are for over 120 months,
and formatting 12 lines at a time can be a bother. It should definitely
be avoided when printer output is enabled.

*If you have an expansion interface connected to your keyboard but do not have a printer on
line, the RESET button will destroy your program in memory. Be careful!

92

PROGRAMS FOR BEGINNERS ON THE TRS-80™

Variables:

A$—pause control

" P—oprinter control
F—amount of loan
R—annual interst rate, monthly interest rate
Y—length of loan in months
D—payment calculation option
T—monthly payment '
X—(1 + R)
U—running value of (1 + R)Y
Z—exponent counter
Q—final value of (1 + R)¥
L—monthly balance still due
N—interest paid to date
V—rprincipal paid to date
W—total of all payments
K—month number
I—interest part of payment
S—oprincipal part of payment

PROGRAM 14: MORTGAGE LOAN AMORTIZATION PROGRAM 93

PROGRAM 15

PAY NOW OR PAY MONTHLY’?
(4K, Level | or 1)

You’ll learn: Proper use of explanatory text; zone-printed
multiple-line tabulation headings; subroutine loop calculations.

Description: If you pay the full amount of a doctor, dentist, or
lawyer bill, you will lose the interest this money would make if
saved in your own bank account (professionals rarely charge you
interest). This program allows you to determine how much you can
save each month by deferring payments and the point at which this
saving becomes so insignificant that you should pay off the balance
due.

Explanation: Lines 90-96 identify the program author and the
equipment needed and also keep the Level I version from
overscrolling (as explained in Program 11).

Line 100 clears the screen, and lines 110-220 explain the
purpose of the program. Since this program is short, even a 4K
memory will hold a lot of explanatory text, thus allowing the user to
brief himself quickly rather than having to look for documentation
elsewhere. Where memory is not a problem, providing such text is a
good idea.

Line 220 waits for the user to hit ENTER, thus holding the
text on the screen. Lines 225-250 clear the screen, skip two lines, and
then ask the three basic questions for which the computer needs
input. B is the balance owed, M is the desired monthly payment, and
I is the annual savings interest rate percentage. Line 260 divides the
amount owed by the intended monthly payment, and the result is
reduced to the next smallest whole number by the INT (short for
““integer’’) statement. This value, D, is the number of full monthly
payments needed to pay off the bill. Line 270 divides the annual
interest rate, I, by 100 (since it was entered as a percentage) and by
365 (daily compounded interest is virtually standard at savings
institutions these days). It does this all at once by dividing by 365
times 100, or 36500. The result, R, is the daily interest rate.

94

PROGRAMS FOR BEGINNERS ON THE TRS-80™

LEVEL /Il LISTING

FEM = THESE FEWM LINMES AT THE TOP £F THE LISTING. .. .
1. REM . CKEEP THE LISTING FROM SCROLLING LFWARD. | ..
REM 4...IN LEVEL. I. UNWTIL UWP-REROL EMTERED. *

. REM + TRS-28 LEVEL T 0OR LEVEL T1 4k =

9% REM » CORPYRIGHT FRED BLECHMAN 1973 +
96 REM ¢ T2AT BERMADINE AVE. . CAMOGR PARK. R 91367 =
cLs
PRIMT :PRIMNT" PARY MOW DR FAY MONTHL Y27
PRINT
PRINT® THE DBJIECTIVE OF THIS FROGRAM IS TO HELP YOU MAKE THE ©

PRINT"CHOICE OF WHETHER T PAY THE DOCTOR OFR DEMTIST BILL"
PRINT"COR AMY OTHER BILL THAT OOESN-T CHARGE IMTERESTY IM ONE CLIME®
PRINT"SUM, OR MOMTHLY PRYMENTS OF AM AMOLINT RGREED UFON, STHCE @
FRINT"THE MONEY ¥YOU LEAWE IN YOUR SAYINGS ACCOUNT MILL EPRN
PRINT"INTEREST DURING THE PRAY-BACK PERINC, YOULIYLL ALMAYS COME"
PRINT"OUT AHEAD BY MRKING FAYMEMTS. RUT YOU MAY THINK PAYHMENTS
PRINTYARE TNO MUCH BOTHER. THIS PROGRAM WILL GIVE VDU THE®
PRINT“FRCTS ON WHICH YOU CAN BRASE THE DECISIOM.
PRINT"INCIDENTALLY, MAKE THE SMALLEST PAYMEMTS ALLOWED.
PRINT : INPUT"WHEN READY TO START. PRESS ENTERY;: A
CLS:PRINT:PRINT

INPUT“WHAT IS THE RMOUNT OF MOMEY YOU DWE"; B

INPUT"WHAT IS THE MOMTHLY PRYMENT YOU INTEND TO MAKE": M
INPUT"WHAT IS YOUR SAVINGS INTEREST RATE<XI": I

D=INT(B/M>

R=1/326508)

PRINT"PAYMENT", "BALANCE", "LEFT IN", "IMTEREST"

PRINT*NUMBER", "REMAINING". "SAVIMNGS", "THIS MONTH"

R=@:Y=B: G=B

GOSUR S96

FOR ¥=14 TO D

=i B=R-M

BOSLIE SA@

NEXST %

PRINT

PRIMT® PAYIMG THE TOTAL OF £9:0G; "AT $£": M "PER MOMTH"
FRIMNT"UILL TAKE": [u "MONTHS. AMD B FINRL FRAYMEMNT OF $“; R " o
PRINT: PRINTYTOTAL INTEREST SAYEDR IS €Y %-B; "COMPARED T PAYIMGY
FRIMNTYR SIMGLE LUMP SUM WHEM DRIGIMALLY BRILLED

FRIMNT - PRINTY REMEMBER — YO MAY WANT TO PAY THE BRLANCE *
FRINT"OFF COMFLETELY WHEN THE MOMTHLY INTEREST BECOMES SMALL. . . ¢
PRINT

IMFPLT WANT T TRY RAMNOTHER RUN (YES=4. MO=AY"; O

IF C=1 THEM 225

PRINTYSEE YNl SOME OTHER TIME. “BYE. .. . "

EMD

REM ¢ CALCULATE DAEILY IMTEREST FOR 4 MOMTH 28 DRAYS) *

Te=@

FIIR Y=1 TO Za

S=bkR

(YY)

T=T+S

MHEXT Y

PRIMNTH. B, % T

RETURM

Lines 280 and 29¢ print four two-line column headings.
Since the commas between the printing in quotes tell the computer to
use zone printing, no TAB statements are needed, and the second
line of each column heading starts right below the first line. This is a

PROGRAM 15: PAY NOW OR PAY MONTHLY? 95

PROGRAM 15 RUN

PAY NOW OR PAY MONTHLY??7?

THE OBJECTIVE OF THIS PROGRAM IS TO HELP YOU MAKE THE
CHOICE OF WHETHER TO PAY THE DOCTOR OR DENTIST BILL
(OR ANY OTHER BILL THAT DOESN’T CHARGE INTEREST) IN ONE LUMP
SUM, OR MONTHLY PAYMENTS OF AN AMOUNT AGREED UPON. SINCE
THE MONEY YOU LEAVE IN YOUR SAVINGS ACCOUNT WILL EARN
INTEREST DURING THE PAY-BACK PERIOD. YOU'LL ALWAYS COME
OUT AHEAD BY MAKING PAYMENTS, BUT YOU MAY THINK PAYMENTS
ARE TOO MUCH BOTHER. THIS PROGRAM WILL GIVE YOU THE
FACTS ON WHICH YOU CAN BASE THE DECISION.....)
INCIDENTALLY, MAKE THE SMALLEST PAYMENTS ALLOWED.

WHEN READY TO START. PRESS ENTER?

WHAT IS THE AMOUNT OF BMONEY YOU OWE? 100
WHAT IS THE MONTHLY PAYMENT YOU INTEND TO MAKE? 25
WHAT IS YOUR SAVINGS INTEREST RATE(X%)? 5.25

PAYMENT BAlL ANCE LEFT IN. INTEREST
NUMBER REMAINING SAVINGS THIS MONTH
o 1000 1004 .32 4.32408
1 a75 983.559 4.23468
2 950 962 .704 4.14483
3 925 941.759 4.05471
4 900 920.723 3.96414
5 875 899.596 3.87318
& 850 878.378 3.78182
7 825 857 .068 3.69007
8 800 835.666 3.59793
38 50 148.716 .64028
39 25 124 .251 .534957
40 9 938.6798 . 429168

PAYING THE TOTAL OF & 1002 AT & 25 PER MONTH
WILL TAKE 4@ MONTHS. AND A FINAL PAYMENT OF § @ .

TOTAL INTEREST SAVED IS $ 99.6798 COMPARED TO PAYING
A SINGLE LUMP SUM WHEN ORIGINALLY BILLED.

REMEMBER — YOU MAY WANT TO PAY THE BALANCE .
OFF COMPLETELY WHEN THE MONTHLY INTEREST BECOMES SMALL. ..

WANT TO TRY ANOTHER RUN (YES=1,N0=@)? @
SEE YOU SOME OTHER TIME. ‘BYE.....

useful technique when several lines are needed for column headings.
Remember, however, that zone printing on the TRS-80 is limited to
four zones, with starting points at print locations @, 16, 32, and 48

on each line.

Once the headings are nicely printed, we need to do some
calculations to put figures under those headings. Line 300 sets
variable X to zero and variables V and G equal to the balance owed,

96 PROGRAMS FOR BEGINNERS ON THE TRS-80™

B. Variable G will be retained in memory unchanged for use later in
line 37@. Variable V will be used to show how much the balance, left
in savings, will grow each month as interest is added.

Line 310 sends the program to the subroutine starting at line
500 and ending at line 570. This subroutine assumes that daily
interest is compounded for 30 days each month, thus introducing a
very slight error, since some months have 31 days. Since the nature
of this program is not critical, this simplification makes sense. The
alternative of entering the billing start date and providing additional
programming to specify compounding for the specific number of
days in each month would be overkill. In the banking industry, such
a simplification would be a no-no; for us, it makes sense.

Line 505 sets the accumulated daily interest, T, to zero. Line
510 starts a loop, using Y as the loop counter, running from 1 to 30
(30 days). Lines 520-540 take the latest balance owed, V, and
mutliply it by the daily interest rate, R, to get the daily interest, S.
This is added to the previous balance to get a new and slightly higher
balance, V. The daily interest, S, is added to the accumulated daily
interest, T, foranew T.

This sequence (lines 520-540) is repeated 30 times by the
loop counter (line 55@). After 30 calculations, the payment number,
X, the balance remaining, B, the amount left in savings, V, and the
monthly interest, T, are printed out under the column headings by
line 560. Line 570 returns the program to line 310, where it had
branched away. Since there is no additional instruction on line 310,
the program moves on the line 320, the beginning of another loop.
This loop counts from 1 to D, the number of payments, using X as
the counter. Line 330 deducts the monthly payment from the bank
balance for a new balance (since we assume you’ll make this
payment from your savings account). Also, the balance owed, B, is
reduced by the monthly payment. Then line 340 sends the program
to the subroutine again for another 30-day interest calculation and
prints another line of results. This process continues until X in line
350 exceeds D. Then the program falls though to lines 360-4640,
which print the summary information and allow you to do another
calculation or exit the program.

Modifications: You could complicate the program considerably
by printing more columns of data, but why bother? You could also
add one line (line 555) and change another (line 560) to format the
““Left In Savings’’ column to dollars and cents, as follows:

555 Z=V:Z=INT(Z*100+.5)/100
560 PRINTX,B,Z,T

PROGRAM 15: PAY NOW OR PAY MONTHLY?

97

[Note: Line 555 is yet another way to use the INT (integer) statement
to round off numbers. Two other way were shown in Program 14.
Also notice that the value of V is not rounded off, since it is used in

calculations.]

Variables:

AS$—pause control
B—amount owed
M—monthly payment
I—annual interest, percent
D—number of monthly payments
R—daily interest rate
X—loop counter (payments)
V—savings balance
G—original amount owed
C—rerun control
T—accumulated daily interest
Y—loop counter (days)
S—daily interest

98

PROGRAMS FOR BEGINNERS ON THE TRS-80™

PROGRAM 16

PHONE TOLL-CHARGE PROGRAM
(4K, Level | or Il)

You’ll learn: Telephone billing structure; using a timing loop
for a practical purpose; combining graphics with text; bypassing
instructions.

Description: This program may be used whenever you make a
call out of your local area. The display shows both the time and
charges for the call and ‘‘counts down”’ by the second to the next
charge. Instructions and information to reduce the expense of
your calls are included in the program text.

Explanation: This program will operate in Level I or Level II.
For Level I, the regular abbreviations may be used, and PRINT@
should be PRINTAT.

Lines 5-22 introduce the program, with line 22 waiting for
your input. Type and ENTER either a number or a name since B$
is nonfunctional in this program; it is used later on (in line 60)
merely to show the called name or number on the screen, as a
reference.

Line 25 allows you to select or bypass instructions. If you
type and ENTER a 1 (for YES), line 26 sends the program to lines
300-400. At line 400 you select or bypass discount information. If
you type and ENTER a 2 (for NO), line 414 sends the program
back to line 28. If you type and ENTER a 1 (for YES), the
program continues through lines 420-480, and line 490 sends the
program back to line 28. Back in line 25, if you had typed and
ENTERed a 2 (for NO), the program would ignore line 26 and
proceed to line 28. Thus, no matter what you do, you’ll eventually
get to line 28.

Line 28 clears the screen and skips three lines. Line 29
prints the program title on the screen and skips two lines. Line 30
asks for the initial time period, which will be either 1 or 3
minutes—1 minute if you dial directly, 3 minutes if you use an
operator to assist you. Type and ENTER a 1 or 3; this number is
then assigned to variable P. Line 35 skips two screen lines, and

PROGRAM 16: PHONE TOLL-CHARGE PROGRAM

99

LEVEL I/l LISTING

5 REM * TRS-80 LEVEL I OR LEVEL II 4K *

10 REM * COPYRIGHT 1978 FRED BLECHMAN *

11 REM * 7217 BERNADINE AVE., CANOGA PARK, CA 91307 *

12 REM * LINE 225 CONTROLS THE SECOND-COUNTING ACCURACY *

13 CLS:PRINT:PRINT:PRINT

14 PRINT" PHONE TOLL-CHARGE PROGRAM":PRINT:PRINT
15 PRINT" USE THIS PROGRAM WHENEVER YOU MAKE A TELEPHONE CALL"
16 PRINT"OUT OF THE LOCAL AREA ~ ESPECIALLY LONG DISTANCE. THE DISPLAY" -
17 PRINT"WILL SHOW YOU HOW MANY MINUTES YOU HAVE BEEN CHARGED,"
18 PRINT"THE COST SO FAR, AND THE NUMBER OF SECONDS TO THE NEXT"
19 PRINT"ADDITIONAL CHARGE, COUNTING DOWN........"

20 PRINT:PRINT

22 INPUT"WHO ARE YOU CALLING.....";B$S

25 INPUT"DO YOU WANT SPECIFIC INSTRUCTIONS? YES=1,NO=2";A

26 IF A=1 GOTO 300

28 . CLS:PRINT:PRINT:PRINT

29 PRINT" TELEPHONE TOLL TOTALIZER":PRINT:PRINT
30 INPUT "WHAT IS THE INITIAL TIME PERIOD (MINUTES)";P

35 PRINT:PRINT

40 INPUT"WHAT IS THE INITIAL CHARGE (CENTS)":;I

45 PRINT:PRINT

50 INPUT"WHAT IS THE ADDITIONAL CHARGE PER MINUTE (CENTS)" ;M

51 CLS:PRINT:PRINT:PRINT: PRINT

55 PRINT "WHEN THE PARTY AT OTHER END PICKS UP THE RECEIVER"

57 INPUT" PRESS ENTER TO START TIMING....";A$

60 CLS:PRINT:PRINT" ON YOUR CALL TO ";BS$;"......"

70 PRINT"THE INITIAL COST OF THE FIRST";P;"MINUTE(S) IS: $";I/100
80 PRINT" THE ADDITIONAL COST PER MINUTE IS:$";M/100

90 PRINT@ 847,"PRESS BREAK TO STOP COUNTING."

100 C=I/100:D=1

110 FOR X=22 TO 93

115 SET(X,25):SET(X,31):NEXT X

120 FOR Y¥=25 TO 31

125 SET (22,Y): SET(93,Y):NEXT Y

130 T=57

140 IF P=3 THEN T=177

150 GOTO 221

200 PRINT@ 590,"THE TOTAL CHARGE IS NOW:S$":;C;

210 SET(93,27):SET(93,28):SET(93,29)

215 PRINTE 715,"TOTAL TIME CHARGED IS NOW:";P+D;"MINUTES"

220 T=59:D=D+1

221 C=C+(M/100)

222 REM * LINE 225 COUNT: 485 FOR LEVEL I, 263 FOR LEVEL II *

223 REM * CHANGE THIS COUNT IF NECESSARY FOR ACCURACY *

225 FOR X=1 TO 263:NEXT X

230 PRINT@ 330,"SECONDS TO THE NEXT ADDITIONAL CHARGE:";T

240 T=T-1

250 IF T=-1 GOTO 200

255 GOTO 225

300 CLS:PRINT"YOUR CHARGES ARE BASED UPON THREE THINGS:"

310 PRINT" (1) INITIAL TIME PERIOD (1 OR 3 MINUTES)"

320 PRINT" (2) INITIAL CHARGE (FOR THE INITIAL PERIOD)"

330 PRINT" (3) ADDITIONAL CHARGE PER MINUTE AFTER INITIAL PERIOD"

340 PRINT:PRINT"IF YOU USE AN OPERATOR TO ASSIST YOU, THE INITIAL"
350 PRINT"TIME PERIOD IS 3 MINUTES. DIRECT DIAL IS 1 MINUTE."

360 PRINT:PRINT"THE CHARGES ARE BASED ON THE DESTINATION CALLED...."
370 PRINT"....THESE ARE USUALLY LISTED IN THE FRONT OF PHONE BOCK"
380 PRINT"...OR....CALL OPERATOR FOR THE RATES."

390 PRINT" DO YOU WANT INFORMATION ON DISCOUNT PERIODS?"

400 PRINT: INPUT"YES=1, NO=2";B

410 IF B=2 GOTO 28

420 CLS:PRINT"THERE ARE TWO DISCOUNT RATES IN THE CONT. U. S A.:"
430- PRINT" 35% DISCOUNT: 5PM - 11PM SUNDAY - FRIDAY"

440 PRINT" 8AM - 11PM HOLIDAYS":PRINT

100 PROGRAMS FOR BEGINNERS ON THE TRS-80™

450 PRINT" 60% DISCOUNT: 11PM - 8AM EVERY NIGHT"

460 PRINT" 8AM - 11PM SATURDAY"

470 PRINT" 8AM ~ 5PM SUNDAY"

475 PRINT:PRINT"CHARGES ARE BASED ON TIME AT CALLING POINT!"
476 PRINT:PRINT:PRINT

480 INPUT"PRESS ENTER TO INPUT TIME AND CHARGE DATA....";A$
490 GOTO 28

PROGRAM 16 RUN

USE THIS FROGRAM WHENEVER YOU MAKE A TELEPHONE CALL
OUT OF THE LOCAL AREA — ESPECIALLY LONG DISTANCE. THE DISPLAY
WILL SHOW YOU HOW MANY MIMUTES YOU HAVE BEEN CHARGED.
THE COST SO FaR, AND THE NUMBER OF SECONDS TO THE NEXT
ADDITIONAL CHARGE., COUNTING DOWN.

WHO ARE YOU CALLING. 7 HARRY JONES
DO YOU WANT SPECIFIC INSTRUCTIONS? YES=1,NO=27? 1

YOUR CHARGES ARE BASED UPON THREE THINGS:
(1) INITIAL TIME PERIOD (1 OR 3 MINUTES)
(2) INITIAL CHARGE (FOR THE INITIAL FERIOD)
(3) ADDITIONAL CHARGE PER MINUTE AFTER INITIAL PERIOD

IF YOU USE AN COPERATOR TO ASSIST YOU, THE INITIAL
TIME PERIOD IS 3 MINUTES. DIRECT DIAL IS 1 MINUTE.

THE CHARGES ARE BASED ON THE DESTINATION CALLED. . ..
.. ..THESE ARE USUALLY LISTED IN THE FRONT OF PHONE BOOK
.. .0R....CALL OFERATOR FOR THE RATES.
DO YOU WANT INFORMATION ON DISCOUNT PERIODS?
YES=1, NO=27 1
THERE ARE TWO DISCOUNT RATES IN THE CONT. U.S.A.:
35% DISCOUNT: SPM — 11FPM SUNDAY — FRIDAY
8aM — 11PM HOLIDAYS
60% DISCOUNT: 11PM — Rad EVERY NIGHT
£aM — 11PM SATURDAY
&AM — 5PM SUNDAY
CHARGES ARE BASED ON TIME AT CALLING FPOINT!

PRESS ENTER TO INPUT TIME AND CHARGE DATA....7

TELEFHONE TOLL TOTALIZER

WHAT IS THE INITIAL TIME FERIOD (MINUTES)? 1

WHAT IS THE INITIAL CHARGE (CENTS)? 22

PROGRAM 16: PHONE TOLL-CHARGE PROGRAM

101

WHAT IS THE ADDITIONAL CHARGE FER MINUTE (CENTS)? 16

WHEN THE PARTY AT OTHER END PICKS UP THE RECEIVER
PRESS ENTER TO START TIMING. .. .7

ON YOUR CAalL TO HARRY JOMES.
THE INITIAL COST OF THE FIRST 1 MINUTE(S) IS: § .22
THE ADDITIONAL COST PER MINUTE IS:§ .16

SECONDS TO THE NEXT ADDITIONAL. CHARGE: 47

i e TOTQLACHQRGE IS NOW:$.38

TOTAL TIME CHARGED 1S NOW: 2 MINUTES

FRESS BREAK TO STOP COUNTING.

line 40 asks for the initial charge. The front section of your
telephone book shows rates for various nonlocal calls. They are
shown for both operator-assisted and unassisted calls and for
three different time periods. The time periods are based on the
time at the calling point. Find the rates that apply to your specific
call (location called, assisted or unassisted, time-of-day). There
will be one rate for the first period and another rate for ‘‘each
additional minute.”” In our program, these are assigned variables I
(initial charge) and M (additional minutes rate). Type and ENTER
the initial rate (no decimal) in response to line 4@. Line 45 skips
two lines, and line 50 asks for the minute rate, also entered
without a decimal. X

Line 51 clears the screen and prints four blank lines. Lines
55 and 57 tell you to press ENTER when the party at the other
end picks up the phone, thus starting the TRS-80 timing at the same
time as the telephone company billing equipment without any
connection to the phone lines!

As soon as you press ENTER, the screen is cleared again
by line 60. Lines 60-99 summarize your inputs near the top of the
screen and print PRESS BREAK TO STOP COUNTING near the
bottom of the screen.

Line 100 establishes the value of variable C as variable I
divided by 100, thus converting the initial charge, entered as a whole
number, to cents and saving you the trouble of entering a decimal
point in response to line 44. Also, variable D, used to keep track of
elapsed minutes, is set to 1, since from the instant the receiving party
picks up the phone, you are charged for at least one minute.

102

PROGRAMS FOR BEGINNERS ON THE TRS-80™

Lines 115-125 “‘draw’’ a rectangular box n the screen with
SET statements. (Go back to Program 1 for an explanation of how
this works.)

Line 130 sets variable T, the seconds counter, to 57. Why
not 59?7 Because from the time you press ENTER (line 57) until the
appearance of the seconds counter on the screen (line 230) about 2
seconds elapse, reducing the count down from 59 to 57. However,
the next line, 140, looks at the value of P that was entered in line 30.
If the initial time period is 3 minutes, then T is set to 177 instead of
57 (3 minutes is 180 seconds). In either case, line 150 sends the
program to line 221.

Line 221 first sets a new value for C equal to the initial
charge (lines 40 and 100) plus the cents value of the additional charge
M (entered in line 50). This, in effect, establishes the total charge for

the initial time period plus one additional minute, the result being

held in memory as variable C but not yet displayed.

Lines 222 and 223 give you the approximate loop-counter
number to use in line 225, the seconds counting loop. Be warned that
Level 1 and Level II complete a single loop at different rates.
Moreover, the specific rate for your TRS-80 will depend on actual
circuit constants and the equipment temperature. The TRS-80 was
not designed to be used as a clock, but you’ll find it fairly accurate if
you ‘‘customize’’ the loop-counter number. Suppose, for example,
that you find the seconds counting fast by comparison with a real-
time clock. If so, just increase the loop-counter number. If your
program is counting seconds too slowly, decrease the counter
number. Change the number one digit at a time, and RUN the
program after each change to see the effect. You’ll have to let it run
at least a minute, when you’re close to the correct timing, to see
much deviation.

Incidentally, you’ll find that the timing of this loop is af-
fected by earlier program entries during that run. The memory
builds a variable ‘‘look-up’’ table, and you cannot use GOTO 60 or
RUN 60 to avoid test entries. If you do, your *‘clock’’ will run faster
than it would during a normal run, which has more variables in
memory.

Anyhow, don’t expect perfection, but you should be able to
get the timing accurate to within one-half second per minute.
Remember, however, that this accuracy will vary slightly with
temperature.

At the completion of the first line-225 timing loop, line 230
prints the value of T (which starts at 57 or 177, from lines 136 and
149). Line 240 now subtracts 1 from T for a new T of 56. Line 256

PROGRAM 16: PHONE TOLL-CHARGE PROGRAM

103

checks to see if T has gone below zero. Since it hasn’t, line 255 sends
the program back to the timing line, line 225. As the program
continues circulating between lines 225 and 255, the seconds —as
displayed by line 230—count down to zero. Now line 240 makes T
equal to —1; line 250 notes this negative value and returns the
program to line 200. :

Line 200 prints the total charge, C, which has been held in
memory from the last pass through line 221. Line 219 replaces the
right border of the rectangle if it has been blanked out by a large
value of C, and, right below the rectangle, line 215 prints the total
time charged. The value P + D is equal to the initial time period plus
the additional minutes counted so far. The next line, 224, resets the
seconds count to 59 (to start another minute countdown) and in-
crements the additional-minutes counter, D, by one.

This whole process of counting down and adding minutes
and charges continues until you hit the BREAK key. When you do
so, the BREAK command wipes out two screen lines in Level I, or
three screen lines (including the top line of the rectangle) in Level II.
In either case, since all the data remains on the screen, you can keep
a written record in a toll-call log to compare with your phone bill.

Modifications: A major modification of this program is to add
automatic phone dialing when you type in a name, with redial
capability if the number dialed is busy. Manual dialing and
alphabetical screen listing of up to 500 names in memory can also be
added. To do so requires a Level II 16K TRS-80 and a simple
telephone interface (under $5) using five common Radio Shack parts
built into a small plastic box. No modification whatever is required
to the TRS-80. (This ““AUTO-DIALER II’’ program, together with
the Phone Toll-Charge program, is available on cassette, with
documentation, for $10, postpaid USA, from the author at 7217
Bernadine Avenue, Canoga Park, CA 91307.)

Variables:

B$—name or number called
A—instruction call

P—initial time period (minutes)
I—initial charge (cents)

M—additional charge per minute (cents)
AS$—pause control

104

PROGRAMS FOR BEGINNERS ON THE TRS-80™

C—total charge (dollars)

D—additional minutes

X—rectangle horizontal coordinates; timing loop
counter

Y—rectangle vertical coordinates

T—countdown (seconds)

B—discount info call

PROGRAM 16: PHONE TOLL-CHARGE PROGRAM 105

PROGRAM 17

SPIRANGLE
(4K, Level | or II)

You’ll learn: How to draw a simple graphic pattern on the
screen by using loops

Description: The ‘‘spirangle’’ is a rectangular-shaped spiral
that starts near the center of the screen and progresses clockwise
until it fills the screen and “‘freezes.”’

Explanation: Lines 5-8 introduce the Ilisting with REM
statements. The program is identical for Levels I and II, with the
listing shown for Level II (no abbreviations).

Line 10 clears the screen. Line 20 assigns values to
variables X and Y. If you check these on the Video Display
Worksheet in Appendix A, you’ll see that these values fall near

106

PROGRAMS FOR BEGINNERS ON THE TRS-80™

LEVEL I/ll LISTING

=1 # COPYRIGHT FRED BLECHMAMN 1978 *

& REM * 7217 BERNADINE AVE. . CANOGR PRRE. CRA 943287 *
7 * SPIRAMGLE PROSGRAM =*

* FOR TRS-80 LEVEL T OR LEVEL II 4K *

28 K=R2:Y=232

20 A=6:B=2

3@ FOR Z=1 TO A
4 SETOR, WD

43 M=+l

48 IF K=123 GOTO 176
SR MNEMT Z

€& FOR 2=1 TO B
A OSET oM. ¥a

73 Y=Y+l

8n MNEXT Z

85 C=R+6

93 FNOR Z=1 TO ©
18a SETCR. ¥
185 H=x-1

118 NEXT Z

115 D=R+2

128 FOR 2= 14 TO O
128 SETONW. ¥
148 Y=v-1

158 MEXT 2

155 A=C+E:B=0+2
168 GOTO 2A

17a GOTO 4176

the center of the screen (X is 63 units from the left, out of a
possible 128, and Y is 24 units down, out of a possible 48.
Remember that @ is the starting number in each case.)

Next line 25 sets variable A equal to 6 and variable B
equal to 2. These are horizontal and vertical limits for the first
two “‘legs’” of the graphic pattern to be generated. Line 30 starts a
FOR-NEXT loop with Z as the variable. It says, in effect, ‘“Let Z
vary from 1 to 6 in steps of 1.”” You see, A is equal to 6, and
since no other STEP is specified, then 1 is automatically used.

Line 40 tells the computer to light the graphic block (SET)
at location X across and Y down (that’s 62 and 23) from line 29.

Now line 45 increases the value of X by 1, to 63. Line 46
checks to see if the ‘‘drawing”’ is complete yet; it looks for an X
value of 123. Since X is only 63 at this time, the program ignores
this line. Line 50 looks at the value of Z to see if it has yet
reached 6 (the value of A in line 30, established in line 25). Since
it hasn’t, the program returns to the beginning of the Z loop, line
30, and Z increases by 1 to a value of 2. Line 40 now lights
graphic block 63 across and 23 down. Notice that X has 1ncreased
by 1 (line 45) but Y has remained the same.

PROGRAM 17: SPIRANGLE

107

This process continues for a total of six times (since A
equals 6 from line 25), at which point graphic block (67,23) is
SET, X is advanced to 68 by line 45, line 46 is still not valid, and
line 50 sees Z equal to 6 and thus allows the program to proceed
to line 60.

Confused? If so, go back over this loop in lines 30-50
again, step by step, since it is a relatively simple example of an
incrementing loop. Line 30 advances Z each time to count the
number of main loops, whereas X is advanced each time by line
45. This form of looping is used throughout the rest of the
program.

Line 60 resets loop-counter Z to 1 and tells the compuer
to advance it by steps of 1 to the value of B, which was
established as 2 in line 25. Line 70 now lights graphic block
(68,23). Notice that Y has not changed and that X was advanced
to 68 by line 45 during the last pass through the loop in lines
30-50.

Now line 75 advances Y by 1, to 24, but X is not
changed. Since line 80 sees that Z has not yet reached 2, the
program goes back to line 6@ for another loop, and Z is advanced
to 2. Next, the graphic block (68,24) is lighted by line 70, and Y is
then advanced to 25 by line 75. Since line 84 now sees Z equal to
2, the program continues to line 85.

A new variable, C, is introduced in line 85 and set equal
to the current value of A (which is 6) plus 6, or 12. Line 94 starts
another Z loop, using C as the maximum count (12). Line 100
lights graphic block (68,25), and line 105 subtracts 1 from X for a
new value of 67. In effect, the computer is counting backwards,
and the graphic blocks are lighted from right to left. This process
goes on for 12 counts, and the program then goes to line 115,
where another new variable, D, is established equal to the present
value of B (which is 2) plus 2, or 4.

Since loop 120-15@ subtracts 1 from the value of Y each
time through, the graphic blocks are lighted in an upward-moving
sequence.

So far, we’ve completed a right-going leg, using A to
establish the number of blocks to be lighted; a down-going leg,
with B counting; a left-going leg, with C counting; and an
upward-going leg, with D counting. Thus, to continue, line 155
merely adds a constant value of 6 to the last value of A (which
gives horizontal limits) and a constant value of 2 to the last value
of B (which gives vertical limits). The program now is sent back
to line 30 by line 160, with the new values for A and B in

108

PROGRAMS FOR BEGINNERS ON THE TRS-80™

memory. The ‘“‘backward’’ counting variables C and D are derived
from the latest A and B values (lines 85 and 115) as the program
progresses.

The last graphic block drawn is (122,3), in line 4@. Line
45 now sets X equal to 123, so the following line 46 is now
operational, and the program is sent to line 17@.

Line 170 looks peculiar. It is an ‘‘endless loop’’ since it
keeps calling itself as the next line. This is a simple technique for
stopping the program without a READY or cursor scrolling the
screen or blanking out one or two lines of the display. The
penalty, however, is that you lose keyboard control, except for
BREAK. Press BREAK to regain keyboard control.

The entire ‘‘drawing” on the screen takes less than 30
seconds—a lot faster than trying to explain it!

Modifications: You can use different values in line 155 for the
constants—try A=C+4 and B=D+4—to draw a lopsided spiral
that will continue running in Level I (until X =123) but that will
come up with an FC (function call) error in Level II when the
graphic line hits the bottom screen limit after six and one-half
“turns” of the spiral. Level I graphics have ‘‘wraparound,’’ that
is, lines going off the screen at one limit of the screen
automatically start at the opposite limit. In other words, a graphic
line going down past the bottom appears at the top and continues
downward; a line going off the right side of the screen next
appears on the left and continues to the right. Level II graphics
do not have this wraparound feature; a graphic command that
would light the screen beyond its limits results in program
interruption with an FC error. The program also ‘‘bombs’’ in
either Level I or Level II if the X or Y values of a SET statement
are negative numbers.

Variables:

X—horizontal locator
Y—vertical locator
A-—right-going block counter
B—down-going block counter
Z—loop counter _
C—left-going block counter
D—upward-going block counter

PROGRAM 17: SPIRANGLE

109

PROGRAM 18

CUSTOM SCREEN DISPLAYS
(4K, Level | or Il

You’ll learn: A relatively easy way to display large letters or
figures on the TRS-80 screen using DATA and SET statements; also
a way to display black letters or figures on a white background using
RESET. ‘

Description: The words ‘“RADIO SHACK TRS-80 COM-
PUTER”’ are displayed in three lines of 1-inch high letters on a
black screen in a dot-dash fashion. Then the screen goes blank, is
‘“‘painted’’ white, and sections are ‘‘punched out’’ to display the
same letters in black on a white background. This sequence keeps
repeating.

Explanation: Looking at the listing for this program is enough
to confuse even a veteran programmer. All those DATA statements

110

PROGRAMS FOR BEGINNERS ON THE TRS-80™

seem impossible to digest or interpret. However, even an elephant
can be eaten one bite at a time, and we can g0 through this program
one line at a time to see how really simple the idea is. Once you see
how it works, you will be limited only by your imagination.

The program was originally designed for Level I, which has
limited graphic statements, such as SET and RESET. CHR$(X) is
available in Level IT for much faster graphics—especially when used
with POKE and PEEK—but this program will use only SET and
RESET and will run fine in Level II. It’s fascinating to watch the
letters’ being formed, erased, reformed on a contrasting back-
ground, and then run again. They make a very nice, unattended
attention-getting window, counter, or show-booth display.

Before we go into a line-by-line explanation, look at the
screen layout in Fig. 18-1. The task is to program the TRS-80 to
make this display. The letters are shown as black on a white
background. Since the blank screen is black and since SET
statements light specified segments of the screen, let’s first assume
that the black block letters are actually white and program that
approach first.

Each letter is actually composed of many individual lighted
segments. The first letter in RADIO, the “R,” is made up of 39
individual lighted segments, each of which can be lighted with a SET
(X,Y) statement. The extreme upper left corner is (6,9), that is, the

PROGRAM 18: CUSTOM SCREEN DISPLAYS

111

127

Lt

©
@

Video Display Worksheet

w
=

63

0| 265

b3 |319
45|1023|

@
2

o 1447
22{511
28639
0 (703

0
2

2
24
26

7
34{767
7831
40/895
42(959
44
3|

47]
H
K

4!
9
o)

[35[36{37{38{39/40[41142]43;
i
3]

31]32{33]
o]
5!

[21]22]23]24125]26}27]2829;

T518 7] a]so[nfi2f3[a[is[1€] 171819
R
5]

slsie|7[efs{iof11]

2

1

29|

m
83240]

35|
25|

768|a7

taoe|
of
'
1
3
4
3
|

Y
(]
64

128] 7|
192|10
256(12
320 18]
384
448|22
51223
576 |2
640 (3t
704 [3¢
89643
960)|45|

Screen lay-out

Fig. 18-1.

112 PROGRAMS FOR BEGINNERS ON THE TRS-80™

horizontal position, X, is 6 and the vertical position, Y, is 9. You can
therefore program this display by using a SET statement to light
every segment needed to form each letter.

A shortcut would be to use DATA statements to hold X and
Y coordinates and some kind of looping to feed these coordinates
into SET statements. In this program, two different types of loops
are used. The program could have been formulated using either one
alone, but using both gives you a choice for future programs of your
own.

Lines 4-7 introduce the program. Lines 8-170 contain
DATA for the first programming approach, and lines 200-440
contain DATA for the second approach. Line 500 starts the main
program.

Line 504 sets variable Z equal to zero. You’ll see later that
assigning this value, in effect, tells the computer to display white
letters on a black background. Line 505 clears the screen. The
RESTORE is not needed the first time through the program;
however, as the program progresses, the DATA is accessed, and a
DATA pointer moves on to the next DATA item. The RESTORE
statement moves the DATA pointer back to the very first DATA
item for the next rerun.

Line 506 looks at the value of Z, and if it is zero, as it is in
this case, the program jumps to line 520.

Line 520 starts a FOR-NEXT loop, using J to count from 1
to 89. Why 89? Because we will have to go exactly 89 times through
this loop to do what we want, that is, to light all segments of the
display on screen lines 9, 12, 15, 20, 23, 26, 31, 34, and 37 of the
layout in Fig. 18-1. This will light the top, bottom, and center lines
of all screen letters, omitting the other lines for the effect. As this
takes place, it looks like a secret dot-dash code of some sort—very
mysterious. Later on, the program fills in the missing portion of all

" the letters.

Line 530 tells the computer to go to the first DATA line—
wherever it is in the program—and read the first three values as
variables A, B, and Y, respectively. Looking at line 16, we see that A
will be 6, B will be 14, and Y will be 9. Now line 540 starts another
loop—a loop-within-a-loop, also called a “‘nested loop’’—with X
counting from A to B. Since A is 6 and B is 14, as just established by
the READ statement in line 530, X will initially equal 6 and progress
in steps of 1 (since no other STEP is specified) to a value of 14.

Line 545 is ignored, since Z is still zero, and line 550 lights
segment (6,9) since X is 6 and Y is 9. Line 560 has two loop
completion statements, NEXT X and NEXT J. However, until X

PROGRAM 18: CUSTOM SCREEN DISPLAYS

113

LEVEL /Il LISTING

4 REM & TRS-28 LEVEL I QR LEVEL IT 4k

% REM + RADIO SHACK T COMPLUTER SCREEM DISPLAY
& REM # CORYRIGHT FRED BLECHMAN 1972

T ORER # 7 BERMNRDINE RVE. . CANDGA PARE. TR 247207
E REM 4 LIIP WRLUE

LRTAS, 14, 13

112,324, 9
3.2, 96, 47,42

181, 12, 4142, 447,12
15, 42, 42,45

26, BE. 62, 26, 75, B2, 26, BT, 94. 26
Z1. 47,49, 21, 52, 63, 21
ag, 97, -'«‘b 186, 182, 2

1% DATARE4. 65, 24, 7
148 DATALE. 47, 24, 28, 29 ! L A8, 40 24, 4, 45, 24, 48,7949, 24

158 DATASE, 68, 34, 64, 65, 24, 7, 72, 324, -..‘If.b S, T4, B8 95, B4, 168, 183, 24
168 DATRL?. 24, 37, 29, 36, 37, 48, 44, 27, 48, 49, I7, 5" 37

473 DATRES. 72, 37, 88, 81, 37, 88, 97, 37, 1!».1!3. Al 270 L 189 27

208 REM = SINGLE SETS *

248 DATAX9. 6, 7, 14, 15, 18, 19, 26, 27, 2@, 31, 38, 39, 42, 42, 46, 47, 54, 05
z2m PATAGSY. 65, 72, 72. 76, 77, 84, 85, 88, 89, 96, 97, 108, 181

228 DATA168S8, 199, 112, 1132, 417, 1158, 149

240 DATAZS, 6. 7, 14, 45, 1€, 19, 26, 27. 30, 21, 38, 29, 42, 43, 46, 47, 54, B3
258 DATRE4, 65, 76, 77, 84, 85, 82, 29, 9€, 97, 160, 161, 112, 4137, 118, 417, 112
255 DATAL. 6

268 DATAZS, &, 7, 12, 13, 18, 19, 26, 27, 3@, 21, 22, 39. 42, 43, 45, 47, 54. 55
278 DRTATZ2. 73, 76, 77, 84, 85, 88, 89, 96, 97, 188, 161, 142, 113, 115, 1147, 118
‘288 DATA48, 6, 7, 12, 13, 14, 18, 19, 26, 27, 30, 31, 38, 29, 42, 43, 46, 47, 54, 55
293 DATAE4. 65, 72, 72, 76, 77, 84, 85, 88, 89, 96, 97, 168, 121, 162, 189

2608 DATA112, 113,117, 148,119

218 DATALS. 24, 25, 42, 42, 58. 51, 54, 55, 62, 63, 74, 75, 82, 82, 86, &7, 94, 95
228 DATALE, 24, 35, 42, 43, 56, 51, 54, 55, 74, 75, 82, 82, 86, 87, 94, 53

%320 DATAL, 24

24m DATALE. 24, 25, 42, 43, 413, 49, &2, 63, 74, 75, 8& 83, 86, 87, 94, 95

358 DRTA19. 4. 25, 42, 43, 48, 49, 50, 54, 35, 62 . V4, 75, 82, 82, 86, 87, 94,
26@ DRTAZ2, 16. 17, 24, 25, 28, 29, 36, 7, 44, 41; 42, 42, 45, 47, 42, 49

276 DATARS2, §2. 60, 61, 64, €5, 72, 73, 88, 81, 88, B9, 161, 181, 168, 189

8@ DRTAZE, 16, 17, 28, 29, Z6. 37, 48, 41, 44, 45, 48, 48, 52, 52. 60, 51, 64, &5
296 DATAPZ2. 73, 88, 21, 88, 89, 1388, 194, 188,182

48 DATAL. 16)

416 DATAZ24, 1€, 17, 28, 29, 36, 27, 48, 41, 48, 49, 52, 52, 64, 65, T2, 72

42 DARTASH. 91, 28, 89, 108, 101, 1 147
4ZR DATARY. 16, 47, 24, 258, 28, & L EV. 40, 49, 42, 49, B2 52
44 DATAE4. 85, 72, 72, 86, 21, & 188, 181, 186, LAV, 183
S REM o+ MATN FPROGRAM *

5a4 Z=A

SH5 CLS:RESTORE

SR8 IF Z=0 GOTOH528

CLS RESTORE

FOR Y=8 TO 47

/"'B O 127

RESET Cx, YD G0TOSEE

HEXT?
GOSUESSE

114

PROGRAMS FOR BEGINNERS ON THE- TRS-80™

8 GOSUBESH
B GOSUETae

 GOTOSRS

FOR Y=18 TO 14

GOTOFAS

FOR ¥=21 TO 25

GOQTO7AS

FOR Y=Z2 TO 2s

RERD H

FORx=1 TO A

IF Z=14 THEM RERD B RESETCB, ¥ GOTOPES
RERD B SETCE. YD)
MERT MEMTY

RETLIRMN

TF Z=1 THEM Z=0(:5G0T0918
IF &= THEN F=1

FOR ¥=1 TOQ 1603 NEXTH
GOTOSES

advances to the limiting value (14, in this example), the program is
sent back to line 540 for another X. This time X is 7, but Y has not
changed; it is still 9. Line 550 therefore lights segment (7,9). Do you
see what is happening? Line 550 next lights segment (8,9), then
(10,9, (11,9), (12,9), (13,9), and (14,9). This completes the top line
of the letter R in RADIO. With X now equal to 14, line 560 executes
NEXT J, and the program goes back to line 520. Here J is advanced
to 2. Line 530 reads the next three data values (still on line 19). These
are 19, 26, and 9. Thus A becomes 19, B is 26, and Y is 9. Now the
X-loop in lines 540-560 lights segments 19 through 26 on screen line
9, the top line of the letter A in RADIO.

If you analyze the DATA statements, you’ll see that they
provide the computer with SET values to light the top, center, and
bottom lines of all display letters—just as we planned! This process
takes 89 trips through program lines 520-56@ and uses up all the
DATA in lines 16-170. Finally, J equals 89, and the program falls
through line 560 to 608, where a slightly different loop technique is
used.

Line 600 sends the program to the subroutine starting at line
680. Here Y is a loop counter, with the value limits representing
vertical screen lines—in this case, lines 10 to 14. Line 685 jumps the
program to line 705, where the next DATA value (the first one in line
210, since all prior values have been used) is read. This value, 39,
now becomes the value of A. Line 718 starts a loop with X counting
from 1 to 39. Line 715 is ignored since Z is still zero. Line 720 now
READs the next DATA value, 6, and sets B equal to this; then it
lights segment (6,10). (B is 6 and Y is 10.) Line 738 sends the
program back to line 710 (until X is equal to 39), and another
segment, (7,10), is lighted. This process continues, using the DATA

| PROGRAM 18: CUSTOM SCREEN DISPLAYS

115

in program lines 210, 220, and 230, until all the necessary 39
segments on line 10 are lighted. Then line 730 executes NEXT Y, and
the program goes back to line 680, where Y is advanced to 11.
DATA from lines 240 and 250 is used in 35 X-loops to light the
necessary segments of screen line 11.

Line 255 needs some explanation. It comes into play as Y in
line 680 is advanced to 12. Since the necessary segments of screen
line 12 have already been lighted by the earlier part of the program
(DATA lines 3@ and 40), line 255 lights the already lighted segment
(6,12) to fulfill the Y =12 loop, and Y moves onto 13.

When the Y = 14 loop is completed, line 730 is satisfied and
line 74¢ RETURNs the program to line 61@. Now subroutine
690-749 lights the required segments on screen lines 21-25; then the
subroutine in lines 700-740 lights segments of screen lines 32-36 and
sends the program to line 634.

Line 630 sends the program to line 905. Since Z is still zero,
the program ignores this line, and line 996 changes the value of Z to
1. From here on, until line 995 is reached again, Z is equal to 1.

Line 914 is a time-delay loop, counting to itself for about 2
seconds to allow you to see the display. Line 920 then shoots the
program back to line 505, where the screen is cleared and all DATA
RESTOREd.

Since line 506 now sees that Z is 1, it ignores line 506 and
goes on to line 51@. The latter line is not needed since it merely
repeats line 505 (it appears to have been left over from program
development).

Lines 511-514 paint the screen white by sequentially lighting
all 128 segments on all 48 screen lines (a total of 6144 segments!),
one at a time. Slow, but easy to program. Level II can do this several
faster ways.

Once the screen is white, the progratn runs as before except
that program lines 545 and 715 are now active (since Z is equal to 1)
and RESET is used instead of SET. RESET turns off a lighted
segment with the effect of punching a black hole in the white screen.
The loops work exactly the same as before.

Since line 905 returns Z to a value of zero, the next run
through the program is the same as the first. Lines 995 and 906 act
like a flip-flop to alternate the display background each time
through.

The program keeps running until you press BREAK.

Modifications: Obviously, by changing the DATA and loop
values, you can create whatever you want on the screen. Try making

116

PROGRAMS FOR BEGINNERS ON THE TRS-80™

up your own program to show your name in giant letters. First draw
it out on a copy of the TRS-80 Graphics Worksheet (Radio Shack
Catalog #26-2105) or the Appendix A worksheet. Then program the
loops and DATA lines to light the required segments.

Variables:

Z—black or white background control
Y—vertical screen line

X—horizontal screen location; loop counter
J—loop counter

A—start of segment location; X-loop limit
B—end of segment location

PROGRAM 18: CUSTOM SCREEN DISPLAYS

117

PROGRAM 19

CHANGING BILLBOARD PROGRAM
(4K, Level l or)

You’ll learn: Control of screen printing—Ilocation, duration,
and erasure; custom programming; subroutine convenience

Description: A changing one-line message is enclosed in a
graphic rectangle, with a fixed 11-line message above and below the
rectangle. You can easily program both the fixed and changing -
message lines for your own eye-catching display.

Explanation: With this program your TRS-80 will ‘‘advertise”’
anything you want with an attention-getting display. You can
custom program the text to promote any product or service or to tell
passers-by when the next ‘‘live’” demonstration will take place, or
when the store will be open, or the ‘‘specials’’ for this week, or
whatever.

The sample program contains instructions for its use in the
printed statements. It can be run in either Level I or Level II,
provided you use the correct instruction for the printing location—
PRINTAT for Level I, PRINT@ for Level I1. (Be sure not to use the
SHIFT key when you press the @ key!)

Lines 45-55 clear the screen and introduce the program with
REM statements; these don’t appear on the screen except when you
LIST. Lines 60-71 print programming instructions on the screen and
wait for you to press ENTER when you want to see the sample
display. ,
Lines 75-85 print the “‘fixed’’ text, that is, the text that
doesn’t change during this display. The three PRINTs at the
beginning of line 78 leave three blank lines between the text of line 77
and the text that follows in line 78. Why? Because this is the space
we’re reserving for the rectangle.

Lines 119-160 draw the rectangle—using FOR-NEXT loops
and SET statements—in the empty space, between Y locations of 13
and 19 and X locations of 1 and 110 (see Appendix A).

Print location 322 is near the left end of the rectangle,
halfway between the top and bottom of the rectangle; this is where

118

PROGRAMS FOR BEGINNERS ON THE TRS-80™

LEVEL I/l LISTING

45 CLs

5@ REM # COPYRIGHT FRED BLECHMAM 1378 +

51 REM = 7247 BERMADINE AVE. . CAMOGA PARK, TA 913267 *

S5 REM # TRS—-26 LEVEL T OR LEVEL II 4k =

68 PRIMT :PRINT" CHAMGING BILLBOARD FROGRAM!

65 PRINT:PRIMNT" YO MUST DO SOME OF YOUR OWN PROGRAMMING FOR "
€6 PRINT*THIS BILLBOARRD TO BE EFFECTIVE FOR YOUR DWM USE. LINES®
&7 PRINTY?S TQ 25 ARE THE FIKED COPY. WHILE LIMES 176 TO 4928°

S8 PRINT“ARE THE CHAMGING CORY. JUST TYPE IN THE TEXT YO WANT"
&2 PRIMNT"FOR THOSE LINES AND YOUVE GOT A/ CUSTOM PROGRAM. THE"

7a PRINT'FOLLOWING IS JUST R SAMPLE OF THE RESWLTS. .. "

74 PRINT:INPUT'"WHEN RERDY T SEE SAMPLE DISPLAY. HIT ENTER ":A$
75 CLS:PRINT:PRINT" THIS IS R SAMPLE OF HOW YOU CAM PLACEY

75 PRIMNTYFIXED COPY 0N THE SCREEN TO SAY WHATEVER YOLE WISH THISY
TP PRINTUCOPY IS DETERMIMED BY WHAT YOU TWPE IM LINES 75 TO 25 %
7S FRINT:PRINT:PRIMT:PRINT"YOU MUST REMEMBER TO DUPLICATE THE PUMNCTURTION"
79 PRINTUYOU FIMD. IM THE EXISTING LISTING FOR THESE PROGRAMMABLE "
2 PRINTULINES., THE SPACING IS IMPORTANT. SIMCE YOU MUST LEAVE"
o1 PRINTURODM FOR THE RECTAMGLE. IM WHICH THE CHAMGING MESSAGE"

2 PRIMTUGEOES. FOR THE CHAMGING MESSAGE, INSERT AMY TEXT. NOY
% OPRINTULONGER THAN S50 CHARACTERS AND SPACES, I LINES 17@ TOQ 456"
4 PRIMT". . AND DOMNCT FORGET THE SEMI-COLOMS TO EMD EACH MESSAGE LINE!'"
a5 FRINT" HAVE FLiMN!®

118 FOR ¥=1 T0O 148

128 SETCH, 120 SETCH, 492

128 MNEXTH

148 FOR Y=13 TO 49

158 SETCL, YWir:SETCL4R Y2

168 MEXTY

178 PRINTEZ22. "THIS IS A SAMFLE OF THE TEXT YOU CAN PUT IM THE":
1¥5 GOSUBSH6

188 PRIMTEZ22, "BOX. ACTUALLY. IT7S JUST A MATTER OF TYPING®:

185 GOSUBSOR

196 PRINTE222. "AS MAMY LIMES AS YOU WAMT — UINTTL THE MEMORYY;

195 GOSUB 5S8R

208 PRINTE222, "IS FULL! 0L TYPE THE CHANGIHG STATEMENTS IM":

205 GOsSUB S@8

24 PENTEZ22, "LINES 174, 186, 196, 208, ETC . AMD TYPE THE';

215 GOsuBRSes

228 PRINTEZzZ2, "GOSUBSHA INSTRUCTION IM BETWEEM EACH. YOLE CANY:

225 GOsueSas

238 PRINT@222, "GO ALL THE WAY TO LIME 498 REFORE 90U RUN TMNTO";
235 GosuBSes

248 FRINTE22Z, "THE SUBROUTINE AT LINE S@@. DOM‘T FORGET THE®:

243 GOSUBSR3

258 PRINTEZ2Z2, "SEMI-COLOM AT THE EMD OF ERCH BILLBOARD LIME!";

2585 GosueSes

268 PRINTE322, " WHEM YO GET EVERYTHING THE WAY YOU WANT IT";
265 GOSUBRS28

2va PRINTEZ2Z, "THEM PUT IT OM A CRASSETTE TAPE FOR LATER USE . . %
275 GOSUBSas

493 PRINTE2ZZ22, " . .. MOW WE“LL REPEAT THE EMTIRE SEQUEMCE. . .. "
455 GEIEUBSHA

49 GOTOLYR

58 FOR ¥=1 T0 1AAH: NEXTH

SAS PRINTEEZR22. "
SRS FOR ¥=1 TO 258 :NEXTH

RETLIREM

the changing text starts. Line 170 prints the first line of this changing
text. The semicolon at the end of this line is extremely important.
Without it, part of the right border of the rectangle would be

PROGRAM 19: CHANGING BILLBOARD PROGRAM 119

PROGRAM 19 RUN

CHANGING BILLBOARD FROGRAM

YOU MUST DO SOME OF YOUR OWN PROGRAMMING FOR
THIS BILLBOARD TO BE EFFECTIVE FOR YOUR OWN USE. LINES
75 TO0 85 ARE THE FIXED COPY. WHILE LINES 17@ TO 49@
ARE THE CHANGING COPY. JUST TYPE IN THE TEXT YOU WANT
FOR THOSE LINES AND YOU’VE GOT A CUSTOM PROGRAM. THE
FOLLOWING 1S JUST A SAMPLE OF THE RESULTS....

WHEN READY TO SEE SAMPLE DISPLAY. HIT ENTER 7 .

THIS IS A SAMFLE OF HOW YOU CAN PLACE
FIXED COPY ON THE SCREEN TO SAY WHATEVER YOU WISH. THIS
COPY IS DETERMINED BY WHAT YOU TYPE IN LINES 75 TO 85.
FEREERE R R R R R R R R P R R R R R T R R R R S R L R R R R S 2 R 2 i
$+ THIS IS A SAMPLE OF THE TEXT YOU CAN PUT IN THE E
R R R R R R R R R A R LR R R L R T S E L T R TR R T
YOU MUST REMEMBER TO DUPLICATE THE PUNCTUATION
YOU FIND IN THE EXISTING LISTING FOR THESE ’PROGRAMMABLE?
LINES. THE SPACING IS IMPORTANT. SINCE YOU MUST LEAVE
ROOM FOR THE RECTANGLE, IN WHICH THE CHANGING MESSAGE
GOES. FOR THE CHANGING MESSAGE. INSERT ANY TEXT, NO
LONGER THAN 5@ CHARACTERS AND SPACES, IN LINES 170 TO 49
.. .AND DON’T FORGET THE SEMI-COLONS TO END- EACH MESSAGE LINE!

HAVE FUN!

blanked out in Level I; in Level II, the bottom of the rectangle (the
next printing line) would be erased. Line 175 tells the program to
jump to a subroutine starting at line 509.

Line 509 is a simple time-delay loop—about 2% seconds in
Level II, shorter in Level I. Line 505 then erases the printing in the
rectangle by printing blanks. Notice that the ending quotation mark
encloses exactly 50 blank spaces and is followed by a semicolon to
avoid destroying part of the rectangle.

Line 506 is another short time-delay loop. It leaves the inside
of the rectangle blank for about a half second to provide some
anticipation of the next line of text to be printed in the rectangle.
You can leave this program line out, if you prefer.

Line 510 sends the program back to line 175 for the next
instruction. Since there’s nothing after GOSUB5@0, the program
moves on to line 180 and prints another line of text in the blanked-
out rectangle. This procedure keeps repeating until line 496 sends the
program back to line 170, and the whole changing-message portion
of the text is repeated.

The program continues repeating until you press BREAK
(or push the RESET button, or shut off the computer, or unplug the
computer, or there’s a power outage, or. . . .)

CSAVE the finished program on tape for future use.

120

PROGRAMS FOR BEGINNERS ON THE TRS-80™

Modifications: Obviously, you’ll want to change all the text for
your own use. When you program the changing lines of text, be sure
that each line does not exceed a total of 50 characters and spaces. If
you use more than 50 characters and spaces, the erase instruction,
program line 505, will only erase the first 50 spaces—thus leaving the
remainder on the screen—and your text also might bust through the
right border of the rectangle.

You might wish to have several completely different screen
displays, including new fixed text each time. Move lines 110-160 so
that they start at, say, line 600 and make them a subroutine.
“DELETE 606-71’ will remove the instructions, giving you more
available memory. Now, with a 4K memory you should be able to
get two complete displays with 11 fixed lines and 12 changing lines;
with a 16K memory you’ll probably be able to program seven
complete displays this size. By having a GOTO instruction at the end
of the last display that sends the program back to the start of the
first display, the program will keep repeating all displays in
sequence.

Also, each display can have more changing-text lines.
You’ve got all the line numbers from 1780 to 496 to use. The
GOSUBS9@ instruction does not need to be on a separate line; it can
follow a colon at the end of each changing-text line.

Variables:

AS$—pause control
X-—graphic horizontal position; delay-loop counter
Y—graphic vertical position

PROGRAM 19: CHANGING BILLBOARD PROGRAM

121

PROGRAM 20

THE MAGIC SQUARE
(4K, Level l or)

You’ll learn: Computation from a formula and screen layout
of results

Description: This program generates a 16-number square
whose numbers add in any direction—vertically, horizontally, or
diagonally—to total a chosen number. It works with positive or
negative numbers.

Explanation: Creative Computing (October 1979, p. 115)
describes a large square containing 16 smaller, numbered squares
whose numerical values add up to the same total in every direction.
A “‘secret’’ formula calculates the number for each small square that
will produce the chosen total, which we’ll call X.

Our program converts this formula into TRS-80 BASIC
and instructs the computer to display the results in an almost-
square pattern on the screen. To understand the programming,
you must first see how the formula is used. The large square in
Fig. 20-1 is divided into 16 smaller squares, each labeled with a

SQUARE VALUES

A= B= C= D=
047 D+10 | D+I34R | D+0
E= F= G= H=
D+124R | D+1 D+6 D+1I

BASIC FORMULA:
1= J= K= L= X=30_p4p
D+2 | D+I5+R | D+8 D+5 4

WHERE:

X = CHOSEN NUMBER

M= N= 0= p= D = DIVIDEND (INTEGER)
D+9 0+4 0+3 | D+144R R = REMAINDER (0,1,2, OR 3)

Fig. 20-1. Magic square

122 PROGRAMS FOR BEGINNERS ON THE TRS-80™

letter from A to P. The letter for each small square represents the
value of the number desired for that square.

Each square contains a simple addition formula involving
D and sometimes R. These formulas are derived from the
equation:

X - 30

—— =D+R

where:

X chosen number

D = dividend [largest whole number that can be divided
into (X — 30)]

R = remainder after division (@, 1, 2, or 3)

To keep all numbers positive, X should be above 40.
However, our clever TRS-80 ingeniously performs negative-
integer rounding downward, to the next /lower number, so that
any numbers, positive or negative, will work in this program. For
simplicity, our discussion assumes positive numbers when dealing
with the INT (integer) function.

Now all we need to do is somehow enter these formulas
into a program and format the results on the screen. This
program will run ‘‘as is’’ in either Level I or Level II, since no
sophisticated calculations or formatting are involved.

Lines 1800-130 are REM statements that give the program
source. Line 149 clears the screen and prints two blank lines so
that the next lines, 150 and 160, print several lines below the top
of the screen. Line 170 skips two more screen lines and asks you
to choose any number. The input statement waits for your entry.
When you type any reasonable whole number (positive or
negative) and press ENTER, the computer will store this number
as variable X. You may have noticed the word ‘‘reasonable’’ in
the last sentence. What’s reasonable? I’ve used numbers as large
as 10 million, both positive and negative, and the program
continues to work in Level II, although the numbers must be
expressed in exponential notation when they get extremely large.
The author must confess that he doesn’t know the actual limits.

Line 180 subtracts 30 from X and divides the result by 4;
the integer function then cuts off any remainder so that D ends up
~ as a whole number. We now have the dividend, D, but how do we
get a remainder? That is provided by line 190.

PROGRAM 20: THE MAGIC SQUARE

123

LEVEL Il LISTING

100
110
120
130
140
156
6@

170
i18e
19e
2eo
210
2290
230
z24e
25@
260
2790
289
290
300
310
32e
3390
34e
350
360
370
380
32

REM % MAGIC SQUARE — DERIVED FROM CREATIVE COMPUTING ¥

REM X OCTOBER 1979 ISSUE, PAGE. 115 X
REM X PROGRAMMED BY FRED BLECHMAN:X

REM X COPYRIGHT FRED BLECHMAN 1979 X
CLS:PRINT:PRINT

PRINT" L. THE MAGIC SQUARE. "

PRINT® TOTALS THE GIVEN NUMBER IN ANY DIRECTION.
"

PRINT:PRINT: INPUT"ENTER ANY NUMBER.. }."iX

D=INT((X-3@)/4)

R=(X-308) /4 :R=R-INT(F)

IFR> . 74 THENR=3:GOTO 24@
1FR> . 48THENR=2:GOTO Z40
IFR> . 24THENR=1:GOTO 240

R=9

A=D+7:B=D+1@: C=D+13+F:D=D+0
E=D+1Z2+R: F=D+1: G=D+6:H=D+11
[=D+2: J=D+15+R: K=D+E: L =D+5
M=D+9: N=D+4 : 0=D+3: P=D+14+R
CLS:PRINT:PRINT"THE MAGIC NUMBER IS";X;"!":PRINT
PRINTA.B.C.D

PRINT:PRINT

PRINTE.F.G.H

PRINT:PRINT

PRINTI.J.K.L

PRINT:PRINT

PRINTM.N.O.P

PRINT

INPUT"ANOTHER MAGIC NUMBER? (YES=1, NO=Q)";Z
IF Z=1 GOTO100

END

First, line 190 subtracts 30 from X and then divides the
result by 4 just as line 180 did, but without the INT. This means that
the value of R is not a whole number, but the whole-number portion
is not important, only the remainder. The next statement on line 199
therefore subtracts INT(R)—the whole-number portion—from R,
leaving only the decimal remainder.

The decimal remainder must mathematically be zero, .25,
.50, or .75, since we started with a whole number (X — 30) and
divided by 4. However, the TRS-80 sometimes comes up with
numbers like .250001 or .740009. Lines 200-220 inspect R, the
remainder, to see if it’s greater than .74, .49 or .24. If greater than
.74, then it must be .75; R is thus set to the value of 3 and the
program skips to line 240. Similarly, the value of R may be set to 2
by line 210 or 1 by line 22@. If none of the lines 200, 214, or 220 are
true, then line 230 sets the value of R to zero.

The program now establishes the value for each small square
simply by setting the letter for that square equal to the addition
formula shown for it in Fig. 20-1. For example, the value in Square
A always is equal to the dividend, D, plus 7. Square B has a value of
D plus 10. Square C has a value of D plus 13 plus R. Square D

124

PROGRAMS FOR BEGINNERS ON THE TRS-80™

PROGRAM 20 RUN

ENTER ANY NUMBER....7? 1345

THE MAGIC NUMEER IS 1345 !

335 338 344 328
343 329 334 339
33e 346 336 333
337 332 331 345

ANOTHER MAGIC NUMBER? (YES=1, NO=0)7 1

ENTER ANY NUMBER....? -6&

THE MAGIC NUMBER 1S-66"!

-17 -14 -11 -24
-12 -23 -18 -13
-22 -9 -16 -19
-15 -20 ~21 -1@

ANOTHER MAGIC NUMBER? (YES=1, NO=0)7 @

always has just the value of the dividend, with nothing added. Lines
240-270 calculate these values for all sixteen squares and hold the
results in memory as variables A through P.

Line 280 clears the screen, skips a line, and prints the chosen
number, X; then it skips another line. Lines 290-350 ‘‘zone-print”’
each variable (remember that the comma directs the next variable
value to print at the beginning of the next zone) with two horizontal
blank lines between each printed line, forming a large square (ac-
tually, a squashed-down-a-bit square!).

Line 360 skips a line before line 370 asks if you want to enter
another number. If you do, line 380 recognizes the ¢‘1’’ you entered
for variable Z and sends the program back to line 190. If not, line
390 ends the program.

PROGRAM 20: THE MAGIC SQUARE

125

Modifications: You could use graphic lines generated by SET
statements to outline all the squares and then use PRINT@ (or
PRINTAT in Level I) to print the results in each square. However, if
you do this, arrange the program to draw the lines only once and use
PRINT@ with blank spaces to “‘erase’’ previous numbers on reruns
to save ‘‘drawing’’ time.

Some advanced high-speed graphic techniques can be used
to reduce graphics time to an acceptable value for reruns. Program 6
offers one approach; there are faster ones, but these are beyond the
scope of this book.

Variables:

X—chosen number
D—dividend

R—remainder
A-P—individual square values
Z—rerun control

126

PROGRAMS FOR BEGINNERS ON THE TRS-80™

PROGRAM 21

PIANO KEYBOARD FREQUENCIES
(4K, Level Il Only)

You’ll learn: Fractional-exponent calculation; printing con-
tents of screen on printer (optional)

Description: This program calculates and displays eight
octaves of the musical scale on the screen. The display may also
be output to a printer.

Explanation: There are actually many different musical scales
in use around the world, but the most dominant one in the United
States is the ‘‘American Equal Temperament Musical Scale,”’ in
which the standard pitch of A is 440 Hz (cycles per second) and
the frequency of each next higher note (including the black keys)
is exactly 2 raised to the 1/12 power greater.

This apportionment means that the frequency doubles
every 12 notes, an octave. Look at the piano keyboard layout in
Fig. 21-1. Although there are 88 keys on a piano, only two octaves
are shown here—a total of 24 keys starting with A (220 Hz).
Notice that each black note is shown as a ‘‘sharp’® (#). (We will
not refer to ‘‘flats’® since that would just confuse matters; the
frequency of each black key remains the same regardless of a

i OCTAVE } OCTAVE i

] o)] o)

4] 4 Do

OO OCHONGHGHOIOHONOGHONGIGIO,

AN MIDDLE “C” \

A= 220 Hz A'= 440 Hz

Fig.21-1. Portion of piano keyboard

PROGRAM 21: PIANO KEYBOARD FREQUENCIES

127

sharp or flat reference.) The designation of each twelfth note is a
repeat, doubling in frequency as you go upward in pitch (to the
right) and halving in frequency as you go down the keyboard (to
the left). Therefore, the lowest key on the piano, A (four octaves
below the A of 440 Hz) has a frequency of 27.5 Hz (440/2 =
220/2 = 110/2 = 55/2 = 27.5). We’ll use this as the starting
point in our program.

The listing for this program operates only in Level II
BASIC because of the fractional exponent calculation. (If Level I
were used, extensive subroutines would be needed.) Lines 10-80
clear the screen and introduce the program. Lines 106-107 clear
the screen and print the tabulation title and octave headings.

Line 110 sets the value of A equal to 27.5, Z equal to 1, E
equal to 9, and P equal to 192. A is the variable that represents
the frequency of the leftmost piano key. Variable Z, as we will see
shortly, is the A-array counter. Variable E is the value of the
numerator of the E/12 exponent. Variable P is the print-location
number for display purposes.

Line 115 starts a FOR-NEXT loop in which R, the note
counter, will loop 12 times (an octave). Line 120 starts a FOR-
NEXT loop, with X counting the eight octaves. Line 130
establishes a value of A-array location Z equal to A times 2 to the
E/12 power. (The up-arrow means ‘‘raise to the following
power.”’) With the values from line 116, A(1) equals 27.5 times 2
to the 6/12 power, or 27.5 (since any number to the zero power
equals 1). Now line 135 uses the integer-rounding technique
explained in Program 15 (Modifications) to make A(Z) a two-
place decimal. This process stores 27.5 in A(1).

Line 140 now increments Z by 1 and multiplies A by 2; Z
is therefore 2 and A is 55. Line 150 sends the program back to
line 120, where X becomes 2. Lines 13@ and 135 now store 55 in
A-array A(2). This process continues, with A(3) equal to 110, A4)
equal to 220, and so on, up to A(8), which is equal to 3520.
Notice that in all these cases, since E is equal to zero, 2 to the
E/12 power is equal to 1 and has no effect on the calculation in
line 130. :

When line 150 makes X equal to 9, exceeding the top
value set in line 120, the program continues to line 165, which
READs the first DATA entry, A in line 308, and puts this in
memory as A$. Remember that a READ statement looks for the
first DATA line it can find anywhere in the program.

Line 170 prints a single line, starting at print position 192
(set in line 11@). First it prints AS$, which is A in this case. The

128

PROGRAMS FOR BEGINNERS ON THE TRS-80™

LEVEL | LISTING

1@ REM X COPYRIGHT 19792 FRED BLECHMAN X

ié EEQ X 7217 BERNADINE AV.. CANOGA PARK, CA 913@7 X

20 PRINT@256,* THIS PROGRAM CALCULATES AND DISPLAYS THE FREQUENCIES™
30 PRINT"OF THE EQUAL TEMPERAMENT MUSICAL SCALE, USING THE AMERICAN

40 PRINT"STANDARD PITCH OF A=440 HERTZ. THE FREQUENCY OF EACH NOTE"

5@ PRINT"IS EXACTLY 2 RAISED TO THE 1,12 POWER TIMES THE PRECEDING NOTE."

6@ PRINT:PRINT" IF YOU ARE NOT USING A PRINTER. BE SURE TC DELETE LINES"
7@ PRINT"260 AND 218 BEFORE RUNNING!!"

8@ PRINT: INPUT" WHEN READY TO RUN., PRESS ENTER....";Z$%

1eo CLS

105 PRINT" PIANO KEYBOARD FREQUENCIES FOR EIGHT OCTAVES"

106 PRINT" (EQUAL TEMPERAMENT SCALE)

187 PRINT" 1 2 3 4 S 6 7 8"

110 A=27.5:7=1:E=0:P=192

115 FOR R=1 TO 12

126 FOR X=1 TO 8

130 A(Z)Y=AX2C(E/12)

135 A(Z)=INT((A(Z)X10@)+.5)/100

140 Z=Z+1:H=A%2

150 NEXT X

165 READAS

176 PRINTEP,AS$:PRINTEP+3,A(1):PRINTEP+9, A(2): PRINTEP+16.A(3):PRINTEP+23, A(4)
172 PRINTE&P+30,A(5) : PRINT8P+37,A(6) : PRINTEP+45, A(7) : PRINT@P+53. A(8)
176 P=P+64

180 E=E+1-A=27 .5:7=1

190 NEXT R

200 V=15360: L PRINTCHRS$(29) : FORC=0T015:FORR=0T063

210 LPRINT CHRS(PEEK{VU+64XC+R)); :NEXT:LPRINT" ":NEXT:END
300 DATA A .AL.B .C .C$.D .D$.E .F FE.G .G¥

remainder of program line 170 prints each of the values held in
A(1) through A(4), formatted by incremented PRINT@
statements. Line 172 continues the process with values A(5)
through A(8). This is yet another means of formatting screen
printing; TAB statements could also be used. The increments
(P+3, P+9, P+16, etc.) are not equal, since the number of
digits to be printed in each column varies.

Line 176 increments P, the print locator, by 64, to
prepare for printing on the next screen line the next time through
the R-loop. Similarly, line 180 increments E by 1, resets A to the
starting value of 27.5, and resets the octave counter, Z, to 1. Ling
190 returns the program to line 115, and R is now equal to 2.

This time, since line 130 sees E equal to 1, 2 is raised to
the 1/12 power. Therefore, A(1) is 27.5 times 2 to the 1/12
power, or 27.5 times 1.05946, which equals 29.135232. This figure
is rounded up to 29.14 by line 135 and stored in memory as A(1).
Similarly, if you follow through the X-loop (lines 120-150), A(2)
equals 55 times 1.05946, or 58.270465. This is rounded down to
58.27 and stored as A(2). Similarly, A(3) is 116.54, A(4) is 233.08,
and so on.

PROGRAM 21: PIANO KEYBOARD FREQUENCIES 129

PROGRAM 21 RUN

THIS PROGRAM CALCULATES AND DISPLAYS THE FREQUENCIES
OF THE EQUAL TEMPERAMENT MUSICAL SCALE., USING THE AMERICAN
STANDARD PITCH OF A=440 HERTZ. THE FREQUENCY OF EACH NOTE
IS EXACTLY 2 RAISED TO THE 1/1Z POWER TIMES THE PRECEDING NOTE.

IF YOU ARE NOT USING & FRINTER, BE SURE TO DELETE LINES
200 AND 219 BEFORE RUNNING!!

WHEN READY TO RUN, PRESS ENTER....?

PIANO KEYBOARD FREQUENCIES FOR EIGHT OCTAVES

27.5 5§

23,
30.
32.
34.
36.
38.
.2
43.
46.

41

49

51.

14
87
7

65
71
89

65

a25.

58.
61.
65.
69.
73.
77.
82.
87.
92.

98

(EQUAL TEMPERAMENT SCALE)

2 3 4 5 6 o 8
110 220 440 880 1769 3520
27 116.54 233.08 465.16 932.33 1864.66 3729.31

74 123.47 246.94 493.88 987 .77 1975.53 3951 .07
41 130.81 261.63 523.25 1946.5 2093 4186.01
3 138.59 277 .18 554.37 1108.73 2217 .46 4434 .92
42 146.83 293.66 587.33 1174 .66 2349.32 4698 .64
78 155.56 311.13 622.25 1244 .51 2489.02 4978.03
41 164.81 329.63 €59.26 1318.51 2637.02 5274.04
31 174 .61 349.23 698.46 1395.91 2793.83 5587.65
5 185 369.99 739.99 1479.98 2959 .96 5919 .91

196 392 783.99 1567 .98 3135.96 6271.93

91 103.83 207.65 415.3 830.61 1661.22 3327 .44 6644 .88

After A(8) is calculated and stored, line 165 reads A#
from DATA and calls it A$. Lines 170 and 172 print—starting at
the new location of P (= 192 + 64, or 256)—the new values of A(1)
through A(8).

You should be able to see now that each pass through the
R-loop (lines 115-190) calculates the eight octave values for each
successive key, A through G#, as shown in DATA line 300.

Finally, after twelve lines of printing, line 19¢ increases
the value of R to 13. Since this value exceeds the limit set in line
115, the program proceeds to lines 200 and 210. Instead of
explaining LPRINT and PEEK here, look at Appendix D and
youw’ll find out how they work. All you need to know here is that
lines 20 and 214 print the contents of the video display on a
printer exactly as they are shown on the screen except for
graphics. Therefore, if you don’t have a printer, these lines are
not needed. Furthermore, if you attempt to run this program with
lines 200 and 210 but without a printer, the program will appear
to work normally, but you will lose keyboard control after the
last line is displayed on the screen. Why? The reason is that the
computer is looking frantically for a printer because of the

130

PROGRAMS FOR BEGINNERS ON THE TRS-80™

LPRINT statement in line 200 and can’t find one. The only
escape from this condition, keeping the program intact, is to press
the RESET button (rear left of keyboard unit, under the flip-up
door). This will give you a READY but won’t destroy the
program in memory.* It is thus wise to delete lines 200 and 219
unless you are using a printer.

Since the screen actually displays 96 frequencies, it goes
“above” the highest piano key (which is the C shown in the
eighth octave, with a value of 4186.01 Hz).

Modifications: Let A = 55 in lines 110 and 180, and you’ll
show one additional octave above the keyboard but will lose the
bottom octave.

Variables:

Z$—pause control
A—frequency of musical note A
Z—A-array location counter
E—numerator of exponent E/12
P—print location

R—note-loop counter
X—octave-loop counter
A()—A-array

A$—musical note designation

*With an expansion interface, pfessing the RESET button will destroy the resident BASIC
program.

PROGRAM 21: PIANO KEYBOARD FREQUENCIES

131

APPENDIX A
VIDEO DISPLAY WORKSHEET

Video Display Worksheet

@
~ - (23 @ “a ~ - 'l o < ~ - wn a o
2 I 2 @ 3 z = o] '] 5 @ |. =
P o 2 & & k] < b ® 2 ~ 4 @ 3 & e
of-lalale[atolnTalalol=lalalslaTel=]=Te[a|c[R]R|2]R[e[8][S[R]I3[s]nla]a]BI8[a]E]R]S HEEIEIEIE
) ERm (]
OI=SG] = =t
== =
DiEse] Tone]
e T=mol—
tem ity
=D + Casld
= ==a1g)
Bes e
Bleen] E=rq
il B
elors e
BT S5
G| =
b=y =0
Ble=] ==
W= =5,
5o 5o}
=60 =0
o =ISE
=59, Sl i
Nl=on Soney
e &
(=5 ool v
oo =0
=5t =
\ni-sol =551,
o[oo CEmy
Kl col
o £
Kim oo <
G Cwy
<| v Crmkd
or] - Y
o] oMb s
[Cr3
Ciw's oo
%o 55
5o e
Al e =5 Ty
Cincry
Eemts]
s Loty
ol oo o Toy
e ekt
S CEwE
2 coabad
e G
= A G kel
Ex=x Camid
o] . =151
tlsch et
oo T
S na 2 |
Ao =Ty
2r5e bk
o Crp
toacn) EmEs
e CENEn
e =8
= S e
= o
‘D:qZ: 2 o
== =
=5]
o=
o
5
HHNENNEEE OB OEHEEE BB RBEE AR BHEEHHEER S
Tl el e g s[5 s s eleleslelalsts
bl had N 2]] Al il) o E ~ D o 8

132 PROGRAMS FOR BEGINNERS ON THE TRS-80™

APPENDIX B
CASSETTE LOADING AIDS

1. Cassette Loading Time Charts (Levels I and II)

When CLOADIng a cassette into your TRS-80, the total
time needed depends on several factors, the most important of which
is program length. Level I tape loading takes roughly twice as long as
Level II loading for programs of the same size. Even though the
cassette recorder speed is the same, Level I and Level I1 BASIC have
different ‘‘baud’’ (signal transmission) rates.

To give you an idea of how long it might take you to
CLOAD (or CSAVE) various programs, look at the Cassette
Loading Time Charts in Figs. B1 and B2. You’ll notice that both the
Level I and Level II lines start flat along the time axis for about 3
seconds. This segment represents a string of zeros put on the tape by
the CSAVE operation to act as a ‘‘leader’’ on CLOADing so that the
TRS-80 input electronics can attempt to adjust to the incoming
signal level. The leader is the same for all program lengths and is

4K

35K

3K LEVEL T LEVEL [

PROGRAM LENGTH, BYTES
~
~ wn
£ =
T T

o
=
T

i 1 ! " | L | L | s 1 s i 1 1 L Il

! | ! L 1 Il
10 20 30 40 50 60 70 80 90 100 0 120
—| La-sec "LEADER"

CASSETTE LOADING TIME, SECONDS

Fig.B-1. Cassette loading time chart

APPENDIX B

133

LEVEL !

PROGRAM LENGTH, KILOBYTES

- M W A N D

] 1 I 1 J 1 I i !
50 100 150 200 250 300 350 400 450 500

—~||-—— 3-SEC "LEADER"
CASSETTE LOADING TIME, SECONDS

Fig.B-2. Cassette loading time chart

about the same for both Level I and Level I1. The charts can be used
two ways:

1. If you know how many bytes are in the program to be
CSAVEd or CLOADed, enter the appropriate chart (Fig. Bl
for programs under 4K, Fig. B2 for programs 4K to 16K
long) at the left scale and move horizontally to the Level I or
Level 11 line. Drop straight down from this intersection and
read ‘‘seconds’’ from the bottom scale.

2. If you measure the loading time in seconds, enter the graph
at the bottom scale, and move straight up to the Level I or II
line, then over horizontally to the left-side scale and read the
program byte length.

These graphs are correct enough for general use. Since
individual tape recorder speed can effect graph accuracy, especially
on long programs, use them only as a guide.

2. Audio/Visual Control Box

Although the Radio Shack TRS-80 Model I Microcom-
puter System offers many features for a low price, various design
compromises were made to keep the price down. The recording and
playback of cassettes is clumsy at best, requiring that you pull plugs
from the recorder to move the tape when it’s not under computer

134

PROGRAMS FOR BEGINNERS ON THE TRS-80™

control or to monitor the signals. Also, the loading signal voltage is
critical, especially in Level II.

The Audio/Visual Control Box described here does the
following:

1. Eliminates plug handling by providing a manual switch to
control the recorder motor.

2. Allows you to hear the tape signals during both record and
playback (CSAVE and CLOAD).

3. Provides a ‘‘signal level meter’® for reliably loading
programs from tape, especially for Level II machines.

4. Visually alerts you when any recorder buttons are depressed
and the computer has stopped the recorder motor.

No modification whatever is required of the TRS-80 system
since the control box is simply inserted between the existing TRS-80
cable plugs and the recorder jacks. Also, the total cost, using all new
parts, is under $15!

How It Works The schematic shows the basic no-frills
design. No batteries or active circuits are involved. To describe how
it works, assume that the control box is installed between the
computer plugs and the recorder jacks and that you’re playing a tape

into the computer (CLOAD or INPUT#). The tape signal comes out

of the recorder earphone jack into Pl. The earphone makes the
signal audible, and the output transformer, TI1, operating
“backwards,’’ multiplies the output voltage. Diode D1 rectifies the
signal to pulsating dc for indication on meter M1. Potentiometer R1
is used to calibrate the meter reading (more on this later). By
adjusting the recorder volume control for the proper meter reading,
you can be sure (with a good tape) of getting a proper ‘‘load’’ into
the computer.

Nothing at all is happening at J2 at this time. Switch SW1
would be in the ‘‘automatic’’ (open) position since you are letting the
computer control tape movement. The TRS-80 internal relay is
closed, to run the recorder motor, and the relay contacts act as a
direct short circuit across J3. Therefore, no voltage appears across
the series combination of resistor R2 and the light-emitting diode
LED with the result that LED is dark. When the tape reaches the end
of its ‘““‘message’’ to the computer, the TRS-80 relay contacts open,
making J3 an open circuit. Since the recorder ‘‘play’’ key is
depressed, voltage appears across R2-LED, and the LED glows.
This reminds you to press the recorder ‘‘stop’’ key. Leaving the
recorder keys depressed in the play or record mode for long periods
without the motor running is mechanically harmful to the recorder.

‘ APPENDIX B

135

Now suppose that you want to rewind the tape. Just place
SW1 in the “manual” (closed) position and press the recorder
rewind button. By just putting the switch in the manual position,
you can exercise full recorder keyboard control, bypassing the
computer relay.

How about recording on tape? The signal comes from the
computer gray mini-plug through J2 to P2 and into the recorder
auxiliary jack. As the signal is being recorded, a monitor signal
appears at the earphone jack. This is heard from the earphone
and also appears on the meter. In this case, volume adjustment is
not required since the recorder has automatic volume control and
the meter reading is not critical. The switch should be in the
automatic position.

Construction Any small box will do for a cabinet. Cut
and file a rectangular hole in the top face of the cabinet and

EARPHONE HOLE

..= /
— | A — =)
4% fre—— T0 PI
; //--\ - L — EARPHONE
Gy b 7O P2
RN S | LeD
J2 —(P/
;N maNUAL
/ @\—\"? T0P3
J3

AUTOMATIC [—

Fig.B-3. Suggested lay-out of audiolvisual control box

mount the meter in position (see Fig. B3 for suggested layout). I
used glue to hold the meter, but mounting ears on some small
meters allow the use of small screws.

Mount the three input jacks (they may be either open-
circuit or closed-circuit types) on the left side of the box, with the
LED and switch on the top. Also, make.a Y-in. diameter hole in
the top of the box for the earphone to “play”’ through. Prepare
the earphone by cutting off the projecting part that normally goes
in your ear, and glue the earphone into the case directly below the
carphone hole. This will allow the sound from the earphone to be
loud enough to be useful, but not loud enough to be annoying.

The transformer, diode, and potentiometer can be
mounted on a small piece of perforated board as a subassembly

136

PROGRAMS FOR BEGINNERS ON THE TRS-80™™

and wired to the meter and J1. Position the potentiometer so that
it can be set during calibration. Wire according to the schematic,
being careful to observe polarity for D1, LED, and M1, and don’t
forget the LED dropping resistor, R2.

Construction is completed by bringing wires through small
holes in the right side of the box and soldering them to the plugs

TRS-80 RECORDER
CABLES , JACKS
’j R B N — P
— PY | ° DI Y
1 | Pl

EARPHONE
JACK

BLACK [ul
MINI-PLUG EAR (]

!
|
[
L o NO CONNECTION P2

AUXILIARY
JACK

GRAY (BREAKS GROUND LOOP)

|
MINI-PLUG)2 |
[
1—1 © ' I f Y
— e ||t w—
AUTOMATIC $he l P3 REMOTE
GRAY s 2o | REMC
SUBMINI-PLUG MANUAL P I
SWi e : {
¢ !
L _

Fig. B-4. Schematic of audio/visual control box

as shown in the schematic of Fig. B4, being careful to connect the
correct wire to the tip and sleeve of each plug. No shielded wire is
required, and J2-P2 are connected with only a single wire to
avoid a ground loop.

Calibration and Use If you have a calibrated
oscilloscope, connect it across the earphone, J1 or P1, and play a
known-good computer “tape into the computer. Adjust the
recorder volume control for 2 volts peak-to-peak on the
oscilloscope; then adjust potentiometer R1 for the meter to read
about 3 scale. Note this meter reading since it will be your
desired recorder-to-computer setting regardless of whether you're
operating in Level I or Level II.

If you don’t have an oscilloscope, you must simply find
the proper loading level by trial and error and then set Rl for the
desired meter reading at that signal level. From then on, any good

APPENDIX B

137

tape fed into the computer at that meter reading should load
properly. Since the output level of tapes can vary, all you have to
do is adjust the recorder playback volume unitl the meter reading
is where you know it should be and the computer is receiving the
proper signal voltage. /

You’ll very quickly find that this control box is worth ten
times its cost by eliminating the frustration and unreliability of tape
operation, especially in Level II. You’ll be able to do other things
while you listen to the tape playing into the computer during:
loading, and a bad tape is very obvious from the abnormal sound it
makes. The meter will allow you to load with confidence. During
CSAVE, you’ll also hear the computer ““talking”’ to the recorder,
putting the signal on tape. No more watching the display, bleary-
eyed, for a READY! The switch gives you positive recorder control
without constantly pulling (and wrecking) plugs and jacks. Also, the
glowing LED reminds you to release the recorder keyboard, thus
avoiding strained springs and flat spots on the pinch-roller. Now,
isn’t all that worth $15?

Radio
PARTS LIST Shack Calectro
No. No.
Plastic cabinet (approx 3” x 2" x

1" 270-230 H4-723
EAR (8-ohm dynamic earphone) 33-175 Q4-215
T1 (subminiature audio output xfmr,

8:500 or 8:1000) 273-1380 D1-712
M1 (200-uA subminiature meter) — D1-901
D1 (signal diode, 1N914 or similar) 276-1122 J4-1610
R1 (10-kilohm subminiature trimmer

pot) 271-218 B1-644
J1, J2 (miniature open or closed

circuit jacks) 274-292 F2-842
J3 (subminiature open or closed

circuit jack) 274-251 F2-845
P1, P2 (miniature phone plug) 274-286 F2-821
P3 (subminiature phone plug) 274-289 F2-826
SW1 (SPST subminiature toggle

switch) 275-612 E2-116
LED (jumbo red light-emitting

diode) 276-041 J4-940

138

PROGRAMS FOR BEGINNERS ON THE TRS-80™™

R2 (V2-watt, 220-ohm carbon

resistor) 271-000 B1-386
Perforated board (14" x 1%4") 276-139 J4-601

For the convenience of readers, a complete kit of all the
above parts, plus solder and wire, is available for $14.95 plus $1
postage and handling (USA only; California residents must add 6%
sales tax) from:

PPG Electronics Co.
Dept. FB
14663 Lanark St.
Van Nuys, CA 91402

3. The DATA DUBBER

You might not wish to build the Audio/Visual Control Box
if you’re not into electronic construction. Also, you may prefer a
unit with additional versatility—the DATA DUBBER. It comes
completely assembled and tested.

With too little volume, the TRS-80 misses data bits; too
much volume causes an overload. The upper and lower volume
limits create a loading ‘‘window.’”’ Good tapes have a window
several numbers wide on the volume knob. Troublesome tapes
have a very narrow window, which makes the volume setting
critical.

The DATA DUBBER opens the window so that setting
the volume is much less critical. It connects between your cassette
player and the TRS-80 to filter the incoming data pulses. It
actually ignores noise, volume variations, static, and distortion. A
tiny integrated circuit chip (incorporating several hundred
transistors, diodes, and resistors) takes the incoming data and
reproduces (or regenerates) the original CSAVE data pulses. The
data is ““laundered’’ by the DATA DUBBER for a clean CLOAD.
No modifications whatever are required to your TRS-80.

You can also copy any TRS-80 program cassette with the
DATA DUBBER. While you can CSAVE BASIC programs
without a DATA DUBBER, it can take a long time to load and save
an entire cassette or program. By connecting the DATA DUBBER
between two recorders, you can copy any tape in minutes. You can
even make perfect replicas of SYSTEM tapes that supposedly can’t
be copied. :

By connecting a Radio Shack speaker/amplifier
(277-1008)) to the DATA DUBBER, you can monitor your tapes

APPENDIX B

139

as they are loading without modifying your CTR-41. This is the
same amplifier that is used with game programs featuring sound.
With this monitor, you can listen for data dropouts or gaps that
make the tape unusable.

Since a data-actuated power switch is built-in, you don’t
have to turn the unit on and off. The DATA DUBBER draws
power from the battery only when you input data. The
inexpensive 9-volt battery (supplied) lasts for many months.

The DATA DUBBER is available ($49.95 postpaid;
Washington residents add sales tax) from:

The Peripheral People
Dept. FB
- P.O. Box 524
Mercer Island, WA 98040

140

PROGRAMS FOR BEGINNERS ON THE TRS-80™

APPENDIX C
Level I/l Conversions

The TRS-80 BASIC used in Level I and Level II has a lot
of similarities in ‘‘language.”’ However, some significant
differences can prevent an apparently compatible Level I program
from running in Level II.

The most obvious difference is in tape format. Level I
tapes will not load in a Level II machine without some form of
conversion tape. Radio Shack supplies PROGRAM and DATA
conversion tapes to allow loading Level I tapes into a Level II
TRS-80. These tapes accept the Level I tape format, expand Level
I abbreviations to full ‘‘words,”” and change PRINTAT to
PRINT@. However, these tapes do not correct for some different
Level II syntax requirements.

Using the keyboard of a Level II TRS-80 to enter a Level
I listing presents yet another problem. No abbreviations are
allowed in Level II. If the Level I abbreviation is a single letter
followed by a period (such as L. for LIST, P. for PRINT, R. for
RUN, etc.), it is not valid for Level II.

Thus, whether using the Radio Shack conversion tapes or
keyboard, you finally have the Level I program loaded into your
Level II TRS-80 in Level II language, or so you think until you
try to run it! The ‘‘error messages’’ generated by Level II will
challenge your ingenuity unless you pay attention to the following
Level II rules:

1. PRINT@ in Level II must be followed by a comma, not a
semicolon, which is allowed in Level I. When typing in
PRINT@, do not use the SHIFT key for any of the letters
or the @.

2. PRINTAB can be followed by a comma in Level 1. In
Level 11, this has to be changed to a semicolon or omitted
altogether!

3. Level I uses only single-letter variables. Since Level II
allows two letters (or a letter and a number) as a variable,
some statements need proper spacing in Level II. For
example, Level II will not properly interpret FORATOB to
mean FOR A TO B. If in doubt, use spaces!

APPENDIXC

141

4. Arrays do not require DIMensioning in Level I, regardless
of size. In Level II, you must use DIM (array designation)
for any array larger than the first 11 elements. 0-10).
Furthermore, if the program loops back for a rerun, the
DIM(x) statement must appear on a program line prior to
the rerun line or a ?’DD-ERROR message will tell you that
the array was already DIMensioned earlier in the same
program. ,

5. Level I graphics automatically ‘‘wrap around’’ the screen.
That is, if SET coordinates exceed (127,47), they are reset
to zero. However, this is not the case in Level II, which
comes up with an ?FC ERROR if SET (127,47) is exceeded
in either the X or Y direction. You must edit or rewrite the
program to avoid this.

6. BASIC allows you to use the POINT(X,Y) to determine if a
screen location (X,Y) is lighted (SET). In Level I, a SET
location yields a 1. However, in Level II, a SET location
yields a —1. Both Level I and Level II return a @ if the
POINT location is not SET.

7. FOR-NEXT loops are executed at a slower speed in Level II
than in Level I. However, if the loop variable is defined as an
integer with DEFINT, then the Level II loop is faster than
Level 1. Therefore, if a loop is used in a Level I program for
timing, the limit number needs to be changed for Level II or
the timing will be different.

8. The logical operators * and + of Level I may have to be
replaced by AND and OR respectively in some Level II
machines. Some Level II BASIC ROMs recognize both
forms, whereas all Level Il ROMs recognize AND and OR.

9. Level II will not accept a letter entry for a numerical
variable. Letter variables, such as Y for YES, or N for NO,
must be input to a string variable. See Program 2 (Level II
version) for some examples.

10. When assigning values to strings in Level II, the value must
be enclosed in quotes. For example, A$ = ‘“HARRY”’.

There’s an even easier way of handling the whole
“problem”’ of Level I cassette programs if you move up to Level 11
16K. “BASIC-1P”’ is a machine-language cassette tape that loads
into the top 4K of RAM, leaving about 12K for your Level I
programs. If you CLOAD in any BASIC Level I program or data
tape, your Level II TRS-80 will act like a Level I machine. All Level
I commands and abbreviations are supported, and there are four

142

PROGRAMS FOR BEGINNERS ON THE TRS-80™

new printer commands that don’t even exist in Level 1. They allow
you to LLIST, or LPRINT, on printer and to LPRINT on both
screen and printer!

BASIC 1P is available for $19.95, postpaid (plus sales tax
- for California residents), from:

Small System Software
Dept. FB
P.O. Box 366
Newbury Park, CA 91320

APPENDIX C 143

APPENDIX D

“SLICK TRICKS”’
(Level Il Only)

As a beginner with the TRS-80, you probably had your
hands full just learning BASIC, Level I or Level II. However, as you
advance further, you’ll be looking for more sophisticated programs,
with fancy subroutines, and you’ll probably get a printer. And once
you have a printer, you’ll be looking for ways to print the contents
of the screen, including the graphics. You can, and easily! Here are
some ‘‘tricks”’ and short routines 1 have picked up along the
way. They will work in cassette-based Level II but may not work the
same way (or at all) with DISK.

1. Keyboard Debounce Program

3000 V=15360:LPRINTCHRE(29)

30106 FOR C=0 TO. 15:FOR R=0 TO 63

30286 A=PEEK(V+64XC+R)

3930 IF AC192 AND A> 128 LPRINT"¥"; :GOT03050
3048 LPRINTCHRS$(A);

3050 NEXT:LPRINT"" :NEXT

3060 RETURN

This is so short and simple you can put it at the beginning of
any of your programs. I keep it on a very short tape and make it a
habit to load it into the TRS-80 whenever I turn it on. I have no idea
how it works, but it entirely eliminates undesired repeating
characters when I use my keyboard and without any excessive entry
delays. The entry delay time, incidentally, is set by the value ¢“20°’ in
line 40 of the program. This could be a larger or smaller number, but
20 seems just right. If you change it, also change the value of ‘20’
in line 50 to the new number. Line 50, of course, could be eliminated
entirely, but I prefer the security of the TRS-80 looking (PEEK) into
the value set in memory location 16486 and seeing if it’s the specified
value. This is assurance that the required POKEs (establishing
DATA values at specified memory locations) have been accepted. 1
understand that these POKEs are in the DOS (disk operating system)

144

PROGRAMS FOR BEGINNERS ON THE TRS-80™

area of memory; consequently, this probably won’t work with a disk
system.

2. Double CSAVE

When CSAVEing programs on cassette, it’s a good idea to
make two copies, with a short space between them. Normally, you
do this by entering CSAVE*“‘1’’ (or any other single number or letter
inside the quotes), then advancing the tape after the CSAVE is
complete, and doing it again.

The following is easier (type in and ENTER with recorder in
RECORD mode; no line number is required):

CSAVE*“1’’:0UT255,4:FOR I =1 TO 2000:NEXT:CSAVE*‘1”’

The first CSAVE operates normally, but instead of the
recorder stopping at the end of the CSAVE, the OUT255,4 keeps it
running for a period determined by the interval FOR-NEXT loop—
about 2 seconds. Then the next CSAVE is performed.

To verify, rewind the tape to the beginning and CLOAD?
each CSAVE separately. I have not found a way to double CLOAD?
If you do, please let me know how.

3. Merging BASIC Programs

This trick is really handy when you have two related BASIC
programs on cassette that you’d like to combine or you have a long
subroutine on tape that you’d like to add to a BASIC program in
memory or on cassette, without all the keyboard time and debugging
hassle.

Let’s say that you have a BASIC Program A to which you’d
like to add Program B, a subroutine. First, make sure that al/ the
line numbers of Program B are higher than any of the Program A
line numbers. If not, change the Program B line numbers to make
them higher. This is most easily done with any of several
RENUMBER programs. The simplest and least expensive
RENUMBER program, perhaps, is ‘““TRS-80 Utility I’ (No. 0081R)
for 16K Level II machines, available for $7.95 (plus $1.00 shipping)
from

Instant Software
Dept. FB
Peterborough, NH 03458

APPENDIX D

145

Renumbering programs is less trouble than making
keyboard changes and less likely to cause ofher problems since any
decent renumber program also changes GOTO, IF-THEN, and
other operational line number references within the program as it
changes the line numbers.

Anyhow, we’ll assume that Program B has higher line
numbers than Program A and that Program A is in memory, either
from keyboard or CLOAD. Verify that Program A operates
properly. Type in and ENTER the following line (no line number):

POKE 16548,PEEK(16633) —2:POKE16549,PEEK(16634)

The screen should respond with a READY prompt. If the
screen shows an error message, simply add two characters anywhere
in Program A and try again. In effect, this instruction looks at the
values that determine the program pointer location and changes
them to move the pointer to the end of Program A. If you try to
LIST Program A, you’ll get nothing, but it’s still there, below the
program pointer location.

Now CLOAD Program B in the normal manner. However,
it is not actually appended to Program A until the program pointer is
moved back to the beginning of Program A. This is done by simply
typing and ENTERIing the following line (no line number):

POKE16548,233:POKE16549,66

You may now LIST, RUN, or CSAVE the combined
programs in the normal way. Isn’t that worth knowing about?

4. Screen Print (No Graphics)

After you’ve had your printer a while and used LLIST to
print program listings and LPRINT within program runs, you’ll
become annoyed at the things your printer does notf show. For
example, most printers ignore graphic codes completely. Also,
PRINT @ statements appear at the beginning of the next printer line.
Furthermore, if you use TAB for forms or tabulations, your printer
may interpret TAB differently than the screen does, and you will end
up with a mess.

Ideally, you’d like the printer to show everythlng exactly as
it appears on the screen. ‘‘Screen printers’’ will do this, but they are
expensive. However, this simple program will output to your printer
all characters (except graphic) as they appear on your screen:

3000 V=15360:LPRINT CHR$(29)
3016 FORC=0TO 15:FOR R=0TO 63

146

PROGRAMS FOR BEGINNERS ON THE TRS-80™

30290 LPRINT CHR$(PEEK(V +64*C + R));
3030 NEXT:LPRINT ¢ »:NEXT
3040 END -OR- 3040 RETURN

The line numbers, of course, may be changed to anything
you like. This can be treated as a subroutine and embedded
anywhere within your program, but placing it at the end of the
program is considered the best “‘style.”’

Let’s examine, line by line, how it works. What we want to
do, somehow, is examine every screen printing location, tell the
printer what’s at that location, and then have it printed there. Line
3000 starts by using variable V and setting it equal to 15360. Why
153607 That is the decimal memory location of the first printing
space (upper left corner of your screen, print position @ in Appendix
A). Print position 1 is memory location 15361, and so on to the last
location (lower right corner, print position 1023), which has a
decimal memory location of 16383.

- The next instruction on line 3000 tells the computer to
LPRINT CHRS$(29).* That commands the printer to return to the
beginning of the next line—like a carriage return on an electric
typewriter. Now the printer is poised at the beginning of a line,
" waiting for further instructions.

Line 3010 sets up two FOR-NEXT loops. The. C-loop
counts 16 screen lines, @ to 15. The R-loop counts 64 printing
positions on a line, @ to 63. In effect, these loops are used to
“scan’’ the screen memory locations, one location at a time, from
left to right, until a line is completed, and line by line from screen
top to bottom.

Line 3020 determines the ASCII code designation—
computer character codes—for each memory location by
PEEKing. The V is 15360, the 64*C is the line number, and the
+R is the character location along the line. The LPRINT CHR$
instruction preceding the PEEK tells the printer to print that
character. The semicolon at the end of the line allows the printer
to advance only to the next print position and stops it there.

Line 3030 starts with NEXT, which advances R to the
next higher number. Therefore, every position along that screen
line is inspected, one by one, and the printer outputs a character
or space. Graphic codes are ignored; blank spaces are printed in
those locations.

*Your printer may interpret this differently. The OKIDATA Microline 80, for example, in-
terprets LPRINT CHR$(29) as a command to print narrow letters. Use the CHR$ number your
printer sees as a carriage return command.

APPENDIX D

147

When NEXT advances the R to 64, the LPRINT ¢ >’ on
line 3030 executes a carriage return, and the following NEXT
advances C by 1 to the next screen line memory locations when
calculated by the PEEK inspection on line 302@. Ingenious, isn’t
it? The formula in line 3020, together with the C and R loops,
provides a simple way to inspect every screen memory location
and gives this information to the printer one character at a time.

Line 3040 may either END the program or RETURN it to
a GOSUB call in the program. This little program is an extremely
useful subroutine when you have a main program with lots of text
and you don’t want to add LPRINT statements throughout the
program. Just add a line with GOSUB 3008 after each screenful.

Since each character is being determined and printed one
at a time, this program usually prints out more slowly than a
regular LPRINT statement. However, the convenience is worth
the extra time. Furthermore, PRINT @ statements and tabulations
appear on the printer just as they do on the screen.

5. Screen Print (Using # for Graphics)

For those programs heavy in graphics, especially games,
use this subroutine:

10 FORN=1E480TO16452 : READK : FOKEN, K :NEXT

20 FORN=16435T016437:READK: PCKEN.K:NEXT

30 POKE164R5.0

4@ DATARZES5.227.3.133.200.14.29,16.254,13,32.251.,261, 195.96.64
S@ IF PEEK{16185)=29 PRINT"IEBOUNCE FROGRAM INSTALLED"

The similarity with the nongraphic screen printing
program (Section 4) is obvious. All we have done here is to
determine if the ASCII code stored in a screen memory location is
a visible graphic code (129-191; 128 is a blank space). If so, a # is
printed at that location. Of course, you can replace the # with any
other character you please, including ! or * or + or whatever.
Just enclose your desired character in the quotes in line 3930.

If this is not used as a subroutine, then line 3060 should
be END or GOTO (line number) instead of RETURN; otherwise,
the computer will terminate your RUN with an 7RG ERROR. '

6. Software Printer/Screen Switch

If you have a program with a lot of YPR'INT statements
and you want to output to a printer, the LPRINT statement is

148

PROGRAMS FOR BEGINNERS ON THE TRS-80™

used. This could mean either changing some or all of the PRINT
statements within the program to LPRINT or adding a bunch of
LPRINT statements after PRINT statements to get output to both
screen and printer. .

The following simple one-line program acts like a switch.
It changes all PRINT statements in a program to LPRINT. Used
a second time, it changes back to PRINT.

FOR 1=16414 TO 16415: K=PEEK(I): J=PEEK(I1+8): POKE I, J:
POKE I+8, K: NEXT

This can be entered from the keyboard without a line
number before a program run or embedded within the program in
one or more places with line numbers. It can also be used as a
subroutine by adding RETURN at the end of the line when used
within a program. Remember that this line, when used only once,
converts PRINT to LPRINT. Therefore, you must use it a second
time to regain screen output. If used only once, all output—
including keyboard entry—that normally goes to the screen will
instead go to the printer. This makes your printer an electric
typewriter, with no backspacing, and nothing shown on the
screen. Simply type the ‘‘switch’’ line in from the keyboard, or
GOSUB the line number in your program where the ‘‘switch”’
resides in memory.

Unfortunately, there’s one limitation to. the use of this
simple ‘“‘switch,”” at least on my printer. It doesn’t work properly
if more than one PRINTTAB statement is used on a printed line.
The printer counts TAB spaces from the last printing location
instead of the beginning of the line. If you try to bring the cursor
back to the beginning of the line with a CHR$(29), the printer
returns all right, but advances to the next line.

If you find out how to handle several TABs on one line
using this ‘‘switch,”” please let me know. Of course, the Screen
Prints (sections 4 and 5) handle TABs with no problem.

APPENDIX D

149

MATRI-DEX™

STATEMENT

OR .

OPERATION z ©
5 a Z = _“m M o .m
2 cle = bm Al v F = d E 2 g
2l-|= HE I EHEEEE gl |2 HEHERHEEINEE
Gld|d| procRAMTITLE o B|E121810|2|5|5|5BF|218] |xle|El2]s|E|E]s| 3|l e|E]2
of>|5 olzlzlglelgl|5lsl5lo|2c]glZl2||u|2|2|S 00|28 |G|E|E|R|E
clyly z|ZE|El2lQ|8lsl|aLlZrzlS|s|8|S|¥||E|&E|2|z|2|d|B|d|a|F|F
1] @ | @] DISPLAY ALIGNMENT 0 o (] o o o0
2| @|@| COMPUTER INTERVIEW o (10 @ o0 @
3| @|@] FORTUNE TELLER o |@® o0 L @ 0 (o o (@
4| @|@®| AsK YOUR GOVERNMENT! [10 00 @ [) @ o
5| @ | @ | RACING ALPHABET o (00000 00O O e |0 (o ol0/0 o
6 @ | RUN,SPOT, RUN! L) 0000 ® o ® @ o
7| @ | @] BINGO CALLER/VERIFIER ® 0 ® 00 @ /0|00 0 [
s | @| @] ssoopiGiTAL cLOCK @ |0 @ L JL I) o o
9| @ | @| $600DIGITAL ADDING MACHINE ® e e o []
10| @ | @| ORDER FORM @ o (JK) ® ® . o
1 | @] @] BOOKKEEPING o (o (0 o006 &6 (0O [) [] []
12 | @ | @| INTEREST CALCULATIONS @ o [] (] o 00 @ ®
13 | @| @] INVEST ORSAVE? o000 000 [) [] [) []
14 | @ | @[MORTGAGE LOAN o o o 9 0000 6 [] [] ®
15| @ | @{ PAY NOW OR PAY MONTHLY? o0 000 @
16 | @| @] PHONE TOLL-CHARGE o @ L 1K) [@ o ®
17 | @ | @] SPIRANGLE ® [] L] []
18| @| @] CUSTOM SCREEN DISPLAY 000 @ 0|00 ® o
19 | @ | @| CHANGING BILLBOARD (JC I L o o L] [
20 | @| @] maGIcsoUARE o |0/0/00 (]
21 @ | PIANO KEYBOARD FREQUENCIES L] (] [o [) o0 [
- @ | APPENDIX D-SLICK TRICKS L 1) e (@ L J o0 o

PROGRAMS FOR BEGINNERS ON THE TRS-80™

150

5182-4
$8.95

PROGRAMS FOR BEGINNERS ON THE TRS-80™

Fred Blechman

Here's a valuable book of practical and interesting programs for home use
that can be understood and used immediately by the beginner in personal
computer programming. You'll learn step-by-step how 21 sample TRS-80
programs work. Program techniques are described line-by-line within the
programs, and a unique Matri-Dex™ matrix index will enable you to locate
other programs using the same BASIC commands and statements. Each
program includes a detailed description, a complete listing, an explanation
of what the program does, and instructions for modification.

Other Books of Interest. ..

TEN EASY PIECES: Creative Programming for Fun and Profit

Carl Meyer, Jr., and Hans Sagan

“. .. a nicely written book, of interest to anybody who wants to write games,
or who wants to know more about the subtleties of advanced programming in
BASIC. . . . Creative Computing. Requires little knowledge of elementary
mathematics. #5160-3, paper, 192 pages

BASIC COMPUTER PROGRAMS FOR THE HOME

Charles D. Sternberg

Over 75 practical home application programs that are documented with a
description of operations and functions. Each program includes a listing in
BASIC language, a symbol table, sample data, and one or more output
samples. #5154-9, paper, 336 pages

BASIC BASIC: An Introduction to Computer Programming
in BASIC Language, Second Edition

James S. Coan

. an excellent introduction to the use of BASIC . . . clearly written and
well-organized.” Computing Reviews. "It is a well-written book . . . there are
many good examples, complete with results.”” Computer World. Contains over
100 sample programs. #5106-9, paper, 288 pages

H

HAYDEN BOOK COMPANY, INC.

Rochelle Park, New Jersey

ISBN 0-8104-5182-4

	01.tif
	02.tif
	book.pdf
	001.pdf
	002.pdf
	003.pdf
	004.pdf
	005.pdf
	006.pdf
	007.pdf
	008.pdf
	009.pdf
	010.pdf
	011.pdf
	012.pdf
	013.pdf
	014.pdf
	015.pdf
	016.pdf
	017.pdf
	018.pdf
	019.pdf
	020.pdf
	021.pdf
	022.pdf
	023.pdf
	024.pdf
	025.pdf
	026.pdf
	027.pdf
	028.pdf
	029.pdf
	030.pdf
	031.pdf
	032.pdf
	033.pdf
	034.pdf
	035.pdf
	036.pdf
	037.pdf
	038.pdf
	039.pdf
	040.pdf
	041.pdf
	042.pdf
	043.pdf
	044.pdf
	045.pdf
	046.pdf
	047.pdf
	048.pdf
	049.pdf
	050.pdf
	051.pdf
	052.pdf
	053.pdf
	054.pdf
	055.pdf
	056.pdf
	057.pdf
	058.pdf
	059.pdf
	060.pdf
	061.pdf
	062.pdf
	063.pdf
	064.pdf
	065.pdf
	066.pdf
	067.pdf
	068.pdf
	069.pdf
	070.pdf
	071.pdf
	072.pdf
	073.pdf
	074.pdf
	075.pdf
	076.pdf
	077.pdf
	078.pdf
	079.pdf
	080.pdf
	081.pdf
	082.pdf
	083.pdf
	084.pdf
	085.pdf
	086.pdf
	087.pdf
	088.pdf
	089.pdf
	090.pdf
	091.pdf
	092.pdf
	093.pdf
	094.pdf
	095.pdf
	096.pdf
	097.pdf
	098.pdf
	099.pdf
	100.pdf
	101.pdf
	102.pdf
	103.pdf
	104.pdf
	105.pdf
	106.pdf
	107.pdf
	108.pdf
	109.pdf
	110.pdf
	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf
	116.pdf
	117.pdf
	118.pdf
	119.pdf
	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf
	127.pdf
	128.pdf
	129.pdf
	130.pdf
	131.pdf
	132.pdf
	133.pdf
	134.pdf
	135.pdf
	136.pdf
	137.pdf
	138.pdf
	139.pdf
	140.pdf
	141.pdf
	142.pdf
	143.pdf
	144.pdf
	145.pdf
	146.pdf
	147.pdf
	148.pdf
	149.pdf
	150.pdf
	151.pdf
	152.pdf
	153.pdf
	154.pdf
	155.pdf
	156.pdf
	157.pdf
	158.pdf
	159.pdf
	160.pdf

	03.tif
	04.tif

