
TRS-80 INFORMATION SERIES — VOLUME I

HAJ» Pennington

& OTHEK AWSXreiES

%

'z;
M)

Je _L^
:1-^^-

^(

\:'Tw-^

y ij'

\^' .^

^iy /^ .
'/

^^>s^

^o bookofV>^^^

TRS-C0 DISK AND OTHER IIYSTERIES

TRS-Se INFORi^iATION SERIES VOLUME 1

BY H.C. PEKNItJGTOH
Illustraticns by the Author

Copyright (c) 1979 by Harvard C* Pennington

FIRST EDITION
FIRST PRINTING - NOVEMBER 1979
SECOND PRINTIMG - JANUARY 19 80

Ml rights reserved* Reproduction
permission, of editorial or pictori
manner, is prohibited- No patent 1

respect to the use of the informati
every precaution has been taken in

booKr the publisher and the author
for errors or omissions. Neither i

fox damages resulting from the use
contained herein.

or use* without express
al content, in any
lability is assumed with
on contained herein. While
the preparation of this
assume no responsibility
s any liability assumed
of the information

PUBLISHED BY:
INTERNATIONAL JEWELRY GUILD, INC*
IJG COMPUTER SERVICES
56 9 N. Mountain Ave,
Upland, California 91768 U.S.A.
ISBN # 0-936200-00-6 \VV^^

is

\
the

xk of
%

Radio Shack and TRS-80 are
registered trademarks ot the
TANDY Corporation

je^e\<\
4 TM

CONTENTS

PKEFACE iii
XiJTRODUCTIOiM „,,,,,,, 1

HEKADECIMAL - BriJARY - DECIMAL ., 3

READING & USIIJG SUPERZAP 2.0 9

"iiUPERSAP" FUNCTIONS 9

"SUPERSAP" COMFiANDS 13
SPECIAL COm-IAi'JDS 13
SPECIAL SYMBOLS 14
"SUPERSAP" DISPLAY FORilAT 14
EXAMPLES 15
SUPERZAP 3,0 * 20

OTHER UTILITIES 24
RSi'i-2D 24
MONITORS 24
DEBUG 25
DIRCHECK .,, 25
LMOFFSET 28

OPEPJ\TIWG SYSTEl'iS 29
TRSDOS 2.1 29
TRSDOS 2.2 29
VTOS 3.0 29
NEl^GS 2,1 30
FUTURE DEVELOPHEiJTS 30

DISK ORGANIZATIOH 32
THE DIRECTORY 36

THE 'GAT' SECTOR 36
THE 'HIT' SECTOR 38
THE FPDE/FXDE ' SECTORS 43
DECODING THE DIRECTORY ENTRIES 45
DECODING THE EXTENTS 49

PASSWORDS i* OTHER TRIVIA 5 2
DATA RECOVERY PROCEDURES & TECHNIQUES 54

THE 'SHELL GAME' OM DISK 54
USING "SUPERZAP" ON SINGLE DRIVE SYSTEM 55
BUILDING A BUFFER TRACK 55

FILES - STRUCTURES & TYPES 56
ASCII 'BASIC PROGRAM FILES 56
BINARY "BASIC PROGRAM FILES 57
EDI TOR/ASSEMBLER SOURCE FILES 59
OBJECT CODE FILES 6

SYSTEI^l FILES 6 2
ELECTRIC PENCIL FILES 63
MACRO-80 FILES 64

DATA RECOVERY 66
RECOVERING 'HASH' CODES 66
RECOVERING A 'KILLED' FILE 66
RECOVERING 'DISK WON'T READ/BOOT' 68
RECOVERING 'CLOBBERED' DIRECTORY 6 9

RECOVERING 'UNREADABLE' DIRECTORY 70

RECOVERIiSG 'ELECTRICALLY' DAMAGED DISK 71
REKOVERIKG A PHYSICALLY DAMAGED DISK 72
RECOVERING 'BAD PARITY' ERROR 72
RECOVERING A DIRECl' STATEMENT IM FILE 74

ASCII 'BASIC PROGRAM FILE .,.,,,,.. 75

BINARY 'BASIC' PROGRAK FILE 75

RECOVERING DATA FILES 77

ASCII FILES ..-• ^'7

RANDOt-i FILES 7 8

RECOVERING 'ELECTRIC PENCIL' ERRORS 81

'DOS ERROR 22' • •• ^1
'LOST' PILE ON DISK 82
'LOST' FILE IH MEHORY 83
RECOVERING 'FILE AREA FULL' ERROR 84

ELECTRIC PEKCIL GOODIES 84

CORRECTING THE GAT & HIT SECTORS 86

SOME THINGS YOU CAN DO ^8
MAKING ELECTRIC PENCIL FILES IH 'BASIC' 88
LOADING 'BASIC'/ASCII FILES INTO PEKCIL 8G

MAKING 'PENCIL' PILES INTO 'BASIC' FILES 89

CONVERTING 'DATA TUPES' IN RANDOM PILES 89
CONVERTING DATA IN ASCII FILES 90

MAKING 'BASIC PROGWiMS 'UHLISTABLE' 9ti

ADDING CONMANDS TO "SUPERZAP" 90

APPENDIX A
GLOSSARY 1

LEVEL II 'BASIC' TOKENS 10
TRSDOS 2.2 DIRECTORY HEX DUMP H
NEW DOS 2.1 DIRECTORY HEX DUMP 16

VTOS 3.0 DIRECTORY HEX DUMP 21

APPENDIX B
DISK DRIVE MAINTENANCE 1

SUGGESTED READING 3

MURPHY'S LAW & OTHER COROLLARIES 4

ORDERING NEK DOS £< SUPERZAP 5

"SEARCH" PROGRAM DOCUMENTATION 6

MAP INDEX

DISK MAP (TRS DOS 2.2) 35

DIRECTORY MAP (TRACK 11 - ALL SYSTEMS) 37

GAT SECTOR HAP (TRACK 11, SECTOR 0) 40

GRANULE ALLOCATION MAP 41

HIT SECTOR MAP (TRACK 11, SECTOR 1) 42
FPDE/FXDE SECTOR MAP (TRACK 11, SECTOR 0-9) 44
DIRECTORY ENTRY MAP 45

li

PREFACE

I'll never foryet how I first met Harvard C* Pennington, the author of

"x'RS-80 DISK AND OTHER MYSTERIES", I was attending a meeting of our
local TKS-80 users' group when I happened to glance over at one of our
Radio Shack managers. He appeared to be short of breath* On further
exciiiiiiiation I saw that, in fact, he was being garroted by a disk cable
assembly* Tlie garroter, I found out later, was Harv,

Harv has since taken less drastic measures in attempting to find
the answers to some ot the perplexing problems that appear in TRSDQS
and other Radio Shack and non-Radio Shack Utility and applications
Bottware, He has gone from violence to investigative writing. The
results ot his research are presented here in "TRS-80 DISK AND OTHER
MYSTERIES"

-

IS this a worthwhile book? To use one of Karv's expressions, "Hell
yesl" (You'll find other salty expressions herein, but they just liven

up the book.) But seriously, TRS-80 users, this is not only a

worthwnile book but a threat book. It's great for two reasons: It

presents Information on TRS-80 disk organization and file management
that can be found nowhere else! Secondly, it is available when you
need it - now!

The book discusses how disks are organized, how space is allocated,
now files are located on disk, and the tools that one may use to look
at disk files and directories. Wot only doGS it provide a general
aii^cussion of these topics, however, but it also gives clear
inforniation now to FIX disk problems such as lost files, Electric
Pencil Dugs and other snafus.

This is a clearly presented book packed with good disk information,
i'ty advice to you is to get it, use it, and do not approach Mr.
Pennington wnile carrying a disk cable assembly-

William Barden Jr.

13_1

INTRODUCTIOM

I have been proyraiviriLing for a very short tinie and haviny applied
myself to the task, it seems I have acquired some knowledge that
others would like me to share with them.

No doubt you have been tolci that you cannot do certain things vjith the

TRS-80 like 'BOOT' a 'BASIC PROGRAM' because you need 'BASIC to
load a program or that you cannot lock out the break key without
messing up the I-O routines or that you cannot defeat the 'LIST'

and 'LLIST' commands. You have been told wrong. All of these things
can be done I I have been able to do all of the aDove with little or

no trouble. The OHLY limitation you have is your own imagination.
Of course, there is no fool-proo£ way of protecting anything

because some determined soul will puzzle out the most obscure and
hidden method and reveal it to the world ... just as I'm doing here.

The following is a result of endless hours of gazing at the CRT,
countless disk dumps, and many hours of cross checking. Now that you
have developed a certain amount of respect for my efforts, as a result
of reading the above, we will proceed.

• . .Oh, yes. This couldn 't have been done without an incredible
program called "SUPER2AP'\ It is a product of APPARAT Inc., of Denver
Colorado, You may purchase a copy of this pto^jrair. with the new DOS
operating system from your local software dealer. Ordering
information is in the appendix at the end of this tome. You will find
that "SUPER2AP" is indispensable if you are going to take the voyage
to the bottom of the disk.

The following people have contributed, in one way or another, to my
somewhat limited store of knowledge or to the completion of this book,
I would like to have them stand and take a bowt

Bill Barden Jim Farvour Ron Markle
Jim Lauletta C.I. Michael Shrayer
Dick Schubert Etu Minis Dennis Pagan
Bob Thorpe

To the above: Thank you from the bottom of my CPU,

SOME KIND WORDS ON THE TRS-BD

On the whole the TRS-80 is a pretty neat machine. In fact, I love lay

TRS-80. Just a few short years ago, a computer with the povjer and
capability of the TRS-B0 would have cost several hundreds of thousands
of dollars, required an air conditioned room of considerable
proportions and a staff to operate it. Certainly, the TANDY
Corporation deserves all the credit possible for the development,
production and distribution of this magic machine. TANDY Corporation,
I SALUTE YOU J

SOME NOT SO KIND WORDS

Like all large corporations, the TANDY Corporation, seems to have
continued success in spite of itself. The initial success of the
TRS-80 was, I suspect^ beyond the wildest dreams of anybody at Tandy.
Since there was no way to measure their success against a similar
product, at a similar price and with similar distribution, who is to
say how successful they really were. It is my contention that they
were only about fifty to sixty percent as successful as they could
have beenl

Very quickly, as a result, an attitude of "don 't-tell-us,
we'll-tell^you" develot^ed. The general quality of follow-on support,
QevGlopment and sortv;dre v/as abysTr:al. Information about the workings
of the system was (and is) a carefully and jealously guarded secret.
It's as if "WE", the users, "couldn't possibly know a damn thing or
figure it out" and only the High Priests of Fort t^jorth, when they deem
it propitious, will tell us what we need to know.
So, if I tend to excoriate (a fancy word meaning, "give 'em hell") the
T^^gDY corporation (Radio Shack), it is only because I would like to
see them turn around their damn superior attitude and realize that the
thousands of you out there are doiny more than you are being given
credit for and sliould be listened to. instead of 'THEM' telling you;
'YOU' tell them.

A case in poirit is the APPARAT Corporation. Here are two guys in
Denver , without the resources or the staff, working at other
enueavourti, and they have single-handedly revised, corrected and
enhanced the operating system (TRSDOS 2,1) over one year ago! They
got it into release with almost no bugs! tJhen they did find bugs, they
adTnitted it and sent out corrections inmxediately . They provided the
user witii the tools to 'get into the disk" ("SUPERZAP"} and make the
fixes, you will shortly receive word on a new Radio Shack break
through - I^REDOS 2,3! Tell n^e, does this mean there are bugs in 2,2
or does this riean ti»at there were some things in 2,2 that were (to use
the words of Radio £hack) '*-.not fully irrtplemented'

?

It is my experience that when you find it difficult (if not
ij^l^ossible) to admit that you have made a mistake, you should try to
cover it up with what George Orv/ell might term "CRAPSPEAK".

ABOUT THIS BOOK

Just by reading this book, one might get the impression that the only
thing the TRS-80 is good for is to fix errors that are created on the
Liaciiine! Hot true! Hot a single day goes by that I do not use my
TRS-8e for some useful and productive purpose. Occasional errors are
just a small part of the day to day experience. It is only when you
cannot fix those errors that they begin to dominate the 'computer
experience'

.

It is my wish that you will, as a result of this book, be able to
make your TRS^eti one hundred percent productive and enjoyable*

This book was written, composed, directed, choreographed, and produced
on a TRS-80 with 48K RAM, upper/lower case modif icatimi- NEitroos
operating systeiii, four MICROCOMPUTER TECHNOLOGY IMC, ^is^ drives,
Spinterm Printer and the 'ELECTRIC PENCIL' word processor

To Kip and Trista
Knowledge is a commodity that can be exchanged for time.

1.0 IS IT A NUMBER OR A LETTER

Most oJ: the numbers we will be using, in our journey through the disk,
are HEXADECIMAL nurabers. The following is a brief outline o£ the
HEXADECIMAL numbering system. If you are totally unfamiliar with
'HEX' numbers, I would suggest you get a copy of VJilliam Bacden's "How
to Program Microcomputers". Chapter two will make you an expert. In
the meantime the following will acquaint you with the HEXADECIMAL
numbering system.

The computer does all of its thinking in BINARY numbers. Since we
human beings don't 'naturally' think in BINARY numbers the computer
does a number on the numbers and presents the information we need in
DECIMAL numbers. However, DECIMAL numbers are too long when we need
to fit large numbers onto the video display - especially if we need to
put a lot of them on the screen at one time. Also the computer can
convert BINARY to HEXADECIMAL very easily and quickly.

HEXADECIMAL is usually shortened to 'HEX' and sometimes to 'H', There
are other methods used to indicate that the numbers being used are
'HEX' and we'll get to that later.

1.1 BINARY

You have ten fingers and those that study such matters tell us that
for this reason we just 'naturally" think in tens. To represent each
finger we have a symbol. The symbols we use are;

^figure 1 .i;

THE TEN DECIMAL SYMBOLS

The Computer, on the other hand, has only two 'fingers' ('ON' and
'OFF'} and therefore naturally thinks in twos and only needs two
symbols to represent the numbers. The symbols used by the computer
are:

(figure 1.2]

THE TWO BINARY SYMBOLS

In order to represent ALL of the numbers, we use a system that puts
VALUE on WHERE the number symbols are in relation to each other.

Kfigure 1.3;

• . .you have lin

f intjers .. .

'^

. . . the
coraputer only
has two 'fingers

When we humans get to the symbol '9' we have to start using
syrftbols over ayain. We move the '1' one place to the left
over with the '0' symbol on the right. When we move the
left, we also assign a different value to it DEPENDING ON
PLACES TO THE LEFT WE MOVE IT.

our number
and start
1" to the
HOW MANY

10 == t m-m-
9 = t mm
8 = (MHW\
7 = (Mil
6 = (-iHtl

5 = (jm

4

3

2

1

K figure 1.4>

you
the

can visualize the relationship between
values they represent, A peculiarity of

From the above figure,
decimal numbers and
humans is that we never
is the FIRST number and should always be thought of in that manner;
i^e., start counting with 'ZERO' as your first number. If you count

your hand, starting with 'ZERO', you will only get to

think of 'ZERO' as a number. Actually 'ZERO

the fingers on
nine before you run out of fingers to count.
COMPUTER COUNTS. It ALWAYS Starts with zerol

THIS IS THE WAY THE

Mow we are ready fco investigate the computer's method of counting.
The computer only has tv^o fingers — 'OW and 'OFF' — simply

described, this is due to the fact that a digital device^ such as a

computer, can only detect one oil two conditions, "01^
' or 'OFF' . If

you will reraeriber irom the above discussion, ^ huLian starts using the
symbols over after '9' and has 10 syrr-bols to v.'ork with. The computer
starts using the symbols over again after '1'. In other v/ords, when
the computer gets to '1' he runs out of nuLiber synbuls and stcirts over
by moving the '1' one place to the left and starts over with the

'SERO' symbol on the right

BIMRY NUMBER TALLEY DECIMAL NUMBER

1010 = (HVtM = 10
10!dl =

(Jin lilt
= 9

lfc00 -
< uwm - &

111 =
< iHfll

= 7

110 = (imi = 6

101 =
(jm

= 5

100 ^
(n = 4

11 n
(III

= 3
10 =

(w
= 2

1 =
K 1

= 1

Q "
(

Let's take a closer look at that BIWARY number '1010*. First of all,
it has four 'places', (Count the digits, there are four of them,)
Each 'place' represents a "times two" multiplication. We'll convert
this BliSlARY nuriiber '1010', to DECIMAL by multiplying each 'place' by
it's 'place value' and adding the results*

BINARY

,'plaoe' number 1 is units
' place

'

number 2 is twos
' place number 3 is fours
' place number 4 is eights

(figure 1.6!

DECIMAL

0X1
1X2
0X4
1X8

2

8

10 (DECIMAL)

It we add the results of our multiplications (+ 2 -*-

will have converted our BXNARZ number (BASE 2) to a

(BASE 10)

,

+ 8 = 10) we
DECIMAL nurfiber

1,2 HEXADECIMAL

Kow we'll tackle HEXADECIMAL {EASE 16), The computer needs a method

of representing large numbers in a sinall space. BINARY is easy to
convert to HEXADECIMAL (for the coraputer, at least) . The HEXADECIMAL
sybteni uses 16 syjrbols to represent the 16 numbers and then, just like
BINARY and DECIMAL nuiiibers, we move the '1' one place to the left and
start using the nuiiiber syrabols over again-

The tollowing
equivelents:

are the HEXADECIMAL numbers with their DECIKAL

-(figure 1.7:

HEX DISCIHAL HEX DECIMAL

a = Q 8 = 8
1 = I 9 = 9
2 = 2 A = lij

3 = 3 E = 11
4 ^ 4 C = 12
5 = 5 D = 13
6 = 6 E = 14
7 ^ 7 F = 15

It was decided {by whoin^ I don't know) to use letters for the
additional HEXADECIMAL symbols, since letters and nurd^ers are already
on the k.eyboard. As a result, we get numbers that look like this: 'lA'
or 'FF'» You will find that using HEXADECIMAL numbers is not as
inconvenient as you might suspect. After a couple of days they become
very familiar indeed.

Here
and
numbers

is an instant replay of the above figures in HEXADECIMAL, BINARY
DECIMAL, This time I have shortened it up a bit because the

are the same in HEXADECIMAL as in DECIMAL.from '0' to '9

(figure 1-8)
HEX TALLY DECIMAL BINARY

20 = {jWiin!wwTJfffmil) — 32 = 100000
lA = (!WllHIK1Jtf!iKli) = 26 = 11010
15 = (JWUHJIfllJfll) = 21 = 16101
10 = (miiHiwi)

= 16 = 10000
F = (MniWM)

- 15 = nil
A { mm)

= 10 = 1010
5 = (m)

= 5 = 101

As you can see, we run out of number symbols after we get to 'F' and
just as in every other numbering system, we start over by moving the
'1', one place to the left and placing the aero in the ^units'
position.

So when you see 10 (HEX) or 10 (BINARY) or 10 (DECIMAL) you know I am

taXkincj about 3 different VALUES of 'one-zero

There is one more thing I vjould like to tell you about tliat will come

in nandy as you prot^iress through this book. From time to time you

will need to convert a binary 'bit record' into it's HEX value. Thic

is easier than you miyht think* consider the following;
FF (HEX) = 11111111 (BIMARY)

It looks complicated dosen't it? V/ell, it's not* It is the essence

ot siii^pliclty. The way to solve any problem is to break it down into

raana^eable chunks. This problem is no different. First we'll take the

BINARY number, which, in this case is 8 bits or one byte, find brealc it

up into wriat is teriued, in the trcide, as

bits . Let ' s break the above examt-le into
FF (HEX) ^ 1111 1111

a 'MYBELE'
'NYBBLE's:

A 'NYBBLE' is 4

Kow if you will get your lightnin9-quick"bear-trap-iriind into remember

mode, you will recall tne 'place values' for the BINARY nuiiibers. If

you don't recall, then I'll review it for you.

Hf igure 1 .9:

Btti place = 128
7th place = 64

6th place = 32
5tn place = 16

1st plcLce
2nd pl^ce = 2

3rd place = 4

4th place = 6

= 1

1 1

If we take each group of four bits (NYBELE) , we can easily figure out

the HEX value, since we can eaBily temember the HEX nuiiibers from '0'

to 'F'. Addin-j up the BINARY numbers on the right we arrive at the

following:

8 1 = b

4 K 1 = 4

2 X 1 = 2

i K 1 = I +

15 { D
DO it again tor the left side then c

you •ve got it!

(DECIMAL) = F [KEX)
coribine the two HEX values and

Let's do it again
Suppose we need
are ou r NYBBLES:

with a different BINARY number, just to maite sure,
tne HEX value for the Binary Value '00101101'. Here
0fejlt) and 1101,

LEFT SIDE
8X0 = ^
4 X = e
2X1 = 2
1X6 = +

2 (DECIMAL)

2 (DECIMAL) = 2 (HEX)

RIGHT SIDE
8X1 = 84X1=4
2 X = e

1X1 = 1 +

13 (DECIMAL)

13 (DECIMAL) = D (HEK)

LEFT SIDE + RIGHT SIDE = 2D (HEX)

a'here, isn't that simple? With very little practice you should be

able to convert EIHARY to HEX and vice-versa with very little trouble.

TBE BAD DREAM

2.0 READIWG & USING "SUPERSAP"

"SUPERZAP" is unique in several ways. Fitst it has its own disk I/O
routines and does not require that a DOS be in drive aero to perform
miracles. Second, it will read ANYTHING that is readable, regardless
of its 'PROTECT' status. Thiud, it will recover almost every
imaginable type of error condition.

In addition, it has a 'BACKUP' routine that will make umpty-amp
tries when it encounters an incorrect or electr ically damaged sector
before it gives up. Then, it allows you to try again as many times as
you wantl

Wait 1 There ' s more. . , it wil 1 copy disk sectors , relocate disk
sectors , allow uiodif ication of any byte or combination of bytes on the
disk or in memory, move data from one disk sector to another and
' ZERO' disk sectors.

Now that you have a preview of what it can do, lets review the
functions and commands of "SUPER ZAP '^ so you can start using it today.

^.1 SOPERZAP FUNCTIONS

APPARAT SUPERZAP 2.0

INPUT OKE OF THE FOLLOWING INSTRUCTIONS
'DD' OR NULL - DISPLAY DISK SECTOR
PD' - PRIKT DISK SECTORS
'DM' - DISPLAY MAIN MEMORY
'PM* - PRINT MAIN MEMORY
'VERIFY DISK SECTORS'
'ZERO DISK SECTORS'
'COPY DISK SECTORS'
'DISK BACKUP'
'COPY DISK DATA'

"SUPERSAP^' menu display

[figure i;

We'll take each menu function in order, I would recommend that you
get- in front of the computer, 'RUN' "SUPERZAP" and try out each
function and command as it is explained. This way you will become
familiar with the operation of "SUPER2AP" that much quicker.

isieis-ii-k'kitii:ii-ki!i!i:i:-k-k-kic-k-k-kic-k4!*'k'k'k'k'k f^jQiptl **************************
** **
** ENTER ALL MENU FUNCTIONS WITHOUT QUOTES OR APOSTROPHES **
** **
*************************** A AAA* *****************************

^DD' or 'I^ULL' - DISPLAY DI£K SECTOR. You v^ill use this function
TLjore than any other, you vjill be constantly looking at the sectors to
verify or change something. 'NULL' in this case means press <EKT£K>.
Since thib function is used so much Cliff (the author of "SUPEKZAP")
decided it would be nice to eliminate the constant typing of 'DD'.
{Thank you, Cliff.) After you enter <EHTER> or 'UD* the computer
will respond with the pronipts in figure 2.2.

-(figure 2.2;
RELATIVE DISK # (0 - 3)?
TRACK # (HEX) (& - 22}?
SECTOR # {0 - 9)?

Answer 'RELATIVE DISK #' with the drive number you wish to work
with. TRACK # you will notice, only allows you to answer with a number
between zero and tvjenty-two. (Zero to tvjenty-seven if you are using a
4tJ track version,) YOU WILL HAVE TO CONVERT ALL DECIMAL NUMBERS TO
HEXADECIMAL NUMBERSl SECTOR # is easy. There are 10 sectors numbered
zero to nine. Pick a drive^ track, and sector and go look at it. When
you are tirea of looking, press 'X' and the menu will magically
reappear , There are more things we can do while in this function, but
we'll come back to that later

'PD' - PRINT DISK SECTORS. This function is almost (I say, almost)
exactly the saiue as the 'dd' function except that the sector (s) will
be printed on your line printer and you may not modify anything. This
tunction will ask you for one additional parameter: SECTOR COUNT.
Enter the number of sectors you want printed out, hit <EWTER> and
^tand back.

:3tAftAftft******* t-JOTE ********************
** **
** ENTER 'SECTOR COUNT' IN DECIiyiALJ **
** **

This function beats the Radio Shack ' DISKDU£1P/BAS' program all to
smash. It will dump a 'PROTECTED' file without any of that 'FILE
ACCESS DENIED' business. If you suddenly decide you want to halt the
printing function, HOLD DOWN THE 'H' KEY UNTIL THE PRINTER STOPS.

'DM' - DISPLAY MAIN MEMORY. This does for RAM exactly what 'DD' does
for the disk. The prompt will ask for the RAM address (in HEX)
instead of the 'DISK', 'TRACK' and 'SECTOR'. Later on, when we discuss
the many command features of 'DD', they will apply to this function
also. Pressing 'X' will return you to the m9nu.

********************** ViARNING ***********^************"**
** **
** MODIFICATIONS (USING 'MODnn'), MADE TO MAIN MEMORY,**
** ARE COMPLETE AS SOON AS THE MODIFICATION APPEARS **

** ON THE SCREEW- UnliKe modifying the disk, you do **

** not have the opportunity to cancel the change. **

** **
***************************** ***************************

' PM' - PRIMT MAIN MEMORY- This function duplicates the 'PD'

function, only it works on RAM or ROM. Holding down the 'H' Key will
terminate the function just as v/itb ' PD '

,

'VERIFY DISK SECTORS'. This function will locate sectors that are
write protected, sectors with parity errors, and sectors with physical
damage.

You may select a 'PAUSE' option to halt the verification process
each time a 'READ PROTECTED' sector is encountered. This will allow
you to note those sectors for special attention later on.

It is especially useful in discovGring where a specifically bad
sector or sectors are on a 'flaky' disk when you need to recover
•lost' data. This function requires a sector count in decimal,

zero disk SECTORS'. From tiiae to time, you will need to zero an
entire sector or group of sectors. This would be a very tedious task
indeed if you had to do it a byte at a time which, by the way is
possible but certainly not desirable. If the sector you are zeroing
is 'READ PROTECTED', you will be asked if you v;ant that sector to
remain 'READ PROTECTED'. A reply of 'Y' or 'N' (YES or NO) will
determine the 'READ PROTECT' status of the zeroed sector . This
function requires a sector count in decimal,

'COPY DISK SECTORS', With this beauty^ you can copy a single sector
or group of sectors from one location to another or from disk to disk.
When we have to reconstruct a file that the DOS has strewn all over
the disk, you'll kiss the very envelope "SUPERZAP" came in. What
would ordinarily have been a bitch to recover will be so easy, you
will want to amaze your friends and neighbors with your wizardry.

Normally this function copies the sectors in ASCEMPIKG track and
sector order. However, if the lowest destination sector is vjithin the
range of the source sectors, the function will copy in DESCENDING
order* This will occur automatically and the routine will compute the
highest track and sector of each range BEFORE starting the copy.

This permits you to copy a group of sectors TO a location that
starts WITHIN the group of sectors you are copying FROM.

The 'READ PROTECT' Status of the destination sectors remains
unchanged by the 'COPY SECTORS' function. This function requires a
sector count in DECIMAL.

disk BACKUP'. Amazingl Simply amazing. This function simply backs
up the disk, BUT WHAT A BACKUP! The coutine is a sector-by-sector

11

backup and is S-L-O-W, But it is sure. It retrieves the sectors that
cire not readable by regular 'COPY' or 'BACKUP' routines. It will make
a dozen or so tries to read a 'bad' sector and will give you an error
message similar to figure 2.3 it it cannot accomplish its 'READ'.

SECTOR READ ERROR
^^figure 2

DRIVE . , TRACK Q5 , SECTOR
SYSTEM EKROR CODE 04
PARITY ERROR
REPLY 'E' FOR RETRY, 'S' FOR SKIP ERROR SECTOR,
OR 'X' I'D CANCEL FUNCTION?

Wow you have several choices; (1) press 'X' and forget the whole
thing, (2) press 'S' and 'SKIP' the bad sector {and come back to it
later - but don ' t forget to make notes so you ' 11 remember which sector
or sectors were bad) or (3) press 'R' and re-enter the 'BACKUP'
routine and try again, tlany tinies the 'R' command will be effective
and the BACKUP routine will successfully read the bad sector on the
second or third try,

A 'READ' after every 'WRITE' is performed to verify that an
accurate data transfer has taken place,

A******-**-**-***:** ********* CAU'^IOH ****************************
You must 'BACKUP' to a diskette that has been PP^EVIOUSLY
FORMATTED, The 'SOURCE' diskette and the 'DESTINATION'
diskette M/\Y NOT EE TEE SAME - in other words, this func-
tion requires TWO DRIVERS! The 'DESTINATION' diskette is
not tested for name or contents - if it is possible to
'WRITE' to that diskette, ALL DATA ON THE 'DESTINATION'
DISKETTE WILL BE WRITTEN OVER WITH THE DATA FROM THE

'SOURCE' diskettel
****************************** A*****************************

'COPY DISK DATA'. This is similar to 'COPY DISK SECTORS' except that
the function copies BYTES, Up to as many as 65,536 bytes at one time
and as few as one byte. Here is another super function tor recovering
' lost' data.

The same rules apply to the ASCENDING and DESCENDING
track/sGctor/byte order of the 'COPY DISK DATA' function as the 'COPY
DISK SECTORS ' function.

The 'READ PROTECT" status of the destination sectors/bytes remains
unchanged. ,A BYTE COUNT IS REQUIRED IN HEX!

12

2.2 SUPERZAP COMMANDS

When "SUPER2AP" is in the 'DISPLAY DISK SECTORS' or 'DISPLAY MAIN
MEMORY' function^ the progtam is constantly monitoring the input keys

looking for one of the following coiainands:

'X' - Terminate the primary function^

R' - Repeat display of the same sector or memory block.

'J^ - Restart the scirae primary function.

'K' -
(

' DD ' only) Sanie as ' j* except reinitializes the
track and sector to be displayeci on the Game disk
drive.

H' - ("PD' and 'PM' only) Terminates PKIMT function,

-I-' or ';' - Scroll forward one sector or memory block.

'=: or '-' - Scroll backward one sector or memory block.

2.3 SPECIAL COI-ltiAHDS

The following commands only work in 'DISPLAY DISK SECTORS' and
'DISPLAY MAIN MEMORY'. They are used chiefly for IIODIFYIMG the memory
or disk a byte at a time. The commands are:

'MODnn' - Modify the byte in the currently displayed
sector where 'nn' is a hexadecimal number
representing the relative byte to
be mcdif ied.
(See EXAMPLE 1 below for use of this
command.

)

<EMTER> - AFTER modifying a byte or group of bytes
<ENTER> causes the modification to be
be written to the disk *

<SPACE BAR> - Current digit is not changed and modifi-
cation position is advanced 1 digit.

'RIGHT ARROV^' - Same as <SPACE EAR>

'LEFT ARROW - Current digit is not changed and modifi-
cation position is retarded 1 digit,

<SHIFT> 'RIGHT ARROW- Modification position is advanced 4 digits.

<SHIFT>'LEFT ARROW - Modification position is retarded 4 digits.
'UP ARROW - Modification position is retarded 1 line.

'DOWN ARROW - Modification position is advanced 1 line.

'SCOPY' - ('DD' only) Move the displayed sector to a

disk location to be specified.

13

2.4 SPECIAL SYMBOLS

Ducing the modification of a byte of ntemory or disk some special
symbols appear to mark the location of ttie line and byte you are
working on.

These synsbols are 'H', '+', '-', '*' and '/'* The 'M' will mark the
line and will appear BETWEEN the first column of six digits on the
left of the screen, and the first column of 4 hex digits representing
the sector's contents (see figure 2,1 line '11460').

The '+', '"', '*', and '/' will appear NEXT to the group of four
digits IN WHICH THE MODIFICATION VJILL TAKE PLACE. The '+' symbol
indicates that the first digit is the digit which will be modified.
The '-' indicates the second modification digit, the *' the third and
the V' the fourth- With these symbol indicators, you will be able to
tell which digit you will modify next.

2.5 SUPERZAP DISPLAY FORJ^IAT

Before we can move on and actually demonstrate with some examples,
you must first understand the display format of "SUPERZAP". Figure
2.4 is a typical sector display- The six digits on the far left side
of figure 2.4, contains the following parameters (from left to right):

Position 1 The disk drive used.
Positions 2 & 3 - The track being read.
Position 4 The relative sector within the track.
Positions 5 & 6 - The relative byte count within the sector

,

At the bottom of the sector, in the first group of digits, there is
an extra digit in the seventh position- This '6' is APPARATUS way of
telling you that you are reading a 'READ' protected sector with the
"SUPER2AP" program.

To the right of these six digits is a block of 32 digits in groups
of 4- Each PAIR ot digits represents a SINGLE BYTE. To the right of
this is the ASCII representation of each byte. The 'dots' signify a
space or 'unprintable' character- What's an 'unprintable' character?
Just that. It's a valid ASCII character but there is no syjnbol that
represents that character. The TRS-80 uses sorae of these characters
for graphics symbols or space compression codes but they are not ASCII
standard characters. Besides, if those positions were filled up with
a bunch of 'garbage* characters, it would make the display that much
harder to read.

A 'dot' can also represent a 'space'. There is a fine distinction
between a 'space' and an 'unprintable' character. In BASIC program
files, the 'unprintable' characters are 'next line pointers', 'EOR*
markers, line numbers, and BASIC tokens, (More on 'tokens' later.).
SOMETIMES there will be a HEX value in one of these and it will cause
a character to be printed in the display. it will appear as if
'garbage' has crept into your program but don't despair; all is well.
A 'space

' , on the other hand, is represented by the HEX character
'20', This is one case where nothing is something so look for it and
don't be confused by it.

14

,
figure 2.4

!

1114Btl
111410
111420
111430
111440
111450
111460
111470
1114 80
111490
1114A0
1114B0
lil4C0
1114D0
1114E0
1114F0

Drive
Track
Sector
Relative Byte

Hexadecimal display
of sector contents.

5f00 00013 0053 59S3 3020 2020 2053
EB29 210E aF00 0022 FFFF FFFF FFFF
0000 0000 tl000 0000 0000 00S0 00^0
0000 0000 0000 0000 0000 0B00 0000

M0000+0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 O0S0 0000
0000 0000 0000 0000 6006 0000 0000
0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0600 0000 0tiB0 0000
0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000

6 b000 0000 0000 0000 0000 0000 0000

-»

ASCII display ot
sectoL contents,
< >

5953 SYS0 SYS
FFFF .) I "

0000
^000
0000
0000
0000
0000
0000
0000
0000,,,«.
0000
0000 -,
0000
0000
0000

Typical "SUPERZAP" displ&y of a SECTOR as it vill appear on your

viaeo display. This particular sector is an example ot a

DIRECTORY 13ECT0K (Track 11, Sector 4).

2,6 ,1 EXAMPLE 1, 'KODnn

'

TO mocSify a byte or bytes in a particular sector, fiirst select 'DC
or '<EWTEK>' from the "SUPERSAP" ruenu. Answer the parameter

questions with the drive, track and sector specifications ol: your

choice. When the sector is displayed on
hOD42

the video monitor , TYPE:

********************* NOTE
A*

NOTHING WILL APPEAR OW THE DISPLAY OR
GIVE ANY INDICATION TEAT ANYTHING IS
HAPPENIHG UtWIL YOU HAVE ENTERED THE

ENTIRE COMMAl^D.

**
**
**
**
**

* *

**
**
**
**

Magically, an '[4' will appear on the fifth line from the top and
between the first six colums on the left and the first group of four
digits on the right. In front of the second group of four digits on
the right the '+' sign will also appear. (See figure 2.4)

15

We are now ready to MODIFY the display. You may enter any valid
hoxadecimai di^it by simply typing the digit. Each time you press a
valid key, the di9it will be changed cind the symbol in front of the
group oH tour digits you are working on will be changed. These
syiViboie give you an indication of where you are during the
rfioditi cation process.

It you \wisti to skip over a digit, press the <:SPACE BAR> or the
'RIGHT ARROW. The symbol indicator will change and each time you
input four lucdif ications or spaces, the ' + ' symbol will reposition in
tront of the next <jroup of four digits.

When yuu have completed your modifications, hit <ENTER> and the
modiricaticns will be written to the disk * When the 'l-jRITE' is
complete, you will get the prompt in figure 2.5.

HGDlflCATIOMS COMPLETE,
REPLY <ENTER> TO CONTINUE?

^figure 2.5>

upon pressing <EKTER>, the sector will again be 'READ' from the
aisk and displayed on the screen for your inspection. You may now
visually verify that the changes have been made. You may modify any
sector any nui^tber of times.

Now, by pressing the ' + '
(<SHIFT> is not necessary) you will

scroll forv/ard to the next sector and pressing the '-' key will scroll
Dackward one sector.

Pressing 'R^ will cause the primary function to be repeated. In this
case It is 'DISPLAY DISK SECTORS^. Pressing 'R' causes the last
sector Specified to be read and disiplayed-

Pressing 'K' will allow you to specify another TRACK and SECTOR on
the same drive and remain in the 'DD' function without having to go
back to the menu

.

Pressing 'J' is the same as 'K' except you may also re-specify the
arive nusiiber as well as the track and sector without going back to the
menu

.

Pressing 'X' or entering 'X', DURING ANY PAR1\METER SPECIFICATION,
will return you to the menu.

Pressing "Q' will cancel the 'MOD' function WITHOUT CHANGIMG THE
DISK CONTENTS

-

How that you have been through these functions and commands, make a
bacKup disk oi your DOS and try out some of the things we've been
over .

******************** t«ARNIE>iG *******************
** **
** ALWAYS PRACTICE OR ATTEMPT DATA RECOVERY **
** OK A BACKUP VERSION OF THE TROUBLE DISK, **
** FAILURE TO DO £0 CAN COST YOU VALUABLE **
** DATA- **
** **
*******************A**************ft*A**^ftft*A**A*

16

2.6*2 EXAMPLE 2: ' SCOPY

'

SCOPY' permits you to duplicate an entire sector to another
location on the same disk or to another location on a different drive
WHILE IW THE 'DD' MODE!

Suppose, for a moment, that you have attempted to read a sector
that has bad parity and you get the 'BUFFER MAY COKTAIN ALL OR SOME OF
SECTOR'S DATA' error message. Upon investigation, you determine that
some of the bytes in the sector that are displayed are correct and you

would like to preserve them so that they can be used to 'reconstruct'
the damaged sector. TYPE: SCOPY. NOTHING WILL APPEAR ON THE SCREEN
UNTIL THE ENTIRE COMMAND HAS BEEM ENTERED. YOU will, after typing

' SCOPY ' get a prompt similac to figure 2,6.

Kfigure 2.6!

DRIVE 1 , TRACK 12
IS TO BE COPIED TO
RELATIVE DISK S (

£

TRACK # (HEX) (0
SECTOR # (0 - 9)?

, SECTOR 9

- 3)?
" 22)?

After answering disk nuirtber, track numbGr and sector number, the
destination location will be checked^ by the program, to make sure
that the place you want to copy to is OK,

If the destination is 'flaky', you'll get another error message as

to the cause of the condition. If the destination checks out, the
'WRITE' will be completed. You will then be prompted to hit <ENTER>
to view the transferred sector at the new location.

When you attempt to do a recovery of a file or portions of a disk,
it is a good idea to set up some 'BUFFER SECTORS'. This 'buffer' is

simply a temporary storage place to put things v^hile you're out there
mucking around on the disk. You will also need to keep track of where
you have put various sectors so that during the reconstruction you
will not get mixed up. Another good practice is to reconstruct the
file to yet another 'buffer area'. When the reconstruction is
contplete THEN transfer the reconstructed file or sectors to the
original location.

2.6.3 EXAMPLE 3: 'COPY DISK DATA'

This function allows you to move blocks of data in the same manner
that you move sectors- We can copy a single byte or group of bytes
from one location to another.

Suppose we need to move a 32 byte directory entry from one sector
to a different sector and position it at a tSifferent relative byte*

The following examples, with BEFORE and AFTER 'pictures', will
illustrate the prompts and results

:

17

(figure 2.7)

611400 5F00 0006 0053 5953 3020 2020 2053 5553 SYS0,...SyE
011410 EB29 210E EFSS 0022 FFFF FFFF FFFF FFFF .)! "

011420 0000 000B 0000 0000 0000 0000 6000 0000
011430 0000 0000 0000 0000 0000 0000 0000 0000 ,,
011440 0000 000e 0000 0000 0000 0000 0060 0000
011450 0000 0006 0000 0000 0000 0000 0000 0000
011460 0000 000(3 0000 0000 0000 0000 00G0 0000
011470 0000 0000 0000 0000 0000 0000 0000 0000
011480 1000 0027 0044 4F53 4E4F 5445 5350 434C . .

.
' .DOSNOTESPCL

fcll490 9642 9642 0400 0020 FFFF FFFF FFFF FFFF .B,B
0114A0 0000 0000 0000 0000 0000 0000 0000 0000
0114B0 0000 0000 0000 0000 0000 0000 0000 0000
0114C0 0000 0000 0000 0000 0000 0000 0000 0000
0114D0 0000 0000 0000 0000 0000 0000 0000 0000
0114E0 0000 0000 0000 0000 0000 0000 0000 0000
0114F06 0000 0000 0000 tJ000 0000 (3000 0000 0000

SOURCE SECTOR {Tcack 11, sector 4)
This is the sector that contains the data, beginning at relative

byte 80 (HEX) that we wish to copy. We want to copy the 32 bytes
beginning at relative byte 80 (HEX) to another sectoc.

The ' E5
only. An
and 2.11)

s contained in the example aze for purposes of illustration
actual directory sector would contain zeros. (Figures 2.8

(figure 2.8:

001300 E5E5 E5E5 E5E5 E5E5 E5E5 E5D5 E5E5 E5E5
001310 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5
001320 E5E5 E5E5 E5E5 E5D5 E5B5 E5E5 E5E5 E5E5
001330 E5E5 B5E5 E5E5 E5B5 E5E5 E5E5 E5E5 E5E5
001340 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5
001350 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5
001360 E5B5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5
001370 E5E5 E5E5 E5E5 E5E5 E5B5 E5E5 E5E5 E5E5
001380 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 B5E5
001390 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5
0013A0 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5
0013B0 B5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5
0013C0 E5E5 E5E5 B5E5 E5E5 E5E5 E5E5 E5E5 E5E5
0013D0 E5E5 E5E5 E5E5 E5E5 E5E5 E4E5 E5E5 E5E5
0013E0 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5 E5E5
0013F06 E5E5 E5E5 E5E5 E4E5 E5E5 E5E5 E5E5 E5E5

DESTINATION SECTOR (BEFORE) (Track 1, sector 3)

This is the sector we wish to copy the data TO, beginning at relative
byte '£0' and continuing for ttie next 32 bytes.

Figure 2,9 is the "SUPERZAP" menu and the function input.

^^^-^^^-^^^^^^^i^^^M^^^ figure

IWPUT OME OF THE FOLLOWING IHSTEUCTIONS
'DD' OR HULL - DISPLAY DISK SECTOR
'PD' - PRINT MAIN HEMORY
•DM' - DISPLAY MAIN MEMORY
' PH ' - PRINT i-lhlVi MEMORY
'VERIFY DISK SECTORS'
ZERO DISK SECTORS'
'COPY DISK SECTORS'
•DISK BACKUP'
•COPY DISK DATA'

? COPY DISK DATA <ENTER>

The next prompt will request that the SOURCE, DESTINATION and BYTE

counts be input. Tney will appear as in figure 2.10.

[figure 2.10:

PROVIDE SOURCE BASE IHPORHATION
RELATIVE DISK # (0 - 3)?
TRACK # (HEX) (0 " 22)? 11
SECTOR # iid - 9)? i

RELATIVE BYTE # IN SECTOR <HEX, 00-FF) ? 80

PROVIDE DESTINATION BASE IKFORtlATIOH

RELATIVE DISK it (0 - 3)? t)

TRACK # (HEX) (£3 - 22)? 1

SECTOR # (0 - 9)? 3

RELATIVE BYTE # IK SECTOR (HEX, 00-FF)? E0

BYTE COUNT (HEX)? 20

Once the above parameters have been entered to copy the bytes from one

location to another, we'll get the results shown in figure 2.11.

Don't forget... THE BYTE COUNT IS IN HEXADECIMAL!

19

0013W0 E5E5 E5E5 E5E5 E5E5
001310 EBE5 EBE5 E5E5 E5E5
001320 E5E5 E5E5 E5E5 E5E5
001330 E5E5 E5E5 E5E5 E5E5
001340 E5E5 E5E5 E5E5 E5E5
001350 E5E5 E5E5 E5E5 E5E5
001360 E5E5 E5E5 E5E5 E5E5
001370 E5E5 E5E5 E5E5 E5E5
001380 E5E5 E5E5 E5D5 E5E5
001390 E5E5 E5E5 E5E5 E5E5
EI013A0 E5E5 E5E5 E5E5 E5E5
0013B0 E5E5 E5E5 E5E5 E5E5
0013C0 E5E5 ESE5 E5E5 E5E5
0013D0 E5E5 E5E5 E5E5 E5E5
0013E0 1006 0027 0044 4F53
0013F0 9642 9642 0400 0020

DESTINATION SECTOR (AFTER)

As you can see, the data is now
different relative byte.

E5E5 E5E5 E5E5 E5E5
E5E5 E5E5 E5E5 E5E5
E5E5 E5E5 E5E5 E5E5
E5E5 E5E5 E5E5 E5E5
E5E5 E5E5 E505 E5E5
B5E5 E5E5 E5E5 E5E5
E5D5 E5E5 E5E5 E5E5
E5E5 E5E5 E5E5 E5E5
E5E5 E5E5 E5E5 E5E5
E5E5 E5E5 E5E5 E5E5
E5E5 E5E5 E5E5 E5E5
E5E5 E5E5 B5B5 E5E5
E5E5 E5E5 E5E5 E&E5
E5E5 E5E5 E5E5 E5E5
4E4F 5445 5350 434C
FFFF FFFF FFFF FFFF

;Track 1, sector 3)

in another sector

• .DOSWOTESPCL

and starts at a

2,1 SUPCRZAP 3,0

About the
soiaething,
"yUPERZAP"
now has an

This will allow
SECTOR IJUMBER OF THE

time you think you have the 'last word' or the best of
someone conies along and improves it. Yes^ indeed,

has been improved (or enhanced). The MENU of "SUPER2AP" 3*0
added function: 'DFS' - DISPLAY FIELD'S SECTORS.

you to access a file
FILE OK ITS EXTENTS I

WITHOUT KNOWING THE RELATIVE
It functions like 'DD'

except you just specify a 'FILENAME' (with a password if passwords are
required on that particular file) and the RELATIVE SECTORS OF THE FILE
are displayed rather than the RELATIVE SECTORS OF THE DISK.

To invoke the function, type: DPS <EKTER>
FILESPEC, Be sure
next ptorapt will

file. RemGrnher the

to include the
ask for the

FIRST relative

The prompt will ask for the
password if the file has one. The
relative sector (HEX) within the
sector is SECTOR '0'i

The display format for 'DFS'
as in figure 2.12. 'DFS' uses standard' BASIC mode 'RANDOM' I/O.

is slightly different and will appear

20

-^ 'F' Indicates that 'DFS' is the
^^ Relative sector displayed.

function being used.

r
^^ Relative byte

1

JLl
^00000 FFF4 6832 0093 3A20 4D41 494E 2F44 4953 . . .2..: .MAIK/DIS
P00010 4E20 4D4 5 4D4F 5259 2044 554D 5 02F 4D4F K.MEMORY, DULP/MO
F00020 4449 4659 2052 4F55 5449 4E45 2E20 2056 DIFY. ROUTINE V
F&003B 4552 5349 4F4E 2032 2E3 1^000 6964 e08D ERSION.2.0
P00040 2031 3034 3030 0029 6996 0041 24D5 C93A .10400.) , ..AS..:
F00050 208F 2041 24D5 2222 20CA 2031 3430 3A20 . . .A$."". ..150:.
F000e0 203A 9520 4258 D5F6 2841 2429 3A20 9200 .: ..BX. . (AS) : . .

.

F00076 4E69 C80e 8F20 4268 20D4 D534 3820 D220 N By>,,.«8. ..

F0008t) 4258 D6D5 3537 20CA 2042 58D5 4258 CE34 BX. .57 BX.B>C.4
F00090 383A 2092 0072 69FA eE&F 2042 58D4 D536 oi*«*«***** t>X • • b

F000A0 3520 D220 4258 D6D5 3730 20CA 2042 5 8D5 5...BX,.70,..BX.
F000E0 4258 CE35 353A 2092 0080 692C 0142 5aD5
F000C0 CE42 5 83A 2092 00AF 695E ei93 3A20 2A2A
F000D0 2A2A 2A2A 2A2A 2A20 5641 5249 4142 4C45 *******,VARIABLE
F000E0 2041 4C4C 4F43 4154 494F 4E20 494E 4849 .ALLOCATION. INHl
F000Fe 4249 5445 4400 D56 9 9001 4432 2528 3129

Tne other enhancements are in the MODIFICATION mode. The nevj command
is:
ZTnn (ZERO BVTES from the

to 'nn'where *nn* is
current modification Iccation
a HEX nuinber not exceeding 'FF'

This cominand functions like ' MODnn ' in that KOTHIE^^G WILL APPEAR OM TtiE

DISPLAY UNTIL 'ST' IS ENTERED. Upon entering the 'ZT' pottion of the
command, 'ST' will appear in column 7 and as you enter your HEX value,
the value will also appear in column 7. Figure 2,13 will illustrate
'aT' command display.

E00000Z FFF4 6832 0093 3A20 4D41 494E 2F44 4953 .. .2,.: .HAIN/DIS
F00010T 4B2e 4D45 4D4F 5259 2044 554D 5 02P 4D4P K. MEMORY. DUI-iP/MO

F^00208 4449 4659 2052 4F5 5 5449 4E45 2E20 2056 DIFY, ROUTINE V
FEi003 0F 4552 5349 4F4E 2032 2E30 0000 6964 008D ERSIOH.2.0
F00040 2031 3034 3030 0029 6996 0041 24D5 C93A .10400.) . ..A$. .!

F00050 208F 2041 24D5 2222 20CA 2031 3530 3A20 .,.A5."". ..150:.
F00060 203A 9520 4258 D5F6 2841 2429 3A20 9200 .: ,.BX.. (A?) : ..

.

F00070 44E69 C80e 8P20 4258 20D4+D534 3820 D220 N • • * • BX «.«4o-<*
F00080 4258 D6D5 3537 20CA 2042 58D5 4258 CE34 BX..57. ,.BX.BX.4
F00090 3 83A 2092 0072 69FA 008F 2042 58D4 D536 8i *< ,•*...* BX . * 6

F000A0 3520 D220 4258 D6D5 3730 20CA 2042 58D5 5. ..BX.,70..,BX.
F300B0 4258 CE35 353A 2092 0080 692C 0142 58D5 tSivaDD* * * a t f m ij2\ m

F000C0 CE42 583A 2092 00AF 695E 0193 3A20 2A2A
F000D0 2A2A 2A2A 2A2A 2A20 5641 5249 4142 4C45 *ft*iA***,VARIABLE
F000E0 2041 4C4C 4F43 4154 494F 4E20 494E 4849 .ALLOCATION, IHHI
F000F0 4249 5-445 4400 D56 9 9001 4432 2528 3129

21

In the above figure, you
relative byte WA" and ti^at
will 2ER0 ALL BYTES (from the 'MODnnm Ligure 2.14.

v;ill observe that the 'MOD' symbol is at
ZT" , in column 7 is set for '2T8P'. This

symbol) TO RELATIVE BYTE ' 8F ' as

t't;lJt!yB2 PFF4 6832 0093 3A20 4D41 494E 2F44 4953
F0O<JT 4B20 4D45 'SD4F 5259 2044 554D 502F 4D4F
F&miijB 4449 4659 2052 4P55 5449 4E45 2E20 2056
Fb0i)3iJF 4552 534 9 4F4E 2032 2E30 0000 6964 00&D
FtJMe40 2031 3034 3020 0029 6996 0041 24D5 C93A
FUetiStJ 208F 2041 24D5 2222 20CA 2031 3530 3A20
F00060 203A 9520 4258 D5F6 2841 24 29 3A20 9200
FOB07e !4E6e C80ti 8F20 4258 20D4 0000 0000 0000
Fyayse 0000 ti000 t;000 0000 0000 0000 0000 0000
F0ytl9t) +383A 2092 0072 69FA 008F 2042 58D4 D536
Fid^Bhit 352t) D220 4258 D6D5 3730 20CA 2042 58D5
FidBfiBy 425B CE35 353 A 2092 0080 692C 0142 58D5
F000C0 CE4 2 5a3A 2092 00AF 695E 0193 3A20 2A2A
FO00D0 2A2A 2A2A 2A2A 2A20 5641 5249 4042 4C45
F000Et) 2041 4C4C 4F43 4154 494F 4E20 494E 4849
F(ii00F0 4249 5445 4400 D569 9001 4432 25 28 3129

(figure 2.14>«

. ..2..I .MAIK/DIS
K. MEMORY. DUMP/MO
DIFY.ROUTINE...V
ERSIOH.2.0
.10400.) . ..A?..:
...A?."". .,150:.
.:..BX..(A$) :..

.

N BX

* • * • &A. » • 6

5 . . . BX

.

,70. ..BX.
BX.55:. « * • ft / ft DA »

. **
******* -VARIABLE
,ALLOCATION. IKHI
BITED,

,

. . ,D2%fl)

I don't know about you, but I think that's pretty slick,
have to type in all those zeros to clean up a directory]

£upi>ose you accidentally enter the wrong nuntber and wish to cancel
the 'ZT' coramand? Easy, Just hit any invalid key, like a 'P'
?' any one will do, and the display will respond with;

Now I don't

or

Ft}0000Z FFF4 6832 0093 3A20 4D41 494E 2F44 4953 2. . : .MAIK/DIS
F00010T 4B20 4D45 4D4F 5259 2044 554D 5 2F 4D4P K . MEMORY. DUMP/MO
F00020B 4449 4659 2052 4F55 5449 4E45 2E20 2056 DIFY. ROUTINE.. .V
F00030F 4552 5349 4F4E 2032 2E30 0000 6964 008D ERSI0N.2.e
F00040 2031 3034 3030 0029 6996 0041 24D5 C93A . 10400.)...A$..:
F00050 208F 2041 24D5 2222 20CA 2031 3530 3A20 ...A§."". ..150:.
F00060 203A 9520 4258 D5F6 2841 2429 3A20 9200 .: ..BX..(A5) :...
F00070 iaE69 C80e 8F20 4258 20D44-D534 3820 D220 N BX. , .48. . .

F000a0 4258 D6D5 3537 20CA 2042 58D5 4258 CE34 EX.. 57 BX.BX.4
F00090 3 83A 2092 007 2 69FA 008F 2042 58D4 D536 o< * ••• ••«13A«*o
F000A0 3520 D220 4258 D6D5 3730 20CA 2042 58115 5, • ,BX, .76 . . .ex.
F000E0C 4258 CE35 343A 2092 C^0d0 692C 0142 58D5 BX.55: , .BX-
F000C0H
F000D0E

CE42
2ia2A

583A
2A2A

209 2

2A2A
00AF
2A20

695E
5641

0193
5249

3A20
4142

2A2A
4C45 *******. VAR IABLE

F000E0C 2041 4C4C 4F43 415 4 494F 4E20 494E 4849 .ALLOCATION. INHI
F000F0K 4249 5445 4400 D56 9 9001 443 2 2528 3129

Look carefully in column 7 of figure 2.15 and you will notice thatCHECK" now appears in the last five lines
will not allow you to make any more entries
'CHECK' error status is cleared,
command will be cleared and you can

of column 7. The program
or modifications until the

Now, type: <SHIFT> *. The entire
now Start over.

22

•CHECK- was the next thing I was going to tell you about but I

Tumped the cjun a little. 'CHECK' also works on 'KODnn' as well ana

wni t-pil vou when vou have tried to input an a.nvalia chatactec.

"''"SuIerzS" 3!S ^also permits you to^ead up to 60
^^f^^i/°' fj^^

drives with a Duncii of tracks become available, all you little

tlvllrs out. thSre, will be able to "aAP" anything vith any track

configuration. tSI piograr. also has provisions for backing up large

track configurations to smaller track configurations.

23

3,0 OTHER UTILITIES

Besides "blJPLi<ZAP" ^ there are other utilities that may come In handy
or that you may use instead of "SUPERZAP", Of all the utilities, that
I Know of, there are none that compare v^ith "SUPERSAP" for ease of
operation or versatility in the recovery process. The other utilities
i am rererring to are

:

RSH-2D (Small Systems Softvrare)
iiotaTOR 5 (ACS)
DhlBDG (Radio Snack)
DIRCHECK (At>paiat)
LHOFFSET (Apparat)

t)ince iiiany vjiil ask, "Can I use tnis really neat program I bought from
the hlCRO-SUPER-BU-SOFT-TROK Company in Elephant Breath, Ohio, to do
tne Scime thiny so l oon't have to buy 'SUPERZAP'?" The answer is,
"Beats we lieutenant, I'm not the regular crew-chief," I will review
each proy ram tt»at I have any knowledge oi' and explain how the program
KIGHT be used in the data recovery process IF it can be used.

3,1 "Kbii-2iJ"

'RSM-2D' is a proouct: of Small Systems Software, It is well written
and Dug tree. Tne documentation is not excellent but by coraparison it
is a cut above most.

RSi-i-2D is one of a family of machine language rrionitor programs for
the TRS-80 and i s based on widely usea G-10 raonitor programs. The
'2D' version allows you to ' r eao ' and ' v/rit e' disk sectors directly

.

It incorporates a special printer routine that outputs to the TRS-232
printer iiiterface, also sold by Small Systems Software^ as well as the
standara parallel printer port.

The two cor.\iriands added to the di^ik vetsion, are 'L' (LOAD) and 'S'
(SAVE). 'L' will loao specified sector^ into a SE^ecified block of
memory and 's' will write a specified block of memory to specified
sectors on the disk.

In usincj RSI':i-2D for data recovery, you will find it adequate but
cuhiDersome. This is due to the fact that you must always be working
between disk AND memory. In addition, you will not have the advantage
of a formatted ditiplay that shows you the ASCII as well as the HEX, in
a sector by sector presentation. You Liay view the sectors in ASCII or
HEX, but not both at the same tim.e. You must also remember where the
sector Doundries are in jnemory, in order to perform 'read's and
'write's to disk

.

The software is reliable and you will not experience difficulty in
its use except for the inconvenience of having to do sonse extra
bookkeeping on sector boundry locations and interpretation between the
HEX and ASCII display formats.

3.2 "MONITOR 3"

Tbis is also a well v^ritten monitor program, but it does not have
adequate disk I/O to be of any value in the data recovery process on
the disk. I have seen a 'MONITOR 4' advertised by the same people
that reaas and writes to disk. I do not know if it has provisions
that will allow you to repair the disk

•

24

3.3 "DEBUG"

This is the standard Radio Shack monitoi: t^rogram th^at is includeci on
every TRSDOS operating systeni disk. It is one of the Shack's better
pieces of" software and deserves mention, as such, but i^as no disk I/O
capability and therefore has no application in the actual recovery
process. It may be used however, after recovering a nachine language
load module to check and deoucj the raodule, after it is loaded into
memory.

3,4 "DIKCHECK'

This is a utility program included in Apparatus NEW DOS+ package. It
is an invaluable tool for checking the directory for errors. In
addition it prints (to the video or line printer) an alphabetized
listing of the directory entries, the EHD OF FILE' (EOF), in

'SECTOR/BYTE' format, the number of "EKTEKTS' for each file and the
total number of sectors allocated (instead of 'GRANULES'} to that
file. Figure 3.2 is an example of the output of 'DIRCHECK' as it

would look with errors in the directory sectors. Figure 3.1 is an
explanation of that output.

;figure 3*1]

PROGRAM NAME

S = SYSTEM FILE
I = INVISIBLE FILE
P = PROTECTION LEVEL

END OF FILE
4 = 4 SECTORS (DECII'lAL)

14 2 = 14 2nd RELATIVE BYTE
BYTE IK LAST SECTOR
(DECIMAL)

SYSl/SYS SIP=7 EOF = 4/142

NUMBER OF 'EXTENTS'
lU 'PPDE/FXDE'

1 EXTS 5 SECTORS

TOTAL NUMBER OF
SECTORS ASSIGNED
TO THE FILE.

* A** HOTB * ***

See chapters
'PROTECTION

6

LEVEL
and It

' etc.
for a full explanation of 'FPDE/FXDE' ,

In the next figure (3.2) there is a number
This number is the 'DEC (Directory Entry Code)
complete explanation of the 'DEC ' is contained
figure 6,13 for details on decoding the 'DEC',

beside each file name,
for that file name. A
in chapter 6* Also see

25

iNiEWDOS+ B7/15/79

A****

**i*ft *

64 BAD
BAGIC/CMD
t>0

IB

IP

20

36

37

fc-5

"HIT" yeCTOR BYTE
84 PRIKARY BMTRY HAS BAD CODE IH "HIT"
GKANULE FREE, BUT ASSIGNED TO FILE(S)

i'Q BOOT/SYS
***** GR/\NULK LOCKED OUT, BUT FREE

^figure 3-2)-

SECTOR

GRANULE LOCKED OUT, BUT FREE

ft«**A GR/iNULE FREE, BUT ASSIGKED TO FILE(S1
84 BASiC/Cf'D

A 5t * A A

GR;\NULE ALLOCATE!^ BUT tJOT ASSIGNED TO ANY FILE

GRAKULB ALLOCATED BUT WOT ASSIGNED TO ANY FILE

***** GRANULE ALLOCATED,
83 SUPERZAP/PCL
C7 DItiKORG/PCL

BUT ASSIGNED TO tJULTIPLE FILES

BA£1C/CMI> I tlOF = 6/231 2 EXTS 10 SECTORS
BOOT/fiYtj SIP=6 EOF = 19/119 2 EXTS 5 SECTORS
COPY/CMD IP=6 EOF = 4/253 1 EXTS 5 SECTORS
D IK/ SYS SIP=5 EOF = it;/t) 1 EXTS 10 SECTORS
DIRChBCK/Ci'D EOF = 12/136 3 EXTS 15 SECTORS
DISKORG/PCL EOR 18/211 2 EXTS 20 SECTORS
F0RI4AT/Ci-'it> IP=6 EOF = 14/8 1 EXTS 15 SECTORS
SYS0/SYS fiIP=7 EOF = 12/93 1 EXTS 15 SECTORS
SYSll/SYS QIP=7 EOF = 4/142 1 EXTS 5 SECTORS
SYSI2/SYS SIP=7 EOF = 4/236 1 EXTS 5 SECTORS
SYS13/SYt; £IP=7 EOF = 3/9 I EXTS 5 SECTORS
SYS2/SYy £IP=7 EOF = 4/52 1 EXTS 5 SECTORS
SYS3/SyS SIP-7 EOF = 4/7 6 1 EXTS 5 SECTORS
SYS4/SY$ £IP=7 EOF = 4/186 1 EXTS 5 SECTORS
SYSS/SYS SIP=7 EOF = 4/203 1 EXTS 5 SECTORS
SYS6/SYS SIP=7 EOF = 13/33 1 EXTS 5 SECTORS
SUPER2AP EOF = 21/38 4 EXTS 25 SECTORS

43 FREE GEiVKULES B LOCKED-OUT GRANULES

HEWDOS DIRECTORY CE^ECK & LIST COMPLETED

It aoesn't
recatJ or
valuable

'DIRC
to time,

:ing
When

extremely
tak€ a Radio Siiack store manager to figure out that this

recatJ of the directory's 'GAT' and 'HIT' errors is an
tool in detecting Gristing errors in the directory.
ECK' should be run on every disk in your library, from time

^, just to maKe sure some 'fatal' error isn't lurking and just
waiting to clobber sone really important data.

'"—^- an error exists in the 'BOOT/SYS' or if the directory track

26

has become i^ON-READ PROTECTED, or a 'PARITY' error exists in

BOOT/SYS' or in any directory sector, 'DIRCHECK' will terminate v;ith

the following message:

FUNCTION TERMINATED DUE TO ERROR

You will still be able to read all of the sectors with "SUPEKSAP".
You raust correct these defects before you will be able to run

'DIRCHBCK'. The recovery procedures are described in cnapter 10.

The following are the errors that ate detecteci and printed by
'DIRCHECK' and what they mean.

3,4,1 BAD "HIT" SECTOR BYTE

A 'HASH' code exists in the 'HIT' sector when there should be none.
The number, at the tixr left, repretjents the RELATIVE byte address of

the bad code in the 'HIT' sector. Replace the offending code with
'00' , The number beside the yroyram name is the 'DEC £or that
prograni. See figure 6,13 tor details on decoding the 'DEC'.

3.4.2 PRIMARY ENTRY HAS BAD CODE lU "HIT" SECTOR

A 'HASH' code exists in the 'HIT' sector that is the VJRONG code for

the corresponding 'FPDE/FXDE' entry. The number, at the far left,
represents the RELATIVE byte address of the incorrect code in the
•hit' sector. Replace the "HASH" code with the correct 'HASH^ code.

3.4.3 GRANULE FREE BUT ASSIGNED TO FILE(S)

A 'GRANULE' has been allocated and there is no file using that
granule. The number at the far left is the relative 'GRANULE' number
in the GRANULE ALLOCATION TABLE, Replace the offending code with the
proper code for that GRANULE. The nurriber beside the program name i£

the 'DEC' for that program. See figure 6.13 for details on decoding
the 'DEC.

3.4.4 GRANULE ALLOCATED BUT ASSIGNED TO MULTIPLE FILES

>iore than one file is using the same 6 sectors (GRANULE) to store it's
data. The last 'SAVE' or 'PUT' v/ill have written to those five
sectors and WRITTEN OVER the previous contents.

Determine which file was the LAST to use that granule. "COPY" that
file to another disk, then 'KILL' it on the original disk. 'LOAD' the
remaining filer cJ.ean up the now garbled code, and 'SAVE' (or 'PUT')
it back to that or another disk. Clean up any remaining 'GAT' errors
by "ZAP"ing the 'GAT' table-

The number on the far left is the RELATIVE GRANULE in the 'GAT'
TABLE, The number beside each file name is the 'DEC of that file's
entry in the directory sectors. The number beside the program name is

the 'DEC for that program, see figure 6.13 for details on decoding
the 'DEC-

3.4.5 GRANULE ALLOCATED BUT NOT ASSIGNED TO ANY FILE

A 'GRANULE' is not being used by any file. "ZAP" the
of£ending"GRANULE with the correct code. The number to the far left is

27

trie RELATIVE GRAIJULE in tlie 'GAT' table. The number beside the
pro^Lara narae is the 'DEC J:or tiiat program. See tigure 6.13 for
details on aecodiny the 'DEC.

3,4.6 GI^\NULe LOCKED OUT, BUT FREE

A GKiiNULE lidS been LUCKED-OUT and may not be used by the system. "ZAP"
the ojiirendiny byte in the LOCK-OUT TABLE, The nuniber to the far left
is the relative GRANULE in the LOCK-OUT TABLE.

3.5 "LMOFPSET"

Tne real purpose ot this program is to allow you to load and execute
progcains that 'normally' cannot be loaded v;ith the DOS resident in
RAH*

^LMOFFSET' iiryt tells you where the program loads and entry point.
Figure 3,4 is the prorapt and output sequence of 'LMOFFSET',

Kfieure 3.4h
APPARAT LOAD I.ODULE OFFSET PROGI^M, VERSIOH 1.1
SOURCE FROM DISK OR TAPE? REPLY '*L>" OR "T"? D
SOURCE FILESPEC?BAt>IC/CtID
flODULE LOADS TO 4D00-6431
hODULJJ CViJFOjAPS DOS RAH [^QMSIFF]
MODULE LOAD WILL OVERLAP "CC'iD" PRCGPJ\M AREA (5200-6FFF}
EIJTRY POIMT = 5BAD
i^EW LOAD £>A£E ^iDDRESti (BEX)?

'ri:iiB program will tell you ABOUT the file; it will MOT tell you where
it: IB on the disk or anything about the disk. it will assist you in
locating a machine lanyu^ye proyran U] MEMORY so that it may be
modified or corrections made to it prior to writing it back to disk.

It will also help in making a disassembly from the disk since you
need to know the load address of the module before dit^ai^sejiibling •

******** CAUTION *** CAUTION *** CAUTION ***^*a****
** **
** WHEN USING 'LHOFFSET' IN THIS ilANNER, **
** DO NOT COMPLETE PROGRAM ORERATION — **
** It you complete the program's opera- **
** tion LMOFPSET will attach an 'APPEND- **
** AGE' to the program file causing it **
** to load in a place other than its **
** intended address! 1

!

**
** **

It yoQ are using NEW DOS, "J-K-L" the video display to your line
printer (or make notes if you don't have a printer).

28

4 - OPEI^.TI^^G SYl^TKMS

This will be a brief review of the various operating systems that are
available as of this writing* I will not dwell too long on the pros
and cons of each and you must remeinber that the following is an

OPINION, roine.

4.1 "TRSDOS 2-1"

except for tne tew unfortunate souls that started with 2,0 this is the
operating system that most of us clevelopca our first, genuine
love-hate relationship with. For cjII practical purposes, due to the
short life of 2.0, this was the 'FII<ST' operating system generally
available for the TKS-80,

2.1 has many problems. Of course. Radio Siiack never carae out and
admitted, in plain English, {at least to me - did they tell you?) that
the problems exietea. TRSDOS 2.1 is adequate for inost trivial
programming requirements and a few serious applications IF you are
prepared to tolerate an occasional lost tile. If you contemplate any
real serious applications i would not recommend that TKSDOS 2,1 be
used, under any circumstances

.

Data recovery on TRSDOS 2.1 generated disks is normal and routine
for formattea data disks and systeiri disks

.

4,2 "TRSDOS 2,2"

TRSDOS 2.2 is a huge improvement over 2,1- Most of the errors are
corrected. However, it will still create errors. Most of the
complaints I have about the system are that they still have not given
the user any of the utility that is available with NEW DOS,

AS far as data recovery goes, there is one rriaior point- When you
'KILL' a file with 2.2, it ZEROS THE EHTIRE DIRECTORY El^TRY . There is

not a single clue as to wliat was there or v;here it wasl Since Radio
Shack has no utility for looking at the disk, I presume it was to
prevent all you "superzaPPERS" out there from finding out too niucn!

However, if you need to recover something, this makes it not
impossible but a genuine bitch because you have to go 'nEUCking around
on the disk ' looking for the file.

For this reason alone, 1 would not use this system on a serious
application where I MIGHT have to recover 'KILL'ed data.

Data recovery on TRSDOS 2,2 generated disks is normal and routine
on formattea disks and system disks except for the above described
'KILL'ed files.

4,3 "VTOS 3.0"

This is Randy Cook's version of 2.2 with quite a few bells and
whistles . Cook is the author of Radio Shack 's 2,1 and, I have reason
to suspect, most of 2,2, This system has some nice features but is,
in my opinion, VERY AGGRAVATIMG to use because of its 'BACKUP'
protection feature. In the version that I used for evaluation, some
of the commands did not work entirely as advertised, I'm sure that
this will be corrected in a later release. On the whole, the system
is good and the concepts are excellent. I have not used it enough, at
this time, to have detectea any errors, it it has any.

29

If you find it necessary to recover data or files that have been
'SAVE'q to a VTOS 3.0 system disk, you will not be pleased with the
recovery procedures

This is due to the fact that as a function of the VTOS 3.0
b^rotection features, you will NOT BE ABLE TO RECOVER THE DATA TO
ANOTHER DISK AND THEIJ 'RUN' THAT DISK!

In spite ot all the nice features in this system, it is for this
reason thcit I would not recommend its use with applications of other
than, a trivial nature. Data recovery on VTOS 3.0 system disks is
VERY DIFFICULT. You iimst first format a disk and then use the
"t^UPERZAP" 'BACKUP' function to transfer the information to the
v/orKiny disk', YOU WILL NOT BE ABLE TO 'BACKUP' TRACK 0, SECTOR 4.
You must 'SKIP' this sector when "SUPERSAP" tries to 'read' it from
the 'SOU£<CE' disk, Thea, when you have finished recovering the file,
you must 'COPY' it back to a 'system disk' MADE FROM THE MASTER VTOS
3-0 YOU RECEIVED FR014 hRS, COOK'S SON, RAKIDY.

VTOS 3 . d HILL NOT FUNCTION UNLESS TRACK , SECTOR 4 IS
unformatted; (At least that's the way it appears.) This is how Randy
Cook is able to protect his software from pirating. It is a great idea
but it laakes it extremely aggravating to use. For a new user who is
trying to use an applications package transferred to this system, who
X8 not familiar with computers, nor does he want to be — he just
v/ants to 'press a button and have the damn thing run his application— this system will not find uuch favor at all.

4.4 "NEW DOS 2,1"

It works! The current release has no known bugs and will do
everything Radio Shack says cannot be done. It corrects every KNOV/N
error in TRSDOS 2,1. All in all^ there are over 2B0 additions,
corrections, and enhancements to TRSDOS. Many of the 'improvements'
in TRSDOS 2.2 are poor 'implementations' of MEV'TDOS 2.1, (That's an
opinion, and I cannot verify it, but from the looks of things, I'd
give better than even odds that it's true.)

NEVJDOS 2-1 is oriented to the programmer as well as the user.
Included in the NEW DOS+ package, ate utilities such as "SUPERZAP",
'DIRCHECK', 'LROFFSET' and othert;. These utilities are especially
designed to assist the user and are very necessary if you need to
recover data.

Data recovery on NEWDOS 2-1 generated disks is normal and routine
for formatted data disks and system disks-

4.5 FUTURE OPERATING SYSTEMS.

The crystal ball business is tough. I have no reliable data on what
Radio Shack's or Randy Cook's plans are for improved or new operating
systems. I suspect that Radio Shack has had its attention diverted
somewhat by trying to get out the new tWDEL II unit and that the new
unit will occupy much of their development time in the software area.

They will probably develop, at some future time,, an operating
system for the TRS-80 that emulates their larger machine.

30

This is only a cvuess^ but J '11 give odds, because they v^ill v.^ant to

use the HODEL II for internal developnent ot all software. As a

result they v-Jill have to aevise ways of nicikiny soiiie oi: the IiCDEL il

features (whatever they are) available to the TFE-80 user. This will

naturally lead to a system for the TES'80 that emulates MODEL II.

loncjer associateo witlTi RS and hisRandy Cook is eviaently no ^^^
company, Virtual Technology, Inc., will probably develop additional

software for the TRS-8G. It's my guess that VT05 3.0 will ^o through

several development stages that will range f roi» corrections to

impLOvenjents and finally enhanceraents. Cook is obviously very

familiar v^ith the TRS-80 and 1 would hozara a cjuess (AGAIK??) that ne

will continue to write software tor the machine if only because he

knows it so well. ^

I am very rauch in touch with Apparat so I do knoi^ some oi the plans

for their future TKS-80 developments. At this time NEV; DOS is

available m 35 and 40 track versions. A 77 track version ot NEtJDCS

2.1 will soon be forthcoming. This v-ill be conpatiblc with the

Micropolis 77 track drives, Hy information is that these drives ana

the operating system will be available froiTL APPARAT de^iiers m
early Fall of '75 if not sooner.

A 'SUPERDO^" is in worK vhich will blow your seeks off. I have

the opportunity to see souie of its extended capabilities, especially

in the file nandling area., that will in my estimation, make the TRS-8b

ei viaDle bueiness tool- it will also^ so I'lu told, be able to

'mix-and-match' aisk drive units of 35, 40 and 77 tracks, ON TSriE SAME

t-iODEL. Without going into a lot of detail, I'll just say that

'SUPERDOS' will be one light year ahead of anything you have seen so

far EAR UOUEl

the

had

***** WARNING ****** WARNING ***** WARNING ***** WARNIlJG

AS OF THIS WRITING (9/1/79) A NEW BUG HAS BEEN DIS-
COVERED IN TRSDOS 2.21 {YES, THOSE WONDERFUL fOLKS
IN FORT WORTH KNOW ABOUT IT - WHAT DID YOU EXPECT?

**

ft*

**
-

**
**
**

ft A

**

IN
IS

ADDITION THERE IS A 2,3 VERSION OF TRSDOS AND IT

BEIMG KEPT SECRET BY THE CRACK FORT WORTH SOFT-

WARE DEVELOPMENT TEAK- (I HAVE THIS FROM A VERY RE-

LIABLE SOURCE I

)

BEWARE
WHEN FILES ARE OPEtiED ON 2 SEPARATE DRIVES, WHILE IN

BASIC AND ANY ONE FILE IS "CLOSED" THEN THE SPEC-
IFIED 'CLOSE FILE' MAY BE 'KILLEDMlll ALL SUBSE-
QUENT 'CLOSES' ARE HANDLED CORRECTLy. THIS IS AN

INTERMITTENT BUG AND HAY NOT FUNCTION EVERY TIKE,

***** WARNING ****** WARNING ***** WARNING ***** WARNING

ft***
**
**
**
**
ft*

ft*

ft*

ft*

**
ft*

**
ft*

ft*

* *

*ft

ft*

NEW DOS, Anyone?

31

Ir,I riic 'U<o-DO^ DIS.K OPERATING
bavfc? 67 GRAS^ULi::S ot free space
on a CISK with a DOS, Ht^rc IS a

5.t) DISK OKGANI?^TIOH

SYSTEM 2.1 TiAHUAL we are told that we
on a formatted ditk and somewhat less

breakdown of the^ entire di^k:

Tracks
TRS DOS 2,1 35
KEW DOS 2.2 35 or 415

VTOS 3-e 35
SUPERDOS l.tJ 18 to 80

NOTE:With SUPERDOS 1,0 you Day
mix and match disk drive unit £5

with different track configur-
ations.

Sectors per track , 10
Sectors per Diskette* 350 (35 track)

400 (40 track)
770 (77 track)

Sectore per 'GRANULE' 5
Bytes per Sector *. 256
Usable Bytes per Sector (TRSDOS 2.1) .. 255

(TRSDOS 2.2) .. 256
(MEWDOS 2,1) *• 255
(VTOS 3.0) 256
(SUPERDOS 1.0) 256

Bytes per Disk 89,600 (35 track)
102,400 (40 track)
197,120 (77 track)

Usable Bytes per Disk 85,410 (35 track)
Usable Sectors for Data Storage *.. 335 (35 track)
GRANULES per Disk , 70 (35 track)
Usable GRANULES per Formated Disk 67 (35 track)

A little simple Jkath will verify the above figures. Each track, of
v/Hich there are 35, has lia sectors of 256 bytes per sector. That
calculates out to 35t) sectors per disk and 350 times 256 equals 89 ,600
bytes of storage.

The 'BOOT' and 'DIRECTORY' take 15 sectors of disk space. BOOT is
physically located on track and occupies sectors through 4.
DIRECTORY is locafceo on track 11 (HEX) <17 decinial> and occupies
sectors through 9 *

TRS-DOS system programs use a large chunk of storage and leaves us
v;ith only 58,880 bytes of storage space on a disk with TRS-DOS, Radio
Snack (in its infinite wi sdom) decided to niake it impossible to 'KILL'
syi^ten? files, (Corrected in. TRSDOS 2.2.) As a result, the BASIC
ianyuage programmer is cursed V7ith what the manual nonchalantly
oescribes as ".* .unexpected entry into DEBUG." In a few paragraphs
you'll know now to r&ifiove the passwords and 'KILL' that damn (DE) BUG.
Of course,^ if you are using NEW D0S4-,. you do not have tnis problem.
Not only will you no longer have 'unexpected entry' after you 'KILL'
DliBUG but, you '11 have more disk space!

32

Back to business,,. Throughout this monograph, I will refer to the

'relative byte'. Imagine that the di^ik is composed of 350 blocks laid

end to end. (See figure 5*1)
Every 10 blocks is a 'track'. Each block consists of 256 smaller

blocks 16 across and 16 deep. The smaller blocks are the bytes. The

first byte in the upper left hand corner is called the seroth relative
byte.

Counting across to the 16th byte-block i^ets us to the upper right

hand corner of our 15 by 16 byte sector block and to the 15th RELATIVE
BYTE, RELATIVE BYTE 16 begins on the first block of the second row

down, and the 31st RELATIVE byte is the Isst block ot the second row.

This nonsense continues until we get to the lower right hand corner of

our sector and we are at the 255th RELATIVE byte.

To compound the matter even further, each byte 'block' is made of 8

smaller 'blocks'. These 'blocks' are the BITS. Each bit can store
only one of two values, A '1' or a '0'. I won't go into bits here and
suggest Bardens ' book for a very thorough discussion on the subject of

bits and binary acithmetic

.

[figure 5.1j

VISUALIZING SECTORS AS 351

BLOCKS LAYED EHD TO END.

'^^ C0^ii3,

EACH SECTOR IS
256 'BVTK BLOCKS'

EACH
'BIT

BYTE IS
BLOCKS'

33

Iniacjine that evt^ry It) of the big sector blocks is a TRACK. Each track
is nurabered trom ZERO to twenty-two (HEX). Sorae of these tracks are
'dedicated* to particular SYSTEM PROGRAMS. Figure 5,2 is a 'DISK MAP'
ol the tracks and the space 'dedicatee' to certain programs. All
progranis with the iilename extension ot '/SYS' are programs of this
nature. ' FORl-lAT/CMD ' , BASIC/CMD, ' BACKUP/Cf^D ' are certainly important
TO the system but it is not necessary for them to be in any particular
place on the disk

.

Actually there are only a tew areas on the disk that MUST CONTAIN
SPECIFIC OBJECT CODE MATERIAL. These are 'BOOT/SYS', 'SYS0/SYS' and
DIR/SYS'. 'BOOT' raust always be located on Track 0, beginning at
sector zero, 'SYSO/SYS' must be located on track '0', sector 5 and
'DIK/SYS' must be located on Track 11 (HEX) beginning at sector zero.

The directory may be moved (it's a hassle) to another location. It
MUST also be read protected. If the directory is moved, 'SAVE' has a
bitch of a time trying to figure out where to put the directory
information since it expects the directory to be on track 11 (HEX)

.

Eventually it will find it and deposit its data in the right places.
This can i^e speeded up a bit by changing relative byte '02MHEX), in
the 'BOOT' (track '0', sector 'B^) to the HEX value of the track you
have riiOV€?d the directory to.

Tne 'BOOT' is not actually a program but rather a machine language
'TABLE' that i£i autoniatically loaded on power-up or reset
sometimes referred to as ' IPt' . (Initial Progrant Load. 'IPL' is
computer jargon for, "Push the button, Hildal")

Figure 5.2 is a 'MAP' of a typical 'SYSTEM DISK' (TRS"DOS 2.1). YOU
will notice that the system programs are grouped together, it is not
absolutely necessary that this always be the case. In fact it is
possible to put the SYSTEM programs anywhere except for 'BOOT/SYS',
'SYy0/£YS' and 'DIR/SYS'. NEWDOS requires that 'SYS13/SYS', when it is
resident on the diskette, to be specifically located also.

Otner programs such as FORMAT/CI-ID and BASIC/CMD may not be in the
same location on your disk^ especially if you have 'COPY'ed these
programs from, another disk.

Disk allocation is handled in groups of 5 sectors at a time. (More
on this in chapter 6.) For this reason every program or file is
allocated disk space in 5 sector chunks called "GRANULES",

TRS-DOS 2-1 and 2.2 assign a HItJIHUM of two GRANULES at a time.
That is wny you run out of disk space so quickly when you have a bunch
of small files or programs. NEW DOS assigns only one GRANULE at a
time .

You can test this by saving a one line BASIC program to disk.
Before you save the program run "SUPER2AP" and look at the 'GAT'
sector's GMNULE allocation. 'SAVE' the program then look at the
'GAT' sector- again. Chapter 6 will explain the meaning of the 'GAT'
sector so you will be able to interpret the results.

34

IfigUiTe 5-

:RS DOS 2-1 DISJ; MAP (35 TR/^CK)

TRACK GRANULE
MUMBER KUHB ER

HEK/DECIHAL (FiEX)

& — Q & I
1 - 1 2 i, 3
2 - 2 4 & 5
3 - 3 6 & 7
4 - 4 8 & 9

5 - 5 A & B
6 - 6 C & D
7 - 7 E & F
8 - 8 10 & 11
9 - 9 12 & 13
A - ly 14 & 15
B - 11 16 5. 17
C - 12 18 & 19
D - 13 lA & IB
E - 14 IC & ID
F - 15 IE & IF

10 - 16 20 & 21
11 - 17 22 & 23
12 - 18 24 & 25
13 - 19 26 S 27
14 - 20 28 & 29
15 - 21 2A & 2B
16 - 22 2C & 2D
11 - 23 2E & 2F
18 - 24 30 & 31
19 - 25 32 & 33
lA - 26 34 & 35
IB - 27 36 & 37
IC - 28 38 & 39
ID - 29 3A & 3B
IE - 30 3C & 3D
IF - 31 3E & 3F
20 ~ 32 40 & 41
21 _ 33 42 & 43
22 - 34 44 & 45

< TRACK CON
SECTORS 0-4

< Gf^/^iJUM' > : <-

TENT^ >:

SECTOPti 5 - S

GR/i^JULE >:

"—SYSiiJ/SYS >:

SYS0/SYS >:

-FOm'lA'r/CMD >;

-BACKUP/CMD >

:

"6ACKUP/CMD >;

FREE >;

FREE >;

FREE >:

FREE >1

FREE >J

FREE >;

FREE >:

FREE >:

FREE >;

FREE >;

FREE >:

SYS2/SYS >:

DIR/SYS >;

SYS4/SYS >:

SYS6/SYS >:

SYS6/SYS >.

—BASIC/CMD >.

—BASIC/CMD"->
FREE >:

FREE > ;

FREE-^ >:

FREE >;

FREE >;

FREE >:

FREE >:

FREE >i

FREE >:

FREE >;

FREE >;

FREE >;

< BOOT/SYS > : <
< SYS0/SYS >:<-
K— FORf'lAT/CMD >:<
<— FOR^IAT/CMD >:<
<—BACKUf/CMD >:<-
^ ^l^QQ ;> .^.

< FREE >;<
< pf^EE >:<
< pp^EE^ -,;<.

< FREE > : <
< Ff^EE > : <.

< pj^EE >;<.
< FREE >:<
< pi^EE >:<
< FREE >;<
< FREE >: <
< SYSl/SYS >:<
< DIR/SYS >;<
< SYS3/SYS >;<-
< SYS5/SYS >;<
< SYS6/SYS > 1 <
< BASIC/CMD > : <
< BASIC/Cf^m >:<
< FREE >:<
< FREE > ; <
< FREE > : <-

< FREE >:<-
< FREE > ; <
< FKEE > : <
< FREE <:<
< FREE > : <
< FREE >:<
< FREE > ; <-

< FREE > : <
< FREE > : <

35

G .a 'LTib: DTRTOTORY

The key to finding anything on
operating syiitem can ' t f ind any
we iiavt? a basiic understanding ot
a very close look at the directo
wiiat it does, atid hov to use it
yysteu* does.

Tlie directory is locatea on tr
sectors or 256 bytes per sector

.

in which to store data. There ar
Figure 6*3 is a M^iAP' of the DIK

the disk is the directory. Even the
thing without the directory. Now that
how the disk is organized, we'll take

ry- I'll explain what each byte means,
to find things just as the operating

ack 17 (11 HEX), It is composed of 10
This gives the directory 2,560 bytes

e no unused bytes in the directory,
ECTORY.

The rainimum
"GI^NULE".

space allocated for storing any type of file, is one
(No, Virginia, I do not know where the word "GKANULE" carae

troin. Perhaps it describes the size brain of the person v;ho thought
of inventing another 'coniputer jargon' term.) At any rate, the
over -a 11 scheme for representing free space is as follows:

5 sectors = 1 granule 2 granules = 1 track

V/nen you do a 'FREE' , GKAKULES are Ghortened to "GRABS' —- It will
looK like figure 6.1.

DRIVE —
DRIVE 1 — TRSDOS

TRSDOS

Hfig^re 6.].^
11/27/78 41 files 42 GRAMS
01/01/79 33 files 6 GRANS

With that out of the way let's dive into the directory,
contains a 'DIRECTORY TRi^CK DUMP' of TRSDOS, NE17D0S, and VTOS.
usiny the 'PD' - 'PJIINT DISK SECTORS' function of "SUPERZAP").

We vjiii discuss each sector and then each entry in each sector

.

Appendix A
made by

"GAT bEC'WB " - SECTOB ^

SECTO

PFFC
FCFF
FCFC
FFFF
FPPF
FFFF
FCPC
FCFC
FCFC
FFFF
FFFF
FFFF
FFFF
5452
0D0D
FFFE'

011t)00
0116)10
0110213
011030
011040
011050
011060
011070
011080
011090
0110A0
0110B0
0110C0
0110D0
0110E0
0110F06

FCPC
FCFC
FCFF
FFFF
FFFF
FFFF
FCFC
FCFC
FCFF
FFFF
FFFF
FFFF
FFFF
5344
FFFF
FFFF

FCFC
FFfC
FFFF
FFPP
FPFP
FFFF
FCFC
FCFC
FFFF
FFPF
FFFF
FFFF
FFPF
4F53
FFPF
FFFF

FCFF
FEFD
FFFF
FPFP
FFFF
FFFF
FCFC
FCFC
FFFF
FFFF
FFFF
FFFF
FFFF
2t^20

FFFF
FFFF

FEFE
FCFD
FFFF
FFFF
FFFF
FFFF
FCPC
FCFC
FFFF
FFFF
FFFF
FFFF
FFFF
3 034
FFFF
FFFF

FCFD
FDFC
FFFF
FFPF
FFFF
FFFF
FCFC
FCFC
FFFF
FPPF
FFFF
FFFF
FF21
2F30
FFFF
FFFF

FCFC
FCFC
FFPP
FFFP
FFFF
FFFF
FCPC
FCFC
FFPF
FFFF
FFFF
FFFF
0000
312F
FFFF
FFFF

^"H £iyuic

3739 NOTES, , .04/01/79

FFPF

36

DIKECTOEY TRACK MAP

SECTOR
HAME 6 NUMBER

TRACK 17 (11 HEX)

GAT
(Granule
Alloc cition
T«ble

HIT

FPDE/FKDE 2

FPDE/FXDE 3

FPDE/FXDE 4

FPDE/FXDE 5

FPDE/FXDE 6

FPDE/FXDE 7

FPDE/FXDE 8

FPDE/FXDE 9

The
actual
direct"
tory
ent r ies
are
locaited
in these
eight
sectocs.

Kfigure 6-3

SECTOR
CONTENTS

Unassigned 9ranuies
Assigned granules
Lockea-out granules
Master disk password,
Dick name ^ date
'AUTO' coramand file

Program n^nie 'hash code
'DEC of 'FPDE-FKDi:;'

Type of file entry
(FPDE - FXDE)

File type
Entry status
Space availability

status
I EOF'
Logical record

length (NOT USED BY BASIC)
File name
File name extension
Update password
Ace es s pas swor d
Number of sectors

assigned to file
File extents
Track location
Sector location in

track
Number of contiguous

sectors in extent
Entry type (FPDE -

FXDE)

These nuinbers corres--
pond to the vertical
columns beginning at
relative byte '00 -

BF' . See "KIT HAP"
figure 6,8.

37

"GAT" stands for GRANULE ALLOCA^TlON TABLE. This sector contains all
of the information the DOS needs to allocate space for files. It also
is the sector that notes ^lockout' on tracks.

Figure 6,6 is a 'MAP' of the "GAT" sector with an explanation of
the various GAT areas.

You will notice in figure 6.2 that the first 35 bytes contain
'FF's, 'FC'S and 'FE's. These first 35 bytes represent the 35 tracks.
An 'FF' in one of these bytes means that the track is full. An 'fe'
means the first 5 sectors are available and an 'PD' means the last 5
sectors are available. Also see f igure6 .4^ below.

At relative byte '60' (figure 6-2) you will notice a replay of the
rirst 3 lines of this sector. This is where 'TRACK LOCKED OUT'
information is maintained. Beginning at relative byte '60 ' you will
see 35 'FC's, This means that all 35 tracks are available to the
system. If there is an 'FF' in one of these 35 bytes AND a
corresponding 'FF' in the aoove set of 35 bytes, a track has been
"LOCKED-OUT".

At relative byte 'CB' and for the next 3 bytes, there is a '21
0000', What ever these codes are they are not used by the system,

Keiative bytes CE ana CF are the 'hash code' for the master disk
password.

The next line Cbeginning at relative byte 'D0'), contains the disk
name cind the backup date.

Bytes 'EB' to 'EF' and 'F0' to 'FF' are the "cofamand file' for the
AUTO' funcclon. These 32 bytes will contain the name of any program,
ctnd/or command that nas been defined as 'AUTO' while in DOS. If byte
'E0' contains a '0D' (carriage return) then the 'AUTO' function will
not execute.

Kfigure 6,4>i

BINARY HEX MEANING

illlllll FP 1st & 2nd granules allocated.
(sectors - S)

11111110 FE 2nd granule allocated
(sectors 5-9)

11111101 FD 1st granule allocated
(sectors 0-4)

11111100 FC 1st s 2nd granules free
(sectors 0-9)

"HIT SECTOR" - SECTOR 1

"HIT" stands for HASH INDEX TABLE. This sector contains a 'HASH CODE*
that relates to each stored FILE NAME, The location of the hash code
also tells the DOS where the file information is on the directory.
Figure 6.5 is a dump of a 'KIT' sector and figure 6,8 is a MAP of the
'HIT' sector.

38

or file storeci. TheThere is a one byte hasli code for each progr ar.i

position as well as the code is important,
A nasci code is a nuniber that is derived by some scheme of assigning

each letter a numerical value. Then, depending on each letters
position, tney ate multiplied by sorae number and the result or each
multiplication is added then divided and rounded. Eventually a code
nurtibec results which is a 'HASH' of the original entry.

There are literally millions of cchcLiec for hashing and the hash
code could be any nuniber of bytes long depending on vjho is using it

and for wnat.
In this particular case the HASH code is 1 byte. There vfill be more

on 'BACH CODES' in the data recovery chapter.

^—UIT[SECT®Rt

fcilll00 A22C

i^

011110
011120
011131*
011140
011150
011160
011170
011160
011190
0111A0
0111B0
0111C0
0111Dy
0111E0
0111F06

0000
2800
0^00
F200
0000
B&Qid
0000
7S00
0000

2E2F
0000
0000
0000
S900
0000
5600
0000
AD 00
£1006

F01D -^Fi

0000
0067
000ia
A3DB
0000

00
0000
0600
0000
0000

'^
i.'i

2C2D
0000
e0A7
0000
W000
0000
y0C5
0000
0032
0000
069D
0000
0000
0000
0000
0000

0(-«!'•<-k^..^
(ficj

L- ^ \\}- /n«^ ' -1 '< '-) '>" C-

71 ',1

2A2B
0000
26 A6
0000
0000
0000
0000
0000
0000
0000
0007
0000
0000
0000
00EE
0000

Ah

0000
0000
0000
^000
0000
0000
0000
0000
0000
0&00
titi00

0000
0000
0000
00B0
0000

0000
0000
000B
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

0000
00 00
0000
0000
0000
0000
0000

00
0000
0000
0000
0000
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000
0000
0000

00
0000
0000
0000
0000
0000
000D

u r e 6 . 5 >

U

/ * +

F2

At the bottom of the 'HIT' MAP there are columns numbered I through
8, Eacn oi these eight VERTICAL columns represent the eight sectors
available for storing rile names and each even numbered row across is

the relative byte the entry starts on in its sector*
For instcince, in figure 6.5 there is a hash code at relative byte

'A2'. (The hash code I'm referring to is '8F")
The 'FPDL" or FILE ENTRY is in VERTICAL Column 3. This means that the
file that corresponds to this hash code is in tPie-^hird sector AFT£B
'niE__^HIT_'__SECTORf which is rGlatiue sector 4. (Also see tTTe^'DTFECTOKY

tigure 6 .3 .)TRACK MAP
Also notice

relative byte
after the
that sector
hash code
sector and
'DIK/SYS'

.

Also notice that
'DIK/SYS' and the
that the nasn codes

the nash code
This 'points'

that

'HIT' sector (relative
This is the hash tor

'2C' and this points
also points to relative

'A2 ' is in vertical coluinn 1

or corresponds to the first
sector 2) and relative byte

Next to 'A2'
sector after

'BOOT/ SYS'

.

to the second
byte 00",

and at
sector
'00' in
is the

the 'HIT'

there are two '2C'£ on that
other is for 'syS2/SYS' and
need not be unique but must

Tnis is the hasli for

line. One is for
the only conclusion is
be derived f roii. the

program name and be in the correct corresponding byte which points to
the 'FPDE' entry in that sector

,

39

iicjuce 6.6]—GAT SECTOR '

'GAT' SECl-OR HAP (TRACK 11, SECTOR 0) 35 TRACK DOS01234567B9ABCDE
00

ItJ

2^

4^

5u

60

7W

m

90

A0

Eld

CtJ

DkJ

E0

Ft)

* !

^^^
^RAfj ^T.G* zl's mr^A^iirni.i ^.i ^bLE

. 1
1 1 T—

1

1

I-' J-lls^ i^ j-i j_r\^ i^dTA J, J. ^1'' X

1 1

1 1 1
^^ ^^

p- -tP^'i'^Th' r ri^i'' i^no i^ai^T T^

^^ ^^
-i jT\r**— l.\. UVV'^

1

Pj-Jt.

1

-<-UIJKNOl JM-*- -*-PJSW-^

J

SK NAME AND DATl

1 1 1 1

^^^ ^^^ ^^^ ^^^ ^^^
i-f J

.^. ' I Tirn/-\ 1 j^j^M rn /, ft-<i-\ t:> t t

~ ^^ ^^ ^^^ ^^^

1

lU J- u

1

^Iw^l ii'irvL^u r ±1

1

^^ ^^ ^^ ^^^ ^^^

^^^ 1 1 1 1 1

, 1

1 - .''-..

40

Tne following 'granule ALLOCATIOM map' is a detail of liigure 6.5. It

is also extended to include the GRANULES to track 80 if you should

ever have a system that uses this many tracks.

(figure 5.7]

00

10

30

40

'GRANULE ALLOCATION MAP'

4 5 6 7 8 9 A B D

01
00

02
01

03
02

04
03

05
04

06
05

07
06

08
07

09
08

10
09

11
0A

12
0B

13
0C

14
0D

15
0E

16
OF

00
01

02
03

04
05

06
07

08
09

0A
0B

0C
0D

0E
0F

10
11

12
13

14
15

15
17

18
19

lA
IB

IC
ID

IE
IF

17
10

18
11

19
12

20
13

21
14

22
15

23
16

24
17

25
18

26
19

27
lA

28
IB

23
IC

30
ID

31
IE

32
IF

20
21

22
23

24
25

26
27

28
29

2A
2B

2C
2D

2G
2F

30
31

32
33

34
35

36
37

38
39

3A
3B

3C
3D

3E
3F

33
22

34
21

35
22

36
23

37
24

3a
25

39
26

40
27

41
28

42
29

43
2A

44
2B

45
2C

46
2D

47
2E

48
2F

40
41

42
43

44
45

46
47

48
49

4A
4B

4C
4D

4E
4F

50
51

52
53

54
55

56
57

58
59

5A
5B

5C
50

5E
5F

49
30

50
31

51
32

52
33

53
34

54
35

55
36

56
37

57
38

58
39

59
3A

60
3B

61
3C

62
3D

63
3E

64
3F

60
61

62
63

64
65

66
67

68
69

6A
6B

6C
6D

6E
6F

70
71

72
73

74
75

75
77

78
79

7A
7B

7C
7D

7E
7F

80
4F

65
40

66
41

67
42

68
43

69
44

70
45

71
46

72
47

73
48

74
49

75
4A

76
4B

77
4C

78
4D

79
4E

80

1 81
62
83

84
85

86
87

88
89

8A
8B

8C
8D

8E
8F

90
91

92
93

94
95

96
97

98
99

9A
9B

9C
9D

9E
9F

LEGEHD

01
00

01

C— Track (DECIMAL)
<-- Tcack (HEX)

<-- 1st GRANULE (HEX)
<— 2nd GRANULE (HEX)

[In this track)

GRANULE ALLOCATION CODE

FF = 1st & 2nd
GRANULES allocated

FC = 1st & 2nd
GRANULES free

FD = 1st GRANULE
allocated

FE = 2nd GRANULE
allocated

41

6)0

2ld

3\d

4t)

50

6t)

70

GQ

9fe)

AS

B\a

C0

D0

E0

P0

'HIT' SECTOR MAP (TRACK 11, SECTOR 1)234567S9ABC
figure 6.8)

D E
I

-EMTiilES STARTJMG AT-
RELATIVE BYTE 66

ENTRIES STARTING AT-
RELATIVE BYTE 20

ENTRIES STARTING AT-
REL/vTIVE BYTE 46

-entries staetieg at-
relativh; byte 60

-ENTRIES STARTING AT-
RELATIVE BYTE 813

ENTRIES STARTING AT-
KELATIVE BYTE h&

-ENTRIES STARTING AT-
RELATlVE BYTE C0

-ENTRIES STARTING AT-
RELATIVE BYTE E0

12 3 4 5 6 7 8-^ These numbers are the
first eight vertical columns of this map and they re£resent__the
aectors used for actual ditectoty entries, Also see figute 6.3

42

' FPDE/FXDE SECTORS
SECTORS 2-9

'FPDE' Stands for fILE PRIMARY DIRECTORY ENTRY and 'FXDE' is defined
as 'FILE EXTENSION DIRECTORY ENTRY.' These sectors are the actual
directory. (Also see figure 6.10, FPDE/FXDE SECTOR MAP.)

Tile program name, attciDutes, passwords, size (in sectors) 'END OF
FiLE'r and physical location on the disk are stored here.

fiqure 6.9!

011400
011410
011420
011430
011440
011450
011460
011470
011480
011490
0114A0
0114E0
0114C0
0114D0
0114E0
0114F06

5F00
EB29
0001^

&MiS
1000
9642
1000
9642
0000
0000
0000
964 2

0000
0000
0000
0000

0000
210E
0000
0000
009A
9642
00B7
964 2

0000
0000

964 2

0000
0000
0000
0000

0053
eF00
0000
0000
04 5

2000
0054
0300
0000
0000
0054
2100
0000
0000
0000
0000

5953
0022
0000
0000
4454
0D24
5253
1D20
0000
0000
5249
1E22
0000
0000
0000
0000

3020
FFFF
0000
0000
4153
1A01
3233
FFEF
0000
0000
4254
2023
0000
0000
0000
0000

2020
FFFF
0000
0000
4D2S
FPPF
3220
FFFF
0000
0030
5241
FFFF
0000
0000
0000
0000

2053
FFFF
0000
0000
2043
FFFF
2020
FFFF
0000
0000
5020
FFFF
0000
0000
0000
0000

5953 SYSe SYS
FFFF .) !...."
0000
0000
4D44 EDTASH..CMD
FFFF .B,B $

2020 TRS232
FFFF ,B.B
0000
0000
2020 ,... .TEIBTRAP...

0000
0000 ,

0000 *

0000 *

In addition to the 'FPDE' the 'FXDE's are also stored here. When
there is not enough room to store all the information DOS needs about
a file, it creates a 32 byte extension to the original 32 byte 'FPDE',

to define a 'PILE'. A BASIC
A machine language or

Perhaps this would also be a good time
program stored with a 'SAVE' is a '£ile'.
assembler program stored by using 'DUMP', 'TAPEDISK' or 'EDTASM' is a
file. Data stored by using the 'OPEN' statement in BASIC is a file.
In fact, anything that gets put onto the disk, with a name, is a file,
CIS there any more confusion about ' files ' ? Good,

)

Each directory sector, beginning at relative sector 2, may contain
up to eight file names,
bytes. The first entry of
SYbTEH FlLfiS.

You will note that each
RELATIVE bytes, (Also see

00, 20, 40, 60, 8t

Each of these file "ENTRIES" occupies 32
each of these eight sectors is reserved for

entry starts
figure 6 -10,)

;

at one of the following

A0, C0, and E0.

Now let's examine a directory entry in detail. We will take the
first thirty-two byte 'FPDE' entry of sector 2 and take it apart,
(Figure 6 .11.)

43

^figure 6.11
'FPDE' - 'FXDE' SECTOR HAP (TRACK 11, SECTORS 2-9!

t312 345G7 89ABCDEF
00

10

20

3ld

40

50

60

70

80

90

A0

B0

C0

D0

E0

P^ ^^^^^^"T^ nrinx/ niTm -i\/ f^ in
1 1 1 1 1

et; 01 02 tJ3 04| 05| 06| y? 08| 09| Qh 0B 00 0D 0E 0P

10

1 1 1 1 1 1

11 12 13 14 15 1" 1- IB 19 1- IB IC ID IE IF

ro ui/^rnr\r>v t?KTrn
=.Y TWO

29 1 2A

^^
20 21 22 23 24 25 26 1 27

Ui'^ J. J

28 2B 2C 2D 2E 2P

1 1

~ ^^^ ^^^ ^~

30 31 32 33 34 35 36 1- 38 39 3A 3B 3C 3D 3E
—^-

3F

-f nT t^ pr^l'^/Mnv cfTrmnir ir-un r'ir»

^^^^ ^^" ^^"

40 41 42 43 44 45
-h_^ J- *_/j

46 47 48 49| 4fl 4B 4C 4D 4E 4F

1

. _.. M_ ^^
50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

L 1
1

pou;
69

\

..... ^^^ ^^^1 •"

60 61 62 63 64
LJ±1\.

65 66 67
y J. r\ J.

68
\

eA 68 6C 6D 6E 6F

70

..... "" ^^ ^^^"

71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

F.TP' p/'^Timiv Y?i.iri\T,\r c -r y r

^^ ^^^"' ^^^

80 81 82 83 84 85 06 87 88 69 8A 8E 8C 8D SE 8F
^H«i

90 91 92 93 94 95 96 97 98 99 SA 9B 9C 90 9E SF

-
t""

' "
1

^^ ^^ ^^^ ^""

AS Al A2 A3 A4 A5 A6 A7 A8
x. J. i_f J. ^^

A9 AA AD AC AD AE AP^^ '^^" ^^^^

B0 Bl B2 B3 B4 B5 B6 E7 138 B9 BA BB BC BB BB BF

CF

^ P-T D prim/^nv riMrnni? f ritTrn,t 1

^^^ ^^^^ ^^^"' ^^"

C0 CI C2 C3 C4 C5 06
V.i JJLVJ.IVX O-iliVl

C7 C8 C9 CA CB cc CD CB^^ ^^ ^^^ ^^^

D0 Dl D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF

^ TjTP F'^'^'^'^V PPirncU tT'TML m
^^ ^^^^ ^^ ^^^ ^^^

E0 El E2 E3 B4 E5 E6 E7 E8 E9
1 '

EA EB EC EC EE EF

1

^^ "7
FO Fl F2 F3 F4 F5 F6 F7 F8 F9 FA FE FO FD FE ffI

44

Kf igure 6 .11>

t cFPDE' DIRECTORY ENTRY

11111 111 - (BYTE - BIT RECORD)
1 i^ 111 = PROTECTION LEVEL

1 = INVISIBLE FILE = VISIBLE FILE
ASSIGNED TO FILE; HAS NON-ZERO HASH CODE
1 = ASSIGNED TO FILE

= AVAILABLE FOE REASSIGNMENT
KOT USED
1 = SYSTEM FILE = NOH SYSTEM FILE
1 = FXDE = FPDE

NOT USED (BYTES 1 £. 2} *

RELATIVE POSITION
OF THE LAST BYTE
IW THE 'EOF'
SECTOR. (BYTE 3)

LOGICAL RECORD LENGTH {0 - 255)
(BYTE 4) NOT USED BY SYSTEM

FILE NAME
(BYTES 5-C)

FILE NAME
EXTENSION
BYTES D-P)

-» *- *
0g 00
00 00

00 00
00 00

00 00 00 00
00 00 00 00

* -r
EXTENT 1

(BYTES
16-17)

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

nr T ^
EXTENT 3 I EXTENT 5

(BYTES I (BYTES
lA-lB) I lE-lF)

EXTENT 2
(BYTES
18-19)

EXTENT 4
(BYTES
IC-lD)

'EOF' RELATIVE SECTOR (BYTES 14 & 15)

ACCESS PASSWORD (BYTES 12 & 13)

UPDATE PASSWORD (BYTES 10 S 11)

* MOTE: BYTE 1 is used by an 'FXDE' entry as a 'DEC pointing
original 'FPDE' entry.

to the

Now we'll take each item in order. Notice that in figure 6»11,
each byte is named with its hexadecimal nuriiber.

45

fpde' byte

fil£ type - 3ys/l^0l\-'6y^ filk - attributes - assignment status
-PROTECTION LEVEL- The first byte is a bit record. The right most 5

bits {B ~ 4) are considered separately and the left most 3 bits (5 -

7) are considered as one unit. Figure 6.12 illustrates the method for
counting bits.

Bit
1

seven^.
Bit Six

Bit

1 1

-IJ
Bit four,

-one

(figure 6,12)-

zero

three

(The following

Bit 7 ...

is a review of the material in figure 6*11)

1 = FXDE
if this bit

= FPDE
is 'OFF'

entry is a ' PRIMARY'
(Therefore a '0') then this
entry. If it is a '1' then

the entry is an 'EXTENSION' of another entry loca-
tion somewhere in the directory* There will be no
hash code cor responding to an 'FXDE' entry.

Bit 6 ...Is The entry is a 'SYSTEM' file* A typical system
file would be 'SYS3/SYS' and for that file this
bit would be a one.

Bit 5 ... Hot used.

Bit 4 ••- 1 = Assigned to a file and has a non-zero hash code.
= This directory space is available for

reassignment.

Bit 3 ... 1 = INVISIBLE FILE = VISIBLE FILE An example
Of an INVISIBLE FILE is 'BASIC/CP©' on every TRS-DOS
2.1 or 2.2.

Bit 2-1-0 . . . These 3 bits are to be intrepreted as a unit;
i.e. f 111 binary = 7 decimal

BINARY DECIMAL PROTECTION LEVEL
111 = 7 = No access
110 = 6 = Execute only
101 =: 5 = Read/execute
100 = 4 = Write/ read/execute
011 = 3 = NOT USED
010 = 2 = Rename/write/read/exGcute
001 = 1 = Kill/ rename/write/ read/execute
000 — = No restrictions

46

'FPDE' BYTES 1 £t 2

If the entry is an 'FPDE' eritJ:y then these are not usee and alvays
contain zeros. If the entry is an ' FXDE ' then UY'rE '1' is the 'DEC'

pointing BACK to the 'FPDE'. Byte '2* is nevt^r used and always
contains '00

'

,

'FPDE' BYTE 3

EKD OF FILE (EOF) BYTE* Tllis byte is the relative byte position of

the last byte (of the tile) m the last relative sector of the file.

If you had a file tnat was 4 sectors long and this: byte was a '13'

then your file would end AT relative byte 13 (HEK) in sector 4.

FPDE' BYTE 4

LOGICAL KECORD LENGTH. This neat idea is not used by the system!
Evidently it's another good idea that was not 'implemented', I suspect
that it was to be used by the randOLs file statements to raak-e computing
logical record lengths easier. In any case^ this byte should be '00'

but you can use it for anything you want seeing as hov it isn't used.

'FPDE' BYTES 5 - C

FILE NAME* These eight bytes are the file name. The V '
is not

stored. You may change or swap file names using "SUPERZAP" but be
sure and change the hash code.

'FPDE' BYTES D - F

FILE NAME EXTENSION, Here is where the '/BAS' and other file name
extensions are stored. These may be "ZAP"pecj also. The e^ten^^ion is

used in computing the hash code for 'HIT' sector so you will neeu to

put in a proper hash code if you change the extension.

'FPDE' BYTES 10 & 11

UPDATE PASSWORD. Finally, the passwords. (Calm down, I'll explain
how to unlock the passwords in a couple of chapters.) The UPDATE
PASSWORD is a two byte hash code of the password :^ou specify v;hen you
use the DOS command 'ATTRIE' . (See "TRS-DOS ^ DISK BASIC Reference
Manual" section 4 page 12 for a complete (if obscure) ej^planation of

'ATTRIE')

'FPDE' BYTES 12 & 13

ACCESS PASSWORD. This Is also a two byte hash code- This password is
created when you specify a filespec thus:

SAVE''RSSALES/PSK.DURB
In this case the material to the right of the '.' will be hashed and
inserted into bytes 12 and 13. You may also change, delete and
specify the ACCESS password v/ith the DOS command 'ATTRIB'.

47

'FPDE' BYTES 14 & 15

END OF Fii.B (EOF) i^ELATivi^ SCCTOK. This i& a tricky one. The concept
is simple and straic^htiorv/ard; these bytes contain a count of the
nuT;iber (in H>JX, of cour^^e) of sectors in the file. There ate however,
two £iets oi rules ^overniny the use o£ these bytes;

DUMB RULi: # 1 - If the 'EOF' byte contains '00' (in this case '00 ' = 256
DEC) tnen this byte will contain the actual RELATIVE sector count,

DUMB RULE # 2 - If the 'EOF' byte contains any value OTHER THAM '00'
then this byte viill contain the liELATlVE sector count plus one!

Let's see iio-w that works ayain. Suppose we have a short file that
it^ EXACTLY 256 bytes long anci we save it to disk. Now that will fit
into one sector of storage and all of the file will be contained in
relative sector of the file, in this case 'FPDE' BYTES 14 & 15 will
contain '01'. Wow that iiiakes sense 1 In all of the other 'counts' we
make, we start counting with zero (I'll admit that it's kind of hard
to yet used to at first, but it I£ a logical concept) and here we have
a fiie stored in the 'zeroeth' sector and we have '01' stored in the
relative sector count of the 'FPDE*

,

NOW let's take a little longer file - say, one about 600 bytes
long. This file will require a little over 2 sectors of space. This
Rieans that the file v/ill end in the cecond relative sector. {Counting
firoft^ sero that's; &, 1, 2.) In other words it takes 3 sectors to save
it but, usiiig our 'normal' count nicthod the file will be in RELATIVE
sector 2- MOW - usiny DUMB RULE # 2 ^ an '03' will be stored in the
EOF SECTOR SYTEl (RELATIVE SECTOR COUNT = 2. EOF SECTOR BYTE - 2 +
1)

Jees! youd've thought they could at least be consistent. Oh well,
you MUST realise that the folks thttt thought this up are the same
wonderful folks that brought you the 400 name / 7 hour sort / MAIL
LIST program and the 'monthly' newsletter that was published 5 times
ir. tv/o years.

Hold it! We're not through yet. We have one more thing to get
Etraignt and that's REALLY large files. Let's do a little more
'supposing'. Suppose you had a data file that occupied AN ENTIRE
DISK. Tnat would be 335 sectors. The largest nuinber we can fit into
a byte is 'FF' (HEX) and that equals 255 {DECIMAL). NOW, even d Radio
snack store manager can rigure out that we need more than one byte to
store a gigantic number like 335-

here, finally, is an CKample of such an 'EOF' sector byte;

335 (DECIMAL) = ei4F (EEX)
EOF sector byte = 4F01

It's fairly obvious that the numbers are simply 'back-to-front' and
all you have to do is put the '01' in front of the '4F' and you have
itl Convert the nuiiiber back to decimal and you'll know the number of
sectors in this file.

48

FPDE' bytes 16-17, 18-19, lA-lB, IC-lD, lE-lF

EXTENT 1, EXTENT 2, EXTENT 3, EXTENT A, EXTENT 5, The EXTENTS contain
the TRACK, GRANULE off-set, number of CONTIGUOUS granules (in the
extent) and when necessary, the 'FXDE' pointer.

By now your lightning-quick-bear-trap-mind should be working at
peak efficiency so I expect that you ' 11 have no trouble understanding
the EXTENTS.

So far, we have all the information on a file we need to determine
its name, length, and so on, but we still don't know exactly WHERE it
is on the disk. This information is recorded in the EXTENT elements.

Consider the following EXTENT: 0718

The first byte of an EXTENT is the TRACK number in hexadecimal. In
this example TRACK = 07

The second byte is a bit record. The right most 5 bits ace the
NUMBER OF CONTIGUOUS GRANULES ASSIGNED TO THIS EXTENT LESS ONEl The
left most 3 bits is the OFF SET OF THE START OF THE FILE, FROM THE
DESIGNATED TRACK, SECTOR ZERO, TO THE START OF THE FILE IN GRANULES
(1=1 GRANULE 0=0 GRANULES),

Here is the bit record for the second byte of the above EXTENT
example:

BINARY HEX00011000 = 18

,11000 = 18 (HEX) There are 17 contiguous
granules (HEX) stored in this EXTENTS"
file area beginning at track 7,

.000 ^ (HEX) The first sector of this
file EXTENT is at sector zero.

Here is another typical EXTENT we can decode; 1A29

TRACK = lA (THAT'S EASY!)

BINARY HEX00101001 = 29

' Tflg'i = 9 (HEX) There are 08
contiguous granules in this file's EXTENT.

^Q^ = 1 (HEX) The granule off set from
the beginning of this EXTENT is one,
i.e., the file's EXTENT starts at RELATIVE
sector 5,

From this we may surmise the following:
(1) The track is easy; just read it.
(2) If the second byte of the EXTENT is 19 or less

then the file begins at SECTOR 0.
If the second byte of the EXTENT is 20 or greater
then the file begins at SECTOR 5,

49

'PPDE' END OP EXTRNTS,

All chis IS just fine, you say, but what in the dirty hell are all
those 'FFPF's at the end of the EXTENTS? just that, my fine feathered
triend, the END OF THE EXTENTS, 'FFFF' means that there are no moreEXTENTS. If yoQ add to your file, and DOS cannot continue to add to
an existing disk file area, then it will find some open (FREE) space,
usiny the GAT table and then put the file in the newly allocated
granules and construct a new EXTENT.

A file may have up to FIVE extents in a 'FPDE' and that
to. . .

.

brings us

'FXDE' ENTRIES

Tne Tiiysterious "FXDE" is about to be unmasked, if an 'FXDE' exists
you will see, IN extent 5, of the 'FPDE', 'FE' followed by the *DEC'
ox the 'FXDE'. Figure 6,14 is a typical example of a 'DEC pointing
to an "FXEE*. Whats a 'DEC', you ask? Pay attention because there
will be a test on this toiaorrow,

'DEC is defined as; DIRECTORY ENTRY CODE. The
6.13 will further your understanding so please press

example
on ,,

,

in figure

^figure 6 ,13)"
32 Dyte 'FPDE' entry showing a 'DEC ('pointer') to the' 'FXDE'
entry.

011900 l(dd& 002B 0044 4S53 4B4F 5247 2050 434C . . - + ,DISKORG.PCL
0194D0 9642 9642 4200 2023 0124 0500 0701 FE40 .B.BB, .#.$,,,,,

@

These 2 bytes in EXTENT 5,
'point' to the 'FXDE'.

r
FE (HEX) SIGNIFIES THAT THE NEXT BYTE IS THE 'DEC TO

AM 'FXDE'

40 (HEX) = 01000000 (BINARY)

ei00000t; (BIMARY)

n 000 = 600 (HEX) +2=2. This is
the relative directory sector
the 'FXDE' in located in.

00 - Not used.

010 = 2 (HEX) This is the relative
32 byte directory entry in
that sector. REMEMBEE TO
START COUNTING FROM ZERO!
(i.e., "a - 1 - 2")

50

Next, let's look at the actual 'FKOE' entry in rolative sector 2. See
figure 6 .14 below.

.figure 6.14!

011200
011210
011220
011230
011240
011250
011260
011270
011280
011290
0112A0
0112B0
0112C0
0112D0
0112E0
0112F06

5E00
EB29
0000
0000
90C7
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

0000
210E
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

0042
0500
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

4F4F
00ti0

0000
0000
0000
0821
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

5420
PFFF
0000
0000
0000
FFFF
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

2020
FFFF
0000
0000
0000
FPFF
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

2053 5953 BOOT SYS
FFFF FFFF .)

!

0000 0000
0000 0000
0000 0000
FFFF FFFF
0000 0000
0000 ti&00

0000 0000
0000 0000
0000 0000 . . . »»

0000 0000
0000 0000
0000 0000
0000 0000
0000 0000

DIRECTORY SECTOK with 'FXDE' at relative byte '40

The first byte of the 'FXDE' is decoded in exactly the same manner as

an 'FPDE'. The '
C7

'
, at relative byte '41' is the 'DEC that points

BACK to the 'FPDE'

.

It has been suggestecl by Fenwyler
that this may also be a seed value
during a 'WRITE' operation that
command, 'DESDSK' (DESTROY DliiK) .

T. Murphy, a nephew of THE Murphy,
for generating a ranUoii! error
v/ill invoke the TRS-DOS hidden

Aw c'rRon now, did you think I was serious?

With the above information you should be able to find any file

anywhere on any disk as long as you have a directory to v/ork from. We

will discuss recovery methods in a later chapter, now take a break.

51

7.0 PASSWORDS M^D OTHER TRIVIA

Everybody niakes a big deal out of PASSWORDS. I'll admit that I too, at
one time, wds baffled by the passvjord scheme but within days after
getting my copy of "SUPERZAP" all of my disks were without passwords.

li: you have read chapter 6»0 you know where the passwords are.
First we'll tacKle the M/^iSTEK DISK PASSWORD.

tlASTEH Dli^K PASSWORD

Xhe 'HASH' code for the MASTER DISK PASSWORD is stored in the "GAT^
sector at relative byte 'CD' and 'Cf'» In figure 6.2 the 'HASH' for
the master disk password is: 'E042'. The MASTER DISK PASSWORD is used
Dy the DOS statement ' PROT :d (LOCK) ' , where 'd ' is a drive
specification.

WDen this cornmand is entered, the MASTER DISK PASSWORD is
transferred to ALL user files in the UPDATE and ACCESS PASSV70RD bytes.
The system files rernain as before. (See TRSDOS & DISK BASIC Reference
manual, Section 4, Page 21.)

Conversely ' (UNLOCK) ' reverses the 'LOCK' process and removes all
the passwords that 'LOCK' ^ipplieo snd inserts '9642' into the password
bytes,

'964 2
' is the password, " " (eight blank spaces) , which is

ignored by the systeTTi: - in other words, " "
('9642') is

equivalent to no password iit alll The password, "PASSVJORD", has the
hash code of 'E042'

.

We v/111 assume that you have a disk and EVERYTBItTG is locked out.
System files, user files; the whole enchilada. We don' t know the
raaster pat^sword or we forgot it. At any rate we need access to those
files

.

(1) VJith "SUPERZAP" Lead a disk with a known password,
(2) Make a note of the password.
(3) Remove the known password disk and insert the

offending disk

.

(4) Select 'DD' from the "^SUPERZAP" menu
(5) Display ttcick 11, sector 0.
(6) Using 'hODCE' modify bytes 'C£' and 'CF' to

the known password obtained from the 'good

'

oisk

.

(7) Hit break & go to DOS, *(See tJOTE, below.)
(8) Invoke the 'PROT' function,
(9) Go back to BASIC and 'RUN' "SUPERSAP" and verify

that the passwords are changed.
(10) Take a break, you did cjood,

* iWTE - If you are using KEV;d0S, simply type: CMD"PROT :d (UNLOCK).
When the function is completed you v^il 1 return to BASIC automatical iy

,

Then type; COHT <EM'r£R> Then press: R "SUPERZAP" will continue where
it left off without a glitch, VER-R-R-Y fast cind handy.

52

UPDATE & ACCESS PASSWORDS

This is n^ore or less the same ro
password individually. Using t

proper bytes for the passwords i

BYTES 10 & 11 and 12 & 13.)
ACCESS PASSWORD bytes with the
You 're all done.

Quite a nuTober of people
generating the password is* I

is that '9642' - " " and
may ' remove ' all passwords f

r

this method.

utine except that you will modify each
he information in chapter 6 locate the

in the 'FPDE' sectors, (Figure 6.8,
Now, insert '9642' into the UPDATE and
'MODnn' command in the ' DD ' function,

have asked what the algorithm for
don' t know and don 't care. All I know
is, in effect, no password at all. You
cm ALL files including SYSTEM FILES by

OTHER TRIVIA - PROTECT STATUS

If you will remember our discussion in chapter 6,0 of the directory
entries, you will recall that the first byte of each and every 'FPDE'
(Figure 6.8, byte C) contains ALL the 'FROTGCT STATUS' information. If
you want to remove the 'PROTECT STATUS', change whatever that first
byte is, to: 10 (HEX)

.

If you want to add 'PROTECT STATUS' , with "SUPEKZAP", then
construct a

6,8, convert It
You 're all done

binary number, from the information in chapter 6 figure
and "ZAP" it into that first byte. There!to hex

again.

MORE TRIVIA - A '^iASTER PASSVJORD'

Legend has it that the following
2-1 'SYSTEM' file:

KV36
F3GUM

'PASSlTORD's will work on any TRSDOS

1 have not tested this but I have it on good authority,
passwords work.

that these

53

8.0 DATA RECOVERY PROCEDURES & TECBHIQUES

Your success at data recovery will depend upon your planning ability
more than anything else. VJhether or not you will successfully recover
a file or data will usually depend upon whether or not you have fully
thought out just HOW you are going to go about your task, not how well
"SUPERZAP" works or whatever utility you decide to use. That brings us
to ., .

8.1 THE SHRLL GAME

Have you ever watched a carnival pitch man work the pea-in-the-shell
game? At first it looks simple. There are three shells or dixie cups
with the open end down. He places a 'pea' or small white ball under
one of tbe cupSp "iSlow v/atch closely" , he says, and proceeds to switch
the cups around in a deliberate manner, "Keep your eye on the shell
with the pea", he continues. After half-a-dozen switches, he stops
and asks which shell has the pea under it. You have watched him
closely and point to one of the shells. He'll ask you if you are
sure. You say, "Yes, that's the one!" He picks it up and sure
enough, there it is. Now that you feel confident about spotting the
pea, you do it again only this tiuie with a little side bet.

Guess what? This time the guy moves the shells so fast you can
hardly tell which ones he's moving and when he's finally through with
the Switches, you have no idea where the pea is. You lose the bet.
Convinced that it's really not so tough, you try again and lose again.
This will go on until you get smart or run out of money for side
bets.

Data recovery is like the shell game. How you see it, now you
don't. If you're watching a real pro, he'll say, "There it is. We'll
move it to this track, move up the data 18 bytes, transfer it to here,
open it up one sector there, insert this sector here, and copy it back
to there," ZAP-BANGl Right before your very eyes, it is fixed. It
looks so easy that you decide there' s nothing to it. Wrong!
Remember, that guy is a pro; you're going to need a little practice
before you launch.

The following steps will help you to "keep the "pea' in sight", so
to speak,

1. Determine the cause of the problem,
2. Determine the location of the file on the disk.

Note the location of the FILE EXTENTS.
3. Set up a BUFFER TRACK so you'll have an area to

save things to.
4

.

Look at each sector - determine which sector or
sectors are the problem sectors. MAKE NOTES!

5. WRITE DOVJN your plan, for recovering the data,
in CHECK LIST form.

6. Double check your plan.
7. Format and have standing by, an extra disk so

you'll ALWAYS have something to copy to if you
find you need extra room.

8. Always work from a BACKUP of the disk or file you
are trying to recover.

9. Always check the directory and verify that you
are working on the correct disk.

10. NEVER assume anything, (ASS-U-ME; naakes an ASS out
of U and HE) always CHECK IT OUT FIRST!

54

11.

12.

14*

As you execute each step on your data recovery
CHECK LIST, mark it ott — always knew where you
are and what you are golny to cio nezt.
Double check your results before copyirjg anythirxg

back to its original location.
When recovering a data file, make a MAP of the
sector to aid in identifyirig whicii bytes are what
data type.
DrinK iiquicis, taKe aspirin and yet plenty
ot rest.

is displayed, type
DESTINATION ot the '©' sector , remove the original disik

8.2 USING "SUPER2AP" OtJ A SINGLE DRIVE SYSTEM.

"SUPER2AP" has its own disk I/O routineG and tneretore Goes not riecjci

to have a 'SYSTEM DISK' in drive '0', After "SUPfilRSAP" loads and

executes, you may rer-ove the systeriL disk and put any dii^k in drive
'0'. If you need to transfer sectors from one disk to anotljer, you

can do it with the 'SCOPY' coniinand of the 'DD' function,
First read the sector you want to transfer. Then, v/hers the Doctor

'SCOPY'. VJhen you are prompted to enter the
froiLi

drive, and substitute your DESTIL':atI0N DIGK. Finish answering

prompt and the sector will be ' SCOPY 'ed to the new di^k. It

possible to copy an entire aisk this way although it v^ould involve
OisJc swaps for cx 35 track disk!

YOU will fina that you only neeu to copy portions ot

disk f in Fiiost cases

.

Another technic^ue, is to 'BACKUP' the entire
everything on the 'BACKUP' aisk BUT the file you
This will give you plenty of rcoi^t for

8-3 BUILDING A 'BUFFER TRACK'

the
the
is

a file to a new

dlSK
wish to

nd kill
recover.

'BUFFER track;

There's nothing to it. Look on the 'GAT" sector and find an unused

track or tracks or GRANULE. Hake a note o£ v^hich tracki^ or GRANULES
are not being used. When you need a jj^lace to put soraething, use those

places ,

Wnen you are finished using the 'buffer track' you don't even need

to remove the material you put there since vjhcn the system uses that

area it vjill simply write over it. See, nothing to it.

55

9.& FILES - STRUCTURES & TYPES

Tnere are a nuiLiber of different types of files that may be stored to
the disk. Each kind has its own type of 'F0RI4AT' or 'STRUCTURE'.
Beincj able to recotJnize a file type, just by locking at the display of
the HEX damp, V7iil come with time and a little practice. The following
discussion will help you to identify each type of file and understand
its structure,

3,1 GENERAL

you cannot tell a file's forrnet by looking in the directory, with one
exception; SYSTBl FILES, System files have a special place as well
as an 'ATTRIBUTE'. The first two 'FPDE' entry locations, on every
directory entry sector, are reserved for SYSTEM FILES. Other than
that you will have to know in advance or tell, just by looking, what
the file type is.

All file types are written to the disk in 'blocks' of 256 bytes at
a time. When there is not enough file material to fill a coit^plete

'block ' or £3ector , the loader finds material from memory (I don't know
what the rules are for locating this material) and uses it to pad the
t^ector. For this reason you will not 'see' th^ end of your files
because the last sector will always contain data out to the • FF

'

byte.

9.?. ASCII BASIC PROGRAM FILES

We'll start off by looking at our old ftiend;. "SUPERZAP". I have
ciiosen this prograni because it's one raost of you will have and you can
experiii^ent on, as I go through each type of file.

An ASCII tile, as you can see, appears just as you entered it, as a

program, on the display* There are no special loader codes or bytes
to speak of. Tne first byte of an ASCII BASIC program file raust be a

line nuT.-.ber. Eacn line is terniinated with a carriage return (SD HEX).
This is how BASIC ' knows ' when to start a new line.

At rela^tivG byte 'EC', in the uelow exdrnple, is a carriage return.
Try "SAP"iny a '20' (space) into that byte and see what happens when
you try to 'RUN' the file, next try changing the line numbers. The
HEXAJUECIt'iAL ASCII codes for numbers are:

a --

1 :

2 =

3 =

4 =

= 3t;

= 31
= 32
^ 33
= 34

(IJEX)

(HEX)
(HEX)
(HEX)
(HEX)

5 = 35 (HEX)
6 = 36 (HEX)
7 = 37 (HEX)
8 = 38 (HEX)
9 = 33 (HEX)

of an I\SCII t:Lie is noted irThe 'END OF FILE', Of an Z\SCII file is noted in the directory entry
for that file. There is no 'EOF'^ marker in the actual file. You will
also iiotice that the last sector of the file is full of data down to
relative byte 'FF ' , This is because ' wr ites ' , to the disk , are ALWAYS
256 bytes at a time; NO MATTER WHAT TYPE OF FILE IS BEING WRITTEN,
With very little experimentation you will become familiar with the

ASCII BASIC program file.

56

[figure 9.1'

ASCII coded
line number

F0Q0Q0
F00010
F00020
F00030
FBBBAB
F00050
P00060
F00070
F00080
F000d0
F000A0
F000B0
F000C0
F000D0
F060E0
P000F0

ASCII code for
•space' (HEX)

First character of the proijrara text.

'EOR' marker ('0D' HEX)

^ "* l^-—' - ' ^-^ *'

4B20
4449
4552
4F54
3D49
2220
4520
5455
3D34
4 845
5455
3635
454E
5552
204C

2052
4D45
4659
5349
4F20
4E4B
5448
4258
524E
3820
4E20
524E
2041
2042
4E0;t>i

534 5

454D
4D4F
2052
4F4E
3130
4559
454E
3D41
mi
414E
4258

3A20
5259
4F55
2032
3430
243A
2031
5343

4420
3D42

2042
4258

20
3A52 4554

4D41
2044
5449
2E3
300WII
2049
3530
2841
2049
4258
582D
2049
583C
2D35
4258
5552

. „ , SIMULATE ,
ERROR HERE

(Also see Figure 10.3)

11= 'END OP RECORD' (EOR)
1= LIME NUMBER

4620
3A20
2429
4620
3C3D
3438
4520
3D37
353a
3D2D
4E3A 4F50

50. REM: .MAIN/DIS
K . MEMORY . DUMP/MO
DIFY. ROUTINE. . .V
ERSION,2.0.100.G
OTO. 10400. 150. A$
=INKEy$:.IF.A5="
".THEN, 150:, .ELS
E.BX=ASC(A$) : , RE
TURN. 200. IF. EX.

>

=48.AND.EX<=57.T
HEN.BX-BX-48: .RE
TURN.250.IF.BX>=
65.AMD.BX<=70.TH
EH.BX=BX-55: .RET
URN. 300. BX=-. 350
.LSE: RETURN: STOP

9.2 BINARY BASIC PROGRAM FILES

This one is a little tougher to read because line numbers ace stored
in compressed binary format and the BASIC pcogtam statements are in
'TOKEH' form. The BASIC Statement 'SAVE' automatically stores your
program to the diskette in compressed binary format.

Figure 9.2 is the first sector of "SUPERZAP", as stored in
compressed binary format. Compare iihis sector to figure 9.1, The
first thing you will notice is that more program material has been
stored in the sector. Compressed binary files are very efficient, in
terms of space, and should be used whenever possible.

The first byte of EVERY BASIC FILE in compressed binary format, is
' FF ' . If this is any other value you will get the old 'DIRECT
STATEMENT IN FILE' displayed on your video, trick. Next I should
explain how BASIC 'knows' where the lines are. When the program is in
memory the very first part of each line is a 'pointer' to the next

57

line. This 'pointer' is stored along with the rest of the program
material during the "SAVE" operation. At the end of every line and
preceding eacti pointer for the next line is an 'END OF RECORD' marker.
Each BASIC line is a 'record'. The 'EOR' is a hexadecimal '00'.

In the above example I have highlighted the 'EOR', the 'pointer'
and the the line numbers. The pointer is not too important. You may
make it cfnything you vjant but you MUST have something in those bytes.
The 'EOR' however, is critical. IT MUST BE '00',

Try changing the 'EOR' to 'PF' the program will 'LOAD' but
you'll get gibberish at the end of the line preceding the changed
'EOR' and tiie next line will be included in the preceding line because
there was no way for BASIC to know where the line numbers belonged.

^figure 9.2)

'FF' denotes BASIC
progrcun file.

F0ti000
F0001tJ
F00020
F00030
F00040
F00050
F0086
F00070
F00080
F00090
F000A0
F000B0
F000C0
F000D0
F000E0
F000F0

'68F4' is the 'pointer'
to the next program
line nuritber in RAM,

•3200' is the first line
number of the program - and
is in LSB - MSB order, i.e.,
to be read as '0032' (HEX) =
'50' (DECIMAL)

.

4E20
4449
4552
2031
208F
203A
wm-
4258
303A
3520
4258
CB42
2A2A
2041
4249

ifee^S^E^atyj :jA20 4D41 494E 2F44 4953
4D45 4D4F 5259 2044 554D 502F 4D4F
4659 2052 4F55 5449 4E45 2E20 2056
5349 4F4E 2032 2E30 m^M'MS^JMmD
3034 3E30 Mm':^!^-^^3m41 24D5 C93A
2041 24D5 2222 20CA 2031 353 3A20
9520 4258 D5F6 2841 2429 3A20 9200
-V-OW Kg 8F20 4258 20D4 D534 3820 D220
D6D5 3537 20CA 2042 5805 425 8 CE34
2092 mmM^^-^^F 2042 58D4 D53 6
D220 4258 D6D5 3730 20CA 2042 58D5
CE35 353A 2092 mm&^i^^^^t4 2 bBD5
583A 2092 mMif^^^^93 3A20 2A2A
2A2A 2A2A 2A20 5641 5249 4142 4C45
4C4C 4F43 4154 494F 4E20 494E 4849
5445 44|0l9la^i^^^ 4432 2528 3129

...2..: .MAIN/DIS
K. MEMORY. DUMP/MO
DIFY. ROUTINE...

V

BRSION.2.0
.10400.) ...AS..:
...A?."".. .150:.
.:..BX. .(A?) : ..

.

N BX.. .48...
BX, .57 BX.BX.4

5.,.BX..70.. .BX.

. BX : : . * *

*******.VARIABLE
.ALLOCATION. INHI
BITED D2%(1}

'END OF RECORD' (EOR)
"^-^^^^^5= POINTER

;= LIWE NUMBER

58

Next try chanying a 'poiritec' to 'FT'. HAl Loaded OK, didn't iti

BASIC will take care of this little chore all by itself, even if it's

wrong. When the program is 'SAVE'ed back to disk, the pointers will be

correctedl
Here's the bottom line - when you are "SAP"ing in a nev; line

number, insert the codes as follows:

'00 FFFF LLMM" - where 'LL^ is the LEAST SIGMIFTCAKT

BYTE and 'MM' is the HOST SIGNIFICANT BYl'E of the line nuraber you are

"SAP^ing into the sector • "^ZAP" the other three bytes as they

appear, i,e. , '00 FPPF'

.

You can experiment by changing these bytes on a copy of "SUPERSAP",
Then "RUN" the changed '^SUPERMP" and by usinc| tiie 'DM' (DISPLAY

MEMORY) function, look at what you have wrouyht right there in RAM-

BASIC will load your program at '6B6C', (HEX) so answer "SUrERZAP"'&
proTiipt, for memory location as '6B00'(HEX),

9.3 'EDITOR ASSEMBLER' SOURCE FILES

To my knowledge, the Apparat ^EDITOR ASSEMBLER' is the only version of

the Radio Shack 'EDITOR ASSEMBLER' that writes to a di^k file. If

there are other versions, they might write the source file differently

or use different conventions. In any case, our discussion, here, will

concern only the Apparat enhanced 'EDITOR ASSEMBLER', Figure 9,3 is a

typical 'EDITOR ASSEMBLER' SOURCE file.
'EDITOR ASSEMBLER' tiles ^re basically ordinary, garden variety,

ASCII files. There are some slight differences, however. The first 7

bytes constitute a 'header record'. The first byte (BYTE '0') is

always ' D3 ' . The next 6 bytes aire the first six characters of the

program name, (I don't know why or what purpose it serves.)

The line numbers are in ASCII foraiat except that 128 (DECIMAL) has

been added to the usual ASCII value. For instance an ASCII 'sero' is

'30' (HEX) which is equal to 48 (DECIMAL). 48 + 128 = 176 (DECIMAL) -

'B0' (HEX). In figure 9.3, the line nurnber of the first line of

source code is '00100'. You will notice that beginning at relative
byte 7 , the code reads

;

'B0 B0B1 B0B0'. Simply lop Off the 'B's and you have '00100'.
It would be a very simple matter to read this file into a BASIC

program with the 'INPUT' statement and convert the line numbers back

to standard ASCII code, for display^ edit the lines and write it back
to another file with the 'PRINT #' statement.

The 'EOR' is a carriage return {'0D' HEX), just as it is in a

standard ASCII BASIC program file. I suspect that the reason for

using the 'B' codes for line numbers is so the file could not be

accidentally read into BASIC,
There is an 'EOF' marker at the end of the file. If

'EOF' byte, in the 'FPDE', you will find that the 'EOF'

file, is one byte less. The 'EOF' marker is 'lA' (HEX)
preceded by a carriage return.

you note the
nsarker, in the
and will be

59

Kf igure 9 .3!

^U3' denotes that this
is an 'EDITOR ASSEMBLER'
SOURCE £il^.

First six characters of
the program file name.

Line number - ASCII
plus 128 (decimal)

code

First character of
source text.

\
169500 D345 5045 5242 4FB0 BtlBl BEiB0 2009 AFb/
ie951& 4709 3041 4230 3048 0DB0 B0B1 B0B5 2»42
109520 4547 494E 0945 5155 0924 eoBfi B0Bly^1B0
10953to 2B09 4C44 0948 4C2C 5354 4152 540D B0B0
109540 B1B2 B020 094C 4409 2834 3031 3648 292C
10955t} 484C 0DB0 B0B1 B3B0 2009 4C44 0948 4C2C
109560 6354 5249 4E47 0DB0 B0B1 B4B0 2009 4C44
109570 0928 4255 4646 4552 292C 4 84C 0DB0 B0E1
109580 B5Be 2009 4A50 0934 3032 4448 0DB0 B0B1
109590 B6B0 2053 5441 5254 0945 5155 0924 0DE0
1095A0 BBBl B7B0 2009 5055 5348 0948 4C0D B0B0
1095B0 BIBS BB20 09 4C 4409 4 84C 2C28 4255 4646
1095C0 4552 290D B0B0 B1B9 B020 09 4C 4409 41 2C
1095D0 2848 4C29 0DB0 B0B2 B0B0 2009 4350 0930
1095E0 4148 0DB0 B0B2 B1B0 2009 4A50 09 5A 2C53
1095F0 544F 434B tJDBe B0B2 B2B0 2009 494E 43 09

EOR' ('0D' HEX)

.APARBO OR
G.0AB00H B
EGIN.EQU.$
..LD.HL, START. ..

LD.(4016H)

,

HL LD.HL,
STRING LD
. (BUFFER) ,HL.. ..

JP.402DH
.. .START.EQU.5..

PUSH.HL. .

.

LD.HL, (BUFF
ER) LD.A,
CHL) CP.0
AH ••« • *•* *iJPaZf^
TOCK INC.

9.4 'OBJECT CODE' FILES

This one is easy to recognize because it never rrakes sense, The A.SCII
display portion (the 16 characters on the far right) is seemingly e.

iLiish-masli of blanks and random symbols. That ' s because it ' s a

niish-mash of unprintable characters and randoiu symbols. (WOW! What a
lucid explanation!

)

I von ' t attempt to explain the workings of machine language code- I

would suggest that you get Bill Barden's latest effort for Radio
Shack; "TRS-80 ASSEMBLY -LANGUAGE PiiOGRAHHIKG" , I know that I have
already recommended this book once but what the hell, you didn't rush
rigiit out and buy it then, so I thought I'd give it another plug -- it
is a good book.

This example is a short tlO0+ BYTES) machine
ariver. All machine language object files start
also the code for ' load the following bytes for the
of bytes', at the following address, followed by the

language printer
with ' 01

' which is
following number
actual code.

60

l£ you vjill hark back (you any good at harkincj?) to the first
paragraph of tbis chapter, you may ueiiieinber that I pointed out that
the macnine v^ill only load a maximum of 256 bytes at a time. This is
also true of OBJECT files. When the machine has loaded 256 bytes it
nas to 90 back, look for another ' &1

' and get the neKt 256 bytes.

20400&
2134010
204020
204030
204040
204050
204060
204070
204080
204090
2040A0
2040B0
204000
2040D0
2040E0
2040F0

Loadec code 'tjl' = LOAD at
the following address

{figure 9.4

Nur.iber of bytes to be loaded . (7B)

Destination address
in LSB - USB order.

of the object code
(E8FD - FDE8)

Actual Object code
be<^ins here.

Transfer addres;
LSB-KSB order.

m

0A00
0937
2 0PB
2802
2102
0CB

FlFl
^B5
0909
0DB0
093B
4143
4352
5552
2C4E

O0F3
F5F5
FllF
18DB
0000
4A28
FE8D
B020
3B46
B4B6
4745
5445
0909
4E3F
554C

110F

2101
F530
3E0A
2133
0B21
28C6
534B
4958
B7Bt1

5420
520D
3B43
tSDBCi

4C53

0621
0D28
FCCD
1321
18D7
y02B
00FC
B728
4950
2054
2009
5052
B0B4
415 2

B4B7
0909

C35A ! . .."&e..
C5 06 (

7CD5 .7..!.. .!.!3. + ..

AF0D 0. ! H. .

CCD {. ..> /..!...
l\33 !...i3.+ 3

m^i^ (..(
4146 SKIP1,P0P.AF
434 B - •; FIX. THE. STACK
466)9 POP..AF.
4152 -; GET. PRIMT, CHAR
5009 ACTER CP.
4554 CR,.;CARRAGE.RET
09 5A URH? JR.Z
444F , NULLS. -;YES,. DO

'LOADER CODE"
ADDRESS TO LOAD AT
NUMBER OF BYTES TO LOAD,
TRANSFER ADDRESS

Sometimes , the loader instruction calls for the load to be fewer
than 256 bytes, (remember . * .256 is representee by '00 ' (HEX)) in
which case the nuraber folXowing the address will be 'FF' oi: srrialler.
In the above example, the code is not long enough to call for 256
bytes.

If you look closely, you will see that at relative bytes 'IF' and
'80' there are the HEXADECIMAL numbers 'E8FD'. This translates to
'FDE8'

61

and you might i:eco9ni2;e these n:Ur:tt>ei:s as that first load address that
DGyins at relative byte '&2', In this example, the 'TRANSFER ADDRESS'

the same us the first load address. In cinothGr program it could beIS
in cinotber place, depending
to Degin ei^ecution.

There is no ' EOF ' marker

.

last two bytes of the file is ALWAYS the 'TRANSFER ADDRESS'
are more 'loaoer codoG' and are covered in the ne^t section.

on vrhere the author of the program decided

The 'EOF' is noted in the 'FPDE' and the
There

9.5 SYSTEM Fll.-FS

a 'SYSTEM FILE'

System files are just like the 'OBJECT' aescribed in 9,4 with a couple
of additions. A systerfi file can be identified from the 'FPDE' by the
bit record of the first byte of the 'FPDE'* (BYTE '0', BIT '1' = 1).
Other thcLCi that there should be no difference between
and any other OBJECr file.

Note, that I said, "Shouldn't be." Well, the Radio
files (oricjinally v/citten by R. COOK) and the VTOS 3.

{written by R. COOK) e.te different. Figure 9.5 is _, __

If you poKe around, on a NEWDOS disk, you v;ill find that the system
niles, adaed by Apparat, are just ordinary object riles.

Shack system
. system files
of those files.

£005^0 tJ506 535& 5330 2020 1FA9 0D2A 2 02a
&0t)510 204E 2e4F 2054 2049 2043 2045 202A
000520 202A bD2^ 2050 524F 5052 4945 5441
0(^0530 2050 524F 4752 414D 202A 0D2A 2043
&!!i054!j 5952 4547 4854 2028 6329 2031 3937
000556 202A 0D2A 2 020 4259 2052 414E 444F
0061560 4820 434P 4P4B 2020 202A 0D2A 2020
000571;; 5252 4F4C 4C54 4F4E 2C20 5445 5841
000580 202A 0D2A 2041 4C4C 2052 4947 4854
000590 5245 5345 5256 4544 692A 6A2A 672A
0005AO 20 4 E 204P 2 054 2049 2043 2045 002A
0005Be 202A 0D01 089C 40C3 A24B C3B4 4401
0005C0 40C3 0044 3EA3 EFC3 BB44 0105 3E40
0005D0 0001 144B 4080 0837 4537 4537 4537
0005E0 4537 453 7 4537 4501 1700 4311 1111
0005F0 1111 1100 0100 0000 0002 0000 00C3

^i^ figure 5.5;

202A ..SYS0 *.*.*
202A .N.O.T.I.C*E.*.*
5259 . * . * . PROPRI ETARY
4F50 .PROGRAM.*.*. COP
3920 YRIGHT.(.) .]978.
4C50 .*.*. .BY.RANDOLP
4341 B.COOK. ..*.*.. CA
5320 RROLLTON, .TEXAS.
53 28 .*.*. ALL. RIGHTS.
752A RESERVED.*.*.*.*
002A .tJ.O.T.I.C.E,*.*
0B2D .*. . . ,@. .K. .D..-
2101 @..D> D. .>@1.
4537 . ..Kia..7E7E7E7E7
1111 E7E7E7E.. .C
A04B K

I'he first thinci you v;ill
they all start with '0506'.— there could be more.

notice about these hund£>ome devils is that
Here are the loader codes that 1 know of

00 £c &3 to

So, to translate;
0506 =
'1FA9'=

01 = Load the following object
IF = Do not load the following 'n

where 'n* = a one byte value
number of bytes to skip.

0202 = The following 2 bytes contains
address,
ure 9,4

code *

'^' bytes
of the

the transfer
See relative bytes '7D' & '7E* in fig-

skip the tollowing
skip the following
{169 DECIMAL)

6 bytes,
'A9' bytes

62

will
code

the instruction
bytes we coxae

load the ne^^-t

find that you are
to actually load

to load the
to anotber
11 bytes at

yoursG ir j

to load e bytes
JUST
but

A DAVih
there

If you will count the 169 (DECIMAL) bytes^ you
at relative byte ' B2 ' . The very next byte is a
code. (HOOHAYl) It ia: '01 080C 40' and i£
next 8 bytes at M00C', Following those 6

load instruction: '01 0E2D 40
' ^ i,e.

,

'402D'.
Right here you should be saying to

MINUTEl " RIGHT! Tne load instruction said
were only 6 bytes before we encountered the next load instruction. In
the instruction foliowiny that, the load instructior, said to load 11
bytes {'0B' HEX) but tnere were only 9 bytes to the next loader code!

You're right on the ball. The count INCLUDES the two address
bytes 1

If you 'RILL^ a system t"ile, and then decide to re-copy the system
file back onto the diskette the 'FPDE' must be in the Game position in
the directory as on the or iginal DOS! The disk space, assigned to the
file, must be accounted for IN THE FIRST EXTENT ELEMENTI Ho other
extent elements may be used! This does not apply to '£^YS6/SYS', it may
be anywhere. Also, the actual location of the systeKi program may be
anywhere on the disk except those as noted in 9*6, below.

9.6 E00T/SYb' - 'DIR/SYS' - SYS0/SYS

'TABLE' that is loaded when LEVEL
diitk drive systeri'i attached to the

'BOOT/SYS' and 'DIR/SYS' are 'SYSTEM FILES' but do not contain code
that may be executed* 'BOOT/SYS' is a

II BASIC determines that there is a
interface . 'DIR/SYS' is the directory and is never

They occupy space on the disk , as system files (as they
do not contain code that irsay be executed. ' SY£0/SYS'
is executable code and must be located beginning at TRACK

expansion
executed,
are) , but
fiowever

,

SECTOR

9.7 'ELECTRIC PENCIL' FILES.

This one is so easy,
with a carriage return at

It is a straight, plain vanilla, ASCII file,
the end of every record, and an 'EOF' niarker

at the end of the file. The "EOF' marker is ^00' (HEX) and is located
at relative byte '45', in this example. That^s all there is to it.
Figure 9 .6 ii short 'PENCIL' tile.

F00010
FI30020
F00030
F00040
F00050
F00060
F00070
F00080
F00090
F000A0
F000B0
P000C0
F000D0
F000E0
F000F0

2A2A
2020
454C
464 9

2A2A
E5E5
E5B5
E5E5
E5E5
E5E5
E5E5
E5E5
E5E5
E5B5
E5E5
E5E5

2A2A
2020
4543
4C45
2A2A
E5E5
E5E5
E5E5
E5E5
E5E5
E5E5
E5E5
E5E5
E5E5
E5E5
E5E5

2A2A
2054
5452
0D2A
0D00
E5E5
B5E5
EBE5
E5E5
E5E5
E5E5
E5E5
E5E5
E5E5
E5E5
E5E5

2A2A
4849
4943
2A2A
E5E5
E5E5
B5E5
E5E5
E5E5
E5E5
E5E5
E5E5
E5E5
E5E5
E5E5
E5E5

2A2A
5320
2050
2A2A
E5E5
E5E5
B5E5
E5E5
E5E5
E5E5
E5E5
E5E5
E5E5
E5E5
E5E5
E5E5

2A2A
4953
454E
2A2A
E5E5
E5E5
E5E5
E5E5
E5E5
E5E5
E5E5
E5E5
E5E5
E5E5
E5E5
E5E5

2A2A
2041
4349
2A2A
E5E5
E5E5
B5E5
E5E5
E5E5
E5E5
E5E5
E5E5
E5E5
E5E5
E5E5
E5E5

2A0D
4E0D
4C0D
2A2A
E5E5
E5E5
E5E5
E5E5
E5E5
E5E5
E5E5
E5E5
E5E5
E5E5
E5E5
E5E5

THIS. IS. AN.

ELECTRIC. PENCIL-
FILE ***********

63

9-S MACKO-&0 FILES

Just v/iien I thougiit I v;as fini&hed with the file formats
tnat there irvas one r.iore. Microsoft's HACRO-80 tejit editor
i^ a line orienteo text editor emd ie not too popular v/ith
cicowd but it ^in't ail thcit bad either. It has some
features (another v/ay of saying, "it's CK, but I prefer to use
son-.ethiny else) but is difficult to use and the documentation is not
exactly self teactiincj,

Fic^ure 9.7 is a typical sector of a file created by the MACRO-80
text editor.

I realized
files. This
the TRS-80
interesting

P0t)0B0
F00B10
F00020
F0e03ly
F00040
F00050
F00060
F0 007
F00080
F00090
F000A0
P000B0
F000C0
F000D0
F000t;0
F000F0

B0B0
5520
BQ89
2020
2020
2C30
2C2b
4646
2020
494E
0000
0000
0600
0000
0000
0000

B1B0
2020
2020
4245
2020
4139
2020
292C
2020
OU00
0000
0000
0000
0000
U0Q0
0000

B08 9
2020
2020
4749
2020
4448
204C
4 84C
2045
0000
0000
0000
6000
0000
0000
0000

4245
3436
2020
4E0D
4C44
0DB0
4420
0DB0
4E44
0000
000^
0000
0000
0000
0000
0000

474 9

3030
2020
E0Be
2020
B0B4
2020
B0B5
2020
0000
0000
0000
0000
0000
0000
0000

4E20
300D
4F52
B3B0
2020
B0B0
202
B0B0
2020
0000
0000
0000
0000
0000
0000
0000

2020
B0B0
4720
B089
2020
8928
2028
8920
2042
0000
0000
0000
0000
0000
0000
0000

4551
B2B0
2020
2020
484C
2020
4646
2020
4547
0000
0000
0000
0000
0000
0000
0000

ORG...

• *«*«* J-iLJ *••••* tiLf

• # > • * LiU ••*>vff\FF

There are only a few minor differences between this file structure and
/\SCII files, Apparat racdified EDITOR/ASSEMBLER files and 'ELECTRIC
PEtJCIL" files. Like ASCII files and "ELECTKIC PENCIL' files, each
record is teridinated with a carriage return ('0D' HEX). Like an

file, tlic-

the Apparat
i-lATEKIAL'

'ELECTRIC PEi^CIL'
text editor , unlike
NOT WRITE 'FILLER
FILLER,

This makes the
After a hACRO-S0 file i
soniev/hat in order to print
I'iiACRO-BG file into 'ELECTRIC
MACRO-80 line nunibers appear on

Now here is some real wizard
the cursor past the text.

end of the file contains a zero. This
version of ' EDITOR ASSEMBLER' , DOES
TO THE SECTOR - IT WRITES ZEROS FOR

Ii/iCR0-8feJ files compatible vjith 'ELECTRIC PENCIL'.
loaded into 'PENCIL', it must be modified

on your line printer* After loading a
PENCIL' , you will notice that the
the screen as TRS-80 graphics.
stuff - with the
As the cursor

DOWN ARROW
' , move

passes ofeach group
9L-aphics, the graphics are changed to numbers! Mow about thatJ

Following each number there will be a small 'RIGHT ARROW. (ASCII
code number: '89' HEX) This arrow is NOT one of the normal 'ELECTRIC
PENCIL' codes and i.mst be removed to
printer while in 'ELECTRIC PENCIL'.

print the file on the line

64

Once the 'night arrow' is removed, however, you cannot reload the
file into the t-iACRO-80 text editor without f-iACP.0-80 putting on another
set of line nufiibers. You are better off to reiviove all line nur.ibers in
the pencil file and let MACRO-80 re-append a new set.

You will notice tnat there is no 'HE/^DER RECORD' on MACRO-80 files,
as there are on Appesrat generated 'EDITOR ASGEI'IBLER' files, MACI;O-S0
will load any kind of an ASCII file, and will attach its own line
numbers during the load process. The file may be written back to disk
from HACRO-80, using the 'SWITCH' option, which will delete any line
nuirtbers it has attachea* This ir^eans that you could make ' ELECTRIC
PENCIL' files from MACRO-86 directly, if you htid the need.

65

1(3.0 DATA RECOVERY

If you an- like liiost people, you are reading this first instead of
last. If you are^ I can only say, "Good Luck."

You really need to get a yood understanding of the disk and the
airectory befote you tcy these things. Now, no matter hov/ painful, go
Dack and re^d the first eight chapters.

Hou thcit you've read the first eight chapters (Jeez, that was
Icisti) we will proceed

lU.l RECOVERING A 'HAi;H' CODE FOR TRE 'HIT' SECTOR

Since we do not know the algorithra tor cue MiASH CODE' we will have to
rQvert to deviouG rseans to obtain it. There are two ways:

(1) 'SAVE' a one liEie prograr^t, while In BASIC
usincj the 'FiLlflHAKE' of the program whose
'Hhh^U* you wit^h to obtain ONTO A SEPARATE
DISK. Example:

It) REM THIS IS A TEST
SAVE"<FILENAME/EKT>"

The rcasoii for a separate disk is so that the DOS won't accidentally
write over the file name 'FPDE' you are trying to recover! Of course,
if you hcive copied the sector to a 'BUFFER TRACK' there is no
proDiem,

(2) 'OPEM' a file in coramcind mode, from BASIC,
utiiny the 'FILENAHE' of the prograr.! whose

'HASH' you wish of obtain. Example:
OPi::tJ"0'M,"<FILEKAriE/EXT>" <ENTER>

Once you have 'createa the file', use "SUPERZAP" to go look at the
'hAbH' (don't forget to write it do\vn) , then 'KILL' the file. Wow you
have the 'HASE3 CODE" tor the file you wish to recover.

ltj,2 RECOVERIING A ^KILLED FILE'

tJnen you 'KILE' a file the following three th ings happen;
(1) The 'HASH' code is removed from the 'KIT' sector.
(2) The 'GAT TABLE' is revised to reflect the now

availcLble granules .

(3) Byte t) in the 'FPDE' (and 'FXDE', if it exists)
is changed to '00

'

Everything else remains as it was. The file is still out on the disk,
and the entries in the 'FPDE/FXDE' remain unchanged except for byte

********* WARNING *** WARNING *** VJARKING ********

** ON TRSDOS 2.2 ALL TRACES OF THE DIREC- **
** TORY ENTRIES IN THE 'FPDE/FXDE' ARE **

ZEROED OUT WHEN A FILE IS 'KILL' ED i! *^
**

********* VtfARKING *** WARNING *** WAR^3IMG ********-

66

As you can observe in my casual note above, I^adio St^ack's Softv;are
Development (?) Group, has, once again, in its inliinite wisdom (1
wonder ili they talk to the Ayatollah?) , has done a really neat thing
for the users, I suppose this is to protect them froiQ having one of
their "super^neat" programs, like the 7 hour / 400 name / HMLLIST /
sort, slipped out, recovered, and unscrupulously used by a demented
inmate of the Peoria Institute for the Rehabilitation of the
Non-Hentally Deranged and former residents of Burbank,

You can still recover 'KILL'ed files on TPSDOS 2,2 but you v^ill have
to Gearch atound until you rind all of the sectors, then reconstruct
an 'PPDE' in the directory.

10.2-1 Here are the steps for
recovering a 'KILL'ed file:

(1) Obtain the "HAi^H" code of the 'FILENAME' of the
program. See 10.1 above.

(2) "ZAP" the hash code into the proper place in the
'HIT' sector,

(3) "aAP" byte ii of the 'FPDE/FXDE' with a '10'

10-2,2 If it is a 'BASIC PROGRAM"
(BINARY or ASCII forraat) file
then:

(1) 'LOAD' the file into BASIC
(2) 'SAVE' the file using the 'FILEHAME' it was

recovered under. Thit; will correct the 'GAT'
allocation,

(3) Run a 'DIRCHECK' to determine if any 'GAT' or
'I3IT' errors remain.

** **
** FILES WILL LOAD AND EXECUTE PROPERLY * *

** WITH 'GAT' ERRORS " BEWARE OF 'SAVE' ^*
** OPERATIONS t^;HEK 'GAT' ERRORS EXIST! **

********************** *****:******************* A*AA

10.2.3 If it is an 'ASCII', 'BINARY'
(RANDOM) data or an ASSEMBLY
LANGUAGE program or data file
then:

(1) Run 'DIRCHECK' and obtain a listing of the 'GAT'
and/or 'HIT' errors that exist.

(2) Using the 'GAT MAP' (figure 6.6) correct 'GAT'
errors by "aAP"in9 the 'GAT' table,

(3) Repeat (i) until all 'GAT '/'HIT' errors are
corrected.

67

It-. 3 RECOVERING A FILE/DISK THAT V/ON ' T 'BOOT' OR READ
\'UE DIRECTORY,

Tnis one can be a bitcii, to say the least. There are no short cuts
tjave one, and that one dictates that you have a 'BACKUP' copy of the
disk with a directory that is partially correct. This will give some
clues as to the track locations ot" the various file 'EXTENTS'. Other
than that, it's tiiiie tor that v/onderful programmers' pastime, "SEARCH
THE DISK^'l

Be sure to take plenty ot notes if you have to search the disk
sector by sector; ir you don't, you won't remember which sectors you
£3earched and tried and which ones you didn't.

I see that Bill Barden has a question. Yes, Bill? How does the
ai rectory coLie to be 'EATEN' in the first place? Hmmmm, good
quef^tion. There are doaena oi reasons and the principal ones are;

(1) You tried to 'KILL' an open file. (DIRECTORY
CLOBBERED)

(2) You turned on the disk drive with the disk
in the drive. (USUALLY TRACK 0, SECTOR BUT
COULD BE THE DIRECTORY)

(3) You turned your CPU/INTERFACE on, with the disk
in the drive. (VJHEREVER THE DISK HEAD UAS
LOCATED AT THE TIME)

(4) You attemptea to 'SAVE' or write to the last
sector of a neorly full diskette (TRSDOS 2.1 &
2,2) - (It should work but doesn't) (DIRECTORY
GONE AND USUALLY COl^TAINS 'GARBAGE')

(5) DOS got confusoQ during a 'CLOSE' operation and
de-ailocated a few GRANQLES. After several 'SAVES'
and ' CLOSE 'es it became further confused; didn't
quite know where to put soiiiething for a 'SAVE',
'PUT' or 'CLOSE' so it deposited some of its
burden all over the directory making it unread-
able, (DIRECTORY USUALLY COLMTAItJS PROGI^M
MATERIAL)

(6) Your CPU or Expansion Interface has bad memory
and/or the file control Dlock has bad data prior
to or during a 'CLOSE'. (DIRECTORY CONTAINS
GARBAGK)
Paulty logic card in the disk dive unit. (DIR-
ECTORY COHTAI^jS G/VREAGE)
Disk head out of alignnient on a drive Linit.
(DIRECTORY HAS PARITY ERRORS, SECTOR NOT FOUND
ERRORS)
Someone in Fort Worth dosen't like you. (NOTHING
IS RIGHT)
Everyone likes you, your system works perfectly
but you don't v^ant to be left out of all
this fun.

(7)

(8)

(9)

(10)

68

k

IU.3,1 The following steps are tor
recovering a totally ' eaten'
or 'clobbered' di rectory

-

You can usually spot this one right away because th& directory
contains 'garbage' or prograrii inaterial. you v/ill find that you will
nave no trouble readiny the directory with "SUPER2AP"r but the dis'

v/on't function at all.

(1) Locate the file EXTENTS; where they start; V7here

they end; and the exact nun\ber of s&ctors in the
file,

(2> 'FORi^JAT' a 'working di&k

'

(3) Create a file FPDli; on the working disk, with the
'SAVE* or 'OPEH' technicue- (See Itl . t) above)

(4) Transfer the sectors that you previously loc-
ateo tiom the clobberec disk to the working
disk IKTO OME HUGE FILE EXTENT IF POSSIBLE.
This will fnake fixirjy the directory easier
because you need make only one EXTENT ii> the
'FPDE'

.

(5) "ZAP" the EXTENT of the 'FPDE' to point to the
reconstructed f lie

.

(6) "ZAP" the EOF SECTOR BYTES (BYTES 14 ^ IS) V/itb

the sector count +1 -

(7) "ZAP" the EOF BYTE (BYTE 3) with the relative
byte nuiaber of the last byte in the EOF sector.
If you cannot identify the EOF byte, then raake

a 'SlyAG' { Scientific Wild-Ass Guess). If it's
wrony you can always change it.

(8) If its a 'BASIC PROGimi-i' file, ' LOM) ' it and see
ijow much of it loads. You should be able to tell
how successful you v/ere just by looking at a

'LIST' of the program. If sorae of it is gar-
bage note the last 'good' line of the program
and RUN "SUPERZAP" again and take another crack
at eliminating tne bad portions by ntoving up
or relocatiny other good sectors to substitute
into the bad sectors.

(9) If some portions of a sector are ^bad' then
use 'COPY DISK DATA' to move good data over bad.

(10) If the recovered material is other than a 'BASIC
PROGRAM' tile, then you v;ill have to verify data
by reading it in via 'LIHEINPUT' or 'FIELD'
statements.

(11) You may attempt to verify ASSEMBLER LANGUAGE
files by using APPARAT'^ DISASSEtiBLER. If they
make sense to you in the disassembled state
(VJhich requires an intiniate knowledge of
assembler code) then the file is probably OK.
If not, you will have to execute the file and
attempt to locate problems via 'DEBUG'.
(I wonder if Muhaminad Ali Knows about DEBUG?)

69

lij.3.2 Recovering a tile/disk v/ith un
unreadable directouy

.

Tn±£ one ih faitiy easy Dut I should describe one of the fine points
that exists here. You may find that the disk won't 'BOOT' (if it's a
systeii; disk) or that you can't get a 'DIR' to work but you can still
read ail the Gectors witfj "SUPtlRZAP", then you have an 'UNREADABLE'
Directory. it is 'UNEEADABLD' by the system; NOT by "SUPERZAP"! Here
are jui^t a few oi reasons why a directory is 'unreadable'.

(1) It isn't the directory at all - the 'BOOT'
sector is 'clobbered'

.

(2) One or more of the directory 3QCtOL5J has a
PARITY error.

(3) REPD protect status hss sor,-ehow been removed
from one or more of the directory sectors.

Before «^oing into outer space to fix the problem first try using
"SUPERZAP"'S 'BACKUP' function. Many tinies this will 'fix' the disk
without further adieu, If that shot in the dark fails, try the
LOllowiny;

To repair the problem you must correctly identify it. Using
"SUPERZAP'"S 'DD' function:

(1) Check tiie directory sectors for parity errors.
They will automatically be detected when you
try to read a sector with bad parity. If, after
a bad parity read, the sector looks OK, ' SCOPY

'

it back to THE SAME SECTOR YOU RE/UD IT FROM. This
will automatically repair tiie bad parity!

(2} Check the sectors for 'RE/VD' protect status.
There will be a '6' on the last line of the
"SUPERSAP" display on the left side in column 7.
IF 'i'UlS '6' IS MOT THERE 'READ' PROTECT STATUS
HiVS BEEj^ Ri:;HOVED AND MUST BE REPLACED 1

(a) Copy the sector to a ^BUFFER SECTOR'.
(b) Copy ANY GOOD DIRECTORY SECTOR TO THE

SECTOR VJITH BAD STATUS, This will re-
establish ^READ " protect status.

(c) Copy the sector in the 'BUFFER SECTOR'
back to its oricjinal sector using the
'COPY DISK DATA' runction. *** NOTE:
Only copy 255 bytes ('FE' (HEX)) back
to the original sector! This will pre-
serve the 'RE/vD" protect status,

(e) Manually "2AP" the 256th byte back into
place,

{3) If after checking the directory, ail is in
order, and you determine tnat it MUST be the
'BOOT' sector (Track G, Sector 0); simply copy
a good track 0, sector from another disk.

70

10-4 RECOVERING AN ELECTRICALLY DAHi^.GED DISK

The disK is OK, you can detect ao physical problems, but t^ofiie trtck^
or sectors \.ill not load. It raiyht have becoine tliat way by getting
'zapped' with static, or you perforricd c. 'UHITE' operation on a ditik

that V7^s not centered in the drive. AXso laost oi the reasons 9iv£n for

a 'clobDered' directory, in 10.3, could apply nere. In addition, there
are soroe other less obvious reiisoiis which I shall call to your

attention.

(1) Beware of iiiagnetic paperclip holders! These
thinys are coiniaon items around ofl: ices ana
they will riiake a weal out of your disks,

(2) i4agnei:i2Gd paper clips that h^vc been in n^acj-

netic paperclip holders. Dor< ' t ever let any^
one use paperclips on disks 1 Besides, it's o^-d

tor diskettes even it the paper clips are not
macjneti^ed

.

(3) A disk placed under a telephone is a likely
candidate for the format farm. It ccLn De
wiped out when the phone rings.

(4) A disk placed next to an electric pencil sharp-
ener or any other type of device with an
electic motor or transf orr.ier can be erased.

An uncentered ditik is a common proDlenu Shugart, Pertec, and

Hangco di^k drives nave this problerri. It it- due to the siiort

centeriny cone, and abrupt lead-taper ot the centering cone. It can

be partially alleviated by NOT CLOSII>-G THE DOOR TO THE DISK DRIVE
UNTIL THE hOTOR GOES ON! However, for you TRSDOS 2,1 and 2-2 users
this will result in the tapuOUS old "SILENT DEATH' routine if you don't

yet the door closed before the DOS accesses the designated drive,
APPARAT NEW DOS and VTOS 3-0 will wait until you get the door closeC-
VTOS 3.0 ii:3 a little More fussy but <SHIFT> ""BREAK' will cause it to

try again*

Now for the recovery. Usually you need to recover the di^k because
you need to oack it up and a sector is bad in the i-iiddle of a

particular program or file. (V/nat else?)
(1) Use "SUPERZAP" to verify the sectors,
(2) Note the bad sectors.
(3) Format a disk and make a "SUPERZAP" BACKUP.
(4) 'SKIP' any b^a sectors that won't respond

to a 'REENTRY'

.

(5) Using 'DD' look at the sector BEFORE and AFTER
the bad sectors — tnaybe they don't contain any-
thing important anyway, in which case you can
forget them.

(6) If you 're not sure that the bad sectors are being
used by some file, check the 'GAT' sector and
determine if the track/sector is allocated.
If you want to find out which file it's allocated
to, without plowing through the directory, simp-
ly de-allocate the track with "SUPER2AP" and run
'DIRCHECK' It will tell you which file it

was allocated to.

(7) Attempt to LOAD the program or file that was in
the damaged portion of the disk

.

(8) Follow steps outlined in 10.3.1 (8), (9), and
(10)

71

10.5 RECOVERIMG A PHYSICALLY DAMAGED DISK

Ttais uniortunatc circuraBtance c«n occur in many unpredictable ways.
You could iiave accidentally GCtatchea the dick while using it for a
snoe iiour.' ol" t^ i i^ie cleaner . It could have been carelessly handled by
d store clerk v/ho thouyht it was a HtiiSter Ciiarcje Card and ran it
throucjii iiib little machine, A friend who had just droppea by to visit
arter c^ taco eatiny contest pickec; it up v/ith thunt^ and forefinger
expertly placed on the netko cfcces is slot.

In any case , tnis aggravation is handled in exactly the same way as
described in itJ .4 .

CAUTION - i'iAKE SURE THE FOREIGN MATERIAL TPJAT IS OU THE DISK IS
SUFFXCBWTLY ATTACHED SO AS WOT TO CONTAMINATE THE DISK 'READ/WRITE'
HEiiD, It you deterioine that the diyk surface has been contarainated
with a foreign substance such as finger prints, coffee, hand lotion
etc . , Here is one seriii-drastic measure you nay take that I have used
successfully on one or tv^o occasions:

(1) CAREFULLY slit the back of the disk jacket
and ren.cve the disk. DO NOT TOUCH THE DISK
SURFACE! tIAtJDLE BY EDGES AND CENTER ONLY 1

(2) CAREFULLY wash the dick in warm soapy water
usmy your W£:T AND SOAPY fingers to GENTLY
STROKE (DO NOT RUB) the disk.

(3) THROUGHLY rinse the disk in warm water.
(4) If soat- and water did not do the job, add

alcohol to the water and try again.
(5) Repeat i^ 3.
(6) Place tne disk on a sheet of NEWSPAPER,

WARNING - PAPER TOWELS LEAVE LINT!
Lay another si;eet on top. Press cjently

,

Repeat until the disk is dry.
(7) Under no circumstanceG rub the ui^ikl

(S) V3hen the disk is dry, CAREFULLY reinsert it
into A NEW JACKET - DO NOT TOUCH THE MEDIA!
(Here is a good use for those diskettes that
weren't any good and you couldn't bring yourself
to throw away,)

(9) BACKUP THE DISK IMMEDIATELY!

ltJ.6 RECOVERIKG A "BAD PARITY' ERROR

Bad parity can be the result of one bit being incorrect or as bad as
every bit EXCEPT one. Sometiraes the sector is good and the parity is
incorrect 1

If you notice that one drive has more parity errors than another
then look to the drive as the cause . You may also find that the
sectors are OK and that you only get errors during 'READ' operations.
Once again, look to the drive unit tor the fault.

(1) using the "SUPER2AP" 'VERIFY DISK SECTORS',
determine which sectors are bad. If there
are only a few of them then

(2) Use the 'DD' function to read the aectOt

.

If everything looks OK and you cannot de-
tect an error: , then typet 'MODO0 ' then press
<ENTER>, This will simply write the sector
back to tne disk WITH CORRECT PARITY. DO
NOT ACTUALLY 'MODIFY' AtqYTHINGi

72

It the ptoblem cannot be corrected by the above method then;

(1) Attempt a "SUPERZAP" 'BACKUP*. Use the 'R'

(RE-ENTRY) cornmand when the routine encount-
ers a sector with 'BAD PARITY'. If you are
unable to copy the sector then inalce a note
ot the unreadable sector [s) and 'SKIP' those
unreadable sectors,

(2> Determine it the 'BAD PARITY' sectors are act-
ually used by a file, Thete is no use in re-

coverinci a sector not used by anything -

once you have made a "SUPERZAP" 'BACKUP',
onto a forraattea diskette, all the sectors are
good and the disk will 'BACKUP' via normal
methods

,

(3) If the 'BAD PAFITY' sector (s) are used by a tile
then there are two procedures we can use to
recover the file*

METHOD 1

(a) Attempt to read the sector with the 'DD'

function. If the read is fairly successful

,

'SCOPY' the displayed sector to a 'BUFFER TR/^CK

'

or 'BUFFER SECTOR'.
(b) Continue to attempt reads v/ith 'DO' and copy

partially read sectors to the 'BUFFER' with
'SCOPY' until you are satisfied that you can-
not get any more good bytes froiri the sector,

{c} Usiny the 'PD' function, make a hard copy
of the 'BUFFER' sectors. With this as a

guide . .

.

(d) Painfully construct the sector byte-by-byte,
using the 'MODnn' function, to yet another
' empty ' ' BUFFER' sector , Or ^ if the

'SCOPY' ieo sectors have large chunks of usable
material, tiien use one of these sectors for
reconstruction. You may also use 'COPY DISK
DATA' for iTioving bytes from one sector to

another.
(e) When the sector is reconstructed, copy it back

to its or iginal track/sector address.

METHOD 2

(a) Find an earlier version of the clobberea sec-
tor and copy those bytes to the bad sector,

(b) If the earlier version is inco^^splete and you
simply need to recover MOST Of the file, then
move the sectors below the offending sector up
and change tne 'FPDE' pointer in the directory
to reflect the current Sector count and the EOF
BYTE„

73

ly.l RECOVERING A 'DIRECl"^ STATEMEm"' liSI FILE' ERROR

I must conieGS that the first hundred times I encountered this error
it nearly drove me crazy, (I^early?) Before I got the TRS-S0f I had
never laid hands on a computer in my life and the cryptic messages
iroiLi this mayic raachine, without explanations, were corapletely
batf lincj.

V^hat made it doubly v^orse is the fact that neither the LEVEL II
uianucil or the disk iriaiiuai gave the slightest clue as to what a 'DIRECT
STATEIiEirr ILJ EIL£' vjas or hov it got there,

Thi£i little cutie ruay occur in one ol two ways. It is usually the
result of a very liiinor 'bug' in LEVEL 2 BASIC. It happens when you
S^iVE' a prograui thcct ncis a statement line that is longer than 24

oytes.
i^o\-j can tlitJt happen? Easy. It happens V7hen you ' EDIT' a long line

and irjse rt h,ore characters than the disk operating system can handle

.

Norma liy the i^ystem checks line lengths cind will not allow you to make
a line too long - In the 'EDIT' mode however ^ the checking does not
function quite correctly.

Tne other condition is very similcir to the 'EDIT' condition^ in
tnat you 'SAVED' a file WITH THE A^CII OPTION, and it had statement
lines that v;ere longer than 24t) bytes WHEN THE BASIC TOKENS WERE
EXPAI^iDED TO TtiEII^ FULL EKGLISH EQUIVALENT!

la the TRS-80 LEVEL II manual, Appendix A, page 16 it clearly
states:

Protjrain Line Length: Up to 255 characters.

Actually BASIC vjill only 'LOAD' 240 characters of program material at
a time! An assembly language 'OBJECT CODE MODULE' will load 256
ciiaracters of program material. A random file record or an ASCII data
record, on the other band , will load up to 255 characters with TRSDOS
2.1 and MEWDOS 2,1 and 256 characters with TRSDOS 2.2. SUPERDOS vjill
load up to 4 r 09 5 characters with certain types of files and 256
ci:^aracterb with rcindom tiles

,

For a BASIC prograBi, each statement line must have a line nuinber.
Tne condition that exists with a 'DIRECT STATEl'lEWT IM FILE' is that
the computer loaded a line with a line nuirtber and 24 C characters and
there v;ere soitie characterii left over. These are the 'DIRECT
STATEMENTS' that are in the file. Since they don't have line nuptbers,
BASIC dosen't know what to do with themJ

What does that iicive to do with the ASCII mode? Well, Level 2 BASIC
actually uses 'TOKENS' to store program statements in memory. For
instance, when you type 'PRINT' the n^iachine does not store the actual
characters tlicst you typed or that it is displaying on the video. It
is actually storing a '?' in liiemory. THis '?' takes only one byte to
store, the word 'print' would take 5 bytes to store. (See Appendix A
tor a complete listing of the LEVEL II 'BASIC TOKENS')

When you are writing a program, the system keeps track of how many
cnaracteri;; each 'TOKEN' would take if it were completely spelled out,
TJnis would NORMALLY prevent you from getting a direct statement in
file when you 'SAVE' a program file with the ASCII option. In the
'EDIT' mode, LEVEL 2 will allow you to insert a few extra characters

just enough to put you over the legal limit. There you have it,
friends and neighbors the Secret ot the Shifting Whispering
Sands

.

Now, what to do about it. Actually this is a fairly easy condition to
fi:^. All we need to do is insert a line number in front o£ the
offending "DIRECT STATEMENT' that's in the file. We'll do the easy
one first.

74

10-7.1 ASCII file witi-i direct stateruent error.

(1) Determirie the icis t line siuniber that 'LOAD ' ed,

{2) Determine the last characters that 'LOAD'ed.
(Use 'LIST' to cieterrrane (1) ^nd (2).)

(3) Locate the £ile on the disk, using the previous-
ly described methods in 10.0.

(4) tjcan the t^ectors of the file until the sector
with the error is found. This will be easy with
an ASCII file because everything, including line
numbei;s, are in readable f oriiu

(5) Wow, "ZAP" a line number anywhere in the oirfend-
iny line that is LARGER than the preceding line
number and SMALLER than the next line nuTiiber.

You will lose a few characters of your ptouram,
(A sniall price to pay.)

10,7.2 A 'BINARY' file with 'DIRECT STATEMENT' error

This one isn't really so tough - it's just that the
little harder to read. All of the line numbers

file display is a
are in hexadecimal

form, you
however

,

sliould be
from the

aDle to
variable

very rare
I do

been able

notation and the statements are in token
recognize portions of the program
statements, string staterients and reiaarks

.

A 'BINARY' file, with a direct statement error is a

Dccurance. It has happened to rae only a few times in a year,
not know how I was able to generate the error and I have not
to duplicate the error on purpose but have had it happen accidentally
several times. Because I was not able to duplicate the error on
purpose , the following examples are contrived, but the recovery is a
valid one ... I know THAT for a fact as a result of having had to
recover a couple of binary files with a direct statement in file
error.

Figure 10.1 is an example of a BASIC program file storea in 'BINARY'
format. you will recognize the code as the first part of your
"SUPERZAP 2.0" program so you will be able to experiment along with
me, as we try out these various techniques. Figure 10.3 is a listing
of the first part of " SUPERZAP", with and without the simulated
'errors', so you may compare the actual 'BASIC CODE' with what is
stored on the diskette.

01A000 FFF4 6832 0093 3A20 4D41 494E 2F44 4953 . ..2..:.t'lAIlVDIS |
01A010 4B20 4D45 4D4F 5259 2044 554D 5 02P 4D4F K. MEMORY. DUMP/MO
01A020 4449 4659 2052 4F55 5449 4E45 2E20 2056 DIFY. ROUTINE, . .V

0iA030 4552 5349 4F4E 2032 2E30 0ti00 6964 008D ERSIOW.2.0
01A040 2031 3034 3030 0029 6996 0041 24D5 C93A .10400.) . .,A$,.

;

01A050 208F 2041 24 D5 2222 20CA 2031 3530 3A20 . . .A$.""..,15e:

.

01A060 203A 9520 4258 D5F6 2841 2429 3A20 9200 . : . .BX. . (A5) : .. .

0aA070 4E69 C800 8F20 4258 20D4 D534 3820 D220 N . , . . . BX ...48. •

•

01A080 4258 D6D5 3537 2 0CA 2042 58D5 4258 CE34 BX. .57. . .BX.BX.4
0iA090 383A 2092 0072 69FA 008F 2042 58D4 D536 Bi.- *.•<**« BX * •

b

01A0A0 3520 D220 4258 D6D5 3730 2ecA 2042 5 8D5 5.. .BX.,70...BX.
01A0B0 4258 CE35 353A 2092 0080 692C 014 2 5 8D5 BX.55: , -BX.
01A0C0 CE4 2 583A 2092 953A 923A 9493 3A20 2A2A
01A0D0 2A2A 2A2A 2A2A 2A20 56 41 5249 4142 4C4 5 ***=^***. VARIABLE
eiA0E0 2041 4C4C 4F43 4154 494F 4E20 494E 4849 .ALLOCATION, IHHI
01A0F0 4249 5445 4400 D569 9001 4432 2528 3129 BITED D2%{1)

75

In the above figure, relative byte '3D' and '3F' are typical
nuinbers. The contents or these two bytes are '64' and '00'. To
then you must REVERSE THEIR ORDER SO that they read as '00' and
If you have done your homework and didn't chew gun in class, you
that 0064 (HEX) is e<jUal to IbB (DECIMAL).

line
read
64'.
know

Our simulated "DIRECT STATEMENT' error is the code beginning at
reliitive byte 'C6' and continues for the next 5 bytes. Actually I have
'riyged' this error but you may verify that the changes are valid by
"ZAP"ing the error onto a backup copy of "SUPEEZAP" and 'LOAD'ing it

THIS WILL LOAD; AM ACTUAL 'DIRECT STATEHEHT IN FILE' ERROR WILL
LOAD ONLY UP TO THE POIHT WHERE THE ERROR EXISTS! Wow, "ZAP" in the
correction and 'LOAD' it again.

The exact error is '953A 923A 94', In actual practice you will not
know the exact error or precisely where it occurs. All that you will
know is that the program won't 'LOAD' beyond a particular PLACE in a
line nurnber. That is your clue as to where to 'fix' the damn thing.

Since the exact place that we want to "ZAP" in a new line nuniber is
relatively unimportant, I'll pick relative byte 'CI' and start making
the changes there. We need a line nuinber larger than 300 and less
than the next line number (which happens to be 400); I think 35fi is a
good choice. Note that 350 (DECIMAL) is equal to G15E (HEX). In
keeping with the general scheme of things we must reverse the order of
the HEX nunibers so they read: '5E01'. in addition, we need to insert
the codes that BASIC needs to properly load each line.

The codes are in the 3 bytes preceding every line number and alv/ays
^tart with '00'. Since we need to just get the file loaded so we can
correct it^ simply 'borrow' a code from another line number ('0080 69'
is the code froin line 300) and you have everything you need to
coiaplete the operation.

SHAZAM! VJe Start "SAP"ing relative byte 'CI' with the following:
'00 8069 5E01'. Figure 10.2 is how the sector will look after the new
line numt^er is inserted.

aiMidid FFF4 6 83 2 0093 3A20 4D41 494E 2F44 4953 . . .2..: .MAIN/DIS 1

01A010 4B2tJ 4D45 4D4f 5259 2044 554D 502F 4D4F K, MEMORY. DUMP/MO
0lA02fc) 4449 4659 2052 4F55 5449 4E45 2E20 2056 DIFY. ROUTINE V
0lA03t3 4552 5349 4F4E 2032 2E3 0000 6964 008D ERSION.2.0
01A040 2031 3034 3030 0029 6996 0041 24D5 C93A .10400.) . ..A$. .:
01A050 208F 2041 24D5 2222 20CA 2031 3530 3A20 . . .A$."" 150:

.

01A060 2e3A 9520 4258 D5P6 2841 2429 3A20 9260 . : ..BX. . {A$) : . .

.

01A07 4E63 C80B SF20 4 25 8 20D4 D534 3820 D220 N.BX. . .48. ..
0IA080 4258 U6D5 3537 20CA 2042 58D5 4258 CE34 BX, .57. . .BX.BX .4
01A090 3 83A 2092 0072 69PA 008F 2042 58D4 D536 0> .. •« » ij2\ r t V
01A0A0 3520 D220 425S 0605 3730 20CA 2042 58D5 5. * .BX. .70.. .BX.
01A0B0 4258 CE35 353A 2 09 2 0080 692C 014 2 58D5 BX.55: r .BX.
01A0C0
01A0D0

CE00
2A2A

8069
2A2A

5E01
2A2A

953A
2A20

923A
5641

9493
5249

3A20
41^2

2A2A
4C45 *******.VARIABLE

01A0E0 2041 4C4C 4F43 4154 494F 4E20 494E 4849 .ALLOCATION, INJ3I
01A0P0 4249 5445 4400 D569 9001 4 43 2 2528 3129

76

Load the file, correct the line we just c recited, and the line
precedinci it , Wow ' SAVE' it back to the disk and everything will be
correct. With that coint^lete you are ready to run. (t^Jext case i

)

[figure 10.3;

NORflAL "SUPEESi^^P" LISTING

50 REM: MAIN/DISK i-^EKORY DUMP/MODIFY ROU'TIKE- VERSION 2,0
100 GOTO iD400
150 A5=INKEy$: IF A5="" "L'HEW 150: ELSE BX=7^SC(A5): liETURli

200 IE BX > = 48 AtlD BX<^57 THEl^ BX =BX"4e: RETURE^
250 IF BX>=65 AWD BX<=7tJ THEK BX=BX-55; RETURI^
3 00 BX=-BX: RETURN
350 REM; ********* VARIABLE ALLOCATION INFIBITED
4t)0 D2% (1)=VARPTR(D2% (5)) : DEFUSR2 = VARPTR (D2% ())

450 X=USR2(t'); RETURN
500 T ***********

£;i^-£) Qi, VARIABLE ALLOCATION INHXBI'.?

55G GOSUB 150: GOTO 200

"SUPERZAP" LISTING WITH SIMULATED ERROR CORRECTED
Notice that line 350 now contains 'GARBAGE' but tile will load OK,

5y REM: NAIN/DISK I-jEIIORY DUkP/MODIFY ROUTIKE. VERSION 2.0
100 GOTO i040ti
150 A$=IKKEY$: IF A$="" THEN 150: ELSE EX=ASC{A$) ; RETURN
200 IF BX >=48 AND BX<=57 THEN BX=BX-4Bs RETURN
250 IF BX>=65 AND BX<=70 THEN BX'^BX'-SS: RETURN
3b0 BX^-
350 LSE;RETURN;STOPREM: ********* VARIABLE ALLOCATION INHIBIT
460 D2% (1) =VARPTR(D2% (5)) r DEFUSR2 - VARPTR (D2% (0))

450 X=USR2(&) : RETURN
500 ' *********** EtJD OF VARIABLE ALLOCATION I^jFIBIT
550 GOSUB 150: GOTO 200

10.8 RECOVERING DATA FILES

T"TJ:iexe are no special thinys to know about data files that make them
more or less difficult to recover than any other type of file. There
are two formats tor data: (1) ASCII, (2) compressed binary. The
'FPDE' and 'FXDE' of data files are identical to any other file type
so it you have mastered locating files front the directory entries, you
will not have trouble in this department either.

10. -8.1 'ASCII^ DATA FILES

ASCII data files are the easiest to read- Everything is ' readable'
and will display with the 'DD' tunction ot "SUPERZAP".
Figure 10.4 is a typical sector of an ASCII FILE.

77

3GE501ii 2ti31 3030
3 0E510 3230 3734
3 0i;52tl 4F52 5e4F
3eE530 494C 5348
3t)E54tl 5320 414E
3tiE55ti 524E 4 941
3fcE5b0 2048 2E20
30E570 2641 2E46
3eE58y 2E20 504F
30E59^ 412E 462E
3eE5A0 2C49 2044
3laE5E0 594F 5520
30E5C0 -3849 53 2C
30E5Dlii 203 362P
3eE5Et) 4e2E 502E
3eE5F0 E5E5 E5E5

3020 2020 2020 2020 2020 2020
4E2D 3736 2C47 454D 2G20 2ld43
5241 5449 4F4E 2C32 3232 2t)57
4552 4520 424C 56 4 4 2E2C 4C4F
4745 4C45 53 2C 4341 4C49 464F
2C39 3030 3137 2C48 4152 5259
4448 4F52 4520 2020 2^20 2021;
2E47 2E41 2C20 4 6 41 4E4B 2044
4E42 414D 2020 472E 472E 2B20
472E 41 2C 5245 5345 5256 4544
4944 4E27 5420 5448 494E 4B2
574F 554C 4420 4649 4E44 2054
0U46 5241 4E4E 2C0D 322E 3020
3 031 2F37 3960 2020 2E2E 2E20
2020 0D2C 2C5E E5E5 E5E5 E5E5
E5E5 E5E;5 E5E5 E5E5 t;5E5 E5E5

figure 10

.1000
2fc74W-76,GEM. . .C
ORPOR/.TrOH, 222. VJ

ILSHIRE.BLVD. , LO
S.ANGELES, CALIFO
RHIA,90017, HARRY
.H..DHORE .. .

.A.F.G.A, .FAKK.D

. .PONBAfi. .C.G. ..

A.F.G.;^, RESERVED
fl.DIDH'T.TIilKK.
YOU. WOULD. FIND.

T

HIS, .FRANK, .2.0.
.06/01/79

You v>iil notice
separated by a '

ciitDplciy as a
represented by an
between (fielcitive

that each successive data item of
, and is represented in the HEX
HEXADECIMAL '20'. The 'EOF' byte of

an ASCII
portion

tile is
of the

'eiapty data item', i.e.,
bytes 'E7 ' and ' E8 ')

.

an ASCII file
two conijiias vjith nothing

1£
in

To repair data all you must do is "SAP" the necessary bytes with the
ASCII values that represent the data you wish to change. Forxnstance, suppose you want to change the '1000' in the first line of
the above display to '2000'. The numeral '1' is ASCII CODE '31'
(HEX), Chanye the '31' at relative byte '01' to '32 '. Right beforeyour amazed eyes the '1000' will become a '2000\

I would like to caution you Stanley Rifkin fans that Stanley didn't
do so well in the 'getaway' department, so if you have visions ofdoctorxng-up a database on a payroll program, forget it.

10.8.2 'RANDOM' DATA FILES

Random data files are a little more trouble to alter. However, anenterprising soul such as yourself will find it not too difficult.

tenacity.
The following {figure 10.5) is a sector from a randor,^ file. Youwill notice timt there are no 'delimiterG ' in the file, such as coramas

or cticriage returns. Bach 'aata item' is butted together* Tiieseparate aata items are separated, in your program, with the 'FIELD'statement.
as 'INTEGER', 'SINGLE PRECISION', and
are represented in compressed binary

on the data in a 'RANDOM' file, first
.,

, ,

- as it will be on each aector. Use one ofthe KAP s in chapter 6 as a guide. Once you have date! mapped OUt, itla a simple matter to modify each data item

tact that you've read this far is cor,iraentary on your

The nunieric data, such
'DOUBLE PRECISION" numbers
format. To effectively work
make a 'MAI" of your aata

78

F01700 5045 4143 4850 4S54 2047 494E 4745
FH171B 3131 3530 2054 454E 4E59 534F 4E20
F01720 3420 2020 2020 2020 004D 3091 5543
F0173a 0000 0000 2D86 E000 3086 8000 2020
F01740 2020 2020 2020 2020 2020 2020 202C
F01750 202^ 2020 2020 2020 2020 2020 2020
F01760 0000 0000 2045 86F0 0020 4B86 8800
F01770 2020 2020 2020 0000 0000 2020 2020
F017e0 4F4C 4543 4154 2052 5554 4820 3131
P01790 3120 4B49 4P57 4120 4156 452E 2023
F017A0 2020 2020 2020 2080 E02F 9155 4344
F017B0 000y 0e2D 86E0 0030 8680 0020 2020
F017C0 2020 2020 2020 2020 2020 2020 2020
F017D0 2020 2020 2020 2020 2020 2020 2020
F017E0 0000 0020 4586 F000 204B 8688 0020
F017F0 2020 2620 2000 0000 0020 2020 2020

^^(f igure 10 , 5!

5220 PEACHPIT. GTMGER,
2332 1150.TEKNySOW.#2
4A54 4 H0.UCJT
2020 ".. .0

2020
2020
2020 E K
2050 P
3636 OLECAT, RUTH, 1166
3420 l.KIOWA.AVE, .#4.
4300 /.UCDC,
2020 .. .-.. .0
2020
2000
2020 E K
0000

It you stucty the above figure closely, you will find that there are
two identical sub-record layouts on this sector. Now hark back to your
Radio Shack Disk Manual, and you will find in the rather obscurely
aescribed sections on 'random I/O' that records may not span sectors
and that there is something about a 'PHYSICAL RECORD' and a 'LOGICAL
RECORD'. A sector, such as the one above, is a 'PHYSICAL KECORD'.
Each sub-record in tiiat 'PHYSICAL RECORD', such as the two above, are
'LOGICAL RECORDS'.

There is one slight difference in the way various disk operating
systems configure random files. TRSDOS 2.1 and NEW DOS 2.1 only
pernit 255 byte randora file records. DO NOT CHAKGE RELATIVE BYTE ' FF

'

OK DATA RECORDS THAT ARE ACCESSED WITH THESE OPERATING SYSTEMS.
TRSDOS 2.2, VTOS 3.0 and Apparat's new SUPER DOS 1.0, ail permit

the use of 256 byte cecords. SUPER DOS will even permit records as

large as 4ti95 bytes in a single recordl (I'm not supposea to talk
about that yet, but 1 figured that you needed the inf orraation.
Besides, I would like to drive the Radio Shack software development
people crazy wondering how they did THAT!)

Let s take a closer
chapter. The first
I thought you said n
did. I did. But
fielded your input a
numerical data types

The next 4 bytes
zipcode, for this f

i

obscure, 90266 (DECI
however f it is repr
that irake sense?" Y

Icok at tigure 10.5 before we go to the next
40 bytes contain a name and street address. (But
umerical data was represented in HEX format?) I

it may also be represented in ASCII fashion IF you
s a string without converting it to one of the

represent a 'SINGLE PRECISION"
rst sub-record is '90266'. To add
MAL) is equal to '01609A' (KEX;

esented as '004D3091* (HEX) 1 How
es, as a matter of fact it does.

zip code. The
confusion to the

On the file
I ask you , "Does

79

You must
make com.pl

crunching
representa
This will
COMMENTED,

In the
looK like,
various d
BASIC and

first understand how numb
ete sense out oJ: the vario
routines require that the

tion of the number be stor
be the subject of an
LISTED AND MARRATED,)

,

meantime all you really
iiere is a way to decode

ata types from BASIC iLsel
run it*

ers are represented internally, to
us data types^ BASIC'S number
sign, exponent and floating point

ed as v/ell as the actual number

-

other book (Working Title; BASIC

need to know is what your numbers
HEXADECIMAL representation of the
f . Enter the followiny program in

100
110

120
130
140
150

A = 90 26 6
A$ = MKI?(A)

PRItIT
PRINT
FOR X
PRIbJT

AS
I.EN(A$)
= 1 TO LEM(A$)
ASC{i^lID§(A5,X,l)

16 MEXT
<RUW>

SET VALUE OF 'A'
CONVERT TO STRING
REPRESENTATION
LOOK AT AS
LOOK AT LENGTH OF A$
SET LOOP
LOOK AT DECIMAL VALUES
OF hi?

LOOP

PROGRAM
DISPLAY

4

77
48
145

4-

MEANING OF DISPLAY

^

Display representation of A$
Length of A$
ist ASCII character =^ 00 (HEX)
2nd ASCII character - 4D (HEX)
3rd ASCII character = 30 (HEX)
4th ASCII character = 91 (HEX)

To see how other data types are represented substitute 'MKI$' with one
of the followiny:

M,KX$ — Converts INTEGER to String representation.
MKS5 — Converts SINGLE PRECISION to string representation.
MKD? — Converts DOUBLE PRECISION to String representation.

By reviewing the LEVEL II manual and the DISK manual you may learn
more about data types.

Now, assuming that you have tried the BASIC program, to better
understand how your various data types are represented and have made a
map of the randora data file you wish to "2AP", you 're ready to go to
work. Good luck.

10.9 RECOVERING A LOST TENh"IS BALL

Look under the Volkswagen or in the neighbors' ivy.

8^

11.0 RECOVERING 'ELECTRIC PENCIL' ERRORS

Without Michael Shrayer's ELECTRIC PEKCIL, this
been possible, I have used every feature of
TKS-80 were used £or nothing else except word pr
would justify the entire hardware cost. Unf or
does a i'ew peculiar things ... some of them ar
program and others are a result of the operator

.

Since 'PENCIL' is so widely used, I thought i

to address soine of the data recovery technic-u
ELECTRIC PEKCIL. Needless to say, this chapt
others) is the result of having had to recove
occasional errors

-

book would not have
the program and if the
DC es sing, this program
tunately, the 'PENCIL*
e the fault of the

t v;ould be a good idea
es that may be used on
ec (as well as the
r more than one or tv;0

11,1 RECOVERING 'ELECTRIC PENCIL DOS ERROR 22

I don't know wher
'PEMCIL' gives you '

DOS ERROR 22 is a '

There is going to be
The error in this

14 and 15) , or the '

in these bytes ar
both of these values
long as they they
instance, figure 11.
directory entry with

e 'ELECTRIC PENCIL' gets its error
DOS ERROR 22' it is NOT error '22'.
HIT' sector error, (Hichael, please
a test on this tomor row!

)

case is a wrong sector count in the
EOF' byte (BYTE 3) is wrong. Whateve
e, change them by ADDING at least '1

You may make these bytes ANYTHING
are greater than the values they s

1 is an example of an ELECTRIC
a 'DOS ERROR 22' error.

codes but when
The book says
pay attention.

'FPDE' (BYTES
the values

to either or
you want as
hould bei For
PENCIL file

figure 11

RELATIVE BYTE 3

111340
111350

1000
9642

1
0074
9642

0045
0900

5252
2401

3232
FFFF

2020 2050 434C ERR22.
FfFP FFFF FFFF ,B.B, ,$..,.

• PCL

RELATIVE BYTES 14 ^ 15

The most likely thin<j that is wrong with the file is that BYTES 14 &

15 are incorrect. Since there is also the possibility that BYTE *3'
may also be incorrect, "ZAP" both locations. Then, load the file into
'PEMCIL' and 'SAVE' it. If you go back and look at it, you will find
that it will have corrected itself and the proper values will have
been inserted into the offending bytes. Figure 11,2 is an example of
the "SAP"s necessary to correct the 'DOS ERROR 22'.

81

;figure 11,2]

Be sure and raake this value LARGER than your file actu^illY
is. 'FF' is 255 DECIMAL, and will cover rriost situations*

_f

111340 l(i-00 00FF 0045 5252 3232 2020 2650 434C ERR22.,.PCL
111350 9642 9642 FF00 2401 FFFF FFFF FFFF FFFF .B.B..$

«rr;ZAP" this with 'FF' too.

11.2 'LOST' ELECTRIC PENCIL ON DISK
('OVEJr WPITTEM' FILE)

Tnere are two reasons for this unfortunate circumstance:

UNFORTUNATE REASOH SI; YOU were working on this file only a couple of
days aciO. Everything was workinc- smoothly, and when you were through
entering your text, you saved the file to the disk. You rerrLOved the
disKs ftoL! the drives, shut everything down and went home (or to
another roon} and matched an exciting rerun of I LOVE LUCY before
dinner

.

Several days (or hours) later you Mcnt back to the computer to use
that file. You bring up your "ELECTRIC PENCIL' program and lead the
file. What??!!! It's GOHEl There ace only 3 carriage returns on the
screen! After the blood returns to your brain, and you finally begin
to believe your eyes, reason returns to your fogged brain; you decide
you must have saved it on another disk.

Forty-seven disks later you give up and say to yourself,
"... dammit, I KNOW I saved that file, I wonder what could have
hajjpened to it? It must have been eaten-up by the machine or
soiaethlng," Thus, you conclude that there are mysteries that are
beyond hunian understanding and consult the TV Guide to see what time
horK & Mindy come on.

The truth of the matter is that nobody ate nothin'. Everything
worked exactly like it was supposed to, you screwed up. in your dazed
and confused state, after typing for 6 hours, you 'SAVE'ed your file
WITH THE CURSOR AT THE END IMSTEiiD OF AT THE BEGINNING OF THE FILE!

UNFORTUNATE REASON tt 2: You accidentally 'KILL'ed the file by using
the wrong file name, I don't know why you did it but it sometimes
does happen,

RECOVERING UNFORTUNATE REASON # 2, refer to 9.2, "RECOVERING A KILLED
FILE". To recover UNFORTUNATE REASON # 1 simply follow the procedures
below. (See Chapter 9.7 for details on 'ELECTRIC PENCIL' files,)

1. Find the 'EOF' byte in the file.

82

2. Change the 'EOF' byte to any valid
ASCII character ('20' or 't)D' works nicely)

3. "ZAP" the directory 'EOF' byte \jith

an 'FF' ('FPDE' BYTE 3),
4. "ZAP" the sector count bytes ('FPDE'

BYTES* 14 & 15) with a HEX value larger
than the actual sector count - 'FF' will
work here also, in inost cases.

since the old 'EOF' marker is still in the file you won't have to
worry about vjhere it is or v/here to put it. Just go to 'PENCIL' and
load the file. If you get a 'DOS ERROR 22' you didn't make the sector
count byte large enough,

11.3 RECOVERIING A 'LOST' ELECTRIC PENCIL FILE IN MEMORY

I know this has nothxng to do with the disk, but before you can
recover something on disk, you have to get it there. I have had
occasions when 'PENCIL' does its outer space trick and have had
desperate need to know how to get it back so I could get it onto the
aisk in the first place!

Here is the picture:
You are inputting text into 'PENCIL' and all of a sudden the

machine 'BOOT'S or you have put in a particularly long line; you hit
<ENTER>; the screen goes 'funny' and suddenly funny little characters
appear on the screen. It itiight be described as what Android Him would
look like after swallowing a band grenade.

Here is your recovery procedure;

1. Stop cursing. You cannot be heard in
Fort Worth or by shrayer,

2. Type: <COKTROL> 'O' and get into DOS.
3. Type: DEBUG <EHTER>
4. Hit the 'BREAK' Key. You will now enter

•DEBUG'

.

5. Type: G5C61 <SPACE> Or <ENTER>
6. THERE IT ISI IT'S BACK!
7

.

iKanediately save your file to the disk

.

DO NOT HIT 'BREAK' TO EXIT THE SUB-
COriMAND TABLE or you will re-enter debug.

8. Hit 'RIGHT ARROW^ to exit the SDE-
CONP'iAND TABLE.

9. If the screen 'went funny' before you
' lost ' your file^ enter the search and
replace function, (<COMnAND> 'V') ,

11- Replace the line you were working on
before it 'went funny

' , with something
shorter. If you don't remember what you
were working on, e^it 'PENCIL' and fix
the file with "SUPERZAP" by putting carriage
returns or ^spaces {'0D' or '20') in the line
that i& 'too long '

.

83

11.4 RECOVERJ^iG DISK FILE VJOIJ'T LOAD
{FILE AREA FULL' ERROR.)

This isn't an 'error', in the true sense of the v/ord. What has
napt>ened i"L that you typed a large file into meraory. You saved the
text to disk. At some later time, you couldn't load the file because
every time you tried, you yot the message; 'FILE AREA FULL'.

PENCIL' will allow you to 'SAVE' a file that is larger than you
can 'LOAD'. (blo\'J isn't THAT nice, OIlie?) Yes indeed, just one more
little tiling to r.jake lite intenesting , Ail is not lost. In fact none
ot it is lost* All we have to uo is break up the file into smaller
segments and it will load just fine.

Create an 'FPDE' by saving a one wora 'aummy ' file while in
PENCIL'. Use a file name that you would normally use anyvjay since
there is no reason to 'SAVE' it again v/ith anot£ic-r name.

Now, go to the last few sectors of the file that won't load and
copy tnose sectors to the EXTENT FILE AREA pointed to by the 'dummy'
tile name. "SAP" the 'dummy' file 'FPDE' BYTE 3 and BYTE 14 with ^ FF '

,just like v;e did in recovering a 'DOS ERROR 22', Kow that portion of
the file will loaci. 'LOAD' it and 'SAVE' it back and everything will
take care of itself.

Next we have to fix the original file so it won't try to load the
whole thiny. Go back to that first sector that we moved to the
'dummy' file,,, (AH-I!A1 You forgot which one it was and you didn't
take notes, did you? See how important taking notes can be?)
-.."ZAP*' a '|j0' anywhere in the sector and that will take cate of that
portion of the file. Now both segnients ot the file will 'LOAD' and
you're on your way again.

11.5 ELECTRIC PENCIL GOODIES

Here are a couple of things that might make your day brighter, for
wnat it ' s worth

.

To make 'ELECTRIC PENCIL' comi^atible with KEWDOS 2.1 all we have to do
IS change 3 bytes in relative sector of 'PENCIL' to 'M 00 0^'.
Find relative sector then, at or near relative byte 'AE'^ you will
see the following code:

F332 9B45 C36F
"2;AP" this so it reads;

F300 0000 C36F

Another thing you might like to do is speed-up 'PENCIL'S cursor - a
simple one byte change. In relative sector IG (HEX) on or about
relative byte 'TB' you will see the following code;

0601^ 10FE 1116
"SAP" this so It reads:

^664 10FE 1116

Hy cursor is set at '50'. The '00' that is in there now, is a value
of 256 - this is as SLOW as it can possibly go, A little
experimentation will tell you what value to put into this byte, A
word of caution .., '50' really makes that thing zip along.

84

In addition to all the before
'PEKCIL', here are a few more.

mentioned ' goodies ' you can do with tt^e

WKITE
write
It's
there
anci ao

The
specia
do, on
write
'EUN'

.

will
AT THE

BASIC PROGRAMS IN 'PENCIL', Viouldn't it be neat to be abl

programs in BASIC and have the editing features ot" 'PiiNC

not only possible but I do it all the time. In the appe
is a BASIC program called 'SEARCH', It v^as written in

curaenteo in 'PENCIL',
re is no secret, all you have to do is just 60 it. No tricks
1 things to do, just v7ritG the pirograiE' like you v;cuid norrri

ly use 'ELECTRIC PENCIL' to write the proyrar,!, when finis
the tt^xt to disk; exit 'PENCIL', go to BASIC, and 'LOAD'

There are only two things to vdtch tor. (1) Your file
have '/PCL' on the end of it and
END OF A STATEMENT LINE. Now cjo

(2)r
do

ONLY PUT CARRIAGE RET
it and sec hov; easy it

e to
IL'?
ndiK

PENCIL'

,

/ no
5ily
hed,
and

name
'URNS
as.

LOAD A PROGKAM WPaTTEK IN BASIC IWTO PENCIL F

ever v;ished you could change all those 'PRINT'S t

swell foop? Hot hard at all, once you have your
into 'PENCIL' tor editing. Here is all you do.
are no lines longer than 30 characters without
(cram) your staterr^ents to^gether, open 'ern up here
the program in A.SCII mode with a tilename thfit

file name extension. After it's saved,
o£ the
'PENCIL'

program file* There it is.
"ZAP" "00

You are

OR EDITING, Have you
o 'LPRINT's in one
BASIC program loaded

(1) Make sure there
spaces . If you pack
and there, (2) Save
includes VPCL' for a
' ir^to the IciSt byte
ready to load it into

WRITE AN ASSEMBLER, OR
'I^CRO-80' all you have to
or without line numbers.
'PENCIL', run ^U^CRO-SD (

using 'E^iac80 ' commands,
give you the option of

FCRTKJiN PROGRAM IM PENCIL. If you
do is write your program in 'PENCIL'
'SAVE' the text file as-per-usual then

EDIT') and load the 'ELECTRIC PENCIL"
'Mac80 ' will appertd the line numbers and

saving the sou rce with or without the

nave
with
e;iit

file
will
line

numbers. Assemble ox com-pile and away you go,

85

12.fe> CORRECTIivG THE 'GAT' Al^ D 'HIT' SECTORS

'GAT' eiiory citn be particularly disastroua- TRS-DOS 2 A will
occasionally de-allocate GR7UnULL:s. For those of you who are
te^cmically minded, 1 will quote Ttoia the aPPARAT docuraentation,
describing the c^use oi tliis Oiaasterr

'CLOSE' in "SYS3/yys' causes i* r.iajor system disaster when it releases
tin 'FXDE' by not preserviny the contents of the CPU register DK, which
contains a count of +1, of the sectors yet to be freed, when freeing a
no loijyer needed 'FKDh;' .

This error is compounded by the branch at '4ED&' by not implicitly
endin*^ deallocation of GEAMULES, when the file is known to have no
ntore GRANULES assigned.

Thtbe errortj ceiuse all 'write'abie main memory for 3000 - 42XX
(HEX) to De set equal to 'FFS v^here 'XX' is the relative position
within the sector of the last byte of the 'FPDE' pointed to by the
it;st 'FXDE' tliat was released.

The cor respondincj sector in the directory is also filled with ' FF

'

to that relative point. As that continues, the 'GAT DIRECTORY SECTOR'
i£i modified to free up GR;\NULES at random in tracKs '&0' through 'FF',
with r.iost tracks below 80 nex.

It this continues to 90 undetected, this will cause GRANULES
previously allocated to other files, to bo allocated again in
subsequent file allocations! This includes reallocation of 'BOOT/SYS'
and 'D1R/£>YS' GRANULES, eventually clobbering them.

WOW, if that's not bad enouyh, read on. Files whose 'FPDE'
preceded the destroyed 'FPDE'^ in the 'DIRECTORY ENTRY SECTOR' will
disappear from the systerii and if a file's "FXDE* was so destroyed, you
vjill have horrendous trouble and should be considered lucky if TRS-DOS
even detects an er ror

I

Almost as had, CPU register ' HL ' is not decremented to the 2nd byte
of the next lower EXTEl^T nor is it protected by the directory sector
write call at '4F08'- This causes the two bytes (whatever they are,
at the time) at '41FF' and '4200' to be used as the next lower EXTENT
for the file, causing a somewhat random deallocation o£ GRANULES,
usually in the range of tracks '00' to '10^ hex.

And still more! It a new 'FXDB' is allocated to the file and then
If the diskette is found to be full, 'SY^3/SYS' malfunctions (at sometuture tirae) v^hen 'CLOSE' tries to free the space assigned to that
FXDE'. It assuTaes there is some 'FREE' space when there is none!

You will have to pardon me while 1 do a little preaching. Wouldyou, it you were an international distributor of 'quality softv/are',
sell and distribute software with KNOWN disastrous errors and not tellyour users? Would you cover up your errors by simply not telling your
users that the errors existed and that IF they had a problem, it wasmost likely th& fault of the hardware? I wouldn't do that. 1 don'ttnmK you would either. (The lawyers who looked at this manuscript
for libelous statements wouldn't do that.) Good grief, WHO would dothat?

It's ddji.n difficult to write and release bug-free software andthere are excellent software pacRayes that contain bugs but the
authors are burniny the midnight oil to correct them and warn their
usera... while solutions are beinc^ sought. Mow, WHO would turn-out

86

software and uot admit that there is something wrong? (Sure beats
hell out liie, lieutenant, I'm not the regular crew^chief*)

Why are we c^re treated like niushrooias (kept in the dark and fee
B.S.i) and told that certain aspects of certain programs v^ere not
"... fully iiaplernented"?

Enough of this grousing . , . . continue reading thic saga. .

.

If this 'GAT' sector problem is detecteci soon enough, very little
damage will occur. The above described 'bug' (this one is so big, it
could be used in a Japanese horror novie suitable for shov7ing on
Channel 13 at 3 A.M.) will also explain how files get into other
files. With the deallocated GRANULES, the DCS thinks that it is OK to
store something to a GItAKULE already being used for another file.
Then when you attempt to 'LOAD' or 'KUM" what you think is file 'A'

you yet 'B* instead.

12.1 THE 'GAT' FIX

(1) Using the 'DIRCHECK' utility of NEW DOS+
list the directory and note any er ror£i that
may have accumulated in the 'GAT' and 'HIT'
sectors. See section 3.1 for details on
'DIRCHECK'

.

(2) If you do not have NEW DOS+ you will have to
go through each 'FPDE/FXDE' entry in the dir-
ectory sectors, note the EXTENT aadresses and
GRANULE counts and then compare these to each
GRANULE track by track. {Sor ry, there isn't a
faster way that i know of.)

(3) "ZAP" each offending GRA1^)ULE with the correct
allocation. (Also see figure 6,7 for alloca-
tion codes .

}

********* CAUTION *^* CAUTION *** CAUTION *sr******
** **
** Be sure to 'KILL' extraneous files using **
** the same 'GAT' sectors as 'cjood' tiles. **
** Failure to do so wil 1 cause additional **
** errors to occur, **
** **
************** :t' ******* -^J^A A ************************

12,2 THE 'HIT' FIX

Basically/ this is the same procedure as above. How to read
'DIRCHECK's error list, regarding the 'HIT' sector is also discussed
in 3.1, above, Findiny bad 'HIT' sector bytes is a little easier
than finding bad ' GAT' bytes

,

There should be as niany HASH ' codes (non-zero bytes) in the 'HIT'
sector as there are active files. Every file that displays with 'DIR'
AND LOADS or is accessible with an 'OPEN' statement has a valid 'HASH'
code. Failure to do OKIE ol: these things is an indication that you are
about to have or are having problems with the disk.

How to obtain the correct 'HASH CODE', for a file name, is covered
in 10 »1 above

,

87

13.0 SOME THINGS YOQ CAt?' DO

It slwtiys helps to have someone point out some new directions - open
up our imacfinaticn, so to speak. What I'm attempting to do in this
chapter is give you some ideas that will hopefully cause you to have
some mote ideas on your own. The limitations you will encounter on the
computer are ^.Imost entirely of your own n^.aking. Adopt the philosophy
that "there is a way" and sooner or lc.ter^ you'll find it.

13-1 CONSTRUCT I L^^G 'ELECTRIC PENCIL' FILES IN BASIC.

This is so easy you'll wonder why it never occured to you before. It
was only after looking at 'PENCIL' files, with "SUPERSAP" that it
dawned on me that these files were almost ordinary ASCII files. With a
little experimentation and the use of "SUPERSAP", I was able to figure
out everything I needed to know. Try this experiment.

LOAD BASIC and enter the following program:

100 clear; cls

110 opek"0",i,"testone/pcl"

120 a5="this is a test
v;k2ch will build a
pt;mcil file iw basic"

13tl PRINT #1, A$

140 PRINT #1, CHRStS)

150 CLOSE
<RUN>

clear the stack; clear the screen

set"Up filenar.ie with 'PENCIL' extension

initialize 'A$ ' with text

write 'AS' tc the file

insert the 'EOF' marker for
ELECTRIC PENCIL' ('00' HEX)

Close the file
run the program

Of course, this program is very simple and I realise that it could
have been written in a nmch more sophisticated style but it is very
easy to 'see' how it functions. Now load "PENCIL" and load
'TESTONE'

.

13.2 'LOAD'ING A BASIC PROGRAM OR ASCII DATA
FILE IMTO 'ELECTRIC PENCIL'

You will only have difficulty in
BASIC program or data file, i.e.,
statements, and characters.

One of the really neat thi
file as text, is the global searc
single ' PRINT' with an 'LPRINT' i
can also use it to niake translati
another. Usin<j 'PENCIL' enter
magazine. Don't try to make all o
end of the magazine version, e
non-'RUN'able statementt^. Now 'S
with a 'GOSUB' to your subrou
translation that would normally t

'PENCIL' MUST have at least on
its video display mangagement rou
wrong, let's give it a whirl.

doing this, if you have 'packed' your
eliminated all spaces between words,

ngs about using 'PENCIL' with a BASIC
h and replace. You can replace every
n less than a couple of seconds! You
ons from one dialect of BASIC to
the text for a BASIC program out of a
f the statement conversions. At the
nter the subroutines that replace the
EARCH AND REPLACE' these statements
tine. In a few minutes you can make a
ake hours or even days!
e space every 30 or so characters for
tine. Now that you know what can go

88

Enter the above program just as it is typed; but v;hen you
use this or a similar name:

'SAVE' it,

SAVE"F'ILETeST/PCL" ,A

Remember , ' ELECTRIC PENCIL ' only loads f iles with the ' £ ilename
extension' of '/PCL'. The ',A' at the end of the 'SAVE' statement,
will cause the program to be "SAVE'ed in ASCII forrriat.

Now, with "SUPERSAP", locate the end of the "FILETEST/PCL" file and
"ZAP" the last
PENCIL' and load

carriage
'FILETEST

return ('0D' HEX) with a ' 00
' . Execute

DOS, is
program,

to use
type

Another way to do the same thing, if you are using NEtJ
the '0PE1SI"E"' function. After you have ^SAVE'ed the
'NEW and enter and run the following;

100 OPEN"E'M,"FILETEST/PCL"
200 PRINT #1^ CHRS(0)+"
3 00 CLOSE
<RUN>

This will open the file at the end and write the 'EOF' marker for
•ELECTRIC PENCIL*. The blanks between quotes will guarantee that the
file will load into 'PENCIL' and not give you that 'DOS ERROR 22'
crap. You may do nearly the sartie thing with TRSDOS except you will
have to read the file and write it to another file, then Mhen you get
to the end of the original file, write the 'EOF' marker to the new
file. Actually, you should save yourtself
aggravation, get NEWDOE and be done with it!

lot of grief and

The above techniques
files.

can be used with data files as well as program

13.3 MAKING 'PENCIL' FILES INTO BASIC FILES,

Actually you don't have to do anything except enter your program into
pencil'. Save it to disk, and run it. Don't forget to use the
V^CL' file name extension v/hen calling your program from BASIC.
A 'PENCIL' file is an ASCII file. It will load into BASIC just like

any other BASIC file 'SAVE'ed with the ASCII option. You must
remember that if you 'SAVE' the file back, while in BASIC, that
'EOF' marker for 'PENCIL' will not be there and the file will

"PENCIL'. Also see 13.2 above.longer load into

the
no

13.4 CONVERTING 'DATA TYPES' IN RAMDOH FILES

In chapter 9.8.2 we discussed a method of repairing datci. files. There
is also a short BASIC program in that chapter, that converts 'random

into its ASCII equivalent.
data type, all that is necessary is to have the proper
the right place AMD to r encode your 'FIELD'

numerical data'
To convert a

information in
statements.

Suppose that you had a
relative byte 'A7 '

-

immediately recall that a
long.

double precision number beginning at say^
Your lightning-guick-b ear-trap-mind will

double precision number is eight bytes

89

Your problem, Mr. Phelps, is to convert that to a single precision
number field. First obtain the single precision string contents,
using the BASIC prograi:! in 9-8.2. Convert the DECIMAL values to EEX.
"2AP" the four HEX vaiuGs into the appropriate sector, beginning at
relative byte 'A7 ' , "2AP" '2020 2020' into the remaining (and now
unused) tour bytes (or anything that is appropriate for your file),

Iviext Change the iield staterr:ent so that only 4 bytes are fielded
for the new sinyle precision number and 4 bytes for the unused 4 bytes
(or wtiatevcr you have converted those 4 bytes to,)

The icist thincj is to change the 'MKD$' statement and the 'CVD^
statements to 'hKS?' and 'CVi^', Now go!

13. S CONVERTING DATA IM A8CII PILES

Run "SUPEPvZAP" and ut^ing the 'MODnn' function, type in whatever you
want. Be sure to use commas for delimiters or you v/ill get a few more
characters than you bargained for into the wrong string. That's it.

13.6 MAKIMC BASIC PROGRAMS 'Ul^LISTABLE'

There is no such thing as total protection. This will make a program
' unlistable' as long a£^ the user never reads this book or figures
things out for himeelf.

Save a DASIC program that contains a dummy string like this;

DUS="* *************** *****"*****"

Usiny "SUPBRSAP", find that string in the program, as stored on the
cisk. Ti?e HEX code for '*' is '2A'. "ZAP"" those '2A's with '1228
1212 1212 1212 ' etc. Now load and list the program. 'LLIST' the
progreim. Lots of paper, huh?

It you will consult Appendix c/1 of the LEVEL II manual you v/ill
find the 31 (DECItlAL) ASCII control codes. Try placing different codes
into the string and see v;hat happens when you try to 'LLIST' or 'LIST'
the prograir,.

13.7 ADDlI'iG COhiMAbiDS TO SUPERZAP

"SUPEKZAP" is a very well written BASIC program and is easy to make
modifications to. I myself, have a constant need to run 'DIRCKECK'
while I'm stili in "SUPERZAP" - especially if I'm making corrections
to the 'GAT' or 'HIT' sectors. Of course you can type; <BREAK>,
'CHD"DIRCHECK\ answer the prompts and then when the program is
through and returns you to BASIC (IF you're using WEt-JDOS) , type,
CONT', *X* and then re-enter "SUPERZAP" where you left off.

Hy particular version of "SUPERZAP" has had 'UP-ARROW added as one
of the coramands that functions while in 'DD' mode that automatically
runs "DIRCHECK'. Load "SUPERZAP" and enter the program lines below.
Try it out by using the 'DD' function. While in 'DD' cind when a
sector is being displayed, hit 'OP-ARROW, MAGIC!

When 'DIRCEECK' is all through, you are returned to the exact place
you've left off.

90

(SUPERZAP 2,0)

2210 IF A5=^"|" THEN 60000

6000& CLS: PKINT§345, "DIECEiECK"
60010 CMD"DIRCHECK" :A$="R" :GOTO 2210

If you like the change, 'SAVE' the program back to disk. If you think

of any cominands you would like to add, use the same technique as I

have used and add your own special comiaands •

13,8 READING THE 'DIRECTORY' EROM BASIC

If you have NEWDOS try opening a file with the file name: DIR/SYS, and

read the first record into a randoio, buffer fielded as follows: FIELD
1, 255 AS AS

You will get an error message on the 'GET' statement but try

printing out your string anyway. What? you say it worked? My word,
amazing isn't it. Simply trap the error, so your program does not
'crash' and continue along your way. With this little trick you can

have your BASIC program rea.d youc disk directories.

91

APPENDIX A

APPENDIX A

GLOSSARY

ACCESS Ttie operation ot seekin<3, reacling or v/ritiny date on a stor-
age unit {in this case, the diskette)

.

ACCESS TIME The time that elapses between any instruction being
given to ciccess some data and that data becoraing available for use

.

ACTIVE RECORDS TABLE (AJRT) A table of binary values in which the
relative position of a single value determines the status of ci record
with the same relative position; i.e., the Nth binary nuraber
determines the status of the Hth record. EXAMPLE: If the Bth binary
nuiiiber in the table is a zero, then the 8th record is inactive.
Conversely, if the 8tn binary nuniber in the table is a one, then the
8th record is active-

ADDRESS An identification (number, name, or l^bel) fot a location in
which data is stored.

ALGORITHM A computational procedure*

ALPHANUMERIC (CHARACTERS) A generic term for numeric digits, alpha-
betic characters, punctuation characters and [Special characters*

ALPHANUMERIC STRING A group Of characters vmich may include digits,
alphabetic characters, punctuation characters and special characters,
and may include spaces , (NOTE: a space is a 'character' to the
computer , as it must generate a code for spaces as well as syifibols,

)

ASCII Abbreviation for American Standard Code for Information
Interchange. Pronounced: Ass-KEY. Usually refers to a standard
method of encoainy letter, numeral, symbol and special function
characters, as used by the computer industry,

ASSEMBLY LANGUAGE A machine level language foe programming, such as
Radio Shack's "EDI TOR/ASSEMBLER" which uses 2-60 processor mnemonics
and automatically ' assembles ' machine readable code from the
mnemonics.

BASE A quantity of characters for use in each of the digital
positions of a numbering system*

BASE 2 The 'BINARY' nuLibering system consisting of more than one
symbol, representing a sum, in which the individual quantity
represented by each figure is based on a multiple of 2

.

BASE 1 The 'DECIMAL' nuinbering system - consisting of more than one
symbol, representing a sum, in which the individual quantity
represented by each symbol is based on a m.ultiple of 10.

BASE 16 The 'HEXADECIMAL' numbering system - consisting of more than
one symbol representing a sum, in which the individual quantity
represented by each symbol is based on a multiple of 16.

APPENDIX A

BINARY See 'BASE 2'

BIT ^ single 'BINARY' aigit whose value is 'zero* or 'one'.

BOOLCAN A form of aigebira applied to binary nunibers which is
similar in form co ordinary algebra. It is especially useful for
logical anejlysis of binary nunibers as used in computers.

'BOOT' - BOOTSTRAP A machine language xerogram file that is put onto
evtry aisKette by the 'FORMAT' routine. This routing is invoked when
reset or power-on occurs. It autoiuaticaliy loads the necessary
programs (SYSG/SYS) to cause the computer to respond to the DOS
coraiTiands; i.e., the machine is 'BOOTSTRAPPED' or 'BOOTED' into
operation,

BUFFER A sn^all area of memory used for the temporary storage of
data, to be processed.

BUFFER TRACK A tracR On a diskette used for the temporary storage of
data or program material during a recovery process.

BUG A software fault that results in the malfunction of a program.
May also refer to hardware malfunctions.

BYTE Eitjht 'BITS'. A 'BYTE' may represent any numerical value
between •

tj
' and ' 255 '

.

CLOBBERED A slang term referring to the non-Operation of software,
hardware, computer device, or storage media (such as disk) usually as
the result of a program or hardware error.

COfltl/JsiD FILE A file consisting of a list of corainmands, to be executed
in sequence.

CONTIGUOUS Adjacent or adjoining,

COHTROL CODE In programming, instructions which determine conditional
jumps are often referred to as control instructions and the time
sequence of execution of instructions is called the flow of control,

CRC ERROR Cyclic Redundancy Check. A means of checking for errors by
using redundant information used primarily to check disk I/O on the

DATA BASE A collection of interrelated data stored togsther v/ithcontrolled redundancy to serve one or raore applications. The data arestoted so that they are independent of programs which use the data A
common and controlled approach is used in adding new data and inmoQifyxng and retrieving existing data within a data base. A system
ly said to contain a collection of data-based information if they are
disjoint in sttucture*

APPENDIX A

DATA BASE PIAI^.GEMEHT SYSTEI-l The collection of software required for
using a data base,

DATA ELEMENT Synonymous vjith 'DATA ITfclM' or 'FIELD'

DATA TYPE Tne forivi in which data is stored; i.e., integer, single
precision, double precision, ' alphanumeric ' character strings or
'strings'

,

DEC Initials for Directory Entry Code.

DECIMAL See 'BASE 10',

DIRECT ACCESS Retrieval or storage of data by a reference to its
location on a disk, rather than relative to the previously retrieved
or stored data,

DIRECT STATEMENT (IM FILE) A program statement that exists in tiie

disk file that is not assigned a line nuiriber

,

DIRECTORY A table giving the relationships between items of data.
Sometimes a table or an index giving the addresses of data,

DISPLACEMENT A Specified nuraber ot" sectors, at the top or beginning
of the file, in wbicn the 'bookkt^epincj ' and t ile parameters are stored
for later use by the various program nodules,

DISTRIBUTED FREE SPACE Space left eifipty at intervals in a data lay-
out to permit the possible insertion of nevj data,

DOUBLE PRECISION A positive or negative nuraeric value, IS digits in
length, not including a decimal point tEXAMPLE: 99999999999999*99).

DUMP To transfer all or part of the contents of one section of
computer memory or disk into another section, or to some other
computer device,

DYNAMIC STORAGE ALLOCATIOK The allocation of storage space by a pro-
cedure based on the instantaneous or actual demand for storage space
by that procedure, rather than allocating storage space to a

procedure based on its anticipated or predicted demand,

EATEN (DIRECTORY/DISK) Slang term. See 'CLOEBERED',

EMBEDDED POINTERS Pointers in the data records rather than in a di-
rectory-

EKTITY Something about which data is recorded.

EOF Initials for 'END OF FILE', It is com,mon practice to say that
the EOF is record number nn or that the EOF is byte 15 of sector 12

,

Hence, it is a convenient term to use in describing the location of
the last record or last byte in a file.

APPENDIX A

EXTENT A contiguous area of data storage.

FILE A collection of related records treated as a unit; The word
file is used in the general sense to rrsean any collection of
intiorraatlGnai item^fj similar to one another in purpose, form and
content.

FILE PARAHETElsS The data that describes or dtfines the structure of
the file.

FILESPEC A file specification and may include the 'FILE NAME', 'FILE
NAME EXTENSIOM', 'PASSVJORD', and 'DISK DRIVE' specification.

FIELD See 'DATA ITEM'.

FLAKY ylan9 terivi -Alludes to less than acceptable performance,

FILE AREA Tne i^hysical location of the file, on the disk, or in
memory.

'FPDE' Initials for File Primary Directory Entry; a file's entry and
iiile area pointers in the disk directory.

If

f

'E'XDE' Initials for File Extended Directocy Entry; a file's entry and
file area pointers, in the case of an overflow in the 'FPDE'.

GAT Initials for Granule Allocation Table; A table from v^hich
available file areas are assigned to file entries.

GR^^NULE unit of 5 sectors. On the TFS-80 disk operating system, a
granule' is the basic unit of disk storage allocation. The diskette
'DIRECTORY' file keeps track of tree and assigned disk space in terms
of ' granules

'

,

HASH CODE A code nuinbei: generated and used as a direct addressing
tecnnique in which the Key is converted to a pseudo-random number from
wnich the required address is derived.

HEADER RECORD A record containing cominon, constant or identifying
iiiformation for a group of records which follow.

HEXADECIMAL See ^BASE 16'

HIT Initials for Hash Index Table; an addressing technique in which a
disk file is referenced by a code number in a table, and the position
of that code in the table relates to the file entry in the directory.

INDEX A table used to determine the location of a record.

INDIRECT /\EDRESS1WG Any method of specifying or locating a storage
location whereby the Key (of itself or through calculation) does not
represent an address. For example, locating an address through
indices.

APPENDIX A

IWSTRItJG (INSTEIWG SEARCH) Refers to the capability of locating a
substring of charactets th^t niay e;tist in another character string. An
example would De: Substring = "THE" String = "NOVJ IS THE TIME" ^ An
INSTRING routine would locate the substring and return its starting
position within that string. in this example, it woulc^ return a value
of eight.

INTEGER A natural or whole number. In the TRS-80, integer values rfifiy

^not exceed the range of +32767 to ^32760-

INVERTED FILE A file structure which permits fast spontaneous
searching for previous unspecified inforraation. Independent lists or
indicQs are maintained in records' keys which are accessible according
to the values of specific fields,

INVERTED LIST A list organizQQ by a secondary key not a primary
key.

IPL Initials for Initial Program Loader; a program usually executed
upon pressing of the 'RESET' button.

KEY A data item used to identify oi: locate a record or other data
grouping.

LABEL A set Of symbols used to identify or describe an item, record,
message or file. Occasionally, it may be the same as the address in
storage,

LEAST SIGNIFICANT BYTE The significant byte contributing the smallest
quantity to the value of a numeral.

LIST An ordered set of data items. A 'chain'.

LOAD MODULE A program developed for loading into storage and being
executed when control is passed to the program.

LOCK-OUT (TRACKS) Unusable tracks, on the disk, that are not
accessible because of damage or by user option.

LOGICAL An adjective describing the form of data organization,
hardware or system that is perceived by an application program,
programmer, or user; it may be different than the real tPHVSICAL)
form.

LOGICAL DATA-BASE DESCRIPTION A schema. A description Of the
overall data-base structure, as perceived for the users, which is
employed by the data base management software.

LOGICAL FILE A file as perceived by an application program; it may
be in a completely different form from that in which it is stored on
the storage units.

APPENDIX A

LOGICAL OPERATOR A niathematiciil symbol that represents a
iiiati:5er.iaticcil t'i^'^<^<^^si:i to De perforioed on an associated operand. Such
ot'ercitorti are 'AIjd' , 'OR', 'NOT', 'AMD NOT' and 'OR NOT",

LOGICAL RECORD A record or data item aa perceived by an application
proytriiit; it rudy be in a completely different fornri from that in which
it lb stored on ciie ^jtoracje units.

LSB See LEAST SIGNIFICANT BYTE.

HAClillNE LiiNGUAGE Direct r^achine reaaable code.

UAlK^TEWAtJCE OF A FILE (1) TUe addition, deletion, changing or
UL-diiting or records in tine database. (2) Periodic reorganization of
a file to uetter accommodate items that have been added.

MOHITOR A i^royrara that may supervise the operation of another program
for oi.eration or debugging or other purposei^.

hOSV significant byte The Significant byte contributing the greatest
LjUcintity to the value of a numeral,

MSB see HOST SIGIFICANT BYTE.

HULTIPLE-KEY KETRIEVAL Retrieval which requires searches of data
Da£ied on tne values of several Key fields (some or all of which are
£3econdary keyb) .

NULL An aDsence of information as contrasted with zero or blank for
the presence ol no information.

KYBbLE Tne four rignt raost or left rfiost binary digits of a byte.

ON-'LIi^J'E An on-line system is one in v/hicti the input data enter the
coin^^uter directly fiorti tneir point of origin, and/or output data are
transjLiittea airectly co where they are used. The intermediate stages
suclj as writing tape, loading disks or off-line printing are avoided.

OH-LINE STORAGE Storaye devices and especially the storage media
wnich they contain under the direct control of a coiuputing system, not
off-line or iri a volume library.

OPEN RECORDS TABLE (CRT) A table of binary values in which the
relative position of a single value determines the status of a record
with the sairte relative position; i.e. , the Nth binary number
determines the status of the Nth record, EXAMPLE: If the 8th binary
nui-iber in the table is a zero, then the Sth record is open,
conversely, if the Sth binary nuaiber in the table is a one, then the
Bth record is on file.

0PER/\T1NG SYSTET-i Software which enables a computer to supervise its
own operations, automatically calling in programs, routines, language
and data as needed for continuous throughput of different types of
jobs.

APPENDIX A

PARITY Parity relates to the maintenance of a sameness of level or
count, i.e.r l^eepiny the same nur.iber of binary ones in a cOLiputer word
and thus be able to pe rf orm a check based on an even or odd nuniter for
all words under examination.

PHYSICAL An adjective, contrasted with logical, which refers to the
form in which data or systems exist in reality. Data is often
converted by software Irora the form in which it is physically stored
to a form in which a user or programmer perceives it.

PHYSICAL DATA BASE A data base in the form in which it is storeo on
the storage media, including pointers or other means o£
interconnecting it. Multiple logical data bases may be derived froni
one or n^ore physical data bases.

PHYSICAL RECORD A collection Of bits that are physically recorded on
the storage medium and which are read or vjr itten by one machine
input/output instruction,

POINTER The address or a record {or other data groupings) contained
in another record so that a program may access the former record when
it has retrieved the latter record. Tne address can be absolute,
relative or symbolic, hence, the pointer is referred to as absolute,
relative or symbolic.

PRIMARY ENTRY The main entry made to the directory. Also see 'FPDE',

RANDOM ACCESS TO Obtain data directly from any storage location
regardless of its position, with respect to the previously referenced
information. Also called 'DIRECT ACCESS'.

RANDOM ACCESS STORAGE A storage technique in which the time required
to obtain information is independent of the location of the
information most recently obtained.

READ To accept or copy information or data from input devices or a
memory register; i,e*, to read out, to read in,

RECORD A group of related fields of information treated as a unit by
an application program,

RELATIONAL OPERATOR A mathematical symbol that represents a
mathematical process to perform a comparison describing the
relationsnip between two values (< less than. • • . > greater than ... =

equal.. ^. <> not equal... and combinations thereof (see TRS-80 LEVEL
II manual. Section 1, Page 5), On the TRS-80 , relational comparisons
may be made on string values as well as numerical values

.

RELATIVE (as pertains to position) An address or position that is
referenced to a point of origin; i.e. X+20 is a specific positon, 20
places from the reference point. If the reference point was at 5B,
then the absolute position would be at 70 (50+20=70), Also, 50 (since
it is the starting reference point) is at relative position 0.

SCHEMA A map of the overall logical structure of a database.

APPENDIX A

SEARCH TO examine a series of items for any that have a desired
ijrot^erty or ^^ro per ties,

SECONDARY Il^iDEX An index composed of secondary keys rather than
primary keys,

SECTOR Tne si.JallGSt addressable portion of storage on a diskette (a
unit of 256 Dytes on a TRS-80 diskette).

SEIDK To position the access mechanism of a direct^access stora<^e
device at a specified location,

SEQUENTIAL ACCESS Access in vjhich records must be read serially or
sequenticiXly one after the other; i.e., ASCII files, tape.

SINGLE PRECISIOiN A positive or negative numerical value of 6 digits
in length, not including a decintal point (EXAtlPLE; 99999,9).

SORT To arrange a file or data in a sequence by a specified key (may
De aipnabetic or nufiieric and in descending or ascending order).

SOURCE CODE The text from which code that may be executed is
derived,

SYSTEM FILE A program used by the operating system to manage the
executing proyraia and/or the computer's resources,

SUB-STRINC5S SUB-STRING SEARCH See INSTRING

TABLE A collection of data suitable for quick reference, each item
beirig uniquely identified either by a label or its relative position.

TALLY To aad or subtract a digit from a quantity.

TOKEN A one byte code representing a larger word consisting of 2 or
more characters^

TRACK The circular recording surface traversed by a read/write head
on the disk. On the TRS-80 a track contains 10 sectors (2 granules),

TRAhSACTlOH An input record applied to an established file. The
input record describes sor.ie "event" that will either cause a new file
record to be generated^ an existing record to be changed or an
existing record to be deleted.

TRiVNSPARENT Complexities that are hidden from the programmers or
users {made transparent to them) by the software.

VECTOR A line representing the properties of magnitude and
direction. Since such a 'line' can be described in mathematical
terms, a mathematical description (expressed in numbers, of course) of
a given 'airection' and 'iriagnitude' is referred to as a "vector".

APPENDIX h

VERIFY To check a aata transfer or transcription.

V/ORKIiMG STOR/iGE A portion of storage, usually coiiiijuter r.iain r-iemory,

reserved tor the teraporary results oi: operations.

WRITE To record irifotmation on a storage device.

SAP To change a byte or bytet^ o£ clat^ in memory or on diskette by

using a software utility program

.

SEROBITh ^eroeth i& to 'fci' as first is to '1'; in computer terms the
first position ot anythiny is usually uescribed as the ' zeuoeth' and
the next position is the 'tirtit' and so on.

9

APPENDIJi a

II LEVEL II 'BASIC TOKEIMS'

Procjrani stateinents, in LEVEL II and DISK
meiacry as they aue tyj^ed and viewecl
instance 'PRIt^JT' is stored as the single byte character: "?".
tollowiny in a list oL LEVEL II TOKENS in the following forraat:

BASIC are not stored in
on the video display. For

The

HEX-DECIMAL BASIC KEYWORE»

m~i2B EWD AA-17 KILL D4-212 >
til-129 FOR AB-i71 LSET D5-213 =
82-13 RESET AC -17

2

RSET D6-214 <
83-131 SET AD-17 3 SAVE D7-2a5 SGN
B4-132 CLS AE-17 4 SYSTEtl D8-216 IMT
85-133 Ct'iD AF-175 LPRINT D9-2I7 ABS
86-134 RAIJDOM B0-176 DBF DA- 21

8

FRE
87-135 NEXT Bl-17 7 POKE DB-219 IIMP
88-136 DATA B2~17 8 PRINT DC-220 POS
89-137 INPUT B3-17S CONT DD-221 SQR
Bh-Ub DIFi B4-186 LIST DE''222 RHD
8B-139 READ B5-181 LLIET DF-223 LOG
8C-14tl LET B6-ia2 DELETE E0-22 4 EXP
8D-141 GOTO B7-183 AUTO Ei-225 COS
8E-14 2 RUN B8-184 CLEAR E2-226 SIN
8P-143 IF B9-185 CLOAD E3-227 TAN
90-144 RESTORE BA-186 CSAVE E4-228 ATN
91-145 GOSUB BB-187 NEW E5-229 PEEK
92-146 RETURN BC-i88 TAB E6-23 CVI
93 147 REK BD-189 TO E7-231 CVS
94-148 STOP BE-190 FN E8-23 2 CVD
95-145 ELSE BF-19I USING E9-233 EOF
96-15W TROH Ct)-192 VARPTR EA-23 4 LOC
97-151 TEOFF 01-193 USR EB-235 LOF
98-152 DEFSTR C2-19 4 ERL EC-236 MKI$
99-153 DBFIMT C3-19 5 ERR ED-237 MKS$
9A-15 4 DEFSNG C4-196 STRING? EE-238 MKD$
9B-155 DEFDBL C5-19 7 IKSTR EP-239 CI NT
9C-156 LINE C6-19 8 POINT F0-240 CSNG
9D-157 EDIT C7-199 TIME$ Fl-241 CDBL
9E-158 ERROR C8-200 WEM F2-242 FIX
9F-159 RESUME C9-201 IMKEY$ F3-243 LEN
A0-160 OUT CA-20 2 THEN F4-244 STR?
Al-161 OM CB-20 3 NOT F5-245 VAL
A2-162 OPEN CC-20 4 STEP F6-246 ASC
A3 -16

3

FIELD CD-20 5 + F7-247 CHR?
A4-164 GET CE-20 6 - F8-248 LEFT$
A5-165 PUT CF-207 * F9-24 9 RIGHT$
A6-16 6 CLOSE F0-20 8 / FA-25 MID?
A7-167 LOAD Dl-209 (UP ARROW) FB-251 **
A8-16 8 MERGE D2-210 AWD FC-25 2 **
A9-169 NAME * * D3-211 OR FD-253

FE-254
**
* *

** = l^OT USED BY SYSTEM PF-255 ISA **

10

APPEtiDIX A TRS DOS 2,2 DIRECTOEY

^-^GAT SECTOR^

311000 FFFF FFFF FPPC PCFC FCFC
311010 FFFF FFFF FFFF FFFF FFFF
311020 FCFC FCFF FFFF FFFF FFFF
311030 FFFF FFFF FFFF FFFF FFFF
311040 FFFF FFFF FFFF FFFF FFFF
311050 FFFF FFFF FFFF FFFF FFFF
311060 FCFC FCFC FCFC FCFC FCFC
311070 PCFC FCFC FCFC FCFC FCFC
311080 FCFC FCFF FFFF FFFF FFFF
311090 FFFF FFFF FFFF FFFF FFFF
3110A0 FFFF FFFF FFFF FFFF FFFF
3110B0 FFFF FFFF FFFF FFFF FFFF
3110C0 FFFF FFFF FFFF FFFF FFFF
3110D0 5452 5344 4F53 2020 3035
3110E0 0D0D FFFF FFFF FFFF FFFF
3110F06 FFFF FFFF FFFF FFFF FFFF

;Xic(UEe Al.i;

FCFC FEFF FFFF
FFFF FFFF FFFF
FFFF FFFF FFFF
FFFF FFFF FFFF
FFFF FFFF FFFF
FFFF FFFF FFFF
FCFC FCFC FCFC
FCFC FCFC FCFC
FFFF FFFF FFFF
FFFF FFFF FFFF
FFFF FFFF FFFF
FFFF FFFF FFFF
FF2i 0000 E042 ! . . .B
2F32 312F 3739 TRSDOS. . 05/21/79
FFFF FFFF FFFF
FFFF FFFF FFFF4 -

Relative sector 0, track 11
35 track TRSDOS 2.2
Master disk ijas sword ' HASH' code = Ee42

;hit sector)"

311100
311110
311120
311130
311140
311150
311160
311170
311180
311190
3111A0
3111B0
31ilC0
3111D0
3111E0
3111F06

A22C
0000
280
0000
P2C5
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

2E2F
0000
0000
0000
0074
0000
00E3
0000
0000
0000
0000
0000
0000
0000
0000
0000

^^^^^^^-^^^^^^^—^^H figure Al.?]

2C2D 2A2B 0000 0000 0000 0000 .,./,-*+.
13000 00S0 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 (,,..
0000 0000 0000 0000 0000 0000
006C 0000 00G0 0000 0000 0000
0000 0000 0000 0000 0000 0000
F069 0000 0000 0000 0000 0000
e000 0000 0000 0000 6000 0000
G000 0000 0000 0006 0000 0000
0000 0000 0000 0000 0000 0000
0080 0000 0000 0000 0000 0000
G000 0000 0000 0000 0000 0000
007C 4B00 0000 0000 0000 0000 K..
0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000

Relative sector 1, track 11

A2 = BOOT/SYS
28 = SYS6/SyS
F2 = FORI'lAT/CHD
2C = DIR/SYS
C5 = BACKUP/Ct4D
2E = SYS0/SYS

2F
74
E3
2C
F0
2D

SYSl/SYS
TESTl/CHD
TEST2/BAS
SYE2/SYS
BASIC/CMD
SYS3/SYS

6C = BASICR/CMD
69 = GETDISK/BAS
80 = DISKDUMP/BAS
7C = GETTAPE/BAS
2A = SYS4/SYS
4B = TAPEDISK/CMD
2B = SYSS/SYS

11

APPEiSIDIX A TKS DOS 2.2 DIEECTOEY

^^^FP

311200

DE/FXDE SECTOK 1)^^

5E00 0000 0042 4F4F
607F 1FB2 0500 0000
5F00 0000 0053 5953
EB29 2I0E 0F00 1322
1E00 0000 0046 4F52
582F 9642 0F00 0202
0000 0000 0000 0000
0000 00^0 ^%%0 0060
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000

e sector 2

5420
FFFF
3620
FFFF
4D41
FFFF
0000
0000
0000
0000
0000
0000
0000
0000
6000
0000

2020
0000
2020
FFFF
5420
FFFF
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

2053
0000
2053
FFFF
2043
FFFF
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

5953 ,.

ire A1.3^^^H

. , .BOOT. • • .SYS
311210 0000 ..

311220
311230
311240
311250
311260

5953 ..
FFFF ,)

4D44 ..

FFFF ./
0000 ,.

.. .SYS6 SYS
1 "

. . .FORMAT. .CMD

311270 0000 ..
311280 0000 ..
311290 0000 ..
3112A0 0000 ..
3112B0 0000 ..

3112C0 0800 ..

3112D0 0000 ..
3112E0 0000 .

.

3112F06 0000 ,.

Relativ

BOOT/SYS
SYS5/SYS
FOEI'iAT/CHD

1 1-H-.

= TRACK 00, Si
= TR/iCK 13, SI
= TRACK 02, SI

DE/FXDt; SECTOR :

5D00 0000 0044
A71D F9E5 0A00
0000 0000 0000
0000 0000 0000
1G00 0000 0042
ACAB 9642 0F00
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000

e sector 3

iCTOR
VICTOR
:;CTOR

5

jre Al.4)^^^^

.. .DIR SYS311300
311310

4952
1101
0000
0000
4143
0322
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

2020
FFFF
0000
0000
4B55
FFFF
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

2020
0000
0000
0000
5020
FFFF
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

2053
0000
0000
0000
2043
FFFF
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

5953 ,.

0000 .-
311320 ti000 . .

311330 ^'000 ,.
311340 4D44 ., . , .BACKUP. .CMD
311350 FPFF -

.

.B, . ."

311360 0000 ..
311370
3113B0

0000 „
0000 ,

,

311390
3113A0

0000 .•.

0000 ,,
3113B0 0000 - ,

.

3113C0
3113D0

0000 .,
0000 , , .

3113H0 0000 ...
3113F06 0000 .,,

Relativt

DIR/SYS = TRACK 11, SECTOR
BACKUP/CMD = TRACK 03, SECTOR 5

12

APPEKDIX A TRS DOS 2.2 DIRECTORY

311400
311410
311420

DE/FXDE SECTOR :

5Fe0 0000 0053
EB29 210E 0F00
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000

e sector 4

5953
0022
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

3020
FFFF
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

2020
FFFF
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

2053
FFFF
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
000e
0000

5953
FFFF
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
B000

igure Al.5)^^^^

.)! "

311430
311440
311450
311460
311470
311480
311490
3114A0
3114B0
3114C0
3114D0
3114E0
3114F06

Relativ

SYS0/SyS = TRACK 00, SEC

DE/FXDE SECTOR i-

5F00 0000 0063
EB29 210E 0500
0000 0000 0000
0000 0000 0000
1000 0000 0054
9642 9642 0600
1000 0097 0054
9642 9642 3900
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000

5 sector 5

:tor 5

^^^^^^ F

311500
311510

5953
1000
0000
0000
4553
1501
4553
0C26
0000
0000
0000
0000
0000
0000
0000
0000

3120
FFFF
0000
0000
5431
FFFF
5432
1603
0000
0000
0000
0000
0000
0000
0000
0000

2020
FFFF
0000
0000
2020
FFFF
2020
1D00
0000
0000
0000
0000
0000
0000
0000
0000

2053
FFFF
0000
0000
2043
FFFF
2042
FFFF
0000
0000
0000
0000
0000
0000
0000
0000

5 9 53
FFFF
0000
0000
4D44
FFFF
4153
FFFF
0000
0000
0000
0000
0000 .

0000 .

0000 ,

0000 ,

311520
311530
311540
311550
311560
311570
311580

TEST1...CHD

311590
3115A0
3115B0
3115C0
3115D0
3115E0
3I15F06

Relative

SYSl/SYS
TESTl/CHD
TEST2/BAS

= TRACK 10, SECTOR
= TRACK 15, SECTOR
= TRACK 0C, SECTOR 5

13

APPENDIX A TRS DOS 2,2 DIRECTORY

311600
311610
311620

DE/FXDE SECTOR
1

5F00 0000 0053
EB29 210E 0500
0000 0000 0000
0000 0000 0006
0000 0000 0000
0000 000tJ 0000
1E00 0000 0042
782F 9642 1400
0000 000e 0000
0000 000ti 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000

e sector 6

5953
1020
0000
0000
0000
0000
4153
1903
&000
0000
0000
0000
^000
0000
0000
0000

3220
FFFF
0000
0000
0000
0000
4943
FFFF
0000
0000
0000
0000
0000
0000
0000
0000

2020
FPFF
0000
0000
0000
0000
2020
FFFF
0000
0000
0000
0000
0000
0000
0000
0000

2053
FFFF
0000
0000
0000
0000
2043
FFFF
00EI0
0000
0000
0000
0000
0000
0000
0000

5953
FFFF
0000
0000
0000
0000
4D44
FFFF
0000
0000
0000
0000
0000
0000
0000
0000

ig

• *

ure Al. /)—

,SYS
• • • •

311630
311640
311650
311660

. • BASIC.

.

.CMD
311670
311680

./ • • • •

311690
3116A0
3116B0
3116C0
3116D0
3116E0
3116F06

Reiativ.

£iYB2/SyS
BASIC/CHD

f FPl

= TRACK 10, SI
- TRACK 19 , SI

DE/FXDE SECTOR t

5F00 0000 6053
EB29 2a0E 0500
0000 0000 000C
0000 0000 0000
1E00 00013 0042
7S2F 9642 1700
1000 0005 0047
9642 9642 0700
0000 0000 0e0tJ
0000 0000 0000
1000 00CF 0044
9642 9642 0300
1000 0&AE 0047
9542 9642 0500
0000 0000 0000
0000 0000 0000

; sectot 7

VICTOR
zcroR

5

1 •-

igi

311700 5953
1200
0000
0000
4153
1D24
4554
1B01
0000
0000
4953
1820
4554
1C01
0000
0000

3320
FFFF
0000
0000
4943
FFFF
4449
FFFF
0000
0000
4B44
FFFF
5441
FFFF
0000
0000

2020
FFPP
0000
0000
5220
FFFF
534B
FFFF
0000
0000
554D
FFFF
5045
FFFF
0000
0000

2053
FFFF
0000
0000
2043
FFFF
2042
FFFF
0000
0000
5042
FFFF
2042
FPFF
0000
0000

5953
FFFF
0000
0000
4D44
FFFF
4153
FPFF
0000
0000
4153
FFFF
4153
FFFF
0000
0000

ire Al , b ^"

tSYS
311710
311720

.) <
• * 4 *

311730
311740 - . ,BASICR, . CMD
311750
311760

./.

. . .GETDISK
« • 4 *

.BAS
311770
311780

.B. • • * *

311790
3117A0

. • .DISKDUMPR^i^
31I7B0
3117C0

.B. B
, . .GETTAPE

• « «

• BAS
3117D0
3117S0

.B. * * •

3117F06

Relative

bYS3/SyS = TRACK 12, SECTOR
BASICR/CMD = TRACK 10, SECTOR
GETDISK/BAS = TRACK IB, SECTOR
DISKDUMP/BAS = TRACK IS, SECTOR
GETTAPE/BAS = TRACK IC, SECTOR

5

5

14

APPENDIX h TRS DOS 2.2 DIRECTORY

^^^FP]

311800
311S10
311820
311830

DE/FXDB SECTOR 7)^^

5P0O 0000 0053 5953
EB29 210E 0500 1220
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
1000 0000 0054 4150
9642 9642 0200 1S00
0000 0000 0000 0000
0000 0000 0000 0000

2 sector 8

3420
FFFF
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
4544
FFFF
0000
0000

2020
FFFF
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
4953
FFFF
0009
0000

2053
FFFF
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
4B43
FFFF
0000
0000

0000
000G ,

311840 0000
311850 0000
311860 0000
311870 0000
311880 0000
311890 0000
31iaA0 0000 , . . .

.

3118B0 0000
3118C0
3118D0
3118E0

4D44
FFFF .B.B.
0000 .

.TAPEDISKCMD

31iaF06 0000

Relativi

SYE4/SYS
TAPEDISK/CHl

= TRACK 12, i

D = TRACK 18, i

DE/FXDE SECTOR (

5F00 0000 0053
EB29 210E 0500
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000

3 sector 9

jECTOK 5
SECTOR

,SY£5..-.£YS

^^^^^^ r It J

311900
311910
311920
311930

5953
1300
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

3520
FFFF
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

2020
FFFF
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

2053
FFFF
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

5953
FFFF .) 1 . .

0000
0000 , , , , -

311940 0000 , , , ,

,

311950 0000 . , . . .

311960
311970

0000
0000 • . . .

,

311980 0000
311990 0000 , . - .

.

3119A0 0000
3119B0 0000
31i9C0 0000
3119D0 0000
3119E0 0000
3119F06 0000

Relativf

SYS5/SyS ~ TRACK 13, SECTOR

15

APPEtJDlX A HEW DOS 2.1 DIRECTORY

311000

T SECTORF^

FFFF FFFF
FFFF FFFF
FFFF FFFC
FFPF FFFF
FFFF FFFF
FFFF FFFF
FCFC FCFC
FCFC FCFC
FCFC FCFC
FFFF FFFF
FFFF FFFF
FFFF FFFF
FFFF FFFF
4E45 5744
0D0D 2020
2020 2020

FFFF
FFFF
FCFC
FFFF
FFFF
FFFF
FCFC
FCFC
FCFC
FFFF
FFFF
FFFF
FFFF
4F53
2020
2020

FFFF
FFFF
FCFC
FFFF
FFFF
FFFF
FCFC
FCFC
FCFC
FFFF
FFFF
FFFF
PFFF
3430
2020
2020

FFFF
FDFF
PFFF
FFFF
FFFF
FFPF
FCFC
FCFC
FFFF
FFFF
FFFF
FFFF
FFFF
3034
2020
2020

FFPF
FFFF
FFFF
FFFF
FFFF
FPPP
FCFC
FCPC
FFPF
FFPF
FFFF
FFFF
FF21
2F33
2020
2020

FEFD
FFFF
FFPF
FFFF
FFFF
FFPP
FCFC
FCPC
FFPP
FFPF
FFFF
FFPF
0000
312F
2020
2020

FEFD
FFFF
FFPF
FFFF
FFFF
FFPF
FCFC
FCPC
FFPF
FFPF
FFFF
FFPF
E042
3739
2020
2020

igure A2,l^^

311010
311020
311030
311040
311050
311060
311070
311080
311090
3110A0
3110B0
3110C0
3110D0
3110E0
31I0F06

NEKDOS4004/31/79

Relative sector &, track 11
40 track HBW DOS+
Kaster disk password 'HASH' code = E042

^^^^^^ TT T rp CE'i^r^/^T:>^^^

311100 A22C 2E2P 2C2D 2A2B 0000 0000 0000 0000 . , ./r~*+
311110 0000 0000 0000 0000 0000 0000 0000 0000
311120 2800 0000 0A7 26 A6 0000 0000 0000 0000 { &

311130 0000 0000 0000 0000 0000 0000 0000 0000
311140 F200 0000 0000 0000 0000 0000 0000 0000
311150 0000 0000 0000 0000 0000 0000 0000 0000
311160 0000 0000 0500 0000 0000 0000 ^000 0000
311170 0000 0000 0000 0000 0000 0000 0000 0000
311180 8055 0eE£ 0000 0000 0000 0000 0000 0000 .U
311190 0000 0000 0000 0000 0000 0000 0000 0000
3111A0 F000 0000 4632 0089 0000 0000 0000 0000 F2
3iIlB0 0^00 0000 0000 0000 0000 0000 0000 0000
3iaiC0 6F67 0000 0000 0000 0000 0000 0000 0000
3111D0 0000 0000 0000 0000 0000 0000 0000 0000
3111E0 0000 0079 0000 0000 0000 0000 0000 0000
3111F06 0000 0000 0000 0000 0000 k)000 0000 0000

Relative sector 1 track. 11

A2 = BOOT/SYS 2E = SYSB/SYS 89 = EDTASM/CMD
28 = SYS6/SYS 2F = SYSl/ SYS 2D = SYS3/SYS
F2 = FORI-lAT/CIiD EE = DIECHECK/CHD A7 = GYSll/SYS
Hid = DIBKDUHP/CMD 79 = SUPER2AP 32 = LHOFFEET/CMD
6F = BASIC/CMD 2C = SYS2/SYS 2A = SYS4/EYS
2C = DIR/SYS 05 = SUPERZAP/COM 26 = SYS12/SYS
55 = LEVELl/CHD 46 = DISASSEM/CMD 2E = SYSS/EYS
67 = COPY/CI-lp A6 = GYS13/SY6

16

APPEKDIX A NEK DOS 2.1 DIRECTORY

;fpde/fxde sector i; ^^^^^^^^^H^^^^^^ f i 9 u r &

311200 5E00 0060 8642 4E4F 5420 2020 2653 5953 BOOT. ...SYS
311210 607F 1FB2 0500 0000 FPPF 0E0e 0600 000B
311220 5F00 0&21 0053 5953 3620 2020 2653 5953 ...!.SYE6 SYS
311230 EB29 216E eE00 1322 FFFF FFFF FFFF FFFF .)! "

311240 1E00 0008 0046 4F52 4D41 5420 2043 4D44 FOKMAT. . CMD
311250 8130 9642 0F00 0202 FFFF FFFF FFFF FFFF .0.B
311250 0000 0000 0000 0000 0000 0000 0000 0006 ,

311270 0000 0000 0000 0000 0000 0000 0000 0000
311280 1000 [ii0F2 0044 4953 4B44 554D 5042 4153 DISKDUliPBAS
311290 9642 9642 0A00 0B01 FFFF FFFF FFFF FFFF .B.B ,

3112A0 1E00 0077 0042 4153 4943 2020 2043 4D44 BASIC. ..CMD
3112B0 8130 9542 1400 0322 0920 FFFF FFFF FFFF .0.B "

3112CtI 1000 00SD 004C 5631 4453 4B53 4C43 4D44 LVIDSKSLCHD
3112D0 9642 9642 0300 OF00 FFFF FFFF FFFF FFFF .B.B
3112E0 0000 0000 0000 0000 0000 0000 0000 0000
3112F06 6000 0000 0000 0000 0000 0000 0000 0000

Relative sector 2

BOOT/SYS
SYK6/SYS
FOEMAT/CHD
DISKDUMP/BAS
BASIC/CI4D

TRACK
TRACK
TRACK
a'RACK
TRACK
TRACK

00,
13,
02,
0B,
03,
09,

SECTOR
SECTOR
SECTOR
SECTOR
SECTOR
SECTOR

{ EXTENT
C EXTENT

1)

2)

;fpde/fxde sector 2] ^^^^^^^^^^^i^^^l figure A2.4;

311300 5D00 0000 0044 4952 2020 2020 2053 5953 DIR SYE
311310 A71D F&E5 0A00 1101 FFFF 0000 0000 0000
311320 0000 0000 0000 0000 0000 0000 0000 0000
311330 000fei 0000 0000 0000 0000 0000 0000 0000
311340 0000 0000 0000 0000 0000 0000 0000 0000
311350 0000 0000 0000 0000 0000 0000 0000 0000
311360 0000 0000 0000 0000 0000 0000 0000 0000
311370 a00t' 0000 0000 0000 0000 0000 0000 0000
311380 1006 0000 004C 4556 454C 3120 2043 4D44 LEVELl . . CHD
311390 9642 9642 1300 0521 0900 0A00 FFFF FFFF .B.B...!
3113A0 000t 0000 0000 0000 0000 0000 0000 0000
3113B0 0000 0000 0000 0000 0000 0000 0000 0000
3113C0 1E00 00FD 0043 4F50 5920 2020 2043 4D44 COPY CMD
3113D0 8130 9642 0500 0620 FFFF FFFF FFFF FFFF .0.B
3113E0 0000 0000 0000 0000 0000 0000 0000 0000
3113F06 0000 0000 0000 0000 0000 0000 0000 0000

Relative sector 3
UUNHHUlin

DIR/SYS
LEVELl/CMD

COPY/CMD
17

TRACK
TRACK
TRACK
TRACK
TRACK

11.
05,
09,
0A,
06,

SECTOR
SECTOR
SECTOR
SECTOR
SECTOR

5

5

(EXTENT 1}
(EXTENT 2)

(EXTENT 3)

APPENDIX A NEW DOS 2,1 DIRECTORY

311400
311410
311420

DE/FXDE SECTOR 3>i^"

5F00 005D 0053 5953
EB29 210E aD00 6022
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000

e sectoc 4

3020
FFFF
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

2020
FFFF
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

2053
FFFF
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
.0000
0000
0000

5953
FFFF
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

igure A2.5>"i"^^

SYS0.. ..SYS
.) I "

311430
311440
311450
311460
311470
311480
311490
3114Ay
3114B0
3114C0
3il4D0
3114E0
3114F06

E.elativ.

tiYS0/SYS = TRACK 00, SE(

DE/FXDE SECTOR ^

5F00 008E 0053
EB29 210E 0500
0000 0000 0000
0000 0000 0000
0000 0000 0000
ti0S0 0000 0000
0000 0000 0000
0000 0000 0000
1000 00EC 0044
9642 9642 0D00
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
1000 eSSA 0053
9642 9642 3600

£ sector 5

:tor 5

'
--

SYSl SYS
.} 1

311500
311510
311520

5953
1000
0000
0000
0000
0000
0000
0000
4952
0D00
0000
0000
0000
0000
5550
1905

3120
FFFF
0000
0000
0000
0000
0000
0000
4348
0E20
0000
0000
0000
0000
4552
1P20

2020
FFFF
0000
0000
0000
0000
0000
0000
4543
0500
0000
0000
0000
0000
5M1
2023

2053
FFFF
0000
0000
0000
0000
0000
0000
4B43
FFFF
0000
0000
0000
0000
5020
FFFF

5953
FFFF
0000
0006
0000
0000
0000
0000
4D44
FFFF
0000
0000
0000
0000
2020
FFFF

311530
311540
311550
311560
311570
311580
311590
3115A0

DIRCHECKCICi

3115B0
3115C0
3il5D0
3aa5E0
3ai5F06

Eelativt

SUPERZAP..,

SYSl/SYS = TRACK 10, SECTOR
DIRCHECK/CMD = TRACK 0D, SECTOR

TRACK 0E, SECTOR
TRACK 05, SECTOR

SUPER2AP = TRACK 19, SECTOR
TRACK IF, SECTOR
TRACK 20, SECTOR

(EXTENT 1)
5 (EXTENT 2)

(EXTENT 3}
(EXTENT 1)

5 (EXTENT 2)
5 (EXTENT 3)

18

APPENDIX A NEt] DOS 2.1 DIRECTORY

IFPDE/FXDE SECTOR S]* ^figure A2.7]

311600 5Fe0 0034 0053 5953 3220 2020 2G53 5953 . . , 4 , SyS2 SYS
311610 EB29 210t; 0500 1020 FFFF FFFF FFFF FFFF .)!
311620 0000 0000 0000 0000 0060 000& 0000 0000
311630 0000 0000 0000 0000 0000 0000 0600 0000
311640 0000 0000 0000 0006 0000 0000 000B 0000
311650 0000 0000 0000 0000 0000 0E00 0000 000G
311660 1000 00BD 0053 5550 4552 5A41 5043 4F4D SUPERZAPCOM
311670 9642 9642 1A00 1523 0A20 1500 FFFF FFFF ,E.E...#
311680 0080 00©0 0000 0000 0600 0000 0000 0000
311690 0000 0000 0000 0000 0000 0000 0000 0000
3116A0 1000 0086 0044 4953 4153 5345 4D43 4D44 DISASSEt-lCMD
3116B0 9642 9642 1400 0703 FFFF FFFF FFFF FFFF .B.B
3116C0 0000 0000 0000 0006 0000 000B 0000 0000
3116D0 0000 0000 0000 0000 0000 000ti 0000 0000
3116Ee 0000 0000 0000 0000 0000 0000 0000 0000
3116F06 0000 0000 0000 0000 0000 0000 0000 0000

Relative sector 6

SYS2/SYS
SUPERZAP/COM

DISASSEM/CMD =

TRACK
TRACK
TRACK
TRACK
TRACK

10,
15,
0A,
15,
07,

SECTOR
SECTOR
SECTOR
SECTOR
SECTOR

(EXTENT
(EXTENT
(EXTENT

1)

2)

3}

[FPDE/FXDE SECTOR 6)" .figure A2

311700 5F00 004C 0053 5953 3320 2020 2053 5953 ...L.SYS3 SYS
311710 EB29 210E 0500 1200 FPFF FFFF FFFF FFFF .)I
311720 5F00 00EC 0053 5953 3131 2620 2053 5953 SYS11...SYS
311730 EB29 210E 0500 2000 FFFF FFFF FFFF FFFF .)!
311740 0000 0000 0000 0000 0000 0000 0000 0000
311750 0000 0000 0000 0000 0000 0000 0000 0000
311760 0000 0000 0000 0000 0000 0000 0000 0000 ,

311770 0000 0000 0000 0000 0000 0000 0000 0000
311780 0000 0000 0000 0000 0000 6000 0000 0000 ,

311790 0000 0000 0000 0000 0000 6000 0000 0000 ,

3I17A0 1000 00E0 004C 4D4F 4646 5345 5443 4D44 LHOFFSETCMD
3117B0 9642 9642 0700 1721 FFFF FFFF FFFF FFFF .B.B !

3117C0 0000 0000 0000 0000 0000 0000 0000 0000
3117D0 0000 0000 0000 0000 0000 0000 0000 0000
3117E0 0000 0000 0000 0000 0000 0000 0000 0000
3117F06 0000 0000 0000 0000 0000 0006 0000 0000

Relative sector 7

SYS3/SYS
SYSll/SYS
LMOFFSET/CMD

TRACK 12, SECTOR
TRACK 20, SECTOR
TRACK 17, SECTOR 5

19

APPENDIX A NEtV DOS 2.1 DIRECTORY

311800
311810
311820
311830
311840

DE/FXDE SECTOR
"

5F00 00BA 0053
EE29 210E 0500
5F00 00A4 0053
EB29 210E 0500
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
6000 0000 0000
0000 0000 0000
0000 0000 0000
0000 01^00 0000
0000 0000 0000

e sector 8

')^^^

5953
1220
5953
2220
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

3420
FFFF
3132
FFFF
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

2020
FFFF
2020
FFFF
0000
0000
0000
0000
t)000

0000
0000
0000
0000
0000
0000
0000

2053
FFFF
2053
FFFF
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

5953 SYS4 SYS
FFFF .) !

5953 SYS12.,.SYS

0000
311860 0000 , . .

,

311860 0000
311870 0000
311880 0000
311890 0000
3118A0 000
3118B0 0000
311OC0 0000
3118D0 0000 ,

31iefi0 0000 , . .

.

3118F06 0000

RelatiV'

SYS4/SYS
SYS12/SYS

311900
311910
311920
311930
311940

= TRACK 12, ;

= TRACK 22, :

DE/FXDE SECTOR)

5rw0 00CB 0053
EB29 210E 0500
5F00 0009 0053
BB29 210E 0400
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
1000 009A 0045
9642 9642 2000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000

s sectoi: 9

SECTOR 5

5ECT0R 5

•SYS5. ., ,SYS

.SYS13,„SYS

5953
1300
5953
0C20
0000
0000
0000
0000
0000
0000
4454
1C06
0000
0000
0000
0000

3520
FFFF
3133
FFFF
0000
0000
0000
0000
0000
0000
4153
FFFF
0000
0000
0000
0000

2020
FPPF
20213

FFFF
000G
0000
0000
0000
0000
0000
4D20
PPPP
0000
0000
0000
0000

2053
FPPP
2053
FFFF
0000
0000
0000
0000
0000
0000
2043
FPFP
0000
0000
0000
0000

^^^V L i y U IT e

5953
FPFP 1.

5953 ,...
FFFF .) 1

.

0000 .-».
311950 0000 - - ,

•

311960 0000 , 4 * •

311970 0000 • . .

.

311980 0000 • . .

.

311990 0000 •,•-
3119A0
3119B0
3119C0

4D44 •...
FFFF ,B.B,
0000

.EDTASM. -CMD

3119D0 0000 • . .

,

3119E0 0000 * * ,

•

3119F06 0000 •..•

Eelativi

SYS5/SYS
SYS13/SYS
EDTASM/CMD

= TRACK
= TRACK
= TRACK

13, SECTOR
00, SECTOR 5
IC, SECTOR

20

APPEMDIX A VTOS 3.0 DIRECTORY

;gat SECTOE^^^^^^^^^^-^^^^^^^-^-^figure A3.1

311000
311010
311^20
311030
311040
311050
311060
311070
311080
311090
3110A0
3110B0
3110C0
3110D0
3110^0
3110F06

FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FCFC
FCFC
FCFC
FFFF
FFFF
FFFF
FFFF
5654
4348
2£)20

FFFF
FFFF
FDFF
FFFF
FFFF
FFFF
FCFC
FCFC
FCFF
FFFF
FFFF
FFFF
FFFF
4F53
414 9

2020

FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FCFC
FCFC
FFFF
FFFF
FFFF
FFFF
FFFF
3 A3 3
4B2e
202e

FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FCFC
FCFC
FFFF
FFFF
FFFF
FFFF
FFFF
2E30
4S4E
2020

FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FCFC
FCFC
FFFF
FFFF
FFFF
FFFF
FFFF
3038
4954
2020

FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FCFC
FCFC
FFFF
FFFF
FFFF
FFFF
FF30
2F3e
BD20
2020

FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FCFC
FCFC
FFFF
FFFF
FFFF
FFFF
0000
322F
2i)2i}

2020

FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FCFC
FCFC
FFFF
FFFF
FFFF
FFFF
E042 0. . .B
3739 VT0E:3. 008/02/7$
202t) CHAIN. INIT
2020

Relative sector Q,
35 track VTOS 3.0
Master disk passwor

a

tcacti 11

'HASH' code = EiiA2

;HIT SECTOR)

311100
311110
311120
311130
311140
311150
311160
311170
311180
311190
3111A0
3111B0
3111C0
31ilD0
3111E0
311iF06

A2C4
0000
2829
0000
F2C5
0600
7 EDO
0000
0000
0000
00A1
0000
DA00
0000
0000
0000

2E2P
0000
26 27
0000
E105
0000
00F3
0000
00CB
0000
0000
0000
0000
0000
0000
0000

2C2D
0000
0000
0000
6A40
0000
EDGE
0000
0000
0000
0000
0000
0000
0000
0000
0000

2A2B
0000
0000
0000
6C2A
0000
5E9D
0000
0000
0000
0024
0000
0000
0000
600

^^^^^^^^^^^^ figure A3. 2]

0000 6000 0000 0000 .../.-*+.
0000 0000 0000 0000
0000 0000 0000 0000 ()&'
0008 0000 0000 0000
0000 0000 0000 0000 @.*.
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000 ¥.

0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
000B 00B0 0000 0000
0000 0000 0000 0000

Relative sector 1, track 11

A2
28
F2
7E
DA
C4
29
C5
D0
Al

BOOT/SYS
SYS6/SYS
FORMAT/CMD
VTCOMM/CHD
BASIC/KSM
DIR/SYS
SYS7/SYS
BACKUP/CMD
COMMAND/DOC
NEWDSER/KSM

21

2E = SYS0/SYS 2D
26 = BYS8/SYS 40
El = PATCH/CMD CE
2F = SYSl/SYS 2A
27 = SYS9/SYS 6C
05 = DOLC/DVR 5E
F3 = V'fOS/EPT 6C
CB = FEATURES/DOC 2B
2C = SYS2/SYS 2A
6A ^ PR/DVR 9D
BD = VTOS/KSM 24

SYS3/SYS
KS23 2/DVR
BASIC/DOC
SYS4/SYS
KSn/DVR
PENCIL/FIX
INIT/JCL
SYS5/SYS
KSR/CMD
GENERAL/DOC
UTILITY/DQC

^^^^FP

APPBNJI.^, .A
'

DE/FXDE SECTOR
.

5E00 0000 y042
607F 1FB2 0500
5F00 0000 0053
EE29 210B 1E06
1E00 0000 0046
2A5F 9642 0F00
1E00 0001ci 0056
2A5F 9642 0A0e
00013 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
1000 007A 0042
9642 9642 0100
0000 0000 0000
0G00 0000 G00e

e sector 2

^riCS 3.0 iDIRECTORY

' !

riguri r ^ -^ ^_

3112t'0 4F4F 5420
0000 FFFF
5953 3620
1325 FFFF
4F52 4D41
0202 FFFF
5443 4F4D
0801 FFFF
0000 0000
0000 0000
0000 0000
0000 0000
4153 4943
0900 FFFF
0000 0000
0000 0000

2020
6000
2020
FFFF
5420
FFFF
4D20
FFFF
0000
0000
0000
0000
2020
FFFF
0000
0000

2053
0000
2053
FFFF
2043
FFFF
2043
FFFF
0000
0000
0000
0000
204B
FFFF
0000
0000

5953
0000
5953
FFFF
4D44
FFFF
4D44
FFFF
0000
0000
0000
0000
534D
FFFF
0000
0000

-BOOT, .

,

.SYS
311210
311220
311230

* • • • .SYS6... ,SYS

311240 -FORI^IAT. -CMD
311250 *. .B,
311260 .VTCOt'iM. •CMD
311270 *• .S,
311280
311290
3112A0
3112B0
3112C0
3112D0
3112li;0

.B^B.
.BASIC*

.

.KSM
• • • •

3112P06

Keiafciv

SYS6/t;YS
FORiJAT/Cl-iD

VTCOi-ili/CMD
BASIC/KEi'I

= TRACK 00, iSl

= TRACK 13, SI
- TRACK 02, SI
= TRACK 08, SI
= TRACK 09 , SI

DE/FXDE SECTOR :

5D00 0000 0044
A71D 9642 0A00
5F00 0000 0053
EB29 210E 0500
lEe0 0000 0042
2A5F 9642 0F00
1000 00DF 0043
9642 9642 3700
0000 0000 0&QQ
0000 0000 0000
1000 008S 004E
9642 9G42 0500
0000 0000 0000
0000 0000 000B
0000 0000 0000
0000 0000 0000

2 sector 3

ilCTOR
ilCTOR 5

SCTOE
:;CTOR ti

HCTOR

'
-
igurt

• • • 1

. . .B.

- 7h o n \^^

311300
311310

4952 2020
1101 FFFF
5953 3720
1620 FFFF
4143 4B55
0322 FFFF
4P4D 4D41
0AD3 0D24
0000 0000
0000 0000
4557 5553
0920 FFFF
0000 0000
0000 0006
0000 0000
0000 0000

2020
0000
2020
FFFF
5020
FFFF
4E44
1A01
0000
0000
4552
FFFF
0000
0000
0000
0000

2053
0000
2053
FFFF
2043
FFFF
2044
FFFF
0000
0000
204B
FFFF
0000
0000
0000
0000

5953
0000
5953
FFFF
4D44
FFFF
4F43
FFFF
0000
0000
534D
FFFF
0000
0000
0000
0000

.SYS

311320
311330
311340
311350
311360
311370
311380

• • • f

/ • * a

• • « • a

*. .B,
• • « « «

.B.B7

,SYS7..,

BACKUP.
IT

COMMAND
• • * * V * m

.SYS
* * « a

.CI'4D

t • «

-DOC
« « *

311390
3113A0
3113B0
3113C0

.B.B.
NEWUSER,.KSM

311300
3115E0
3113F06

Relativi

DIR/SYS
EYS7/SYS
BACKUP/CMD
COMMAND/DOC

NEWUSER/KSH

= TRACK 11
= TRACK 16
= TRACK 3
= TRACK 0A

TRACK 0D
TRACK lA

= TRACK 09

, SECTOR
, SECTOR 5

, SECTOR 5

,, SECTOR (EXTENT
V SECTOR 5 (EKTENT
,, SECTOR (EXTENT
, SECTOR 5

1)

2)

3)

22

APPENDIX A VTOS 3.0 DIRECTORY

[PPDE/FXDE SECTOR 3; ;figu!:e A3. 5]

311400 5F00 0000 0053 5953 3020 2020 2053 5953 SYE0 SYS
311410 EB29 210E 0F00 0022 FFFF FFFF FFFF FFFF .}! "

311420 5F00 0000 0053 5953 3820 2020 2053 5953 SYS8....SYS
311430 EB29 210E 0500 1700 FFFF FFFF FFPP FFFF .)!

311440 1E00 0000 0050 4154 4348 2020 2043 4D44 ..•. -PATCH. . .CHD
311450 2A5F 9642 0500 0500 FFFF FFFF FFFF FFFF *..B
311460 0000 0000 0000 0000 0000 0000 0000 00Ef0

311470 0000 0008 0000 0000 0000 0000 00B0 0000
311480 0000 0000 0000 0000 0000 0000 0000 0000
311490 0000 0000 0000 0000 0000 0000 0000 0000
3114A0 0000 0000 0000 0000 0000 0000 0000 0000 * • • •

3114B0 0000 0000 0000 0000 0000 0000 0000 0000 *

3114C0 0000 0000 0000 0000 0000 0000 0000 0000
3114D0 0000 0000 0000 0000 0000 0000 0000 0000
3114E0 0000 0000 0000 0000 0000 0000 0000 0000
3114F06 0000 0000 0000 0000 0000 0000 0000 0000

Relative sector 4

SYS0/SYS
SYS8/SYS
PATCH/CMD

= TRACK
= TRACK
= TRACK

00,
17,
05,

SECTOR 5

SECTOR
SECTOK

IFPDE/FXDE SECTOR 4] ;figure A3. 5]

311500 5F00 0000 0053 5953 3120 2020 2053 5953 SYSl SYS
311510 EB29 210E 0500 1000 FFFF FFFF FFFF FFFF .)!

311520 5F00 0000 0053 5953 3920 2020 2053 5953 SYS9 SYS
311530 EB29 210E 0500 1720 FFFF FFFF FFFF FFFF .)1
311540 1400 0000 0044 4F4C 4320 2020 2044 5652 DOLC DVR
311550 2A5F 9642 0500 0520 FFFF FFFF FFFF PPFF *..B
311560 1000 0022 0056 544F 5320 2020 2045 5054 ...".VTOS EPT
311570 9642 9642 0E00 1E01 1F20 FFFF FFFF FFFF .B.B
311580 1000 00FC 0046 4541 5455 5245 5344 4F43 FEATURESDOC
311590 9642 9642 0B00 0C02 FFFF FFFF FFFF FFFF .B.B
3115A0 0000 0000 0000 0000 0000 0000 0000 0000
3115B0 0000 0000 0000 0000 0000 0000 0000 0000
3115C0 0000 0000 0000 0000 0000 0000 0000 0000*.
3115D0 0000 0000 0000 0000 0000 0000 0000 0000
3115E0 0000 0000 0000 0000 0000 0000 0000 0000
3115F06 0000 0000 0000 0000 0000 0000 0000 0000

Relative sector 5

SYSl/SYS
SYS9/SYS
DOLC/DVR
VTOS/EPT

FEATURES/DOC =

TRACK 10, SECTOR
TRACK 17, SECTOR 5

TRACK 05, SECTOR 5

TRACK IB, SECTOR (EXTENT 1)
TRACK IF, SECTOR 5 (EXTENT 5)
TRACK 0C, SECTOR

23

APPENDIX A VTOS 3.0 DIEECTOEY

311600
311610
311620

Dli/FXDE SECTOR !

5F06 0000 0053
EB29 210E 0500
0000 0000 0000
0000 0000 0000
1400 0000 0050
2A5F 9642 0500
1000 00BD 0056
9642 9642 0100
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000

e sector 6

5953
1020
0000
0000
5220
0600
5 44f
1900
0000
0000
0t300
0000
0000
0000
0000
0000

3220
FFFF
0006
0000
2020
FFFF
5320
FFFF
0000
0000
0000
0000
0000
0000
0000
0000

2020
FFFF
0000
0000
2020
FFFF
2020
FFFF
0000
0000
0000
0000
0000
0000
0000
0000

2053
FFFF
0000
0000
2044
FFFF
204B
FFFF
0000
0000
0000
0000
0000
0000
0000
0000

5953
FFFF
0000
0000
5652
FFFF
534D
FFFF
0000
0000
0000
0000
0000
0000mm
0000

iguce A3. 7^

.} !

..SYS

311630
311640
311650 *..B. ...

. .DVR

311660
311670
311600

•i^B-O* ••«•••<
. .KSM

311690
3116A0
3116BB
3116C0
3116D0
3116E0
3116F06

Relativ

SYS2/SYa
PR/DVR
VTOS/KSM

= TRACK 10, SECTOR
= TRACK 06, SECTOR
= TRACK 19, SECTOR

5

[FPDE/FXDE SECTOR 6

>

;flgure A3. 8]

311700
311710
311720
311730
311740
311750
311760
311770
311780
311790
3117A0
3117Btl
3117C0
3117D0
3117E0
3117F06

5F00
EB29
0000
0000
1400
2ASF
1000
9642
0000
0000
0000
0000
0000
0000
0000
0000

0000
210E
0000
0000
0000
9642
00E4
9642
0000
0000
0000
0000
0000
0000
0000
0000

Relative sector 7

0053
0500
0000
0000
0052
0500
0042
0C00
0000
0000
0000
0000
0000
0000
0000
0000

5953 3320 2020 2053 5953 SYS3....SYS
1200 FFFF FFFF FFFF FFFF .)!
0000 0000 0000 0000 0000 ,

0000 0000 0000 0000 0000 ,

5332 3332 2020 2044 5652 RS232...DVR
0620 FFFF FFFF FFFF FFFF *..B
4153 4943 2020 2044 4F43 BASIC*.. DOC
2002 FFFF FFFF FFFF FFFF .B.B
0000 0000 0000 0000 0000
0000 0000 0000 0000 0000
0000 0000 0000 0000 0000
0000 0000 0000 0000 0000
0000 0000 0000 0000 0000
0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 ^

0000 0000 0000 0000 0000

SYS3/SYS = TRACK 12,
RS232/DVR = TPJiCK 06
BASIC/DOC = TRACK 20, SECTOR

SECTOR
, SECTOR.

24

APPENDIX A VTOS 3.0 DIKECTOEY

^^^^rrDE/FXDE SECTOR
'

5F00 0000 0053
EB29 210E 0500
0000 0000 0000
0000 0000 0000
1400 0000 004B
2A5P 9642 0500
1000 007F 0050
9642 9642 0600
&m& 0000 0000
0000 0000 0000
000£t 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000
1000 004A 0049
9642 9642 0200

e sector 8

-••<
' '

: i Q u. r

'

311800

' ^^^^^^

5953
1220
0000
6000
534D
0700
454E
1801
6000
0000
0000
0000
0000
0000
4E49
1920

3420
PPPP
0000
0000
2020
FFFF
4349
FFFF
0000
0000
0000
0000
0000
0000
5420
FFFF

2020
FFFF
0000
0000
2020
FFFF
4020
FFFF
0000
0000
0000
0000
0000
0000
2020
FFFF

2053
PPFP
0000
0000
2044
FFFF
2046
FFFF

00
000C
0000
00 00
0000
0000
204A
FFFF

5953
FFFP
0000
0000
56 5 2

FFFF
4958
PPPP
0000
0000
0000
0000
0000
0000
434C
FFFF

t\S 4 V J^

. SYS4

.

. * .SYS
311810
311820

.)]. • • a a

311830
311840
311850 *'. .B

.KSil. . ., .DVR

311860 .PEIICIL. • FIX
311870
311S80

.B.B. » * * *

311890
3118A0
3118B0
3118C0
3118D0
3118E0
3118F06

RelcitiV'

. . .J

.E.B.
.IWIT... .JCL

SYS4/SYS
ksh/dvr
pbncil/fix
INIT/JCL

f
pp-

= TRACK 12, ;

= TRACK 07, i

= TRACK 18, ;

= TRACK 19, i

DE/FXDE SECTOR 1

5F00 0000 0053
EB29 210E 0500
0000 0006 0000
0000 0000 0000
1E00 0000 004B
2A5F 9642 0500
1000 0014 0047
9642 9642 0800
0000 0000 0000
0000 0000 0000
1000 0051 0055
9642 9642 2200
0000 0000 0000
0000 0000 0000
0000 0000 0000
0000 0000 0000

= sector S

SECTOR 5

SECTOR
DECTOR
>ECTOR 5

^^^^^ i-- Qure

« « « • 1

T\
" 1 r ^^

311900
311910
311920

5953
1300
0000
0000
5352
07 2

454E
2121
0000
0000
5449
1C06
0000
0000
0000
0000

3520
FFFF
0000
0000
2020
FFFF
4552
FFFF
0000
0000
4C49
FFFF
0000
0000
0000
0000

2020
FFFF
0000
0000
2020
FFPF
414C
FFFF
0000
0000
5459
FFFF
0000
0000
0000
0000

2053
FFFF
0000
0000
2043
FFFF
2044
FFFF
0000
0000
2044
FFFF
0000
0000
0000
0000

5953
FFFP
0000
6006
4D44
FPFP
4F43
FFFF
0000
0000
4F43
FFFF
0000
0000
0000
0000

-SYS5.-* .SYS
• • •

311930
311940
311950

* ft * <,KSR. . .

,

.CMD

311960
311970
3119 80

« * * * 4

.B.B.
.GENERAL

r 1

• DOC

311990
3119^0
3119B0
3119C0

...Q.
-B.B'

.UTILITY
1

.DOC

3119D0
3119E0
3119F06

Relativt

iiYSS/SYS
KSE/CMD
GENERAL/DOC
UTILITY/DOC

= TRACK
= TRACK
= TRACK
= TRACK

13, SECTOti

07, SECTOF
21, SECTOE
IC, SECTOE

:

: 5

: 5

:

25

APPENDIX B

APPENDIX B

This originaiily appeared in the OCTUG newsletter. OCTUG is the

"Ortinye County TRS-80 Users' Croup", It is one cf the finer TKS-80
clubs and its newsletter is an outstanding publication, For
raembership iniiorraation write:

OCTUG
2531 E, COUMONWEALWJ AVt;,

FULLERTOtJ, CA 926S1

SERVICING THE TRS-80 DISK DRIVB
(Shugart SA400)
Ey Don Necker

linless you're prepared to v/ouk on the unit in a relatively clean area,
tree from dirt and lint, it would be best to leave the unit alone.
The tools you vvill need for this "light maintenance" are a Phillips
and standard screwdriver, a small wrench for nuniber four and six hex
nuts, a can of Freon spray cleaner (R.ust state on can: SAFE FOR ALL
PLASTICS), a small amount of isopropyl (rubbiiig) alcohol, a couple of

lint tree wipers and a little silicone light lubricant (such as Garcia
Reel-lube) , If there is an apparent power supply overtieating probleiTi

you will need a small (approximately 40 watt) soldering iron and
colder and a dab of heat sink grease.

Remove the outside cover by removing the four Phillips screws* Then,
by removing the three screws which attach the Shugcsrt drive assembly
to the rear and bottom frames, the drive assembly may be blid forward
out of engagement with the 34 pin connector - This facilitates
disconnecting the 4 pin power plug . The drive assembly is now free
from the frame and power supply.

In hanoling the drive avoid contaminating the belts and pulleys v;ith

body oils from your fingers. By removing the two Small screws in the
drive's large circuit board and disconnecting the two connectors, the

board may be removed, exposing the disk drive mechanism.
Examine the drive ntechanism for eviaence Of dirt, lint or other

foreign material. The read/write head assembly may be slid fore and

aft out of the drive cam detent with slight finger pressure to check
for binding. Preon Spray should be used to wash out any foreign
matter throughout the mechanism. The read/v/rite head, felt pressure
pad and the LED and sensor faces should be wiped clean with alcohol on
a wiper. Be careful not to apply pressure to these items which would
knock thein out of alignment.

The use of metal objects is not recoTnmended since they may scratch
the critical surfaces, A slight film of lubricant should be applied
to the two round head-slider guides and at a couple of spots along the
cam drive grooves. The two drive belts and pulleys should be wiped
clean using freon and wipers. A dab of lubricant in each of the front
door latch grooves completes the servicing of the drive.

If you have been having operating problems which occur after the
unit has been on for a while, it may be a heat dissipation problem in
the power supply. If so, check the two three-terminal regulator ICs

APPEKDIX B

rear frame. The IC metal
A mica insulator with

should be visible between the iCs and

wiiich are fastened to the inside of the
surfcJces siioulcl De tiglit against the frame,
ineat BiriK c^resse OH BOTH SIDES,
the f r aiiie.

Some units have been found with number four nylon screws which
nave been stripped. These nur[iber four screws should be replaced with
nui.LDer six button head nylon screws (Huraber six itetal nuts may be used
if mstcilled on the inside surface) .

After the old screws are reraoved, re-install
with aoacd heat sink grease on both sides. Reform
position the IC against the frame. install the new
you don't strip tlie threads, Resolder the IC leads
the boara. it may be necessary to remove the board

the mica insulator
the IC leads to
screws making sure
where they enter
from the frame if

your soldering iron is too Ic^rge or your hand is not steady enough.
The di^jasseinbly procedure is reversed to reassemble the unit Allconnectors have locking features to assure proper alignment and

orientation.

UEU- O^ Of

APPENDIX B

SUGGESTED RE^iDING

I don't know of ^mother book on data recovery, it one enisteci, x'd
certainly recommend it. However, there ore a great number o£

excellent publications currently on the market about computers in
general. It you would like to l:>ecoTLiG better at v;hat you do and don't
want to spend time re-inventing the wheel, try learning from these
autnors, I havte found their books instructional, easy to read, and a

cut above average. So why watch another re-run ot the 'Plintstones

'

when you can read a good book?

how to program microcomputers'
Author: William Barden, jr.
Publisher: Howard W. Banis & CO.

TRS-80 ASSEMBLY LANGUAGE PROGRAMMING
Author: William Barden, jr.
Publisher: Radio Shack

COMPUTER ARCHITECTURE
Author; Caxton C, Foster
Publisher: Van Nostrand Reinhold Coatipany

INTRODUCTION TO COMPUTER PROGRAMHIKG
with the BASIC Language
Author: Harvey M. Deitel
Publisher: Prentice-Plall, Inc.

THE BASIC HANDBOOK
An Encyclopedia of the BASIC Computer Language
Author: David A. Lien
Publisher: Corapusoft Publishing

LEARNIKG LEVEL II
Learning TKS-80 Level II BASIC
COMPUSOFT LEARNING SERIES
Author: David A. Lien
Publisher: Compusoft Publishing

MAKING SYSTEMS WORK
The psychology of Business Systems
Author : Kil liam C* Ramsgard
Publisher: John Wiley u Sons

APPENDIX E

[jURFtiy AND hit: DAMNED hhVli VJhatever can go wrong, will.

'thii trouble vjith a cliche is that it's true. In the interest of
iiicreasiny your t^nowledge oi corKputera I feel it my duty to expose you
to the Truths of the "Way Tnings Really Are". Since the legendary
I'iurt^hy is no lonyer with us, a victim of his own laws, (Mr. Murphy
Qwnea and opc-ratea a hand -grenade repair business), I have haa to rely
on Fenwyler T. Hurphy, hi& nephew and executor of the Murphy estate as
a source for the following material. (Fenwyler Murphy is also the
oirector of the liurphy Memorial Foundation For The Study of Known
Piienomena,

)

In the interest of preserving space I have listed only those laws
wnich ai>ply ;.iost directly to computers and programming.

CUROLL/iRIES:

GUTTERSON'S LAWS;
Any proyramiijiny project that begins w^ll, ends badly.
Any proyrar.iniing project that begins Dadly, ends worse.

KLIENERUNNER'S COROLLARIES:
If a proyramraiiig task looks easy, it's tough.
It" a i.>royrammir-g task looks tough, it's damn well impossible.

i"iUNGBRIGHT'S LAWS:
Any given program, when running, is obsolete.
Any given program costii iMre and takes longer.
If a proycam is useful, it will have to be changed.
If a program is useless, it will have to be documented.
Any given program will expand to fill all available memory.
The value of a program is inver^jely proportional to the weight of

its output.
Program compleKity grows until it exceeds the capability of the

programmer who n.ust maintain it.
Not until a program i^ in release for six months will the most

haciaful error be discovered,
Hacliine independent code, isn ' t.
Adding manpower to a late software project makes it later.
The effort required to correct software problems increases

geoxaetricaily with time.

FARVOUR'S LAW:
There is always one more bug,

BRUWK'S LAW:
If a listing has a beginning it has an end.

ZEPPLEMIER'S COROLLARY;
The fast 4 pages of a critical listing will be lost.

PENNIISJGTON'S OBSERVATIOM:
The probability that a given program will perform to expectations

is inversely proportional to the programmers' confidence in his
ability to do the job.

APPENDIX B

OKDEKIWG INTORHATION

lif your favorite software dealer does not stock NEVJDOS+ with EUPER2AP,

the following APPARAT NEW DOS Distributors will be more than happy

{grateful, in fact) to fill his order, instantly*

Apparat inc.
7310 East Princeton
Denver , Colorado 80 23 7

(303) 756-7275

IJG Computer Services
569 N. Mountain Ave - Suite B

Upland, California 91786 U.S-A,
(714) 982-7829

Miller Microcomputer Services
61 Lake Shore Road
Hatick, Massachusetts 01760
(617) 653-6136

If you would like additional copies of this book they laay be purchased

through your local book seller, software dealer, or direct from ijG,

Apparat or Miller, listed above-

WOTICE

This book is the beginning of a series of publications specifically
for the TRS-80, currently in progress. The foliowing titles are

planned for publication in late 1980,

VOLUME II TRS-SD INFORMATION SERIES
BASIC LISTED AND COMMENTED,

VOLUME III TRS-80 INFOEMATION SERIES
^DOS' LISTED AND COMMENTED

VOLUME IV TRS-80 INFORMATION SERIES
GUIDE TO HARDWARE EXPANSION AND MODIFICATIOM

APPENDIX B

"SEARCH 1,0"

'SEARCH' is a BASIC l-anguaye program tijat will search a disk file for
any byte combination up to 255 bytes. The user is prompted to enter
the file specification and line printer option.

It will return the relative sector and the starting byte (in
decinai), in which a match was found to the display and/or the line
printer.

'rhe input requires a 2 character hexadecimal input for each search
vtiiiue* After each 2 character input ib 'ENTER' ed, the input is echaed
to the display. Each input is checked for validity. If the input is
incorrect, an error raessage vjill be flashed on the screen and the user
will be prompted to re-enter a valid hexadecimal number.

The ciisk I/O is 'RAMDOM' mode. To conclude the input routine enter
'END' and the search mode is initiated. It the line printer was not
specified, the routine will pause after the display is filled and will
profLipt the user to hold the 'LNTER' key. The screen will be cleared
of previously listed matches, and will continue until the routine
coriipletes its tasK or another screen is filled.

Upon completion of the program, " ...ALL DONE" is displayed on the
video monitor, ' ENTER' must be pressed to continue for another
'RUN' -

CAUTION: Due to the limitation of various disk operating systems, ONLY
TtiE FIRST 255 pyTSS OF EACH SECTOR ARE SEARCHED, Byte 256 of any
sector is not searchedl 'SEARCil' does not span sectors in the search
mode. Each ^sector is searched individually. If the search value { s)
are located between loader codes an<i load addresses the search will
not recognize the value, Deing searched for with the embedded codes,

LIST OF VARIAELC NAMES USED AND FUNCTIONS

A? - Sector buffer
B$ - Sector buffer comparison string - makes system

compatable with SUPERDOS 1.0
C$ - Instring position counter
CK$ - Comparison string for 'INSTRING' routine.
CV5 - Hexadecimal characters
DR$ - Drive specification
FS$ - File specification
IS - Hexadecimal input value
11$ - 'Echo' string
IK$ - Inkey string
L - Instring position of "search value'
LP - line print switch
LP9 - line printer input to set switch
W - Hex conversion routine variable
Ul - Hex conversion routine variable
P2 - Display print position
SC§ - Contains search value(s)
T(l)- ilex conversion routine variable
T(2) - Hex conversion routine variable
X - Record number in 'GET'
XI - Loop counter
X2 - Loop counter

APPENDIX B

100 REM ******* ***ft*ft*AdV**A*AA**A**:*******ft*^***** A'*

250 REM ** SEARCH 08/3 0/79 **
200 REM ** BY H.C. PENNINGTON **

250 REM ** ^^..^.^^^..^^^^. **

300 REM ** 'SEARCH' WILL FIND ANY HEX STRING Iti **

350 REM ** A DISK FILE. INPUTS ARE 2 CHARACT^ *^

400 HEM ** ER HEX HUMBERS, 'END' TERI^ilNATES **
450 REM ** THE IKPUT MODE AND INITIATES THE **
500 REM ** SEARCH. **

550 REM ***A*it****ft***A*^A*ArtAA*«A***AAAA*****A*****
6 00 REM
650 REM ***************:***** **A*A*Ait***^A* A *A*^***ft*

700 REM INITIALIZE AND FILE SPECIFICATION It^PUT
750 REM ********************** A' A:t*A***#*****A*******
800 CLS;

CLEAR 1000:
CV$="0123456 7 89ABCDEF"

t>50 PRIWT©192x:
INPUT" ENTER FILE SPEC: ";FSS

900 DR$="0";
I^3PDT" ENTER DRIVE (0 - 3): "? DR$

950 IF VAL{DR5)<0 OR VAL(DRS)>3 THEN GOTO 800
1000 INPUT"DO you WISH OUTPUT TO LINE PRINTER (Y - N)";LP?
1050 IF LEFT$(LP?,1)="Y" THEIJ LP=1
1100 FS?=FS?+":"+DR?
115 CLS : PRI NT@19 2 ,

"INPUT ALL VALUES AS 2 CHARACTER HEXADECIMAL NUMBERS."
1200 PRINT

"ENTER EACH 2 CHARACTER INPUT. WHEN FINISHED ENTER 'END'
1250 PRINT"EXAHPLE ' 01 ' = 1 'OA' - A"
1300 PRINTQ 384, STRING? (63,140)

1350 REM
1400 REM **
1450 REM INPUT HEXADECIMAL VALUES
1500 REM AND TEST INPUT FOR CORRECT ENTRY
1550 REM ********************************* *******5t***
1600 PRINTy512,;:

INPUT I§:
IF I¥="END" THEN GOTO 2350:' 512

1650 IF LEN(IS) > 2 OR LEN(I$) < 2 THEW GOTO 3250
17 00 T(1)=INSTR{CV5,LEFT$(I$,1))

;

IF TC1)=0 THEN GOTO 3250
1750 T(2)=INSTR(CV$,RIGHT$(I$,1))

:

IF T{2)=0 THEN GOTO 3250
1800 113=1X5+" "+1$:

PRINT© 640,11$:
PRINT© 512,STRING${63,32)

:

PRINT© 448,;

APPENDIX B

1850 REM
ISSy REM ***********************<=** A- *****************
125^ REM CONVERT IHPUT TO CHARACTER SEARCH STRING
2 & id id REM **
2tl5t) X = 1:

CK$ = LEE'T$(I$,1)
2100 H = IIMSTR(CV$,CK?}:

M=II-1
2150 IF X=l TKBN Ml = N * 16:

X=X+1:
CK? = RIGHT$(I$,1) :

GOTO 21[)G
2 200 N - K+Wl
2250 SC$ = £C$ + CI-IR$(N) :

GOTO 16 0ti

23t)0 REM
235 REtl **

SEARCH ROUTINE
**************** A ********* A- *AA* A- /^ftft;^A**^^^H;t

236a REM
2370 REM
2400 X=l:

CLS:
PRlNTia e, "SEARCHING RELATIVE SECTOR: G ";F£$;:
PZ=128

2450 IF LP=1 THEN LPRIMT
"SB/iRCHING FILE: " ;FS§: LPRIHT"SEARCH VALUE: ";II§:
LPRIWT STRING$<50," = ") :

LPEIKT" "

25ii^ 0PEN"R'M,FS5
2550 FIELDl, 255 AS A^;

^600 GET i,X:
C=l:
PRIMT@27,X;

2650 L=INSTR(C,A§,SC$)

:

IF PZ>=960 AKD LP=0 THEN
GOSUB 39(3 0:
PRINTS 64rSTRING?(40,32) ;:
PZ=128
ELSE IP PZ >=960 THEN P2=128

2700 IF L>0 THEN C=C+L+1:
PRINT @ P2r
" MATCH = RELATIVE SECTOR"; X-1;TAD(3S> "BYTE -"; L?" ";
PZ=PZ + 64

2750 IF L>0 AND I.P^l THEN LPRINT
"HATCH = RELATIVE SECTOR " ;X-1;TAB(31} "BYTE ="; L

2800 IF A$=B$ OR A?=STRIt-JG${255,0) THEN 3000
2850 IF L>0 AND C<255 GOTO 2650
290 E$=A¥
2950 C=l:

X=X+1

:

GOTO 26 00
3000 PRINT@67, " ALL DONE ";:
3010 IK$=INKEY$:

IF IK$="" THEN 3010
3020 RUN

APPENDIX B

3 050 REM
310 REM ***

3150 REM INPUT EREOK ROUTINE
3200 REM **

325& FOR Xl= 1 TO 9:
PRINT@0,:
PRINT : PEINT : PRINT: PRINT

3300 PRINTS 270, "YOU HAVE ENTERED AK INCORRECT VALUE."
3350 PRINT TABC24) "PLEASE DO AGAIInI.";

3480 FOR X2= 1 TO 8e:MEKT
3450 PRINTS 270,STRING$(36,32) :

PRINT;
3500 FOR X2= 1 TO SOrWEXT
3550 NEXT XI:

PRINT @512,STRING$(63,32)

:

PRINT@ 612,;
3600 GOTO 160K
3 706 REM
3 750 RE^5 ********************************** *****!'***

38t)0 REM PAUSE i. FLASH MESSAGE RCXJTINE
3 850 REM *************** ******-k*-k******-k**-k********-k

3900 IK5=INKEY$:
3 950 PKINTia 6 4, "HOLD ENTER TO CONTINUE";
4000 FOR XI = 1 TO 50
405K IK$=INKEY?;

IF IK$="" THEN NEXT Xl
4100 IF IK$=CHE$(13) THEN 4400
4150 PRINTS 64, STRING^ (25 ,32)
4 200 FOR XI = 1 TO 50
4250 IK$=INKEy$:

IF IK$="" THEN KKXT XI
4300 IF IK$=CHR5tl3} THEN 4460
4350 GOTO 3950
4400 FOR XI = 1 TO 13:

PRINT:
NEXT XI:
RETURN

9

APPENDIX B

650 ********it**AA*J:J:****- it************ ******* AAA*
700 INITIALIZE AND FILE SPECIFICATION INPUT
750 ******************** ^'**:**********Afc*********
800 Clear tJiG GcrGen

Clear string space
Initialize CV$ with alphanumeric characters

850 Set print position
Input file specification

913 Let citive specification default value
Input ci rive specification

950 Test input
1000 input output raode (line printer or display only)
lfci50 Test input
1100 Concatenate file specification
115t^ Clear the screen

Print instruction message to screen
1200 Coritir.ue message

Continue mess^ye
Concinue laessaye
Print graphics line to screen

**
IfvPUT HEXADECIMAL VALUES

AMD TEST INPUT FOR CORRECT ENTRY
******* ***************** ************ ********

Set screen print position
Input hexc^deciRial value
Test for end of input
Tebt input for valid length
Get decimal value of left side of l$
Test for valid input
Get decimal value of right side of IS
Test for vaiia input
Concatenate 'echo ' string
Set screen print position of 'echo' string & print
Clear previous input from display
Set print position for, next user input

125ti

13 0B
1350
1400
1450
1500
1550
1600

165£i

17t10

17 5

itioe

10

APPENDIX B

1850

1950 CONVERT INPUT TO CHARACTER SEARCH STRING

2050 Set instiring counter
Set CK$ to first search character

2100 Search hex character string for position of CK$
Get correct hexsdeciirtal multiplier

2150 If tirst pass then get left side hex value
Incretnent instring counter
Set CK$ to second search character
Do it again

2200 Add decimal values
2250 Concatenate search string

Get next user input
2300
2350 *^* ****;** JiftA'ftA'AATt**:** ******** **3k***5t** ******
2360 SEARCH ROUTINE
2370 AAft****if***it*#-**-******************* *********
240 Set record number to 1

Clear the screen
Print message to display
Set display print position

2450 Check line print switch
Print header message on line printer
Continue me s sage
Continue ruessage

2500 Open file
2550 Field sector buffer

Set comparison string to null
2600 Get sector

Set 'start instring search' position counter
Print current sector being searched to screen

2650 Search sector for match
Check print position and re-set if necessary
If screen full & line printer switch not set

then go to 'pause' routine
Set screen print position
Re-set screen print position if screen full

2700 If match found then increment instring position counter
Set screen print position
Print message
Increment screen print position

2750 If line printer switch set
then line print message

2800 Check for end of file - if end conclude program
2850 Is instring search finished? - do again if not finished
2900 Set 'EOF' comparison string
2950 Re-set instring search counter to 1

Increment record number
Do again

3000 Print "ALL DONE" message
3010 Inkey routine to lock-out reinitialization of program

Check IKS for input
3020 "RUN" program again

11

3 05ti

31t!&

:ii5fl

320ti

3256

33fc&
3350
3400
3450

35S(J

355ti

360ti
370fej

375&
3Skl0

385y
39tJ0

3S50
4B00
4tJB0

4100
4150
i2idd
4250

4300
4356
4400

APPENDIX B

INPUT ERROR ROUTIt^E

Set loop for 'flashing' ecroc niessage
3Qt print tjosition for message
Clear previous uiessage
Print message
Continue mctJSwige
Delay loop
Clear messacie from screen

Set delay loop for 'tlash' oiif
Loop
Clear niessage from display
Set print position for user input
Return to input routine

PAUSE ^ FLASH MESSAGE ROUTINE

Set Inkey string
Print metisage
Set delay loop
Set InK ey st r incj

Test for input
If input is carriage return then go to clear screen
Clear message from screen
Delcy loop
Set Inkey string
Test Inkey string
If input is carriage return then go to clear screen
Flash message ayair^
Set loop to clear screen
print nulls to screen
do again
returr* to calling routine

12

t

ISBN 0-9J6200-00-6

