Appl’enl‘l ' 3 ‘
The DOS Manudl

Disk Operating Sys’rem

3
‘.‘2‘.}&*

NOTICE

Apple Computer Inc. reserves the right to make improvements in the
product described in this manual at any time and without notice.

DISCLAIMER OF ALL WARRANTIES AND LIABILITY

APPLE COMPUTER INC. MAKES NO WARRANTIES, EITHER -
EXPRESS OR IMPLIED, WITH RESPECT TO THIS MANUAL OR WITH
RESPECT TO THE SOFTWARE DESCRIBED IN THIS MANUAL, ITS
QUALITY, PERFORMANCE, MERCHANTABILITY, OR FITNESS FOR :
ANY PARTICULAR PURPOSE. APPLE COMPUTER INC. SOFTWARE IS
SOLD OR LICENSED “AS IS” THE ENTIRE RISK AS TO ITS QUALITY
AND PERFORMANCE IS WITH THE BUYER. SHOULD THE
PROGRAMS PROVE DEFECTIVE FOLLOWING THEIR PURCHASE,
THE BUYER (AND NOT APPLE COMPUTER INC,, ITS DISTRIBUTOR,
OR ITS RETAILER) ASSUMES THE ENTIRE COST OF ALL
NECESSARY SERVICING, REPAIR, OR CORRECTION AND ANY
INCIDENTAL OR CONSEQUENTIAL DAMAGES. IN NO EVENT WILL
APPLE COMPUTER INC. BE LIABLE FOR DIRECT, INDIRECT,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES RESULTING FROM
ANY DEFECT IN THE SOFTWARE, EVEN IF APPLE COMPUTER INC.
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION
OF IMPLIED WARRANTIES OR LIABILITY FOR INCIDENTAL

OR CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATION

OR EXCLUSION MAY NOT APPLY TO YOU.

This manual is copyrighted. All rights are reserved. This document may
not, in whole or part, be copied, photocopied, reproduced, translated.or
reduced to any electronic medium or machine readable form without
prior consent, in writing, from Apple Computer Inc.

© 1980, 1981 by APPLE COMPUTER INC.
10260 Bandley Drive
Cupertino, California 95014
(408) 996-1010

The word Apple and the Apple Logo are registered trademarks of
APPLE COMPUTER INC.

APPLE Product #A2L.0036
(030-0115-B)

WARNING: This equipment has been certified to comply with the limits
for a Class B computing device, pursuant to Subpart J of Part 15 of FCC
Rules. Only peripherals (computer input/output devices, terminals,
printers, etc.) certified to comply with the Class B limits may be
attached to this computer. Operation with non-certified peripherals

is likely to result in interference to radio and TV reception.

1 BT RS
B0 " PSP PR REDEDRODREEDDNERY

Applell

The DOS Manuadl

Disk Operating System

TABLE OF CONTENTS

PREFACE

CHAPTER 1
INSTALLATION AND HANDLING 1

Unpacking
Connecting the Cable
Installing the Controller

Installing Multiple Disk Drives
Care of the Disk II and Diskettes

Inserting and Removing Diskettes

oL W NN

CHAPTER 2
GETTING STARTED o

1¢ Background

1¢ Special Keys

11 Booting DOS

12 If Booting Doesn’t Work

13 1INITializing New Diskettes
15 LOADing and SAVEing with DOS
16 CATALOG

16 What’s in a Name?

17 RENAMEing Files

18 DELETEing Files

18 Recovering from Accidental Resets

CHAPTER 3
EXERCISING OPTIONS 21

22 Drive, Slot, and Volume Options

24 Syntax

24 INIT

25 LOAD, RUN, and SAVE

26 DELETE

27 A Scenario: boot, CATALOG, SAVE, RUN, and DELETE
28 Moving Between Languages: FP and INT

29 Use of DOS From Within a Program

CHAPTER 4

PLAYING SAFE

33

34 Creating a Turnkey System
35 LOCK and UNLOCK

35 VERIFY
36 Write-Protecting a Disk

37 Protecting Yourself against Disaster
38 Using the COPY Program

CHAPTER 5

MORE “HOUSEKEEPING”
INFORMATION

a1

42 Debugging: MON and NOMON
43 MAXFILES

44 TRACE
44 Using the MASTER UPDATE Program

CHAPTER 6
USING SEQUENTIAL FILES

47

48 Text Files: An Introduction

49 Sequential Files: Some Examples

58 OPENing and CLOSEing Sequential Files
59 WRITEing Sequential Files

64 READing Sequential Files
66 More on Sequential Files: APPEND and POSITION
69 Byte-ing Off More

CHAPTER 7
AUTO APPLE

73

74 Controlling the Apple via a Text File: EXEC
75 Creating an EXEC File

76 Capturing Programs in a Text File

77 Converting Machine-Language Routines to BASIC
78 MAXFILES and Integer BASIC Programs

78 EXECutive Session

CHAPTER 8
USING RANDOM-ACCESS FILES 81

82 Random-Access Files: How They Work

82 A Specific Record

84 Multiple Records

86 A Demonstration: The RANDOM Program

88 WRITEing and READing Random-Access Files

CHAPTER 9

USING MACHINE LANGUAGE FILES

92 Machine Language Files
92 BSAVE
93 BLOAD

93 BRUN
94 The RWTS Subroutine

CHAPTER 10
INPUT, OUTPUT, AND CHAINING %

199 Selecting I/O Devices: IN#, PR#, and Other Stuff
196 Integer BASIC CHAIN
106 Applesoft Chain

APPENDIX A

FILE TYPES USED WITH DOS
COMMANDS 109

11§ By DOS Command
111 By File Type

APPENDIX B

DOS MESSAGES "3

114 ONERR GOTO Codes
115 Discussion

APPENDIX C

FORMAT OF DISKETTE INFORMATION 1

124 Overview of the Storage Process

124 WRITEing into a Sequential Text File
126 WRITEing into a Random-Access Text File
126 How DOS WRITEs into Text Files: General Procedure
127 Contents of File Sectors

128 The Track/Sector List

129 The Diskette Directory

132 Volume Table of Contents

133 Track Bit Map

135 Track and Sector Allocation Order

136 Retrieving Information from the Disk
136 READing from a Sequential File

137 REAing from a Random-Access File

APPENDIX D

MEMORY USAGE 139
14 Memory Areas Over-Written When Booting DOS

141 Memory Areas Used by DOS and Either BASIC

142 HIMEM Set by Booting DOS

APPENDIX E

ENTRY POINTS AND SCHEMATICS s
144 DOS Entry Points

145 Circuit Schematic: Disk II Interface

146 Circuit Schematic: Disk II Analog Board

APPENDIX F

SUMMARY OF DOS COMMANDS

148 Notation

151 File Names
151 Housekeeping Commands

156 Access Commands

158 Sequential Text File Commands
161 Random-Access Text File Commands

163 Machine Language File Commands

APPENDIX G
SUMMARY OF DOS PROCEDURES

165

166 Booting DOS

166 1INITializing a Diskette

166 Recovering from Accidental RESETs

166 Use of DOS from within a Program

167 Creating a Turnkey System

167 Creating and Retrieving Sequential Text Files
169 Adding Data to a Sequential Text File

169 Controlling the Apple via a Sequential Text File
17¢ Creating and Retrieving Random-Access Text Files
171 Copying a Text File

171 Chaining in Applesoft

APPENDIX H

UPDATING DOS TO 16 SECTORS

173

174 How to Install the New Proms

175 Multiple Disk Drives

176 Using DOS with the Language System

177 Setting up a Turnkey System with a Language Card

APPENDIX |

USING THE BASICS DISKETTE

181

182 Booting Diskettes by using "BASICS"

APPENDIX J

USING THE FID PROGRAM

183

184 Starting Up

184 Filenames and Wildcard Characters
185 Commands

186 Error Handling

APPENDIX K

USING THE MUFFIN PROGRAM

191
192 Starting Up
192 Wildcard Characters
II‘II:’I‘::IE!; 195

196 General Index

2@ Program Index

20 Message Index

Inside Back Cover: Index to DOS Command Summaries
Index to DOS Procedure Summaries

RADIO AND TELEVISION INTERFERENCE

The equipment described in this manual generates and uses radio

frequency energy. If it is not installed and used properly, that is
in strict accordance with our instructions, it may cause interference
to radio and television reception.

This equipment has been tested and complies with the limits for a
Class B computing device in accordance with the specificétions in
Subpart J of Part 15 of FCC rules. These rules are designed to
provide reasonable protection against such interference in a
residential installation. However, there is no guarantee that the

interference will not occur in a particular installation.

You can determine whether your computer is causing interference by
turning it off. If the interference stops, it was probably caused by
the computer. If your computer does cause interference to radio or
television reception, you can try to correct the interference by
using one or more of the following measures:

= Turn the TV or radio antenna until the interference stops.
- Move the computer to one side or the other of the TV or radio.
- Move the computer farther away from the TV or radio.

= Plug the computer into an outlet that is on a different circuit

from the TV or radio. (That is, make certain the computer and the TV

or radio are on circuits controlled by different circuit breakers or
fuses.)

If necessary, you should consult your dealer or an experienced
radio/television technician for additional suggestions. You may find
the following booklet prepared by the Federal Communications

Commission helpful:

"How to Identify and Resolve Radio-TV Interference Problems"

This booklet is available from the U.S. Govermment Printing Office,
Washington, DC 20402, Stock number @FP4-Q@F-GF345-4.

PREFACE

This manual has two primary functions. The first is to teach you how to
use the DOS (Disk Operating System): the Chapters of the manual use
examples to accompany explanations of how the various DOS commands work.
The second function of the manual is to serve as a reference guide to

DOS. The Appendices, Quick Reference Card, and the Indices were planned
with this function in mind.

To use an Apple Disk II, you need an Apple II computer with at least 16K
of memory -- but 32K is recommended, since the 16K system allows little
memory space to store programs. In fact, the MUFFIN program and the FID
program on your System Master Diskette need 32K of memory to run. For
using Apple Disk II with Applesoft on casette tape or on diskette, your

computer must have at least 32K of memory.

The Apple Disk II is a "floppy" disk unit which allows you to store and
retrieve information much more quickly and conveniently than you can
with tape. The information is stored and retrieved from a 'diskette", a
small (about 5-inch diameter) specially coated plastic disk which is
permanently sealed in a square plastic case.

One of the most important advantages to using Disk II is that
information is stored and retrieved by a name under which it is filed.

A program that catalogs phone numbers might be saved with an instruction
such as

SAVE PHONE NUMBERS

and retrieved with an equally simple command. The name PHONE NUMBERS
under which the program is filed is a file name.

The programs that automatically keep track of files, save and retrieve
information, and do a multitude of other housekeeping tasks are called
the Disk Operating System, usually shortened to "DOS". Some people say
"doss" and others say 'dee oh ess'". Learning to use DOS and the disk
consists of learning a few special DOS commands described in this
manual. These commands can be used as extensions to either Applesoft or
Integer BASIC or machine language programs.

At some places you’ll see the symbol
Y

pféceding a paragraph. This symbol indicates an unusual feature to which
you should be alert.

The symbol

@

pgécedes paragraphs describing situations from which BASIC may be unable
to recover. You will lose your program, probably have to re-start DOS,

and may have to re-start BASIC.

*%% NOTE *%%

This manual applies to versions of DOS that
operate in 16 sectors. That is, DOS version 3-3
and subsequent. If you have an earlier version
of DOS, it will operate in 13 sectors. To update
your 13 sector DOS to 16 sectors, change the
proms on your disk controller card as instructed
in Appendix H, and use the MUFFIN program to
move your data to 16 sector diskettes. To boot

a 13 sector diskette on your 16 sector system,

use the BASICS Diskette that comes with your Disk II
or your Disk II Update kit.

Under some circumstances, a diskette converted

by MUFFIN may turn out to be un-runnable. This
happens when the program on the diskette expects
to find instructions at specific locations on the
diskette itself. Most programs don’t fit that
category, but a few do. Remember, MUFFINing

a diskette won’t harm your 13 sector diskette,
and you can always boot 13 sector diskettes

using BASICS.

UNPACKIN‘G

|
Your Disk II system consists of several items. Among these you will find:

1) The disk drive (the main box).

2) A printed-circuit card (the controller card)
that plugs into the Apple II.

3) A flat ribbon cable, already fastened
to the disk drive, for connecting
the disk drive to the controller card.

4) A "SYSTEM MASTER" diskette.

5) A "BASICS" diskette.

6) This manual.

If you have purchased a drive only (for example, as a second drive for your
controller card) your system will not include all of the above items.

Save the packing material in case you wish to transport your disk -- or in
the unlikely event you must return it to your dealer or to the factory for
service.

%% Special Note #%%*

Before connecting or disconnecting
ANYTHING
on the Disk II or Apple II
TURN OFF THE POWER.
This is a must.

CONNECTING THE CABLE

In use, the disk drive will be connected to the controller card by the
flat, ribbon-like cable. One end of this ribbon cable is already fastened

to the disk drive. If this is your first disk drive, the connector at the
end of the ribbon cable from this drive should be attached to the upper

set of pins on the controller card. This set of controller card pins is
labelled "DRIVE 1".
*%% Caution *%*

If the cable from the disk drive to the controller card is not plugged into
the controller card correctly, considerable physical damage can be done to
the disk drive unit and its electronics. To assure correct assembly, be
sure to plug the ribbon cable into the controller card before installing the
controller card into the computer. Two installation tips follow. First,
don’t jam the cable between the connector and the controller card. When the
cable is plugged into the controller card correctly, the cable should exit
from its connector on the side of the connector that is away from the
controller card, as shown in the photograph. Second, make sure that all the
pins of the controller card’s connector go into the matching holes in the

ribbon cable”s connector. By making the connection before installing the

card, you can actually see that all the pins are going into the holes
correctly.

ribbon cable

" Connecting the Cable to the Controller

If you are installing a second disk drive, you should connect the ribbon

cable from the second drive to the lower set of pins on your controller.

This set of pins is labeled "DRIVE 2". Take the same care attaching this
connector as you did with the firste.

If you are updating an earlier version of DOS to sixteen sectors, you will

need to change two proms on your existing controller card. Read Appendix H
to find out how to do this.

INSTALLING THE CONTROLLER

To install the Disk II controller card, which you have already connected to

the disk drive via the ribbon cable, you will simply plug the controller
card into a socket inside the Apple II, as follows:

1. Turn off the power switch at the back of the Apple II. This is
important to prevent damage to the computer. If the power is on, removal
or insertion of any card could cause permanent damage to both the card and
the Apple II.

2. Remove the cover from the Apple II. This is done by pulling up on the
cover at the rear edge (the edge farthest from the keyboard) until the two
corner fasteners pop apart. Do not continue to lift the rear edge, but

slide the cover backward until it comes free.

3. 1Inside the Apple II, across the rear of the circuit board, there is a
row of eight long, narrow sockets called "slots". The leftmost one
(looking at the computer from the keyboard end) is slot #@, and the
rightmost one is slot #7. Locate slot #6, one socket to the left of the
rightmost socket. The controller card may be placed in any slot except
slot #@, the leftmost. However, Apple’s standard location for the disk
controller card is slot #6, and most Apple software (and this manual) is
written with that location in mind.

4. BE SURE THE POWER IS OFF BEFORE YOU INSERT OR REMOVE ANY CARD FROM THE
COMPUTER. Insert the "fingers" portion of the controller into slot #6.
The "fingers" portion will enter the socket with some friction and will
then seat firmly. Since the fingers make electrical contact, it is a good
idea to keep your fingers from touching them. Before installationm, you
may wish to use rubbing alcohol to, clean the fingers on the board (and,
optionally, your own fingers if you’re so inclined).

L

Inserting the Controller Card

5. Adjust the ribbon cable so it lays flat and passes over one of the
areas between the vertical openings in the back of the Apple II case, as
shown in the drawing. When the 1id is installed it will clamp down the
cable and act as a strain relief.

Cable Placement

6. Replace the cover of the Apple II; remember to start by sliding the
front edge of the cover into place. Press down on the two rear corners
until they pop into place.

7. The Disk II controller is installed, and the Apple II may now be
turned on. Place the disk drive in a convenient location, usually
alongside of or on top of your Apple II.

INSTALLING MULTIPLE DISK DRIVES

Each controller card can be used with two disk drives, one attached to the
upper set of pins, labeled "DRIVE 1", and the second attached to the lower
set of pins, labeled "DRIVE 2". Your first disk drive should be attached to
the DRIVE 1 pins and the second to DRIVE 2 pins on the card in slot #6. The
third and fourth drives should be attached to the DRIVE 1 and DRIVE 2 pins,
respectively, on a card in slot #5, the fifth and sixth drives attach to the
DRIVE 1 and DRIVE 2 pins on a card in slot #4, and so on.

If you have multiple drives, it is a good idea to label the front of each
drive with its slot and drive number since your programs will refer to the
disks by those numbers.

CARE OF THE DISK Il AND DISKETTES

The Disk II drive, unlike the Apple II, is a mechanical device, with motors
and moving parts. Therefore it is somewhat more delicate than the
computer. Rough handling, such as dropping the drive, or having things
drop on it, can cause it to malfunction. The drive should not be placed
beside or on a TV set, since the strong magnetic fields put out by TVs may
cause damage to the magnetic properties of the drive. If in doubt, locate
disk drives at least 2 feet from any TV set.

Each diskette is a small (about 5-inch diameter) plastic disk coated so
that information may be stored on and erased from its surface. The
coating is similar to the magnetic coating on recording tape. The

diskette is permanently sealed in a square black plastic cover which
protects it, helps keep it clean and allows it to spin freely. This

package is never opened.

The term "floppy" comes from the fact that the diskette is flexible. Older
computer information storage devices that worked on similar principles
used rigid disks. While the diskette (and its plastic cover) are somewhat
flexible, actually bending the diskette can damage it. The diskette cover
contains both ‘lubricants and cleaning agents to extend trouble free
operation - - treat covers with respect.

Never let anything touch the brown or gray surface of the diskette itself.
Handle the diskette by the black plastic cover only. When a diskette is
not in use, keep it in the paper pocket that it came in. These pockets
are treated to minimize static build-up which attracts dust. It is best
to store diskettes vertically when they are not in use. Vinyl notebooks
especially made for this purpose are convenient.

Diskettes hold a tremendous amount of information: a single diskette can
hold over 1,146,00¢ bits of information. An individual bit of
information, therefore, occupies a very small portion of the diskette. An

invisible scratch on the surface of the diskette, or even a fingerprint,
can cause errors. Do not place diskettes on dirty or greasy surfaces; do

not let them collect dust.

To write on a diskette label, use a FELT TIP pen. Do not press hard. It
is best not to write on a label attached to a diskette, but to write on
the separate label, then attach it to the diskette.

Keep diskettes away from magnetic fields. This means to keep them away
from electric motors and magnets; they should not be placed on top of
electronic devices such as television sets. They may be temporarily laid
on the Apple II or the Disk II.

Diskettes are sensitive to extremes of temperature. Keep diskettes out of
the sun, and away from other sources of heat that can cause them to warp
and/or lose data. On hot days, car trunks (or dashboards) can be diskette
killers. Diskettes operate satisfactorily up to 125 degrees Fahrenheit
(51.7 Celsius), which is not very hot. The first evidence of heat damage
is a warped or bent black plastic cover.

With reasonable care a diskette will give you an average life of 4@ hours
-- which is a lot, when you consider the few seconds it takes to LOAD most

programs. With just a little bit of carelessness, a diskette may give you
no service at all.

No-No‘s

INSERTING AND REMOVING DISKETTES

Using a disk drive is far quicker and easier than using a cassette
recorder, however some care is necessary to protect the diskettes. The
drive itself must also be handled with some care. The drive door is
opened by pulling outward on its bottom edge. The diskette is then
slipped into the slot with the label upwards, as shown in the
photograph. The edge of the diskette with the oval cutout in the
diskette’s square plastic cover should enter the drive first. The edge
of the diskette with the label should enter the drive last.

A Good
RULE OF THUMB

Hold a diskette with your right thumb over the label:
that pretty much insures the correct orientation
when you put the diskette in the drive.

Inserting a Diskette

Push the diskette gently until the diskette is entirely into the drive.

Do not bend the diskette! If it is pushed in too hard, the diskette can
be permanently damaged. Close the drive door by pushing it down again.

The two metal fingers (which can be seen inside the slot when the drive

door is closed) should just clear the diskette as the door closes.

A diskette is removed by opening the drive door and pulling the diskette
carefully out of the drive. The act of opening the disk drive door 1lifts
the "head" off the disk. If you plan to leave an unused diskette in a
drive for several hours, it’s a good idea to open the door so the head
won’t rest on the diskette.

NEVER remove a diskette while the drive’s "IN USE" light is on. This may
permanently damage the diskette, and is almost sure to destroy the

information on it. In such a case, the diskette can usually be re-used,
but you won’t be able to recover the lost information.

GETTING STARTED

BACKGROUND

Learning to use the disk and its operating system consists of learning a
few special instructions, several of which are straightforward extensions
of familiar BASIC instructions. This manual assumes that you're familiar
with the Apple II, and feel comfortable writing simple BASIC programs.

To learn how to use the Apple II and Integer BASIC, consult the Apple II s
BASIC Programming Manual (Apple Product #A2L@@@F5X). To learn how to use

Applesoft BASIC, consult the Applesoft II BASIC Programming Reference

Manual (Apple Product #A2LP@@6). The Applesoft manual assumes you' re

already familiar with the Apple II and simple BASIC programming. If

you’re not familiar with either manual, we will wait here while you learn

about the Apple II, before going on to learn about DOS.

*
*
*

Throughout the manual are listings of programs that illustrate how to use
DOS. Most of these programs are in Applesoft; a few are in Integer BASIC.
Sometimes the changes needed to convert an Applesoft program to Integer
BASIC are mentioned; other times, they are not. Consult Appendix M in the
Applesoft manual for details on the differences between programs written -
in Integer BASIC and Applesoft BASIC.

A little bit of hands-on experience is worth a lot of reading. Once your
disk drive is hooked up and the computer is turned on, follow each of
these descriptions by actually trying out the procedures on your Apple II.

Put the Apple II into BASIC -- either Integer BASIC or Applesoft. Place
the System Master diskette into the drive. The diskette should be
labelled @@4-@@@2-XX. The last two digits are indicated by X’s, since it
doesn’t matter what they are. If you have more than one drive, use Drive
l. This section of the manual only deals with one drive and assumes that
you’ve followed the standard conventions, putting the controller into slot
#6.

With the disk drive attached, and the diskette in the drive, and the disk
drive door closed, you will find that the Apple II performs just as it did
without the disk. Nothing is changed. It is as if the disk drive were
not there. And, as far as the Apple II is concerned, the disk drive is
not connected yet: a special command must be given to inform the computer
that the disk drive and the new DOS instructions are available.

Eéén though DOS commands look like BASIC commands, they do not always
follow the same rules. For example, multiple DOS commands cannot be put
on one line, separated by commas. The SYNTAX ERROR message results.

SPECIAL KEYS

Sometimes this manual uses the curly brackets { and } to enclose the —
names of special keys which you are supposed to press on the Apple II
keyboard.

{RETURN} means you should press the key marked "RETURN". Press the RETURN
key after each instruction.

{RESET} means press the key marked "RESET". If you have an Autostart ROM,
a press of the RESET key will cause the Apple to beep and display a prompt
character. With the old ROM, a press of the RESET key will put you into
the MONITOR program, which uses * as its prompt character.

{ESC} means press the key marked "ESC". "ESC" originally meant "escape",
but nowadays has other uses.

{CTRL} is a bit different. It means you should press the key marked "CTRL"
(which stands for control) and continue holding it down while you type

another key. For example, {CTRL}C means type the "C" key while you are
holding down the CTRL key. Sometimes use of the control key is indicated

in another way: CTRL-C and {CTRL}C both mean the same thing.

%%% NOTE #*%%
Characters typed while holding down the CTRL key
do not appear on the screen.

BOOTING DOS

The process of adding the DOS commands to the BASIC in your Apple II is

called booting the disk. The disk may be booted from Integer BASIC, from
Applesoft or from the Monitor. There are various ways you can use to boot

DOS. From Integer BASIC or Applesoft, the PR#s and IN#s commands (see
your Applesoft manual) may be used. From the Monitor, "control commands"

using the CTRL key may be used. Once you get DOS booted, it’s all the
same DOS: it doesn’t matter how you got there.

In the examples below, the lower-case letter s stands for the number of the
Apple II slot in which your disk controller card is located. The standard
location for the controller card is slot #6 (see Chapter 1, Installing the
Controller). After any of the following commands, you must press the
RETURN key.

From Integer BASIC (whose prompt character is >)
you can use either of these commands to boot the disk:

You type: PRifs Example: PR#6
or: IN#s Example: IN#6

From Applesoft (whose prompt character is])
you can use either of these commands to boot the disk:

You type: PRis Example: PR#6
or: IN#s Example: IN#6

From the Monitor (whose prompt character is *),
you can use either of these commands to boot the disk:

You type: Cs@@G Example: C6@@G
or: s{CTRL}P Example: 6{CTRL}P

1"

In the rest of this manual, when you are to re-start the DOS in this manner

we will simply say: '"boot the DOS" or "boot the disk". Both expressions
(very popular among computer users) mean the same thing. "Boot'" is short
for the word "bootstrap'" and the term is from the expression "to pull

oneself up by one’s bootstraps'". In any case, it does not mean to kick the
disk, even if you do feel in such a mood from time to time.

Now try booting DOS from your System Master diskette. Start by putting
your Apple II in BASIC -- either Integer BASIC or Applesoft will do. Be

sure the diskette is properly inserted. Next type
PR#6
and press the RETURN key as usual. From now on, it will be assumed that

you will press the RETURN key after each instruction.

Once you press the RETURN key, the red "IN USE" light will come on, the
disk will make whirring and clacking noises (don‘t be alarmed -- it’s not

getting ready to fly away) and in less than 1§ seconds, a message will
appear. The message should be similar to the following:

If you now try to use BASIC, you will find that most commands still operate
normally and, aside from the message suddenly appearing, the Apple II seems
unchanged. What has happened is this: a few new commands have been

introduced, and a few old ones have new capabilities. Two changes have been
made that are not obvious, however:

1) The HIMEM pointer to the highest memory location you may use
has been reset to accomodate the DOS program.

2) Your Apple II may have lost some of its high-resolution
graphics capabilities, depending on the amount of memory

in your computer.

#% Versions of DOS that use 13 sectors can’t be booted when the system
expects 16 sector diskettes. (The diskette spins and hiccups, but nothing

comes out.) To run a 13 sector diskette, update it to 16 sectors with the
MUFFIN program. You can also use the BASICS diskette to boot 13 sector

diskettes on your sixteen sector system. See Appendix I to learn how.

IF BOOTING DOESN'T WORK

If you can’t successfully boot your System Master diskette, re-read the
manual carefully -- that cures 9¢% of all problems.

This isn”t likely, but if your unit was shipped in a Sherman tank or some
such, the connectors inside the disk drive may have worked a bit loose. If
you are at all squeamish about handling the insides of your drive, your
dealer will be glad to check it out.

If you enjoy getting your fingers into the works, you can turn the computer
off, and disconnect the drive from the controller. Loosening the four

screws on the bottom of the drive allows the mechanism to slip forward out

of the case. Tighten the connectors by pushing them gently onto the
circuit boards.

12

Re-assemble the unit and it will probably now work. If this first aid
doesn’t work, see your dealer. Don’t make any adjustments.

INITIALIZING NEW DISKETTES

The System Master that comes with this manual is a very special diskette:
it contains programs that allow you to copy an entire diskette, update any
diskette that has an earlier version of DOS, and more. Programs that
demonstrate various capabilities of DOS are also included on the diskette
and discussed in the manual.

Take the System Master diskette from the drive, and replace it with the
other blank diskette supplied with your drive. Now try an experiment.

Get BASIC going, then type

PR#6

and watch what happens. The red IN USE light comes on, and the disk drive
makes a few clackety noises, then it just keeps whirring softly and quietly
and it doesn’t stop. You’ll have to press the RESET key to stop it
(normally, this is a BAD idea, but these circumstances aren’t normal). It’s
a good idea to open the disk drive door before pressing the RESET key, since
that lifts the head of the disk drive off the surface of the diskette.

What happened was this: your Apple II went on a fruitless unending search
for information on a blank diskette (on a clear disk you can seek
forever...). When a new diskette is manufactured, it contains no
information at all, like a blank tape purchased for a tape recorder. To
operate in the computer, there must be special information placed on the

diskette: the diskette must be initialized.

If you’ve been keeping up with the hands-on part of the example, your blank
diskette is in the drive and you just pressed the RESET key. Now take out

the blank diskette, replace it by the System Master diskette, and close
the door of the drive. Get the computer into BASIC and type

PR#6
again. You should again get the message you got before when you booted.
Once more the DOS commands have been added to BASIC.

The INIT command can be used to INITialize a "slave" diskette. Slave
diskettes are memory-size dependent: the size of the system which
initializes the diskette determines the size of the system which can use
the diskette. If a slave diskette is created on a 32K system, then it can
only be used on a system with 32K or more memory. On larger systems, only
32K of memory will be used. After INITializing a slave diskette, you can
use the MASTER CREATE program (see Chapter 5) to tranform your slave
diskette into a '"master" diskette whose DOS is self-relocating so that
memory is used efficiently. The MUFFIN program will allow you to transfer
the contents of your 13 sector diskettes to 16 sector diskettes.

The INIT command requires the use of a BASIC program called the "greeting"
program since it greets you: each time you boot the diskette the program

will be run automatically. The greeting program is commonly named "HELLO"
but you could call it "BONJOUR" or "BUENOS DIAS" or whatever you like. It

helps keep life simple to use a standard name for greeting programs as you
INITialize diskettes.

13

Here’s a step-by-step guide to INITializing a slave diskette. We assume
DOS is already booted as described above.

1) Remove the System Master from your disk drive and replace it with
a blank diskette.

2) Type NEW, then type a greeting program. Here is a simple sample of a
greeting program:

You should supply your own name, system size, the current
date and other information to help you quickly and easily

determine the diskette’s history and slave/master status.
You may RUN the program to see if it does what you expect.

3) Once the program is satisfactory, type this instruction:
INIT HELLO
When you press the RETURN key, the diskette will spin for nearly

a minute, making clacks and little whispery noises every
now and then. The appropriate prompt character (e-g-,] for

Applesoft) will be displayed when INITialization is complete.

4) When the disk quiets down and the IN USE light goes off,
remove the diskette and label it. The label should say
something like
32K SLAVE DISKETTE CREATED 8 AUGUST 1980
so that just by looking at it you know it isn’t blank.

Put aside the System Master diskette supplied by Apple Computer. Put it
where it won’t be damaged by heat, physical stress (kids? dogs?) or

magnetic objects. And where it won’t get lost. It should be treated
especially carefully, since it contains many useful programs.

Once a diskette has been INITialized, it will be referred to as a slave
diskette. To label your slave diskette, you had to take it out of the
drive. Put it back in and try booting it: the message in your PRINT

statements should appear. If you followed the model given above, the
screen should say:

Since the once-blank diskette now can beot, you know that it has been

INITialized correctly. From this point on you will use the newly
INITialized slave diskette for experimentation. You cannot do some of the
procedures to be demonstrated below on the System Master, because the
diskette is "write protected", as discussed in Chapter 4.

If you have purchased additional blank diskettes, it would be a good idea
‘to INITialize a few of them now.

14

LOAD-ING AND SAVE-ING WITH DOS

Boot the system with your initialized diskette. Type

NEW

to make sure no programs are in memory. This will erase your greeting
program (which is LOADed and RUN when you boot DOS) from memory (but not
from the diskette).

Now type this simple program:

RUN it once or twice to make sure that it works as you expect. In
Applesoft, when the program is RUN you’ll see this:

O I N

Ly el

For reference purposes, call this program ONE TO TEN, since it counts from
one to ten. To store this program on the diskette, type the instruction
SAVE ONE TO TEN

When you complete the command by pressing the RETURN key, the disk will
whirr for a few seconds, and the program will be saved.

If you had typed

SAVE

without any name, the program would have been saved on cassette tape, as
usual (assuming you had operated the tape recorder as described in the
BASIC Programming Manual).

To prove that the program has been SAVEd on diskette, do the following.
First, type

LIST

then

RUN

to see the program is still in memory and still operates properly. This
demonstrates that using DOS to SAVE a program on a diskette doesn’t affect
the program in any way.

Now type
NEW

then

LIST

There will be no program left at all -- it disappeared when you typed NEW.
To really make sure the program is dead, turn off the computer. You can
even take the diskette out and put it (gently) back in again. Turn the
computer back on again, get into BASIC and boot the DOS. Type NEW (which
erases the HELLO program), and then LIST. Nothing there? Right.

15

Now type

LOAD ONE TO TEN

and the disk will whirr for about two seconds. LIST the program: it is
revived. RUN it, and you will find it in perfect health. That is all there
is to SAVEing and LOADing programs from disk: it’s just like using the
cassette tape except that a file name is used, and it‘’s faster.

CATALOG

You stored the program ONE TO TEN on your diskette. Actually, you had
already stored another program. To see what programs are stored on a

given disk, type the command
CATALOG
and a list of all the programs on the diskette will appear. Right now your
diskette’s catalog should look like this, if your programs were written in
Integer BASIC:

I @92 HELLO

I ¢@2 ONE TO TEN

The letter "I" in the left column means that the programs are in Integer
BASIC; before names of Applesoft programs you’ll see an "A". Besides BASIC

program files, there are also other kinds of files that can be stored, and
they will be explained in Chapters 6 through 9. The numbers after the

file-type letter represent the length of the stored program. In this
case, PP2 diskette "sectors" were required to store the program. Each
diskette sector can store up to 256 bytes of information. The shortest
possible file, an empty text file (see Chapter 6), requires @@l sector to

record certain 'housekeeping" information. In all, a diskette can store
496 sectors of programs and other files. Lastly, each entry in the

catalog contains the name of the program. See Appendix C for details on
how information is stored on the diskettes.

=,
Y

When a file exceeds 255 sectors, the length reported for that file by
CATALOG starts over again at (@p.

)
There is no way to tell from looking at the CATALOG which program is the

greeting program. So it helps if you always give the same name to your
greeting programe.

Sometimes you’ll have more programs on a diskette than will fit on the TV
screen at one time. CATALOG will cause the first 18 programs to.be
listed. When you’re ready to see the other programs on the diskette,
press any key except the RESET key, CTRL key or the SHIFT keys.

WHAT’S IN A NAME?

File names must be from 1 to 3@ characters in length; DOS will truncate
longer file names to 3@ characters. A file name must begin with a letter.
Any typeable character except the comma (,) may appear in the name.

16

Here are some legal file names:

SOMNAMBULISTICS

ONE TO TEN

HIRES 34

THE QUALITY OF MERCY: UNSTRAINED

Here a few names that will not work (and reasons why):
1 TO 19 (begins with a digit)
HI THERE, BABE (contains a comma)

INEPT EXCESS VERBIAGE DISQUALIFIES NAMES (will be cut to 3@ characters)

Although the name of the last file will be cut to 3@ characters when
displayed by CATALOG, you can, if your fingers can take it, type the
entire name when LOADing or RUNning, and all will work correctly.

Every line in the catalog represents a "file". The BASIC program you
stored is an example of a file. The rules given here for file names also
apply to the names of programs.

If a control character is accidentally (or even purposefully) typed into a

name, that character will not appear on the screen when you get a catalog.
For example, if you type {CTRL}T instead of plain "T" in the name
"AGATHA", the catalog listing would appear to be

AGAHA

However, if you tried to LOAD that file by typing

LOAD AGAHA

the computer would reply

FILE NOT FOUND

even though the name you typed seemed to be identical to the name in the
catalog. So be careful: don”t inadvertently put control characters in

file names. (Although, heh heh, it’s a clever way to keep you out of my

bank records if all files have secret control characters embedded in

them...) The File Names section of Appendix F contains tips on how to

find out what control characters are imbedded in file names.

RENAME-ING FILES

For one reason or another, you”ll occasionally want to change the name of
a file. Suppose you get tired of typing the file name ONE TO TEN and
decide to call the file COUNT. Just type

RENAME ONE TO TEN, COUNT

and after a moment of whirring you’ll again see the BASIC prompt
character. Now type

CATALOG

to verify that all went as planned.

oe)

The RENAME command does not check to see whether the new name you’re

using already exists or not, so it’s entirely possible that you can RENAME
until all files on a diskette have the same name...a most undesirable and
confusing situation that is best avoided.

17

DELETE-ING FILES

It is easy to remove files from the diskette. Type

CATALOG

again to see the two files that are on your diskette. Now type

LOAD COUNT

(assuming you changed the file name as shown above) to get that program
into memory. Delete this program from the diskette by the instruction
DELETE COUNT

and test that your deletion has worked by typing

CATALOG

Only the greeting program —- probably called HELLO -- is left. Since the
program COUNT is in memory (that’s why you LOADed it), you can place it
back onto the diskette with the familiar command

SAVE COUNT

Take a look at the catalog to see that the program is again on the
diskette.

If you try to DELETE a file that’s not on the diskette, you’ll receive the
FILE NOT FOUND
message.

RECOVERING FROM ACCIDENTAL RESETS

Suppose you‘re without the DOS in either Integer BASIC or Applesoft. (If
Applesoft is in firmware, we assume the switch on the card is set for
Applesoft). If you accidentally strike the RESET key, you can recover with
your program intact by using CTRL-C. The DOS also has recovery procedures
that will usually preserve your program and data.

If you are working with an old Monitor ROM and have already booted D0S, and
then press RESET, you get the Monitor (*) prompt. To return to DOS and
the BASIC you left, type

3DgG

Remember that’s a zero, not the letter 0, between the letters D and G.

If recovery to DOS does not work, and the program still LISTs, all is not
lost: save the program on tape (you did remember to keep your tape drive
for just such an emergency, didn‘t you?). Then at your leisure you can
boot DOS, LOAD the program from tape, and SAVE it on a diskette.

&

If you accidentally (or intentionally) hit the RESET key while the disk’s
red "IN USE" light is on, the information on your diskette may be
clobbered. Problems are most likely to occur if this happens when you‘re
putting information onto the diskette using a SAVE, BSAVE, or WRITE
command. In the event that it is clobbered, you probably won’t be able to

recover your programs from the diskette. If nothing else works, you can
re-initialize the diskette and use it again, but INITializing destroys all

the files on the diskette.

18

If your IN USE light stays on for several minutes but you don’t hear the

usual disk sounds, your system may be "hung'". Pressing RESET may be the
only way to turn off the light so you can restart the system.

A diskette can be partially clobbered, so that it will not boot. However,
in such a circumstance, you can sometimes boot another diskette, then LOAD
programs from the partially clobbered diskette and save them on an un-
damaged diskette. Or use the FID program to copy individual files or
programs.

19

20

EXERCISING OPTIONS

DRIVE, SLOT AND VOLUME OPTIONS

Most DOS commands allow you to specify a number of options, such as which
disk drive you are using, which slot contains the disk controller for that
drive, and a "volume number" for the disk.

The disk drive option allows you to operate with more than one drive.
Each controller has the ability to control either one or two disk drives.
Normally, instructions refer to drive 1. This is the default drive
selection: if you don’t specify a drive, drive 1 will be used. If you
wish to specify drive 2, you use the notation D2 separated from the file
name or other disk options by a comma. For example, to initialize a

diskette in drive 2, you could use the instruction
INIT HELLO, D2

After drive 2 has been specified, all further disk commands refer to
drive 2 until drive 1 is again specified. Drive 2 is now the default
drive. After the above INITialization, the command

CATALOG

will list the files stored on the diskette in drive 2. To specify drive
1, you use the notation DI separated from the file name by a comma. For
example,

CATALOG, D1

will show you the contents of the diskette in drive 1, and change the
default drive number back to 1.

If more than two drives are in use, then additional controllers are
required. These are placed in different slots than the first controller
(which is customarily in slot number 6). You can specify slot n (where n
is a digit from 1 to 7) with the notation Sn separated from the file name
or other disk options by a comma. For example, to initialize a diskette

in drive 1 attached to a controller in slot 5, you would use the
instruction

INIT HELLO, S5, D1
The file name must come first, but order of the options is not important.

The default slot number is the one you used when booting the DOS. Once a
different slot number has been specified, it becomes the default slot
number until it is explicitly changed.

—~

Y

After using a DOS command with a Slot parameter naming a slot that doesn’t
contain a disk controller, you get an
I1/0 ERROR
message, and all appears to be fine. But DOS now thinks the default slot
number is the bad slot number, and that the disk that isn’t connected to
that slot is still running. Even if the next DOS command specifies the
right slot, it waits in limbo forever for the non-existent disk to
stop running the last command. If you have no program in memory that you
care to save, simply re-boot DOS. To recover with your program intact, do
this:
1) Reset the default slot by typing

CATALOG, Ss

where s is the correct slot number.

2) When the system hangs, press the RESET key.

22

3) Type
3D@G
and all should be fine again.

N
%
N4
DOS must be booted from a diskette in Drive 1 not Drive 2.

The volume number option can be used to protect diskettes from being
accidentally written over. For example, suppose your have a
diskette-based inventory system, where each month’s records is on a
different diskette with a unique volume number. Then when you go to enter
information for the month of January, you must be sure to specify the
correct volume number. Otherwise, the information won’t be written to the
diskette and you’ll get a

VOLUME MISMATCH

message.

A "volume number" may be assigned to a diskette when it is INITialized,
using the notation Vn separated from the file name or other disk options
by a comma. For instance, to initialize a diskette using the name "START
UP" for the greeting program (the program that is run each time the
diskette is booted), where the diskette is in drive 2 of a controller in
slot 5, assigning the diskette a volume number of 128, you would use the
command

INIT START UP, D2, S5, V128

=
N/
The volume number of a diskette may not be changed without re-INITializing
the diskette.

The drive number, slot number and volume number options may appear in any
order. The above command is equivalent to

INIT START UP, V128, S5, D2

and to

INIT START UP, S5, V128, D2

and so on.

The volume number of a diskette must be an integer from 1 through 254. If
no volume number is specified with INIT, a default volume number of 254 is
assigned to the diskette.

The command

INIT HELLO, V@

does not give any message, but assigns the diskette the default volume
number 254.

All DOS commands can specify the volume number, if you wish DOS to check
that the volume number on the diskette agrees with the V option. If you
do not specify any volume number, or if you specify volume zero, or if
you type "V" without a number, DOS will ignore the diskette’s volume
number. If you accidentally specify an incorrect volume number, the
system will reject it with the message

VOLUME MISMATCH

23

Volume mismatch errors cannot occur when you ask to see the CATALOG. 1In
case you wish to know the volume number of a diskette, it is given at the
head of the CATALOG listing.

Additional discussion of options is found where each command is
introduced. Also, the information is concisely summarized for each
command in the Command Summary Appendix and on the Quick Reference Card
accompanying this manual. The following section explains how to interpret
these concise summaries.

SYNTAX

Syntax refers to the structure of a computer command, the order and
correct form of the command’s various parts. A simple notation is used to
describe the syntax of each DOS command. Items in brackets ([and]) are
optional; optional parts of a DOS command may be specified in any order.
CAPITAL letters and commas must be typed as shown; lower case letters
stand for items you must supply. 1In specifying the syntax for DOS
commands,

stands for a file name

stands for drive number -- either 1 or 2.

stands for slot number -- 1 through 7.

stands for volume number —-- 1 through 254, usually.

A diskette’s volume number may not be @. Specifying a
volume number of @ in a disk command is a "wild card" that
tells DOS to ignore the volume number on the diskette.

< ! ook

Additional abbreviations used in this manual are summarized at the start
of the Command Summary Appendix.

Any numerical constant (the drive number, volume number, etc.) in a DOS
command can be expressed in hexadecimal notation by preceding the hex
digits with a dollar sign. If you don’t know what hexadecimal notation

is, ignore the preceding statement -- you need’t understand hex notation
to understand this manual.

INIT

The syntax for the INIT command is

INIT £ [,Vv] [,Ss] [,Dd]

where the brackets indicate options which may or may not be included. The
example

INIT HELLO, V17, D2

can be interpreted as follows.

The command name "INIT" is in upper case, and must be typed exactly as
shown. The lower case "f'", for file name is replaced by the legitimate
file name "HELLO". Next the optional volume number is indicated: first
comes a comma, then the upper case "V'". The "v" for volume number was
arbitrarily replaced by 17 for this example. The brackets around ", Ssg"
indicate that specifying the slot number is optional for the INIT command:

24

in this example it’s omitted so DOS will use the default slot number. The

drive option is included: the comma and upper case "D" must be as shown;
the lower case "d" is replaced by 2 in this example.

LOAD, RUN AND SAVE

LOADing, RUNning and SAVEing programs on the disk is similar to the
corresponding operations using the cassette (except that programs are
referenced by file name). Everything goes at least ten times faster, and
you never need to press buttons to play, record or rewind. It is all
automatic. There are many additional abilities that the disk brings as
well, such as the catalog of programs and the automatic running of
programs without user intervention. Saving data (on text files —- see
Chapter 6) is also very easy. The FID program described in Appendix J
offers you some additional ways to manipulate files.

It’s a good idea to hang on to your cassette tape system for trading

programs and as back-up storage for vital programs and data (although
experience shows that disk storage is even more reliable than cassette

storage of programs and data).

If you have a program in BASIC, and you wish to call it HENRY, then the
command

SAVE HENRY

will save it on the diskette. If you have more than one drive, HENRY
normally would be saved on the drive from which you booted DOS (the default
drive, unless you specified a different drive after booting). You can
specify drive number, volume number and slot number as with the INIT
command. For example, to SAVE a file called AGATHA on drive 1 of the
controller in slot 2, where the volume number of the diskette is 214, you
could use the command

SAVE AGATHA, D1, S2, V214

As before, the three options can be put in any order. If you had omitted
the volume number option, AGATHA would have been saved just the same, bless
her, but DOS would not have checked that the diskette was volume 214.

Program names are file names, and must follow the file name rules: they may
be up to 3@ characters long, and must start with a letter. They may
include any characters you can type except commas or control characters.
Here are some valid names for files:

CHECKBOOK

THE QUALITY OF MERCY

HIRES34

NOW: HEAR THIS!

To LOAD a program named AGATHA, use the command
LOAD AGATHA

and the program of that name, if there is one in the catalog, will be
loaded. To test if AGATHA is loaded, see if she can walk a straight line.

If you want AGATHA to RUN after she’s LOADed (poor thing) you can, of

course, use the commands
LOAD AGATHA

25

then

RUN

But there’s a way to do it in just one step:

RUN AGATHA

is a DOS command that first LOADs the specified file, then RUNs it.

Here’s the syntax for the SAVE and LOAD and RUN commands:
SAVE £ [,Ss] [,Dd] [,Vv]
Loap £ [,Ss] [,Dd] [,Vv]
RUN £ [,Ss] [,Dd] [,Vv]

Examples follow:

SAVE OUR HAPPY HOME, D1, S7
LOAD UP

RUN AMOK, S7

G

If, when you try to SAVE a program, you get a SYNTAX ERROR message,
either you have made a typing error, or DOS isn’t booted. First, try
re-typing the command. If DOS was originally booted, use

3p@G

to try to recover. If DOS isn’t booted —- DON’T BOOT IT. Booting DOS
will erase any program in memory. First, save the program on tape, using
the usual cassette

SAVE

command. Now boot DOS. Next, use the usual cassette

LOAD

command, to bring the program back into your APPLE II’s memory from the
tape. Now you will be able to SAVE it on diske.

If a diskette is bad (perhaps someone tried to staple it into a notebook),
or if the diskette is not initialized, or if there is no diskette in the
drive, or if the door is open, the message

I1/0 ERROR

(I1/0 stands for Input or Output) will appear when you try to SAVE or LOAD
using DOS. Check all the items listed, and correct the problem. You
don’t need to re-boot DOS. Try again.

If you use the command

LOAD HENRY

and HENRY is not the name of a program on the diskette in the drive, then
you get this message

FILE NOT FOUND

Look at the diskette’s catalog to find the program’s exact file name. All
characters and spaces must be typed exactly as they appear in the file
name shown in the catalog.

DELETE

To eliminate any file that you would rather not have on your diskette, the
command

DELETE

can be used. The syntax is

DELETE f [,Ss] [,Dd] [,Vv]

26

For example, the command

DELETE EXCESS, V34, D2, Sl

deletes a file named EXCESS from a diskette with volume number 34, which is
placed in drive 2 of the controller in slot l. Sectors on a diskette are
"set free" only when a file is DELETEd.

A SCENARIO: BOOT, SAVE, RUN, CATALOG AND DELETE

Suppose you’re running Integer BASIC and the System Master diskette is in
your disk drive. Here’s a dialog as it might appear on the screen of your
APPLE II. The parts you type are underlined, although they do not appear
that way on the TV screen. First type

>PR#6

<—— [At this point, you would insert the
Slave diskette you INITialized earlier,
E 254 since it is not write protected.]

27

MOVING BETWEEN LANGUAGES: FP AND INT

Suppose you’ve been using Integer BASIC, and you decide to write a program
in APPLESOFT, or to use the computer as a calculator with floating point
numbers (numbers with decimal points). To invoke APPLESOFT without
clobbering DOS, type

FP

(that’s all there is to it) and in a few seconds APPLESOFT will be up and
running. The FP stands for "Floating Point", of course. (If for some
reason Applesoft isn’t available -- it’s not in firmware or on the
diskette that’s in use -- then the message

LANGUAGE NOT AVAILABLE

will be displayed.) The syntax for the command is

FP [,Ss] [,Dd]

where the optional Slot and Drive parameters allow to to specify the drive
containing Applesoft on a diskette.

If you’ve been using APPLESOFT and DOS, you can type

INT

(for "Integer BASIC") to return to Integer BASIC with DOS intact. The
suntax for this command is simply

INT

without any parameters. You’ll generate a

SYNTAX ERROR

message if you try to use the D or S parameters with INT.

<

If you type

INT

while in Integer BASIC, you will lose any program in memory. Similarly,
if you type

FP

while in Applesoft, you’ll lose any program in memory.

When you switch from Integer BASIC to Applesoft or vice versa, you’ll lose
any program you happen to have in memory.

28

In addition to moving back and forth between the Apple’s BASICs, you may
wish to enter the Monitor and be able to use DOS commands. To do so from
either Applesoft or Integer BASIC, type

CALL -151

and you should get the Monitor prompt character, * . To return to

whichever BASIC you started from with your program and DOS intact, type
306G

2

From the Monitor, you may also type
INT

to return to Integer BASIC, or

FP

to return to Applesoft; in either case, DOS will still work but any
program in memory will have disappeared.

%

If you get a

PROGRAM TOO LARGE

message when trying to execute an

FP

command, type

INT

first, to reset the system. Then type
FP

G

Even though your diskette contains the Integer BASIC program named
APPLESOFT, do not type

RUN APPLESOFT

If you do, Applesoft will seem to be running fine until you press RESET,
say, and try to re-enter Applesoft. Then, since the DOS thinks you are in

Integer BASIC (because APPLESOFT was an Integer BASIC program), you will
be in trouble.

To move the APPLESOFT program from one diskette to another, simply
LOAD APPLESOFT

from whatever diskette it’s on, then place the diskette you wish to
contain Applesoft in the drive and type

SAVE APPLESOFT

USE OF DOS FROM WITHIN A PROGRAM

Very often it’s useful to be able to execute a DOS command from within a
BASIC program. For example, you may wish your greeting program on a disk
to print out the contents of the disk by doing a CATALOG command. Many
DOS commands can be executed from inside a BASIC program. This is done by
PRINTing a string that consists of a CTRL-D followed by the command.

Here is an Applesoft program that, if used as a greeting program, will

cause the information in the PRINT statements in lines 2@ and 3@ to appear
on the screen, followed by a list of files in the CATALOG.

29

The recommended way to do this in Applesoft is illustrated in the above
program. First the string D$, consisting only of a CTRL-D, is created

using the CHR$ function in the first line of the program. Later it can be
used as in line 4§

4P PRINT D$; "CATALOG"

Note the semi-colon after the D$ and the quotation marks around the DOS
command. The semi-colon is optional in Applesoft PRINT statements, so if
a program has many DOS commands in PRINT statements, you may find it saves
typing time and memory space to simply omit them, and use the form

4@ PRINT D$''CATALOG"

In Applesoft, you can use the CHR$ function to specify CTRL-D

1¢ D$=CHRS$(4): REM CTRL-D

But you need to recall that the ASCII code for CTRL-D is 4, so a REMark
may be useful. (The CHR$ function is not available in Integer BASIC.)

In either Integer BASIC or Applesoft you may define CTRL-D by

typing the characters

D$=|l

then typing the letter D while holding down the CTRL key, and then typing
the quotation mark, ". Note that the CTRL-D does not print on your

TV screen. The final command will appear as

D$=""

Since control characters do not print, it’s often a good idea to follow
with a REMark to remind you of what actually is in the string. Here’s the
above program written in Integer BASIC:

Only one DOS command may be used in a PRINT statement. The PRINT
statement must begin with the CTRL-D and end with the DOS command.

Pe=r ‘
&/

Using the right-arrow to copy a BASIC statement containing an invisible
control character will erase the control character.

30

In DOS commands executed by a program, the D$ must be preceded by a RETURN
or it will be ignored. RUNning this program

will cause

TESTCATALOG

to be displayed, since the semi-colon suppresses the RETURN at the end of

the PRINT command in line 2@f. To correct this, and cause the DOS command

CATALOG to be executed when the program is RUN, just delete the semi-colon
(;) from the end of line 20.

These DOS commands should only be used within programs in a PRINT
statement beginning with a CTRL-D:

OPEN

APPEND

READ

WRITE

POSITION

These DOS commands may be used in immediate-execution mode, and also from
within a program using a PRINT command with CTRL-D:

CATALOG BSAVE
SAVE BLOAD
LOAD BRUN
RUN EXEC
DELETE CLOSE
RENAME CHAIN
LOCK and UNLOCK PR#

MON and NOMON IN#

PN

%

The DOS command MAXFILES may be used as described above in an Applesoft
program, but it must be used in a special way from an Integer BASIC
program, as discussed in the section about the EXEC command in Chapter 7.

N

o

The DOS command INIT should be used only in immediate-execution mode
(dire consequences may result if you ignore this admonition).

31

32

PLAYING SAFE

Two ways of protecting you and/or your diskettes against disaster have
already been mentioned. Chapter 3 mentions using the Volume option to
ensure that you place information on the desired diskette. The use of
control characters in file names can also be used as a way of protecting
yourself (see Chapter 2, "What’s in a Name?" and also Appendix F, "File
Names"). If what appears in the CATALOG as

MY BANK ACCOUNT

in fact has your initials placed as control characters at some point(s) in
the name, then it’s unlikely that anyone else can access the file.

This chapter mentions a variety of ways of protecting you and your
diskettes against various undesirable events. You’ll probably find one or
more of the techniques useful at one time or another. First, consider
making a special purpose "turnkey" system.

CREATING A TURNKEY SYSTEM

Suppose a doctor wants to do the office accounting on an APPLE II.
Ideally, the office staff should be able to simply turn on the APPLE 11,
type

{RESET} 6{CTRL}P {RETURN}

and immediately be in the midst of the doctor’s accounting program. Since
the accounting program would (hopefully) communicate with the user in
ordinary English, the staff wouldn’t need to know BASIC or anything else
about the APPLE II. The computer would become an accounting system, its
internal characteristics unimportant since all the staff needs to know is
how to use the accounting program.

This is the essence of a "turnkey" system: from the user’s point of view
the computer is a device that does only a particular task, and getting the
system started is as simple as turning a key in a lock. In this case, the
"key" is simply turning on the Apple’s power switch and pressing five keys

on the keyboard. It does not require computer expertise to be able to do
that.

You can use the diskette’s '"greeting program," named when you INITialized
the diskette, to turn your APPLE II into a turnkey system. Let’s say that
you wanted the computer to run the COLOR DEMO program (provided on the
System Master diskette) every time you booted Disk II. Here’s how:

1) INITialize a blank diskette, as described in Chapter 2.

2) place the System Master diskette in your drive and type
RUN COLOR DEMO
Once you’re satisfied that the program RUNs correctly, type
{CTRL}C
to stop the program and return to BASIC.

3) Put your newly INITialized diskette into your drive. We’ll
assume that you called your '"greeting" program HELLO when
you INITialized the diskette.

4) The program COLOR DEMO is now in memory. When you type

SAVE HELLO
DOS will erase your original greeting program named

34

HELLO and save the COLOR DEMO program under the HELLO
file name. The COLOR DEMO program is now the greeting
program on your diskette.

To check that all works as expected, boot the disk.
You should get the same program that you used in step 2).

You’ve just created a turnkey system: whenever that diskette is booted, it
will automatically LOAD the COLOR DEMO program and RUN it.

LOCK AND UNLOCK

Sometimes you’ll want to prevent a particular program from accidentally
being erased from a diskette: the LOCK command will do this for you.

Example:
LOCK NESS, D2

The CATALOG of this diskette’s contents will now show an asterisk (*)
next to the entry for NESS.

If you decide you no longer wish to keep the file LOCKed, the UNLOCK
command will (surprise!) unlock the file.

Example:
UNLOCK NESS

The syntax for the commands is
LOCK f [,Ss] [,Dd] [,Vv]
UNLOCK f [,Ss] [,Dd] [,Vv]

The interpretation of the notation is discussed in the Syntax section of
Chapter 3.

If you try to DELETE or RENAME a file that’s LOCKed you’ll receive the
message

FILE LOCKED
You’ll also see this message if you try to SAVE a file using the name of a

LOCKed file (if the file you’re trying to SAVE is in the same language as
the LOCKed file).

&

Ifryou try to SAVE a file using the name of a LOCKed file in a different
language, then you’ll receive the message
FILE TYPE MISMATCH

Try again, using a different file name.

VERIFY

Occasionally information may not be recorded correctly on a diskette.
This may happen if the diskette is scratched or dirty, for example. The
VERIFY command reports a file which may be damaged or written incorrectly.

35

The syntax is the usual one for DOS commands:
VERIFY f [,Ss] [,Dd] [,Vv]

Examples of the way to use the command follow:
VERIFY SAM

VERIFY FINANCE-8,D2,V22

VERIFY checks to see that information in the specified file is
self-consistent. If it is, you see no message: the prompt character for
the language you’re using is simply printed:

> for Integer BASIC

1 for Applesoft

* for the Monitor.

However, VERIFY doesn’t check to see whether or not a program is
clobbered. If you SAVEd a program that was messed up somehow, it will
still be messed up on the diskette, and it will still VERIFY.

If the VERIFY command finds an error, the
I/0 ERROR
message is displayed.

If you try to VERIFY a file that isn’t on the disk, the message
FILE NOT FOUND
is presented.

You can use VERIFY from Integer BASIC, Applesoft, or the Monitor. From
these languages you may VERIFY any type of file, including text files (see
Chapters 6, 7 and 8) and machine language programs (see Chapter 9).

WRITE-PROTECTING A DISK

The LOCK command allows you to protect a particular file. But sometimes
you will want to be sure that all files on a certain diskette are not
accidentally written over, and thus lost. To "write-protect" a diskette,
you merely need to cover up the squarish write-protect cutout in the side
of the disk. Stick-on adhesive labels are supplied for this purpose when
you purchase diskettes but, in a pinch, any piece of sturdy tape will do.
Note that the System Master diskette does not have a write-protect cutout:
it is permanently write-protected.

write-protect cutout

36

If you decide you want to re-use a write-protected diskette, simply remove
the label (often called a "tab") that covers the write-protect cutout.

Some programs cannot be used with a write-protected diskette. An example
of such a program is ANIMALS, one of the demonstration programs of the
System Master disk. Put your System Master in your drive, and boot DOS if
you need to. Now type

LOAD ANIMALS

which will put the program into memory. Now type

RUN

and the message

WRITE PROTECTED

STOPPED AT 1440

will be displayed. ANIMALS won’t RUN on a write-protected diskette
because it saves information on the diskette each time you play the game.
When you RUN the program, the diskette in the drive must not be
write-protected, else the information can’t be written on the diskette.

Now ANIMALS is in memory, but you can’t RUN it with the System Master
diskette. Put an initialized diskette, one that is not write-protected,
in the drive. Next type

RUN

and now you can play ANIMALS, a game that will "remember" what you "teach"
it by saving the information on the diskette. When you’re through
playing, type

SAVE ANIMALS

so that you”ll have the game on a diskette that’s not write-protected.

If you type

CATALOG

you should see that you have not only a copy of ANIMALS on the diskette,
but also a new file called ANIMALSFILE that was created by the program
ANIMALS.

PROTECTING YOURSELF AGAINST DISASTER

Floppy disks are sturdy and reliable compared to some other ways of
storing computer programs -- for example, on the backs of old envelopes.
But it’s still possible to lose or destroy all information on a diskette.
A diskette may get scratched or damaged by heat; it may get lost, or a dog
may chew it; someone may decide to use it as a frisbee at the beach; if a
diskette isn’t write-protected, it may accidentally get written over. And
a diskette will eventually wear out —- a lifetime of 4@ working hours is
about average.

**% Moral *%*

Keep more than one copy of a program around if you don’t want to lose it.
In computerese, "back up" any valuable program.

If you are in the midst of writing or modifying a program, one way to back
up the program is to keep copies of earlier versions. Then if the current
version is lost you can fall back to the next-most-recent version, and
hopefully not lose too much programming time. One good way to do this is

37

to end each file name with a number which changes from version to version.
For example, suppose you start to write a program called FINANCE. The
first time you save the program, call it FINANCE-l. Next time you work on
the program, save it under the name FINANCE-2; the third time, it becomes
FINANCE- 3, and so on. You’ll wind up with a whole collection of FINANCE
programs, with the largest version number representing the most recent
version of the program.

It’s a good idea to SAVE a developing program periodically (with a new
version number). If you do this every 15 or 20 minutes, an unexpected
power failure or other disaster will not erase all your work. You can, of
course, immediately continue working after SAVEing the current state of the
program -- just be sure to assign a new version number for the next SAVE.
If the diskette starts filling up, DELETE some of the earlier versions.

But it’s a good idea to keep several versions around, in case something
calamitous happens to the current version. Or you may just happen to want
an earlier version -- not all revisions are improvements.

The phrase "backing up" is also used to describe keeping multiple copies of
programs on separate diskettes. There are two approaches to backing up in
this fashion. The first method, using one disk drive, is to simply SAVE

the program on one diskette, remove that diskette from the drive, insert
another diskette and SAVE the program again.

The second approach involves duplicating all the information from one

diskette onto a second diskette. Details of the second approach are
discussed in the next section.

USING THE COPY PROGRAM

You can use the COPY program, on the System Master diskette, to copy the
entire contents of your current programming diskette onto your back-up
diskette. If you are using DOS from Applesoft Basic, COPYA is the program
to use for copying a diskette.

In these copying programs, the diskette from which copying is done is

called the "original" diskette. The entire contents of the original
diskette will be copied onto a "duplicate" diskette. The duplicate

diskette does not have to be INITialized before being copied onto. In
fact, any previous information that was on the duplicate diskette will be
erased.

Before copying the original diskette, it’s a good idea to write-protect
it. Then you can’t accidentally erase its contents, even if you put it
into the wrong drive.

As default values, the program initially assumes that the original diskette

will be placed in the currently selected drive (the drive from which you
ran COPY or COPYA) connected to the controller card in the currently
selected slot. The duplicate diskette is assumed to be in the other drive

connected to the same controller card (even if there isn’t another drive

there). To use any of these default slot or drive numbers, just press the
RETURN key when the default number is shown. If any of the default numbers

38

are wrong, either for the original or for the duplicate diskette, you must
type the correct number when you see that default number on the screen.
Here’s an example of using the COPY program on an Apple with one disk
drive. It assumes your disk drive is attached to a disk controller

card in the same slot as the one from which you ran COPY.

1) Place the System Master diskette in the currently selected drive.
Type
RUN COPY
(RUN COPYA from Applesoft) and after the usual whirring you should see

2) To use the program’s default slot number, slot #6 in this example,
just press the RETURN key.

3) When the message

appears, press RETURN.

4) Press RETURN again when you see

type 1.

6) The message

will appear. This is your signal to remove the System Master diskette
from the drive and insert the original diskette, from which you wish
to copy. (Did you remember to write-protect your original?)

7) Now the program will proceed, first by directing you to insert your.
original diskette, then by informing you that it is reading information
from the original diskette. Then the program will let you know when it
is ready for you to replace the original diskette with the duplicate
diskette in the drive, and when it is formatting (INITializing) that
diskette. After the duplicate diskette is INITialized you will be

instructed to re-insert the original diskette so that the program can
read some more information from it, and then to re-insert the duplicate

39

diskette so that the information can be copied onto it. These two steps
will have to be repeated until the entire original has been copied.

8) When copying is complete you’ll see the message

If you type Y (yes), the copying procedure will be repeated, assuming
the same location(s) for the original and duplicate diskettes. Be sure
to re-insert the original diskette when you see

and that you use another diskette (either a blank or one with unwanted
information on it) as the duplicate. If don’t wish to make another
copy, type N. You will leave the program and DOS will assume your
default disk drive to be the one which was the location of the duplicate
diskette.

If you have more than one drive, specify the slot and drive numbers for
the original and duplicate diskettes and insert the diskettes in these

locations before the copying begins. Note: If you have more than one disk
drive, the system won’t prompt you to remove and replace diskettes. It
only does that for single drive copying.

If you try to copy onto a write-protected diskette you’ll see the message

I/0 ERROR
STOPPED AT (you’ll see a line number here)

Until the write—protect label is removed from the duplicate diskette no
information can be put onto the diskette.

An I/0 ERROR or UNABLE TO READ message will also appear when the drive
door is open or if there is no diskette in the drive. These messages may
also indicate a problem with the diskette in the drive. Be aware that the
default drive number may have been changed after you have gotten one of
these messages. When you RUN the copy program again, you may have to

specify the drive location of the System Master diskette.

40

MORE “HOUSEKEEPING”
INFORMATION

DEBUGGING: MON AND NOMON

The process of trying to get a program to run the way you want it to is

called "debugging;'" program errors are of ten referred to as "bugs". All
disk commands and all information sent between the computer and the disk
are normally not displayed on the screen. But when you’re debugging,

monitoring this information can help you track down problems.

The MON command allows you to MONitor a variety of information. To turn
various parts of the display off again, use the NOMON (NO MONitor) command.

Three different parameters that may be used in these commands:

C stands for Commands to the disk (such as OPEN, READ, etc)

I stands for Input from the disk (when READing a file)

0 stands for Output to the disk (when WRITEing a file).

These parameters are used only with the NOMON and MON commands. Usually
NOMON C,I,0 is in effect: no monitoring is taking place.

The syntax for the commands is

MON [C] [,I] [,0]
NOMON [C] [,I] [,O0]
At least one of the three parameters must be present with the NOMON and MON
commands, else the command will be ignored. The parameters may appear in
any order and, as usual, must be separated by commas.

There are 7 different ways in which the MON command may be used:

command what it monitors

MON C Commands to the disk

MON I Input from the disk

MON O Output to the disk

MON I,0 Input from and Output to the disk

MON C,I Commands to and Input from the disk

MON C,O0 Commands to and Output to the disk

MON C,I,O Commands to, Input from, and Output to the disk

%*%% NOTE #*%%
A MON command remains in effect until a
NOMON, INT, or FP (firmware only) command is encountered
or
until you boot the system

or

do a restart (3DfG).
or

RESET

A neat trick: you can issue a MON command and later cancel it without

affecting the screen format -- even the NOMON does not show on the screen.
Suppose you execute a MON command, say
MON C, I, O

To cancel the command without having it print on the screen, include
PRINT D$; 'NOMON C,I,0": VTAB PEEK(37): CALL -868
where D$, as usual, contains CTRL-D.

42

MAXFILES

DOS allows up to 16 files to be active (in use) at one time. DOS deals with
several types of files in addition to the BASIC program files discussed so

far. See Chapter 6 for a discussion of sequential text files, Chapter 8 for
random-access text files, and Chapter 9 for the DOS commands used with

binary (machine language) files.

The MAXFILES command specifies how many active files are permitted. When
you boot DOS, the command

MAXFILES 3

is executed, which sets up the default condition: a maximum of 3 files may
be active simultaneously until another MAXFILES command is executed.

The command’s syntax is

MAXFILES n

where n must be an integer from 1 to 16. Specifying a value outside this
range will cause a SYNTAX ERROR message from either Applesoft or Integer
BASIC; from the Monitor, a beep is the only indication that you’ve done
something wrong.

For each file specified, MAXFILES sets aside 595 bytes of memory space called
a file buffer. This additional memory space for each active file is used to
help adjust for the fact that memory speed is far faster than disk access
speed, which involves mechanical motion -- the disk head has to search the

diskette. So in the name of efficiency, a file buffer is used to "buffer"
information going to and from a diskette.

If you retrieve information from a diskette, DOS brings in 256 characters at
a time and puts them in the "input" part of the file buffer, then delivers to
you whatever subset of those 256 characters your program requested. If you
are sending information to a diskette, characters are stored in the "output"
part of the file buffer until 256 characters have accumulated, then they’re
shipped to the diskette all at once.

Suppose you have MAXFILES 1 and one file is active. An attempt to perform a
DOS command (such as CATALOG) will cause the message

NO BUFFERS AVAILABLE
to be displayed.

When the system is booted, the number of active files (n) defaults to 3, so
1785 bytes of memory are reserved for 3 file buffers. Under most
circumstances, you won’t need more than 3 active files. If more files are
required, type

MAXFILES n

(where n is the number of needed files) in immediate execution mode before
loading and running a program.

In immediate execution mode, changing MAXFILES erases Integer BASIC
programs and increasing MAXFILES messes up Applesoft strings, since HIMEM:

is moved down without moving the program or strings. To avoid the problem,
reset MAXFILES before loading and running a program.

43

=
If MAXFILES is used within a program, it changes memory pointers, and a

GOTO, GOSUB, or other instruction can get lost. If you must change
MAXFILES from within an Applesoft programs, make the MAXFILES command the

first statement in the program, before any string variables are declared.
For example, 1@ PRINT CHRS$(4); "MAXFILES 5" : :

To use MAXFILES from within an Integer BASIC program, you need to create an
EXEC file, as discussed at the end of Chapter 6.

TRACE

The Applesoft TRACE command is a useful debugging tool. But when TRACE is in
effect, DOS commands inside Applesoft programs don’t work because TRACE
prints the line number before the DOS command. There’s a partial solution
to the problem. You can insert a RETURN (that is, CHR$(13)) in the b
string 1@ D$=CHR$(13)+CHRS(4)

and then most DOS commands will work properly even if TRACE is in effect —-—
see the exception below.

'

If TRACE is in effect and DOS tries to READ an INPUT from the diskette, your

program will instead stop and wait for INPUT from the keyboard, which limits
the usefulness of TRACE in connection with DOS.

USING THE MASTER CREATE PROGRAM

As discussed in Chapter 2, INIT is used to create slave diskettes. In this
section you’ll learn how to create master diskettes. The distinction
between a slave and a master is not readily apparent: both come charmingly
attired in the latest in black plastic (no, not leather) garb. It’s up to
you to revise your greeting program and diskette label to remind yourself
which is slave and which is master.

The System Master diskette contains a program called MASTER CREATE that can

run on an Apple II with at least 16K of memory. The MASTER CREATE program
does the following for you:

* Converts a slave diskette (whose DOS is memory-size dependent)

into a master diskette (whose DOS is self -relocating so that
memory is used efficiently on any size system).

* Gives the converted diskette a new greeting program name, the name
DOS will attempt to RUN each time the diskette is booted.

The MASTER CREATE program must be used with a diskette that has already

been INITialized. It will not work with a diskette that is write-—
protected.

44

Here’s an example of how to upgrade the diskette INITialized in Chapter 2

(the one with the ONE TO TEN program on it) to convert the slave diskette
created by INIT into a master diskette. For convenience, that diskette

will be referred to as diskette ONE in the discussion that follows.

Before using MASTER CREATE, do the following:

1)

2)

3)

Insert the diskette you wish to convert —- diskette ONE for this
example - - into the disk drive, and RUN the diskette’s greeting
program —-- named HELLO on diskette ONE. The message displayed by
a greeting program should include the version of DOS used to
initialize the diskette, and its status as slave or master.

Change the appropriate lines of the greeting program to display the
new information, "MASTER DISKETTE'". Then SAVE this new version of
the greeting program. If the diskette’s outside label requires a
similar change, make that change now.

Note the name of the greeting program. If you wish the converted
diskette to RUN this same program each time it is booted, just as it
did before converting, you will give this greeting program name to the
MASTER CREATE program, later on. If you’ve always wished your
greeting program had some other name than its present one, RENAME

the greeting program now. Later, you will give the new name to the
MASTER CREATE programe.

To use MASTER CREATE, do the following:

4)

5)

6)

Put the System Master diskette in the drive, boot DOS, and
from either BASIC type
BRUN MASTER CREATE

You should see the message

You’ll then be told to type the greeting program name
to be used by the converted diskette:

45

We’ll assume that when you SAVEd the revised greeting program on diskette
ONE (step 3, above) you used the name HELLO. So type
HELLO

unless you wish the diskette to RUN some other program name each time the

diskette is booted. When you press the RETURN key to enter the greeting
program name, you’ll see this message:

7) Follow the instructions. Remove the System Master diskette from the
disk drive and replace it with the diskette you wish to convert —-
diskette ONE in this case. Finally, press the RETURN key to begin
converting; the program will inform you when the process is complete.

8) After using the MASTER CREATE program, always re-boot DOS before
doing any other work.

*%% Note *%*%

The greeting program name that you give to the MASTER CREATE program is not
placed in the diskette’s CATALOG. It just tells the diskette’s DOS which
program name to RUN each time the diskette is booted. You must make sure

that the diskette’s CATALOG actually contains a program bearing the same
name you give to the MASTER CREATE program.

If you forget to do so (by skipping step 3 above), you’ll see the message
FILE NOT FOUND
each time you boot the disk using this diskette.

% Reminder **%

You must remember the name of the greeting program for each diskette.
Using the same greeting program name on all of your diskettes makes this

easier.

46

USING SEQUENTIAL FILES

TEXT FILES: AN INTRODUCTION

Sometimes you’ll want to use the disk to store information that is not a
program. You may, for example, wish to keep copies of correspondence, a
list of words used in a word-guessing game, intermediate results of a
calculation, or a mailing list. A text file, sometimes called a data
file will allow you to do this and more. The letter T marks text files
in the CATALOG directory.

Text files are created and retrieved using DOS commands in an Integer
BASIC or Applesoft program. A text file may be created using a program
written in one language and retrieved from a diskette using a program
written in another language.

Most sample programs in this manual are in Applesoft. If you wish to
convert the programs to Integer BASIC, recall that in Integer BASIC you
can’t make string arrays and you must DIMension string variables. In an
Integer BASIC command such as

INPUT A$, BS, C$

only RETURNs (not commas) may separate the three responses. This manual
does not tell you how to make each program run in Integer BASIC: see the
Appendix M of the Applesoft II BASIC Programming Reference Manual for
details of converting between languages. For some hints about changing
the BASIC in which a program runs, after the program has been written,
see page 76 of this DOS manual.

The DOS commands LOAD and RUN (also BLOAD and BRUN) may not be used with a
text file. An attempt to do so will cause the message

FILE TYPE MISMATCH

to appear. LOAD and RUN expect a BASIC program file (and BLOAD and BRUN
expect a Binary machine-language file), not a text file. Instead, you
must write programs that send data to a text file and retrieve data from a
text file, using the DOS. commands discussed in this chapter:

OPEN

CLOSE

READ

WRITE

APPEND

POSITION

EXEC

The commands OPEN, READ, WRITE, APPEND and POSITION cannot be used in
immediate-execution mode. If you try to do so, you’ll receive the message
NOT DIRECT COMMAND

These commands must be used in deferred-execution mode, that is, from
within a program. The commands CLOSE and EXEC may be used in
immediate-execution mode.

In addition to the commands listed above, the DOS commands

LOCK and UNLOCK

DELETE

RENAME

MON and NOMON

VERIFY

CATALOG

work with text files in the same way they work with program files.

48

There are two different types of text files: sequential text files and
random-access text files. Both types of text files store strings of ASCII
codes to represent the data, but in different formats. Diagrams of the
two text-file types are shown below (the character) represents the
RETURN character, sent automatically at the end of most PRINT statements).

"PICTURE" OF A SEQUENTIAL TEXT FILE

Character: [7 [y AT Jo[NJEp e oW [[[[[[[]

Ascri: [55[13[65[84]13[79]78]69[13]66]76]79]87]13[00[00] 00]00]00]40 [0

File Byte: g 1 2 3 4 5 6 7 8 91¢ 11 12 13 14 15 16 17 18 19 2¢
T e N N ———
Field: [} 1 2 3

"PICTURE" OF A RANDOM-ACCESS TEXT FILE
(Example: Record Length 5, One Field per Record)

character:[T 3 [| [ot [[o N [ep [[5c o [w s]
ASCII:[55]13]00[@@[08]65]84]13[08[00]79][78[69]13[0@]66]76]79]87]13 [60]

File Byte: @ 1 2 3 4 5 6 7 8 9 1¢ 11 12 13 14 15 16 17 18 19 2¢

Record Byte: § 1 2 3 4 ¢ 1 2 3 4 ¢ 1 2 3 4 ¢ 1 2 3 4 @

_ N—— N— S —
Field: 1)] 1))
Record: 1] 1 2 Ag

The terms "field" and "record" will be discussed in Chapters 6, 7 and 8.
The commands OPEN, CLOSE, READ, WRITE and POSITION are used with both
types of files, but in somewhat different ways. Sequential text files are
simpler to use and understand, in some respects, so we will discuss the
use and structure of sequential text files first. The use of
random-access text files is described in Chapter 8. More detailed and
technical information about all types of files can be found in Appendix C.

SEQUENTIAL TEXT FILES: SOME EXAMPLES

Suppose you want to make a file containing a list of words to be used in a
word-guessing game. Here are two pairs of programs that deal with such a
file. The first program in each pair creates a text file on the diskette.
The second program in each pair retrieves the data stored in the text
file from the diskette.

This program creates a text file named WORDS1, containing the words APPLE,
BANANA, CATALOG, DORMANT, EAGLE, FRUIT, GOOSE, HAT and ICICLE.

49

Line 3¢ OPENs the file, using the normal format for sending a DOS command
from within a BASIC program. OPEN places a text file named WORDS! in the
CATALOG (if it was not there previously).

Line 4@°s WRITE command causes subsequent output from PRINT statements to
be sent to the named text file instead of to the TV screen. So in this
program, each PRINT statement in lines 5@ through 130 will send the word
inside the quotation marks to the text file WORDS1, and not to the TV
screen.

Line 140 CLOSEs the file, and ends the file-writing process.

If the program is RUN and you’re not in MONitor mode you won’t see
anything: usually DOS commands and disk input and output are not
displayed. But if, as explained in Chapter 5, you type

MON C, I, O

(or simply

MON C, O

since no input from the disk is involved) and then you RUN the above
program you’ll see the following:

50

At this point you’ll have a file called WORDSL on your diskette. WORDS1
will be marked with a "T" in the CATALOG to indicate that it’s a text
file. The file consists of items of data (in this case, words) separated
by RETURNs. A RETURN character is automatically sent at the end of every
PRINT statement which does not end with a comma or a semicolon. Note that
in this sense each RETURN is a character rather than an action —-- in
particular, it is the character with ASCII code 13.

Each item of data, ending with its RETURN character, is called a field.

A field is stored in the text file as a series of characters represented
by their ASCII codes. The last character in each field must be the RETURN
character, ASCII code 13.

WORDS1 is called a sequential text file because each field is stored
beginning immediately after the RETURN character of the preceding field.
When stored on the diskette, fields may be of different lengths: the word
APPLE takes 6 bytes (one for each letter plus one for the RETURN
character), BANANA takes 7 bytes, and so on. A sequential text file is
stored on the diskette as one long, continuous series of ASCII-coded
characters, a chain of fields with no gaps left between them.

Once WORDS1 is on the diskette, the question immediately arises, "How can
I retrieve it?" The following Applesoft program will retrieve WORDSIL:

Line 30 OPENs the file; line 40 tells DOS that all subsequent INPUT or GET
statements will refer to the named diskette file instead of the Apple’s
keyboard. It is as if the disk were typing responses, instead of you. An
INPUT command always causes one complete field, ending with its RETURN
character, to be "typed in" to the Apple. If another INPUT command
follows, it will cause the next field to be read in, and so on. So

lines 5@ through 7@ cause DOS to start at the beginning of WORDS1 and
retrieve 9 fields which are placed in the array A$(l), AS$(2), AS$(3),
A$(4), ... A$S(9). Line 8¢ politely CLOSEs the file.

If MON C, I, O is not in effect when the above program is RUN, you will
see nothing on your screen. But if MON C, I, O (or just MON C, I) is in
effect, you’ll see

51

A question mark (?) is displayed before each INPUT from the disk, just
as it is before each normal keyboard INPUT.

To check that all worked as claimed, try typing

PRINT A$(2), A$(9), AS(4)

and you should see the words BANANA -- from A$(9) -- then ICICLE and
finally DORMANT. This is a good way to check that information was read
correctly.

If you modify the program MAKE WORDS1 to make different words, be sure to

DELETE WORDS1 before re-RUNning MAKE WORDS1. If you don’t, you may end up
with a mixture of the old words and the new.

Here’s how to create a sequential file called WORDS2 containing the same
words as WORDS1, but with all nine words in one field. Each word is
followed by a comma, so that an INPUT statement with multiple variables
(9, in this case) can be used to retrieve the separate words.

Note that the PRINT command in line 5@ ends with a semi-colon. A
semi-colon at the end of a PRINT command stops the automatic printing of a
RETURN character after the last data character. Therefore the characters
sent to the disk by the next PRINT command will appear in the same

field with the characters sent by line 5¢’s PRINT command. The PRINT
command in line 6@ also ends with a semi-colon, so the field still does
not have its end-marking RETURN character. Line 7@‘s PRINT command ends
without a semi-colon or comma, allowing the automatic final RETURN
character to be sent at last. This ends the field, which now contains all
the characters PRINTed by lines 5@, 6@ and 70.

52

<>

Commas in a disk-less PRINT command usually send characters to defined
tab-fields on the screen. However, commas do not serve this same
formatting function in PRINT commands used when WRITEing to the disk:
these commas are treated as if they were semi-colons. In PRINTing to the
disk, items separated by commas will be concatenated, with no intervening
spaces inserted. A comma at the end of a PRINT command has the same
effect as a semi-colon: no automatic final RETURN character is sent.

When the program MAKE WORDS2 is RUN with MON C, I, O in effect, you’ll see

In Integer BASIC, commas can separate multiple INPUT responses for
numeric variables, but not for string variables. Only RETURN
characters can separate multiple responses when INPUT is used with
multiple string variables. 1In Integer BASIC, therefore, the program
RETRIEVE WORDS2 will assign the entire field (9 words, 8 commas and 6
spaces) to the variable Al$. Then you will get the END OF DATA message
when there is no field to assign A2S.

In Applesoft BASIC, you can also use the GET command to retrieve data from
a text file, character by character. This has the advantage that you can
define any character as marking the end-of-word, for instance. The
following Applesoft program also retrieves the text file WORDS2.

In line 10, the CLEAR command sets all variables (including I and all
A$(I)"s) to zero. Line 20 uses Applesoft’s alternate way of setting D$ to
CTRL-D (4 is the ASCII code for CTRL-D). This method avoids the invisible

(and un-copyable) control character.

53

Line 8f GETs one character at a time from the text file WORDS2, which was
OPENed for READing in lines 5@ and 6f. If the new character is neither a

comma nor a RETURN, line 11@ adds the new character to the end of the
string AS$(I). Then line 12¢ sends the program back to line 8§, to GET the
next character. Thus, the program builds up the first word, character by

character, in AS$(1l).

When a comma is found the first word is ended, so line 99 sends the program
back to line 7@ to increment I and start collecting a new word in A$(2).
And so on. Finally, a RETURN character (R$) marks the end of the field,

so line 1¢f sends the program on to line 13§ to CLOSE the file and end the
program. Note the use of CHR$(13), in line 3@. You cannot directly type

a RETURN character into a BASIC program line (a typed RETURN ends a
program line), but CHR$(13) is a RETURN character in Applesoft.

When GET obtains characters from the disk, these characters are not
displayed on the screen, even in MON C, I, O mode. Line 115 has been added

to let you see the words as they are built up, character by character.

A\ 4
After an Applesoft GET command takes its response from a diskette text
file, the following problems arise:
1) With NOMON C,I,0 the first character PRINTed after the GET
will not appear on the screen.
2) With MON C,I,0 the first character PRINTed after the GET
will appear on the screen.
3) In either mode, if a DOS command is the first item PRINTed
after the GET, the DOS command may not be executed because
the necessary preceding RETURN is missing.

In the program GET WORDS2, the non-printing "throw-away" character CTRL-A
(T$) was placed before the first desired PRINT character in line 115.
This takes care of problems 1 and 2, above. To cure problem 3, the RETURN

character (R$) was placed before the PRINTed DOS command in line 13§, much
as was done with TRACE (see page 44).

When this program is RUN with MON C, I, O in effect, you will see the
following (but all displayed in one column, not three):

54

And lastly, here’s an Applesoft program that creates a file WORDS3, with 2
words in the first field, 3 words in the second field, and 4 words in the

third field.

The first field will contain

APPLE, BANANA

and is 13 bytes long, one per character (commas must be counted too) plus
one for the RETURN character. The second field,

CATALOG,DORMANT , EAGLE

is 22 bytes long; the third field,

FRUIT,GOOSE,HAT,ICICLE .

is 23 bytes long.

55

When RUN with MON C, I, O in effect you’ll see

When RUN with MON C, I, O in effect, you’ll see the following:

The programs to READ the sequential text files WORDS1, WORDS2, WORDS3 were
carefully designed to READ exactly the correct number of fields and the
correct number of items per field. In general, a program to retrieve a
text file must be designed around the specific file. If you make a
mistake, the results can appear somewhat confusing. For instance,

consider the following '"wrong' program to retrieve the words in text file
WORDS3.

56

With MON C, I, O in effect, here’s what you would see on RUNning the
program.

The INPUT command in line 7¢ caused the entire field containing
FRUIT,GOOSE,HAT, ICICLE
to be READ into the Apple. The first three words were assigned to the

variables W$, X$ and Y$. But there is no variable corresponding to the
fourth INPUT response, ICICLE, so the message
EXTRA IGNORED

is displayed, and execution continues.

Here is another '"wrong" program to READ the text file WORDS3:

This time, line 6@ caused the field

CATALOG,DORMANT , EAGLE

to be READ into the Apple. The three words are assigned to the variables
T$, U$ and V$. But line 6@°s INPUT command expected four responses, so
it causes the next complete field to be READ into the Apple:
FRUIT,GOOSE,HAT, ICICLE

The first word, FRUIT, is assigned to line 6(%’s last variable, W$. There
are no more variables with this INPUT command, so the message

EXTRA IGNORED

57

is displayed, and execution continues. There are no more fields in the
file, so line 7¢“s INPUT command causes the
END OF DATA

message, and the program comes to a stop.

A somewhat more general pair of programs, MAKE TEXT and RETRIEVE TEXT are
discussed in a later section. They illustrate how to make a program more
adaptable to different text files.

OPEN-ING AND CLOSE-ING SEQUENTIAL FILES

Sequential text files should be used when information is to be retrieved
in a linear fashion from the beginning to the end of the file, and when
information does not require much updating or on-going revision. For
example, a sequential file could be used to contain data for a
word-guessing game, as in the preceding sample programs.

To create a sequential text file, the commands

OPEN

WRITE

PRINT

CLOSE

are used, in the order shown (though not necessarily right after each
other). To retrieve a sequential text file, the commands

OPEN

READ

INPUT

CLOSE

are used, again in the order shown though not necessarily right after each
other. Both procedures are illustrated in the preceding section.

A certain ritual is required before and after you create (WRITE) a
sequential text file: before using the file you must OPEN it. When you’re
done, you must CLOSE it. The same is true when retrieving (READing) a

sequential text file: OPEN before READing, and CLOSE the file when you're
done.

&

Files that have been OPENed must be CLOSEd. Failure to CLOSE a file that
was OPENed and written to by a WRITE command may result in loss of data.

The syntax for these commands is similar to other DOS commands.
[Note: OPEN and CLOSE are also used with random-access files —-- see
Chapter 8.]

OPEN £ [,Ss] [,Dd] [,Vv]
CLOSE [f]

Examples: OPEN SESAME
OPEN SHOP, D2, S7
CLOSE
CLOSE MOUTHED
CLOSE WINDOW

58

OPEN sets aside workspace in the Apple for the file f (for those who know
about such stuff, OPEN allocates a 595-byte file buffer to handle this
file’s input and output), and gets the system ready to read or write from
the beginning of the file. OPEN also sets up the slot and drive numbers
to be used by the subsequent WRITE (or READ) command.

The CLOSE command releases the workspace in the Apple (de-allocates the
file buffer associated with the file f). If f is not specified, all OPEN
files will be closed, with the exception of any file being used by the
EXEC command. EXEC files are discussed later in Chapter 7. OPEN
sometimes CLOSEs too: OPEN first checks to see if the named file is
already OPEN; if so, it CLOSEs it before re-OPENing it.

Note that the CLOSE command has no Drive or Slot parameters. If you type
CLOSE MYFILE

then any file named MYFILE will be CLOSEd, regardless of the slot and
drive number associated with the file. Similarly, the command

CLOSE

will CLOSE all files (except a file being EXECed) on all disk drives.

In various circumstances, you may wish to delete a file f that may or may
not exist. This is especially important to avoid problems of overwriting
an old file (unless you overwrite the entire old file, part of the old
file will remain, attached to the end of your new file). Suppose a game
creates and uses the file SCORES each time it is played, and you wish your

program to delete any old file by that name at the start of each new game.
The command

DELETE SCORES

will cause the error message

FILE NOT FOUND

if the file doesn’t exist, and your program will halt. Here’s a quick way

to delete any file named SCORES and re-OPEN it for new data, whether or
not that file already exists:

WRITE-ING SEQUENTIAL FILES

Here is another program which creates a sequential text file. This
Applesoft program creates a text file named SAMPLE which contains 3
strings and 1¢ numbers.

The file SAMPLE may or may not already exist each time the program is RUN:
if it does exist, it should be DE1ETEd so as to remove old data from the

file. If it does not exist and your program tries to DELETE it, you’ll
receive the message
FILE NOT FOUND

59

and the program will stop. Lines 20 and 30 take care of the problem. If
SAMPLE already exists, line 2@ OPENs it and line 3¢ DELETEs it. If SAMPLE
does not exist, line 20 creates a file SAMPLE and line 3¢ DELETEs it.

When line 40 is executed it creates a clean new file SAMPLE, so the
problem of mixed files is avoided.

Here’s what you see on the screen when you RUN this program, if MON C, I,
0 is in effect.

Y IR |

Wy

Before you WRITE a file, it must be OPENed; CLOSE it (quietly, please)
when you’re done. Both the OPEN and WRITE commands must refer to the same
file name.

Once a WRITE command is executed, any subsequent PRINT commands send all
characters to the diskette, instead of the screen. A WRITE command is
cancelled by the use of any DOS command in a PRINT statement. Even the
"empty'" DOS command (just CTRL-D) will do.

60

&

An INPUT command of the form INPUT X$ also cancels a WRITE command, but

only after storing as the last text file character the ? which the INPUT
command normally displays on the screen. If the form
INPUT "WHAT’S YOUR NAME? "; X$

is used, the WRITE is canceled after the characters in the string are sent
to the diskette.

An error message cancels a WRITE command, but only after the entire error
message is stored as the last field in your text file.

The syntax for the WRITE command when used with sequential files is:
WRITE £
[Note: WRITE is also used with random-access files, see Chapter 8.]

Examples: WRITE LETTER
WRITE RIGHT

The sample program given at the beginning of this section is a simple
illustration of the most basic (BASIC?) elements needed to create a text
file. A slightly more general Applesoft program called MAKE TEXT is on the
System Master diskette that came with your disk drive.

MAKE TEXT allows you to create a sequential text file containing up to 10§

strings; each string may have at most 239 characters. Try it -- you’ll
like it (we hope). Place the System Master diskette in your drive and
type

LOAD MAKE TEXT

A LISTing of the program should look like this:

(Continued on next page)

61

(Continued from previous page)

Once the program is LOADed, SAVE it on a diskette that’s not write-

protected. (This step is necessary because this program, like the ANIMALS
program discussed in Chapter 4, creates a new file.)

Is MAKE TEXT still in your Apple? And a non-write-protected diskette in the
drive? If so, type

MON C, I, O

SO you can see the commands sent to and from the disk. Then type RUN

and you should see the following message:

Type in as many strings as you like (up to 1@§ may be entered). Warning:
the program uses INPUT, so don’t type commas or colons into your strings.
When you wish to quit, just press the RETURN key instead of typing a
string. You’ll be asked

Choose a name for your text file, press the RETURN key, and as your strings
are sent to the disk you’ll see them printed on the screen. First will
appear the disk commands

OPEN £
DELETE f
OPEN £
WRITE f

(where the f is replaced by the file name you chose). They“11 be followed by
a number -- the number of strings you entered into the file. (This

62

number will be used by a program discussed in the next section that
retrieves your file). Next you’ll see your strings. Finally you’ll see
the message

CLOSE £

Here’s a sample RUN of the MAKE TEXT program:

AR\

©

If you OPEN a text file that already exists and then WRITE to it (without
first DELETEing the file and re-OPENing it), then you will overwrite at
least a portion of the file. Unless you overwrite at least as many
characters as existed in the old file, the result is that the new file
contents will be a mix of the data PRINTed to the file on the two
occasions. First will appear the new characters you PRINTed to the file

63

this time, and then will follow any portion of the old file you did not
overwrite. To clear all characters from the old file, OPEN and DELETE the
old file before you OPEN it anew. (In the program MAKE TEXT, lines l4@
and 15@ take care of "cleaning out" any previous text file by the same
name.) To keep programs from overwriting a file, LOCK the file.

READ-ING SEQUENTIAL FILES

The DOS command READ allows you to retrieve a text file. Once a READ is
executed, any subsequent INPUT statements (or GETs in Applesoft) refer to
the specified file instead of the Apple’s keyboard. This Applesoft
program retrieves the text file SAMPLE created by the program listed at
the beginning of the preceding section. READ, like WRITE, must be
preceded by OPENing the file to be used. The file must be CLOSEd as well.

An OPEN must precede a READ, and an INPUT (or, in Applesoft, a GET) must
follow a READ. The OPEN and READ must refer to the same file name. TIf
you RUN the program with MON C, I, O in effect you’ll see this:

The program was written explicitly with the SAMPLE file in mind: it
assumes that the text file contains 3 strings, (A$, BS, and C$ in line 409)
and 10 integers (W in line 6@). Two question marks are printed when B$
and C$ are INPUT because RETURNs separated the INPUT’s multiple responses.

64

A READ command is cancelled by the use of any DOS command in a PRINT

statement. The "empty" DOS command (just CTRL-D) will do just fine.
of the PR# or IN# commands also cancels a READ.

The syntax for the READ command is the same as for WRITE:
READ f
[Note: READ is also used with random-access files, see Chapter 8.]

Examples: READ LETTER

READ CAREFULLY
&

Stopping a READ in Applesoft using CTRL-C will generate a string of
REENTERs. To avoid this, press the RESET key to stop the program.

Use

An Applesoft program that retrieves text files created by the MAKE TEXT
program is on the System Master diskette. Place the System Master diskette

in your drive and type
LOAD RETRIEVE TEXT
then SAVE the program on the same diskette you used for MAKE TEXT.

(The

program is really a companion piece to MAKE TEXT, and it’s simply more

convenient to have them on the same diskette.)

A LISTing of the program should appear as follows:

65

and you should see the message

Type in the name of the text file you created using the MAKE TEXT program,
press the RETURN key, and you should be off and running (oops -- rather,
READing) .

Here’s what you’ll see if the file TEST, used as a sample at the end of
the last section, is retrieved using the RETRIEVE TEXT program:

MORE ON SEQUENTIAL FILES: APPEND AND POSITION

The DOS commands APPEND and POSITION, respectively, allow you to add text
to the end of a sequential text file, and to access information from any
specified field within a text file.

APPEND allows you to add data to the end of a sequential text file.

This is particularly useful if you wish to extend the information in a
sequential text file, as in the ANIMALS program discussed in Chapter 4
could have. The command OPEN, you will recall, always sets the
position-in-the-file pointer to byte @, the first character in the file.
The command APPEND performs an OPEN for you on a file that already
exists, then sets the position-in-the-file pointer to one byte beyond the
last character in the file.

The following program builds a file called TESTER that contains the two
strings "TEST @" and "TEST 1'":

66

APPEND must be followed by WRITE (attempting to READ will just cause the
END OF DATA message). The syntax for the APPEND command is doubtless
familiar if you’ve been reading straight through this manual:

APPEND £ [,Ss] [,Dd] [,Vv]

APPEND, even though it is used only for WRITEing into a text file, does
not cause the

FILE LOCKED

message if the file is locked. That message is given only if you attempt
to actually WRITE to the file.

The DOS command POSITION allows you to WRITE or READ information beginning
in any given field of a sequential text file. The syntax for the POSITION
command is

POSITION f [,Rp]

where Rp is the Relative-field position. This command specifies that
DOS“s position-in-the-file pointer will be moved forward (only) to the
p-th field ahead of the current pointer position. If p=@, the following
READ or WRITE begins in the current field. If p=1, the following READ or
WRITE skips the current field and begins in the next field. If p=2, the

67

following READ or WRITE skips two fields including the current field,
before beginning to READ or WRITE. And so on. If your file does not
contain any field corresponding to the relative-field position specified
by the POSITION command, the message

END OF DATA

will be displayed, and program execution will stop.

POSITION with the Rp parameter specifies a relative field position, p
fields ahead of the current field. POSITION must refer to a file that you
have already OPENed. OPEN automatically sets the position-in-the-file
pointer back to the beginning of the first field. Thus, if POSITION is
used immediately after OPEN, the relative-field position also

corresponds to the actual, or absolute, field position. In no other
case is this true.

Like any other DOS command, POSITION cancels a READ or a WRITE. Therefore
POSITION must be used before the associated READ or WRITE.

POSITON actually scans the contents of the file, byte by byte, looking for
the Rp-th RETURN character. If, during this process, it encounters an
"empty" (value @) byte, the message

END OF DATA

is presented immediately. It is not necessary to actually INPUT or GET
any such null character.

Here is a program that uses POSITION to retrieve various fields from the
TESTER file, created earlier by the MAKE TESTER and APPEND TESTER
programs:

g

ok

.

b
L

mor o

: "OPEN TESTER™®
;" TION TESTER. R2

1: PRINT D¥: "READR TESTER"
128 INPUT C#%

148 INPUT E

1538 FRINT D$: "CLOSE TESTER®

If you RUN this program with MON C, I, O in effect, you will see:
OPEN TESTER
FOSITION TESTER.
READ TESTER
?TEST 2
POSITION TESTER: R1

68

Are you surprised at the results? Remember that the current field is
relative-field position number). Also, remember that each INPUT causes
one field to be READ into the Apple, and advances the
position-in-the-file pointer to the beginning of the next field.

BYTE-ING OFF MORE

Note: the following section is not for beginners, and sequential files
can be used perfectly well without a knowledge of the parameters discussed
here.)

The DOS commands WRITE and READ can be used with a Byte parameter to

WRITE or READ information starting from any place in a text file —-- if
you know where that place is. The trick involves knowing at exactly which
byte in the file you want to start (each byte contains one character’s
ASCII code). To do this, you must know exactly how you have stored
information into the file. You must count all RETURNs, commas, spaces and
other characters in the file when figuring out where to begin. The
problem is even more difficult for WRITE, because you must also know where
to end.

The B parameter is an actual or absolute position in the file unless R is
specified. If R is given, the B parameter is the actual position within
the specified field.

The command

WRITE THISMONTH, B27

sets the position-in-the-file pointer to the twenty-eighth byte of the
file named THISMONTH (the first byte is number @#). Characters sent to the
disk by a subsequent PRINT command will replace an equal number of
characters that already existed in the file, beginning with the character
in the 28th byte.

<

This over-writing is not confined to the current field. If you PRINT
fewer than the number of characters remaining in the current field, you
will create two new fields: the field you just PRINTed, followed by the
tail-end of the field you were over-writing. If you PRINT more than the
number of characters remaining in the current field, you will over-write
some of the characters at the start of the next field: the current field
will then be longer, and the next field shorter than before.

69

It is also possible to WRITE into bytes that are beyond the last byte of
an existing sequential text file. An attempt to READ the intervening
un-written bytes will cause the

END OF DATA

message to be displayed, and your program will stop. See the discussion
of READ with the B parameter, for information on accessing sequential text
file fields that are not next to each other.

The syntax for this command is

WRITE £ [,Bb]

where the B parameter specifies the file byte at which characters sent by
the next PRINT command will begin replacing file characters. The default
value of b is @, the first byte in a file. Byte b is an actual, or
absolute, position within the file. The B parameter may specify a
position either before or after the current position-in-the-file pointer.
[Note: this command is also used with random-access files. See Chapter 8.]

Similarly, the command

READ LASTMONTH, B32

sets the position-in-the-file pointer to the thirty-third byte of the file
named LASTMONTH (again, the first byte is number @}). A subsequent INPUT
command will cause all characters in the next field (i.e. up to the next
RETURN character), beginning with the character whose ASCII code is stored
in the file’s 33rd byte, to be READ into the Apple. If the 33rd byte does
not contain the first character of a field, only the remaining characters
in that field will be READ.

Syntax for this command is

READ £ [,Bb]

where the B parameter specifies the file byte where the next INPUT or GET
command will begin reading characters. The default value of b is @, the
first byte in a file. Byte b is an actual, or absolute, position within
the file. The B parameter may specify a position either before or after
the current position-in-the-file pointer. [Note: this command is also
used with random-access files, see Chapter 8.]

The following program sets the position-in-the-file pointer to byte 14
(the fifteenth byte) in file TESTER, which was created earlier by the
program MAKE TESTER. Then it WRITEs the string "APPLE COMPUTER'. Note
the familiar sequence: OPEN, then WRITE and PRINT, and finally CLOSE.

With MON C, I, O in effect, RUN RETRIEVE TESTER to see how the previous
program has changed the file TESTER. As you can see, the field containing
APPLE COMPUTER has completely over-written the fields that contained TEST

70

3 and TEST 4, as well as the first character of the field that contained
TEST 5. As there are now only four fields in all, the END OF DATA message
was displayed after the fifth INPUT command.

The following program sets a pointer to byte 18 in the file TESTER, just
modified by the preceding program. Then this program READs to the next
RETURN in the file. Again the familiar format: OPEN is followed by READ,
next come INPUT statements (or, in Applesoft, GETs may be used) and
finally the file is CLOSEd.

Try to predict what you will see, before you RUN this program.

71

goooaohdaod0000B00000000

7,

4 o - .

FIA e

N

. 8
J v s
- D et S
L. e 3o i AR - 5

Shly el - S nifl S e

AUTO APPLE

To better understand the contents of this chapter, it is suggested that
you first read Chapter 6, on sequential text files.

CONTROLLING THE APPLE VIA A TEXT FILE: EXEC

The DOS command EXEC is similar to RUN, except that the disk file used by
an EXEC command is a text file that contains commands or program lines,
including BASIC statements, as if they were typed at the keyboard.

To initiate a demonstration of some EXEC command abilities,
LOAD EXEC DEMO

from your System Master diskette and then SAVE it on a diskette that’s not

write-protected. Leave the un-write-protected diskette in the drive,
since the program WRITEs a text file.

Next RUN the program. You should see the message

Press the Apple’s space bar, and after a brief pause you should see the
disk drive’s IN USE light come on as the program writes the DO‘ER file
onto the diskette. Now type

EXEC DO’ER

press the RETURN key. Your Apple will begin a solo performance based on
the script in the DO’ER file.

Here’s a brief summary of the major things DO’ER does:

First DO“ER issues a MON C, I, O command, so you’ll be able
to see what happens.

Second, a three-line program is written and saved on diskette
under the name NEW PROGRAM!! The program is then LISTed.

Now a FOR-NEXT loop is executed to take up some time, so
you get a chance to look ‘at the screen before the
activity continues. -

74

Next DO“ER uses the INT command to enter Integer BASIC,
LOADs the program COLOR DEMOS, and LISTs it.
At this point, DO‘ER uses CALL -155 to enter the Monitor and
executes some machine-language instructions before using
the FP command to enter Applesoft.
From Applesoft a MON C,I,0 command is executed, then
NEW PROGRAM!! is RUN, modified, LISTed (again a FOR
loop allows you to take a look at the screen) and SAVEd
using the name EVEN MORE RECENT PROGRAM!!
Lastly, the program NEW PROGRAM!! is DELETEd and the CATALOG
(including the new addition EVEN MORE RECENT PROGRAM!!)
is displayed.
And you won’t even have to lay a finger om the keyboard (unless your
CATALOG has more than 18 entries, in which case you need to press the
space bar to see the balance of the CATALOG entries).

CREATING AN EXEC FILE

Here’s a step by step example to illustrate how to create an EXEC file
named DOIT that contains the following commands:

LIST 28, 5@

RUN AWAY

CATALOG

First create and SAVE an Applesoft program called AWAY to use in the above
demonstration:

Next write and SAVE the following program, called MAKE EXEC, that will
create a text file called DOIT. When you later EXEC DOIT, the commands
your MAKE EXEC program has PRINTed into the DOIT text file will tell Apple
to RUN the AWAY program for you. Notice that the commands which are
PRINTed into the DOIT file, for later EXECing, are not preceded by a
CTRL-D.

After you have MAKE EXEC and AWAY both SAVEd on a diskette, type the
command

RUN MAKE EXEC
to create a sequential text file named DOIT.

75

Type the command

EXEC DOIT

to cause the commands in the file DOIT to be executed one by one, just as
if they’d been typed in from the keyboard. Again, notice that the
commands now being EXECuted were not preceded by a CTRL-D in the program
MAKE EXEC. First lines 20 through 5@ from the program currently in memory
(probably the program MAKE EXEC) are LISTed. Then the program named
"AWAY" is RUN, and finally the CATALOG on the diskette is displayed.

CAPTURING PROGRAMS IN A TEXT FILE

Here’s a far more useful example of using the EXEC command: it allows you
to capture program listings as text files. Such a program can be used for

* translating Integer BASIC programs into Applesoft

* renumbering parts of programs and EXECing them anywhere
into another program

* inserting favorite subroutines into programs from a
subroutine file on the diskette by EXECing the file

* "appending" one program to another

* repairing programs that have become partially unreadable
(you can capture the good portion in a text file, re-boot,
then EXEC the program portion back into memory)

The line numbers 227¢ and 513¢, following the LIST command in line 6 of
the CAPTURE program, should be replaced by the line numbers of the program
in memory that you wish to capture. The name of the sequential text file
containing the listing is LISTING.

i REM CAPTURE

2 D¥F = CHR$ {(4>: REM CTRL-D
32 PRINT D#: "OPEN LISTING"

4 PRINT D#: "WRITE LISTING"

5 FOKE

6 LIST

7 PRINT D#: "CLOSE LISTING®

8 TEXT : END

We made the line numbers of this program very close together, so that you
can add these lines to a program already in memory, or anywhere within
your program that you have eight free line numbers. You could just as
easily put all the lines of CAPTURE above the highest numbered line in
your program.

CAPTURE creates a text file containing commands that are preceded by line
numbers. When you EXEC that text file, the numbered commands will not be
executed. Instead, just as if you had typed those lines in from the
keyboard, the lines are stored as a program in Apple’s memory. Once
captured in a text file, a program can be modified and then EXECed back
into Apple’s memory. Unlike LOAD or RUN, EXEC does not delete a program
that is already in memory. Using CAPTURE, you can capture a program in a
text file from one language, then EXEC the program back into another
language (of course, the program may not run without some changes —-
there’s somewhat different syntax for Integer BASIC and Applesoft). You

76

can also use EXEC this way to add new lines to an existing program in
memory. In fact, you can save a listing of CAPTURE in a text file named
LIST SAVER, say, and then EXEC LIST SAVER any time you wanted to add the
CAPTURE program to a program in memory.

CONVERTING MACHINE-LANGUAGE
ROUTINES TO BASIC

Here’s another useful program that will take a machine-language routine
and convert it into a BASIC program portion which POKEs the
machine-language routine into memory. The program portion can be used as
part of either an Applesoft or an Integer BASIC program, to put the
machine-language routine into memory each time the BASIC program is run.

When you use this program, the number in line 4@ should be changed to
contain the line number of your BASIC program where the POKEing program
portion is to start. The FOR loop in line 5@ should contain the starting
and ending decimal memory locations of the machine-language routine you
wish to convert.

Once you’ve typed in the program, RUNning it will create the text file
CODE-POKES. Now use the command

EXEC CODE-POKES

to place your machine-language-POKEing program portion into any other
program, beginning at the line number previously specified. The program
CODE-POKES WRITER will work with either Applesoft or Integer BASIC.

77

MAXFILES AND INTEGER BASIC PROGRAMS

An EXEC file must be used if you want to increase MAXFILES from inside an
Integer BASIC program without erasing your program. Here’s how. Use the
procedures described above to create an EXEC file, let’s call it FILE.EX.

FILE.EX should contain the following commands to allow for 5 files on a
system:

MAXFILES 5
LOAD PROGRAM
DEL 1¢, 20

RUN

The first lines of the program would be as follows; note that what appears
as CTRL-D is created by holding down the key marked CTRL while typing the
letter D.

1§ PRINT "CTRL-D EXEC FILE.EX"
2¢ END
3¢ REM MAIN PROGRAM

EXEC-UTIVE SESSION

The usual syntax for the EXEC command is
EXEC f
where f is the name of a sequential text file containing BASIC commands or

program lines. Examples of this usage appear throughout the earlier
sections of this chapter. EXEC with this syntax causes the first field of

file f to be read into the Apple as if it were being typed on the

keyboard. When the first field”s RETURN character is "typed", the Apple
attempts to execute the field’s contents as a BASIC command, or enter the
field’s contents as a BASIC program line. The type of BASIC (Integer or
Applesoft) is not changed by EXEC unless the file contains an FP or INT
command. When execution has ceased on the first field, the second field of
file f is read into the Apple and treated similarly. The action comes to a
stop when the last field of file f has been read.

The EXEC command cannot be stopped by CTRL-C.

Only one EXEC file can be OPEN at any one time. If you are EXECing a file,
and one of the commands thus executed is another EXEC command, the first

EXEC file is immediately CLOSEd. Thereafter, it is the second EXEC
command that is being executed.

If a file being EXECed contains a command to RUN any program, EXEC will

wait patiently until the program ends. Then the next EXEC file command
will be executed.

78

~
&/

However, if a program is RUNning while an EXEC file is OPEN, any INPUT
statement in the program will take the next field in the file being EXECed
as its response, ignoring the keyboard. Worse yet, if that response is an
immediate-execution DOS command, the command will be executed before the
program continues. Results can be very confusing.

-’/

If you interrupt a RUNning Applesoft program by typing CTRL-C while an
EXEC file is OPEN, the remainder of the EXEC file will usually not be
executed.

If any ‘field of an EXEC file cannot be interpreted as a valid BASIC
command or program line, the message

SYNTAX ERROR

is generated, and the next field is read into the Apple. Thus, you can
EXEC any text file, whether or not it contains BASIC statements (first

be sure you’ve SAVEd any program in memory). In MON C, I, O mode, this
can provide a crude but handy tool for quickly examining the contents of a
text file.

The EXEC command can also be used with the Relative-field position
parameter, in a way that is a bit different from POSITION’s use of that
parameter. The syntax for this use is

EXEC f [,Rp]

where Rp specifies that file f is to be EXEC’d starting in the p-th field
of file f. Since EXEC always sets the position-in-the-file pointer to the
first character of the file, so the parameter Rp always indicates the p-th
field relative to the file‘s beginning. Thus p always corresponds to

the file’s actual, or absolute, field. R@ indicates that EXECing begins
with the file’s first field, Rl indicates EXECing begins with the second
field, etc.

Note that this is different from POSITION’s use of the R parameter,
where R3 is a relative field only, and may indicate different actual
file fields at different times in a program.

>

&/

EXEC MYFILE, Rf

generates an

END OF DATA

message if the R parameter specifies the second field beyond the file’s
end. (If the first field beyond the file’s end is specified, nothing
happens).

79

80

USING RANDOM-ACCESS FILES

For a better understanding of the information presented in this chapter,
it is suggested that you first read Chapter 6, on Sequential files.

RANDOM-ACCESS FILES: HOW THEY WORK

Random-access text files are like a collection of equal-sized cells in a
honeycomb -- some cells may be full, others may be empty. Each "cell" is
called a record. When you create a random-access file, you must specify
the standard size for the records the file is to contain.

Unlike the fields in sequential files, which may be of almost any length,
the records in a random-access file are of specified fixed length. The
first time you WRITE to any particular record in a file, enough space is
set aside on the diskette for a complete, standard-length record, whether
or not the record is actually filled. So random-access files don’t
necessarily represent an efficient use of space. However, since these
files are set up in such a regular fashion, it’s fast and easy to retrieve
or modify information from any part of the file -- hence the name
"random-access" file.

Random-access files should be used in applications requiring fast access
to various parts of the file, or where individual pieces of information in
the file need to be changed fairly often. For example, a random-access
file is particularly suitable for maintaining a mailing list.

Random-access files are created and retrieved in a manner very similar to
that used for sequential files. The main difference is that certain
commands have additional parameters: OPEN requires an L (Length of record)
parameter, while READ and WRITE each use an R (Record number) parameter.
Some sample programs will be presented and discussed before getting into
details on creating and retrieving random-access files and how the new
parameters work. More technical information about random-access text
files may be found in Appendix C.

A SPECIFIC RECORD

How can you access a specific record in a random-access file? The
following pair of Applesoft programs illustrates how DOS allows you to do
this. The first program requests a name (N$), a telephone number (P$) and
a zip code (Z$), then sends them to record 1 of a file called MAILER:

82

Line 2@ places a CTRL-D in the variable D$, as usual.
Lines 3¢ through 5@ request the information to be stored.
Do not type any commas or colons in your responses.
Line 60 OPENs a file called MAILER, with 2¢@-byte long records.
Line 7@ prepares for recording information in record 1.
Line 8f sends N$, P$ and Z$ to the diskette —- since record 1 was
specified in line 7@, all three pieces of information

are recorded in record 1, separated by RETURNs.
Line 9¢ CLOSEs the file.

With MON C, I, O in effect, when the program is RUN you’ll see:

When RUN with MON C, I, O, you’ll see the following. As usual, the pair
of question marks indicates an INPUT with more than one response.

And here

83

MULTIPLE RECORDS

The program that created the random-access file MAILER wrote to a single
record in the file, saving three different pieces of information separated
by RETURNs. The next program demonstrates writing to several records: in
particular, record numbers 12 through 15 of a random-access file called

RA-FILE.

P NT D#; "CLOSE RA-FILE"

Line 1§ sets D$ to CTRL-D.

Lines 20 and 3@ make sure RA-FILE is a new file

Line 4@ OPENs the file RA-FILE, whose records will each be
3¢ bytes in length.

Lines 5@ through 8@ create a loop that WRITEs the information
NAME ADDRESS
followed by the record number, for records 12 through 15
Note that you must specify each record in a new WRITE
command, before having PRINT send characters to that
record.

Lines 9@ and 1@@ change the information in record 13 to the
text given in line 1¢@#°s PRINT command.

Line 11§ CLOSEs the random-access file RA-FILE.

If MON C,I,0 is in effect when the program is RUN, you’ll see the
following:

Of

TN M e

LY e LT e LY e | 22

84

In a similar fashion, you can READ information from a selected record or
records of a text file. The next program retrieves records 12 through 15
of the file called RA-FILE, trying, on line 6@, to find which record(s)
contains the letters '"DOS" as the first three characters.

Line 10 sets up CTRL-D in DS$.

Line 2@ OPENs the text file RA-FILE, whose records are 3@-bytes
long (that’s what we specified when the file was
created in an earlier program, remember?).

Lines 3§ through 7@ READ records 12 through 15 of RA-FILE.
Note that you must specify each record in a new READ
command, before a subsequent INPUT will read characters
from that record. 1In line 5@, each record comes in from
the disk as an ASCII string terminated by a RETURN.
Line 6@ checks the 3 leftmost characters of the INPUT
string A$ from record r, to see if the word "DOS" is
there. If it is, the message "RECORD r WAS CHANGED."
is printed and the search continues.

Line 8f closes the file.

Here’s what you’ll see when you RUN the program, if MON C, I, O is in
effect:

85

Notice that when the file was retrieved only records that had been written

to were examined. If you had asked for record 8 in RA-FILE, you would

have received the

END OF DATA

message, since no information had been written to that record of the file.
Similarly, had you tried to INPUT more than one field from any of the

existing records you would have been given the same message: each of

records 12 through 15 contains only one field.

A DEMONSTRATION: THE RANDOM PROGRAM

Last but by no means least, the System Master diskette contains a program
called RANDOM that uses a random-access text file to demonstrate a small
inventory control scheme. And by small we mean small: the program can
handle at most 9 parts. This keeps the program simple. The Apple, of
course, is capable of handling thousands of parts in an inventory.

First the program copies itself and the random-access text file APPLE
PROMS used to keep track of the inventory, then it automatically RUNs the
program for you. You can list one or all items in the inventory. You can
also change items, either one at a time or all at once. Here’s how it
works. Remember to press the RETURN key each time you complete a
response.

1) From the System Master,
RUN RANDOM
and you should see the message

If you type N for "no" in response to the above message,

you’ll find yourself back in Applesoft.

2) Press Y FOR "yes'". You’ll see the message

Followed by the message

3) Remove the System Master diskette, and place a
non-write-protected diskette in the drive, then press
the RETURN key. You’ll perhaps catch a glimpse of
the message

86

and then the program will begin execution.

4) Now you should see this:

Press 1 and you should see this message:

5) Press @, to get a list of all "parts" in this "inventory
system" and you’ll see

When you’re ready to return to the list of options, press
the RETURN key.

6) Try out the various program options. Choice 1 allows you
to list parts by part number, one at a time, as well as
all at once.

Choice 2 allows you to change any or all part names and
descriptions. For example, suppose part 3 should be
named COSMIC GLUE, size 56, with 1234 in stock. Here’s
how to revise the entry for part 3:

select option 2, CHANGE

select part number 3

the old part name is displayed, with the cursor at its

start, to allow you to enter the new name; when you

87

press the RETURN key the cursor will move to the right
and perform similarly for part size and quantity

to use the currently existing name or size or quantity,
just press the RETURN key by itself.

Choice 3 will stop the program.

WRITE-ING AND READ-ING RANDOM-ACCESS TEXT FILES

When used with random-access files, the CLOSE command works exactly as it
does with sequential files (see "OPENing and CLOSEing Sequential Files" in
Chapter 6). However, the syntax for OPEN has an additional parameter, the
L parameter, which is required.

OPEN f ,Lj [,Ss] [,Dd] [,Vv]

The "L" stands for "Length-of-record"; the number j indicates how many
bytes (characters and digits) are to be allotted to each record in the
random-access file you’re creating (or, if you’re retrieving a file, the
number that were allotted when the file was created). If the L option is
omitted, j is assigned the default value of 1. The number j must be in
the range 1 through 32767.

=,
2
When you OPEN a file prior to READing, if you specify a different Length
parameter, than you specified when you OPENed prior to WRITEing the

file, DOS will blindly use the new Length parameter to calculate record
positions within the file. You will have to keep detailed written
documentation on the structure and contents of your files (some
programmers keep such information in record ¢ of the file). It’s helpful
to always include the Length parameter in each file’s name, with such
names as

RANDFILES:L2(

STOCKLISTS-L1@@

DIRECTORIES (L5@) .

There is no way to find the length of a record in a random-access file:
you must make this information part of your documentation.

PN
&

Records should never be longer than the number of bytes specified by the L
parameter: records may be partially over-written or combined with
confusing results.

WRITE and READ each have an R parameter, to be used when creating or
retrieving particular records in random-access files.

WRITE £ [,Rr]
READ f [,Rr]

Examples: WRITE LEGIBLY, R3,
READ FAST, RI13

88

The Rr (Record) parameter is used to create (with WRITE) or retrieve
(with READ) the rth record of the file. The default value of r is @,
specifying the first record of a file.

Y
Using CTRL-C to stop a READ in Applesoft causes a string of REENTERs to be
generated: press the RESET key instead.

In some respects, each separate record in a random-access text file may be
treated as a short sequential file. WRITE and READ can be used with a
Byte parameter in addition to their R parameter. The Byte parameter
specifies the beginning byte of the specified record, for the next PRINT
(after WRITE) or INPUT or GET (after READ).

WRITE £ [,Rr] [,Bb]
READ f [,Rr] [,Bb]

If specified, the B (Byte) parameter causes WRITEing (or READing) to
begin at the b-th byte of the specified record. The default value of b is
@, the first byte of a record. The B parameter may specify a position in
the record either before or after the current position-in-the-file
pointer. Using the B parameter necessitates a thorough, detailed,
byte-by-byte knowledge of the contents of each record in the file.

Once READ or WRITE has moved the position-in-the-file pointer to a
particular record, POSITION can also be used to move the pointer ahead
(only) to further relative-field positions within the record. However,
POSITION cancels either WRITE or READ mode (without changing the
position-in-the-file pointer), so another WRITE or READ command (this time
with no parameter) is necessary to re-instate that mode.

Details on how information is stored on the diskette in general, and in
random-access files in particular, may be found in Appendix C.

89

0000000000000 00000000000

90

USING MACHINE LANGUAGE

MACHINE LANGUAGE FILES

DOS allows you to store on diskette, and retrieve from diskette, the
information in your Apple II’s memory. You have already seen the DOS
commands SAVE, LOAD and RUN: these commands deal with the contents of
Apple’s program memory, interpreted as commands in BASIC programs. The
DOS commands discussed in this chapter -- BSAVE, BLOAD and BRUN —- perform
similar functions, but they deal with the contents of any portion of
Apple’s memory, in its uninterpreted, raw binary-and-hexadecimal form.

The B before each of the following commands stands for a Binary file; a

B also precedes the name of binary files in the CATALOG. A binary file is
just an exact, bit-for-bit copy of the information that was stored in a
specified range of Apple memory locations. Those locations may have
contained a machine-language program, binary data, or a bit-mapped
"picture" from Apple’s high-resolution graphics screen.

BSAVE

The BSAVE command creates a file named f and stores all the contents of a
segment of memory. The syntax is

BSAVE f ,Aa, Lj [,Ss] [,Dd] [,Vv]

where as usual the S, D, and V parameters stand for slot number, drive
number, and volume number. Note that the A and L parameters are not
optional.

The A parameter specifies the starting Address (in either decimal or
hexadecimal code) of the memory portion to be stored on diskette. A
dollar sign ($§) must precede an address expressed in hexadecimal. If
the A parameter is less than @ or greater than 65535, a

SYNTAX ERROR

message is displayed. Therefore, equivalent negative addresses may not
be used with this command. Within the range § through 65535, no error
message is generated if the A parameter specifies a starting memory
address that does not correspond to actual, installed memory chips. In
practice, it is not useful to specify an A parameter greater than the
maximum memory address in your Apple (49151 or $BFFF on a 48K system).

The L parameter specifies the Length, in bytes, of the memory portion to
be stored. 1If the L parameter is less than @ or greater than 65535, a
SYNTAX ERROR

message is generated. If the L parameter is @ or in the range 32768
through 65535, a

RANGE ERROR

message is generated. 32767 is the greatest number of bytes that can be
stored in a single field on the diskette. If you wish to store more than
32767 memory locations, use two BSAVEs. Within the range 1 through 32767,
no error message is generated if the L parameter specifies a range of
memory addresses, not all of which correspond to actual, installed memory
chip. 1In practice, it is not useful to specify a range of memory
addresses extending beyond the maximum memory address in your Apple (49151
or $BFFF on a 48K system).

92

These examples each create a file named PICTURE containing an image of the
second high-resolution graphics area of the Apple’s memory. They are
operationally identical, but their starting address and length parameters
are given in different forms.

BSAVE PICTURE, A$4000, L$200¢
BSAVE PICTURE, A16384, L8192
BSAVE PICTURE, Al16384, LS$2000
BSAVE PICTURE, A$4(@¢¢, 18192

BLOAD

The BLOAD command returns the contents of a Binary file to your Apple II’'s
memory. BLOAD does not erase a BASIC program in memory, unless the data
is BLOADed into the particular portion of memory containing your program.

The syntax is

BLOAD f [,Aa] [,Ss] [,Dd] [,Vv]

where the S, D, and V parameters are as usual. If the A parameter is
used, then the Binary file’s contents replace a portion of the existing
contents of Apple’s memory, beginning at address a. If the A parameter is
not used, the file’s contents are returned to the same Apple memory
locations whose contents were originally BSAVEd. See BSAVE for a complete
discussion of the A parameter.

Assume the binary file PICTURE contains a high-resolution picture. Either
of these examples places the picture into the first high-resolution
graphics area of the Apple’s memory:

BLOAD PICTURE, A8192

BLOAD PICTURE, AS$200¢

Either example also clobbers the RAM version of Applesoft.

Note: a machine-language program may no longer be executable
if it is moved to a memory location different than the
one from which it was saved.

The syntax of the BRUN command is the same as for BLOAD:
BRUN f [,Aal] [,Ss] [,Dd] [,Vv]
The Binary file f should be a machine-language program.

First BRUN does a BLOAD. If the A parameter is given, the file’s contents
are placed into Apple’s memory beginning at location a. If the A
parameter is not used, the file’s contents are returned to the same Apple
memory locations whose contents were originally BSAVEd. See BSAVE for a
complete discussion of the A parameter.

After BLOADing the file, BRUN does a machine language jump (JMP) to

location a. If the file was a machine-language program, this begins
execution of that program.

93

THE RWTS SUBROUTINE

Normally, user access to and from the DISK II is restricted to the use of
DOS. However, another method of accessing the DISK II is available to
machine language programmers. You may skip this section if you’re not
familiar with machine language.

The DISK II can be accessed directly from machine language through the use
of the RWTS subroutine, which is part of the DOS. The "RWTS'" stands for

"Read or Write a Track and Sector". 1In the following explanation, any
numbers preceeded by $ are hexadecimal numbers.

Every diskette initialized by the DISK II drive is separated into 35
tracks, numbered § to 34. These tracks may be thought of as grooves on a
phonograph record, except that they are not connected with each other.
Basically, the tracks are arranged in separate concentric circles, with
the large hole in the center of the diskette forming the common center of
the circles. Track @ is on the outer edge of the diskette, while track 34
is nearest the center. The disk drive has a "head" that acts very much
like the needle on a record player, except that the head on the disk drive
is magnetic. This head moves to different tracks on the diskette, where
it either reads information off of the diskette, or writes information
onto the diskette.

Each track on the diskette consists of 16 sectors. Sectors are pre-defined
groupings on each track, that allow the user to work with single blocks of
256 bytes, rather than with the.entire 4096 bytes that fit on one track.
The sectors within a track are individually numbered, consecutively, @ to
15 around the diskette. As the diskette spins, each sector will pass
underneath the head, at which time the head may write to or read.from that
sector. Each sector consists of two portions: the address field and the
data field. The addres field contains information concerning which track
the head is on, which sector is about to spin past the head, and the
volume number of the diskette. The data field contains an encrypted form
of the actual 256 bytes of data which were stored on that sector.

The "Read or Write a Track and Sector" subroutine (referred to as the RWTS
subroutine), allows the user to write information to, or read information
from, any track and sector on the diskette, via machine language. In order
to use the RWTS subroutine, the user must first create an IOB
(Input/Output control Block) table, and an accompanying '"Device
Characteristics Table". The IOB tells the RWTS subroutine which slot and
drive number the disk drive will be in, which volume number to expect on
the diskette, which track and sector to access, and whether to read from
or write to the diskette. The Device Characteristics Table provides some
information to the RWIS subroutine that is necessary to operate the Apple
DISK II.

To use the RWTS subroutine, the user must set up the IOB and the Device
Characteristics Table somewhere in memory. A "controlling subroutine" must
be written and stored in memory. The subroutine must JSR to the starting
address of the RWTS subroutine (at location $3D9). When the RWTS
subroutine is jumped to, the A and Y registers must contain the address of
the starting location of the IOB. The A register must contain the high

94

address byte, and the Y register the low address byte. The format of the
IOB is given in Table 3, at the end of this section. Table 4 gives the
format of the Device Characteristics Table.

Here is an example of how to use the RWTS subroutine. The sample IOB,
Device Characteristics Tables, and a controlling subroutine will all be
loaded into memory just after location $C@@.

The following controlling subroutine will load the A and Y registers with
the address of the starting location of the IOB, and then jump to the RWTS
subroutine.

SCpp- A9 @C LDA #s@cC Load A register with $@C
$cP2- AP @A LDY #$PA Load Y register with $@A
$CP4- 2@ D9 @3 JSR $¢3D9 Jump to the RWTS subroutine
$CcP7- 60 RTS

$CP8- 0@ BRK

The following IOB is one that you would use to access slot 6, drive 1, to
write 256 bytes of memory starting at location $2@@@, onto track 18,
sector 6 of the diskette:

Location Code Purpose

$CPA @1 I0B type indicator, must be $¢1

$CPB 60 Slot number times 16

$c@c g1 Disk drive number

$C@D [0[1] Expected volume number

SCOE 12 Track number

SCPF @6 Sector number

$C1g 20 Low-order byte of Device Characteristics Table

$C11 gc High-order byte of Device Characteristics Table
$C12 o]0} Low-order byte of data buffer starting address

$C13 20 High-order byte of data buffer starting address
$Cl4 [1]0] Unused

$C15 []1] Unused

$Cl6 @2 Command code, $@2 = write

$C17 (111} Error Code

$C18 o] Actual volume number

$C19 60 Previous slot number accessed

$Cl1A g1 Previous drive number accessed

The following Device Characteristics Table must be included, we”ll place
it at location $C2@, just after the IOB. Locations $C1 and $Cll in the
I0B above point to the address of the Device Characteristics Table’s
starting location.

Location Code Purpose

$c2@ [} Device type code (put a $@@ here)

$c21 ?1 Number of phases per track (put a $@1 here)
$C22 EF Time count (put a $EF here)

$C23 D8 Time count (put a $D8 here)

95

When you have loaded the I@B at $C@A, the Device Characteristics Table at

$C2@, and the controlling subroutine to load the A and Y registers at $C@d,
then

co@c

or

CALL 3§72

will cause the entire routine to execute.

TABLE 3: FORMAT OF IOB
Byte# Name Purpose

1 IBTYPE Tells the RWTS subroutine what type of IOB this
is. Should be a $fl. No other type codes are
currently defined.

2 IBSLOT - Must contain the number of the slot times 16,
in which the disk drive’s controller card is
located. For example, if you want to access
slot #6, the value $6f must be stored in this

location.

3 IBDRVN Must contain the number of the disk drive to be
accessed —- either $@1 or $@2.

4 IBVOL The volume number of the diskette to be

accessed must be stored here. Volume $f@ will
match the volume number assigned to any
diskette.

5 IBTRK The number of the track (@ to 34) to be
accessed is stored here. Must be within the
range $f@ to $22.

6 IBSECT The number of the sector (@ to 15) to be
accessed is stored here. Must be within the
range $@@ to $@F.

7&8 IBDCTP These two bytes must contain the address of the
starting location of the Device Characteristics
Table (see below). Byte 7 must contain the
low~order byte of the address, and byte 8 must
contain the high-order byte.

9&1¢ IBBUFP Bytes 9 and 1@ must contain the address of the
starting location of the '"data buffer". The
data buffer is a 256-byte long section of

memory upon which the RWTS subroutine will
operate. If you are writing onto the diskette,
the information in the data buffer will be

96

14

15

IBSTAT

IBSMOD

written onto the diskette. If you are reading
from the diskette, the information that comes
off of the disk will be stored in memory at the
location of the data buffer. 256 bytes is both
the minimum and the maximum amount of inform-
ation that can be read or written by the RWTS
subroutine.

Unused

In this byte is stored the command code that

tells the RWTS subroutine exactly what to do.

The values that can be stored in byte 13 are:

$@@ -- Null command. Does nothing but start
the disk drive and position the head.

$@#1 -- Read the entire 256 bytes stored on the
diskette at the specified track and sector,
and store them in memory at the location of
the data buffer.

$¢2 -- Write the next 256 bytes stored in
memory at the location of the data buffer on
to the diskette at the specified track and
sector.

$@4 -- Format the diskette. When a diskette is
formatted, self-synchronizing nibbles are
written on every track and sector on the
diskette. Because all of the diskette is
formatted, the values in bytes 5 and 6 are
ignored. All of a formatted diskette is
available for use; there is no DOS, or
anything stored on the diskette until the
user puts something there.

This location will contain the code number for

any error that may be encountered during

execution. If the RWTS subroutine returns with

the carry flag clear, no error has occurred.

If it returns with the carry flag set, this

byte indicates what type of error has occurred.

$1¢ -- Diskette is write-protected, and cannot
be written to.

$2¢ —- Volume mismatch error. The volume
number of the diskette found was different
than the volume specified in byte 4.

$40 -- Drive error. Something unusual is
happening.

$8@ -— Read error. The RWTS routine was, after
48 repeated attempts, unable to read either
the address field or the data field. TIf the
data field for the specified sector has
naver had anything written on it, then a
read error will result, because there is
nothing to read.

The volume number of the diskette that is
actually found will be stored in this location.

97

TABLE 3: FORMAT OF IOB [continued]

Byte#

16

17

Table 4: FORMAT

Byte#
1

2

3&4

Name

IOBPSN

IOBPDN

Name
DEVTPC

PPTC

MONTC

Purpose

This byte must contain the slot number times 16
of the slot that was accessed most recently.

For example, if you previously accessed a disk
drive in slot 5, store the value $5@ here. If

there is no controller in the specified slot,
the disk will hang.

This byte must contain the number of the disk
drive that was accessed most recently -- a $@1
or $@2.

OF DEVICE CHARACTERISTICS TABLE

Purpose

Device type code, telling what type of device
this is. A $@@ should be stored in this byte
for use with a DISK II.

A $f1 should be stored here.

Motor on time count complemented, in 1¢¢
micro-second intervals. A $EF should be in

byte 3, and a $D8 in byte 4, for use with a
DISK II

98

INPUT, OUTPUT, AND CHAINING

SELECTING 1/0 DEVICES: IN#, PR# AND OTHER STUFF

There are various ways in which information can be used as input or output =
for your Apple computer. Very often the keyboard serves as a source of
input. Usually the Apple uses a TV screen for output, but any accessory
or peripheral connected to a controller in one of the seven Apple
accessory slots can be used for input or output using the IN# and PR#
commands.

Examples:

IN# 6 obtains subsequent input from the device controlled from —
slot #6. Note: if slot #6 contains a disk controller
card, this command will cause DOS to be booted. If no
device is in slot #6, the system may "hang". Press the
RESET key to recover.

IN# @ obtains subsequent input from the keyboard (not slot #8@),
instead of a peripheral device.

PR# 1 transfers output to the device controlled from slot #1,
usually the printer. Note: if no device controller
card is installed in slot #1, the system may 'hang"
and you’ll have to press the RESET key to recover.

PR# @ returns output to the TV screen (not to slot #@).

The syntax for the commands is

IN# s

or

PR# s —
where s specifies the slot to use. What happens depends on s:

value of s result
less than ¢ SYNTAX ERROR .
? re-establishes usual device (for IN#, input from

the keyboard, for PR#, output to the TV screen)

1 through 7 transfers to device controlled from the specified
slot (boots DOS if a disk controller card is in -
that slot)

8 through 16 SYNTAX ERROR in deferred-execution mode;

the system hangs in immediate-execution mode
17 through 65535 RANGE ERROR
greater than 65535 SYNTAX ERROR
The command IN# § re-establishes input from the keyboard; PR# @
re-establishes output to the TV screen.

With DOS in effect, the IN# and PR# commands may be used in immediate
execution mode in the usual way (see your BASIC manuals). But when they

100 o

are issued by lines in a program, IN# and PR# must take the form of DOS
commands such as

1§ D$ = "": REM CTRL-D
2¢ PRINT D$; "PR# 1"
3¢ PRINT D$; "IN# 2"

When DOS is not in effect, the IN# and PR# commands set the contents of
the Apple Monitor Input and Output registers to select the desired input
and output devices.

When DOS is in effect, the contents of the Apple Monitor Input and

Output registers are set to select DOS, while the contents of the DOS
Input and Output registers are set to select the desired input and output
devices. The following paragraphs describe what happens each time a
character leaves or enters the Apple.

When the Apple sends an output character, the Apple Monitor Output
register directs that character to DOS. If the character is to be sent on
(because it is not part of a DOS command), DOS does a fast two-stage
switch:

1. First, DOS replaces the contents of the Apple Monitor
Input and Output registers with the contents of the DOS
Input and Output registers. Then it sends the character
out to the device now selected by the contents of the
Apple Monitor Inmput and Output registers.

2. Next, DOS re-connects itself by again placing the
pointers to DOS in the Apple Input and Output registers.

Similarly, each time the Apple asks for an input character, the Apple
Monitor Input register directs that request to the DOS. Once again, DOS
does its fast two-stage switch:

1. First, DOS replaces the contents of the Apple Monitor
Input and Output registers with the contents of the DOS
Input and Output registers. Then it obtains an input
character from the device now selected by the Apple
Monitor Input and Output registers.

2. Next, DOS re-connects itself by again placing the
pointers to DOS in the Apple Input and Output registers.

When DOS is in effect, DOS intercepts all input characters from the input
device before they reach Applesoft or Integer BASIC or the Monitor. That
is why IN# and PR#, when typed on the keyboard as immediate-execution
commands, can be trapped and used by DOS to change the DOS Input and
Output registers.

Similarly, DOS intercepts all output characters from the Apple before they
reach the output device (but after they have affected the Apple Monitor
Input and Output registers). That is why IN# and PR#, if issued from
within a program but not in PRINTed DOS commands, can disconnect DOS by
changing the Apple Monitor Input and Output registers before the commands
ever get to DOS. Because the entire contents of the Apple Monitor Input

101

and Output registers are replaced each time DOS attempts to send or
receive a character, DOS will usually re-connect itself if it was not
disconnected at both Input and Output registers simultaneously.

@
If you execute a PR# command from within a program, with a program line
such as

5 PR# 1

then DOS will be partially disconnected and unable to intercept subsequent
output. DOS is still connected for input, and the next attempt to obtain

any input character will cause DOS to re-connect itself for both input and
output.

The same situation occurs with the use of IN# inside programs when DOS is
in effect. A program line such as

60 IN# 1

will disconnect DOS for subsequent input. DOS is still connected for
output, and the next attempt to send out a character (even a return or a
prompt character) will cause DOS to re-connect itself for both input and
output. To avoid such conflicts and allow DOS to manage the Input and
Output registers, issue PR# and IN# commands in immediate-execution mode,
or as DOS commands in program lines such as those mentioned earlier:

1 D$ = "": REM CTRL-D

2¢ PRINT D$; "PR# 1"

3¢ PRINT D$; "IN# 2"

The CTRL-D character tells DOS that the following output characters are a
DOS command.

102

TABLE 1: APPLE MONITOR INPUT AND OUTPUT REGISTERS

Monitor Input Register: Locations 56-57 ($38-$39)

When Register

contents To the Then subsequent input
are set by value comes from
RESET =741 Monitor Input Routine
@ CTRL-K [Note 1] ($FD1B) from Apple keyboard
IN#@ [Note 2]
s CTRL-K [Note 1] 49152 + s*256 Slot s
IN#s [Note 2] (scsp@) If slot #s contains disk
[where s>] controller, then boot DOS
DOS boot -8574 + Top of mem. DOS

(-$217E + $Top of mem.)

Monitor Output Register: Locations 54-55 ($36-$37)

When Register

contents To the Then subsequent output

are set by value goes to
RESET -528 Monitor Output Routine

@ CTRL-P [Note 1] ($FDFQ) to TV screen

PR#¢ [Note 2]

s CTRL-P [Note 1] 49152 + s*256 Slot #s

PRits [Note 2] ($cs@g) If slot #s contains disk
[where s>@] controller, then boot DOS
DOS boot -8514 + Top of mem. DOS

(-$2142 + $Top of mem.)

Note 1. The commands s CTRL-K and s CTRL-P are Monitor commands. To

type CTRL-K (which does not appear on the TV screen), type K while
holding down the CTRL key.

Note 2. When DOS is in effect, this command will affect the contents of
the Apple Monitor register only if the command is issued as an instruction
in a stored program and not in a PRINT CTRL-D instruction.

Note 3. 1In addition to the commands mentioned in Table I, directly
POKEing appropriate values into the Apple Monitor register locations can

also be used to select input and output devices, or to re-conmnect a
disconnected DOS.

103

TABLE 2: DOS INPUT AND OUTPUT REGISTERS

DOS Input Register

When Register

contents To the Then subsequent input

are set by value comes from

DOS boot =741 Monitor Input Routine

RESET 3D@G (SFD1B) from Apple keyboard

IN#@ [Note 4]

PRINT D$;"IN#g"
[Note 5]

IN#s [Note 4] 49152 + s*256 Slot #s

PRINT DS$;"IN#s" ($Cs@d) If slot #s contains a
[Note 5] disk controller, then

[where s>]

DOS Outpuc Register

When Register

reboot DOS

contents To the Then subsequent output

are set by value goes to

DOS boot -528 Monitor Output Routine

RESET 3D@G ($FDFQ) to the TV screen

PR#0 [Note 4]

PRINT D$;"PR#@"
[Note 5]

PRits [Note 4] 49152 + s*256 Slot i#s

PRINT D$;'"PR#ts" ($CsPd) If slot #s contains a
[Note 5] disk controller, then

[where s>@]

reboot DOS

104

Note 4. When DOS is in effect, this command will not affect the

contents of the DOS Input and Output registers if the command is issued as
an instruction in a stored program and not in a PRINT CTRL-D instruction.
If a program line such as

12¢ PR#3

is executed, the contents of the Apple Monitor Output register will be
changed, leaving DOS partially disconnected until the next input.

Note 5. In this command, it is assumed that the string-variable named D$
has been assigned the character control-D, or CTRL-D. This character,
which does not appear on the screen, is produced by typing D while
holding down the CTRL key.

Note 6. No matter what input or output device is selected by the DOS
Input and Output registers, input can also be received from the disk and
output can be sent to the disk.

Note 7. 1In addition to the commands in Table II, directly POKEing the
appropriate values into the DOS Input and Output register locations can
also be used to select input and output devices. However, the specific
memory locations of the DOS Input and Output registers change with
different system memory sizes and with different versions of DOS. For
this reason, a special procedure exists for changing the contents of the
DOS Input and Output register locations. It is a two step procedure:

a) Change the Apple Monitor Input and Output register
locations to the values you wish the DOS Input and
Output registers to contain. (This may be done by
directly POKEing the Apple Monitor register locations
or by executing IN# and PR# non-DOS instructions in a
stored program.)

b) CALL 1¢@2 (from the Monitor, you would type $3EAG).

After this CALL, DOS will be re-connected via the Apple
Monitor registers, and the previous contents of the Apple
Monitor Input and Output registers will appear in the DOS
Input and Output register locations. This CALL can also
be used to re-connect DOS any time your program needs

to disconnect DOS for awhile. See the program on page
151 for an example using this technique.

Note 8. The Monitor commands s CTRL-K or s CTRL-P , when typed on the

keyboard, are not recognized by DOS: they affect the Apple Monitor Input
or Output registers directly.

105

INTEGER BASIC CHAIN

Certain applications are most easily implemented by using a series of two
or more programs which are LOADed and RUN sequentially. In such
circumstances, the second program often needs to use the values of
variables and arrays developed by the first program. The usual RUN
command erases the first program’s variables and arrays when it loads the
second program. In Integer BASIC (but not Applesoft) the DOS command
CHAIN allows you to load and run a second program without erasing the

first program’s variables and arrays.

Suppose you’ve been using an Integer BASIC program called PART ONE. The
command

CHAIN PART TWO

will load and run the Integer BASIC program called PART TWO without
clearing the values of any variables used in the program PART ONE. The

CHAIN command may be issued in immediate-execution mode as shown above, or
from within the last lines of the PART ONE program as a DOS command:

2¢p1p D$=""": REM CTRL-D
20P2¢ PRINT D$; "CHAIN PART TWO"

The syntax for the command is familiar:
CHAIN f [,Ss] [,Dd] [,Vv]

APPLESOFT CHAIN

The CHAIN command works only with Integer BASIC, but if you do not need to
pass variables, it is easy to link Applesoft programs to load and run in
sequence. In the first program, just include a last line such as

2¢P@P PRINT CHRS$(4); "RUN PART TWO"
When this line is executed, it will start up the second program (where the

second program is named PART TWO). In the process, the first program and
all its variables are erased.

A different procedure must be used in order to load and run a series of
Applesoft programs without erasing earlier values of variables and arrays.
To chain in Applesoft, you will need to use the machine-language program
called CHAIN that is on the DOS System Master diskette.

To chain from a program called PART ONE to a program called PART TWO, you

must have the CHAIN program on the same diskette with the program PART TWO
(see next page for instructions). Then, simply insert these two lines as

the last two lines to be executed in the PART ONE program:

2¢0PP PRINT CHRS$(4); "BLOAD CHAIN, A52¢"

2¢@1¢ CALL 52@"PART TWO"

The two lines may use any line numbers, but they should come one after the

other in the program, as indicated. The first line loads the Applesoft
chaining ability into the computer. The second line actually does the

chaining (but see next page, for warning).

106

~
&/
There must be no space in the third line between the CALL address 520

and the following quotation mark. The CALL address must not be given in
hexadecimal.

If you have Applesoft on the firmware ROM card, you can copy the CHAIN
program onto another diskette by using the FID program. (Appendix J)

If you are using RAM Applesoft (on diskette), you can copy the CHAIN
program onto another diskette using FID (Appendix J) or as follows. First
place the CHAIN program into Apple’s memory, with the command

BLOAD CHAIN, Al12296
Then save it on the desired diskette, with the command

BSAVE CHAIN, A12296, L456

(%
Note that neither Address parameter for copying CHAIN is the same as the
Address parameter for actually using CHAIN.

107

108

FILE TYPES USED WITH DOS
COMMANDS

Unless otherwise indicated, DOS commands may be used either in
immediate-execution mode or in deferred-execution mode (within a program).

However, some text file commands (e.g. READ and WRITE) must be used in
deferred-execution mode.

Most DOS commands refer to a named file. A file may be a text (data)
file, or a program in Integer BASIC, APPLESOFT or Machine Language. The
tables below indicate which file types may be used by each command. The
first table lists the commands alphabetically; the second table groups
them by associated file type. The commands CATALOG, FP, INT, MAXFILES,

MON, NOMON, PR# and IN# are not included because they do not explicitly
refer to named files.

FILE TYPE USE, LISTED BY DOS COMMAND

DOS Integer Applesoft Sequential Random Machine
Command BASIC BASIC Access Access Language
Uses Program Program Text Text Binary
Files: File File File File File
APPEND X
BLOAD X
BRUN X
BSAVE X
CHAIN X
CLOSE X X
DELETE X b4 X X X
EXEC X
INIT X X
LOAD % X
LOCK X X X X x
OPEN b4 X
POSITION X
READ X X
RENAME b4 b4 X X b 4
RUN x b4
SAVE X X
UNLOCK % b4 x b4 b4
VERIFY X X X X b4

WRITE X X

Note: use these commands only in deferred execution mode:
APPEND, OPEN, POSITION, READ, WRITE

110

FILE TYPE USE, LISTED BY FILE TYPE

Integer BASIC files only
CHAIN

Integer BASIC or APPLESOFT files
INIT
LOAD
SAVE
RUN

Sequential Text files only
APPEND

EXEC

POSITION

Either Sequential Text Files or Random-Access Text Files
OPEN
CLOSE
READ
WRITE

Machine Language files only
BLOAD

BRUN

BSAVE

All Types of Files
DELETE

LOCK

UNLOCK

RENAME

VERIFY

Note: these commands must be used in deferred-execution mode:
APPEND, OPEN, POSITION, READ, WRITE

111

sislslainluinlalsisisinlslsiatialialsinislinislsinl

112

DOS MESSAGES

113

When DOS detects an error connected with disk usage, it normally displays
a message describing the error and stops any program that is running.
These messages are in addition to the usual messages generated by
Applesoft or Integer BASIC. DOS messages can be distinguished from those
of Applesoft or Integer BASIC as follows:

An Applesoft message, such as
?SYNTAX ERROR

is preceded by a question mark.

An Integer BASIC message, such as
*%% SYNTAX ERR

is preceded by three asterisks.

A DOS message, such as
SYNTAX ERROR
is preceded by no character at all.

A DOS message appears exactly the same, whether you are in Applesoft,
Integer BASIC or the Monitor at the time the message is generated.

If a DOS message occurs when you are using the Monitor, the system is
reset to the type of BASIC from which you entered the Monitor.

By using Applesoft’s ONERR GOTO command (see the Applesoft manual), you
can create Applesoft error-handling routines that deal with DOS messages
which would normally interrupt your program. When a DOS error occurs
following an ONERR GOTO command in an Applesoft program, a code number for
the type of error is stored in decimal memory location 222. This is the
same memory location in which Applesoft stores the code for an Applesoft
error message. The command

Y = PEEK(222)

sets the value of Y to the Applesoft ONERR GOTO code corresponding to the
error that caused an Applesoft ONERR GOTO jump to occur.

DOS messages and their corresponding Applesoft ONERR GOTO codes are shown
below, with the most common cause of each message. Each of the messages
is then discussed in greater detail, with a more comprehensive list of
causes and cures.

ONERR GOTO CODES

code DOS message Most common cause

1 LANGUAGE NOT AVAILABLE Applesoft not on diskette

2,3 RANGE ERROR Command parameter too large

4 WRITE PROTECTED Write-protect tab on diskette

5 END OF DATA READing beyond end of text file

6 FILE NOT FOUND File misspelled, or not on diskette
7 VOLUME MISMATCH Wrong Volume parameter

114

ONERR GOTO

code DOS message Most common cause

8 I/0 ERROR Door open, or diskette not INITed

9 DISK FULL Too many files on diskette

i) FILE LOCKED Attempt to over-write a LOCKed file
11 SYNTAX ERROR Bad file name, parameter, or comma
12 NO BUFFERS AVAILABLE Too many text files OPEN

13 FILE TYPE MISMATCH Diskette file doesn’t match command
14 PROGRAM TOO LARGE Insufficient Apple memory available
15 NOT DIRECT COMMAND Command must be in a program

DISCUSSION

LANGUAGE NOT AVAILABLE (ONERR GOTO code = 1)

Occurs if DOS cannot find a programming language, either Integer BASIC or
Applesoft, that is required to execute a DOS command. The commands FP,
INT, LOAD and RUN may all initiate a language search. If Integer BASIC is
requested, DOS looks for that language in ROM. If Applesoft is requested,
DOS first looks for the language in ROM, using Applesoft from an Applesoft
firmware ROM card (if available) regardless of the card’s switch

position. If Applesoft is not found in ROM, DOS looks on the diskette in
the "default" disk drive -- the drive indicated by the default or most
recent values of the S and D parameters. DOS will not look on any other
disk drive.

This message usually arises after a DOS request for diskette Applesoft, if
the diskette in the default drive does not contain the program APPLESOFT.
Replace the diskette with one that contains the program APPLESOFT; or use
the D parameter with any DOS command, to select the another drive. A
command such as this will do nicely:

FP, D2

If you think DOS should have found Integer BASIC in ROM, but it didn’t,
try the following:
1. Turn off your Apple and remove the cover.
2. Locate the row of four large ROM chips (black, rectangular
objects) in the middle of the main printed-circuit board. These
chips are labeled "ROM F8", "ROM F@", "ROM E8" and "ROM E@".
3. Press down firmly on these chips.
4. Replace the cover, turn on the Apple and try INT again.

If you think DOS should have found Applesoft on your firmware ROM card,
but it didn’t, try the following:

1. Turn off your Apple and remove the cover.

2. Unplug the Applesoft firmware ROM card. Locate the row of
five large ROM chips (black, rectangular objects) across the
card. These chips are labeled 1, 2, 3, 4, and 5 above
the chips, and D@, D8, E@, E8 and F@ below the chips.

3. Press these chips firmly into their sockets.

4. Plug the Applesoft card back into slot #@, the leftmost slot.

5. Replace the cover, turn on the Apple and try FP again.

115

RANGE ERROR (ONERR GOTO code = 2 or 3)

Occurs when the value of a DOS command parameter or a DOS command quantity
is too large or too small. Refer to the manual to see which DOS commands

are used with which parameters.

Range
Parameter Letter Minimum Maximum
All Files: Slot S 1 7
Drive D 1 2
Volume \ g * 254
Sequential Byte B ¢ 32767
Text Files: Relative Field R [} 32767
Absolute Field (EXEC) R @ 32767
Random-Access Record Length L 1 32767
Text Files: Record Number R @ 32767
Binary Files: Starting Address A [} 65535
Number of Bytes L 1 32767
Range
DOS Command Quantity Minimum Maximum
PR# s s "} 16 **
IN# s s [0} 16 **
MAXFILES n n 1 16

* Minimum volume number INIT will actually assign to a diskette is 1.

*% Maximum slot number built into the Apple II is 7. 1In deferred-
execution mode only, the SYNTAX ERROR message is given for s values
from 8 through 16.

Note: The use of values outside the above ranges does not always cause the
RANGE ERROR message. Any DOS command parameter or command quantity that
is -less than @ or greater than 65535 will cause the SYNTAX ERROR message,
not the RANGE ERROR message.

WRITE PROTECTED (ONERR GOTO code = 4)

Occurs when DOS attempts to store information on a diskette, but the disk
drive does not detect a "write-protect” notch or cutout on the left side

of the diskette’s outer case. The following are the most likely causes:

1. There is an adhesive label placed over the diskette’s write-protect
cutout, to prevent accidentally over-writing or deleting any information
on the diskette. This label may be removed, whereupon DOS will SAVE or
BSAVE or WRITE to the diskette.

This is true on the
While not recommended, it

2. There is no write-protect cutout on the diskette.
System Master diskette, for maximum protection.

116

is possible to carefully cut a notch of exactly the correct size and in
exactly the correct place. Use another diskette’s write-protect notch for
a model.

3. If you receive this message while RUNning the COPY program, and the
cause is not either 1 or 2, above, you may have inserted the diskette into
the drive incorrectly (in any other situation, DOS gives the I/0 ERROR
message to signal incorrect diskette insertion). Check the diskette’s
position in the drive, and re-read Chapter 1°s discussion on inserting
diskettes.

END OF DATA (ONERR GOTO code = 5)

Occurs when you try to retrieve information from a portion of a text file
where no information has ever been stored. Any byte beyond the last field
in a sequential text file, or beyond the last field of each record in a
random-access text file, may contain the value @#. Zero is the ASCII code
for a null character, a "nothing'", and any command that causes the
retrieval of this character results in the END OF DATA message. Remember
that only OPEN automatically sets the position-in-the-file pointer back to
the file’s beginning. The message usually occurs after an INPUT or a GET
command, and can arise in several different ways:

l. Too many successive INPUTs or INPUT with too many variables. Each
INPUT or INPUT variable causes one additional, adjacent field to be read
into the Apple.

2. Too many successive GETs. Each GET reads one additional, adjacent byte
or character into the Apple.

3. The B (for Byte) parameter was too large. In sequential files, this
parameter must not specify a byte beyond the last RETURN character in the
file. In random-access files, the B parameter should not specify a byte
beyond the last RETURN character in the currently selected record.
Remember, the first byte in a file or a record is byte @.

4, The R (for Relative-field position) parameter in a POSITION command was
too large. In sequential files, this parameter must not specify a field
beyond the last existing field in the file. In random-access files,
POSITION s R parameter should not specify a field beyond the last existing
field in the currently selected record.

Remember, the R parameter used with POSITION is not the same as the R
parameter used with READ. It specifies a field position in the file,
relative to the current file position and forward in the file, only.

R@ specifies no change in the current file position. Rl jumps the file
position ahead to the first byte following the field that contains the
current position.

POSITION scans forward through the contents of the file, byte by byte,
looking for the Rp—th RETURN character. If it encounters a @ byte (the
null character) before finding the required RETURN character, the END OF
DATA message is given immediately: it is not necessary actually to INPUT
or GET the null character.

117

5. The R (for absolute-field position) parameter in an EXEC command was too
large. This parameter may specify the first field beyond the last

existing field in a file, but attempting to specify the second field

beyond the file’s end will cause the END OF DATA message. Remember, R@
specifies the first field in a file.

6. The R (for Record) parameter in a READ command specified a random-access
file record in which nothing has yet been stored. Before you can READ
from a particular record in a random-access file, you must first WRITE

some information into that record.

Remember, READ’s R parameter is not the same as the R parameter used by
POSITION or EXEC. READ’s R parameter specifies an absolute record in a
file: RP is the file’s first record, and so on.

DOS uses the OPEN command’s L parameter for calculating where the Rr-th

record begins, so the OPEN preceding READ must use the same L parameter
value as the OPEN that preceded WRITE for that file.

FILE NOT FOUND (ONERR GOTO code = 6)

Occurs when certain DOS commands specify a file name that is not in the
CATALOG for the diskette in the selected or default disk drive. Only the
commands SAVE, BSAVE, INIT and OPEN can create a file whose name did not
previously exist. In addition to these, CLOSE may be used with any valid
name. A file name specified by any other DOS command must already exist on
the diskette.

This message may arise in various ways: l. You may have misspelled the
file’s name, by a typing error or by omitting the comma that separates the
file name from a following parameter. Check the CATALOG for the exact
spelling of the file’s name. Warning: if you have accidentally typed
control characters into the name of a file, CATALOG will not display these
characters. For help, see "File Names" in Appendix F.

2. The file is on another diskette. Check the CATALOG.
3. The file has been accidentally DELETEd. Check the CATALOG.

4. When you use the INIT command on a diskette, you specify a file name
which DOS thereafter attempts to RUN each time you boot the system with that
diskette in disk drive 1. Unless you write a BASIC program, and save it
using the name given to INIT, the FILE NOT FOUND message will be given each
time the system is booted with that diskette in drive 1. If you can’t
remember the name of this '"greeting program", you must re-INIT the disk,

or run MASTER CREATE to rename the greeting program without destroying the
contents of the diskette.

VOLUME MISMATCH (ONERR GOTO code = 7)
Occurs when the Volume (V) parameter used in a DOS command is not the same

as the volume number assigned to the diskette in the default or selected
disk drive, when that diskette was INITialized. The volume number of a

118

diskette is shown at the head of each CATALOG display. Unless a DOS

command specifies a particular volume, the diskette’s volume number is
ignored, and no message is given. If a DOS command specifies volume @, the

diskette’s volume number is still ignored. If no volume number is given
with INIT, or if volume number @ is given, the diskette will be initialized
with the default volume number 254.

I/0 ERROR (ONERR GOTO code = 8)

Occurs after an unsuccessful attempt to store data on a diskette or to
retrieve data from a diskette (DOS tries 96 times, then gives up). This
message can occur in the following ways:

1. The selected or default drive’s door is open. Close the door to the
disk drive.

2. No diskette in the selected or default disk drive. Put a diskette into
the drive and close the drive door.

3. Diskette in the selected or default disk drive has not been
INITialized. 1INIT the diskette.

4. Diskette is inserted incorrectly. Check the diskette, and re-read the
section in Chapter 1 on inserting diskettes.

5. During execution of a VERIFY command, DOS found the specified file was
not stored correctly on the diskette. If the file’s information is still
in memory, try storing it again (perhaps on a different diskette).

6. The DOS command’s D (Drive) parameter has specified a disk drive that

does not exist in this system. The default drive is now the non-existent
drive. Just specify the correct D parameter with the next DOS command to
reset the default.

7. Thé system is trying to access a l3-sector diskette using l6-sector DOS.
Use the MUFFIN program to update your diskette to l6-sectors.

8. The DOS command’s S (Slot) parameter has specified a slot that does not
contain a disk controller card in this system.

2
A
You are in trouble, but can still save yourself; don’t despair. The
problem is that the default slot is now the empty slot your last DOS
command specified. The next DOS command without a slot parameter will go
to the empty slot and return the same message as before. To reset the slot
correctly,

a) Press RESET

b) If you see a Monitor prompt (*), type 3D@G

c) Type CATALOG Ss where s is the correct slot.

19

DISK FULL (ONERR GOTO code = 9)

Occurs when DOS attempts to store information on a diskette, and finds that
no more storage space is -available on that diskette. A maximum of 496
sectors can been filled with user-stored information, as displayed in the
CATALOG (if an individual file exceeds 255 sectors, the CATALOG display of
its length starts over again at @#@@). If you receive the DISK FULL
message, rest assured that all files are CLOSEd, and that DOS saved for
you all it could (leaving you with some portion of your file not on the
diskette). If you receive this message while 'saving a file called STUFF,
the first thing you should do is to

DELETE STUFF

and then save your program on another diskette that has more room left.

If you receive the DISK FULL message and then immediately try to SAVE,
BSAVE or WRITE any file on the diskette before DELETEing any files, then
(are you ready?) the sector length of the one of the entries shown in the
CATALOG will be set to . Don’t despair: despite the odd appearance of
that entry’s CATALOG display, the file itself is in fine shape. To avoid
such situations, if you get a DISK FULL message, DELETE some files before
trying to save other files.

FILE LOCKED (ONERR GOTO code = 1§)

Occurs when you try to SAVE, BSAVE, WRITE or DELETE using a file name that

has been LOCKed on the diskette that is in the selected or default drive.
Check the CATALOG display: the names of LOCKed files are preceded by an
asterisk (*#) in the CATALOG display. A file is LOCKed to prevent
accidental over- writing. Use another diskette or UNLOCK the desired file.

SYNTAX ERROR (ONERR GOTO code = 11)

Occurs when DOS encounters a syntax error in a DOS command. Check the
manual for the exact syntax required for the command in question. The
problem may be a non-valid file name (see Appendix F), an incorrect

parameter symbol, a missing parameter, a missing or incorrect separator
(usually a comma). This message will also arise if a parameter value or
command quantity is a negative number or is greater than 65535.

Rarely, every DOS command causes the Applesoft or Integer BASIC Syntax
Error message. This usually means that DOS has not been booted or has
become '"disconnected" from input and output. Try pressing the RESET key,
then typing 3DPC to reconnect DOS; or, re-boot the disk.

120

NO BUFFERS AVAILABLE (ONERR GOTO code = 12)

Occurs when a DOS command requires another file buffer for input or
output, and all the available file buffers are already in use. On booting
the system, DOS reserves enough space in the Apple’s memory for three
input-and-output file buffers. A subsequent MAXFILES command can increase
or decrease the number of available file buffers, and a CLOSE command can
release file buffers currently in use for text files.

Many DOS commands use one file buffer for input or output during their
execution, and then relinquish that buffer when execution of the command
has ceased.

When a text file is OPENed, a file buffer is assigned to that file for
input and output. This buffer remains in use, generally, until its file
is CLOSEd either specifically by file name or by the nameless CLOSE that
de-allocates all the text-file buffers. A text file is not automatically
CLOSEd by a program’s coming to an end. To conserve buffer space, CLOSE
files as soon as you are through using them. Remember that the next OPEN
will re-set the position-in-the-file pointer to the file’s beginning.

oz,
%
The MAXFILES command can be used to increase buffer space before writing
the program or loading the program into memory. Increasing MAXFILES moves
HIMEM down, and this can erase stored Integer BASIC program lines or
Applesoft strings. Changing MAXFILES in the middle of a program can be
especially dangerous.

FILE TYPE MISMATCH (ONERR GOTO code = 13)

Occurs when a DOS command attempts to use a file name that is already
assigned to a file whose file type is inappropriate to the present
command. If you are sure the command is correct, use a file name that is

not now on the diskette, use a different diskette, RENAME the existing
file or DELETE the existing file.

This message arises from several different incorrect combinations of DOS
commands with existing file types. Here are the correct combinations:

LOAD £, RUN f, SAVE f f must be an Applesoft or Integer

BASIC program file.
CHAIN £ f must be an Integer BASIC program file.
OPEN f, READ f, WRITE f, f must be a text file.

APPEND f, POSITION f, EXEC f
BLOAD f, BRUN f, BSAVE f f must be a binary program or data file.

The greeting program’s file name, specified with INIT or UPDATE,
must refer to an Applesoft or Integer BASIC program file.

121

PROGRAM TOO LARGE (ONERR GOTO code = 14)

Occurs when a DOS command attempts to place a diskette file into Apple’s
memory, and finds the available memory insufficient to contain the entire
file. You (or a previous program) may have set HIMEM too low for the
current task, or a large MAXFILES may have set HIMEM too low. If you set
the number of file buffers to three, using the command

MAXFILES 3

then HIMEM will be returned to the booted value given in Appendix D, Table
2.
If you are in Integer BASIC, and HIMEM is set low (to protect the
high-resolution screen memory, for instance), you may experience trouble
on shifting to diskette Applesoft. Diskette Applesoft occupies about
12.5K of memory, but a shift to diskette Applesoft (with FP or LOAD or
RUN) does not reset HIMEM to maximum. When DOS tries to load the
Applesoft program from diskette, the message PROGRAM TOO LARGE will be
given if HIMEM is below about 131¢@. The system will be left in Integer
BASIC again, and you must set HIMEM higher from Integer BASIC. See
Appendix D, Table 2 for your system’s maximum HIMEM with DOS and three
file buffers.

~—

In deciding whether or not a program will fit into the available memory,
DOS looks only at the number of diskette sectors occupied by the

program. In general, the program does not completely fill the last sector
(256 bytes), but DOS ignores this fact. DOS compares only the high-order
byte of LOMEM (Integer BASIC) or HIMEM (Applesoft) with the high-order
byte of the projected end-of-program location. Thus a program which
should fit into memory, but which would leave less than 256 bytes of free
memory after loading, may cause the PROGRAM TOO LARGE message. Sometimes
this can be corrected by moving HIMEM or LOMEM slightly, to change the
high-order byte, before loading the program.

NOT DIRECT COMMAND (ONERR GOTO code = 15)
Occurs when you try to use one of the text file commands APPEND, OPEN,

POSITION, READ or WRITE from immediate-execution mode. These DOS commands
can be used only from within PRINT statements in program lines.

122

FORMAT OF DISKETTE
INFORMATION

This appendix tells how information is stored on a diskette, and how DOS
remembers where particular information has been stored.

In the following discussion, a dollar sign ($) or the label "Hex"
preceding a number indicates that the number is expressed in hexadecimal. et

OVERVIEW OF THE STORAGE PROCESS

In the Disk II system, information is recorded on a diskette in 35
concentric zones or bands, called tracks. These tracks are numbered from
track $@P, the outermost, through track $22, the innermost. The disk e
drive’s recording and reading head can be moved in and out, to stop and

hover over each of these 35 different zones of the spinning diskette.

Furthermore, the length of each track on the diskette is divided into 16
segments, called sectors. These sectors are numbered from $§ through $F,
and up to 256 ($1¢P) bytes of information can be stored in each sector.
Once the disk drive’s recording and reading head is positioned over a given
track, that track’s 16 sectors will pass under the head, one after the
other, each time the diskette spins around. DOS always records information
on the diskette in 256-byte chunks, exactly filling one sector each time.

To store information on the diskette, DOS first puts 256 bytes (one
sector’s worth) of the information in an area of Apple’s memory called a
file buffer. When this file buffer is full, the information is stored in
one sector on the diskette. Then DOS fills Apple’s file buffer with the
next 256 bytes of information and stores that information on the diskette.

In general, DOS will begin storing a program or text file wherever it can

find an unused sector on the diskette. When that sector is filled with
its 256 bytes of information, DOS finds another free sector, perhaps on

another track, and continues to record information there. This process
continues until the entire file has been stored.

To remember which sectors of which tracks contain the information for a
particular file, DOS makes up a list of each track and sector used, as it
stores the file. Then DOS stores that list, called a track/sector list, in
yet another free sector (or sectors) on the diskette.

Finally, the file’s name, file-type, length in sectors, and the diskette
location of the file’s track/sector list are recorded in a special area of
track $11 called the directory. At this time, too, the diskette’s track
bit map is updated to correctly show which sectors of each track are
currently in use.

WRITING INTO A SEQUENTIAL TEXT FILE

Entries in a text file consist of 1 to 32767 characters stored as their
equivalent ASCII codes and ended by a RETURN character (either ASCII $@D or
ASCIT $8D). Each such entry is called a field.

124

In a sequential text file (no Length parameter specified when the file was
OPENed), fields are stored immediately following each other (see Chapter
6). DOS writes the first byte of each new field immediately following the
RETURN character that ended the previous field (unless otherwise
instructed by a Byte parameter). Each time the file is OPENed, DOS
forgets the current position within the file, and starts WRITEing again in
byte ¢ (again, unless otherwise instructed by a Byte parameter).

In order to re-write a particular field or character within a sequential
file, WRITE can be used with the B (for Byte) parameter to begin writing
at the specified, absolute byte of the file (the first byte in the file

is byte @, the next is byte 1, etc.). The byte specified may be before or
after the current position in the file.

~
Y

It is very difficult to remember exactly which character appears in every
byte of a text file, especially in a sequential text file. For this

reason, use of the Byte parameter in sequential text files is not
recommended.

The POSITION command can be used with an R (for Relative-field)
parameter to move a pointer ahead (only) through the file a specified
number of fields relative to the current position in the file. A
program portion such as

will attempt to WRITE the characters APPLE COMPUTER into the NAMES file,
beginning in the first byte of the fourteenth field (the first field is
Relative-field).

<>

%

POSITION can move you to the first byte of any given field Relative to the
current position in a sequential text file. If you then re-WRITE that
field, however, you must make sure that you re-PRINT exactly the same
number of characters that you PRINTed in that field originally. If you
PRINT fewer characters, you will have created two new fields: the field
you just PRINTed, and the tail-end of the original field you were
over-writing. If you PRINT more characters than the original field

contained, you will have over-written some of the characters at the start
of the next field.

125

WRITING INTO A RANDOM-ACCESS TEXT FILE

For a random-access text file, a Length parameter is specified when the
file is OPENed. The Length parameter determines the number of bytes in a
record, which is a field or a collection of fields that DOS treats as a
unit. Each record in a random-access text file is like a separate
sequential text file whose maximum total length has been specified by the
Length parameter. As long as you stay within that maximum Length, you can
WRITE and re-WRITE all you want, without affecting any other record in the
file. WRITE can be used with the R (for Record) and B (for Byte)
parameters to begin writing into any byte of a specified record.

<
<V
Since any DOS command will terminate WRITE-ing, you cannot use POSITION

to jump ahead into different fields within the record specified by the
WRITE command.

DOS uses the Length parameter to calculate where to write the first byte
of each new record (L bytes beyond the first byte of the previous
record). DOS simply skips over any bytes between the previous record’s
last character and byte L. The bytes skipped over will continue to
contain whatever values were stored there at some earlier time (see the
next section for details). -

If you attempt to WRITE more characters in a random-access record than
you specified in the Length parameter, all the characters are stored
correctly on the diskette. However, when you begin WRITEing to the next
record, DOS calculates the new record’s starting position as if the
previous record had been within the specified Length. The new record thus
overwrites the last characters of the previous, over-sized record,
including the end-marking RETURN character of the previous record’s last
field. The result is messy.

HOW DOS WRITES INTO TEXT FILES: GENERAL PROCEDURE

When you WRITE a field into a text file, DOS first checks on the diskette
to see whether or not you have already stored information in the sector
which should contain that field. If your file has never used that sector
before, DOS places zeros in all 256 bytes of an Apple file buffer, and
then lets you put your information into that buffer for later storage in
the correct diskette sector. The contents of the file buffer are stored
on the diskette when your information has completely filled 256 bytes of
the buffer, or when the file is CLOSEd.

Thus, when you WRITE to a particular sector the first time, unused
bytes are given the value zero. An attempt to READ a byte containing a
zero (the ASCII code for the null character) will result in the message
END OF DATA

126

But if DOS finds your file has already stored information in the sector
which should contain the field that you are now WRITEing, it reads all 256
bytes from that sector into the Apple’s file buffer. After you have
changed any of those file-buffer bytes to contain your new information —--
the WRITE, POSITION (sequential files only) and PRINT commands take care
of this for you -- DOS then stores the buffer’s contents right back into
the the same diskette sector where they originated. The contents of the
file buffer are stored back on the diskette when you attempt to change any

byte not in the sector that was read into the file buffer, or when the
file is CLOSEd.

Thus, if you WRITE more information for a file, and DOS stores that
information in a diskette sector already being used by your file, this
will not re-write any zeros in unused bytes. Any of those sector bytes
which you did not re-write will continue to contain whatever information
might have been stored there before your WRITE command. This is true of

the unused bytes at the end of a sequential text file, and also true of
the unused bytes in each fixed-length record of a random-access text file.

CONTENTS OF FILE SECTORS

Now that you know the general process of recording a file on diskette, we
can discuss each element in more detail. The actual information stored,
sector by sector, is different for each type of file.

FORMAT OF FILE SECTORS
for different file types

File Byte
type Sector (Hex) Contents of byte
BASIC 1st sector 1] Program length, low byte
(both 1 " ", high byte
types)
2 through FF Tokenized program
Subsequent All Tokenized program
sectors bytes
Text All All ASCII representation of
sectors bytes text: one byte/character

($0¢ marks end of file)

127

File Byte

type Sector (Hex) Contents of byte
Binary 1st sector 1] Starting RAM address, low byte
1 & " " , high byte
2 Length of RAM image, low byte

3 n n " n 5 high byte

4 through FF Binary data

Subsequent All Binary data

sectors bytes

THE TRACK/SECTOR LIST

As a file is stored on the diskette, DOS makes a list of the diskette
locations used by the file. This track/sector list is then stored on the

diskette in the same way the file itself was stored. The contents of a
track/sector list are as follows:

First Sector of a
TRACK/SECTOR LIST

Byte
(Hex) Contents of byte
@ Not used
1 Link: track number where continuation of the
track/sector list may be found.
2 Link: sector number where continuation of the
track/sector list may be found.
(If both bytes of Link = @, no link.)
3 through 4 Not used
5-.6 Sector base number (counts groups of 122 sectors)

7 through B Not used

Cc Track number of first file sector
D Sectol‘ m " ” n n
E Track number of second file sector
F SeCtOI‘ " n ”n n n
10 Track number of third file sector
ll Sector " " n n n
FE Track number of 122nd file sector
FF SeCtOr n n n " n

128

If any track/sector pair is @/@ this indicates an unassigned sector
(usually the end of the file, although text files may contain @/§
indicators for many as-yet-unassigned sectors where future bytes or
records may be written).

Subsequent sectors of the track/sector list (if the list extends beyond
122 track/sector pairs) are identical to the first sector described above,
except that the track/sector pairs refer to subsequent groups of 122 file
sectors. Also, Link bytes 1 and 2 will be different for each subsequent

sector. Each Link pair gives DOS the diskette location of the next
portion of the track/sector list. If both bytes of the Link are @, this
indicates the final portion of the track/sector list.

With a text file, only the track/sector pairs for those sectors actually
containing information appear as non-zero in the track/sector list. DOS
calculates the correct position for the track/sector pair within the list,
filling unassigned track/sector pairs with zeros.

Thus, if the Length parameter for a random-access file is 128 (two records
per sector) and you WRITE only to record number 27(¢@, thirteen diskette
sectors are used: one for the contents of record number 27@@, and twelve
for the sectors of the track/sector list. The contents of records number
through 2683 may someday occupy 1342 sectors; but until those records are
written, they do not use any diskette space. The track/sector list giving

the locations of the sectors containing records number @ to 2683 occupy
eleven sectors.

THE DISKETTE DIRECTORY

On every INITialized diskette, track $11 is reserved for information
concerning the contents of the diskette. This is where DOS stores the
directory containing, for each file, the file’s name, its file type, the
nunmber of sectors occupied by the file (MOD 256), and the diskette
location of the file’s track/sector list. The CATALOG command causes

most of this information to be displayed on the screen. Each sector of a
diskette directory is formatted as follows:

One sector of a DISKETTE DIRECTORY

Byte (Hex) Contents of byte
] Not used
1 Link: Track number where continuation of the
directory may be found (normally $11)
2 Link: Sector number where continuation of the

directory may be found
(If both bytes of Link = ¢, no link.)

129

Byte (Hex) Contents of byte

3 through A Not used

B through 2D Directory entry for file 1 (see below)
2E through 5@ Directory entry for file 2

51 through 73 Directory entry for file 3

74 through 96 Directory entry for file 4
97 through B9 Directory entry for file 5

BA through DC Directory entry for file 6

DD through FF Directory entry for file 7

The file numbers shown for the seven directory entries are arbitrary. When
a file is DELETEd, DOS marks the directory entry for that file (see
following table). The next time a file is stored, DOS replaces the old
marked directory entry with the directory entry for the new file. Thus,
while DOS originally fills the directory in the order shown, file

DELETEions soon render this order meaningless.

The diskette directory begins in track $11, sector $F. If more space is
needed to store additional directory entries, sector $F is Linked to sector

$E. If still more space is needed, sector $E is Linked to sector $D, and
so on, through sector $1. This allows the directory to store directory

entries for a maximum of 1¢5 different files.

Each directory entry is written in the following format:

DIRECTORY ENTRY FOR ONE FILE

Relative
Byte (Hex) Contents of Byte
[4) Track number of the file’s track/sector list
(The original value is copied into 2@ and the value
of byte § is changed to $FF when the file is
DELETEd.)
1 Sector number of the file’s track/sector list
2 File type (see discussion on the next page)
3 through 24 File name
21-22 Sector count: the number of diskette sectors

(MOD 256) occupied by the file

130

A directory entry’s relative byte specifies each byte within the entry,
although each entry starts at a different actual byte number within the
directory sector. To find the absolute sector byte corresponding to a
relative byte, add the relative byte to the entry’s first absolute sector
byte (as listed in the previous table).

Because only one byte is used to store a file’s sector count, the maximum
directory sector count is 255 ($FF). 1If a file exceeds 255 sectors, its
sector count (as displayed by CATALOG) starts over again at $@¢@. This
does not affect use of the file, but may give an erroneous impression of
how full the diskette is.

The eight bits of a file’s type-designating byte, relative byte number 2
in a file’s directory entry (see previous table), are assigned values as

follows:

BYTE INDICATING THE FILE TYPE

CATALOG
Bit symbol File type designated
7 * File is locked (write protected) if this bit =1
File is unlocked (nmot protected) if this bit = 0
6 Expansion type for future use (nmormally zero)
5 " "n " " n " ”n
4 n n n n ” n n
3 n " " n ”n n n
2 B Binary file if this bit =1
1 A Applesoft BASIC file if this bit =1
@ I Integer BASIC file if this bit =1
T Text file if bits @ through 6 are all zero

The file type is determined by a l-bit appearing in ome of the bits @
through 6. If bits @ through 6 are all @#-bits, the file type defaults to
a Text file.

The file’s type-designating byte can thus take on the following values:

VALUES FOR BYTE INDICATING FILE TYPE

File Value of Type byte (Hex)
type File unlocked File locked
Text) 8¢
Integer 1 81
Applesoft 2 82
Binary 4 84

131

VOLUME TABLE OF CONTENTS

Sector $f of track $11 contains the diskette’s Volume Table of Contents, or
VIOC. The VTOC stores the following information:

VOLUME TABLE OF CONTENTS (VTOC)
Track $11, Sector $0

Byte Value
(Hex) (Hex) Description
[2 Not used
1 11 Track number of first directory sector
2 ¢F SeCtOr m n " n ”n
3 4 DOS release number
4 [1} Not used
5 ¢ n "
6 1 through FE Diskette volume number (default: S$FE)
7 through 26 [} Not used
27 7A Maximum number of track/sector pairs possible
in each sector of a track/sector list
28 through 2F [} Not used
30 FF These four bytes are a mask for the
31 FF track bit maps (see next 2 pages):
32 [[0] each l-bit enables one of the 16
33] sectors to be used in every track.
34 23 Number of tracks per diskette
35 gF Number of sectors per track
36 1Y) Number of bytes per sector, low byte
37 @1 n n ”n n ”n high byte
38 through 3B 9 Track @ bit map (These tracks
3C through 3F [} Track 1 bit map not available
4@ through 43 7] Track 2 bit map to the user)
44 and 45 ? Track 3 bit map
[‘6 and 47 ¢ " " n n

[Continued on next page]

132

Byte Value

(Hex) (Hex) Description

48 and 49 ? Track 4 bit map
4A and 4B n n n n
78 and 79 ? Track $1¢ bit map
7A. and 7B Q n n n n

7C through 7F] Track $11 bit map (Directory & VTOC)
8¢ and 81 ? Track $12 bit map
82 and 83 w n " n n
CP and C1 ? Track $22 bit map
CZ al‘ld C3 ﬂ " ” n ”"

C4 through FF @ Not used

TRACK BIT MAP

Starting in byte $38 of the VTOC (see previous table), subsequent four-byte
groups each contain the track bit map for ome of the diskette’s 35 tracks.
The arrangement of l-bits and f-bits within a track’s bit map shows DOS
which sectors of that diskette track are currently in use, and which

sectors are free. The bit map for each track uses the following format:

TRACK BIT MAP
For one diskette track

Designated Designated
Sector Sector
Byte Bit (Hex) Byte Bit (Hex)
1st 7 F 2nd 7 7
6 E 6 6
5 D 5 5
4 C 4 4
3 B 3 3
2 A 2 2
1 9 1 1
9 8 9 9
3rd & 4th All Spare

133

If a bit in the track bit map contains the value 1, the sector
corresponding to that bit is free. If a bit in the map contains the value
P, the sector corresponding to that bit is currently in use. Bits marked
"Spare" in the table above contain the value §; these bits are not used.
The track bit map for a typical track might appear as follows:

TYPICAL TRACK BIT MAP

1st byte 2nd byte 3rd byte 4th byte
POOPPPLIL | 11111111 |0PpoP000p|(0000000QP
BEEERE b4y
9 765

FEDCBA
\C

? , f f Spare Spare
3219 \ 2 — J/

}
4 J

8 g
Not used

~
Sectors designated

1 = Free sector (assuming the corresponding bit of the mask,
VTOC bytes $3@ through $33, is also 1)

=
[

Sector in use

When a file is being stored on the diskette (using WRITE, SAVE or BSAVE),
an entire track is allocated to the file at once (when possible), and the
track’s bit map shows the entire track in use. Then, when the file is
CLOSEd, those sectors not actually used are again designated as free, in
the bit map for that track.

©

Sectors actually used to store a file’s information, however, can only be
"set free" when that file name is DELETEd. Suppose your diskette contains
a 1@P-sector BASIC file named BIG, for instance. If you now SAVE, on the
same diskette, a 2-sector file with the same name BIG (overwriting the old
file) a CATALOG of the diskette will reveal that your 2-sector file BIG is
still using up 10§ sectors. To free up unneccessary sectors used by a
BASIC file named BIG, use the following sequence of commands:

LOAD BIG

DELETE BIG

SAVE BIG

A similar process can be used to release unneccessary sectors used by
binary files.

To release unneccessary sectors being used by a text file, you will have to

READ each of the file’s fields into the Apple. 1If you store all the
fields in an array, you can then DELETE the original file before WRITEing
each record back onto the diskette using the original file name. Another
way to do this is to read each field into the Apple and immediately WRITE
the field back onto the diskette using a file name that is different from
the original file name. When you have read and re-written the last field,
you can DELETE the original file.

134

TRACK AND SECTOR ALLOCATION ORDER

Each diskette contains 35 tracks, three of which are reserved for DOS and
one for the Directory, leaving 31 tracks for the user. Each track

contains 16 sectors, so all together 31%16 or 496 sectors are available to
the user.

Sectors are filled starting with sector $F and working back to sector $@.
Tracks are first filled starting with track $12 (just inside the

directory/VTOC track) and proceeding inward to track $22 (the innermost
track). When track $22 has been filled, tracks are then filled starting
with track $1¢ (just outside the directory/VTOC track) and working outward
to track $3 (the outermost track available to the user).

Tracks $@ - $2
(DOS) |
Tracks $3
(User fi

|

|

|

|

: (DirecFory/VTOC)
| |

! |

' |

| |

' |

| |

! |

| |

' |

! |

' |

' |

' |

' |

L

|

r |

| |

| I

I |

: | - Diskette

_)' Cover
TRACK ALLOCATION ORDER SECTOR ALLOCATION ORDER
First Last First Last
Filled Eiiigg Filled Filled

First: $§12 —-=> $22 SF —--=> $90
Then: $1¢ --=> $¢3

135

RETRIEVING INFORMATION FROM THE DISK

To retrieve a file from diskette, DOS follows the process used to store
the file, but in reverse. After a command such as

LOAD FILE
or
BLOAD FILE

for instance, DOS goes to the diskette’s file directory in track $11, and
finds the directory entry containing the name FILE. This entry also
contains the diskette location (by track and sector) of the desired file’s
track/sector list. DOS then goes to this track/sector list, and reads the
first track/sector pair. This pair specifies the diskette location of the
first sector containing the program named FILE. When DOS has read that
first sector of program into the Apple, it returns to the track/sector
list for the location of the program’s second sector, and so on.

READING FROM A SEQUENTIAL FILE

When READing from a sequential text file, with a program portion such as
5¢ PRINT D$; "READ TEXTFILE"

6¢ INPUT AS$

for instance, the general process is like that described for LOADing a
program file. However, only the sector containing the text file’s next
field (all characters from the current position in the file through the
next RETURN character) is read into the Apple’s file buffer in response to
the INPUT command. Then the actual sector bytes that make up the desired
field are assigned to the variable A$. This process is repeated if the
field extends over more than one diskette sector. Each subsequent INPUT
command will cause reading of the file to resume, from the Apple’s file
buffer if it already contains the proper field, or by reading another
diskette sector into the Apple. This continues until the last field is
read or some command CLOSEs the file.

By using the READ command with the B (for Byte) parameter, you can cause
the next INPUT to begin reading from the specified absolute byte in the
file (the file’s first byte is @, the next is 1, etc.). This byte may be
before or after the current position within the file. To use this
parameter effectively, however, you must know the contents of every byte
in your file. The POSITION command uses the R (for Relative-field)
parameter to move DOS’s current-position pointer the specified number of
fields forward (only) through the file, relative to the current position
in the file. Each time you OPEN a file, DOS forgets its current position
in the file and starts READing again from the beginning of the file
(unless otherwise instructed by a Byte parameter).

'
The INPUT command treats a response somewhat differently in Integer BASIC
and in Applesoft. If certain characters such as the colon or comma appear
in the response field, further characters in the field may be ignored or
assigned to multiple INPUT variables (if any). For details, see the
appropriate manual for Integer BASIC or for Applesoft.

136

READING FROM A RANDOM-ACCESS FILE

The text-reading process is somewhat different when READing from a
specified record of a random-access text file (also see WRITING TO A
RANDOM-ACCESS FILE in this appendix). In a random-access text file, each
record is composed of the same number of bytes, specified in the Length
parameter when the file was OPENed prior to WRITEing the file. When this
same file is OPENed prior to READing it, an identical Length parameter is
given. To find the beginning of a particular record (specified by the
READ command’s R parameter), DOS uses the Length parameter to calculate
the number of bytes occupied by all the preceding records. That number is
then divided by 256 ($10@) to determine how many file sectors DOS must
skip over to reach the sector containing the desired record. Then DOS
examines the file’s track/sector list and finds the diskette location of
the desired file sector. Finally, DOS reads the correct sector into the
Apple’s file buffer. Then the correct bytes can be read from the file
buffer.

<

This same retrieval process would be followed even if the text file had
originally been stored as a sequential file, or as a random-access file
using a completely different Length. DOS blindly calculates the sector
and byte position of the requested record according to whatever Length

parameter you specify when you OPEN the file prior to READing from it,

regardless of the Length parameter (if any) that was used when WRITEing
the file in the first place.

By using the READ command with both R (for Record) and B (for Byte)
parameters, you can cause the next INPUT to begin reading from the
specified absolute byte in the specified record (each record’s first

byte is @, the next is 1, etc.). This byte may be before or after the
current position within the record. To use this parameter effectively,
however, you must know the contents of every byte in the specified record.

The POSITION command, while primarily intended for access to sequential
files, can be used with the R (for Relative-field) parameter to move

DOS’s current-position pointer the specified number of fields forward
(only) through the current record, relative to the current position in the
record. READ is used with the R (for Record, this time) parameter to

move the current-position pointer to the beginning of the desired record.
Using POSITION cancels READ mode (without resetting the position-pointer),
and another READ (this time, with no parameter) re-instates READ mode.

Each time you OPEN a file, DOS forgets its current position in the file
and starts READing again from the beginning of the file (unless otherwise
instructed by a Byte and/or Record parameter).

<
DOS keeps no information for you concerning the structure, format,
record-length, or field-length of your text files. To use your
random-access text files effectively, you must keep detailed written
information about the structure of these files, or keep the information at

the beginning of the file..

137

138

139

MEMORY USAGE

TABLE 1: APPLE Il MEMORY MAPS
A. MEMORY AREAS OVER-WRITTEN WHEN BOOTING DOS

Location on
any system:

Highest RAM

memory address_»

DOS moves
HIMEM here

Location on a
48K system:

«——49151 ($BFFF)

40192 ($9DPP)

8960 Relocated DOS,
($2309) on completion
bytes of boot
7 bytes not used
1792 Three file
($709) buffers of
byres 595 ($253) bytes
for input & output

[Note 2]

16383 ($3FFF)

7424 ($1DPY)

DOS, where first booted
from a Master diskette

[Note 1]

DOS Relocation Code

[Note 1]

6912 (S1BPP)

2303 ($8FF)

2048 ($809)

First stage boot

starts here

1623 ($3FF)—s

512 ($200)

"Nibble" buffers

used during boot

Lowest RAM
Memory address.

¢99 (5000)

40184 ($9CF8)

38409 ($9600)

Note 1. This memory area is not affected when booting a Slave diskette:
DOS is placed directly below the Highest RAM Memory address that was
available on the system that INITialized the Slave diskette, whether
appropriate to the present system or not.

140

B. MEMORY AREAS USED BY DOS AND EITHER BASIC

Highest RAM
memory address:

Without DOS,
either BASIC

49151 ($BFFF)

on a 48K system

24576

1J752 Disk
($2A09) Operating
bytes System

(if booted)

sets HIMEM here
[Note 2]

Booting DOS
sets HIMEM here

Integel BASIC
program lines
start at HIMEM
and build down

Appfesoft
strings
start at HIMEM
and build down

($6009) —

16384

High-resolution graphics, Page 2
[Note 5]

($4000)

8192

High-resolution graphics, Page 1

($2009)

2048

[Note 4] 1
1
|
|
Diskette
T Applesoft
Either BASIC’s | (1if used)
variables | occupies
start at LOMEM : this space
and build up 1

[Nofe 4]

Applesoft :
program lines | |
push LOMEM up | :

|

[Note 2]

FP (diskette)

sets LOMEM at

12291 ($30@3)
[Note 2]

FP (firmware)

($0809)

Lowest RAM

memory address:

P00 ($0090)

300

Monitor and BASIC Workspace

P00

Note 2.

and INT set
LOMEM here
BASIC System use: [Note 2]
low-resolution graphics
and text screen, etce.
Vectors
30§ - 3FF DOS + System Reserved
3¢¢ - 3CF

If your system is in Integer BASIC, the HIMEM pointer can be found
(low byte first, then high byte) in locations 76-77 ($4C-$4D).

If your

system is in APPLESOFT BASIC, the HIMEM pointer is in locations

141

115-116 ($73-$74), same format. See Table 2 for the value of HIMEM set by
booting DOS. Increasing MAXFILES will move HIMEM down an additional 595
bytes for each file buffer added. For the locations of other Applesoft
program pointers, consult your Applesoft II BASIC Programming Manual,
Appendix I. .

TABLE 2: HIMEM VALUE SET BY BOOTING DOS

When DOS is booted, HIMEM is set according to the amount of memory in the
system:

System Highest RAM address HIMEM: set by DOS boot
size Decimal Hexadecimal Decimal Hexadecimal
16K 16383 $3FFF 5632 $1600
20K 20479 $4FFF 9728 $2600
24K 24575 $5FFF 13824 $3600
32K 32767 $7FFF 22016 $5600
36K 36863 $8FFF 26112 $6600@
48K 49151 $BFFF -27136 $9600 [Note 3]

Note 3. The number -27136 could also be written 38400, but Integer BASIC
will not accept numbers greater than 32767. In Integer BASIC, memory
addresses greater than 32767 must be expressed as their negative
equivalents. The negative equivalent of any positive decimal address n is
(n - 65536).

Note 4. Using high-resolution graphics Page 1 erases the contents of
memory locations 8192 through 16383. Unless DOS sets HIMEM to a value
greater than 16383, an attempt to use high-resolution graphics Page 1 will
erase part of DOS. This means that you cannot use Disk II and
high-resolution graphics at the same time, unless your system contains at
least 32K of memory.

If you are using diskette Applesoft, an attempt to use high-resolution
graphics Page 1 will erase part of Applesoft. With diskette Applesoft,
you may use high-resolution graphics Page 2, only, if your system contains
at least 36K of memory. See Note 5.

Note 5. Using high-resolution graphics Page 2 erases the contents of
memory locations 16384 through 24575. Unless DOS sets HIMEM to a value
greater than 24575, an attempt to use high-resolution graphics Page 2 may
erase part of DOS. This means that you cannot use Disk II and Page 2
high-resolution graphics at the same time, unless your system contains at
least 36K of memory.

142

ENTRY POINTS
AND SCHEMATICS

DOS ENTRY POINTS

Routine to re-connect DOS (if page 3 is over-written):

System Decimal address Hexadecimal address
size (_CALL) (G)

48K -25153 $9DBF

32K 23999 $5DBF

16K 7615 $1DBF

The Monitor command 3D@L displays this number at the top right.

Locations containing the start address and length of a BLOADed program:

System Start address (low byte) Program length (low byte)
size Decimal Hexadecimal Decimal Hexadecimal
48K 43634 $SAAT2 43616 SAA6(
32K 2725¢ $6A72 27232 $6A60
16K 1(866 $2A72 10848 $2A60

To see the starting address or length after a BLOAD, type
PRINT PEEK(low byte) + PEEK(low byte +1)%*256

Program to find the DOS locations containing the starting address
and length of the most recently BLOADed program, on any size system:

The values of H and T (lines 7 and 8) are shown for a 48K system.
Appendix D, page 142, shows the correct values for your system.
This program takes about 2 minutes to find the desired locatioms.

DOS character input and output routines:

See Chapter 10, expecially Note 7 on page 1(5. For an example
using the technique described, see the program on page 151.

144

: DISK Il INTERFACE

CIRCUIT SCHEMATIC

00-S000-060

WIENAN ONIMVYT

ﬂ-hﬂﬂ:—ﬂi

© 0+ N

2V 2SN /|

13373S 3AI¥Q

LY T041NO) HOLOW
Sy
+
uxmuun
8y 2l
S+ [HSIERIOMI

ONION3d LN31lvd

>
W
a

|

DM[209552/1 | 20955 2/1
= o1y L] 2avy?
s = s u3sm |eo ussmy A v TS
e L i vy
28 S0STNL /1 £avps
2v 28152 ¥/1 13534 250 a—{aN9) sz
NO NO ¥3IMOd B
vy [178N a |8 YOLONW
_ 9 = <0 yue
vayzy
30 2v Z8isIbL w1
01 034 ¥M feA-ﬁ Sva) ey
_ 28 S05bL 9/1 Smor
O X1
81 [VIva i} £Va) 9%
= 2va)1t
wﬂ -y oy ¢ V3 8%
aN9 d) TV 2V ova)6t
91 [vva o 1 oz ml__i]
q 101 o o
ke SOlcT o 13
€V b2S0L 7 671
28 S0S1vL 9/ @ea = 1|49 €8 V9d 60€9
oi¥r0 1 g
ol <l a%
=73 zafa £
2 v0 €a b m
= 2 -2
<5 . rISnsdn cH
Lz U095 N <o @
<z 9y
wo
£ 28§05 /1 e
93 8¥50 L]
28 60S1vZ 9/1 [
s
S+ 8
)
9
s
b
oz Sm_m m— ¢
2 = 2 = z
‘._. ol ol H = :
GNO T T ELAN) £avsd
21+ 2+ B.H i _,oH kz_.oH
HE 3.—. 3._. A3 1Y
398 S+)52

145

DISK Il ANALOG BOARD

CIRCUIT SCHEMATIC

sooL oL
10-2000-050 3 doT o)
WA ONIAYYQ - I _ “ H %
2 mandwoo piddcl & H
USLSS ULl uLsl ﬁm__w T ulo“w T
eeuf oeMP eMY 2y T T
861 ONI HILNAWOD I1ddvo TleT i o+
1
(s ! ¥a £00ZNIN 2/1
Mu el 1 _
I TYES gy 1Ny
2= V- gl sly 2u) ¥ voss 8 SZISbL v/l A
T (') ok aly i sy
%0 Al 5+
928 ol _I iy
N < {viva vn]
2% s <[z Viva ¥ |81
001 o0l 9L o 3 B
sz
kit v8 SZISTL v/1
e sty M ? Jdose s+
¥2) 8
9dl
:oomo_m._. el o viva gy sl
m
‘Pﬂv\wrw\ sl 9. Moge g v S2ISTVL b/ \H
S LT £ e ALY 1d1
Vi g 1243 994 $ozy
ST J loud M |oz
we €58 52112 b/ 5
Xro
[301 | EREl 2y S
41> S+ S+V ya coozNIN 221 ¥a £00ZNIN L/1 mZz
U898 pivo 21 am
o 3z
2y g [o_oA_ < Tu z5
8 A Ao
18 0LVEIN Sol £H °%
sy S+ E2
2+
28N3 |6l
1 M2/ |
Uogs s - 1y
s S| oviedl arfiro T #lozz T EMH S+
on 813 2
Al &
vy Y T o0 I T
v . 21+
L \ Hog =
HSY S06ENZ "
20 21+
<
= o e
¥a £00ZNIN 271
a(oud A 2
o |s
% @yIn w v [
¥a £00ZNN 271
_n 2l Zl+ &Y
LIGREED
U055 —
Y 4 14
N(ao > S T et
¥a £00ZNIN 171
(@Y
% |z
9 =
i) ¥a £00ZNTN L/1 E,m.w

146

SUMMARY OF DOS COMMANDS

The DOS commands are grouped into 5 categories in this appendix:

Housekeeping commands

INIT RENAME VERIFY
CATALOG DELETE MON

SAVE LOCK NOMON
LOAD UNLOCK MAXFILES
RUN

Access Commands
£ccess Lommands

FP PR# CHAIN
INT IN#
Sequential Text File Commands
OPEN APPEND
CLOSE POSITION
READ EXEC
WRITE

Random-Access Text File Commands

OPEN READ

CLOSE WRITE
Machine Language File Commands

BSAVE

BLOAD

BRUN

Procedures used in DOS (including chaining in Applesoft) are summarized in
Appendix G. The notation used in the summaries (and throughout the
manual) is described in the following section.

NOTATION

Syntax refers to the structure of a computer command. A simple notation
is used to describe the syntax of each DOS command.

Items in square brackets, [and] s, are optional. These items are
sometimes called parameters. Not all commands permit all parameters, but
those parameters that are permitted in a given command may appear in any
order, unless otherwise noted.

If a command uses a file name, the file name must come immediately after
the command word itself: the first item following the command will be
treated as a file name. The file name must be separated by a comma from
any parameter that follows.

Curly brackets may be used to indicate when a certain key should be
pressed:

{CTRL} hold down the key marked "CTRL" while another key is typed.
{CTRL}D means hold down the CTRL key while you type the
letter D. Sometimes another notation is used: CTRL-D means
the same as {CTRL}D.

148

{RETURN}

{RESET}

{ESC}

press the key marked "RETURN". The {RETURN} required
after every command is not shown.

press the key marked "RESET".

press the key marked "ESC".

CAPITAL letters and commas must be typed as shown, lower case letters
stand for items that you must supply.

file name. This is from one to 3@ characters. Any typeable
character except the comma may appear in a file name. The
first character must be a letter of the alphabet. For more
details, see the next section.
Examples: CHESS

RECIPE

SUM OF SQUARES

NEW45

HOW-ABOUT-THIS

another file name.
Example: SEPARATOR WITH LOW VELOCITY

slot number. s specifies the Apple II slot in which the
disk controller card has been placed (usually slot 6).
s initially defaults to the slot from which DOS was booted.
It subsequently defaults to the last value specified for this
parameter. s must be in the range 1 through 7.
Examples: 7

2

If s refers to a slot which does not contain a disk controller

card, the system may stop and a program in memory may even
be lost. See I/O ERROR, in Appendix B, for more details.

volume number of a diskette. v initially defaults to the

volume number of the diskette from which the system was booted.

It subsequently defaults to the latest value specified for

this parameter, or implicitly specified by a CATALOG command.

v must be in the range @ through 254.

Example: 141

Note: A diskette’s volume number may not be @#. In a DOS
command, specifying a volume number of @ or simply V
with no number is a "wild card" and tells the DOS to
determine and use the volume number on the diskette.

drive number (either 1 or 2). d initially defaults to one.
It subsequently defaults to the latest value specified for
this parameter.

Example: 2

149

P position number. Used with the R parameter in the POSITION
and EXEC commands for sequential text files. p specifies
a field whose position in the file is p fields ahead of the
current file position. p defaults to @, which does not move
the file-position pointer in the file. Note: EXEC always sets
the pointer to the start of the named file, so p is always
relative to § when usel with EXEC. See command summaries later
in this Appendix. p must be in the range @ through 32767.

r record number. Used with the R parameter in the READ and
WRITE commands for random-access text files. r defaults
to @ after OPEN. Thereafter, it defaults to the last record
specified. r points to an absolute record within a random-
access file. r must be in the range @ through 32767.

a address in RAM. The a parameter is required with the BSAVE
command . a specifies the starting Apple memory address for
BSAVEing or BLOADing binary information. If BLOAD does not
specify an a parameter, then the value of a defaults to
that used when the binary file was BSAVEd. a must be in
the range @ through 65535.

b byte number. b defaults to . 1In a sequential file, b
points to an absolute byte within the file. In a random-access
file, b points to an absolute byte within the record pointed
to by r . b must be in the range @ to 32767. For most
applications b is in the range @ through the last byte in
the current sequential file or the last byte in the current
random-access record.

j length specifier. j defaults to 1. When used in the OPEN
command with random-access files, j is required and specifies
the number of bytes that will constitute a record in a random-
access file. When used with the BSAVE command, j is required
and specifies the number of bytes of Apple memory, starting at
address a , whose contents are to be stored on diskette. j
must be in the range @ through 32767.

As an example of this notation, the DOS command that is notated

INIT £ [,Vv] [,Ss] [,Dd]

can be interpreted as

INIT HELLO, V17, D2

by the following process. The keyword "INIT" is in upper case, and must
be typed exactly as shown. In the syntax description, "f" is lower case
and stands for a file name -- it is replaced by the legitimate file name
"HELLO" in this example. The ",V17" is optional. "V" stands for
"volume"; 17 was chosen arbitrarily as a volume number for this example.
The notation ",Ss" is optional and omitted. The notation ",Dd" becomes ,
D2 in this example, indicating that disk drive number 2 is to be used.

Any numerical constant in a DOS command can be entered in hexadecimal
notation by preceeding the hexadecimal digits with a dollar sign.

150

FILENAMES

File names may be up to 3@ characters long, and must begin with a letter.
The name cannot contain a comma, a CTRL-M or a RETURN, which is used to
terminate the command. Spaces that precede the first non-space character
in a name are ignored. All name characters beyond the 3@th are ignored.
a

|)

% |

When typing file names, the use of special keys such as ESC, the

left-arrow and right-arrow keys, and certain keys typed with the CTRL key
("control" characters CTRL-C, CTRL-H) may have unexpected effects.

P N

Agj‘

N

If a file name contains control characters, you won’t see them printed,
but they must be typed to use or delete the file.

The following Applesoft program can be used to find any hidden characters
except CTRL-M (RETURN), ESC, CTRL-H (left arrow) and CTRL-U (right arrow).

If you suspect you may have accidentally introduced a control character
into a file name, type this program, SAVE it, and RUN it. The Applesoft
prompt (]) will be displayed. Next type

CATALOG

and you’ll get a list of all the files, with any control characters shown
as flashing characters. Control characters in program listings can also

be found this way. To re-instate normal printouts, type
PR# @

HOUSEKEEPING COMMANDS

INIT £ [,Vv] [,Ss] [,Dd]
Example: INIT HELLO, V18

The parameter v assigns a volume number to the diskette being initialized.
Details on initializing diskettes are in Chapter 2 and Appendix G.

151

CATALOG [,Ss] [,Dd]
Example: CATALOG

Displays on the screen the volume number and a list of all files on the
diskette in the specified or default drive. The default volume number is

changed to match that of the indicated diskette. If this command uses a
volume parameter [,Vv] that parameter is ignored.

With each file is displayed an indicator of its file type and the number of
diskette sectors occupied by the file. The file types are:

Integer BASIC program file, created by SAVE.

Applesoft BASIC program file, created by SAVE.
Text file, created by OPEN and filled by WRITE.

Binary memory-image file, created by BSAVE.

B3P H

An asterisk beside a file’s type indicator shows that the file is LOCKed.

A maximum of 496 diskette sectors are available to the user. Each diskette
sector can store up to 256 bytes of information. The minimum length of a

file is 1 sector, for an empty text file. (Technically, that 1 sector is
occupied by the empty track/sector list for the file.) Empty Integer
BASIC, Applesoft, and Machine Language files take 2 sectors. (1 for the
track/sector list and 1 for the first program sector, which contains the
program’s length. See Appendix C for more details.)

If an individual file exceeds 255 sectors, the CATALOG display of that
file’s length starts over at @#f@. This does not affect use of the file,

but may give an erroneous impression of how full the diskette is.

SAVE f.[,Ss] [,Dd] [,Vv]

Example: SAVE COLOR DEMOS, V56

If there is no file with the specified file name on the diskette in the

specified or default drive, a file is created on that diskette and the
current Integer BASIC or Applesoft program is stored under the given file
name. If the diskette contains a file with the specified file name, but

of a different language or file type, then the message

FILE TYPE MISMATCH
will be displayed.

A\ —

If the chosen diskette already contains a file with the specified file
name, and in the same language, the original file’s contents are lost and
the current BASIC program is saved in its place. No warning is given.

152

LOAD £ [,Ss] [,Dd] [,Vv]
Example: LOAD DOW JONES, V19, DI

Attempts to find Integer BASIC or Applesoft program file with name f on the
diskette in the specified or default drive. If the volume numbers match and
there is such a file, that program will be LOADed into the computer. It can
then be LISTed, or RUN, or SAVEd as with any program. LOAD closes any open
text files, changes the Apple to the correct language for file f , and
eraces any program in memory before placing the new program in the Apple.

If file f is an Applesoft BASIC program, and Applesoft is not already in
memory or available from the Applesoft firmware ROM card, the program
Applecoft will be LOADed and RUN from the specified drive automatically,
before file f is LOADed. If Applesoft is not on that diskette nor on the
firmware ROM card, the message

LANGUAGE NOT AVAILABLE
will be displayed.

The instruction LOAD, without any parameters, will LOAD a program from
cassette tape.

RUN £ [,Ss] [,Dd] [,Vv]
Example: RUN ANNUITY, D2

LOADs file f from the specified or default drive (see the previous
discussion), then also RUNs the program loaded. If just

RUN

is typed, the program in memory is RUN.

RENAME f, g [,Ss] [,Dd] [,W]

Example: RENAME SEPERATE, SEPARATE, S4, D1, V@

Finds the file named f on the diskedte in the specified or default drive,

and changes its name to g . The file’s contents are not affected. If file
f was open, it is closed.

Y
RENAME does not check to see whether the file name g is already in use,
so it is possible to use RENAME to put several files of the same name onto

a diskette -- a potentially confusing situation, at best.

153

DELETE f [,Ss] [,Dd] [,Vv]
Example: DELETE TEST

Removes the file named f from the diskette in the specified or default

drive. If f was open, this command closes it. See Appendix C for more
details of the deletion process.

<
If a file named f does not exist on the diskette, the message
FILE NOT FOUND

will result. To avoid this occurrence stopping your programs, first OPEN
the file, then DELETE it.

LOCK £ [,Ss] [,Dd] [,Vv]
Example: LOCK LOVE LETTERS, V31

This command allows you to make file f , on the diskette in the specified
or default drive, safe from accidental deletion or change. A LOCKed file
is indicated in the CATALOG by an asterisk (*).

UNLOCK f [,Ss] [,Dd] [,Vv]
Example: UNLOCK RECIPES, V31, D2

If you change your mind, and want to alter or remove a LOCKed file named
f , on the diskette in the specified or default drive, this command allows
such a change.

VERIFY f [,Ss] [,Dd] [,Vv]

Example: VERIFY SAM

Performs a check that the information actually stored on the diskette in
file f is self-consistent. (Technically, this is what happens: When
the file is created -- with SAVE, BSAVE or WRITE -- DOS calculates a
checksum byte for the contents of each output buffer and then stores that
byte with the buffer’s contents in a diskette sector. The VERIFY command
calculates a new checksum byte for the actual contents of each file
sector, and compares it with the checksum byte originally stored with that
sector.) If a file VERIFYs, no message is given; it’s safe to assume the
information on the diskette has been stored correctly. If a file does not
VERIFY, the message

1/0 ERROR

is presented. You may VERIFY any type of file.

154

MON [C] [,I] [,0]

Examples: MON O
MON C, I, O

All disk commands and all information sent between the computer and the
disk are normally not displayed on the screen. This command allows you
to enable some or all of this display -- a helpful tool when debugging a
program. If C is specified then disk commands are displayed. If I
is specified, then information being sent from the disk to the Apple, as
Apple’s input, will be displayed. If O is specified, then information
being sent to the disk from the Apple, as Apple’s output, will be
displayed.

At least one of the three parameters must be present, or MON is ignored.
The parameters may appear in any order, separated by commas. These
parameters appear only in the commands MON and NOMON.

Note: MON remains in effect until a NOMON command, a change of language
(FP or INT), a boot, or a restart (3D@G). Even RUNning a program won’t
cancel a MON.

NOMON [C] [,I] [,0]

Examples: NOMON C
NOMON I, C

The MON command enables you to display disk commands and/or information
sent between the computer and the disk: such information is not normally
displayed on the screen. The NOMON command allows you to disable some or
all of this display. The command

NOMON C, I, O

returns the system to its usual, default state.

If C is specified then disk commands are not displayed. If I is
specified, then information being sent from the disk to the Apple, as
Apple’s input, will not be displayed. If O is specified, then
information being sent to the disk from the Apple, as Apple’s output,
will not be displayed.

At least one of the three parameters must be present, or NOMON is
ignored. The parameters may appear in any order, separated by commas.
These parameters appear only in the commands MON and NOMON.

MAXFILES n
Example: MAXFILES 6

n is an integer from 1 to 16 that specifies the number of files that can
be active at one time. When MAXFILES is executed, 595 bytes of memory
(called a file buffer) are reserved for each file. When you boot the
system, n defaults to 3, so that you will have 1785 bytes reserved for
file buffers and will be allowed a maximum of 3 files open simultaneously.

165

All DOS commands except PR#, IN# and MAXFILES require a file buffer. Thus
if you have MAXFILES 1, and one file is OPEN, an attempt to perform a DOS
command (such as CATALOG) will cause the message

NO BUFFERS AVAILABLE

to be displayed.

e

Use of MAXFILES moves HIMEM. This can erase Integer BASIC programs or
Applesoft strings. Use MAXFILES before LOADing and RUNning a programe.
See the discussion in Chapters 5 and 7 if MAXFILES must be used from
within a program.

ACCESS COMMANDS

FP [,Ss] [,Dd] [,Vv]
Example: FP, D2

This command puts your system into Applesoft BASIC. Any Integer BASIC or
Applesoft program in memory is lost. If your computer contains the
Applesoft firmware card, DOS uses that source for the language, regardless
of the switch position on the card. If your system does not contain the
Applesoft firmware card, DOS attempts to load and run the program named
APPLESOFT on the diskette in the specified or default drive.

To place the APPLESOFT program onto a newly initialized diskette, first
LOAD the APPLESOFT program from the Master Diskette, then (without RUNning

or LISTing the file) SAVE APPLESOFT on an initialized diskette. You must
use the name APPLESOFT for this file.

<
Do not use RUN APPLESOFT to change languages. Everything looks fine at

first, but DOS has not properly initialized the language. To avoid the
resultant mess, always use FP.

INT
Example: INT

This command puts the Apple into Integer BASIC. Any Integer BASIC or
Applesoft program in memory is lost.

CTRL-D (also written {CTRL}D)

Example: 1@ D$=CHRS (4)
2¢ PRINT D$;"WRITE CHESS"

156

Every character PRINTed out by the Apple is first examined by DOS before
it is sent on to the outside world. If the Apple PRINTs out a RETURN
character (most PRINT statements automatically end with a RETURN), and the
next character is a CTRL-D, this is a message to DOS that subsequent
characters (until the next RETURN) are a DOS command. Most DOS commands
may be used from inside an Integer BASIC or Applesoft program. To do so,
PRINT a string consisting of CTRL-D followed by the desired DOS command.

The recommended way to do this is to first create a string D$ consisting
only of a CTRL-D, and then to use BASIC statements such as shown in the
example. Note the use of CHRS$(4) to create D$ (Ehis works only in
Applesoft, since the CHR$ function is not offerred in Integer BASIC).
Instead, CTRL-D could have been typed inside quotation marks to create D$,
but in this case no character is shown between the quotation marks.

Every character sent out by the Apple is first examined by DOS before it
is passed on to the outside world. If the Apple sends out a RETURN
character (most PRINT statements automatically end with a RETURN), and the
next character is a CTRL-D, this is a signal to DOS that subsequent
characters (until the next RETURN) are a DOS command. A DOS command from
a program must appear in a PRINT statement whose first ouput character is
CTRL-D and whose output is separated from preceding and from succeeding
printed output by RETURN’s. For additional information, see '"Use of DOS
from within a Program'", in Appendix G.

PR# s
Example: PR# 6

Sends subsequent Apple output to the device controlled from slot # s ,
instead of to the TV screen. The command

PR# 0

returns output to the TV screen. If the command is used from inside
programs, it must appear as a PRINTed DOS command, as shown below:

1¢ D$="": REM CTRL-D

2¢ PRINT D$; "PR# 1"

If no device controller card is installed in slot # s , the system may
"hang" and you’ll have to press the RESET key to recover

IN# s
Example: IN# 6

Takes subsequent Apple input from the device controlled from slot # s ,
instead of from the Apple keyboard. The command

IN# @

resets the normal keyboard input. If the command is used from inside
programs, it must appear in a PRINTed DOS command, as shown below:

14 D$="": REM CTRL-D

2¢ PRINT D$; "IN# 1"

If no device controller card is installed in slot # s , the system may
"hang'" and you”ll have to press the RESET key to recover .

187

CHAIN f [,Ss] [,Dd] [,Vv]
Example: CHAIN PART TWO, D1, S7, V@

Used from within an Integer BASIC program, it loads and runs the Integer
BASIC program named f on the diskette in the specified or default drive,
but does not clear the values of any variables. This means that program

f can operate on the results of the previous program, and can leave data
for any following program. You cannot CHAIN Applesoft programs using this
command: see the special procedure for Applesoft programs in Chapter 1§ or
Appendix G.

SEQUENTIAL TEXT FILE COMMANDS

OPEN £ [,Ss] [,Dd] [,Vv]
Example: OPEN SESAME, D2

Allocates a memory buffer of 595 bytes to the text file f , and prepares
the system to write or read from the beginning of the file. This

command is used with the WRITE and READ commands to create and retrieve
sequential text files.

If there is no file f on the diskette in the specified or default drive,
one is created. If a file named f is already OPEN, this command first
CLOSEs that file, before OPENing the specified file.

CLOSE [f]

Example: CLOSE WINDOW

If you were WRITEing, a CLOSE causes all remaining characters in the
output part of the file buffer to be sent to the diskette specified when
that file was OPENed. CLOSE f deallocates the buffer associated with the
sequential text file f . If CLOSE is used without a file name, all OPEN
files will be closed, with the exception of the EXEC file. (There can
only be one EXEC file OPEN at any time. When another is implicitly
OPENed, the existing EXEC file, if any, is automatically closed)

If a program is interrupted by a CTRL-C while a text file is OPEN, it‘s a
good idea to type

CLOSE

to keep any data from being lost.

e

Files that have been allocated by an OPEN statement must be CLOSEd.

Failure to CLOSE a file that was OPENed and written to (by a WRITE) can
result in loss of data.

158

WRITE £ [,Bb]
Example: WRITE ADDRESS.DATA

After this command, PRINT statements send their output to the specified
file instead of to the Apple’s TV screen. With the Byte parameter,
WRITEing begins at the b-th byte of the file (see Chapter 6, page 69).
WRITE is cancelled by the printing of any DOS command, or by an INPUT
statement. The null DOS command (simply PRINTing a CTRL-D) will do.
WRITE must be issued in deferred-execution mode.

4
After this command all Apple output characters that would normally be
displayed on the screen are sent to the diskette instead. This includes
INPUT question-mark prompts, error messages, and other unwanted
characters.

READ f [,Bb]
Example: READ SESAME

After this command, INPUT statements (and GET statements in Applesoft)
obtain their response characters from the specified sequential text file
instead of from the Apple’s keyboard. With the Byte parameter, READing
begins at the b-th byte of the file (see Chapter 6, page 69).

INPUT causes characters to be READ from the sequential file one field at a
time. A field consists of from 1 to 32767 characters, ending with a
RETURN character. However, because of the limited capacities of strings
and input/output buffers, it is very difficult to store and retrieve
fields of more than 255 characters.

READ is cancelled by the printing of any DOS command. A null DOS command
(just PRINT a CTRL-D) will cancel READ. The READ command must be used in
deferred-execution mode.

APPEND f [,Ss] [,Dd] [,Vv]
Example: APPEND MORE INFO

This command opens the specified text file, but places the
position-in-the-file pointer to the end of the file. After this

command, the next character written into the file will follow the last
sequentially written character presently in the file. An APPEND must be
followed by a WRITE to the file of the same name. (APPEND must not be
followed by OPEN, because OPEN will reset the position-in-the-file pointer
back to the file’s beginning.)

169

POSITION f [,Rpl
Example: POSITION ADDRESS.DATA, R277

POSITION places the position-in-the-file pointer at the beginning of the
p-th field following the one you’re in. A field is a sequence of
characters terminated by a RETURN. Subsequent READs or WRITEs will
proceed from that point in the file f.

POSITION deals with a relative, not an absolute, position, since you count
fields forward from where you are in the file when the POSITION is
executed.

POSITION actually scans forward through the contents of the file,
character by character, looking for the p-th RETURN character. It then
places the position-in-the-file pointer at the first byte following the
p—th RETURN character. If, in this search, it finds any byte in which no
character has ever been stored, the message

END OF DATA

is given. Normally, this occurs when the p-th field ahead of the current
position in the file is beyond the file’s last entry.

EXEC £ [,Rp] [,Ss] [,Dd] [,Vv]
Example: EXEC UTILITY

Similar to RUN, except that f 1is a text (data) file containing BASIC and
DOS commands as they would be issued from the keyboard. This allows you
to set up files that can control the Apple, much as you would control the
Apple yourself.

There can only be one EXEC command in effect at a time. If the EXEC file
contains the immediate-execution command EXEC, the original EXEC file is
closed and the new EXEC file is opened and executed. If EXEC has OPENed a
file, the command

CLOSE

will not CLOSE the file being EXEC’ed. When an EXEC file has completed
all its commands, it CLOSEs itself and stops. If a file being EXEC’ed
contains a command to RUN any program, EXEC waits patiently until the
program ends. Then the next command in the EXEC file is executed.

/N
-
However, if a program is running while an EXEC file is open, any INPUT
statement in the program will take the next field from the EXEC file as
the response, ignoring the keyboard. Worse yet, if that response is an
immediate-execution DOS command, the command will be executed before the
program continues.

Y
If you type CIRL-C to stop an Applesoft program that is running while an

EXEC file is still open, the remaining commands in the EXEC file will
usually not be executed.

160

If you specify the value of the R parameter, a position-in-the-file
pointer is placed at the beginning of the p-th field in the file, and EXEC
will start executing from this point in the file.

As with POSITION, the R parameter used with EXEC should be thought of as
the Relative-field position parameter. However, unlike POSITION, EXEC
always counts fields from the beginning of your file, so p is always
relative to @#. The other parameters work as usual.

If you specify the value of the R parameter beyond the end of the file
you’ll get an

END OF DATA

message.

RANDOM-ACCESS TEXT FILE COMMANDS

OPEN f, Lj [,Ss] [,Dd] [,Vv]
Example: OPEN SESAME, L2

OPEN allocates a 595-byt file buffer to the random-access text file £ ,
and sets the record length to the number of bytes specified by j . The
number j must be in the range 1 to 32767; j defaults to 1.

OPEN is used with the READ and WRITE commands to create and retrieve
random-access text files. Note that the L (Length) parameter is not
optional: by definition, you must specify the record length of a
random-access text file. Each time you use a particular random-access
text file, you must OPEN the file with the same L parameter value. DOS
then uses that value to calculate the starting position of any specified
record.

If there is no file f, one is created.

CLOSE [f]
Example: CLOSE BOOK

If you were WRITEing, a CLOSE causes all remaining characters in the
output part of the file buffer to be sent to the diskette in the drive
that was specified when the file was OPENed. CLOSE de-allocates the
buffer associated with the random-access text file f . 1If CLOSE is used
without a file name, all OPEN files will be closed, with the exception of
an EXEC file, if any.

If a program is interrupted by a CTRL-C while a text file is OPEN, it’s a

good idea to type
CLOSE
to keep from losing data.

161

Files that have been allocated by an OPEN statement must be CLOSEd.
Failure to CLOSE a file that was OPENed and written to (by a WRITE) can
result in loss of data.

WRITE £ [,Rr] [,Bb]
Example: WRITE ADDRESS.DATA, R3

After this statement, PRINT statements send their output to the specified
file instead of to the Apple’s TV screen. WRITE is cancelled by the
printing of any DOS command, or by an INPUT command. The null DOS command
(simply PRINTing a CTRL-D) will stop a WRITE with a minimum of effort.
WRITE can be used only in deferred-execution PRINT statements.

The R (Record) parameter causes the WRITE to begin at the first byte of
the r-th record, where each record contains the number of bytes, j ,
specified by the L parameter given with OPEN. r defaults to @#. If
the B parameter is specified, the WRITE will begin at the b-th byte of
the r-th record in the file.

/’/ K\\

\)

%

After the WRITE statement, all Apple output characters that would
normally be displayed on the screen are sent to the diskette instead.

This includes INPUT question-mark prompts, error messages, and other
unwanted characters.

READ f [,Rr] [,Bb]
Example: READ SESAME,R3,B30

After this statement, INPUT statements (and GET statements in Applesoft)
obtain their response characters from the specified random-access text
file instead of from the Apple’s keyboard. INPUT causes characters to be
READ from the random-access file’s current record, one field at a time.

A field can be from 1 to 32767 characters, ending with a RETURN character.
However, no record should be more than j characters in length, where j
is the record length specified when the file was OPENed.

The R (Record) parameter causes the READ to begin at the first byte of the
r-th record, where each record contains the number of bytes, j ,
specified by the L parameter given with OPEN. r defaults to @. If
the B parameter is specified, the READ will begin at the b-th byte of
the r-th record in the file.

READ is cancelled by the printing of any DOS command. A null DOS command
(just PRINT a CTRL-D) will cancel READ.

162

MACHINE-LANGUAGE FILE COMMANDS

BSAVE f, Aa, Lj [,Ss] [,Dd] [,Vv]

Examples: BSAVE PICTURE, Al16384, L8192
BSAVE PICTURE, A$400@, L$2000

Creates a file named f , and stores the contents of a segment of the
APPLE II’s memory. The segment is specified by the starting address a

3
and the number of bytes to be stored j

The examples shown above store a high-resolution picture, from the second
high-resolution picture area. They are operationally identical: the
second example just uses hexadecimal notation for the parameters.

BLOAD f [,Aa] [,Ss] [,Dd] [,Vv]

Examples: BLOAD PICTURE, A8192
BLOAD PICTURE, A$20¢¢

If a is not specified, then BLOAD places the specified file in Apple’s
memory beginning at the starting location of the memory area that was
originally BSAVEd. If a is specified, then the data is placed in
Apple’s memory beginning at address a . Note that a machine-language
program may no longer be executable if so moved.

Assume that a a high-resolution graphics picture has been BSAVEd on a
diskette under the file name PICTURE. Then the first example shown above
would place the picture into the first high-resolution picture area, which
starts at memory location 8192 (decimal). The second example is
equivalent: the address is shown in hexadecimal, as indicated by the rgn
before the 200@.

Either example would clobber any version of Applesoft that is not in
firmware.

BRUN f [,Aa] [,Ss] [,Dd] [,Vv]
Example: BRUN SUPER, A$C@A, V75

BLOADs the file f into Apple’s memory beginning at location a . If the
A parameter is omitted, the file is BLOADed starting at the same
location from which it was BSAVEd. Once BLOADed, the file (which should

be a machine-language program) is started by a machine-language jump (JMP)
to location a .

163

164

SUMMARY OF DOS PROCEDURES

This appendix contains summaries of the main procedures used in DOS. Each

procedure is listed on the preceeding contents page, along with the page
number on which it appears.

BOOTING DOS

Replace "s" by the slot number in which the disk controller is located.

Prompt To boot DOS,
Character Language type
> Integer BASIC PR#s or IN#s
] Applesoft PR#s or INi#s
* Monitor s{CTRL}P
INITIALIZING A DISKETTE
To INITialize a slave (memory dependent) diskette: [
1) Boot DOS

2) Insert a blank diskette into the disk drive
3) Type in a greeting program, e-g.
1§ PRINT "32K SLAVE DISKETTE INITIALIZED 5 MAY 8¢"
2¢ END
4) Assuming you choose to name the greeting program "HELLO", =
type the command
INIT HELLO
5) After the IN USE light on the disk drive goes out, remove
the diskette and label it.

To make a master diskette, use the MASTER CREATE program, page 44.

RECOVERING FROM ACCIDENTAL RESETS

If DOS has been booted and dhen the RESET key is accidentally pressed, type
3D@G

(that’s the numeral zero after the D) to get back into the BASIC you left
with your program intact.

USE OF DOS FROM WITHIN A PROGRAM

DOS commands may be issued from within a program by PRINTing CTRL-D then -
the command. First create a string D$ which consists only of CTRL-D.

In Applesoft, D$ may be created by the command

D$ = CHR$(4)
since CTRL-D is the character whose ASCII code is 4.

166

In either BASIC, D$ may be defined by typing

D$ = "

then holding down the CTRL key while typing the letter D, and then typing
the closing quote. Control characters such as CTRL-D aren’t displayed, so

what you’ll see is
D§ = '

This Applesoft program displays the CATALOG when RUN:

Only one DOS command may be contained in a single PRINT statement. The
PRINT statement’s quoted contents must begin with a CTRL-D and end with
the DOS command. The CTRL-D must be preceded by a RETURN (sent
automatically at the end of most PRINT statements).

These commands should only be used in deferred-execution mode (from within
a program), appearing after CTRL-D in a PRINT statement:
OPEN APPEND READ WRITE POSITION

The commands INIT and MAXFILES are best used only in immediate-execution
mode (not from within a program).

Other DOS commands may be used either in immediate-execution mode, or from
within a program where they appear after a CTRL-D in a PRINT statement.

CREATING A TURNKEY SYSTEM

To make a diskette that runs a certain program each time the diskette is
booted -- in the example we will use the program COLOR DEMO -- use the
following procedure:
1) INITialize a blank diskette, using the name HELLO for the

greeting program.
2) Place a disk containing the COLOR DEMOS program in drive,

and type

RUN COLOR DEMOS

Once you’re satisfied the program RUNs correctly, return

to BASIC.
3) Put the newly INITialized diskette into your drive and type

SAVE HELLO

to replace the old greeting program by the COLOR DEMOS

program.

CREATING AND RETRIEVING SEQUENTIAL TEXT FILES

When creating a sequential text file, an OPEN must precede a WRITE; once a
WRITE is executed, any subsequent PRINT commands send all characters to
the diskette. CLOSE the file when you’re done. A WRITE command is
cancelled by an INPUT or the use of any DOS command in a PRINT statement
-- even just PRINTing CTRL-D will do.

167

This Applesoft program creates a sequential text file named SAMPLE whose
first thirteen fields contain three strings and the integers 1 through 10:

If you OPEN a file that already exists and then WRITE to it, you will
overwrite part of the original file.

This Applesoft program retrieves the file SAMPLE described above, one
field at a time. If you wish to see what is being READ from the disk, the
command

MON I

will cause input from the disk to be displayed.

An OPEN must precede a READ. Once a READ is executed, any subsequent
INPUT statements (in Applesoft, GETs also) obtain their response
characters from the diskette instead of from the Apple’s keyboard. CLOSE
the file when you’re done.

A READ is cancelled by PRINTing CTRL-D, whether or mot it’s followed by a
DOS command.

168

ADDING DATA TO A SEQUENTIAL TEXT FILE

This Applesoft program adds the two strings "TEST 1" and "AND NOW FOR TEST
2" to the end of a sequential text file called SAMPLE. Each string is in
an additional field of the file.

CONTROLLING THE APPLE VIA A SEQUENTIAL TEXT FILE

When RUN, this Applesoft program creates a text file named DOIT containing
the commands

LIST 20,50
RUN HELLO
CATALOG

Once the text file DOIT is created, the command
EXEC DOIT

will cause the commands in the file DOIT to be executed one by one, just
as if they’d been typed in from the keyboard.

169

CREATING AND RETRIEVING RANDOM—ACCESS TEXT FILES

This Applesoft program creates a random-access text file named RA-FILE,
whose records are each 30 bytes long. Then it WRITEs the string ''NAME
ADDRESS" followed by the record number, into records 12 through 15 of the
file. 1In lines 7§ and 8@, record number 13 is changed to contain the
string '"DOS".

This Applesoft program READS records 12 through 15 of the random-access
text file RA-FILE. Note that you must specify each record before READing
it in line 4f. Line 6 examines the three leftmost characters of the

input string A$, taken from each record. If those three characters are
"DOS", the message "RECORD r WAS CHANGED." is PRINTed, and the search
continues.

170

COPYING A TEXT FILE

Moving a BASIC or a binary program file to another diskette is no problem:
just LOAD or BLOAD the file’s contents into the Apple, and then SAVE or
BSAVE those contents back onto the other diskette. Remember to specify
the starting address and length parameters when using the BSAVE command.

The COPY program allows you to bulk copy the contents of one diskette onto
another. If any of the files on the original diskette are protected from
copying, you’ll get an error message:

I/0 ERROR

STOPPED AT 320

To copy a text file, or any unprotected file for that matter, use the FID
program. The full instructions for using FID are in Appendix J.

CHAINING IN APPLESOFT

To REN a series of Applesoft programs without erasing earlier values of
variables and arrays use the following procedure.

Suppose you wish program PART ONE to chain to the program PART TWO.
First, make sure the binary file CHAIN is on the same diskette with the
program PART TWO. (If it isn’t, use FID to copy it onto the right place.)
Then simply insert these two lines as the
last two lines to be executed in the PART ONE program:

PRINT CHR$(4); "BLOAD CHAIN,A52¢"
CALL 52@"PART TWO"

No space or other character may be between the ¢ and the "
in the CALL command.

171

172

UPDATING DOS TO 16 SECTORS

If you already have a Disk Operating System, and are using a version of
DOS that runs in 13 sectors, (DOS 3.2.1 or earlier), you will need to
change two proms on your disk controller card to update your system to 16
sectors. Any version of DOS earlier than release 3.3 will need to be
updated.

HOW TO INSTALL THE NEW PROMS

The new disk controller PROMs replace two PROMs on each Disk II controller
card in your Apple.

Inside the case, find the edge-connector '"slots" at the rear of the main
board. 1In one or more slots you will find cards labelled ‘Disk II
Interface Card’ at the top edge. Make sure the power is off. Remove each
of these controller cards by grasping it at the top edge and gently

rocking it back and forth. Remove the ribbon cables from each card, so
you can work on it more easily.

Hold a controller card in one hand, IC side toward you, "fingers portion"
down. You will see four rows of two ICs on the card. Find the left IC in
the second row from the top. It should be marked “P6” or ‘341-@Pl@-xx’
(possibly under a copyright sticker), and the card below it should be

marked “PROM P6°. This is the IC you will replace with the new PROM P6A.

Now find the left IC in the bottom row. It should be marked °P5° or “34l1-

PPP9- xx’ (possibly under a copyright sticker), and the card below it
should be marked “PROM P5°. This is the IC you will replace with the new
PROM P5A.

174

Now look at the new PROMs. The new PROM P6A should be marked “P6A’ or
‘341-PP28-xx", or both. The new PROM P5A should be marked "P5A° or ‘34l1-
PP27-xx’, or both. You should be able to find these markings without
peeling off any stickers. If you can’t find the numbers at all, see your
dealer.

Now that you know where everything is, you are ready to replace the old
PROMs with the new ones. Set the controller card down on a table and hold
it firmly. Using the IC puller, gently remove PROM P6 from its socket. You

may find a transistor, marked ‘Q3° on the card, blocking the IC puller. If
so, gently bend it out of the way until it is approximately vertical.
Grasp the IC with the puller, and gently rock it out of its socket.

Hold PROM P6A, marked ‘P6A’ or “341-PP28—xx’, so that it faces the same way
as the ICs on the card. The large rectangular notch should be on the left
side as you face the card. (There may be a small circular depression on
the other end. If you are not sure which end goes where, ask your dealer.)
Making sure that each pin lines up with its hole, gently insert PROM P6A
into socket P6. If the pins are too widely spread to go in easily, you may

have to bend them in until they are vertical, by pushing them carefully
(gently!) against a table top.

Now remove PROM P5 and replace it with PROM P5A, marked ‘P5A’ or “341-@@27-
xx”, just as you replaced P6 with P6A.

If you have more than two Disk II drives, you will need one controller card
for each two drives. Each of these cards will need the new PROMs. Install

these as you installed the first pair.

MULTIPLE DISK DRIVES

Now connect each Disk II drive to its controller card and plug the card
into its slot, in the order shown in the table below. The first drive
should go in the first location listed (slot 6, drive 1), and so forth,
until you have installed all your drives. You will be working downward
from slot 6, filling first the drive 1 and then the drive 2 connectors of
each card. This will ensure that the drives are in the most efficient
locations, and will increase the reliability of your system: programs will
not try to use drives that are not there, or ignore drives that are there.

Placement of Disk II Drives

Installation Slot No. Drive No.
Order

1st drive 6 1
2nd drive 6 2
3rd drive 5 1

4th drive 5 2
5th drive 4 1

6th drive 4 2

Label each drive ‘DRIVE 1° or ‘DRIVE 2°, as appropriate.

175

Check that all connections are secure and that everything has been
installed in its proper place. PROM P5 of each controller card should
have been replaced by PROM P5A (341-(@27-xx). PROM P6 of each controller
card should have been replaced by PROM P6A (341-0@28-xx). A Disk II
ribbon cable should be plugged into the drive 1 commector of each Disk II
controller card. Slot 6 should have a controller card.

When you are satisfied that everything is installed properly, you can
replace the Apple’s cover and go on to update your existing 13 sector
diskettes to 16 sectors, using MUFFIN.

USING DOS WITH THE LANGUAGE SYSTEM

You can use DOS and both Applesoft and Integer BASIC with the Apple
Language System installed. You do not need the BASICS Diskette to do this.
To begin a 16 sector DOS after using any language on the Language System
which uses the Pascal Operating System, follow these steps:

1) Be sure to save any program you have been working on. Otherwise, it
will be erased from memory when you begin DOS.

2) Get into the Command mode of the Pascal Operating System (so that you
can see the line which begins with "Command:").

3) Replace the diskette in your Drive 1 (connected to the controller card
in your highest numbered slot) with the DOS System Master diskette.

4) Type H (for Halt). This will cause that disk drive to boot your System
Master diskette.

Your System Master diskette will now load either Applesoft or Integer BASIC
—— whichever is NOT already available on your main board -- into the
storage space available on your Language Card. If you have a standard
Apple II, the System Master, when booted, will load Applesoft into your
Language Card. 1If you have an Apple II Plus, Integer BASIC will be

loaded. 1In either case, a message will appear, telling you which BASIC is

being loaded during the booting of your System Master. All of the DOS
commands will now work in the using and writing of programs in both

Applesoft and Integer BASIC.

To learn the procedure for starting DOS after using a language which does
NOT use the Pascal Operating System, see the manual for that language.

With the Language System installed, you can boot DOS upon turning on your
Apple, with the System Master diskette in Drive 1.

To return to another Language System language from DOS, replace the System
Master in Drive 1 with the startup diskette for that language. Then type
PR#6 and press RETURN.

176

SETTING UP A TURNKEY SYSTEM

When you insert a DOS 3.3 diskette in drive 1 and turn on the power, your
Apple will run the HELLO program on that diskette, if it has in ROM the
BASIC in which the HELLO program is written. That is, an Apple II will rumn
an Integer BASIC HELLO program, an Apple II Plus will run an Applesoft
HELLO program, and an Apple II with the Applesoft Card or an Apple II Plus
with the Integer BASIC Card will run a HELLO program in either BASIC. If
you don’t have that BASIC in ROM, you will get a

LANGUAGE NOT AVAILABLE

error message and the prompt for the BASIC it does have.

If you have the Apple Language System, things get a bit more complicated.
Without further ado, you can run programs in the BASIC in ROM, but before
you can use the other BASIC, you must load it into the Language Card. The
simplest way to do this is to boot the DOS 3.3 System Master Diskette,
which is provided with two programs, HELLO and APPLESOFT, that together
make sure that both BASICs are loaded when you boot DOS. HELLO, written in
Applesoft for the Apple II Plus, loads Integer BASIC. APPLESOFT, written
in Integer BASIC for the Apple II, loads Applesoft. Your machine will run
the appropriate program, and afterwards behave as if it had both BASICs in
ROM. You can now insert any other DOS 3.3 diskette, and run any program on
it.

If you wish to make a diskette that will boot on all systems,
and load the Language Card if necessary, you can do it by copying the
appropriate files onto it. Here’s how:

1. Boot the DOS 3.3 System Master Diskette.

2. LOAD HELLO from the System Master, then insert a blank diskette and
type
INIT HELLO

3. When INIT is finished, reinsert the System Master, BRUN MASTER
CREATE and type
HELLO
when asked for the name of the greeting program. Insert the blank
diskette when told to do so by MASTER CREATE.

4. Using FID, copy these files onto your newly initialized diskette:
APPLESOFT
INTBASIC
FPBASIC

5. Put any programs and other files you want on this diskette. Make
sure you have at least the following files:
HELLO
APPLESOFT
INTBASIC
FPBASIC

When you boot this diskette on an Apple with the Language Card, it will
load the Language Card with the BASIC not in ROM, so that the Apple can
run any program in either BASIC.

177

If you have a turnkey program you want the Apple to run when it is turned
on, you can do it by changing the HELLO and APPLESOFT programs so that each
of them will run your turnkey program (we’ll call it TURNKEY here). You

will find it easier to edit these programs if you first RUN LOADAPA, then

use the &5 command, so that you can see the CTRL-D in each embedded DOS
command .

Start with the diskette you have just made in steps 1 to 5, and do the
following:

6. UNLOCK HELLO
7. LOAD HELLO

8. LIST it and look at the last few lines

249 END
25¢ REM
26 REM --NO CARD OR CAN‘T RELOAD
27¢ REM

28§ IF PEEK (768) = ¢ THEN END
299 PRINT: PRINT "...LANGUAGE CARD CANNOT BE RELOADED":
PRINT " UNTIL THE SYSTEM IS REBOOTED..."
3¢9 END
On the screen, the lines will be wrapped at 4@ characters; here
they are broken elsewhere for clarity.

9. Change these lines so they read as follows:
* 240 GOTO 3¢9

25¢ REM
260 REM --NO CARD OR CAN’T RELOAD
2790 REM

* 280 IF PEEK (768) = ¢ THEN 3¢9

29¢ PRINT: PRINT "...LANGUAGE CARD CANNOT BE RELOADED" :
PRINT " UNTIL THE SYSTEM IS REBOOTED..."

* 30§ PRINT "ctrl-dRUN TURNKEY"

The lines changed or added are marked with asterisks. The lower case
ctrl- d in line 3PP represents a CTRL-D which won’t show up on the
screen or in a listing. If you don’t like invisible control characters
in your files, you can declare a string D$ containing a CTRL-D, which
would make line 31§ look like this (in Applesoft):

* 31¢ D$=CHR$(4) : PRINT DS$;"RUN TURNKEY"
If you do this, make sure you declare D$ before you use it.

You may also wish to change or delete some of the PRINT statements in
the program, but make sure you leave the ones with DOS commands (these
will have CTRL-Ds in them).

1¢. SAVE HELLO

11. LOCK HELLO

178

12. UNLOCK APPLESOFT, LOAD it, and LIST it, looking at the last few

lines.

25¢ GOTO 319

260 REM

27¢ REM —--NO CARD OR CAN’T RELOAD
280 REM

29¢ IF PEEK (768) = @ THEN 310

3¢9 PRINT "...LANGUAGE CARD CANNOT BE RELOADED":
PRINT " UNTIL THE SYSTEM IS REBOOTED..."

319 PRINT "ctrl-dINT"

13. Change these lines to read as follows:

25¢ GOTO 319

260 REM

279 REM --NO CARD OR CAN’T RELOAD
28¢ REM

* 29 IF PEEK (768) = @ THEN 31¢
3¢9 PRINT "...LANGUAGE CARD CANNOT BE RELOADED":
PRINT " UNTIL THE SYSTEM IS REBOOTED..."
* 31¢ PRINT "ctrl-dRUN TURNKEY"

Line 31¢ can also be put in the form
* 31¢ D$="ctrl-d":PRINT D$;"RUN TURNKEY"
to make the CTRL-D easier to find.

14. SAVE APPLESOFT

15. LOCK APPLESOFT

16. RENAME your turnkey program TURNKEY. A sample TURNKEY program, in
Applesoft, is below:
1¢p TEXT : HOME
11¢ VTAB 3: PRINT "DOS TOOL KIT "; TAB(3¢);'"3¢ Nov 1979"
12¢ VTAB 5: PRINT '"(C) COPYRIGHT 1979, APPLE COMPUTER INC."

139 FOR I = 1 TO 15@¢@: NEXT I
14 PRINT "ctrl-dRUN RIBBIT"

17. Make sure your diskette has the following files on it:
HELLO
APPLESOFT
INTBASIC
FPBASIC
TURNKEY

18. Now test your turnkey diskette by putting it in drive 1 and
turning the power off and on. It should boot DOS 3.3, then load

Integer BASIC or Applesoft if necessary, then run the program
named TURNKEY.

179

180

USING THE BASICS DISKETTE

The "BASICS" diskette that came with the DOS system master can be used to

boot 13-sector diskettes on your lé6-sector system. Versions of DOS
earlier than 3.3 are 13-sector DOS.

Apples come in two flavors: Apple II and Apple II Plus. The Apple II has

Integer BASIC in Read-Only Memory (ROM) on the main printed-circuit board.
The Apple II Plus has Applesoft BASIC in ROM on the main board. The

language in ROM is the language the Apple will come up in when it is turned
on, if it has no disk drives or accessory cards.

BOOTING DISKETTES USING “BASICS”

To use either Integer or Applesoft BASIC, insert the "BASICS" diskette into
the drive, and turn the Apple on. In about five seconds the screen will say

Insert any 13 sector DOS/BASIC diskette and press RETURN . The Apple will
now behave as described in this Manual, except that one step is added to the

boot (startup) procedure;

When you turn the Apple on, or type PR#6, IN#6, C6@@G, or
6CTRL-P, the "BASICS" diskette must be in the drive, each time
you want to boot a 13 sector DOS.

When the cue comes on the screen, insert the 13 sector DOS/BASIC diskette you
wish to boot. If you are in either BASIC and you type PR#6 or IN#6 , you
will have to insert "BASICS", then reinsert your previous diskette.

Once you have DOS running, you can switch from one BASIC to the other by
using the INT and FP commands normally.

As always, you can tell which BASIC you are in by the prompt you see on the
screen: > for Integer BASIC and] for Applesof t BASIC.

A diskette designed for "turnkey" operation (that is, one that starts
executing a program when booted) can be run as before, after the "BASICS"
diskette has been run.

You can reboot DOS without turning the power off. Simply insert "BASICS",

type PR#6 or IN#6 and press RETURN , then at the cue insert the
diskette you wish to boot.

182

USING THE FID PROGRAM

FID (for FIle Developer) extends the abilities of l6-sector DOS in two

ways. First, it lets you easily catalog, copy, delete, lock, and unlock all
types of DOS files. Second, it lets you copy from one diskette to another

with only one disk drive.

FID runs on any Apple with Applesoft, 32K or more of memory, and one or
more Disk IT drives. The FID destination diskette (the one you will be
copying to) must be INITialized in order for FID to work.

STARTING UP

To use FID, boot the DOS System Master Diskette, then type
BRUN FID

You will see a list of commands on the screen. Each of them can be
executed by typing the number in angle brackets < >.

FILENAMES AND WILDCARD CHARACTERS

Some of the commands ask you for a filename. The filename is typed just
as for a DOS command, except that you can replace part of the filename
with the "wildcard" character (=). For example, if you typed the
filename

FR=ED

the program would select all the files whose names began with “FR’ and
ended with “ED’. If you typed

=N=

all files whose names contained ‘N° would be selected. If you typed

all files on the diskette would be selected. ("On which diskette?", you
might ask. This will be explained below.)

If you used a wildcard character in a filename specification, you will be
asked

DO YOU WANT PROMPTING?

If you reply by typing
Y
for Yes, you will be asked to verify each filename before it is acted om.

If you want the file, when the system displays it on the screen, type

Y
If you don’t want the file, type

N

184

In either case, you will then be prompted with the next filename matching
your specification.

If you don’t want the file or any of the rest, type

0
and no more files will be acted on.

If you reply

N

to the ‘DO YOU WANT PROMPTING?”, all files matching your
specification will be selected.

COMMANDS

Most of the FID commands--Catalog, Space, Delete, Lock, Unlock, and Verify--—
operate on one drive: the one last used, unless the defaults are reset.

The Copy command can use one drive or two, as you wish. The Quit command
does not use the drives: it simply exits the program, leaving you in DOS.

When the program first comes up, no default drive will have been set. If
your first command is one of the one-drive commands--Catalog, Space,
Delete, Lock, and Unlock--you will be prompted for a slot and drive
number. These will set the default drive until they are changed. If your
first command is the Copy command, you will be prompted for two sets of
slot and drive numbers, one for the source and one for the destination.

Any time you switch from Copy to a one-drive command, or vice versa, you
will be asked to specify one or two drives. With the Reset command, you
can cancel the default slot and drive numbers at any time, which will cause
FID to prompt you for new ones when it needs them.

Note: make sure you give real slot and drive numbers: if the Apple tries
to read from or write to a nonexistent drive, the program will crash.

CATALOG
Typing
2

gives you a catalog of the default diskette. If you have not set the
defaults, you will be prompted for slot and drive numbers. Once these
have been set, all commands will automatically refer to this drive, unless
the defaults are reset.

RESET SLOT AND DRIVE

The Reset command lets you change the default slot and drive. To use it,
type

7

This cancels the current default slot and drive numbers. The next time you

give a command that requires slot and drive numbers, you will be prompted

for them. This command is convenient if you wish to Catalog two drives in
successione.

185

Note: The Reset Slot and Drive command should not be confused with

the RESET key. They will always be capitalized differently, to avoid
confusion.

LOCK FILE

To lock a file, type
5

and, when prompted, type the filename. If you type an imnvalid filename,
you will be prompted until you give a valid one.

You will now be asked to insert the diskette containing this file, and
asked whether you wish to ESCape or proceed. If you proceed and the file
is on the diskette inserted, it will be locked. When you catalog the
diskette, the filename will be preceded by an asterisk , * , indicating
that the file is locked. If the file is not on the diskette, you will get

a NO FILES SELECTED error message: you can recover by pressing any key
except RESET, SHIFT, CTRL, or ESC.

UNLOCK FILE

To unlock a file, type
4

and, when prompted, type the filename. If you type an invalid filename,
you will be prompted until you give a valid one.

You will now be asked to insert the diskette containing this file, and
asked whether you wish to ESCape or proceed. If you proceed and the file

is on the diskette, it will be unlocked. When you catalog the diskette,
the filename will not be preceded by an asterisk , * , indicating that the
file is not locked. If the file is not on the diskette, you will get a NO
FILES SELECTED error message: you can recover by pressing any key except
RESET, SHIFT, CTRL, or ESC.

VERIFY

The Verify command is the same as the DOS VERIFY command, and handles all

types of files. To use it, type

8

and answer the prompts. When a file has been verified, the screen will
display its name and the word

DONE

If a file can’t be read and is thus invalid, you will get an I/0O ERROR

message, and the program will prompt you to press a key. When you do so,
you will return to the main menu.

186

COPY FILE

FID can Copy files on either a multiple-drive or a single-drive system. To
Copy files, type

1

and you will be prompted for Source slot and drive numbers, then
Destination slot and drive numbers.

Multiple-Drive Copying

If the slot and drive numbers are different, you will be asked for a
filename, which can contain wildcard characters. You can copy a whole
diskette by typing = in response to this prompt. After you have given the
filename, you will be asked to insert the apppropriate diskettes and press
either ESC, to abort the Copy, or any key but RESET, SHIFT, CTRL, or ESC,
to go ahead. If the files you asked for are on the source diskette, and if
there is enough room for them on the destination diskette, then you will be
informed that your file has reached its new home; otherwise, you will get a
DOS error message.

If the destination diskette already contains a file with the name you
used, you will get the message

FILE

ALREADY EXISTS.

TYPE IN NEW FILE NAME FOR THE COPY OR
<RETURN> TO REPLACE PRESENT FILE OR
<CTRL-C><RETURN> TO CANCEL COPY

H

If you enter a new filename, the file will be transferred and stored under

that new name. If you press RETURN, the old file will be replaced by the
new one, if the old file is not locked. If it is, you will see

FILE LOCKED .
DO YOU WISH TO REPLACE IT ANYWAY?

If you type

X

the file will be replaced; if you type
N

you will get this message again:

FILE

ALREADY EXISTS.

TYPE IN NEW FILE NAME FOR THE COPY OR
<RETURN> TO REPLACE PRESENT FILE OR
<CTRL-C><RETURN> TO CANCEL COPY

187

If, when you see this message, you press CTRL-C and then RETURN, the file
will not be copied. If no files were found to copy, the program will print

NO FILES SELECTED

If a file was found, the program will print
DONE

Then you will be prompted:

PRESS ANY KEY TO CONTINUE

Pressing a key will return you to the menu.

Single-Drive Copying

If the specified slots and drives for the source and destination are the
same, the program will tell you when to put the source and when to put the

destination disk into the drive. Thus, copies can be made between two
disks with only one drive.

DELETE FILE

This command deletes a file or set of files from the default diskette.
To use it, type
6

You will be asked

FILENAME?

When you type the filename, the program will try to delete the named
file. TIf all goes well, you will see the message

<DONE>

on the screen. If the file could not be found, you will get the message
NO FILES SELECTED

If the file was locked, you will get the message

FILE LOCKED

and the file won’t be deleted.

To return to the menu, press a key other than RETURN, ESC, CTRL, SHIFT, or
RESET when you see the prompt

PRESS ANY KEY TO CONTINUE

188

SPACE ON DISKETTE

This command lets you find out how many sectors are used, and unused, on
the default diskette. To use it, type

3

and those numbers will be displayed on the screen.

QUIT

This command lets you exit the program cleanly. When you type
9

you will see the same prompt on the screen as you saw before you ran FID.

ERROR HANDLING

If the program detects an irrecoverable error, it will display an error
message and abort the operation. If a Copy operation is aborted, you
should catalog the destination diskette and delete any spurious file that
may have been created by the operation. This spurious file, if it exists,
will have the name of the original file, or a new filename if you gave it
one, but it will be shorter than the original file, as it will be
incomplete.

Error messages are generated for these errors: DISK FULL, DISK WRITE
PROTECTED, FILE LOCKED and I/O ERROR. If one of these occurs, FID will
wait for you to press a key, then return you to the main menu.

If a DOS error other than one of these occurs, its error code number will
be printed. This will happen only if you clobbered DOS, or clobbered FID,

or tried to copy a BAD FILE. If any of these things happened, you should
reboot DOS, and reBRUN FID.

If an error causes a spurious file to be placed on your destination

diskette, delete that file immediately, before copying any other files to
the destination diskette.

189

190

USING THE MUFFIN PROGRAM

The current DOS is a "16 sector" DOS. Earlier versions of DOS are 13

sector. For a discussion of sectors, see the section entitled "Overview of
the Storage Process" in Appendix C.

A 16 sector DOS will not work with diskettes that have been INITialized
with a 13 sector DOS. This is because the information is arranged o
differently on a 13 sector diskette. If you try to use 13 sector diskettes
with a 16 sector DOS, you’ll see the message

UNABLE TO READ/WRITE

STARTING UP

The MUFFIN program converts 13 sector diskettes, and the programs they T
contain, to 16 sector. It does this by rearranging the information and

then writing it onto another diskette. The diskette it writes the

information onto (the "destination') must have been INITialized with a 16
sector DOS. After the information from the old diskette (the "source") is

converted onto the destination, the 13 sector version of it will still
exist on the source diskette.

To maximize the amount of disk space which is usable by this DOS, it’s best =
to convert all your 13 sector files to a 16 sector diskette and then re-—
INITialize the old diskettes with the current DOS.

The MUFFIN program will work with either one or two disk drives.

This example shows how to use MUFFIN to convert files from a 13 sector
diskette onto a 16 sector diskette, on an Apple with one disk drive. It
assumes your disk drive is connected to the controller card in slot #6.

1) Place the System Master diskette in your drive and type B
BRUN MUFFIN

2) When the message

appears, type
1
to indicate that you wish to convert files. -

192

3) Now you’ll see the question
SOURCE SLOT?
Type 6 (the number of the slot your disk controller card is in). To the
next question: DRIVE? respond with 1.

4) When you see
DESTINATION SLOT?
type 6, and then answer the question DRIVE? by typing 1.

5) Now you’ll be asked for the name of the file to be converted:
FILENAME?
Type = (an equals sign) here. The = is a symbol which represents the
names of all the source diskette’s files. This response means that you
wish to convert the entire contents of the source diskette.

6) Before anything will be converted, you’ll see

DO YOU WANT PROMPTING?
For now, type N for No.

7) When you see
INSERT DISKS THEN PRESS <ESC> TO RETURN TO
MAIN MENU OR ANY OTHER KEY TO BEGIN
remove the System Master diskette from the drive and insert a 13 sector
diskette containing files you wish to convert to 16 sector. Then press
RETURN.

8) After the message
INSERT SOURCE DISK AND PRESS A KEY
appears, simply press RETURN.

9) The program will now find the first file on your 13 sector diskette
and print its name. Then it will stop and wait for you to replace that
diskette with a 16 sector (INITialized) diskette. Do this and press
RETURN .

You’ll see
DONE

when the file has been converted. Then you’ll be instructed to re- insert

the source diskette. Repeat this procedure until all your 13 sector
files have been converted into 16 sector files.

Note: To convert large files, you may need to swap diskettes several times
for to get whole file transferred.

When you are converting files using more than one disk drive, specify the
slot and drive numbers of the source and destination diskettes when the
program asks for them (steps 3 and 4 above). Place the diskettes in the
appropriate drives (step 8) before the conversion begins.

When you see the message

INSERT DISKS THEN PRESS <ESC> TO RETURN TO

MAIN MENU OR ANY OTHER KEY TO BEGIN

you have the chance to change your mind about converting the file. If you
press ESC here, the program will stop in its tracks and send you back to
the menu.

193

If you try to convert a 13 sector file with the same name as a file
already on the destination diskette, you’ll see:

FILE [filename]

ALREADY EXISTS.
TYPE IN A NEW FILE NAME FOR THE COPY
OR <RETURN> TO REPLACE EXISTING FILE

OR <CTRL-C><RETURN> TO CANCEL COPY:

At this point you may either (a) type a new name for the file to be
converted, (b) convert the 13 sector file and have it replace the file
currently on the 16 sector destination under that name or (c) type CTRL-C
and press RETURN to halt the conversion.

USING WILDCARD CHARACTERS

As you saw in the example, = may be used to mean "all files on the
diskette". The = may also stand for any character or group of characters
within a filename. For example, if you respond to the question

FILENAME?

by typing

FI=LE

you will convert all files on the 13 sector source diskette whose names
begin with FI and end with LE. In the same way, =TEXT converts all files
whose names end with TEXT and =*=, all files with names containing an *.

Because the = acts like a wild card in a card game it”s called the
"wildcard character".

The question

DO YOU WANT PROMPTING?

will appear when you use the wildcard character. If you respond with Y
here, the program will stop after finding each file on the 13 sector
diskette and wait for you to indicate whether or not to convert that file
(by typing Y or N, or Q to stop and return to the menu). A response of N
to

DO YOU WANT PROMPTING? g

indicates that all the files in the wildcard group should be converted.

194

n
L
O
(@]
£

GENERAL INDEX

Also see the PROGRAM INDEX and the MESSAGE INDEX at the end of this section.

Inside the manual’s back cover is the COMMAND SUMMARY INDEX and the

PROCEDURE SUMMARY INDEX.

a: see A (address) parameter
A-register 94-95
A (address) parameter
with BLOAD 93
with BRUN 93
ab?gﬁute byte parameter 69-70

92, 150

absolute-field position
(R) parameter 79
address field 94
address (A) parameter 92, 15¢
analog board schematics 146
APPEND 66-67, 159
Apple II BASIC Programming Manual
19
Applesoft BASIC 28-29
Applesoft II BASIC Programming
Reference Manual 1¢, 48
Applesoft firmware ROM card 1¢7
APPLESOFT program 29

b: see B (byte) parameter

B (byte) parameter
with READ 69-71, 89, 15¢
with WRITE 69-71, 89, 15¢
backing up 37-38

BASICS diskette 182

binary files 92

BLOAD 93, 163

booting 11-12, 166
13 sector 182

BRUN 45, 93, 163

BSAVE 92,163

byte (B) paraMETER 6Y-71

—C—

C, control 18, 39

C (command) parameter
with MON 42
with NOMON 42
cable 2-4
CALL -151 29
CALL -868 43

cassette tape recorder 15, 25
CATALOG 16, 152
CHAIN 146, 158
chaining in Applesoft
CHR$(4) 30
CLOSE 158, 161
command (C) parameter 42
control character 17, 3§, 151
controller card 2-4
CONTACT 2
COPY program 38-40
COPYA program 38-4§
copying

diskettes 38-4f

programs 15-16

text files 134
CTRL (control) 11, 148
CTRL-C 18, 39
CTRL-D 29-31, 156-157, 166
CTRL-K 103
CTRL-P 1§3

—D-—

d: see D (drive) parameter
DS 39
D, control 29-31, 156-157, 166
D (drive) parameter 22, 149
data field 94
data files: see text files
debugging 42
default values 22
deferred-execution mode
DELETE 18, 26, 154
device characteristics table
94-98
disk(ette)
care of 5-6
CATALOG 16, 152
directory of sector format
129-131
format 94
INITializing 13-14, 18, 166
insertion and removal 6-7
storage 124
volume number 23

196, 171

29-31, 48

196

disk drive
care 5
installation 2-4
multiple drives 5, 22
troubleshooting 12
DISK FULL 120
display options: see MON, NOMON
DOS (Disk Operating System)
command summary 11¢-111,
148-164
commands from within a program
31, 166
input, output registers
141, 1¢4
memory usage 14§
messages 114-122
procedure summary 165-171
drive option: see drive parameter
drive (D) parameter 22
duplicating disks 38-40

END OF DATA
erasing files

error codes 114-115
error messages 114-122
also see MESSAGE INDEX
ESC (escape) 11, 149
EXEC 74-79, 16@-161
EXEC files 75
creating 75

w s

FID 184-189

field 51, 124

field (R) parameter
with EXEC 79
with POSITION 67-69

file 16
data: see text

EXEC 74
machine language

117
18, 26, 154

92-93

names 16-17, 25, 151
random-access text file 82-89
sequential text file 49-71

text file 48
file buffer 43, 124
FILE NOT FOUND 118
FILE LOCKED 120
FILE TYPE MISMATCH 121
floating point BASIC:

see Applesoft BASIC
FP 28-29

—G—

GET 51
greeting program
renaming 45

HELLO program 13
hexadecimal notation 24
HIMEM: 12, 141

13-14

I/0 devices 1¢¢
I/0 ERROR 119

I (input) parameter 42
immediate-execution mode

"IN USE" light 7, 18

31-48

IN# 11, 19p-1¢2, 157

INIT (INITialize) 13, 31, 151,
166

INPUT 51

Input/Output control Block (IOB)
94-98
input registers
DOS 141, 1¢4
Monitor 1¢1, 1¢3
input (I) parameter 42
installing the DISK II 2-4
INT 28-29, 156
Integer BASIC 28-29
interface circuit schematics

=

j: see L (length) parameter
JMP (jump) 93

— =
kick:

=L

LANGUAGE NOT AVAILABLE
L (length) parameter
with BSAVE 92, 150
with OPEN 88, 126, 15@
length (L) parameter
of-binary-file 92
of record 88, 126
LoAD 16, 25-26, 153
LOCK 35, 154

145

see booting

115

197

machine-language files
MAKE TEXT 61-64

MASTER CREATE 44-46
master diskettes 44-46
MAXFILES 31, 43-44, 155-156
memory requirements 13, 14
memory usage and map 140
MON 42-43, 155
Monitor mode 5§
Monitor I/0 registers
MUFFIN program 192-194

NO BUFFERS AVAILABLE 121
NOMON 42-43, 155

NOT DIRECT COMMAND 122
notation 148-15¢

—0—

0 (output) parameter
with MON 42
with NOMON 42
ONERR GOTO 114
OPEN 49-71, 158, 161
output registers
DOs 141, 1¢4

92-93

191, 143

Monitor 1¢1, 1¢3
overwriting 63-64, 69
—P_

p: see relative~field position
(R) parameter

P, control 1¢3

POSITION 66-68, 125, 159-160

PR# 11, 1¢@-1¢2, 157

PRINT (with CTRL-D) 29-31, 5@
PROGRAM TOO LARGE 29

prompt characters 11, 36
PROMS 174-176

quotation marks 3

R parameter
with EXEC 79
with POSITION 67-69, 125
with READ 67-68, 150
with WRITE 67-68, 15¢
RWTS subroutine 94-98
random-access text file 82-89
creating and retrieving 82-85,
17
diffgrences from sequential 82
sample programs 82-87
RANGE ERROR 116
READ
with random-access text files
88-89, 137, 162
with sequential text files
49-71, 136, 159
read or write a track
or sector 94-98
record 82, 126
record number (R) parameter
relative-field position
(R) parameter 67-69
RENAME 17, 153
RESET 11, 18, 149, 166
RETRIEVE TEXT 65-66
RETURN 11, 12, 149
RETURN character 51
ribbon cable 2-4
RUN 25-26, 153

—S—

s: see S (slot) parameter

S (slot) parameter 22, 149

SAVE 15, 25-26, 152

schematics 145-146

sector 16, 94, 124
allocation order 135
13 to 16 conversion
format 127-128

sequential text file 49-71
creating and retrieving 49-71,

167-168

EXEC 76, 169
sample programs

82-86

192-194

49-71

198

slave diskettes 13, 141

slots 3

slot (S) parameter 22, 149
syntax 148-150

SYNTAX ERROR 120

System Master diskette 1@, 13-14

o

text file, random-access:

see random-access text file
text file, sequential:

see sequential text file
TRACE 44
track allocation order 135
track bit map 124, 133-134
track/sector list 124, 128-129
tracks 94, 124
turnkey system 34-35, 167, 177

- | -

UNLOCK 35, 154
unpacking 2

—V—

v: see V (volume) parameter

V (volume) parameter 23, 149

VERIFY 35-36, 154

VOLUME MISMATCH 118-119

volume number: see volume parameter
volume (V) parameter 23, 149

VTOC (volume table of contents)

132-133
—W—

wildcard characters 184, 193
WRITE
with random-access text files
88-89, 126, 162
with sequential text files
49-71, 124-125, 159
write protecting 36-37
WRITE PROTECTED 116

—X=Y—Z—

Y-register 94-95

199

DOS MESSAGE INDEX

ERROR # MESSAGE PAGES
9 DISK FULL 12¢
5 END OF DATA 53, 58, 67, 68, 7@, 79, 86, 117-
118, 160, 161
19 FILE LOCKED 35, 67, 12¢
6 FILE NOT FOUND 17, 18, 26, 36, 46, 59, 118, 154
13 FILE TYPE MISMATCH 35, 48, 121, 152
8 I/0 ERROR 22, 26, 36, 119, 154
1 LANGUAGE NOT AVAILABLE 28, 115, 153
12 NO BUFFERS AVAILABLE 43, 121, 156
15 NOT DIRECT COMMAND 48, 122
14 PROGRAM TOO LARGE 29, 122
2,3 RANGE ERROR 92, 116
11 SYNTAX ERROR 18, 26, 28, 79, 92, 12¢
7 VOLUME MISMATCH 23, 118-119
4 WRITE PROTECTED 37, 116-117

PROGRAM INDEX

PROGRAM PAGES
Greeting (HELLO) 13-14
COUNT 15
CATALOG-Greeting 29-3¢
COLOR DEMO 34-35
ANIMALS 37
COPY 38-4¢
MASTER CREATE 44-46
EXEC DEMO 74=75
CAPTURE 76-77
RANDOM, APPLE PROMS 86-88
CHAIN 196-197
FID 184-189
MUFFIN 192-194

200

DOS
QUICK REFERENCE CARD

On this card, DOS commands are grouped into
these 5 categories:

Housekeeping commands:

INIT LOAD DELETE VERIFY MAXFILES
CATALOG RUN LOCK MON
SAVE RENAME UNLOCK NOMON

Access Commands:
FP INT PRt IN# CHAIN

Sequential Text File Commands:
OPEN READ APPEND EXEC
CLOSE WRITE POSITION

Random-Access Text File Commands:
OPEN CLOSE READ WRITE

Machine-Language File Commands:
BLOAD BRUN BSAVE

NOTATION AND SYNTAX

A "parameter" is a capital letter, usually
followed by a number (shown here by a
lower-case letter), which gives additional
information for executing a command.
Multiple parameters may appear in any
order, but must be separated from each
other by a comma. A parameter shown in
square brackets [like this] is optional.

A file name (shown here by X) must immedi-
ately follow its command word. TFile names
must begin with a letter; only the first

30 characters are used. A comma separates

a file name from a following parameter.

CTRL-D (type D while holding down CTRL key)
is used in PRINT statements to indicate the
start of a deferred-execution DOS command.
Integer BASIC example:

1§ D$ = "" . REM "CTRL-D"

2 PRINT D$; "CATALOG"
Applesoft BASIC example:

1§ D$ = CHR$(4) : REM CTRL-D

2p PRINT D$; "CATALOG"

The term "BASIC" alone is used to mean either

Integer BASIC or Applesoft BASIC. The term
"file" alone means any type of diskette file.

COMMAND PARAMETERS

An error message is given if a DOS command
quantity is too large or too small.

ALL FILES

Parameter As shown Min Max
Slot »Ss S1 s7
Drive ,Dd D1 D2
Volume , Vv vy * V254

* Using V@ is like omitting the Vv parameter:
the diskette’s volume number is ignored.
Smallest volume number INIT will actually
assign to a diskette is 1.

SEQUENTIAL TEXT FILES

Parameter As shown Min - Max
Byte ,Bb B¢ B32767
Relative Field * »Rp R R32767

* With EXEC, always relative to field @

RANDOM-ACCESS TEXT FILES

Parameter As shown Min Max
Record Length »Lj L1 L32767
Record Number SRr RO R32767
BINARY FILES

Parameter As shown Min Max
Starting Address ,Aa AQ A65535
Number of Bytes »Lj Ll A32767
DOS COMMANDS

Command Quantity As shown Min Max
PR# slot PR# s PRi#(PR#7
IN# slot IN# s IN#@ IN#7

MAXFILES file buffers MAXFILES n n=1 n=16

Commands use Slot or Drive parameters only
when changing to a different Slot or Drive.

If a command omits the Volume parameter or
uses V@ , the diskette’s volume number is
ignored. A command that uses the Volume

parameter Vv will not be executed unless
the diskette’s volume number is v .

HOUSEKEEPING COMMANDS

INIT X [,Vv] [,Ss] [,Dd]

Initializes a blank diskette to form a slave
diskette. Assigns greeting program name X
and volume number v (if specified). SAVEs
the BASIC program currently in memory, under
file name X .

CATALOG [,Ss] [,Dd]

Displays volume number and all files on a
diskette, with each file’s type and sector
length. *# dindicates a LOCKed file.

Type Description (How created)
1t Integer BASIC program file (SAVE)
A Applesoft BASIC program file (SAVE)
T Text File (OPEN, then WRITE)
B Binary memory-image file (BSAVE)

SAVE X [,Ss] [,Dd] [,Vv]

Stores current BASIC program onto diskette,
under file name X . Overwrites any previous
file of same type and name, without warning.

LOAD X [,Ss] [,Dd] [,Vv]

Loads BASIC program file X into memory,
after clearing memory and (if necessary)
changing to the correct BASIC.

RUN X [,Ss] [,Dd] [,Vv]
LOADs BASIC program file X ,
then RUNs the program.

RENAME X, Y [,Ss] [,Dd] [,Vv]
Changes a diskette file’s name from X to Y

DELETE X [,Ss] [,Dd] [,Vv]
Erases file X from the diskette.

LOCK X [,Ss] [,Dd] [,Vv]
Locks file X against accidental change or
deletion. LOCKed file shown in CATALOG by *

UNLOCK X [,Ss] [,Dd] [,Vv]
Unlocks previously LOCKed file X
to allow change or deletion.

VERIFY X [,Ss] [,Dd] [,Vv]

Checks file X for internal consistency.
If X was saved without error, no message
is given.

MON [,C] [,I] [,0]

Causes display of disk Commands (C),
Input from the disk (I), and OQutput
to the disk (0). With no parameters,
MON is ignored.

NOMON [,C] [,I] [,0]

Cancels display of disk Commands (C),
Input from the disk (I), and Output
to the disk (O). With no parameters,
NOMON is ignored.

MAXFILES n

Reserves n file buffers for disk input and
output (booting reserves 3 file buffers).
Use before LOADing or RUNning a program.

ACCESS COMMANDS

FP [,Ss] [,Dd] [,Vv]
Puts system into Applesoft BASIC,
erasing any program in memory.

INT
Puts system into Integer BASIC,
erasing any program in memory.

PR# s

Sends subsequent output to slot s . Boots
disk if slot s contains disk controller
card. PR#@ sends output to TV screen again.

IN# s

Takes subsequent input from slot s . Boots
disk if slot s contains disk controller
card. IN#@ takes input from keyboard again.

CHAIN Y [,Ss] [,Dd] [,Vv]

RUNs Integer BASIC program file Y , but does
not clear variables developed by previous
Integer BASIC program.

SEQUENTIAL TEXT FILE COMMANDS

OPEN X [,Ss] [,Dd] [,Vv]

Opens or creates sequential text file X ,
allocates one file buffer and prepares to
WRITE or READ from beginning of file.

CLOSE [X]

Completes WRITE X, if necessary, and de-
allocates file buffer assigned to text file
X . Without file name, CLOSEs all OPEN files
(except an EXEC file).

WRITE X [,Bb])
Subsequent PRINTs send characters to
sequential text file X . WRITEing begins
at current file position or (if specified)
at byte b . Cancelled by any DOS command.

READ X [,Bb]

Subsequent INPUTs and GETs take response
characters from sequential text file X .
READing begins at current file position or
(if specified) at byte b . INPUT response
is one field (all characters to next
RETURN). Cancelled by any DOS command.

APPEND X [,Ss] [,Dd] [,Vv]

Opens existing sequential text file X ,
similar to OPEN, but prepares to WRITE
at the end of the file.

POSITION X, Rp

In OPEN sequential text file X , subsequent
READ or WRITE will proceed from p-th field
following current file position.

EXEC X [,Rp] [,Ss] [,Dd] [,Vv]

Executes successive fields in sequential
text file X as if typed at keyboard.

With Rp parameter, execution begins with
p-th field. Fields may include numbered
BASIC program lines and direct-execution
BASIC or DOS commands to control the Apple.

RANDOM-ACCESS TEXT FILE
COMMANDS

OPEN X, Lj [,Ss] [,Dd] [,Vv]

Opens or creates random-access text file X ,

allocates one file buffer, and defines record

length as j bytes. Prepares to WRITE or READ
from beginning of Record @. Same Length param-
eter must be used each time file X is OPENed.

CLOSE [X] [,Ss] [,Dd] [,Vv]

Completes WRITE X, if necessary, and de-
allocates file buffer assigned to text file

X . Without file name, CLOSEs all OPEN files.

WRITE X [,Rr] [,Bb]

Subsequent PRINTs send characters to random-
access text file X . With no parameters,
WRITEing begins at current file position.
With Rr parameter alone, WRITEing starts at
byte # of Record r . With Bb parameter,
WRITE starts at byte b of current or spec-
ified Record. Cancelled by any DOS command.

READ X [,Rr] [,Bb]

Subsequent INPUTs and GETs take response
characters from random-access text file X .
With no parameters, READing starts at cur-
rent file position. With Rr parameter .
alone, READing starts at byte @ of Record r.
With Bb parameter, READing starts at byte
b of current or specified Record. INPUT
response is one field (all characters to
next RETURN). Cancelled by any DOS command.

MACHINE-LANGUAGE FILE
COMMANDS

BSAVE X, Aa, Lj [,Ss] [,Dd] [,Vv]

Stores on diskette, under file name X ,
the contents of j memory bytes starting
at address a .

BLOAD X [,Aa] [,Ss] [,Dd] [,Vv]

Loads binary file X into same memory
locations from which file was BSAVEd or
(if specified) starting at address a .

BRUN X [,Aa] [,Ss] [,Dd] [,Vv]
BLOADs binary file X , then jumps (JMP)
to loaded file’s first memory address.

