ALICE

PROGRAMMATION EN ASSEMBLEUR

ALICE

PROGRAMMATION EN ASSEMBLEUR
FAGOT-BARRALY

A
/SYBEX

\7s

Paris ® Berkeley ¢ Diisseldorf ® Londres

Tous les efforts ont été faits pour fournir dans ce livre une information compléte et
exacte. Néanmoins, SYBEX n’assume de responsabilités, ni pour son utilisation, ni
pour les contrefacons de brevets ou atteintes aux droits de tierces personnes qui pour-
raient résulter de cette utilisation.

Copyright © 1985, SYBEX

Tous droits réservés. Toute reproduction, méme partielle, par quelque procédé que
ce soit, est interdite sans autorisation préalable. Une copie par xérographie, photo-
graphie, film, bande magnétique ou autre, constitue une contrefagon passible des
peines prévues par la loi sur la protection des droits d'auteur.

ISBN : 2-7361-0120-1

INTRODUCTION

Ce livre est destiné a tous ceux qui connaissent les éléments de base
de la programmation BASIC d’Alice et qui souhaitent maintenant
franchir 1’étape suivante, I’étape du langage machine et de sa forme
plus compréhensible : 1’assembleur.

Il existe des ouvrages trés bien faits qui traitent de ce sujet mais la
plupart d’entre eux s’adressent a des lecteurs déja initiés et ne s’inté-
ressent que trés peu a ceux qui font leurs premiers pas dans ce domaine.
Aussi avons-nous considéré qu’il y avait place dans le monde du livre
pour un ouvrage qui prendrait les débutants par la main et guiderait,
avec mille égards, leur entrée dans l'univers fascinant des
Microprocesseurs. :

Tous les exemples que nous proposerons pourront étre testes immeé-
diatement sur n’importe quelle version d’Alice possédant 1’éditeur-
assembleur. Et ainsi le lecteur pourra, au fur et & mesure, mettre en
pratique les connaissances qu’il viendra d’acquérir. Trés vite il sera
a méme de comprendre comment obtenir de son ordinateur des sons,
un graphisme et des couleurs d’une richesse exceptionnelle.

Le Chapitre 1 donnera les bases indispensables de ’arithmétique
binaire car, ne I’oublions pas, un ordinateur ne connait en réalité pas
autre chose que les chiffres 0 et 1.

Le Chapitre 2 rappellera comment est congue la mémoire écran
d’Alice. Cette étude est rendue nécessaire par le fait que la majorité
des programmes écrits en langage machine sont des animations de type
vidéo. On trouvera aussi dans ce chapitre un programme de démons-
tration qui permettra de voir la différence flagrante dans les vitesses
d’exécution d’un programme BASIC et de son équivalent assembleur.

Le Chapitre 3 nous fera pénétrer au coeur du microprocesseur : c’est
un chapitre consacré aux différents registres, registres dont la connais-
sance est obligatoire pour aborder la suite de ce livre. Nous trouve-
rons aussi dans ce chapitre I’étude des différentes fagons d’utiliser une
instruction assembleur suivant le mode d’adressage choisi.

Le Chapitre 4 sera consacré a 1’étude de notre premier programme
écrit en assembleur : les moindres détails seront expliqués.

Le Chapitre 5 analysera les principales instructions nécessaires a la
programmation du microprocesseur d’Alice. De nombreux exemples,

-5 -

toujours avec les explications correspondantes, seront fournis. Lorsque
cela présentera un intérét, nous montrerons comment 1’on peut relier
I’un a ’autre le BASIC et le langage machine. Nous avons enchainé
I’étude des diverses instructions sans nous soucier d’un quelconque
ordre logique ou alphabétique : c’est la seule notion de progressivité
qui nous a guidés.

Notre principal souhait est d’avoir fait un livre accessible facilement,
un livre que I’on ne referme pas au bout de quelques pages devant
la supposée trop grande ampleur de la difficulté.

1

U'ARITHMETIQUE BINAIRE

LES SYSTEMES DE NUMERATION

1. La base dix

Le systéme de numération a base 10 est le systéme que nous utili-
sons dans la vie de tous les jours. On le connait sous le nom de systéme
décimal et c’est le nombre 10 qui y joue le rble primordial.

Pour commencer notre étude rappelons ce que valent les premiéres
puissances de 10 :

10° = 1

10" = 10

10> = 10x 10=100

10° = 10x 10x 10=1000

Par convention, n’importe quel nombre avec I’exposant 0 est égal
a 1, et 10 n’échappe pas a la régle : 10° = 1.

A l’aide de ces puissances, il est possible d’écrire un quelconque
nombre entier.

2548 = 2000 + 500 + 40 + 8

Or 2000 = 2x1000 = 2x10°
500 = 5x100 = 5x10%

40 = 4%x10 = 4x10'

8 = 8x1 = 8x10°

ce qui donne : 2548 = 2x10° + 5x 10> + 4x 10" + 8x10°
D’une maniére analogue, on aura :

4706 = 4000 + 700 + 6
soit : 4706 = 4x10° + 7x10> + 0x 10" + 6% 10°.

Rien de bien compliqué dans tout cela. Passons a 1’étude d’une autre
base mais, auparavant, notons bien quelque chose que nous retrou-
verons dans tout ce chapitre : les chiffres utilisés en base 10 vont de
0 & 9 ; ils sont tous inférieurs a cette base.

2. La base cing

Les puissances de 5 se calculent facilement : 5° = 1; 5! = 5;
52 = 25 ; 5% = 125. Pour écrire un nombre en base 5, il va falloir
constituer un tableau analogue au précédent mais, bien entendu, sa
premiére ligne sera écrite avec les puissances de 5. Soit par exemple
4 traduire 138 dans le systéme & base 5 :

5 = 125 5 =25 5'=5 5=1

1 0 2 3

10° = 1000 10> = 100 10" = 10 10° = 1

2

5

8

4

7

4
0

6

On a cherché combien de multiples de 125 (5°) étaient contenus
dans 138 :
1 fois et il reste 13 : 138 = 1x125+13.
Puis on a cherché combien de fois on pouvait faire rentrer 25 (5%
dans 13 :
0 fois et il reste toujours 13 : 138 = 1x125 + 0x25+13.
Il a fallu alors chercher combien de fois allait rentrer 5 (5') dans
13 :
2 fois et il reste 3 : 138 = 1x125 + 025 + 2x5 + 3.
Derni¢re phase de ’opération : dans le reste qui vaut & ce moment-
la 3, combien de fois peut-on faire rentrer 1 (5°) ?
3 foisetil neresterien : 138 = 1 X125 + 0x25 + 2X5 + 3x 1.
On a donc en résumeé :
138 = 1x5 + 0x5* + 2x5' + 3x5°
et on en déduit que 138 s’écrit 1023 en base 5.

Prenons un deuxiéme exemple : quelle est la valeur de 279 en base 5 ?

5 = 125 52 =25 5'=5 50=1

Naturellement, il nous est loisible de choisir des nombres plus grands
car il suffira de prendre des puissances de 10 avec un exposant
supérieur.

2

1

0

4

279
ou 279

-9 -

2x125 + 1x25 + O0Xx5 + 4%x1
2%X5% + 1x5% + Ox5' + 4%5°

Par suite 279 s’écrit 2104 en base 5.
En pratique, pour écrire un nombre décimal dans une autre base,
on utilise le plus souvent la méthode dite des divisions successives.

279|_
Mk,

Elle consiste a diviser le nombre par 5 puis le quotient par 5 puis
le nouveau quotient obtenu par 5 et ceci jusqu’a ce que le dernier quo-
tient soit nul. Il ne reste plus alors qu’a écrire la liste des différents
restes en prenant la précaution essentielle de les copier dans I’ordre
inverse. Les restes, dans notre exemple, étant 4,0,1,2 on écrit alors :
279 = 2104 (base 5).

Si nous avons maintenant a traduire en décimal un nombre déja
écrit en base 5, il faudra inscrire ce nombre dans un tableau congu
comme les précédents et ensuite Ie calculer.

Soit a écrire 3421 (base 5) en base 10.

5 = 125 52 =25 5'=5 50=1
3 4 2 1

Puis maintenant, un exemple : on décide d’écrire 23 en binaire :

2 =16 2 =8 22 =4 2! =2 20 =1

1 1

On en déduit que 3421 (base 5) = 3x5° + 4x5* + 2x5' + 1x5°.
Et I’on obtient : 3421 (base 5) = 3% 125 + 4%x25 + 2x5 + 1x1
= 486.

Remarquons, pour terminer, que les seuls chiffres utilisés en base
5sont 0, 1, 2, 3, 4.

Il est conseillé au lecteur de s’assurer, avec quelques exercices dont
il aura pris les nombres au hasard, que tout ce qui a été vu est bien
assimilé. Non pas que la base 5 ait une quelconque importance en infor-
matique, mais elle permet de comprendre sans peine les mécanismes
des systémes de numération,

3. La base deux

Nous arrivons maintenant au coeur du probléme : voici le systéme
de numération (dit systéme binaire) qu’utilisent les ordinateurs.

Tout d’abord, les puissances de 2 : 2° = 1, 2! = 2, 2 = 4, 2° = 8,
2* = 16.

- 10 —

La plus grande puissance de deux qui rentre dans 23 est 16 (2*) :
le reste est 7. Peut-on ensuite faire rentrer 8 (2°) dans 7 : la réponse
est non et le chiffre 0 a été placé dans la case correspondante.

Par contre 4 (2% est contenu dans 7 : on écrit le chiffre 1 dans la
troisiéme case et on note le nouveau reste : 3.

2 (2)) étant plus petit que 3, on écrit le chiffre 1 dans la quatriéme
case et puisque le reste vaut alors 1, il nous faut encore écrire 1 mais
cette fois-ci dans la derniére colonne.

23 = 10111 (base 2).

Heureusement pour nous, la méthode des divisions successives par
2 va nous donner la réponse d’une maniére plus siire et plus rapide :

23|_1}_}_ 23 = 10111 (2)
i__
I_

Voici d’autres exemples dont les calculs intermédiaires seront lais-
sés a la charge du lecteur :

34 = 100010 (2)
150 = 10010110 (2)
255 = 11111111 (2)

Il reste 4 voir comment passer de la base 2 & la base 10.

Admettons que ’on veuille écrire 1111011 en décimal. On reconsti-
tue le tableau dans lequel sont indiquées les puissances de 2 et on 'y
écrit notre nombre :

26 = 64|22 =32(20=16|22=8|22=4|2"=2|2=1
1 1 1 0 1 1

On passe plus de temps & faire le tableau qu’a obtenir la reponse !

1111011 = 64 + 32 + 16 + 8 + 2 + 1 = 123 (décimal)

- 11 -

11 est nécessaire de remarquer que, dans ce que nous venons de voir,
les seuls chiffres utilisés sont le O et le 1, 4 savoir les chiffres inférieurs
a la base.

4. La base seize

C’est le systéme (appelé hexadécimal ou hexa) dont les informati-
ciens ne peuvent se passer, alors qu’au premier abord on pourrait se
demander ce que vient faire son étude dans ce livre.

Les 16 chiffres nécessaires a ’écriture dans cette base sont tout
d’abord 0,1,2,3,4,5,6,7,8,9 ...

Mais aprés le 9, le 10 peut-€tre ? Mais non, puisque c’est un nom-
bre. Comme il nous manque 6 chiffres, on les a remplacés par les pre-
miéres lettres de 1’alphabet.

Chiffres A B C D E F

Valeurs 10 11 12 13 14 15

Ainsi 12 s’écrit C, 14 s’écrit E.

La encore, les méthodes de conversion étudiées dans les paragra-
phes précédents vont s’appliquer.

Soit a écrire 300 en base 16 : les divisions successives doivent se faire
par 16.

300
l— |—6|_ 300 = 12C (hexa)

Passons a un autre exemple aprés avoir remarqué que le reste de
la premiére division, qui valait 12, a été remplacé par C.

5032
‘_—4 I__
l_ 5032 = 13A8 (hexa)

1 0

Si I’on souhaite traduire en décimal un nombre déja écrit en base
16, on utilise les puissances de 16 :

16° = 1 16' = 16 16 = 256 16 = 4096

- 12 —

3D4F (hexa) s’écrit 3x 16 + Dx 16 + 4x16' + Fx16°
donc 3D4F = 3x4096 + 13x256 + 4x16 + 15
soit 3D4F = 15695 (base décimale).

Les utilisateurs d’Alice ne disposent pas de la fonction HEXS$ qui
donne la valeur hexadécimale d’un nombre décimal. Voici donc un
court programme qui remédiera a cette lacune :

10 H$ = """ : INPUT “NOMBRE A CONVERTIR” ; N

20D = INT(N/16) : R=N—16*D : H$ = CHR$(R+48—~7x(R >9)) +H$
30 IFD THENN=D : GOTO 20

40 PRINT ““REPONSE ”’ ; H$: GOTO 10

I1 nous faut maintenant comprendre ou réside I’intérét en informa-
tique du systéme hexadécimal et pour cela comparer les représenta-
tions d’un méme nombre décimal suivant que ’on veuille 1’écrire en
base 2 ou en base 16.

183 (décimal) = 1011 0111 (binaire)
183 (décimal) = B 7 (hexa)
On sépare les huit chiffres binaires en deux groupes de quatre :

1011 et 0111

Or 1011 = 1x2® + 0x2% + 1x2' + 1x2° = 8+2+1 = 11
(décimal)

Et 0111 = OXx2® + 1Xx22 4+ 1x2' + 1x2° = 44+2+1 =7
(décimal)

En remarquant que 11 décimal s’écrit B en hexadécimal, on voit
de facon immédiate la correspondance entre les bases 2 et 16. Il est
tout 2 fait possible de passer directement de la base 2 a Ia base 16 sans
avoir & connaitre précisément le nombre décimal dont il s’agit.

Essayons encore en partant du nombre décimal 143 qui s’écrit
10001111 en base 2 :

1000 1111 = 8F en hexadécimal

St

8 F

Bien entendu, on passera tout aussi facilement de la base 16 a la
base 2 en ayant bien a I’esprit le tableau suivant.

- 13 —

Décimal Binaire Hexadécimal
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9

10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

Que peut bien valoir par exemple en binaire le nombre hexadécimal
4A 7

Réponse : 0100 1010

——

4 A
Et le nombre hexadécimal 37E ?

Réponse : 0011 0111 1110

et e et

3 7 E

Dans ce dernier exemple, les deux premiers chiffres O sont inutiles
et ne servent qu’a la compréhension de la régle qu’il faudra toujours
respecter : le partage du nombre binaire doit se faire par groupes de
quatre et ceci toujours en partant de la droite.

En utilisant le programme qui remplace la fonction HEXS, il nous
sera possible d’éviter la tache fastidieuse de conversion d’un nombre
en binaire et cela grace a Putilisation intermédiaire de la base 16.

Admettons que I’on veuille convertir 1000 (décimal) en binaire :

NOMBRE A CONVERTIR ? 1000
Réponse : 3E8

- 14 -

On en déduit sans peine le résultat recherché :

0011 1110 1000

3 E 8

OPERATIONS DANS
LES BASES 2 ET 16

Nous nous limiterons dans ce paragraphe & 1’addition et a la
soustraction.

1. Addition

On considére le mécanisme de ’addition dans notre systéme déci-
mal et on ’applique a la base 2.

207
+ 321

= 528

Dans cet exemple, les chiffres de chaque colonne s’ajoutent : comme
on n’atteint jamais 10 (la base, ne pas ’oublier), il n’y a aucun pro-
bléme. 11 va en étre de méme dans les additions binaires suivantes car
les totaux ne dépasseront jamais 2 (valeur de la base binaire) :

101100 100011
+ 010001 + 000100
= 111101 = 100111

Reste a voir le cas de la retenue :

1
447
+ 223

= 670

Dans cette addition décimale, 7 et 3 donnent 10, c’est-a-dire trés
précisément la valeur de la base. On écrit alors 0 au-dessous des chiffres

- 15 —

7 et 3 puis on reporte 1 dans la colonne suivante. Nous procéderons
exactement de la méme facon avec le systéme binaire.

1
10001
+ 01001

= 11010

La somme des deux chiffres de droite donne 2 (valeur de la base).
Le dernier chiffre du résultat sera donc un O et la retenue 1 sera écrite
en haut de la colonne suivante. Le reste des calculs s’effectue ensuite
sans difficulté.

. Essayons encore :

11
100101
+ 000101

= 101010
Il n’y a rien a redire, passons a un autre exemple :

11
101011
+ 010011

= 111110

La somme des deux chiffres de droite donnant 2, on a écrit 0 comme
dernier chiffre pour la réponse et on a retenu 1. L’addition de cette
retenue avec les deux chiffres 1 de la deuxiéme colonne donne alors
3, ce qui se traduit par P’écriture du chiffre 1 dans la réponse et Ia
pose d’une retenue en haut de la troisiéme colonne.

Il faut bien reconnaitre que le risque d’erreur n’est pas négligeable
lorsque I’on a a effectuer des calculs en binaire. Aussi, une méthode
souvent utilisée consiste a traduire les nombres en hexadécimal, a les
ajouter alors, puis A reconvertir si nécessaire le résultat en base 2.

Décidons de faire en hexadécimal les additions suivantes :

1
34 BS 5264
+ 6614 A32E
= 9AC9 = F592

- 16 ~

Si Pon se souvient de la correspondance :
A=10 B=11 C=12 D=13 E=14 F=15
on comprend directement comment la premiére opération a été faite.

5+4=09
B+1=11+1=C
4 +6=10=A
3+6=09

Pour ce qui concerne la deuxi¢me addition, les choses se décompo-
sent de la maniére suivante :

4 +E=4+ 14 = 18.

La retenue qui correspond & 10 dans notre systéme habituel est égale
a 16 dans le systéme hexadécimal. Ce qui fait qu’aprés avoir posé la
retenue en haut de la deuxi¢me colonne, il restera 2 a écrire comme
chiffre de droite de la réponse, réponse qui se compléte ensuite par :

14 6+2=9
2+3=5
S+ A=5+10=15=F

Autres exemples :

11 111

4BC3 FFFF
+ 2A2F + FFFF
= 75F2 = 1FFFE

Nous sommes bien d’accord, n’est-ce pas, dans le systéme décimal
il n’y a de retenue qu’a partir de 16.

2. Soustraction
Gardons le systéme précédent de numération et intéressons-nous au

calcul d’une différence :

9AE7
— 49B3

= 5134
C’est, somme toute, plutot facile & comprendre :
7-3=4

- 17 -

E-B=14-11 =3
A-9=10-9=1
9-4=275
Alors, essayons les retenues :
9B54
— 6A29
= 312B

On a tendance a dire 9 6té de 14, 1a force de ’habitude nous faisant
rajouter une dizaine a 4. En réalité, puisque nous sommes en hexadé-
cimal, ce n’est pas dix que ’on doit ajouter a 4 mais seize. Il s’agit,
du coup, de faire 9 6té de 20 : reste 11 c’est-a-dire B. Naturellement,
la retenue ne doit pas étre perdue dans la suite des calculs.

5 — 3 (dont 1 de retenue) = 2
B-A=11-10=1
9-6=3

Deux autres exemples :

4A85 ABCD
— 1F2E — 2FFF
= 2B57 = 7TBCE

On en arrive maintenant au calcul de la différence entre deux
nombres écrits dans le systéme binaire. La méthode de soustraction
directe peut étre employée :

101011
— 001001

= 100010

Mais les programmeurs lui préférent une autre méthode, celle dite
du complément a deux, car on comprend bien que la soustraction qui
vient d’&tre effectuée aurait été plus compliquée si des retenues étaient
apparues.

3. Le complément 3 deux

Considérons le nombre décimal 17.

- 18 -

Sa conversion en binaire donne 10001. Pour obtenir le complément
a 2 de ce nombre, on respecte les trois étapes suivantes :

® on écrit notre nombre sur huit chiffres en rajoutant des 0 devant :
00010001

* on remplace chaque O par 1 et chaque 1 par 0 :
11101110

® on ajoute 00000001 & ce résultat :
11101111

Le nombre que I’on obtient est appelé le complément & 2, sur huit
chiffres, de 17, et I’ordinateur considérera que c’est I’opposé de 17,
c’est-a-dire le nombre —17. Oui, vous avez bien lu, dans le mode
complément & 2, le nombre binaire 11101111 est égal & —17 !

Comment s’en assurer ? En partant de 1’idée toute simple qui consiste
a dire : puisque, en ajoutant 17 et son opposé — 17, on obtient 0, on
doit normalement, en ajoutant 00010001 et 11101111, obtenir aussi 0.
Voyons cela :

11111111
00010001
+ 11101111

= (1)00000000

Les deux chiffres 1 de la droite font apparaitre une retenue que I’on
retrouve ensuite de colonne en colonne. Il faut tout de méme noter
qu’il ne doit pas étre tenu compte de la derniére retenue et que nous
prendrons I’habitude de la négliger. Nous verrons bientdt que 1’ordi-
nateur ne procéde pas autrement : pour lui aussi, la derniére retenue
de gauche «tombe a I’eau».

Un autre exemple : essayons d’écrire — 50 en binaire sous la forme
complément a 2 :

00110010 50 décimal
11001101 chiffres inversés
11001110 ajout de 1

Donc — 50 s’écrit 11001110 en binaire
ou C E en hexadécimal

Voici, tels quels, quelques résultats qui doivent permettre au lec-

- 19 ~

teur d’assimiler parfaitement la facon dont I’ordinateur écrit les
nombres négatifs :

—5 (décimal) = 11111011 (binaire) = FB (hexa)
—20 (décimal) = 11101100 (binaire) = EC (hexa)
— 100 (décimal) = 10011100 (binaire) = 9C (hexa)

Avant de passer a autre chose, revenons quelques minutes sur la
facon dont on s’y prendra pour faire une différence binaire mainte-
nant que nous savons utiliser la technique du complément a 2.

Soit a calculer 101000 — 10111,

On cherche I’opposé du deuxiéme terme de la soustraction en mode
complément a 2 : on obtient 11101001.

Il reste alors & ajouter le premier terme avec I’opposé du deuxiéme :

111 1
00101000
+ 11101001

= (1)00010001
La réponse est la suivante : 101000 — 10111 = 10001.

OPERATEURS LOGIQUES

En dehors des calculs arithmétiques habituels, on peut effectuer sur
les nombres binaires des opérations d’un type spécial que I’on appelle
les opérations logiques. Elles ne présentent aucune difficulté car en
aucun cas ne se pose le probléme des retenues.

1. Le OU logique

Cette opération respecte les régles suivantes :

0 0 1 1
OouU o OuU 1 ou o OU 1
C’est la méme chose avec des nombres binaires plus grands :
101101 101000
OU 110101 OU 001100
= 111101 = 101100
—_ 20 —

Alice dispose d’une instruction qui effectue ce type de calculs : c’est
le mot clé OR. Demandons-lui quelques résultats :

PRINT 46 OR 100 ; réponse : 110
101110 46
OR 1100100 100

= 1101110 110

PRINT 50 OR 0 ; réponse : 50
110010 . 50
OR 000000 . 0

= 110010 50

L’opérateur OR va nous servir en assembleur car il permet de forcer
I'un des chiffres binaires a passer a4 1. Voyons comment :

PRINT 82 OR 1 ; réponse : 83
1010010 82
OR 0000001 1

= 1010011 83

PRINT 91 OR 1 ; réponse : 91

1011011 91
OR 0000001 1

= 1011011, 91

Dans le premier exemple, on part d’un nombre dont le dernier chiffre
binaire (bit 0) est égal a 0. Aprés utilisation de OR 1, ce dernier chif-
fre a été porté a 1 sans qu’aucun des autres chiffres ait été modifié.

Dans le deuxi¢me cas, on est parti d’un nombre qui se terminait
déja par un 1. OR 1 n’a modifié ni ce chiffre ni naturellement aucun
des autres. On en conclut donc que si ’on effectue OR 1 avec n’im-

porte quel nombre, on aura un résultat dont le dernier chiffre (bit 0)
vaudra obligatoirement 1.

- 921 -

D’une facon analogue, en calculant OR 4 avec n’importe quel nom-
bre, on sera certain que le troisitme chiffre en partant de la droite

est un 1 (bit 2) :

PRINT 19 OR 4 ; réponse : 23

1001119
OR 00100L_______ 4

= 10111 23
Le troisiéme chiffre est bien passé a 1.

PRINT 52 OR 4 ; réponse : 52

110100 52
OR 000100 4

= 110100 52

Le troisiéme chiffre est resté a 1.

2. Le ET logique

Le ET logique est défini par les régles suivantes :

0 0 1 1
ET O ET 1 ET 0 ET 1
Quelques exemples :
101100 101000
ET 011001 ET 110111
= 001000 = 100000

On peut faire faire ces calculs par ’ordinateur et cette fois, c’est
le mot réservé AND qui va nous servir.

PRINT 30 AND 40 ; réponse : 8

11110 30

AND 101000 40
= 001000 8

On retrouve I'instruction AND en assembleur car, grice a elle, nous
pouvons mettre & 0 n’importe quel chiffre binaire. Supposons que nous

- 22 _

ayons un nombre et que nous voulions forcer a 0 son chiffre de droite
(bit 0). On utilisera AND 254 et voici pourquoi :

PRINT 201 AND 254 ; réponse : 200

11001001 201
AND 11111110, 254

= 11001000 200

Seul le dernier chiffre a été mis 4 0, les autres sont restés les mémes.
254 a en effet la particularité d’&tre constitué de sept chiffres 1 suivis
d’un seul 0.

Si nous étions partis d’un nombre se terminant déja par 0, AND
254 n’aurait rien modifié, ce qui nous permet de donner la conclusion
suivante : quel que soit le nombre considéré, en le combinant avec
254 on pourra €tre assuré qu’il se terminera par 0.

11 est possible d’annuler n’importe quel chiffre d’un nombre avec
Iopérateur AND. AND 124, par exemple, annulera le chiffre de gau-
che (bit 7) mais en méme temps les deux chiffres de droite (bits 0 et
1) de n’importe quel nombre de huit chiffres.

PRINT 245 AND 124 ; réponse : 116

11110101 245
AND 01111100 124

= 01110100 116

3. Le OU exclusif logique

Noté XOR, le OU exclusif obéit aux mémes régles que le OU déja
défini sauf pour la quatriéme partie :

0 0 1 1
XOR 0 XOR 1 XOR 0 XOR 1
=0 =1 =1 =0

Le résultat n’est égal & 1 que lorsqu’un des chiffres et un seulement
est égal a 1.

30 XOR 40 = 54

11110 30

XOR 101000_ 40
= 110110 54

— 23 —

25 XOR 100 = 125

11001 25
XOR 1100100 100

= 1111101 125

L’opérateur XOR est mis en ceuvre & chaque fois que ’on veut faire
passer a 1 les chiffres 0 et a 0 les chiffres 1. Supposons que 1’on ait
un nombre dont on veuille faire changer d’état le dernier chiffre (bit
0) : on le combinera avec XOR 1. Si le nombre se terminait par 0,
il se terminera alors par 1 mais par contre, si son dernier chiffre était
1, ce sera du coup 0. On essaie :

28 XOR 1 = 29
11100 28
XOR 00001 |
= 11101 29
31 XOR 1 = 30
11111 31
XOR 00001 1
= 11110 30

Bien entendu, XOR peut étre utilisé pour faire basculer d’un état
a P’autre n’importe lequel des chiffres sans modifier les autres. Par
exemple, XOR 5 ne changera les états que du premier et du troisiéme
chiffre en partant de la droite (5 est égal 4 101 en binaire).

— 24 —

2

LA MEMOIRE ECRAN
D'ALICE

Partons a la découverte des ressources que posseéde Alice dans le
domaine du graphisme et des couleurs, ressources qui sont, nous allons
le voir, loin d’étre toutes exploitées par le BASIC. Notez bien que tout
ce qui suit concerne le mode CLS40.

GENERALITES

Tapez sur le clavier de votre ordinateur le programme suivant et
faites-le exécuter :

10 POKE 48929 , 65 : REM LETTRE A

20 POKE 48930 , 1 : REM ALPHANUMERIQUE
30 POKE 48931 , 20 : REM ROUGE/BLEU

40 POKE 48934 , 10 : REM LIGNE

50 POKE 48935 , 35 : REM COLONNE

60 POKE 48936 , 1 : REM EXECUTION

Vous voyez apparaitre en haut et a droite de ’écran un caractére
— la lettre A majuscule — qui s’affiche en rouge sur fond bleu. 11
est donc possible, nous en avons la preuve devant les yeux, de colo-
rier un caractére alphanumérique avec des teintes différentes de celles
qui sont employées habituellement (vert et noir). Nous verrons méme
dans un moment qu’Alice a a sa disposition une palette de couleurs
dont le nombre est supérieur a 8.

Analysons les grandes lignes du programme :

10 POKE 48929 , 65

L’octet 48929 doit contenir le code ASCII de la letire que nous sou-
haitons voir apparaitre. Puisque 65 correspond 4 la lettre A, nous pou-
vons déja comprendre pourquoi c’est elle et pas une autre que ’ordi-
nateur a affichée.

20 POKE 48930 , 1

— 2% —

Disons, pour Pinstant, que 'octet 48930 définit le type du carac-
tére qui se verra sur I’écran ; il s’agit, pour ce qui nous concerne, d’un
caractére alphabétique et non pas, par exemple, d’un élément semi-
graphique.

30 POKE 48931 , 20

L’écriture du nombre 20 dans I’octet 48931 a pour effet de colorier
la lettre en rouge sur fond bleu. Pour rester dans le domaine des géné-
ralités, retenons simplement que ’octet 48931 va nous servir essen-
tiellement a choisir nos couleurs.

40 POKE 48934 , 10 et 50 POKE 48935 , 35

Il nous faut indiquer & la machine & quel endroit de I’écran doit
s’effectuer Paffichage : les octets 48934 et 48935 sont 1a pour cela.

60 POKE 48936 , 1

Lerole de Poctet 48936 est de commander, quand son contenu vaut
1, Papparition de la lettre sur notre téléviseur. Il donne donc I’ordre
de visualiser le caractére dont les références sont définies par les octets
précédents.

AFFICHAGE ALPHANUMERIQUE

Reprenons, avec tous les détails cette fois-ci, I’étude des octets
rencontrés dans le paragraphe précédent.

Octet 48929

11 contient le code ASCII du caractére a afficher. Rappelons que
ce code est inférieur & 128.

Exemple :

10 POKE 48929 , 90 : c’est la lettre Z qui pourra se voir a la place
de la lettre A.

- 97 -

Octet 48930
Voici sa structure :

76 543210

LI T T T T T 1]

type de l—— couleur nouvelle
caractére
r hauteur double

» caractére masqué

largeur double

Les bits 7, 6, 5 et 4 sont toujours & 0 lors de Paffichage
alphanumérique. -

Le bit 0, s’il vaut 1, n’a aucune influence sur le reste du programme
et, s’il vaut 0, va nous permettre d’obtenir 7 nouvelles couleurs déri-
vées des couleurs standard. Nous allons y revenir.

Le bit 2, pour sa part, n’interviendra pas dans notre étude. Son inté-
rét doit étre considéré comme nul.

Les bits 1 et 3 autorisent, s’ils sont égaux a 1, ’'impression sur écran
de caractéres dont la grandeur est modifiée.

Exemple :

20 POKE 48930, 9 : la lettre s’affiche en double largeur (9 est égal &
00001001 en binaire). Notons toutefois que la partie droite du
caracteére est coloriée en vert et noir ; ceci s’explique par le fait
que notre programme, tel qu’il est, ne concerne le coloriage en
bleu et rouge que d’une seule case de I’écran et non pas de deux.

Octet 48931
Il est constitué de 8 bits dont les roles sont définis ainsi :
7 6 5 43210
[BIVIR| [B|VIR]

inversion vidéo «—— _—l;» couleur fond

couleur forme clignotement

— 28 —

Les bits 4, 5 et 6 permettent de choisir la couleur du caractére et
les bits 2, 1 et 0 la couleur du fond. Le choix de ces couleurs est déter-
miné par le tableau donné ici.

Couleurs B \" R
Noir 0 0 0
Rouge 0 0 1
Vert 0 1 0
Jaune 0 1 1
Bleu 1 0 0
Rose 1 0 1
Turquoise 1 1 0
Blanc 1 1 1

Exemples :

30 POKE 48931 , 20 : rouge sur bleu (20=00010100 binaire)

[ofofoftfo]1fo]0]

Rouge Bleu
30 POKE 48931, 99 : turquoise sur jaune (99 =01100011 binaire)

[oT1]1]oofo]1]1]

——

Turquoise Jaune

Le lecteur pourra maintenant mettre a 0 le bit de droite de ’octet
48930 et dessiner des caractéres dans des couleurs nouvelles, couleurs
qu’Alice n’avait pas dévoilées jusqu’alors.

Nous n’en avons pas fini avec les différents bits de I’octet 48931.
Continuons avec le numéro 3 : s’il est égal a 1, le caractére va se met-
tre 4 clignoter sur ’écran. Voici quelque chose qui fait beaucoup d’effet
dans un programme et, vraiment, & peu de frais.

Exemple :

30 POKE 48931, 107 : la lettre se met & clignoter ; elle est de couleur
turquoise sur jaune.

— 29 —

foT1TtJof1]oft]1]

+ Clignotement

Le dernier bit enfin de cet octet miracle : celui de gauche. 11 réalise
Pinversion vidéo du caractére affiché.

Exemple :

30 POKE 48931 , 227 : apparition de la lettre en jaune sur fond
turquoise.

[tltft]ojofoft]t]

Inversion vidéo «

Octet 48934

C’est dans cet octet que se trouve I’ordonnée de la case affichée.
Exemple :

40 POKE 48934 , 0 : la lettre apparait sur la premiére ligne de I’écran
(ligne 0).

40 POKE 48934, 8 : la lettre apparait sur la deuxieme ligne (ligne 1).
Oui, sur la ligne 1 et non pas sur la ligne 8. Il faut savoir en effet
que le numérotage des lignes n’utilise pas les chiffres allant de
1 a 7 : ils sont en quelque sorte sautés.

40 POKE 48934 , 9 : la lettre apparait sur la troisieme ligne (ligne 2).

40 POKE 48934 , 31 : la lettre apparait sur la derniere ligne (ligne 24).

Octet 48935

Nous savons déterminer le numéro de la ligne d’affichage, voici
maintenant comment on choisit la colonne : on écrit dans ’octet 48935
Pabscisse de la case, et d’une fagon tout a fait logique (aucun chiffre
n’est oublié).

Exemples :

50 POKE 48935 , 0
50 POKE 48935, 39
50 POKE 48935 , 7

- 30 -

Le caractére s’affiche respectivement dans la premiére, la derniére
et la huitiéme colonne (colonne numéro 7).

Octet 48936

N’ajoutons rien & ce qui a déja été dit : cet octet donne a ’ordina-
teur I’ordre de dessiner sur ’écran le caractére que ’on vient de définir.

PROGRAMME DE DEMONSTRATION

Mettons en application nos connaissances toutes neuves et voyons-
en de toutes les couleurs.

Programme BASIC

10 CLS : POKE 48930 , 1 : POKE 48331, 0

20FORY =0TO31: FOR X = 0TO 39

30 POKE 48934 , Y : POKE 48935 , X

40 READ | : POKE 48929 , | : POKE 48936 , 1

50 IF1 < >42 THEN 70

60 RESTORE : POKE 48931 , PEEK(48931) + 1
7ZONEXT X:IFY =0THENY =7

80 IFY = 17 THEN POKE 48930 , 0

90 NEXT Y : DATA 32 ,65,76,73,67,69, 32, 42
100 GOTO 100

Commentaires

Au démarrage du programme, les nombres X et Y sont nuls tous
les deux. Puisqu’ils sont écrits dans les octets 48934 et 48935, le pre-
mier caractére est affiché en haut et & gauche de I’écran. Ce caractére
(ASCII 32) est une case vide dont le code est écrit dans ’octet 48929.
Sa couleur nous est donnée par la valeur de ’octet 48931 ; comme
cette valeur est nulle pour instant, le premier caractére apparait en
noir sur noir.

A la deuxiéme exécution de la boucle FOR NEXT X, les octets 48934
et 48935 définissent la case située immédiatement a droite de la précé-
dente. Dans cette case est écrite la lettre A (ASCII 65) et, puisque nous
ne sommes pas intervenus sur I’octet 48931, toujours en noir sur noir.

Au huitiéme passage de la boucle, nous pouvons voir en haut de

- 31 —

I’écran huit cases disposées les unes a coté des autres. Elles sont toutes
entiérement coloriées en noir.

A ce moment-l3, une unité est ajoutée a ’octet 48931 et ’instruc-
tion RESTORE oblige I’ordinateur a relire les huit codes ASCII écrits
en DATA. Les lettres correspondantes sont alors affichées sur le télé-
viseur et, cette fois-ci, elles sont bien visibles car de couleur noire sur
fond rouge. On aura reconnu dans les nombres écrits en DATA les
équivalents des caractéres espace, A, L, I, C, E, espace et * ; c’est
donc cette chalne qui, naturellement, est apparue.

Faisons les comptes : quand le programme arrive a son terme, le
mot ALICE a été affiché 125 fois. A chaque fois le contenu de I’octet
48931 est modifié (augmenté de 1). De ce fait, les couleurs changent
constamment et certaines d’entre elles se mettent a clignoter (quand
le bit 3 de notre octet est 2 1). Remarquons que nous nous servons
4 partir d’un certain moment des nouvelles couleurs (lignes BASIC
80). Nous avons devant les yeux une idée de ce que notre ordinateur
est capable de réaliser dans le domaine des couleurs. Etonnant, non ?

Programme assembleur

Tapez au clavier le programme suivant et faites-le exécuter :

10 CLEAR 100 , 18000

20 FOR | = 18944 TO 19025 : READ J

30 POKE | , J : NEXT : EXEC 18944

40 GOTO 40

50 DATA183,191,34,127,191,35,206,74,74,204,0,0,247,191,38,5b,
183,191,39

60 DATAB4,166,0,183,191,33,198,1,247,191,40,246,191,32,193,128,
36,249,8

70 DATA128,42,38,6,124,191,35,206,74,74,50,76,129,40,38,218,79,
51,93,38,2

80 DATA198,7,193,17,38,3,127,191,34,92,193,32,38,195,57,32,65,
76,73,67

90 DATAG9,32,42

Inutile de faire un effort pour essayer de comprendre ce programme.
Laissez de coté la fin de ce paragraphe et passez & la suite. Lorsque
vous y reviendrez dans quelques jours (quelques heures ?), il vous
paraitra limpide. Retenez seulement que le programme assembleur a
réalisé le méme travail que le programme BASIC, affichage du mot

- 32 -

Y=0:X=0
Ecrire X et Y dans les octets
48934 et 48935

Ecrire le code ASCH du
caractére & afficher dans

I'octet 48929
Faire afficher le caractére \
Code = 42 Out
?

Ajouter 1 a l'octet 48931

l

Mettre & O I'octet 48930

Y=Y+1

Y <32

- 33 —

ALICE 125 fois de suite, mais avec une rapidité époustouflante : tout
Pécran s’allume d’un seul coup !

1 ORG $4A00

2 EXC DEBUT

3 DEBUT LDAA #$1

4 STAA $BF22 ; 48930 DECIMAL

b CLR $BF23 ; 48931 DECIMAL
6 LDX #ALICE

7 LDD #30 ; AET B A ZERO

8 LIGNE STAB $BF26 ; 48934 ORDONNEE
9 PSHB

10 COL. STAA $BF27 ; 48935 ABSCISSE
1 PSHA

12 LDAA $0,X

13 STAA $BF21 ; 48929 CARACTERE
14 LDAB #3$1

15 STAB $BF28 ; 48936 EXECUTION
16 TEMPO LDAB $BF20 ; ATTENTE

17 CMPB #$80

18 BHS TEMPO

19 INX

20 CMPA #32A ; 42 ASCIl *

21 BNE ETIQ1

22 INC $BF23 ; 48931 COULEUR

23 LDX #ALICE

24 ETIQN PULA

25 INCA

26 CMPA #$28 ; 40 FIN DE LIGNE
27 BNE COL.

28 CLRA

29 PULB

30 TSTB

31 BNE ETIQ2

32 LDAB #37 ; NUMEROS SAUTES
33 ETIQ2 CMPB #311 ; 17 DECIMAL

34 BNE ETIO3

35 CLR $BF22 ; 48930 NVELLES COUL.
36 ETIO3 INCB

37 CMPB #$20 ; 32 DERNIERE LIGNE
38 BNE LIGNE

39 RTS

40 ALICE * ALICE *

- 34 -

Commentaires

Lignes 3, 4, 5 et 6 : c’est Pinitialisation du programme. On met
a 1 Poctet 48930 (I’affichage va concerner des caractéres alphanumé-
riques). On annule ’octet 48931 (la premiére lettre sera masquée : cou-
leur noire sur fond noir). Puis on place dans le registre X P’adresse
du premier caractére de la chalne ‘¢ ALICE *°.

Lignes 8 a 11 : on précise a ’ordinateur a quel endroit de écran
doit apparaitre la premiére lettre.

Lignes 12 et 13 : on écrit dans ’octet 48929 le code ASCII du
premier caractére. Il s’agit donc pour Pinstant du nombre 32 (code
espace).

Lignes 14 et 15 : I’exécution de I’'affichage est commandée par
Pécriture de la valeur 1 dans ’octet 48936. A ce moment-13, le pre-
mier caractére est visible en haut et a gauche de ’écran.

Lignes 16 a 18 : voici la seule chose qui change par rapport au
programme BASIC. Etant donné que I’affichage d’un symbole sur
I’écran prend un certain temps, on est obligé de ralentir la course du
microprocesseur. Expliquons-nous : si ’on supprime ces trois lignes,
le programme risque, au passage suivant dans la boucle COL., de don-
ner a l'octet 48936 'ordre de faire apparaitre le deuxiéme caractére
sur le téléviseur alors que affichage du premier n’a pas été terminé.
Du coup cet ordre ne peut étre pris en compte et notre programme
ne fait pas exactement ce que ’on attend de lui. Nous engageons le
lecteur & regarder Peffet produit par la suppression des lignes 16 2 18.
Reste & savoir maintenant comment on empéche le 6803 de marcher
plus vite que la musique. On lui fait attendre dans la boucle TEMPO
que le bit 7 de Poctet 48928 ($BF20) passe 4 0. Dés que cela arrivera,
le contenu de Poctet en question sera inférieur a 128 ($80) et le pro-
gramme pourra reprendre son exécution normale. Retenons de ceci
que le bit gauche de I’octet 48928 est toujours & 1 quand une com-
mande d’affichage est lancée et qu’il est abaissé a 0 dés que cet affi-
chage est entiérement réalisé.

Lignes 19 a 23 : le registre X est incrémenté et pointe alors sur
le deuxiéme caractére de la chaine, c’est-a-dire sur la lettre A. On vérifie
alors que la fin de cette chaine (caractére *) n’est pas atteinte. Si tel
était le cas, donc si.le mot ALICE * était affiché entiérement sur

— 35 -

P’écran, on changerait la couleur en augmentant d’une unité la valeur
de Poctet 48931.

Lignes 24 a 27 : le programme tourne dans la boucle COL. tant
que la premiére ligne n’est pas complétement dessinée sur le téléviseur.

Lignes 28 et suivantes : quand une ligne est affichée, on remet
a zéro, par I’intermédiaire du registre A, 'octet 48935 et on incrémente
Poctet 48934. Comme ce dernier contient les numéros de ligne, on prend
soin de lui faire sauter les nombres 1, 2, ... 7. D’autre part, quand
sa valeur atteint 17, on intervient sur ’octet 48930 de maniére que I’af-
fichage se poursuive dans les nouvelles teintes.

DIFFERENTS JEUX DE CARACTERES

Repartons du programme rencontré au début de ce chapitre.

10 POKE 48929 , 65 : REM LETTRE A

20 POKE 48930 , 1 : REM ALPHANUMERIQUE
30 POKE 48931 , 20 : REM ROUGE/BLEU

40 POKE 48934 , 10 : REM LIGNE

50 POKE 48935 , 35 : REM COLONNE

60 POKE 48936 , 1 : REM EXECUTION

Il a été dit que la structure de Poctet 48930 était la suivante :
76 543210

lojoJofof | | [|
code des L couleur nouvelle
caracteres I+ hauteur double
alpha-
numériques masque
» largeur double

Notre préoccupation, jusqu’a maintenant, s’est limitée a ’affichage
des caractéres alphanumériques standard. Mais Alice a beaucoup
d’autres ressources et ce paragraphe nous emmeéne découvrir lesquelles.

- 36 —

Affichage alphanumérique souligné

lolofoft] [| f1]

bit 4 «— L—— code couleur

Octet 48930

Remplacons la ligne 20 de notre programme par :
20 POKE 48930 , 17
puis faisons RUN. La lettre majuscule A apparait en rouge sur fond
bleu & Pintersection de la colonne n° 35 et de la ligne n°® 3. Ce qui
a changé par rapport a notre étude précédente, c’est qu’un trait fin
est tracé sous le caractére : la lettre est maintenant soulignée.
Un autre exemple :

10 POKE 48929 , 101

Puisque 101 est le code ASCII de la lettre minuscule e, c’est cette lettre,
soulignée, qui se dessine sur I’écran.

Affichage de 128 caractéres mosaiques

lofoftfo] | | 1]

bit 5«

Octet 48930

Remplacez la ligne 20 par :

20 POKE 48930, 33

puis faites plusieurs exécutions en changeant les nombres écrits dans
Poctet 48929. Vous verrez apparaitre des caractéres semi-graphiques
ayant des formes de mosaiques.

Exemples :

10 POKE 48929 , 123

Apparition d’un graphisme ressemblant a la lettre C & U’envers.

10 POKE 48929 , 42

- 37 —

Dessin de trois petits points les uns en dessous des autres. Le lecteur
intéressé pourra écrire tous les nombres inférieurs a 128 dans I’octet
48929 et dresser une table de tous les symboles semi-graphiques dont
on peut disposer.

Affichage de 32 caractéres mosaiques complémentaires

lofoltfel J [Juf

bits S et 4

Si les 128 graphismes précédents ne vous suffisent pas, vous aurez
la possibilité d’en utiliser 32 autres (numérotés de 0 a 31).

Octet 48930

Exemple :

10 POKE 48929 , 9
20 POKE 48930 , 49

Quelque chose qui ressemble 4 un V a Penvers apparait sur le téléviseur.
Affichage des minuscules avec accent
loftfolof | | 1]

bit 6

Avant d’essayer de nous y retrouver, modifions la ligne 20 :

Octet 48930

20 POKE 48930 , 65

Reste a savoir comment est codé ’octet 48929 :
76 5 43 210

T T ToJol1To]1 |« Octet 48929

indifférent < lettre

accent «—————

Les cing bits de droite permettent de déterminer la lettre minuscule
sur laquelle on va tracer un accent : @ est la premicére; et z est la vingt-

- 38 —

sixieme. Pour notre exemple, c’est la lettre e, la cinquiéme de I’alpha-
bet, donc.
Les bits 6 et 5 servent a choisir ’accent :

bit 6 _— bit 5 Pas d’accent.

Exemple :

10 POKE 48929 , 5

La lettre e apparait sans aucun ajout.

bit 6 ___— bit 5 Surlignage.

Exemple :

10 POKE 48929 , 37

La méme lettre est surmontée d’un petit trait.

bit 6 __ bit 5 Accent aigu.

Exemple :

10 POKE 48929 , 69

La lettre est cette fois visible avec un accent aigu.

bit6 bit 5 Accent grave.

Exemple :

10 POKE 48929 , 101

Et voici la lettre &.

Affichage des minuscules accentuées soulignées

lofejofe{ | T J1]
'

bits 6 et 4

Octet 48930

Nous avons ici accés aux mémes caractéres que précédemment mais,
de plus, un trait fin les souligne.

— 39 —

Exemple :

10 POKE 48929 , 101
20 POKE 48930 , 81

Le programme affiche la lettre & soulignée.

Affichage des minuscules avec tréma ou cédille

Octet 48930

lof1frfo} | | J1]
!

bits 6 et 5

76543210
[T TTITTI Octet 48929

I———> lettre

—» tréma-cédille

indifférent

Ici encore les bits 6 et 5 de "octet 48929 servent a déterminer ce
qui sera ajouté a la lettre.

bit6 _ _{0|0l bit5 Aucun ajout.

bit 6 (0| 1| bit5 Lettre surmontée d’un point.
bit 6 1]0| bit 5 Lettre surmontée d’un tréma.
bit6 1] 1], bit 5 Lettre avec cédille.

Exemple :

10 POKE 48929 , 99
20 POKE 48930 , 97

Nous avons devant les yeux le caractére ¢.

Affichage souligné des minuscules avec tréma ou cédille

tol1]1]1] | | [1]<«—— Octet 48930
vy

bits 6, 5 et 4

— 40 —

Exemple :

10 POKE 48929 , 73
20 POKE 48930 , 113

L’exécution du programme entraine le dessin de la lettre i soulignée.

-4 -

3

L'ARCHITECTURE INTERNE
DU MICHOPRUCESSB%%Ig

Avant de commencer I’étude du microprocesseur, il est nécessaire
de le situer dans son environnement : aussi ce chapitre débutera par
quelques rappels sur la structure générale d’un micro-ordinateur.

ORGANES D’ENTREE
(CLAVIER)

REGISTRES

UNITE U.A.L.
CENTRALE

MEMOIRE CENTRALE

ORGANES DE SORTIE
(ECRAN)

C’est essentiellement la mémoire centrale qui sera utile & notre étude
et c’est pour cette raison que les mémoires auxiliaires n’apparaissent
pas sur le schéma.

LA MEMOIRE CENTRALE

La mémoire centrale permet d’enregistrer, de conserver, et de resti-
tuer a la demande les informations qui lui ont été communiquées. Ces
informations sont de deux sortes : ce sont soit des données soit des
programmes. A priori, rien ne distingue en mémoire ces deux types
d’informations et c’est la seule logique du programme qui empéchera
la confusion.

Pour des raisons technologiques, I’information rangée en mémoire
se trouve sous la forme de combinaisons des chiffres binaires O et 1.
Le bit (ou chiffre binaire) est Punité élémentaire d’information et ne
peut prendre que I'une de ces valeurs. Un octet est constitué de huit
bits. Le nombre le plus grand que P’on puisse avoir dans un octet est
le nombre 11111111 (soit 255 en décimal). Le nombre le plus petit est
obtenu quand les huit bits valent 0 : c’est le nombre 00000000 (ou 0
en décimal).

La mémoire centrale de la plupart des micro-ordinateurs est divisée
en 65536 octets et I’ordinateur est capable de retrouver le contenu de

— 44 —

PROCESSEUR

n’importe quel octet grice 3 son adresse. Les octets de la mémoire
sont numeérotés de 0 & 65535 et c’est ce numéro que I’on appelle
Padresse. 1l est possible de savoir le nombre que contient un octet avec
la fonction BASIC PEEK. Essayons :

PRINT PEEK {50390} ; réponse : 155

Puisque 155 = 10011011 en binaire, on peut retrouver la configu-
ration exacte de I’octet numéro 50390 :

1 0 0 1 1 0 1 1
bit7 bit6 bit5S bitd bit3 bit2 bitl bit0

On peut dire aussi que cet octet contient le nombre hexadécimal 9B.

Puisqu’on est capable de connaitre la valeur qui se trouve dans un
octet, on doit étre capable de modifier cette valeur : Pinstruction POKE
est & notre disposition pour cela.

PRINT PEEK {20000) ; réponse : 0
POKE 20000, 100
PRINT PEEK (20000) ; réponse : 100

Avant notre intervention, ’octet numéro 20000 contenait le
nombre 0. Tous les octets contiennent une valeur et il est difficile de
dire, dans I’absolu, & quoi elle correspond. Nous avons inscrit par
POKE la valeur 100 dans Poctet et il ne nous est plus resté qu’a en
demander la confirmation avec PRINT PEEK (20000).

Un nouvel essai :

PRINT PEEK {50000} ; réponse : 39
POKE 50000, 100
PRINT PEEK (50000) ; réponse : 39

Eh oui, la commande POKE ne nous permet pas de modifier le
contenu de n’importe quel octet de la mémoire ! Nous allons savoir
pourquoi dés que nous aurons distingué les deux grands types de
mémoire.

La ROM (Read Only Memory) est la partie de la mémoire centrale
que I’on peut seulement lire. Il n’est pas question de modifier un octet
qui se trouve dans cette zone-1a. L’octet 50000 par exemple se trouve

— 45 -

en ROM et c’est pourquoi POKE n’a eu aucun effet sur lui. Pour ce
qui concerne I’ordinateur qui est étudié dans ce livre, Alice, il faut
savoir que nous ne pourrons en aucun cas modifier un octet dont
I’adresse est supérieure a 49152. C’est en effet 1a partie de la mémoire
qui contient I’interpréteur, c’est-a-dire le programme qui va traduire
le BASIC que I’on tape au clavier en un langage compréhensible par
la machine. Le contenu de la ROM a I’avantage de ne pas s’effacer
quand on coupe le courant : c’est une mémoire permanenteé.

La RAM (Random Access Memory) ou mémoire vive, contient tous
les octets que ’on peut lire — avec PEEK — et aussi modifier — avec
POKE. L’octet 20000, dont le contenu a pu étre modifié par nous,
se trouve dans la zone vive de la mémoire. C’est en RAM que le pro-
gramme BASIC que nous tapons est stocké, et nous savons que deés
la mise hors tension, ’ordinateur oublie tout. Ceci met en avant une
propriété de la mémoire vive : elle est volatile, son contenu est perdu
deés que ’unité centrale n’est plus alimentée.

Nous nous servirons tout au long de ce livre des mots PEEK et
POKE. Ces instructions réservent parfois quelques surprises, mais elles
sont considérées comme indispensables par tous les esprits curieux qui
veulent aller un peu plus loin que le BASIC.

Attention toutefois 3 ne pas chercher 3 inscrire dans un octet un
nombre supérieur 4 255 ; cela aurait pour effet de faire afficher le mes-
sage FC ERROR. La raison en est qu’avec huit bits, on ne peut cons-
tituer un nombre supérieur & 11111111 soit 255 en décimal.

L'UNITE ARITHMETIQUE ET
LOGIQUE (U.AL)

L’UAL est constituée de circuits €lectroniques cablés et est capable
d’effectuer des calculs arithmétiques (addition, soustraction et multi-
plication) et des choix logiques (comparaison de deux nombres). Elle
permet aussi de faire des opérations de décalage et de rotation, opé-
rations auxquelles quelques pages de ce livre seront consacrées plus loin.

En écrivant nos programmes, nous n’aurons pas a intervenir direc-
tement sur ’UAL mais, méme s’il n’en est plus du tout question expli-
citement, il ne faudra pas oublier le role capital de cette unité dans
un ordinateur : PUAL -est le calculateur du microprocesseur.

— 46 —

LES REGISTRES

| A8bits | B8bits |
D 16 bits

[P8bits |

| X 16 bits]

| S 16 bits |

| PC 16 bits]

Les registres sont identifiables & des cases mémoire par lesquelles
Pinformation va transiter. Le microprocesseur 6803 contient des regis-
tres 8 bits et des registres 16 bits. Les instructions BASIC ne permet-
tent pas ’accés 3 ces registres et nous ne pourrons jamais, avec la fonc-
tion PEEK par exemple, savoir ce que contient tel ou tel registre.

1. Les registres A et B

Ce sont les plus utilisés en assembleur et on leur donne souvent le
nom d’accumulateurs. Nous serons par exemple obligés de passer par
I’'un d’eux dés qu’il s’agira de faire un calcul. Iis sont constitués tous
deux de 8 bits, ce qui fait que le plus grand nombre qu’ils peuvent
contenir est 255 décimal (FF hexa ou 11111111 binaire).

Une particularité trés importante de A et B est qu’ils peuvent étre
utilisés ensemble pour constituer le registre D, appelé lui aussi accu-
mulateur. Naturellement, cela fera 16 bits pour D.

Voyons ceci de plus prés : supposons que les bits des registres A
et B soient disposés comme suit :

128 64 32 16 8 4 2 1
A 0 1 0 1 0 0 0 1

Dans A se trouve donc le nombre décimal 81 ou hexadécimal 51.

— 47 -

128 64 32 16 8 4 2 1
B 1 0 0 0 1 1 0 0

Dans B c’est le nombre 140 (décimal) ou 8C (hexa) qui se trouve.
Pour former D, on associe A et B :

A B
ofr1jofrjofojofrjrf{otojof1j1foj]o

La valeur de D est alors 0101000110001100 c’est-a-dire 20876 en déci-
mal. Il faudra toujours se souvenir que D est un registre 16 bits et
qu’il correspond donc & deux octets (soit un nombre compris entre
0 et 65535).

2. Le registre X

C’est un registre 16 bits et donc on peut y écrire n’importe quel
nombre de 0 & 1111111111111111 (16 fois le chiffre 1). Si nous pre-
nons la peine de traduire cette valeur binaire en décimal, on obtient
65535. Ceci nous permet de comprendre le réle que jouera X : il
contiendra généralement une adresse mémoire et cette adresse pourra
étre celle de n’importe quel octet de I’intervalle 0 — 65535.

X est souvent appelé registre d’adresses eu égard a ce que nous venons
de dire, mais on I’appelle aussi registre d’index car on peut I’utiliser
dans le mode d’adressage indexé (nous verrons cela bient0t).

3. Le registre SP ou S

Il porte le nom de pointeur de pile. Une pile est un endroit de la
mémoire oll seront stockés — empilés — des nombres les uns a la suite
des autres. La structure de la pile d’un ordinateur correspond tout
4 fait A celle d’une pile d’assiettes : on peut toujours rajouter une
assiette sur la pile, mais si I’on veut en reprendre une, ce sera tou-
jours la derniére posée que I’on devra récupérer (dernier entré, premier
sorti).

L’utilisation de la pile n’étant pas évidente pour le programmeur
qui fait ses premiers pas en assembleur, passons un peu de temps sur
un exemple. Supposons que dans le processeur, les registres A, B, X
et S aient les valeurs suivantes :

— 48 —

Alofofof1fof1]o]o]

A contient donc 20 (décimal) ou 14 (hexadécimal)

BloJoJt]ofolo]1]1]
B contient donc 35 (décimal) ou 23 (hexadécimal)
x[ojolofoftf1ft]1f1JofoJoJoJoJo 1]

Dans le registre X est écrit le nombre décimal 3969 (0F81
hexadécimal)

sfoft]ofofoftfoftftfaf1Jof1J1]o]o]

Dans S se trouve le nombre 17900 (45EC en hexadécimal).

La valeur 17900 indique dans cet exemple que nous allons empiler
nos nombres dans une série d’octets de la mémoire & partir justement
de I’octet 17900. Cet octet en lui-mé&me ne sera pas concerné par notre
travail car c’est dans I’octet juste & cdté que va démarrer notre
empilement.

PSHA

Nous voild devant notre premiére instruction assembleur. Elle uti-
lise une abréviation du mot anglais PUSH (pousser). La lettre A pré-
cise que c’est le contenu de ’accumulateur A qui va étre placé sur la
pile. Lorsque cette instruction aura été exécutée par le microproces-
seur, voici ce qui se sera passé :

Le registre A n’aura subi aucune modification. Son contenu, le nom-
bre 20, sera allé s’écrire dans la pile mais ce registre en aura conservé
la trace. Il en sera toujours ainsi quand nous donnerons I’ordre au
processeur de transférer un nombre d’un registre vers une case
mémoire : le registre ne sera pas modifié, et tout se passera comme
si le registre n’avait envoyé qu’un double, un duplicata a la mémoire.

Les registres B et X ne sont pas intervenus dans 1’instruction et gar-
dent donc la méme valeur.

Le registre S est en fin de compte le seul qui sera modifié. Il va pas-
ser & 17899 indiquant de ce fait que la pile se trouve maintenant & cette
adresse. Voici donc défini le r6le de S : il contient un nombre de 16
bits et ce nombre est ’adresse de I’octet ou se trouve la pile.

— 49 —

Pour Pinstant, notre pile n’est formée que d’un seul octet (4 I’adresse
17899) et ne contient gu’un seul nombre (20).

Octet 17899 20 (décimal) 17899

PILE REGISTRE S

Continuons avec PSHB

Cette fois, c’est le contenu du registre B qui va aller se placer sur
la pile — c’est-a-dire dans I’octet 17898. Si nous avions la possibilité
de mélanger loisir ’assembleur et le BASIC, nous taperions au cla-
vier PRINT PEEK (17898) : la réponse serait 35.

Naturellement, le registre S est encore modifié, n’oublions pas que
c’est lui qui tient les comptes de la pile.

Octet 17898 35 (décimal) 17898
PILE

Et si on essayait PSHX ?

11 va falloir que le microprocesseur aille ranger dans la pile la valeur
de X. Or X est un registre 16 bits et il ne peut étre question d’en pla-
cer le contenu sur un seul octet. Par contre, en nous servant des deux
octets 17896 et 17897, nous aurons la réponse a notre probléme : les
huit bits de gauche de X (bits de poids fort) seront recopiés dans I’octet
17896 et les huit derniers bits (bits de poids faible) seront inscrits dans
P’octet 17897.

Octet 17896 15 (décimal)

Octet 17897 129 (décimal)

Octet 17898 35 (décimal)

Octet 17899 20 (décimal) 17896
PILE REGISTRE S

15 est la traduction décimale de la partie gauche de X et 129 est
la traduction, toujours décimale, de sa partie droite.

Avant de passer & I’opération de dépilement, notons bien que les
nombres sont stockés dans la pile sur des octets dont les adresses
décroissent & chaque fois. Il n’y a rien 3 y faire, c’est dans la logique
sans doute de notre ordinateur : lui, il empile par en dessous. Le tout
est de le savoir.

— 50 —

PULX

C’est notre deuxiéme instruction assembleur : elle effectue exacte-
ment le travail inverse de la premiére. Elle va rechercher un nombre
dans la pile et elle I’écrit dans le registre X. Elle a donc dépilé les octets
17896 et 17897 et a été les replacer dans X. Par 14 méme, notre pile
ne contient plus que deux octets et le registre S repasse & 17898.

Octet 17898 35 (décimal)
Octet 17899 20 (décimal) 17898
PILE REGISTRE S

L’intérét des instructions PSH et PUL n’apparait pas immédiate-
ment aux programmeurs qui débutent avec 1’assembleur car ils ne voient
pas & quoi peuvent bien servir deux choses qui ne font rien d’autre
que nous ramener 3 notre point de départ. Et pourtant c’est 13 juste-
ment qu’en réside tout I’intérét : la principale difficulté de 1’assem-
bleur vient de ce que nous ne disposons que d’un nombre trés réduit
de registres. Nous verrons trés vite le trés gros avantage qu’il y a a
placer la valeur d’un registre dans la pile (PUSH), 3 utiliser ce regis-
tre pour faire autre chose, et 3 retrouver (PULL) la valeur initiale de
ce méme registre.

Finissons-en avec notre exemple :

PULA

La machine va aller écrire 35 dans I’accumulateur. Elle exécute trés
exactement I’ordre qu’on Iui donne en prenant le nombre écrit au som-
met de 1a pile — donc 35 — et en le placant dans A. A ce moment-14
les deux registres A et B contiennent précisément la méme valeur, 35.

Octet 17899 20 (décimal) 17899
PILE REGISTRE S
PULB

La pile que nous avions constituée est réduite a zéro. Le registre
B va prendre la valeur 20 et le registre S reprendra sa valeur initiale
17900.

En fin de compte, dans notre exercice, les accumulateurs auront été

— 51 —

échangés et les registres X et S auront retrouvé les contenus qu’ils
avaient au départ.
Un autre exemple maintenant. On repart du méme énonce€ :
A contient le nombre décimal 20
B contient le nombre décimal 35
X contient le nombre décimal 3969
S contient le nombre décimal 17900.

Puis, on exécute les instructions suivantes :

PSHA — PSHB — PSHX
PULA — PULB — PULX

Nous laisserons au lecteur le soin de déterminer ce que les registres
A, B et X contiendront 3 la fin de ces six opérations.

(Réponses : A (15) ; B (129) ; X (8980))

11 faudra se souvenir que la pile S est utilisée aussi par le micropro-
cesseur pour tenir des comptes internes. Les ennuis nous seront garantis
si, par mégarde, nous ne remettons pas la pile systeme dans I’état ot
nous ’avons trouvée. Si on a eu besoin par exemple d’empiler trois
octets dans S, il faudra étre siir qu’a la fin de notre programme les
trois octets en question ont été dépilés.

4. Le registre PC

C’est un registre 16 bits que I’on appelle le compteur de programme
ou le compteur ordinal. Le nombre qui est écrit dans ce registre est
I’adresse de la prochaine instruction & exécuter. Il permet au micro-
processeur de toujours savoir & quel octet du programme il va devoir
s’intéresser. On ne I'utilise en programmation que dans des cas bien
particuliers : il n’est pas directement accessible.

5. Le registre P

Ce registre 8 bits est utilisé pour faire ressortir certaines conditions
particuliéres qui sont apparues dans le déroulement d’un programme.
Ses bits prennent des valeurs différentes suivant les instructions utili-
sées. On ne se servira (directement) qu’assez peu de ce registre dans
ce livre : sachez toutefois qu’il permettra de tester, de facon souvent
transparente pour nous, si un résultat est négatif, positif ou nul ou
si une retenue est apparue dans une opération par exemple.

- 52 —

LES MODES D'ADRESSAGE

Un mode d’adressage est un moyen qui permet au microprocesseur
d’avoir accés & une donnée. Cette donnée peut étre un nombre quel-
conque dont on aura besoin dans le programme, un nombre qui se
trouve déja dans un registre, ou encore un nombre qui se trouve écrit
quelque part en mémoire.

La connaissance des principaux modes d’adressage est obligatoire :
elle permet d’écrire les programmes de la fagon la plus courte, la plus
simple et la plus lisible possible.

1. L’adressage inhérent

L’adressage inhérent est habituellement réservé aux instructions qui
agissent directement sur les valeurs contenues par les registres. Ces
instructions se comprennent d’elles-mémes et n’ont aucunement besoin
qu’on leur ajoute des indications.

Exemple : INCA

Tous les microprocesseurs comprennent ce genre d’instruction : elle
signifie que le registre A se verra incrémenté, c’est-3-dire que la valeur
qu’il contenait se retrouvera augmentée d’une unité.

A contenait 35 (par exemple)

INCA

A contient 36.

2. L’adressage immédiat

Dans ce mode, une valeur apparait aprés ’instruction assembleur.
Prenons par exemple : LDAA #§5

La formule LDAA, qui sera retrouvée tout au long de ce livre, signi-
fie que ’on va placer (charger) un nombre dans le registre A. II est
facile de voir qu’ici 'instruction LDAA n’aurait pas pu étre écrite toute
seule, comme dans I’adressage inhérent. Il nous faut absolument rajou-
ter des indications a la suite : et, si ’on doit mettre un nombre dans
I’accumulateur A, il faut bien dire lequel.

Dans le mode d’adressage immédiat, c’est la valeur marquée aprés
Pinstruction (ici 5) qui sera écrite dans A.

~ 53 —

A contenait par exemple 50
LDAA #$5

A contient alors 5.

Le signe # est réservé a I’adressage immédiat et permet de ne pas
avoir, aprés chaque instruction, a écrire sous quel mode elle doit étre
comprise. Quant au signe $, il est 1a pour indiquer que la valeur qui
suit est un nombre hexadécimal. C’est bien ennuyeux mais c’est comme
ca : tous nos programmes assembleur utiliseront ’hexadécimal.

Un contre-exemple :

LDAA #$300

Cette ligne devrait, en principe, écrire dans A le nombre hexadéci-
mal 300 (768 décimal). Vous P’aviez deviné ; ceci n’a aucun sens puis-
que A est un registre 8 bits et que le nombre maximum qu’il peut
contenir est 255.

3. L’adressage étendu

On P’appelle souvent adressage absolu car c’est un mode qui va
concerner le contenu de n’importe quel octet de la mémoire.

LDAA $80
L’accumulateur sera chargé non par le nombre 128 (ou 80 hexa)
comme il I’aurait été dans I’adressage immédiat, mais avec la valeur
écrite dans I’octet numéro 128.
PRINT PEEK (128) ; réponse : 34
En fin de compte, le registre A contiendra 34. Aucun signe n’est
utilisé quand I’instruction est écrite avec le mode étendu.
Un deuxiéme exemple :

LDAA $FFFF

Un piége, comme dans le paragraphe précédent ? 65535 (ou FFFF
hexa) parait bien trop important pour notre accumulateur 8 bits. Mais

— 54 —

non, cette ligne n’est pas un non-sens : elle signifie que le registre A
va contenir non pas le nombre 65535, mais le nombre qui se trouve
écrit dans ’octet ayant 65535 pour adresse.

PRINT PEEK {65535} ; réponse : 46

Ce qui fait que A sera chargé, une fois I’instruction assembleur exé-
cutée, par la valeur 46,

4. L’adressage indexé

C’est un mode qui concerne le contenu du registre X.

Un peu délicat a utiliser au départ, il s’avére ensuite offrir de mul-
tiples possibilités au programmeur.

Voici quelques exemples :

LDAA 30, X

L’accumulateur va &tre chargé avec la valeur qui se trouve dans I’oc-
tet ayant pour adresse le nombre écrit dans X.
Supposons que dans le registre 16 bits X il y ait le nombre 50000.

PRINT PEEK (50000) ; réponse : 39.

Aprés LDAA $0, X il y aura dans le registre A la valeur 39. Cette
instruction est donc tout a fait équivalente 3 LDAA $C350 (adressage
étendu avec C350 = 50000 décimal).

Deuxiéme exemple :

LDAA $3, X
Cette fois, le processeur va aller chercher, pour ’écrire dans A, la
valeur qui se trouve en mémoire dans 1’octet ayant pour adresse le
nombre contenu par X auquel on ajoute 3.

Admettons ici aussi que X contienne la valeur 50000.
On ajoute 3 3 50000 et ’octet concerné est alors le numéro 50003.

PRINT PEEK {50003) ; réponse : 11.

Ainsi, dans cet exemple, A va &étre chargé avec le nombre 11.

— 55 —

5. L’adressage direct

I1 concerne, tout comme 1’adressage étendu, le contenu d’un octet
de la mémoire mais il ne peut &tre utilisé que s’il s’agit d’un octet dont
I’adresse est inférieure & 256. Un exemple :

LDAA <$80

Aprés exécution de cette instruction, il y aura dans le registre A le
méme nombre que celui qui est écrit & 1’adresse $80 (128 décimal).

PRINT PEEK (128) ; réponse : 34.

C’est donc la valeur 34 qui a été placée dans A.

Il n’y a rien d’autre a ajouter sur ce mode d’adressage que d’ail-
leurs I’on n’emploie qu’épisodiquement. Remarquons tout de méme
que ’adresse de I’octet est donnée en hexadécimal et qu’elle est précé-
dée du signe <.

Nous en avons terminé avec ce chapitre, le cap difficile de la théo-
rie est passé. Asseyons-nous devant Alice et voyons comment nous
allons lui faire comprendre puis exécuter un programme é&crit en
assembleur.

4

FTUDE D'UN EXEMPLE

Retrouvons le programme BASIC qui nous a servi, dans le
Chapitre 2, & mettre en évidence les qualités graphiques de notre
ordinateur.

10 POKE 48929 , 65 : REM LETTRE A

20 POKE 48930 , 1 : REM MODE ALPHA
30 POKE 48931 , 23 : REM ROUGE/BLANC
40 POKE 48934 , 27 : REM LIGNE N° 20
50 POKE 48935 , 27 : REM COL. N° 27

60 POKE 48936 , 1 : REM EXECUTION

Inutile de le retaper, il n’est présenté ici que pour nous remettre en
téte la marche & suivre quand on veut afficher un caractere sur I’écran.

Cette marche 2 suivre, nous allons le voir, est rigoureusement la méme
en BASIC et en assembleur.

LE MODE EDITEUR-ASSEMBLEUR

Respectons les consignes du manuel d’utilisation :

CLEAR 100 , 18000 puis ENTER
& puis ENTER

Dés que ces deux ordres ont été tapés, I’écran s’efface et le fond
devient bleu. Nous sommes maintenant sous le contrdle de 1’éditeur-
assembleur. Le microprocesseur 6803 attend nos ordres. Allons-y sans
crainte.

1 ORG $4A00 ; 18944 DECIMAL
2 EXC DEBUT

3 DEBUT LDAA #3$41 ; CODE ASCII A
4 STAA $BF21 ; 48929 DECIMAL
5 LDAA #31

6 STAA $BF22 ; 48930 DECIMAL
7 LDAA #3517 ; 23 DECIMAL

8 STAA $BF23 ; 48931 DECIMAL
9 LDAA #319 ; 27 DECIMAL

10 STAA $BF26 ; 48934 DECIMAL

— 58 —

11 STAA $BF27 ; 48935 DECIMAL

12 LDAA #31
13 STAA $BF28 ; 48936 EXECUTION
14 FIN BRA FIN

Voici quelques indications sur les précautions & prendre pour entrer
ce programme :

¢ N’indiquez surtout pas, comme en BASIC, les numéros des lignes
que vous voyez ici €crits & gauche. Nous ne les avons fait apparaitre
que parce que cela vous permettra de vous y retrouver plus facile-
ment dans les explications.

e Sachez que tout ce qui suit un point-virgule est ignoré par I’ordina-
teur ; le point-virgule est en assembleur I’équivalent de ’instruc-
tion BASIC REM.

® Vous devez écrire les mots DEBUT et FIN (que I’on appelle des éti-
quettes) & partir du bord gauche de ’écran.

¢ Enfin, n’oubliez jamais de laisser an moins deux espaces libres avant
d’écrire une instruction et d’en laisser au moins un entre les diffé-
rents constituants d’une ligne.

ANALYSE DU PROGRAMME

ORG $4A00 (ligne 1)

On s’est bien compris, n’est-ce pas ? Vous avez laissé au moins deux
espaces avant de taper les lettres O, R et G et vous avez ensuite laissé
au'moins un espace avant d’afficher $4A00 ? Et vous n’avez mentionné
aucun numéro de ligne ? Bien, alors voici & quoi correspond cette
ligne :

La directive ORG apparait toujours a la premiére ligne des pro-
grammes. Elle donne & I’ordinateur des indications sur la facon dont
il devra ranger, dans sa mémoire, les codes machine. Ne cherchons
pas, pour ’instant, 3 y comprendre quoi que ce soit. D’une part parce
que nous aurons 1’occasion d’y revenir et d’autre part parce que cela
n’a pas de rapport direct avec ce que nous sommes en train d’analyser.

EXC DEBUT (ligne 2)

— 59 —

Le programme, & proprement parler, n’a pas encore commence ;
EXC est une directive qui va préciser a la machine & quelle ligne se
trouve la premiére instruction réelle du programme. En I’occurrence,
c’est de la ligne 3 qu’il est question, ligne & laquelle nous avons collé
une étiguette. Au lieu de ’appeler ““ligne 3’’, nous I’appelons “‘ligne
DEBUT”’. Et, du coup, EXC ligne 3 devient EXC DEBUT. Naturel-
lement, nous aurions pu remplacer le mot DEBUT par ABCDE (ou
n’importe quel assemblage de cing lettres maximum). Il aurait fallu
alors faire débuter la ligne 3 par ABCDE.

DEBUT LDAA #$41 (ligne 3)

A partir de 13, nous intervenons sur le microprocesseur lui-méme.
LDAA est une instruction que nous avons déja rencontrée. Elle signi-
fie que le registre A va contenir la valeur hexadécimale $41 (65 déci-
mal). Le symbole # est 12 pour indiquer le mode d’adressage immé-
diat. On ignore quel nombre se trouvait dans ’accumulateur avant
cette instruction, mais maintenant on est stir de la valeur de A : c’est
65 en décimal ($41).

STAA $BF21 (ligne 4)

STAA est une instruction trés fréquemment utilisée en assembleur :
elle signifie que la valeur contenue dans A va devoir &tre inscrite dans
un octet de la mémoire. STAA est I’abréviation de STORE A qui, en
anglais, veut dire RANGER A. Le mode d’adressage choisi, I’étendu,
nous laisse entendre que $BF21 (48929 décimal) est ’adresse d’un octet
de la mémoire. En définitive, c’est dans cet octet que sera rangé le
contenu de A. Cette instruction est donc I’équivalent assembleur de
la ligne BASIC 10 POKE 48929,65 car, ne le perdons pas de vue, le
registre A contient le nombre 65.

Voila reconstituée, sous sa forme assembleur, la ligne BASIC 10.
Il y a donc, pour l’instant, le code ASCII de la lettre A dans ’octet
48929. Avant de poursuivre notre étude, tirons la lecon de ce que I’on
vient de faire : pour écrire une valeur dans un octet, on place cette
valeur dans le registre A (LDAA en mode immédiat) puis on la range
en mémoire (STAA en mode étendu).

LDAA #81 (ligne 5)
STAA $BF22 (ligne 6)

— 60 —

Nous pouvons aller plus vite maintenant que le principe est compris.
On écrit dans I’accumulateur le nombre 1 et on le transfére dans 1’octet
$BF22 (48930 décimal). On vient, par 1a-méme, de porter son choix
sur le type d’affichage alphanumérique standard.

LDAA #$17 (ligne 7)
STAA $BF23 (ligne 8)

Puisque $17 vaut 23 en décimal, ces deux lignes ont pour but d’écrire
la valeur 23 dans I’octet $BF23 (48931 décimal). La lettre majuscule
A apparaitra donc en rouge sur fond blanc.

LDAA #3$19 (ligne 9)
STAA $BF26 (ligne 10)

Nous continuons & respecter I’enchainement des lignes BASIC : voici
les deux instructions qui correspondent 3 POKE 48934,27. Le carac-
tére sera visible sur la ligne numéro 20 car, mais vous ne I’avez pas
oublié, les lignes 1, 2 ... 7 sont sautées par 1’ordinateur.

STAA $BF27 (ligne 11)
Aucun ordre LDAA n’ayant été programmé, la valeur contenue par
A est restée la méme. Cette ligne fournit a I’ordinateur la derniére chose
qui lui manquait : le numéro de la colonne sur laquelle se verra la lettre

A.

LDAA #$1 (ligne 12)
STAA $BF28 (ligne 13)

Il ne reste plus qu’a rendre effectif I’affichage : ceci se fait en écri-
vant le nombre 1 dans ’octet $BF28 (48936 décimal).

FIN BRA FIN (ligne 14)

Nous utilisons tous dans nos programmes BASIC des lignes du
genre :

100 GOTO 100

- 61 -

Nous avons sous les yeux la forme équivalente en assembleur. BRA
est une instruction de branchement inconditionnel et comme ce bran-
chement s’effectue 4 la ligne courante, le programme boucle sans fin.
Bien entendu, U'intérét de cet état de choses sera de nous laisser le temps
de voir ce qui va apparaitre sur le téléviseur : la lettre A coloriée en
rouge sur fond blanc.

EXECUTION DU PROGRAMME

Le programme est entiérement tapé, il ne reste plus qu’a comman-
der & 'ordinateur de I’exécuter.

Pressez a la fois les touches CTRL et 1. Le message suivant appa-
rait en bas de ’écran :

LISTING {ECRAN , IMP , ENTER) ?

Appuyez sur E puis sur la touche ENTER. Vous devez voir appa-
raitre la totalité de votre programme avec, en plus, divers renseigne-
ments. Nous avons, devant nous, ce que ’on appelle le listing
d’assemblage.

1 ORG $4A00
2 EXC DEBUT
3 4A00 86 41 DEBUT LDAA #$41
4 4A02 B7 BF 21 STAA $BF21
5 4A 05 86 01 LDAA #3$1

6 4A 07 B7 BF 22 STAA $BF22
7 4A0A 8617 LDAA #$17
8 4A0C B7BFZ2 STAA $BF23
9 4A0F 8619 LDAA #319
10 4A 11 B7 BF 26 STAA $BF26
11 4A 14 B7 BF 27 STAA $BF27
12 4A 17 86 01 LDAA #$1
13 4A 19 B7 BF 28 STAA $BF28
14 4A1C 20F2 FIN BRA FIN

0 ERREUR(S) PASSE 1
0 ERREUR(S) PASSE 2

- 62 —

SYMBOLES :

DEBUT = 4A00 FIN = 4A1C

FICHIER OBJET ?

A la derniére ligne, I’ordinateur demande si ’on désire sauvegar-
der le programme objet sur une cassette. Appuyez sur BREAK. Appa-
rait alors le message qui nous intéresse :

EXECUTION IMMEDIATE ?

Répondez en enfoncant la touche 0 (puis ENTER). Le programme est
enfin exécuté et cela se traduit par le dessin de la lettre majuscule A,
en rouge sur blanc, en bas et 3 droite de 1’écran.

Voila, nous sommes arrivés & nos fins ; le premier pas est franchi.
En fin de compte, programmer en assembleur n’est pas plus compli-
qué qu’en BASIC. C’est simplement un peu plus long car le micro-
processeur ne comprend que des actions élémentaires ; il faut lui mdcher
le travail. 7

N’oubliez pas que le programme boucle indéfiniment dans la ligne
14. La touche BREAK ne vous sera d’aucune utilité pour reprendre
Alice en main. Il n’y a qu’un seul moyen pour sortir d’'un programme
assembleur qui boucle : enfoncer la touche INIT placée sur la face
arriére de la machine.

Laissez la fin de ce chapitre de c6té. Dans un premier temps tout
au moins, ce qui suit peut trés bien &tre ignoré. Inutile donc de vous
encombrer 1’esprit avec des notions qui, en définitive, ne nous con-
cernent pas directement. Vous reprendrez le livre & cette page quand
VoS connaissances se seront un peu stabilisées.

LE LANGAGE MACHINE

Un ordinateur ne comprend que des nombres et pour lui les expres-
sions LDAA, STAA ou BRA ne veulent absolument rien dire. Il va
donc falloir lui traduire le programme que nous avons écrit en assem-
bleur sous la seule forme qui lui soit compréhensible : les codes
machine.

Insistons bien sur la différence qu’il y a entre les langages assem-
bleurs et machine : le premier est congu pour I’esprit humain et il est

— 63 —

formé d’instructions qui ont un sens pour nous. Quand on écrit LDAA,
on sait trés bien ce qui se passera dans le processeur, on n’a pas besoin
de faire un gros effort pour comprendre que le contenu du registre
A sera modifié et remplacé par une nouvelle valeur. La forme assem-
bleur permet d’écrire des programmes qui soient lisibles, des program-
mes qui soient constitués de mots ou d’abréviations dont on s’habi-
tuera trés vite & connaftre le sens.

Quant au langage machine, il est constitué d’une série de nombres
que 'ordinateur, lui, est capable d’interpréter. Il y a naturellement
une correspondance absolue entre les instructions assembleur et les
codes machine qui leur sont relatifs.

Livrons-nous, pour la premiére et pour la derniére fois, a la tra-
duction en langage machine du programme que nous avons écrit en
assembleur. C’est Alice elle-méme qui se charge normalement de ce
travail. Servez-vous du tableau de I’Annexe C.

3 4A00 86 41 DEBUT LDAA #$41
4 4A02 B7 BF 21 STAA $BF21

86 est I’équivalent pour la machine de LDAA. Vous constatez que
LDAA se code de différentes fagons suivant le mode d’adressage. Celui
qui nous intéresse est ’'immédiat, dans la premi¢re colonne donc. Il
faudra toujours se souvenir que les codes machine sont écrits en hexa-
décimal ; 86, ainsi que tous les autres codes de ce tableau, respecte
cette régle.

41 est le nombre qui suit 86. Le microprocesseur, aprés avoir inter-
prété 86, s’attendra a ce qu’on lui dise avec quel nombre il doit char-
ger A. Puisque 41 vient a la suite de 86, il comprendra que la valeur
41 (65 décimal) doit étre placée dans I’accumulateur.

B7 est le code machine de ’instruction STAA. 11 doit étre choisi
dans la bonne colonne, celle de I’adressage étendu. C’est en effet ce
mode que nous avons décidé d’utiliser en écrivant le programme assem-
bleur. Quand I’ordinateur va lire ce code, il saura qu’il lui faut alors
s’intéresser aux deux valeurs suivantes.

BF et 21 forment le nombre hexadécimal BF21. La machine, ayant
rencontré B7, comprendra qu’elle doit placer le contenu du registre
A dans un octet de la mémoire ; dans le numéro 48929 ($BF21) bien siir.

- 64 —

Arrétons nos efforts de traduction, cela devient vite fastidieux. Rete-
nons que notre programme assembleur correspond, pour le proces-
seur, 2 la suite de nombres :

86, 41, B7, BF, 21, etc.

L’ensemble de ces valeurs est appelé le code machine et il est direc-
tement exécutable. 1l suffit, pour le faire exécuter, de brancher le pro-
cesseur sur la premiére de ces valeurs. C’est exactement ce qui est réa-
lis¢ quand mous répondons OUI & la question EXECUTION
IMMEDIATE ?

1l reste pour clore ce chapitre, a indiquer comment I’ordinateur fait
pour savoir & quel endroit de sa mémoire se trouve le premier des codes
machine. 11 utilise, pour cela, la premiére indication du programme :

ORG $4A00

Cette directive lui donne P’adresse & partir de laquelle sera rangé le
code machine. Puisque $4A00 est égal 3 18944 en notation décimale,
on en déduit que les nombres 86, 41, B7, etc., seront écrits dans les
octets 18944, 18945, 18946, etc.

Vous pourrez vérifier ceci en étudiant les nombres qui, sur le listing
d’assemblage, suivent les numéros de ligne :

3 4A00 86 41
4 4A02 B7 BF 21

86 est écrit dans 1’octet $4A00, B7 est écrit dans I’octet $4A02, etc.

— 65 —

0

FLEMENTS
DE PROGRAMMATION
DU 6803

| LDAA

Abréviation de LOAD A (charger A), cette instruction permet
de placer une valeur 8 bits dans le registre A.

Les modes d’adressage possibles sont I'immédiat, le direct, I’indexé
et I’étendu.

Exemple : MODE D’ADRESSAGE IMMEDIAT (25 octets)

Programme assembleur

1 ORG $4A00
2 EXC DEBUT
3 DEBUT LDX #$BF21 ; 48929 DECIMAL
4 LDAA #$64 : 100 : ASCH d
5 STAA $0,X : 48929
6 LDAA #$11 ;17 : ALPHA SOULIGNE
7 STAA $1,X : 48930
8 LDAA #$1E ; 30 : ROUGE/TURQUOISE
9 STAA $2,X ; 48931
10 STAA $5,X ; 48934 LIGNE
11 LDAA #$1 N
12 STAA $6,X : 48935 COLONNE
13 STAA $7,X ; 48936 EXECUTION
14 FIN BRA FIN
Commentaires

Voici un programme dont le role est de faire apparaitre un carac-
tére sur ’écran. Il est donc identique, quant & son but, a celui que
nous avons rencontré dans le chapitre précédent. Par contre, sa pré-
sentation est nouvelle par le fait que nous allons utiliser le mode d’adres-
sage indexé.

Ligne 3 : le registre X va contenir le nombre $BF21 (48929 déci-

— 68 —

mal). Ceci est tout a fait possible puisque X est un registre 16 bits et
que son contenu peut atteindre la valeur 65535 (FFFF hexadécimal).

Ligne 4 : on écrit dans I’accumulateur le nombre 100 ¢’est-a-dire
le code ASCII de la lettre d minuscule.

Ligne 5 : STAA est I'instruction qui recopie le contenu du registre
A dans un octet de la mémoire. Pour savoir lequel, il suffit d’inter-
préter la notation $0,X. Celle-ci indique que I’octet en question a pour
adresse le nombre contenu dans le registre X (soit 48929) auquel on
ajoute $0 (auquel on n’ajoute rien du tout, donc). Conclusion : le
nombre décimal 100 est rangé dans I’octet 48929.

Lignes 6 et 7 : une nouvelle valeur est écrite dans A et se voit trans-
férée dans I’octet 48930 (soit 1 + X). Rappelons que lorsque le nombre
17 ($11) est inscrit dans cet octet, le type de I’affichage qui va avoir
lieu est ’alphanumérique souligné.

“Lignes 8 et 9 : octet 48931 (2 + X) est chargé avec le nombre
30 ($1E).

[oJofofiJ1T1]1To]a— Octet 48931

Rouge Turquoise
—-Clignotant

La lettre que I’on se propose de faire apparaitre sera donc de couleur
rouge sur fond bleu clair et elle clignotera.

Ligne 10 : A n’a pas changé de valeur et ’instruction STAA copie
dans I’octet 48934 (5 + X) le nombre 30. Souvenons-nous que cet octet
correspond a la ligne d’affichage et que les numéros allant de 1 4 7
ne sont pas employés ; notre caractére sera donc visible a ’avant-
derniére ligne.

Lignes 11 et 12 : aprés le numéro de la ligne, voici le numéro de
la colonne ; il s’agit de la deuxiéme colonne en partant de la gauche.

Ligne 13 : il ne nous reste plus qu’a donner ’ordre d’affichage ;
c’est ce que nous réalisons en portant ’octet 48936 (7 + X) au niveau 1.

Ligne 14 : le programme boucle sans fin sur cette ligne ; il n’y
a pas ainsi de retour prématuré au BASIC et nous avons le temps de

- 69 -

voir que notre programme a été exécuté correctement. N’oubliez tou-
tefois pas que seul un appui sur la touche INIT pourra vous rendre
le contrdle de votre ordinateur.

LDAB

Cette instruction est absolument identique @ LDAA, mais elle
concerne le chargement du registre B. La encore, les modes d’adres-
sage possibles sont I'immédiat, le direct, ’indexé et I’étendu.

Abréviation de LOAD D (charger D), cette instruction permet
de placer une valeur 16 bits dans le registre X.

Les modes d’adressage possibles sont I'immédiat, le direct,
I’étendu et ’indexé.

Exemple : MODE D’ADRESSAGE IMMEDIAT (19 octets)

Programme assembleur

1 ORG $4A00
2 EXC DEBUT
3 DEBUT LDX #$BF21 : 48929 DECIMAL
4 LDD #$6411 ; 100 DANS A et 17 DANS B
5 STD $0,X ; 48929 et 48930
6 LDD #$1E01 : 30 DANS A et 1 DANS B
7 STAA $2,X : 48931
8 STD $5,X ; 48934 et 48935
9 STAB $7.X ; 48936
10 FIN BRA FIN
Commentaires

Voici un programme qui réalise, comme le précédent, I’affichage
d’un caractére sur ’écran. Il a I’avantage de se présenter sous une forme
plus compacte car il utilise les services du double accumulateur D.

Ligne 3 : le programme démarre avec le registre X pointant sur
Poctet 48929,

Ligne 4 : I’accumulateur D est chargé sur le mode immédiat, avec
la valeur $6411. Faisons I’effort de voir & quoi ce nombre correspond
au niveau du binaire.

$6411 = 0110 0100 0001 000!
& 4 1 1

Nous pouvons alors en déduire la configuration du registre D :

- 71 -

[o]1Jt1]oJof1]ofofo]ofoft{o]ofo]1] D
A B

et, par la méme occasion, celles des accumulateurs 8 bits A et B :

A_lof1]1]ofo]1]ofo]
64 hexa

B_.|ofoJo]1]ofofo]1]

11 hexa

Ligne 5 : le contenu 16 bits de D est écrit en mémoire. Ceci ne
peut, naturellement, s’effectuer sur le seul octet 48929. Son suivant,
le numéro 48930 est lui aussi mis & contribution. Ainsi, quand I’ins-
truction STD $0,X aura été exécutée, I'octet 48929 contiendra le
nombre $64 et I’octet 48930 le nombre $11. Résumons ce qui vient
d’€tre dit : les deux lignes 4 et 5 sont équivalentes a la série d’instruc-
tions suivantes :

LDAA #3$64 ; STAA $0,X ; LDAB #§11 ; STAB $1,X

Le caractére qui sera affiché sera la lettre d soulignée.

Lignes 6, 7, 8 et 9 : on écrit dans D le nombre $1E01. Ce qui
revient a dire que ’on charge les deux accumulateurs A et B avec les
valeurs $1E et $1. Ensuite on écrit :

$1E dans Poctet 48931 (couleur du caractére)
$1E dans Poctet 48934 (n° de ligne)

$01 dans ’octet 48935 (n°® de colonne)

$01 dans I’octet 48936 (exécution)

LDS DX

Ces deux instructions s’utilisent de la méme facon que LDD. Elles
servent a placer dans les registres S et X des valeurs de 16 bits.

- 72 -

JOR

Cette instruction est I’abréviation de Jump to SubRoutine. Elle
indique au microprocesseur a quelle adresse le sous-programme doit
démarrer. Le retour du sous-programme s’effectue a I’instruction qui
suit JSR. On peut utiliser les modes d’adressage indexé, étendu et direct.

Exemple : MODE D’ADRESSAGE ETENDU (8 octets)

Programme assembleur

1 ORG $4A00

2 EXC DEBUT

3 DEBUT LDAA #$66 : FREQUENCE DU DO

4 LDAB #$20 : DUREE DU SON

5 JSR SON

6 RTS

7 SON = $FFAB ;: ROUTINE DU SON
Commentaires

Voici un programme clé pour notre sujet. D’une part il va nous per-
mettre d’approfondir nos connaissances sur la fagon dont fonctionne
notre ordinateur ; d’autre part il va nous faire comprendre comment
nous pouvons, en assembleur, jouer des notes de musique.

Ligne 3 : le premier accumulateur est chargé avec le nombre $66
(102 décimal). Notons simplement, pour ’instant, que ce nombre cor-
respond a la fréquence de la note DO du deuxiéme octave.

Ligne 4 : pour définir une note, il faut aussi des indications sur
sa durée. Le second registre 8 bits est 1a pour cela.

Ligne 5 : c’est le ceeur du programme. On peut comparer JSR
a l’instruction BASIC GOSUB : le microprocesseur va partir exécu-
ter les codes machine qui se trouvent a partir de ’adresse $FFAB (soit

-~ 73 —

65451 en décimal). Vous avez du mal & comprendre, vous ne voyez
aucune signification & ces nombres, vous trouvez que ce n’est pas clair ?
Disons-le tout net : dans P’état d’avancement de notre étude, ceci ne
peut pas étre clair. C’est méme le trou noir. On ne sait pas du tout
quel genre d’instructions I’ordinateur va aller exécuter ! Alors, que
doit-on retenir de tout cela ?

® Premiérement que le nombre 65451 n’a pas été choisi au hasard ;
il fait partie d’une zone mémoire de la machine que I’on appelle
le moniteur.

® Deuxiémement, qu’a partir du moment oll un programme se bran-
che a cette adresse, une note de musique est émise par le haut-parleur.

* Troisiémement que la fréquence et la durée de cette note sont en
relation directe avec les contenus des registres A et B.

* Quatriemement, qu’aprés avoir joué une note, le processeur retrouve
I'instruction qui suit immédiatement JSR. Dans notre cas, puisqu’il
s’agit de RTS, le retour au BASIC est programmé.

Ligne 7 : c’est la premiére fois que 1’on rencontre Pinstruction
d’affectation. Vous avez naturellement deviné & quoi sert cette direc-
tive : elle affecte la valeur $FFAB a I’étiquette SON. A chaque fois
que ’assembleur butera sur le mot SON, il le remplacera par le nombre
SFFAB. C’est d’ailleurs ce que I’on peut voir en analysant les codes
machine relatifs a la ligne 5 : JSR SON a été traduit par BD FF AB
(BD est le code de JSR).

- 74 —

Abréviation de STORE A (ranger A), STAA permet de placer
dans un octet de la mémoire la valeur 8 bits qui a précédemment été
chargée dans le registre A. Trois modes d’adressage : Uindexé, I’étendu
et le direct.

Exemple : MODE D’ADRESSAGE ETENDU (7 octets)

Programme assembleur

1 ORG $4A00 ; 18944 EN DECIMAL
2 EXC DEBUT

3 DEBUT LDAA $4B00 ; 19200 EN DECIMAL
4 STAA $4B01 ; 19201 EN DECIMAL
5 RTS

Programme BASIC

10 INPUT“DONNEZ UN NOMBRE’";N : POKE 19200,N

20 EXEC 18944

30 PRINT“L'OCTET 19200 CONTIENT LA VALEUR";PEEK(19200)
40 PRINT“L'OCTET 19201 CONTIENT LA VALEUR";PEEK{19201)
50 GOTO 10

Commentaires

Le réle du programme assembleur se réduit & peu de choses : 1’ac-
cumulateur A est chargé avec la valeur écrite dans I’octet 19200 (ligne
3) puis cette valeur est elle-méme transférée dans I’octet 19201 (ligne
4). Notre programme se contente donc de recopier a I’adresse 19201
le nombre qu’il a trouvé dans I’octet précédent. Nous allons nous assu-
rer de cela grice au BASIC, montrant en détail comment il est possi-
ble de méler étroitement les deux langages compris par Alice. Aprés
tout, si nous nous donnons la peine d’étudier I’assembleur, c’est dans
Pespoir de I'utiliser un jour dans nos programmes BASIC, non ?

— 75 —

Commengons par le commencement : vous &tes passé sur le mode
assembleur, vous avez tapé au clavier les cing lignes de votre pro-
gramme, vous vous &tes assuré qu’il ne contenait pas d’erreur puis
vous en avez demandé I’exécution. Et vous n’avez rien vu de spécial ;
vous vous &étes retrouvé devant un écran vide et sous le contrble du
BASIC. Pourtant il s’est passé quelque chose d’intéressant dont nous
allons tirer parti. L’ordinateur a, préalablement a 1’exécution du pro-
gramme, traduit ’assembleur en codes machine et rangé ces codes sur
sept octets a partir de I’adresse 18944 (4A00 hexa). On le vérifie ?

FOR 1 = 18944 TO 18950 : PRINT PEEK{l) ;: NEXT
Réponse : 182 75 0 183 751 57

C’est bien le résultat attendu : 182 (B6 hexa) est le code décimal
dg Pinstruction LDAA en mode étendu, 75 est la traduction de 4B,
... €t 57 (39 hexa) correspond a la commande RTS.

Ainsi donc, nous disposons en mémoire d’un programme écrit en
langage machine. Nous allons pouvoir, autant de fois que nous le sou-
haitons, le faire exécuter en nous servant de la commande BASIC
EXEC. Cette instruction, en effet, ne fait pas autre chose que de lancer
I’exécution... d’un programme machine. C’est tout 3 fait ce qui nous
convient, n’est-ce pas ?

Voyons, en pratique, comment il faut s’y prendre :

Ligne BASIC 10 : un nombre N est demandé et son écriture dans
Ioctet 19200 est réalisée par I’instruction POKE.

Ligne BASIC 20 : c’est I’exécution du programme machine. Le
microprocesseur écrit dans I’octet 19201 le nombre qui se trouve &
I’adresse précédente puis, rencontrant I’instruction RTS, redonne la
main au BASIC.

Lignes BASIC 30 et 40 : voici la confirmation de ce que nous

avions prévu ; on retrouve toujours le méme nombre dans les octets
19200 et 19201.

Il n’y a rien d’autre & ajouter concernant le programme étudié.
Toutefois, ne terminons pas notre étude sans faire deux remarques
au sujet de la connexion, sur notre ordinateur, du BASIC et de
I’assembleur.

- 76 —

La premiére a trait au fait que ’on peut passer sans aucune con-
trainte d’un langage a I’autre. On peut trés bien taper un programme
assembleur puis passer (touche BREAK appuyée deux fois) au BASIC.
Mais on peut aussi, sans ennui, retrouver ensuite (touche %) le pro-
gramme assembleur (qui n’aura donc pas été détruit). L’ordinateur
a donc la possibilité de garder en mémoire un programme assembleur
et un programme BASIC.

La seconde remarque est la suivante : si I’on enregistre sur une cas-
sette le programme BASIC qui a servi & notre étude avec la ferme inten-
tion de s’en resservir un peu plus tard, on risque fort d’avoir quelques
problémes. Effectivement, dés que I’ordinateur est éteint, il oublie tout
et en particulier les sept nombres que I’on a écrits dans les octets 18944
et suivants. Alors faudra-t-il a4 chaque fois retaper le programime assem-
bleur ? Non, la solution est plus simple : il suffit d’inclure dans le pro-
gramme BASIC la liste des codes machine et de les faire écrire direc-
tement dans les octets voulus :

4 CLEAR 100 , 18000

5 DATA 182 ,75,0,183,75, 1,57
6 FOR 1 = 18944 TO 18950 : READ J
7 POKE | , J : NEXT

L’ajout de ces lignes au programme BASIC le rend totalement auto-
nome. Il peut alors étre enregistré.

STAB

Cette instruction, identique dans son principe d’utilisation a STAA,
commande le passage d’une donnée 8 bits du registre B vers un octet
de la mémoire.

STX

La valeur 16 bits contenue dans le registre X est rangée en
mémoire. Le rangement s’effectue sur deux octets consécutifs. On peut
utiliser les modes d’adressage étendu, indexé et direct.

Exemple : MODE D’ADRESSAGE ETENDU (20 octets)

Programme assembleur

1 ORG $4A00
2 EXC DEBUT
3 ;
4 DEBUT JSR EFF : CLS
5 ;
6 LDAA #$0
7 STAA $E8 : MISE A 0 OCTET E8
8 LDX $50A
9 STX $3280 : LIGNE ET COLONNE
10 LDAA #3541 : CODE LETTRE A
11 JSR AFCAR ; AFFICHAGE CARACTERE
12 FIN BRA FIN
13 ;
14 :
15 EFF = $FBD4
16 AFCAR = $FOC6
Commentaires

Ligne 4 : vous vous souvenez de la routine $SFFAB qui nous a
permis de programmer un son en assembleur ? Eh bien, en voila une
autre tout aussi intéressante. A chaque fois qu’un programme se bran-
che a I’adresse $FBD4, I’écran est entiérement effacé. JSR EFF recons-
titue tout simplement la fonction CLS.

— 78 —

Ligne 11 : nous avons nettoyé I’écran pour y écrire quelque chose ;
alors allons-y ! Envoyons, toujours avec JSR, le microprocesseur exé-
cuter une nouvelle routine baptisée AFCAR. Ce sous-programme réa-
lise pour nous ’affichage d’un caractére ; il suffit de brancher I’ordi-
nateur a ’adresse $F9C6. Voyons les détails et appliquons a la lettre
lés renseignements fournis par le constructeur (cf. guide d’instructions
assembleur).

Ligne 10 : avant I’appel de la routine, I’accumulateur A doit con-
tenir le code ASCII du caractére 4 afficher. Mettons donc dans ce regis-
tre le nombre $41 (65 décimal) correspondant a la lettre majuscule A.

Lignes 6 et 7 : le registre A ne sert ici que d’intermédiaire. On
y €crit la valeur O et on la recopie dans ’octet $E8 ; ceci pour indi-
quer a la machine que I’on veut voir notre caractére sur I’écran.

Ligne 8 : X, registre 16 bits ne ’oublions pas, est chargé avec le
nombre hexadécimal $50A. Faisons un petit effort pour convertir ce
nombre en binaire :

loJofoloJof1foJt]ofofoJoJiJo]1]o]

On a I’habitude de considérer les huit bits de gauche comme ’octet
de poids fort du registre X et les huit bits de droite comme ’octet de
poids faible. Ceci permet d’obtenir la valeur décimale contenue dans
ce registre a I’aide de la relation suivante :

256+octet de poids fort (en décimal) + octet de poids faible (en
décimal)

Pour ce qui concerne notre exemple, c’est le nombre 1290 (256+5 + 10)
qui est maintenant placé dans X.

Ligne 9 : le contenu du registre X est rangé a I’adresse $3280.
Comme il n’est pas question de décharger X sur le seul octet $3280,
il sera nécessaire d’en utiliser un deuxi¢me : la partie forte de X (5
en décimal) se retrouve dans "octet $3280 et sa partie faible (10 en
décimal) dans Poctet $3281.

Or, que lisons-nous sur le manuel livré avec Alice ? Qu’avant d’ap-
peler la routine d’affichage, il est nécessaire d’avoir placé dans 1’octet
$3280 le numéro de la ligne et dans ’octet d’aprés le numéro de la
colonne. Voici donc que s’explique pourquoi la lettre A est apparue
a tel endroit du téléviseur plutdt qu’a tel autre.

- 79 —

Ligne 12 : on oblige le programme & boucler sur lui-méme car,
s’il se terminait, le retour immédiat au BASIC nous empécherait de
voir quoi que ce soit sur 1’écran.

STD STS

On utilise ces deux instructions de la méme facon que STX. Elles
permettent de placer le contenu du registre spécifié dans un emplace-
ment constitué par deux octets de la mémoire.

— 80 —

| ADDA

Cette instruction va ajouter les contenus du registre A et d’un
octet mémoire; Le résultat de l’addition sera alors placé dans A. On
peut utiliser les modes d’adressage immédiat, indexé, étendu et direct.
Exemple : MODE D’ADRESSAGE INDEXE (10 octets)

Programme assembleur

ORG $4A00

1

2 EXC DEBUT

3 DEBUT LDX #$4B00 ; 19200 EN DECIMAL
4 LDAA $0,X

5 ADDA $1,X

6 STAA $2,X

7 RTS

Programme BASIC

10 INPUT ** PREMIER NOMBRE " ; N : POKE 19200,N

20 INPUT * DEUXIEME NOMBRE ” ; M : POKE 19201,M
30 EXEC 18944

40 PRINT “ LA SOMME VAUT " : PEEK (19202) : GOTO10

Commentaires

Ligne 4 : le registre A est chargé avec la valeur contenue dans
I’octet pointé par X, c’est-a-dire I’octet 19200 (ou 4B00 hexa). La ligne
BASIC 10 a fait entrer par POKE, dans cet octet, le premier terme
de la somme. N ne doit pas, bien slir, dépasser 255 sinon le message
d’erreur FC apparatitrait sur 1’écran.

Ligne 5 : ADDA $1,X signifie que I’on ajoute la valeur de A et
la valeur inscrite dans I’octet ayant pour adresse X + 1. De ce fait cette
ligne additionne le premier et le second nombre de la somme, second
nombre qui a été placé par POKE dans I’octet 19201 (ligne BASIC 20).

- 81 -

Ligne 6 : le résultat de opération étant dans le registre A, il ne
reste plus qu’a ranger la somme obtenue dans I’octet 19202 puisque
c’est 14 que le BASIC ira chercher la réponse.

Faisons tourner le programme :

Premier nombre : Deuxiéme nombre : Somme :
10 20 30
100 0 100
200 60 4
250 250 244

Il n’y arien & redire pour les deux premiers cas : les résultats obte-
nus sont conformes a nos prévisions. Quand aux calculs suivants, il
ne sera pas bien compliqué d’établir leur cohérence : puisque A est
un registre 8 bits, le nombre le plus grand que I’on puisse y écrire est
11111111 (255 en décimal). Si, & ce moment-1a, on essaie d’ajouter
1, le registre repassera a 00000000 (0 en décimal) ; et c’est ce qui expli-
que que 260 soit devenu 4 dans notre troisiéme somme. D’une maniére
analogue, en ajoutant 250 et 250, on ne trouve pas 500 mais 500 — 256
soit 244.

ADDB

On procéde avec cette instruction de la méme fagon qu’avec ADDA.
ADDB permet d’ajouter les valeurs inscrites dans le registre B et dans
un octet mémoire. Le résultat de I’addition se trouve dans B.

ABA ABX

Ces deux instructions ajoutent directement les contenus de deux
registres. ABA additionne A et B (résultat dans A) et ABX additionne
B et X (résultat dans X). On n’emploie que le mode d’adressage
inhérent.

— 82 —

| ADDD

Il s’agit la encore d’ajouter le contenu d’un registre d une valeur
prise en mémoire. D étant un registre 16 bits, on pourra donc addi-
tionner deux valeurs elles-mémes de 16 bits. Modes d’adressage pos-
sibles : immédiat, indexé, étendu et direct.

Exemple : MODE D’ADRESSAGE ETENDU (10 octets)

Programme assembleur

1 ORG $4A00

2 EXC DEBUT

3 DEBUT LDD $4B00 ; 19200 EN DECIMAL
4 ADDD $4B02 ; 19202 EN DECIMAL
5 STD $4B04 ; 19204 EN DECIMAL
6 RTS

Programme BASIC

10 INPUT “ PREMIER NOMBRE “ ; N
20 N1 = INT(N/256) : POKE 19200 , N1
30 N2 = N—N1+256 : POKE 19201 , N2
~ 40 INPUT “ DEUXIEME NOMBRE " ; M
50 M1 = INT(M/256) : POKE 19202 , M1
60 M2 = M—M1+256 : POKE 19203 , M2
70 EXEC 18944
80 PRINT'LA SOMME VAUT";256+PEEK(19204) + PEEK(19205)

Commentaires
Ligne 3 : le registre D est chargé avec le premier nombre N. Tenant
compte du fait que D est un registre 16 bits, I’instruction LDD va cher-

cher en mémoire la valeur des deux octets 19200 et 19201. Regardons,
en supposant N égal a 1000, comment cela se passe.

- 83 —

N1=INT(1000/256) soit N1=3. L’octet 19200 contient le
nombre 3.

N2 =1000—3%256 soit N2=232. L’octet 19201 contient le
nombre 232.

Aprés exécution de la ligne, D se présente sous la forme suivante :

[0fJoJoJoJoJoft1JtJt]1f1fof1]ofo]o |
octet de poids fort (3) octet de poids faible (232)

En appliquant, a titre de vérification, la formule
256 = poids fort + poids faible

on obtient : 256%3 + 232 elest-a-dire le nombre 1000.

Ligne 4 : Popération est effectuée. Le premier nombre, N, se
trouve déja dans D et le second, M, doit &tre recherché en mémoire.
Choisissons, par exemple, M égal a 2000. Les lignes BASIC 50 et 60
ont placé la valeur de M dans les octets 19202 et 19203 de la facon
suivante : la partie de poids fort de 2000, c’est-a-dire 7 (M1) est ins-
crite & I’adresse 19202 et sa partie faible 208 (M2) a I’adresse 19203.

On peut résumer les lignes 3 et 4 en disant que tout s’est passé comme
si Pon avait ajouté directement les nombres N et M écrits aux adres-
ses 19200 et 19201 d’une part, 19202 et 19203 d’autre part. Il n’existe
malheureusement pas d’instruction qui le fasse de fagcon directe et le
passage par le registre D a été obligatoire.

Ligne 5 : le résultat de I’addition ayant été mis dans D, il ne reste
plus qu’a ranger le contenu de ce registre dans un emplacement
mémoire ol la ligne BASIC 80 pourra aller le chercher. Puisque ce
résultat est un nombre de 16 bits, ’instruction STD va le placer sur
deux octets, a savoir partie forte a I’adresse 19204 et partie faible a
Padresse 19205.

En faisant exécuter le programme sur quelques exemples, vous
remarquerez qu’a chaque fois que la somme dépasse 65535, le regis-
tre D la fait repartir & zéro. 65535 est en effet la valeur décimale la
plus grande possible que ’on puisse écrire sur 16 bits.

PREMIER NOMBRE ? 50000
DEUXIEME NOMBRE ? 20000
LA SOMME VAUT 4464 soit 70000 — 65536.

-84 -

SUBA

SUBA est une instruction qui permet de retrancher au contenu
de ’accumulateur A la valeur inscrite dans un octet de la mémoire.
Le résultat de la soustraction est écrit dans A. Les modes d’adressage
immeédiat, indexé, étendu et direct sont utilisables.

Exemple : MODE D’ADRESSAGE INDEXE (10 octets)

Programme assembleur

1 ORG $4A00
2 EXC DEBUT
3 DEBUT LDX OCTET
4 LDAA $0,X

5 SUBA $1,X

6 STAA $2.X

7 RTS

8 OCTET DFD $4B00

Programme BASIC

10 INPUT “ PREMIER NOMBRE " ; N : POKE 19200 , N

20 INPUT * DEUXIEME NOMBRE " ; M : POKE 19201 , M

30 EXEC 18944

40 PRINT “ LA DIFFERENCE VAUT " ; PEEK(19202) : GOTO 10

Commentaires

Ligne 3 : le registre X est chargé avec le nombre hexadécimal 4B00
(19200) mais cette fois sans utiliser le mode d’adressage immédiat. Nous
avons voulu mettre en avant une des directives de I’assembleur, DFD ;
vous la voyez apparaitre & la ligne 8. Elle a pour rdle de réserver deux
octets en mémoire et d’y inscrire le nombre 16 bits qui est écrit a sa

- 85 —

suite. Peu nous importe de savoir ol se trouvent précisément ces deux
octets. La seule chose qui compte est qu’a chaque fois que I’assem-
bleur rencontrera 1’étiquette OCTET, il nous fournira la valeur con-
tenue par les deux octets en question. Voild comment s’explique que
le registre X a pour contenu le nombre 4B00.

Ligne 4 : LDAA $0,X signifie que I’on place dans [’accumula-
teur le nombre qui se trouve dans 1’octet 19200 (0 + X) : c’est la ligne
BASIC 10 qui a auparavant inscrit dans cet octet la valeur du premier
terme N de la différence.

Ligne 5 : on retranche a4 N le nombre M contenu dans I’octet 19201
(1 + X). Le nombre M est connu du programme dés que la ligne
BASIC 20 est exécutée. Notons que la soustraction se fait toujours
dans le méme sens : ¢’est I’octet mémoire qui est retranché a I’accu-
mulateur et non le contraire.

Ligne 6 : puisque le résultat est maintenant dans A, il ne reste
plus qu’a stocker ce résultat dans un emplacement mémoire que le pro-
gramme BASIC pourra retrouver. Il s’agit, cela se voit bien, de la case
19202.

Avant de passer aux instructions suivantes, ne manquez pas de faire
tourner ce programme en lui proposant des calculs du genre 10—11
ou 0—255 et en analysant les réponses de I’ordinateur.

SUBB SUBD SBA

SUBB est utilisable de la méme facon que SUBA mais concerne
le registre B. L’instruction SUBD, pour sa part, effectue des soustrac-
tions 16 bits. Quant a l’instruction SBA, elle permet de soustraire B
de A, le résultat étant dans A. On emploie cette derniére commande
sur le mode d’adressage inhérent.

- 86 —

MUL

Cette instruction, n’acceptant que le seul mode d’adressage inhé-
rent, effectue le produit de deux valeurs 8 bits contenues dans les accu-
mulateurs A et B. Le résuitat de la multiplication, sur 16 bits, est ins-

crit dans le registre D, faisant ainsi disparaitre les valeurs initiales de
A et B.

Exemple : MODE D’ ADRESSAGE INHERENT (20 octets)

Programme assembleur

1 ORG $4A00
2 EXC DEBUT
3 DEBUT LDAA $4B00 ; 19200 EN DECIMAL
4 LDAB #$2

5 MUL

6 STD $4B01
7 LDAA $4B00
8 LDAB $4B00
9 MUL

10 STD $4B03
11 RTS

Programme BASIC

10 INPUT “DONNEZ UN NOMBRE” ; N : POKE 19200,N

20 EXEC 18944

30 PRINT ““VOICI SON DOUBLE"; 256+PEEK(19201) + PEEK(19202)
40 PRINT “VOICI SON CARRE"; 256+PEEK(19203) + PEEK(19204)

Commentaires

C’est la ligne BASIC 10 qui a chargé par POKE, dans I’octet 19200,
le nombre N dont on va calculer le double puis le carré. N est un

— 87 -

nombre 8 bits et il n’est pas possible de proposer une valeur supérieure
a 255 sans que l'ordinateur ne renvoie le message FC Error.

Lignes 3 et 4 : le registre A va contenir la valeur de N et le chiffre
2 est placé dans B.

Ligne 5 : les valeurs des deux accumulateurs sont multipliées, ce
qui revient pour nous a calculer le double du nombre qui a été donné
au départ. Le résultat, sur 16 bits, de cette opération se retrouve alors
dans D et, naturellement, les valeurs qui étaient dans A et B sont per-
dues ; n’oublions pas que A et B constituent les registres de poids fort
et de poids faible de D.

Ligne 6 : le résultat de la multiplication est rangé en mémoire dans
les octets 19201 et 19202 : la ligne 50 retrouve pour nous la valeur déci-
male de cette réponse non sans avoir, mais c’est déja de I’histoire
ancienne, multiplié le contenu de ’octet fort par 256.

Lignes 7 et 8 : on réintroduit dans A et dans B les nombres néces-
saires a la suite du programme : puisqu’il s’agira de calculer un carré,
les deux registres doivent contenir la méme valeur, en 1’occurrence N.

Lignes 9 et 10 : le produit de N par lui-méme est calculé, le résul-
tat placé dans D et ce registre rangé dans les octets 19203 et 19204,
octets que le programme BASIC retrouvera a la ligne 40.
Il n’y a rien d’autre a ajouter concernant ’instruction MUL.

Avant de passer au programme suivant, pourquoi ne pas réécrire
le méme que celui-ci mais en le débutant par LDX #$4B00 et en utili-
sant le plus souvent possible I’adressage indexé. Le lecteur ne devra
jamais perdre de vue que si le mode indexé est un peu moins lisible
que I’étendu, il a en revanche une qualité non négligeable : il est bien
souvent moins gourmand en octets que ce dernier.

- 88 -

BEQ BNE BRA BSR

Tous les programmes que nous avons étudiés jusqu’a maintenant
étaient congus sur le type séquentiel, ce qui veut dire que les instruc-
tions étaient exécutées les unes a la suite des autres, dans.1’ordre ou
elles avaient été écrites. Nous savons tous qu’en BASIC il est possi-
ble, avec des instructions comme GOTO par exemple, d’empécher le
programme de se dérouler normalement en ’obligeant a se brancher
aun numeéro de ligne choisi par nous. Voyons comment nous devrons
nous y prendre pour obtenir le méme effet. Nous retrouverons, aprés
quelques explications théoriques, I’étude d’exemples bien concrets.

Branch if Equal
Branchement si égal

Le branchement a4 ’une des parties du programme machine ne se
fera que si 'une des deux conditions suivantes vient d’&tre réalisée :

1 — soustraction entre deux nombres égaux.
2 — comparaison entre deux nombres égaux.

C’est ’octet qui suit immédiatement I’instruction BEQ qui, en mode
complément a 2, indiquera alors au processeur quelle autre partie du
programme devra &tre exécutée.

Dans le cas d’une comparaison ou d’une soustraction entre deux
nombres différents, BEQ n’aura aucun effet et c’est I’instruction écrite
a la ligne d’aprés qui sera exécutée.

Pour résumer, disons que I’instruction BEQ s’utilise de la méme
facon que la phrase BASIC bien connue :

IF A = B THEN...

-89 —

Branch if Not Equal
Branchement si non égal

Voici I’instruction contraire de la précédente. Cette fois le branche-
ment ne sera effectué que dans le cas ol I'une des deux situations sui-
vantes se sera présentée :

1 — soustraction entre deux nombres différents.
2 — comparaison effectuée sur deux nombres différents.
Ici aussi ’endroit du programme ol le branchement devra se faire
sera indiqué par I’octet placé aprés ’instruction BNE. Le nombre écrit

dans cet octet devra I’&tre soys la forme complément a deux.
On peut trouver I’équivalent BASIC de BNE en écrivant :

IFA <> B THEN...

BRA

Branch Always
Branchement dans tous les cas

Le branchement a la partie du programme indiquée par I’octet qui
suit I’instruction BRA est un branchement inconditionnel. Ce type de
branchement ne se préoccupe pas de savoir si telle ou telle condition
a été réalisée : il s’effectue de toute maniére.

Vous aurez reconnu en BRA I’équivalent assembleur de la commande
BASIC GOTO.

BSR

Branch at Subroutine
Branchement vers un sous-programme

Aprés GOTO, voici GOSUB : BSR est en effet I’instruction de bran-
chement qui permet de sauter jusqu’a un sous-programme. Il s’agit

- 90 -

comme pour BRA d’un branchement inconditionnel qui s’effectuera
dans tous les cas.

Il est inconcevable, en BASIC, d’écrire un GOSUB sans prévoir le
RETURN qui nous raménera au programme principal.

Il en est de méme en assembleur et il nous faudra toujours penser
a terminer nos sous-programmes par une instruction que nous avons
rencontrée dés nos premiers exemples: RTS (ReTurn from
Subroutine).

- 91 —

INCA

Cette instruction incrémente le registre A, c’est-a-dire qu’elle lui
ajoute une unité. Un seul mode d’adressage possible : ’'inhérent.

Exemple : MODE D’ADRESSAGE INHERENT (20 octets)

Programme assembleur

1 ORG $4A00

2 EXC DEBUT

3 DEBUT LDAA OCTET ; FREQUENCE INITIALE
4 SUITE LDAB #$1 ; DUREE DE CHAQUE NOTE
5 STAA OCTET

6 JSR SON ; MUSIQUE

7 LDAA OCTET ; ON RETROUVE A

8 INCA

9 SUBA #§0

10 BNE SUITE

11 RTS

12 SON = $FFAB

13 OCTET DFO $1
Commentaires

Nous en savons maintenant suffisamment pour obtenir de notre ordi-
nateur des effets de son. Aprés I’étude de ces deux pages, le lecteur
sera déja assez bien armé pour programmer lui-méme, en assembleur,
I’émission de sons tous plus spéciaux les uns que les autres. Dans les
jeux d’action, la commande SOUND aura disparu, remplacée par
EXEC ...

Pour notre part, contentons-nous de reproduire un bruit de siréne.

Ligne 3 : le registre A contient la valeur de P’octet que nous avons
fait réserver par la directive DFO (ligne 12). C’est donc avec le
nombre 1 dans A que démarre le programme.

- 92 —

Ligne 4 : le second registre B contiendra tout au long du pro-
gramme la méme valeur, 1 ; c’est la durée des notes qui apparatt ici.

Ligne 5 : nous prenons la précaution de mettre de coté (dans I’octet
appelé OCTET) le contenu de A. La raison en est simple : nous aurons

‘besoin de cette valeur un petit peu plus tard et nous saurons donc pré-

cisément ou la retrouver.

Ligne 6 : voici le branchement vers la routine de son, routine dont
I’adresse a été communiquée au systéme par la ligne d’affectation

SON = $FFAB

L’ordinateur joue donc, pendant une durée extrémement courte,
la note la plus basse possible.

Ligne 7 : nous retrouvons, comme prévu, la valeur qu’avait 1’ac-
cumulateur A avant I’appel de la routine. Cette facon de procéder est
dictée par le fait que le registre est utilisé (2 notre insu) dans le sous-
programme d’émission de musique et que la valeur qu’il a en retour
n’a rien de commun avec celle qu’il avait.

Ligne 8 : INCA ajoute 1 au contenu de ’accumulateur qui prend
donc la valeur 2. Puisque notre souhait est de réaliser un bruit de siréne,
il nous faudra a chaque fois augmenter la fréquence de la note qui

sera jouée. C’est ce que nous venons de faire en incrémentant la valeur
de A.

Ligne 9 : on retranche au registre A le nombre 0. Voici une ins-
truction qui serait tout a fait inutile si elle n’allait nous servir a la ligne
suivante.

Ligne 10 : le branchement a la ligne SUITE s’effectuera si la dif-
férence précédente a porté sur deux nombres non égaux ; ce qui est
le cas, on a retranché 0 a 2.

On retrouve alors la ligne 4 qui va permettre cette fois de faire jouer
par la machine la note de fréquence 2, note d’un ton légérement au-
dessus de la note déja entendue. Puis — lignes 7 4 10 —, une unité
sera ajoutée & A, et 0 sera retranché a la nouvelle valeur (3) de ce regis-
tre ; cette soustraction se faisant sur deux chiffres différents, un bran-
chement sera a nouveau effectué a la ligne SUITE.

~ 93 —

Le but de cette boucle est donc de faire entendre & chaque passage
une note d’une fréquence A peine supérieure a la précédente et c’est
pourquoi I’exécution du programme nous donne I’impression d’écouter
une siréne.

Essayons, pour finir, de savoir & quel moment I’ordinateur sortira
de la boucle. Le registre A étant augmenté de 1 a chaque fois, finira
par arriver a 255 (ses huit bits & 1). L’incrémentation suivante rame-
nera tous ses bits & zéro et la soustraction de la ligne 9 portera alors
sur deux nombres égaux. A ce moment-1a, I’instruction BNE sera deve-
nue sans effet et c’est ’ordre d’aprés, RTS, qui s’exécutera.

Alors, ce programme vous a-t-il donné des idées ? Vous allez accé-
lérer le mouvement, n’est-ce pas ? Vous allez remplacer I’instruction
INCA de la ligne 8 par ADDA #3$5 ou ADDA #$10 ? Allez-y, mais
n’ajoutez pas n’importe quel nombre au registre A, vous risqueriez
de faire boucler indéfiniment votre programme !

INCB INX INS

INCB augmente d’une unité le contenu du registre B. INX et INS
réalisent les mémes opérations avec les registres doubles X et S. On
ne peut utiliser ces instructions qu’avec le mode d’adressage inhérent.

- 94 —

INC

Avec INC, la possibilité est donnée d’incrémenter — ajouter 1 —
au contenu d’un octet de la mémoire. L’adressage indexé et I’adres-
sage étendu sont les deux modes possibles.

Exemple : MODE D’ADRESSAGE ETENDU (13 octets)
Programme assembleur

ORG $4A00

EXC DEBUT
DEBUT LDAB $4B01 ; 19201 DECIMAL
SUITE SUBB #$1

BEQ FIN

INC $4B00 ; 19200 DECIMAL

. BRA SUITE

FIN RTS

ONOOThWN-=

Programme BASIC

10 INPUT ** PREMIER NOMBRE " ; N : POKE 19200 , N

20 INPUT DEUXIEME NOMBRE " ; M : POKE 19201 , M + 1
30 EXEC 18944

40 PRINT ** LA SOMME VAUT " ; PEEK (19200)

Commentaires

La lecture des lignes BASIC indique qu’il s’agit 13 d’un programme
d’addition. L’instruction ADD n’apparait pas dans la partie assem-
bleur car elle a été remplacée par une boucle incrémentant le contenu
d’un octet et ceci le nombre de fois voulu.

Ligne 3 : le contenu de I’octet 19201 est placé dans I’accumula-
teur B. Ce qui fait que B contient le nombre M + 1. Cette valeur est
égale au second terme de la somme augmenté de 1.

— 95 —

Ligne 4 : onretranche 1 au registre B. Voici que s’explique la rai-
son pour laquelle on est parti d’une valeur supérieure d’une unité pour
B, ceci compense cela.

Ligne 5 : si la différence porte sur deux chiffres égaux, c’est-a-
dire si B vaut 1, un branchement est effectué a la ligne 8, ligne dont
P’étiquette est FIN.

Ligne 6 : on ajoute 1 au contenu de 'octet 19200, donc au pre-
mier terme de la somme.

Ligne 7 : BRA est Pinstruction de branchement inconditionnel.
Equivalente de GOTO, elle renvoie le processeur a la ligne 4 (SUITE)
pour la suite du programme.

Nous nous retrouvons une fois encore devant une boucle qui, a
chaque passage, procéde aux deux opérations suivantes :

® 1 est enlevé au registre B, c’est-a-dire au deuxiéme nombre de la
somme.

® 1 est ajouté a ’octet 19200, c’est-a-dire au premier terme de la
somme.

B étant décrémenté a chaque fois, sa valeur arrivera forcément a
1. La ligne assembleur 4 (SUITE) effectuera alors une différence don-
nant un résultat nul, et le branchement sera réalisé. L’octet 19200 con-
tiendra a la fin du programme la somme des deux nombres que nous
avons proposés a ’ordinateur.

Reprenons rapidement ce que nous avons déja dit & propos des addi-
tions sur huit bits (voir I’instruction ADDA) : lorsque le résultat d’une
somme arrive a 256, il est ramené 3 0.

Exemple : 200 + 100 = 256 + 44 = 44.

- 96 —

| CLRA '

Le registre A est mis a zéro, ce qui revient a dire que A est chargé
avec la valeur 0. Il n’y a qu’une seule possibilité pour I’adressage :
le mode inhérent.

Exemple : MODE D’ADRESSAGE INHERENT (14 octets)

Programme assembleur

1 ORG $4A00

2 EXC DEBUT

3 DEBUT CLRA

4 LDAB #30A ; COMPTEUR A DIX
5 LDX #$4B00 ; 19200 DECIMAL

6 SUITE STAA #$0,X

7 INX

8 SUBB #$1

9 BNE SUITE

10 RTS

Programme BASIC

10 FOR 1 = 19200 TO 19209 : POKE I , RND(10) : NEXT
20 EXEC 18944
30 FOR | = 18200 TO 19209 : PRINT PEEK(l) ; : NEXT

Commentaires
Le but de ce programme est d’écrire la valeur 0 dans chacun des
10 octets numérotés de 19200 a 19209. Le programme BASIC inscrit

des valeurs quelconques dans ces octets, lance le programme machine
et vérifie que le but a bien été atteint.

—97 -

Ligne 3 : les explications concernant I’instruction CLRA tiennent
en quelques mots : le chiffre 0 est écrit dans A et ’on aurait pu tout
aussi bien, avec un octet de plus il est vrai, écrire LDAA #3$0.

Ligne 4 : B est chargé avec 10. Le registre nous servira de comp-
teur pour la boucle qui sera exécutée 10 fois.

Ligne 5 : X contient au début du programme la valeur 19200 et,
de ce fait, X pointe le premier octet que nous aurons a rendre nul.

Ligne 6 : on range la valeur de A dans I’octet 19200. Comme A
a été mis a zéro a la ligne 3, cet octet contient donc maintenant le
nombre 0.

Ligne 7 : le registre X est incrémenté et pointe alors vers 19201,
Ligne 8 : on retranche 1 & B, celui-¢i vaut alors 9.

Ligne 9 : puisque la soustraction a été effectuée entre deux valeurs
différentes (10 et 1), ’instruction BNE branchera le programme a la
ligne 6 (I’étiquette de cette ligne étant justement SUITE). L’octet 19201
sera alors mis a zéro, et le registre X, incrémenté, pointera vers 19202.
La ligne 8 retranchera alors 1 de B qui, 4 ce moment-la, vaudra 8.
Le test de branchement de la ligne 9 renverra a nouveau le programme
en ligne 6.

Nous avons donc une boucle qui sera exécutée 10 fois. Apreés avoir
rendu nul le dixiéme octet (19209), la ligne 8 effectuera la différence
entre le contenu de B (qui vaudra alors 1) et le nombre 1. Puisque
cette différence ne sera plus différente de zéro, la ligne 9 n’aura plus
aucun effet et il ne restera plus qu’a retourner au programme BASIC.

CLRB

Cette instruction se programme de la méme maniére que CLRA.
L’adressage inhérent est le seul accepté.

— 98 —

CLR

Le contenu de I’octet mémoire spécifié est rendu nul. On peut
utiliser les modes d’adressage étendu et indexé.

Exemple : MODE D’ ADRESSAGE ETENDU (27 octets)

Programme assembleur

1 ORG $4A00
2 EXC DEBUT
3 DEBUT JSR $FBD4 ; CLS
4 CLR $E8 : SORTIE ECRAN
5 LDAA #$40 ; ASCII 64
6 BSR SPROG
7 BSR SPROG
8 BSR SPROG
9 BSR SPROG
10 FIN BRA FIN
11 :
12 SPROG INCA ; LETTRE SUIVANTE
13 INC $3280 ; LIGNE SUIVANTE
14 CLR $3281 ; COLONNE 0O
15 JSR AFCAR ; AFFICHAGE
16 RTS
17 :
18 AFCAR = $F9C6
Commentaires

Ligne 3 : nous connaissons 1’adresse $FBD4 : c’est celle qui efface
P’écran.

Ligne 4 : nous souhaitons faire apparaitre les quatre premiéres
lettres de ’alphabet en utilisant quatre fois de suite la routine d’affi-
chage d’un caractére. Rappelons-nous qu’il faut mettre a zéro ’octet
$ES.

— 99 —

Ligne 5 : il faut ensuite placer dans 1’accumulateur le code ASCII
de la lettre que ’on veut afficher.

Ligne 6 : un branchement vers la ligne 12 est réalisé. L’équiva-
lent BASIC aurait été GOSUB 12.

Ligne 12 : on ajoute une unité au registre A. Ceci a pour effet
de faire passer sa valeur a 65 (décimal). De ce fait, A contient le code
ASCII de la premiére lettre de 1’alphabet.

Ligne 13 : on commande I’incrémentation de 1’octet $3280 ; on
I’augmente donc de 1. Mais que pouvait-il contenir auparavant ? Eh
bien tout simplement la valeur 0. En effet cet octet contient le numéro
de la ligne sur laquelle ’affichage d’un caractére va avoir lieu. Or,
ou se trouve le curseur aprés I’exécution de I’instruction CLS ? Sur
la ligne O, bien siir.

Ligne 14 : P’octet $3281 sera, dans tout le programme, forcé a
0 ; de cette maniére, toutes les lettres seront visibles sur la premiére
colonne de ’écran.

Ligne 15 : on lance I’ordinateur dans la routine $F9C6. Il y a donc,
pour l’instant, la lettre A affichée au début de la ligne numérotée 1
(c’est-a-dire la deuxiéme).

Ligne 16 : BSR étant 1’équivalent de GOSUB et) RTS celui de
RETURN, le microprocesseur retourne a ’instruction qui suit celle
de laquelle il est parti...

Ligne 7 : ... pour étre relancé dans le sous-programme SPROG ...

Lignes 12 a 16 : ... et retrouver une seconde fois la routine
AFCAR. La lettre B (INCA) apparaitra en dessous de la précédente :
colonne 0 (CLR $3281) et ligne 2 (INC $3280).

Ligne 10 : quand le programme sera entiérement exécuté, on
pourra voir sur notre écran les lettres A, B, C et D disposées les unes
en dessous des autres,

- 100 —

Le contenu de ’accumulateur A est décrémenté, c’est-a-dire
qu’une unité lui est retirée. Le mode d’adressage inhérent est le seul
utilisable.

Exemple : MODE D’ADRESSAGE INHERENT (40 octets)

Programme assembleur

1 ORG $4A00
2 EXC DEBUT
3 DEBUT JSR $FBD4 ; CLS
4 LDD #$4101 ; 65 DANS A et 1 DANS B
5 STD $BF21 ; LETTRE A ALPHANUM.
6 LDAB #$1E
7 STAB $BF23 ; ROUGE/BLEU CLIGNOTANT
8 LDD #$1000 ; 16 DANS A et 0 DANS B
9 STD $BF26 ; LIGNE + COLONNE
10 LDD #$1A01 ; 26 DANS A et 1 DANS B
11 SUITE STAB $BF28 ; EXECUTION
12 LDX #$64
13 TEMPO DEX
14 BNE TEMPO
15 INC $BF21 ; LETTRE SUIVANTE
16 DECA S
17 BNE SUITE
18 FIN BRA FIN
Commentaires

Lignes 4 et 5 : le contenu du double registre D est rangé dans les
octets $BF21 et $BF22. Ces octets font partie du générateur vidéo,
générateur que nous allons utiliser pour faire apparaitre a I’écran les
vingt-six lettres de ’alphabet. Pour I’instant, le premier de ces octets

- 101 -

(le n° 48929 en décimal) contient le code ASCII de la lettre A et le
suivant (le n° 48930) la valeur correspondant a ’affichage de type
alphanumérique.

Lignes 6 et 7 : ’écriture de $1E (30 décimal) dans I’octet $BF23
(48931) va provoquer le coloriage des lettres en rouge sur fond tur-
quoise. Elles seront, de plus, clignotantes.

Lignes 8 et 9 : on indique au microprocesseur a quel endroit de
P’écran il doit dessiner le premier caractére : vers le milieu et complé-
tement a gauche (ligne n° 16 et colonne n° 0).

Ligne 10 : avant d’entrer dans Ia boucle SUITE, le premier accu-
mulateur 8 bits est chargé avec le nombre de lettres de ’alphabet (26
donc, soit $1A hexa) et le second avec le nombre 1.

Ligne 11 : Iécriture de la valeur de B dans I’octet $BF28 provo-
que ’affichage de la premiére lettre de I’alphabet, en majuscule et sur
le mode clignotant.

Lignes 12, 13 et 14 : avant de laisser I’ordinateur s’occuper du
reste du programme, on ’oblige & perdre un peu de temps. Tout sim-
plement parce que le systéme d’affichage d’un caractére sur I’écran
possede une certaine inertie et que I’on risque, si I’on ne tempére pas
le 6803, de voir celui-ci donner un ordre d’affichage a ’octet $BF28
alors que le précédent caractére n’est pas encore visible. Naturellement
cet ordre ne sera alors d’aucune utilité et il manquera des lettres & notre
alphabet. Voyons, pratiquement comment on doit s’y prendre pour
faire, si ’on peut dire, trainer le microprocesseur : on écrit dans le
registre X un nombre (100 décimal dans notre cas), on lui soustrait
1 (instruction DEX de la ligne 13), on regarde si I’on n’atteint pas 0
et on recommence la méme opération 99 fois de suite. Au bout du
compte, le registre X, a force d’étre décrémenté, sera nul et le pro-
gramme reprendra son cours normal.

Ligne 15 : 1 est ajouté a I’octet qui contient le code ASCII des
caractéres qui s’inscrivent sur le téléviseur. C’est donc la lettre B qui
est cette fois concernée.

Lignes 16 et 17 : puisque A est décrémenté, sa valeur passe & 25
et Pinstruction BNE rebranche le programme & la onziéme ligne.

Quand la valeur du premier accumulateur sera arrivée a 0, la boucle
SUITE aura été empruntée vingt-six fois, faisant apparaitre & chaque

- 102 —

passage une nouvelle lettre de ’alphabet. Et toujours avec les mémes
caractéristiques : clignotement et couleurs rouge et bleu.

Ne terminons pas cette étude sans noter une particularité de I’octet
$BF27 ; cet octet voit son contenu automatiquement augmenté d’une
unité a chaque fois qu’un caractére est inscrit sur I’écran. C’est ce qui
explique que nos lettres aient été écrites les unes a coté des autres, sans
aucune intervention de notre part.

DECB DEX DES

Ces instructions procédent avec les registres B, X et S de la méme
facon que DECA le fait avec A. Elles retranchent 1 a leur contenu.
Le mode d’adressage utilisable est I’inhérent.

- 103 -

DEC

Cette instruction permet de retirer 1 de la valeur d’un octet en
mémoire. On peut se servir des modes d’adressage indexé et étendu.

Exemple : MODE D’ADRESSAGE ETENDU (14 octets)

Programme assembleur

1 ORG $4A00

2 EXC DEBUT

3 DEBUT LDAA #$FF ; 266 EN DECIMAL

4 STAA $4B00 ; 19200 EN DECIMAL
5 SUITE DECA

6 BNE SUITE

7 DEC $4B00

8 BNE SUITE

9 RTS

Programme BASIC

10 PRINT @ 500 , ** DEBUT " : SOUND 150 , 10 : EXEC 18944
20 PRINT @ 500 , ““FIN " : SOUND 150 , 10

Commentaires
Voici le programme qui réalise une boucle de temporisation. Flle
est équivalente en durée a la boucle BASIC :

FOR 1 = 1 TO 300 : NEXT

Mais si le BASIC n’a rien fait d’autre que de compter jusqu’a 300,
I’assembleur, pendant la méme durée, a eu le temps d’exécuter sa boucle
vide plus de 60 000 fois. Ceci met en avant ’extraordinaire rapidité
des programmes écrits en langage machine.

- 104 -

Lignes 3 et 4 : le registre A est chargé avec la valeur maximum
et cette valeur est écrite dans I’octet 19200.

Lignes 5 et 6 : A valant 255, la décrémentation lui soustrait une
unité et le fait passer a 254. On doit &tre habitué maintenant a I’ins-
truction BNE qui va renvoyer le programme a la ligne 5. Ainsi le micro-
processeur n’a effectué aucune action visible : il n’a fait que perdre
du temps. La ligne 5 place dans A le nombre 253 et 2 nouveau le bran-
chement BNE fait retourner a la ligne SUITE. On retrouve donc avec
ces deux lignes, mais en beaucoup plus rapide, la ligne BASIC :

FOR 1 = 254 TO 0 STEP —1 : NEXT

Ligne 7 : Paccumulateur étant alors a zéro, ¢’est au tour de I’oc-
tet 19200 d’étre décrémenté. Il avait été chargé au départ avec le nombre
255, il va donc contenir 254.

Ligne 8 : nouvelle utilisation de BNE qui concernera la derniére
soustraction effectuée, en I’occurrence la décrémentation de la ligne
7. Puisque cette différence aura été faite entre les nombres différents
255 et 1, le programme se rebranchera a SUITE, donc 8 octets en
arriére.

On retrouve alors la ligne 5. A sera une nouvelle fois décrémenté
et, partant de O, repassera a 255. N’oublions pas que — 1 s’écrit pour
le processeur 255 (ou FF hexadécimal). Nous voila de nouveau dans
une boucle qui va faire passer A de 255 a 0 (lignes 5 et 6), puis a terme,
une décrémentation de ’octet 19200 (ligne 7) sera réalisée. Puisque
cet octet en sera alors a la valeur 253, il y aura encore branchement
a la ligne SUITE.

Le principe doit dés lors &tre compris : tant que le contenu de I’octet
19200 ne sera pas nul, le programme bouclera.

Vous avez certainement remarqué, en exécutant le programme, qu’a
peine une demi-seconde s’écoulait entre les affichages des mots DEBUT
et FIN sur I’écran. Essayez d’utiliser le principe de la boucle d’attente
qui vient d’étre étudié pour obtenir une temporisation plus grande.
Un conseil : utilisez un nouvel octet que vous décrémenterez régulie-
rement a chaque fois que ’octet 19200 sera arrivé a zéro.

- 105 -

BHI BLO BHS BLS

Nous abordons maintenant quatre nouvelles instructions de bran-
chement qui vont pouvoir, lorsque les conditions voulues seront réa-
lisées, mettre une nouvelle valeur dans le registre PC et permettre ainsi
d’annuler le déroulement séquentiel du programme. Ces instructions
vont porter sur la comparaison des grandeurs de deux nombres, dont
le premier sera toujours dans un registre. Rappelons que pour pou-
voir utiliser BEQ et BNE, il fallait qu’une soustraction ou une com-
paraison ait été effectuée auparavant. Il va en étre de méme pour ces
quatre nouvelles instructions.

BHI

Branch on Higher
Branchement si plus grand

BHI réalisera un branchement a ’un des octets du programme
machine dans ’un des deux cas suivants :

1 — soustraction entre deux nombres dont le premier, celui
contenu dans le registre, est strictement supérieur au deuxiéme.

2 — comparaison entre deux nombres dont le premier, 1a encore
contenu dans le registre, est strictement supérieur au second.

L’ octet suivant P’instruction BHI précisera, sur le mode complément
a deux, quelle partie du programme devra alors &tre exécutée. Natu-
rellement, cette instruction sera sans effet si le registre est inférieur
ou égal a ’autre nombre.

A noter que la comparaison se fera sans que I’ordinateur tienne
compte de la valeur en complément a4 deux de ces nombres. Si, par
exemple, les deux nombres valent 254 et 10, le premier sera considéré
comme supérieur au deuxiéme bien que ce soit en réalité le nombre
—2 en complément a deux.

— 106 —

Si ’on veut trouver 1’équivalent BASIC de BHI, on doit écrire :

IFA > B THEN ...

BLO

Branch on Lower
Branchement si plus petit

Cette fois le branchement s’effectuera dans I’un des cas suivants :

1 — soustraction entre deux nombres dont le premier est stricte-
ment inférieur au deuxiéme.

2 — comparaison entre deux nombres dont le premier est stric-
tement inférieur au deuxiéme.

Le premier nombre étant toujours celui qui est dans le registre.

Pour cette instruction aussi, I’ordinateur ne tiendra pas compte des
valeurs négatives, celles qui correspondent au complément & deux. Ecri-
vons la ligne BASIC correspondante :

IF A < B THEN ...

BHS

Branch on Higher or Same
Branchement si supérieur ou égal

Le branchement sera exécuté si I’une des deux conditions suivantes
est vraie :

1 — soustraction entre deux nombres dont le premier est supé-
rieur ou égal au deuxiéme.

2 — comparaison entre deux nombres dont le premier est supé-
rieur ou égal au deuxiéme.

- 107 -

La encore, d’une part le premier nombre se trouve dans le registre
considéré, d’autre part on ne tient pas compte de la valeur en complé-
ment 4 deux. Voici comment, en BASIC, on écrirait cette instruction :

IFA > = B THEN ...

BLS

Branch on Lower or Same
Branchement si inférieur ou égal

Le branchement sera effectué si I’une des deux conditions suivan-
tes est réalisée :

1 — soustraction entre deux nombres dont le premier est infé-
rieur ou égal au deuxiéme.

2 — comparaison entre deux nombres dont le premier est infé-
rieur ou égal au deuxiéme.

Cette derniére instruction respecte les mémes régles que les précé-
dentes : le premier terme de la différence ou de la comparaison pro-
vient du registre et le mode complément & deux n’est pas pris en compte.
Donnons la traduction BASIC :

IFA <= B THEN ...

- 108 —

| CMPA

Une comparaison sera réalisée avec le nombre placé immédiate-
ment aprés cette instruction. Une instruction de branchement doit suivre
normalement cette comparaison. Les modes d’adressage immédiat,
indexé, direct et étendu peuvent étre utilisés.

Exemple : MODE D’ADRESSAGE ETENDU (24 octets)

Programme assembleur

1 ORG $4A00

2 EXC DEBUT

3 DEBUT LDAA $4B01 ; NOMBRE PROPOSE
4 CMPA $4B00 ; NBRE TIRE AU SORT
5 BEQ EGAL

6 BHI SUP

7 INF LDAA #$3

8 BRA FIN

9 EGAL LDAA #$1

10 BRA FIN

11 SUP LDAA #$2

12 FIN STAA $4B02

13 RTS

Programme BASIC

10 X=RND(200) : POKE 19200 , X

20 INPUT * QUEL NOMBRE PROPOSEZ-VOUS " ; N : POKE 19201, N
30 EXEC 18944 : ON PEEK (19202) GOTO 40, 50 , 60

40 PRINT ““ VOUS AVEZ GAGNE ” : END

50 PRINT “ TROP GRAND " : GOTO 20

60 PRINT “ TROP PETIT ” : GOTO 20

Commentaires
Voici une version du jeu qui consiste a deviner un nombre que 1’or-
dinateur aura choisi. Le branchement ON GOTO de la ligne BASIC

30 s’effectuera en fonction du nombre trouvé dans ’octet 19202.
Voyons comment ’assembleur y aura placé la valeur correcte 1, 2 ou 3.

- 109 -

Ligne 3 : la ligne BASIC 20 aura écrit dans 1’octet 19201 (4B01
hexa) le nombre N proposé. C’est donc le registre A qui va contenir
ce nombre.

Ligne 4 : une comparaison est effectuée entre le nombre propos¢
et le contenu de I’octet 19200. Or dans cet octet, a été inscrit par POKE
le nombre X que I’ordinateur a tiré au hasard. Voici donc la ligne qui
va réaliser la comparaison sur laquelle est basée tout le programme.

Ligne 5 : sila comparaison a porté sur deux nombres égaux, cela
voudra dire que I’on a gagné. BEQ va procéder alors a un branche-
ment vers la ligne 9, quatre lignes plus loin. LDAA #8$1 va, a ce
moment-la, placer dans ’accumulateur le nombre 1, et un branche-
ment inconditionnel (ligne 10) va entrainer le processeur a 1’avant-
derniére ligne du programme. Il ne restera plus alors qu’a écrire la
valeur 1 dans ’octet 19202 ($4B02). Le BASIC retrouvera ce nombre
et le branchement ON GOTO fera imprimer le message ¢ VOUS AVEZ
GAGNE ”.

Ligne 6 : sil’on suppose maintenant que A est supérieur-au nom-
bre choisi par ’ordinateur, ’instruction BHI nous conduira a la ligne
11. Le registre A sera chargé avec la valeur 2, valeur qui sera ensuite
écrite (ligne 12) dans ’octet 19202. Il sera alors a la charge du BASIC
de retrouver le contenu de cet octet et le message ¢ TROP GRAND ”’
sera affiché sur ’écran.

Lignes 7 et 8 : derniére possibilité enfin, on a proposé a la machine
un nombre trop petit. Les instructions BEQ et BHI sont restées sans
effet et le programme s’est déroulé séquentiellement jusqu’a ces lignes.
C’est le chiffre 3 qui sera écrit dans ’accumulateur avant qu’un bran-
chement inconditionnel n’envoie le processeur a la ligne FIN. 3 est
alors recopié dans 1’octet 19202 et le BASIC donne la réponse a notre
essai : ““ TROP PETIT .

CMPB

D’une maniére identique @ CMPA, cette instruction compare le
nombre écrit dans le registre B avec le nombre décrit immédiatement
aprés. On peut se servir des modes d’adressage immédiat, indexé,
étendu et direct.

- 110 -

CPX

CPX établit une comparaison entre deux nombres de 16 bits. Une
instruction de branchement doit ensuite exploiter cette comparaison.
On peut utiliser les modes d’adressage immédiat, direct, indexé et
étendu.

Exemple : MODE D’ADRESSAGE IMMEDIAT (49 octets)

Programme assembleur

1 ORG $4A00
2 EXC DEBUT
3 DEBUT LDD #$6361
4 STD $BF21 ; C CEDILLE
5 LDD #$0800
6 STD $BF26 ; LIGNE 8 COL. O
7 LDD #$2871
8 STAB $BF23 ; BLANC SUR ROUGE
9 LDX #30
10 CAR. LDAB #$1
1 STAB $BF28 ; EXECUTION
12 TEMPO LDAB $BF20
13 CMPB #$80
14 BHS TEMPO
15 DECA
16 BNE SUITE
17 LDAA #$28
18 INC $BF26 ; LIGNE SUIVANTE
19 SUITE INX
20 CPX #3$3C0 ; 960 AFFICHAGES
21 BLO CAR.
22 FIN BRA FIN
- 1M1 -

Commentaires

Lignes 3 et 4 : on écrit dans les octets 48929 et 48930 les valeurs
99 et 97 correspondant au caractére ¢ (voir Chapitre 2).

Lignes 5 et 6 : on détermine I’endroit de I’écran ol apparaitra
le premier caractére : deuxiéme rangée (ligne n° 8) et colonne de
gauche.

Lignes 7 et 8 : le registre A est chargé avec $28 (40 décimal) et
le registre B avec la valeur $71. Cette valeur, quand elle se trouve dans
I’octet $BF23, fait apparaitre les lettres en blanc sur fond rouge.

Ligne 9 : le registre 16 bits X est mis a zéro. Il va contenir le nom-
bre de passages dans la boucle CAR.

Lignes 10 a 14 : on donne, en écrivant 1 dans ’octet $BF28, 1’or-
dre d’affichage de la lettre ¢. On ne laisse pas le microprocesseur
continuer la lecture du programme tant que ’affichage en question
n’est pas complétement réalisé. Pour comprendre de quelle maniére
on s’y prend, il est nécessaire de savoir que I’octet $BF20 (48928) a
son bit de gauche qui vaut 1 quand commence ’affichage et qui vaut
0 quand il se termine. L’ordinateur ne fait donc rien d’autre que d’at-
tendre la mise a 0 de ce bit. Quand cela sera fait, le contenu de I’octet
48928 sera inférieur a $80 (128 décimal).

Lignes 15 & 18 : ’accumulateur A s’occupe du nombre de carac-
téres qui sont affichés sur une ligne d’écran. Si ce nombre est infé-
rieur a 40, rien n’est réalisé. Sinon on remet au niveau 40 le registre
A, et on incrémente I’octet $BF26 pour que I’affichage ait lieu a la
ligne suivante. Inutile de s’intéresser a I’octet $BF27 : il est automati-
quement remis a 0 par la machine.

Lignes 19 a 21 : on ajoute 1 a X et on retourne a la ligne 10.

A la fin du programme, quand I’instruction BLO (branchement si

inférieur) ne sera plus d’aucun effet, 960 caractéres seront visibles.
La presque totalité de I’écran sera recouverte de ¢.

- 12 -

Un OU logique est effectué entre 'accumulateur A et le contenu
d’un octet ou entre ’accumulateur et un nombre 8 bits. Les modes
d’adressage permis sont I'immédiat, ’indexé, I’étendu et le direct.

Exemple : MODE D’ADRESSAGE IMMEDIAT (octets)

Programme assembleur

1 ORG $4A00
2 EXC DEBUT
3 DEBUT LDX #$4B00 ; 19200 DECIMAL
4 LDAA $0,X

5 ORAA #$1

6 CMPA $0,X

7 BNE PAIR

8 IMPAIR LDAA #$1

9 BRA FIN

10 PAIR LDAA #$2

11 FIN STAA $1.X

12 RTS

Programme BASIC

10 INPUT ** DONNEZ UN NOMBRE " ; N

20 POKE 19200 , N : EXEC 18944

30 ON PEEK (19201) GOTO 50 , 40

40 PRINT ** CE NOMBRE EST PAIR " : GOTO 10
50 PRINT ** CE NOMBRE EST IMPAIR " : GOTO 10

Commentaires

Réser_vons quelques lignes pour revoir de quelle fagon s’exécute un
OU logique entre deux nombres.

1100
OuU 1010

= 1110

- 13 -

Notre programme, pour sa part, va effectuer un OU entre le contenu
du registre A et le nombre 1. Puisque 1 s’écrit en binaire 00000001,
seul le dernier bit de A sera concerné. Ainsi, si A se termine par 0,
il se verra modifié car son dernier chiffre passera & 1. Par contre, si
son dernier chiffre vaut 1, A gardera la méme valeur.

Lignes 3 et 4 : le nombre que ’on a proposé a ’ordinateur a été
rentré par POKE dans I’octet 19200 et c’est donc le registre A qui est
chargé avec cette valeur.

Ligne 5 : le OU logique est réalisé entre le nombre que nous avons
choisi et I’unité. Si ce nombre est pair, son écriture binaire se fera avec
un 0 a la fin et, s’il est impair, il se terminera par 1. L’action de ORAA
va donc consister & modifier la valeur de notre registre uniquement
dans le cas ou il est pair.

Lignes 6 et 7 : comparaison est faite entre les contenus de I’accu-
mulateur et de I’octet 19200, octet qui, ne I’oublions pas, contient le
nombre que nous avons tapé au clavier. Dans le cas ou ce nombre
est pair, ORAA 1’a transformé et un branchement a la ligne 10 est
effectué.

Lignes 8 et 9 : s’il s’agit d’un nombre impair, la valeur 1 est mise
dans A pour étre réécrite (ligne 11) dans ’octet 19201.

Ligne 10 : sinon, ¢’est le nombre 2 qui va transiter par I’accumu-
lateur pour étre placé ensuite dans ce méme octet.

La ligne BASIC 30 va alors examiner cet octet et le branchement
ON GOTO enverra a ce moment ’ordinateur 4 la bonne instruction.

ORAB

Un OU logique est réalisé entre le registre B et une valeur 8 bits.
On peut employer les modes d’adressage immédiat, indexé, étendu et
direct.

- 114 -

~ ANDA

ANDA réalise un ET logique entre I’accumulateur A et une don-
née 8 bits. On peut utiliser les modes d’adressage immédiat, direct,
indexé et étendu.

Exemple : MODE D’ADRESSAGE ETENDU (34 octets)

Programme assembleur

1 ORG $4A00
2 EXC DEBUT
3 DEBUT LDD #$4111
4 STD $BF21 ; LETTRE A SOULIGNEE
5 LDD #%1414
6 STD $BF26 ; LIGNE 20 COL. 20
7 LDD #$1701
8 STAA $BF23 ; ROUGE/BLANC
9 STAB $BF28 ; EXECUTION
10 LDAA #SEF ; 11101111 BINAIRE
11 ANDA $BF22
12 STAA $BF22
13 STAB $BF28 ; EXECUTION
14 FIN BRA FIN
Commentaires

Lignes 3 et 4 : le contenu du registre A est écrit dans 1’octet 48929
et celui du registre B dans 1’octet suivant. Puisque $41 et $11 valent
respectivement 65 et 17 en décimal, c’est la lettre majuscule A, souli-
gnée, qui va apparaitre sur ’écran.

Lignes 5 et 6 : les octets 48934 et 48935 contiennent les coordon-
nées du caractére : (20, 20). L’affichage se situera donc au milieu de
P’écran.

- 115 -

Lignes 7, 8 et 9 : on définit la couleur de la case (rouge sur blanc)
et on donne Pordre d’affichage. La lettre A, soulignée, est alors visi-
ble devant nos yeux.

Lignes 10 et 11 : un ET logique est effectué entre le contenu de
I’octet $BF22 et le nombre $EF. Regardons cela de plus prés :

[ofojof1fofofo]1] octet $BF22 (48930)

[aftftfofafafafun}] accumulateur A : $EF (239)

Aprés Pinstruction ANDA, voila ce que contient A :

lo{o]ofo]ofolo]1]

La nouvelle valeur de A est égale a 1 ; ANDA nous a permis de forcer
a 0 le bit 4 de Poctet $BF22 et cela sans modifier les autres bits.

Lignes 12 et 13 : puisque 1 correspond au type de I’affichage alpha-
numérique normal, le caractére qui apparait maintenant sur I’écran
est identique au précédent a ceci prés qu’il n’est plus souligné.

ANDB

Le registre B et un nombre 8 bits font I’objet d’un ET logique. Les
modes d’adressage immédiat, direct, indexé et étendu peuvent étre
utilisés.

- 116 —

EORA

Comme les deux instructions précédemment étudiées, EORA réa-
lise une opération logique : un OU exclusif est effectué entre le regis-
tre A et un nombre 8 bits. On peut, la aussi, utiliser les modes d’adres-
sage immédiat, direct, indexé et étendu.

Exemple : MODE D’ADRESSAGE IMMEDIAT (20 octets)

Programme assembleur

1 ORG $4A00

2 EXC DEBUT

3 DEBUT JSR $FBD4 : CLS

4 CLR $ES8

b LDAA #$42 ; ASCIil B

6 LDAB #$FO ; 240 PASSES

7 SUITE JSR AFCAR

8 EORA #$1 :BPUISC

9 DECB

10 BNE SUITE

11 FIN BRA FIN

12 ;

13 AFCAR = $FaC6
Commentaires

L’utilisation du OU exclusif est faite ici dans le but d’inverser le
dernier chiffre d’un nombre binaire.

1 0
EOR 1 EOR 1
= 0 = 1

Quand un OU exclusif est effectué entre un chiffre binaire et 1, le
chiffre change de valeur.

- 117 -

Lignes 3 a 6 : aprés avoir effacé ’écran, on se prépare a utiliser
la routine d’affichage d’un caractére. On annule le contenu de I’octet
$E8 et on place dans le registre A le code ASCII du caractére que ’on
veut faire apparaitre, en ’occurrence la lettre B majuscule.

Ligne 7 : ’appel de la routine baptisée AFCAR est réalisé et la
lettre B s’affiche en haut et a gauche de I’écran. Notons que cette rou-
tine positionne d’elle-méme le curseur immédiatement & droite du carac-
tére qu’elle vient d’écrire et que c’est donc 1a que la lettre suivante
apparaiira.

Ligne 8 : voici notre nouvelle instruction : elle réalise un OU exclu-
sif entre le contenu du premier accumulateur et le chiffre 1. Analy-
sons ce que cela va donner :

1000010 . nombre hexadécimal 42
EOR 0000001

= 1000011

A contient donc maintenant le nombre $43 ¢’est-a-dire le code ASCII
de la lettre C.

Lignes 9 et 10 : le registre B passe de 240 a 239 et I’ordinateur
se rebranche a la ligne 7, pour afficher cette fois le caractére C sur
I’écran. Puis, & nouveau un OU exclusif se fait entre les nombres $43
et 1, ce qui redonne le nombre $42 (nous vous laissons le soin de le
vérifier).

En définitive, lorsque la boucle SUITE aura été parcourue 240 fois,
six lignes alternant les letires B et C seront visibles sur 1’écran.

EORB

L’opération logique OU exclusif est effectuée entre le registre B
et un nombre 8 bits. Sont permis les modes d’adressage immédiat,
direct, indexé et étendu.

- 118 -

PSHA PULA

Ces deux instructions permettent I’empilement et le dépilement
du registre A dans la pile systéeme. Elles n’autorisent que le mode
d’adressage inhérent.

Exemple : MODE D’ADRESSAGE INHERENT (24 octets)

Programme assembleur

1 ORG $4A00
2 EXC DEBUT
3 DEBUT LDAA #$5A
4 STAA $BF21 : LETTRE Z
5 LDD #3015F
6 STD $BF22 ; MAUVE/BLANC + CLIGNO.
7 PSHA
8 LDD #$1F27
9 STD $BF26 ; COORDONNEES
10 PULA
11 STAA $BF28 ; EXECUTION
12 FIN BRA FIN
Commentaires

Lignes 3 et 4 : I’écriture de $5A dans 'octet $BF21 va provoquer
I’affichage de la derniére lettre de I’alphabet. En effet 90 (traduction
décimale de $5A) est le code ASCII de la letire Z.

Lignes 5 et 6 : le contenu de I’accumulateur A (1) est rangé dans
octet $BF22, et ceci pour indiquer au systéme qu’il va s’agir d’un
affichage de type alphanumérique normal. En méme temps, la valeur
$5F, provenant du registre B, est recopiée dans I’octet $BF23. Le choix
des couleurs est donc réalisé : la lettre apparaftra en mauve sur fond
blanc, et en clignotant.

- 119 -

Ligne 7 : nous voici devant notre nouvelle instruction. Le con-
tenu du registre A, le nombre 1 donc, est mis de c6té dans la pile S ;
on dit qu’il est sauvegardé. Nous procédons ainsi car la valeur de A
va étre perdue a la ligne suivante.

Lignes 8 et 9 : les registres 8 bits sont chargés avec les coordon-
nées du point de I’écran ol doit avoir lieu ’affichage. En I’occurrence,
il s’agit de la case située en bas et a droite, la derniére de I’écran donc.

Lignes 10 et 11 : ’instruction PULA ressort de la pile la valeur
qui y avait été placée et va I’écrire dans A. Ce registre retrouve, a ce
moment-13, la valeur 1 ; valeur qui nous sert alors a déclencher I’affi-
chage effectif de notre caractére.

Résumons le r6le du tandem PSH-PUL : ces instructions permet-
tent de mettre de c6té la valeur d’un registre, d’utiliser ce registre pour
remplir d’autres taches, puis de replacer dans ce registre sa valeur
initiale.

PSHB PULB PSHX PULX

Ces couples d’instructions permettent d’empiler et de dépiler les
registres B et X. On ne les utilise que sur le mode inhérent.

- 120 -

LSRA %

Abréviation de Logical Shift Right, cette instruction décale tous
les bits de I'accumulateur A vers la droite. Le bit de gauche est mis
a zéro. On ne peut utiliser que le mode d’adressage inhérent.

Exemple : MODE D’ADRESSAGE INHERENT (8 octets)

Programme assembleur

1 ORG $4A00

2 EXC DEBUT

3 DEBUT LDAA $4B00 ; 19200 DECIMAL
4 LSRA

b STAA $4BO01 ; 19201 DECIMAL
6 RTS

Programme BASIC

10 PRINT “ DONNEZ UN NOMBRE INFERIEUR A 256 “ :
20 INPUT N : POKE 19200 , N : EXEC 18944

30 PRINT “ LE QUOTIENT ENTIER DU NOMBRE PAR 2 " ;
40 PRINT “ VAUT " ; PEEK (19201) : GOTO 10

Commentaires

Ce programme effectie en assembleur la division entiére d’un
nombre par deux. Voyons au niveau du binaire, comment cela se passe.
Considérons le nombre décimal 100 qui s’écrit en binaire 01100100.

[REGISTRE A]

0 Jo |1 J1JToJoTlT1JoTJoll_,cC

bit 7 bit 0

Faisons subir aux chiffres qui constituent ce nombre un décalage
sur la droite. Chaque chiffre va se retrouver-dans le bit de rang immé-
diatement inférieur : le chiffre du bit 7, 0, va passer dans le bit 6, le
chiffre 1 du bit 6 va s’écrire dans le bit 5, etc. Le dernier chiffre 3
droite (bit 0) va donc sortir de ’octet et sera perdu pour nous. L’ordi-
nateur, lui, en gardera la trace en le mettant dans un endroit spécial

-121 -

que ’on appelle I’indicateur de retenue et que ’on note C. Cet indi-
cateur prendra donc la valeur 0, mais, répétons-le, ceci n’a aucune
espéce d’importance pour notre exemple.

Sachant que LSRA remplace toujours le bit 7 par 0, voici ce que
I’on obtient alors pour le registre A :

loJof1]1{o]o[1]0]

La traduction en décimal de cette valeur donne 50 ; on a donc bien
divisé le nombre par 2.
Et si nous étions partis d’un nombre impair ? Essayons avec 101.

0 _Jof1]1]Joo]1]0]1]|—C

Quand LSRA aura agi, on obtiendra :

loJoJ1[1]ofo]1]0]

c’est-a-dire 50, ce qui est bien le quotient entier de 101 par 2. Dans
ce deuxiéme cas, I’indicateur de retenue est passé a 1.

Il ne reste plus qu’a comprendre pourquoi le décalage a droite des
chiffres a conduit & une division par deux. Prenons par exemple le
chiffre 1 du bit 6 et voyons ce qu’il devient : il valait 26, ¢’est-a-dire
64 avant LSRA, il vaut 2°, soit 32, aprés ; il a donc été réduit de
moitié. Ce méme raisonnement se fait pour tous les autres chiffres,
ce qui nous donne I’explication voulue.

Les différentes lignes ne seront pas étudiées une a une, le programme
assembleur se comprenant sans difficulté.

LSRB LSRD

LSRB : Un décalage de tous les bits du registre B est effectué sur
la droite. Le bit 7 s’annule et le bit 0 est placé dans Uindicateur de
retenue. C’est le mode d’adressage inhérent qui est employé.

LSRD : méme chose avec le registre D mais c’est le bit 15 qui
s’annule.

- 122 -

LSR

Comme pour LSRA, c’est un décalage sur la droite, mais ce déca-
lage concernera le contenu d’un octet mémoire. Les modes d’adres-
sage indexé et étendu sont permis.

Exemple : MODE D’ADRESSAGE ETENDU (41 octets)

Programme assembleur

1 ORG $4A00
2 EXC DEBUT
3 DEBUT JSR $FBD4 : CLS
4 LDD #$4101
5 STD $BF21 ;: LETTRE A
6 LDD #$1414
7 STD $BF26 ; COORDONNEES
8 LDD #$073F ; B : 00111111 BINAIRE
9 STAB $BF23
10 SUITE LDAB #$1
11 STAB $BF28 ; EXECUTION
12 TEMPO LDAB $BF20
13 CMPB #$80
14 BHS TEMPO
15 LSR $BF23 ; COULEURS
16 DECA
17 BNE SUITE
18 FIN BRA FIN
Commentaires

Lignes 3 a 7 : on efface ’écran et on écrit dans les octets 48929,
48930, 48934 et 48935 les nombres décimaux 65 , 1, 20 et 20. Nous
programmons ainsi ’affichage de 1a lettre A 3 peu prés au milieu de
I’écran.

- 123 -

Lignes 8 et 9 : ’accumulateur A est chargé avec le chiffre 7. C.C
registre décomptera le nombre de passages dans la boucle SUITE. Puis
la valeur de B est transmise & 1’octet $BF23 (48931 décimal).

Lignes 10 @ 17 : I’affichage du caractére A est réalisé 7 fois de
suite par écriture du nombre 1 dans I’octet $BF28. A chaque lecture
de la boucle SUITE, les couleurs de 1a lettre changent du fait des modi-
fications qui interviennent sur I’octet $BF23 (ligne 15). Voici les trans-
formations successives que LSR fait subir & cet octet :

@—»| ofoft]t]t]r]r]a |_’Jaunesurblancetc]ignotant

@-—»' oJoToJ1 1]1T1]1]—[C]rouge sur blanc et clignotant

@—»'0 |0 |0 |0 |1 Il |1 |1 |_’Noirsurblancetclignotant
@—»Wlo |0 10 |0 | 1 | 1 Il I—’Noirsur blanc

[0l . [oJoJoJoJoTo 11]—[ClNoir sur jaune

@—>|0|0|0|0|0|0|0|1 |—"Noirsurrouge

[o]_.[oJoTofoJofo[0]0|—[C]Noir sur noir

- 124 -

LSLA

C’est cette fois-ci d’un décalage vers la gauche qu’il est question,
LSL étant I’abréviation de Logical Shift Left. Le bit 7 passe dans I’in-
dicateur de retenue et le bit 0 du registre A est mis & zéro. LSLA est
utilisée avec le seul mode d’adressage inhérent.

Exemple : MODE D’ ADRESSAGE INHERENT (8 octets)

Programme assembleur

1 ORG $4A00

2 EXC DEBUT

3 DEBUT LDAA $4B00 ; 19200 DECIMAL
4 LSLA

b STAA $4B00

6 RTS

Programme BASIC

10 INPUT “ DONNEZ UN NOMBRE " ; N : POKE 19200 , N
20J=1:FORI =1T03

30J = J*2: EXEC 18944

40 PRINT “ LE PRODUIT DU NOMBRE PAR " ; J ;

50 PRINT ** VAUT " ; PEEK (19200)

60 NEXT : GOTO 10

Commentaires

On suppose que I’on propose & I’ordinateur le nombre 31 et on
regarde ce qu’il devient quand on exécute ’instruction LSLA. 31 a
pour équivalent binaire 00011111.

REGISTRE A
[c] JoToToTaTaTtT11][0]

bit 7 bit 0

- 125 -

Le décalage va faire sortir du registre le contenu du bit 7 qui ira
se placer dans I’indicateur de retenue, indicateur dont I’importance
est nulle en I’état d’avancement de nos connaissances. Tous les chiffres
étant translatés, on obtient pour A :

[oJoJif1]1[1]1]0]

Le nombre O est venu prendre la place laissée libre dans le bit 0.
En transcrivant le résultat obtenu en décimal, on obtient le nombre
62, c’est-a-dire le double de 31. Ainsi ce décalage a gauche de tous
les bits a permis d’effectuer le produit par 2 du nombre qui se trou-
vait dans ’accumulateur. Ceci peut se comprendre puisque, en défi-
nitive, chaque chiffre se retrouvera avec une puissance de 2 supérieure
d’une unité a la précédente.

Revenons & notre programme : le nombre que ’on a donné au départ
3 Pordinateur est placé dans ’octet 19200 et, au premier passage de
la boucle FOR NEXT, ce nombre est multiplié par 2. La ligne assem-
bleur 5 replace la réponse dans ce méme octet 19200. Au deuxi¢me
passage, le nombre est 2 nouveau multiplié par 2, ce qui fait que la
valeur du début est, cette fois, multipliée par 4 ; elle le sera par 8 quand
le programme BASIC sera terminé.

Bien entendu, ce programme donne des réponses cohérentes tant
que I’on ne choisit pas un nombre supérieur ou égal & 32 (soit 00100000
en binaire). A partir de cette valeur, en effet, c’est le chiffre 1 qui est
perdu dans les décalages rendant le résultat final incorrect (mais
explicable).

LSLB LSLD

LSLB : Tous les bits du registre B sont décalés sur la gauche.
Le bit de droite s’annule et celui de gauche passe dans I’indicateur de
retenue. On emploie le mode d’adressage inhérent seulement.

LSLD : méme action mais concernant le registre double D.

- 126 —

Un décalage d’un bit sur la gauche du contenu d’un octet mémoire
est effectué. Le bit 0 passe a 0 et le bit 7 est écrit dans Uindicateur
de retenue. Cette instruction s’exécute avec les modes d’adressage
indexé et étendu.

Exemple : MODE D’ADRESSAGE ETENDU (32 octets)

Programme assembleur

1 ORG $4A00
2 EXC DEBUT
3 DEBUT JSR $FBD4 ; CLS
4 LDX #$0A ; 10 LIGNES
5 LDAA #$41 ; ASCII 65
6 CLR $E8
7 SUIT2 LDAB #$5
8 SUITT LSL $3281 ; COLONNE
9 JSR $F9C6 ; AFCAR
10 DECB
11 BNE SUIT1
12 CLR $3281 ; COLONNE
13 INC $3280 ; LIGNE
14 DEX
15 BNE SUIT2
16 FIN BRA FIN

Commentaires

Ligne 3 : un saut vers la routine d’effacement de 1’écran est pro-
grammeé. Le curseur est alors positionné automatiquement sur la pre-
micre case de 1’écran, ce qui nous permet d’en déduire que les octets
$3280 et $3281 ont un contenu nul.

- 127 -

Lignes 4 et 5 : le registre X est chargé avec un nombre qui va cor-
respondre, nous le verrons, aux dix premiéres lignes de I’écran. A,
pour sa part, est chargé avec le code ASCII de la lettre majuscule A ;
son contenu ne sera & aucun moment modifié¢ au cours du programme.

Ligne 7 : cinq lettres vont apparaitre successivement sur chaque
ligne, et c’est B qui tiendra ce compte.

Lignes 8 a 11 : la boucle SUIT1 est parcourue 5 fois. A chaque
passage, le contenu de I’octet $3281 subit un décalage sur la gauche,
puis la routine d’affichage de la lettre A est mise & contribution. Voyons
cela de prés :

1. Premier passage :

s I’octet $3281 s’écrit 00000000 ;

¢ il subit un décalage sur la gauche et le chiffre 0 entre dans le bit O ;
ainsi il garde la valeur O ;

® la routine AFCAR dessine la lettre A dans la colonne 0 mais, en
méme temps, ajoute une unité & 1’octet qui nous intéresse. Ceci n’a
rien de mystérieux, le curseur est toujours déplacé d’un cran a droite
quand un caractére est affiché, non ?

2. Deuxiéme passage :

® P’octet $3281 s’écrit 00000001 ;

® LSL agit sur lui et le transforme en 00000010 ;

® la routine affiche la lettre A sur la colonne numéro 2 et incrémente
le contenu de notre octet.

3, 4 et 5. En poursuivant les calculs, on arrive a comprendre pour-
quoi le caractére A est apparu dans les colonnes 0, 2, 6, 14 et 30.

Lignes 12 et 13 : I’octet $3280 prend la valeur 1 indiquant par
1& méme que C’est la deuxiéme ligne de I’écran qui va étre concernée.
L’octet suivant, quant a lui, est ramené & zéro pour que I’affichage
reparte & nouveau de la premiére colonne.

Lignes 14 et 15 : le programme bouclera tant que dix lignes iden-
tiques & la premiére n’auront pas été écrites.

- 128 —

- ROLA

Tous les bits de I’accumulateur subissent une rotation vers la
gauche. Le bit 7 passe dans indicateur de retenue et la valeur préala-
blement contenue par celui-ci est transférée dans le bit 0. ROLA est
I’abréviation de ROtate Left A. Seul le mode d’adressage inhérent est
autorisé.

Exemple : MODE D’ADRESSAGE INHERENT (15 octets)

Programme assembleur

1 ORG $4A00
2 EXC DEBUT
3 DEBUT CLRA

4 CLRB

5 ROLA

6 LDAA $4B00 ; 19200 DECIMAL
7 ROLA

8 ROLB

9 STAB $4B01
10 STAA $4B02
1 RTS

Programme BASIC

10 INPUT “ DONNEZ UN NBRE " ; N : POKE 19200 , N
20 EXEC 18944 : PRINT “ SON DOUBLE VAUT : " ;
30 PRINT 256+PEEK(19201)+ PEEK(19202) : GOTO 10

Commentaires

Vous vous souvenez de ’instruction LSLA ? Elle nous avait per-
mis de multiplier un nombre par 2, 4 ou 8 mais cela n’était pas allé
sans un ennui de taille : les chiffres 1 qui sortaient sur la gauche de
Paccumulateur étaient perdus et, si on partait d’un nombre trop
grand, la réponse n’¢était pas celle attendue. Regardons comment nous
allons pouvoir y remédier avec notre nouvelle instruction ROLA.

- 129 —

c]

LT

REGISTRE A

Tous les bits de I’accumulateur subissent un décalage sur la gau-
che ; le bit contenu dans ’indicateur de retenue passe dans le bit 0
et ¢’est le bit 7 qui prend sa place. 1l s’agit donc 1a d’une rotation réa-
lisée sur 9 bits.

Lignes 3 et 4 : les deux registres 8 bits sont mis a zéro.

Ligne 5 : on fait subir & A une rotation ; puisque A s’écrit
00000000 en binaire, ceci n’a pas d’autre effet que de faire entrer le
chiffre 0 dans I’indicateur de retenue.

Lignes 6 et 7 : on recopie dans A le nombre que nous avons écrit
par POKE dans 'octet 19200 et, grace & ROLA, on le multiplie par
2. Examinons cela de plus prés et supposons, pour fixer les idées, que
N ait été choisi égal a 201 (soit 11001001).

[0}

| I |
L el e o]~

C est & zéro (ligne 5) et on obtient donc apres ROLA :

[1]

[1{oJof1]ofo]1]o0]

Le bit C est passé a 1 et la nouvelle valeur de I’accumulateur est,
en décimal, 146. Ceci n’est naturellement pas le double de 201, mais
attendons la suite.

Lignes 8 et 9 : ROLB a pour effet de décaler les huit chiffres 0
du registre B et de faire rentrer sur sa droite le bit qui se trouvait dans
I’indicateur, c’est-a-dire le bit 1. La nouvelle valeur de B est donc 1 ;
elle est inscrite alors dans 1’octet 19201.

Lignes 10 et 11 : le décimal 146 est, pour sa part, placé a I’adresse
19202 et le retour au BASIC est programmé. On va pouvoir vérifier
la logique du programme assembleur :

PRINT 256+PEEK(19201) + PEEK(19202)

- 130 —

Réponse : 256=1 + 146 =402.

Tout s’est donc passé en définitive comme si nous avions fait un
décalage sur 9 bits.

011001001 (201 décimal) serait devenu 110010010 (402 décimal).

ROLB

Cette instruction agit sur B de la méme facon que ROLA le fait
sur A. C’est le mode d’adressage inhérent qui doit étre utilisé.

- 131 -

ROL

Tous les bits de I’octet mémoire spécifié sont décalés d’une posi-
tion sur la gauche. Le bit 7 est placé dans 'indicateur de retenue et
la valeur d’origine de celui-ci est transférée dans le bit 0. Les modes
d’adressage possibles sont I'indexé et I’étendu.

Exemple : MODE D’ADRESSAGE ETENDU (33 octets)

Programme assembleur

1 ORG $4A00
2 EXC DEBUT
3 DEBUT JSR $FBD4 ; CLS
4 LDD #$4101
5 STD $BF21 : LETTRE A
6 LDD #$1414
7 STD $BF26 ; COORDONNEES
8 LDD #$0501
9 STAA $BF23 : NOIR/MAUVE
10 STAB $BF28 » EXECUTION
11 ROLA
12 ROL $BF23 NOIR/VERT + CLIGNO.
13 STAB $BF28 ; EXECUTION
14 FIN BRA FIN
Commentaires

Lignes 3 a 7 : 'effacement de I’écran est réalisé par I’appel de
la routine $FBD4. Puis on indique a ’ordinateur que I’on va utiliser
le générateur vidéo pour procéder a I’affichage d’une lettre en cou-
leur et au milieu de I’écran.

Ligne 8 : les nombres 5 et 1 sont écrits dans les accumulateurs
8 bits. La configuration binaire du registre A en est la suivante :
00000101.

- 132 —

Lignes 9 et 10 : le contenu de A est rangé dans I’octet qui déter-
mine la couleur, et ’affichage de notre caractére est réalisé : 1a lettre
A apparait en noir sur mauve.

Ligne 11 : on fait subir au registre A une rotation sur la gauche.

avant ROLA —JoJoJoJoJo[1]o]1] «— [?] ¢

apres ROLA [oJoJoJoJtJoJ1]?] «— 0] C

A cet instant, on ne peut savoir la valeur exacte du registre : son der-
nier bit est inconnu. Par contre, ce dont on est sfir, ¢’est que I’indica-
teur de retenue contient le chiffre 0. Ceci va nous étre utile a la ligne
suivante.

Ligne 12 : c’est cette fois sur I’octet $BF23 qu’une rotation est
effectuée :

avant ROL [0JoJoJoJoJ1JoJ1] « o] C
noir mauve

apresROL [0]o0fofof1fof1fo] «~ Jo] ¢
Tnoir Tvert
clignotant

Ligne 13 : inutile de s’expliquer plus longtemps. La seconde let-
tre va étre visible en noir sur fond vert ; de plus, elle va clignoter.

- 133 -

RORA

Cette instruction effectue une rotation sur la droite de tous les
bits de ’accumulateur A. Le bit de retenue prend la place du bit 7 ;
il est lui-méme remplacé par le bit 0. On utilise le mode d’adressage
inhérent.

Exemple : MODE D’ADRESSAGE INHERENT (26 octets)

Programme assembleur

1 ORG $4A00
2 EXC DEBUT
3 DEBUT JSR $FBD4 ; CLS
4 LDX #$190 ; 400 DECIMAL
5 LDAA #$A6 ; 134 + 32
6 CLR $E8
7 SUITE JSR $FIC6 ; AFCAR
8 CLC
9 RORA
10 JSR $FOC6 ;: AFCAR
11 CLC
12 ROLA
13 DEX
14 BNE SUITE
15 FIN BRA FIN
Commentaires

Ligne 3 : 1a routine d’effacement de 1’écran est appelée et de ce
fait le curseur est positionné en haut et tout a gauche de I’écran.

Ligne 4 : le registre X est chargé avec le nombre $190. Ce nombre
correspond aux 400 passages que le programme effectuera dans la
boucle SUITE.

Ligne 5 : A contient la valeur $A6 c’est-a-dire 166 décimal ou
10100110 binaire.

Ligne 7 : le microprocesseur est lancé dans la routine d’affichage.
Le caractére qui va apparaitre sur la premiére case de 1’écran, ayant
pour code 166, a les particularités suivantes : c’est un caractére gra-
phique (le numéro 134) et sa couleur est bleue (166 = 134 + 32).

~ 134 —

Lignes 8 et 9 : nous voulons faire exécuter une rotation sur la
droite au contenu du registre A. Nous ne pouvons connaitre 3 priori
la valeur du bit de retenue C et pourtant nous avons besoin pour notre
programme qu’il soit nul. Voila donc & quoi sert ’instruction CLC :
elle force & 0 P’indicateur de retenue. La commande qui a un effet
opposé est SEC ; elle fait entrer le chiffre 1 dans C.

avant RORA I—-|1|0|1|0|0|l|l|0|_,,;|£_, C

aprés RORA loltfoftfoJou]t] [1] C

Ligne 10 : nouvel appel de la routine $F9C6. Et cette fois-ci, c’est
la lettre S (code décimal 83 ou binaire 1010011) que I’on pourra voir.

Lignes 11 et 12 : aprés RORA, voici ROLA ; le registre A, voyant
ses bits décalés sur la gauche, va retrouver sa configuration initiale
(10100110 binaire ou 166 décimal). Remarquons que la précaution de
remettre le chiffre 0 dans I’indicateur de retenue a été prise : ceci s’ex-
plique par le fait que Pordinateur intervient sur cet indicateur dans
la routine d’affichage et qu’il risque donc de nous retourner une valeur
modifiée.

Lignes 13 et 14 : le registre X, décrémenté, voit sa valeur passer
a 399 et le programme se relance dans 1’exécution de la boucle SUITE.

Le caractére graphique 166 puis la lettre S vont étre une seconde fois
dessinés.

Faisons le bilan : quand I’ordinateur sortira du programme, vingt
lignes de quarante caractéres (alternant graphiques et lettres S) seront
visibles sur notre téléviseur.

RORB

Cette instruction permet de faire sur le registre B le méme genre
d’opération que RORA. On utilise le mode d’adressage inhérent.

- 135 —

Une rotation sur la droite du contenu d’un octet est réalisée. Le
bit 0 prend la place du bit de retenue qui, lui-méme, se retrouve a ’em-
placement du bit 7. 1l est permis d’utiliser les modes d’adressage indexé
et étendu.

Exemple : MODE D’ADRESSAGE ETENDU (9 octets)

Programme assembleur

1 ORG $4A00

2 EXC DEBUT

3 DEBUT CLRA

4 RORA

5 ROR $4B00 ; 19200 DECIMAL
6 ROR $4B01 ; 19201 DECIMAL
7 RTS

Programme BASIC

10 PRINT ““ DONNEZ UN NBRE INFERIEUR A 65536 "
20 INPUT N : POKE 19200 , INT(N/256)

30 POKE 19201 , N — INT(N/256)*256

40J=1:FORI =1TO4

50 EXEC 18944 : J = J = 2

60 PRINT ““ LE QUOTIEN DU NBRE PAR " ; J ;

70 PRINT ““ VAUT " ; 266 « PEEK(19200) + PEEK(19201)
80 NEXT : GOTO10

Commentaires

Ce programme exécute les divisions entiéres par 2, 4, 8 et 16 de n’im-
porte quel nombre plus petit que 65536. Nous retrouvons donc une
méthode déja connue, le décalage sur la droite, mais nous allons I’ap-
pliquer ici, grace a I'utilisation du bit de retenue, a une valeur écrite
sur deux octets.

Prenons par exemple le nombre 1000 qui s’écrit en binaire
1111101000. Le programme BASIC le décompose en deux valeurs de

- 136 —

huit bits qui sont écrites dans I’octet 19200 pour le poids fort et dans
Poctet 19201 pour le reste.

loJoJoJo]oJof1]1] Lif11]o]t[ofo]o]
octet 19200 octet 19201

On procéde maintenant de la méme fagon que la machine.

Ligne 5 : rotation des bits de ’octet 19200 sur la droite :

L[oToToToTo o a1} .[oH

avant exécution

[oToJoJoJoJoJol1] [1] ¢

apres exécution

Vous aviez remarqué que la précaution avait été prise aux lignes
3 et 4 de placer le chiffre 0 dans I’indicateur de retenue.

Ligne 6 : rotation des bits de ’octet 19201 sur la droite (le bit
de retenue est a 1, ne ’oublions pas) :

LGTiiJoltJoToTo} [iH

avant exécution

[IiTiT1JoTiTeJo] [o] ¢

aprés exécution

Faisons les comptes : les octets 19200 et 19201 valent respectivement
en décimal 1 et 244. Lorsque I’on applique la régle poids fort/poids
faible, on obtient :

 1%256+244 =500

Ceci est bien la réponse attendue.

Lorsqu’une nouvelle exécution du programme machine sera com-
mandée par le BASIC, les octets 19200 et 19201 se verront décalés sur
la droite, le bit sortant du premier étant réécrit au début du deuxiéme :
c’est ainsi qu’une nouvelle division par deux sera réalisée.

- 137 -

ADCA |

Cette instruction est I’abréviation de ADd with Carry into A. Un
nombre de 8 bits, le contenu de Uindicateur de retenue et la valeur
de A sont gjoutés. Le résultat est mis dans I’accumulateur. Les modes
d’adressage immédiat, indexé, étendu et direct sont autorisés.

Exemple : MODE D’ADRESSAGE IMMEDIAT (17 octets)

Programme assembleur

1 ORG $4A00

2 EXC DEBUT

3 DEBUT LDD $4B00 ; 19200 DECIMAL
4 ADDD $4B02

5 STD $4BOA ; 19210 DECIMAL
6 LDAA #30

7 ADCA #%0

8 STAA $4B0OC ; 19212 DECIMAL
9 RTS

Programme BASIC

10 INPUT ““ PREMIER NBRE " ; N1

20 POKE 19200 , INT{N1/256)

30 POKE 19201, N1 — INT(N1/256)+256

40 INPUT “ DEUXIEME NBRE " ; N2

50 POKE 19202 , INT(N2/256)

60 POKE 19203 , N2 — INT(N2/256)*256

70 EXEC 18944 : PRINT * REPONSE " ;

80 ? 65536+PEEK(19212) + 2566+PEEK(19210) + PEEK{19211)

Commentaires
Voici une nouvelle utilisation du bit de retenue qui va nous permet-

tre d’ajouter deux valeurs dont la somme dépasse 65535 et ceci avec,
de la part de I’ordinateur, une réponse valable.

- 138 —

Lignes 3, 4 et 5 : ’accumulateur 16 bits D est chargé avec le
nombre N1, il lui est ajouté le nombre N2, et le résultat est rangé,
sous la forme poids fort/poids faible, dans les octets 19210 et 19211.
Le programme pourrait trés bien s’arréter 1a si nous nous contentions
d’ajouter deux nombres ayant une somme plus petite que 65536. Sup-
posons qu’il n’en soit rien et proposons & I’ordinateur le calcul 50000
+ 20000 ; il va considérer que 70000 se décompose en 65536 d’une
part et en 4464 d’autre part. Cette derniére valeur sera écrite dans les
octets 19210 et 19211 mais la machine va garder la trace du déborde-
ment de la capacité 16 bits en forcant a 1 le bit de retenue. Il nous
faut voir comment nous allons pouvoir nous servir de cette indication.

Lignes 6 et 7 : ces deux lignes ont pour but d’écrire dans le regis-
tre A le chiffre du bit de retenue. On met 1’accumulateur a zéro et
on lui ajoute alors la retenue et la valeur 0. Au total, A contiendra
bien la valeur d’origine de I’indicateur.

Ligne 8 : il ne reste plus qu’a ranger ce résultat dans ’octet 19212,
14 ot le programme appelant pourra le retrouver.

En définitive, si le calcul de la somme dépasse 16 bits, le nombre
65536 est ajouté au résultat final par la ligne BASIC 80.

Un petit détail vous aura peut-&tre échappé : I’instruction LDAA #$0
de la ligne 6 n’a volontairement pas été remplacée par CLRA. Cette
commande, nous 1’avons vu, a une action sur le bit de retenue : elle
le met toujours a z&ro. Et, si nous ’avions utilisée, le programme n’au-
rait pas donné le résultat escompté. Vous vous en assurerez.

ADCB

Le résultat d’'une somme entre une valeur 8 bits, le contenu de
Pindicateur de retenue et celui du registre B est placé dans ce registre.
On peut employer les modes immédiat, indexé, étendu et direct.

- 139 -

| ASRA

Tous les bits de I’accumulateur sont décalés sur la droite et le bit
0 va dans indicateur de retenue. Mais le bit 7 reste inchangé. Le mode
d’adressage inhérent est le seul possible.

Exemple : MODE D’ADRESSAGE INHERENT (8 octets)

Programme assembleur

1 ORG $4A00

2 EXC DEBUT

3 DEBUT LDAA $4B00 ; 19200 DECIMAL
4 ASRA

5 STAA $4B01 ; 19201 DECIMAL
6 RTS

Programme BASIC

10 INPUT “ DONNEZ UN NBRE NEGATIF " ; N
20 POKE 19200 , 256 + N : EXEC 18944

30 PRINT * VOICI SON QUOTIENT PAR 2 " ;
40 PRINT “—""; 266 — PEEK(19201) : GOTO 10

Commentaires

11 faut rappeler que les nombres 8 bits dont I’écriture binaire com-
mence par le chiffre 1 sont considérés par I’ordinateur comme néga-
tifs. Par exemple — 90 s’obtient en calculant le complément & deux
de 90, ce qui donne 10100110. Examinons quel sera P’effet de I’ins-
truction ASRA sur ce nombre si I’on suppose qu’il est écrit dans
Paccumulateur :

]
—{1fof1fofofi]iJo] 7]

avant exécution

~ 140 —

[1T1JoJ1JoJoJ1]1] [0] ¢

apres exécution

Tous les chiffres ont été décalés sur la droite et le dernier d’entre
eux est passé dans I’indicateur. Quant au bit 7, il valait 1 et, dans la
place qu’il a laissée libre, le méme chiffre 1 a été écrit. En se livrant
au jeu des conversions, on obtient pour A la valeur décimale 211. Ainsi,
3 la suite de Pexécution de ASRA, ’accumulateur contient la traduc--
tion binaire de la valeur — 45. Voici donc compris le réle de notre
nouvelle instruction : elle permet de diviser par deux un nombre négatif
tout en conservant son signe.

I nous faut voir, au niveau du BASIC, par quelle gymnastique nous
pouvons faire parvenir au processeur le nombre a diviser et récupérer
ensuite le quotient.

N est un nombre négatif qu’il va falloir transmettre sur le mode com-
plément & deux. Ceci se fait avec la commande POKE de la ligne 20 :
en effet, en retranchant un nombre de 256, on obtient la valeur déci-
male de son complément & deux. 255 correspond par exemple a — 1,
254 a -2, etc.

On reprendra la méme méthode pour traduire (ligne 40) le nombre
négatif que la machine aura calculé en une forme qui nous est
habituelle.

Une derniére chose : ne manquez pas de proposer a I’ordinateur des
nombres impairs ou des nombres dont la valeur absolue est supérieure
a 127. Bt essayez de retrouver a chaque fois ou se trouve la logique
d’une réponse apparemment incorrecte.

ASRB

C’est cette fois les bits de I’accumulateur B qui sont décalés sur
la droite. Le bit 7 reste inchangé et le bit de droite tombe dans l’indi-
cateur de retenue. On utilise cette instruction avec le mode inhérent.

- 141 -

Le contenu d’un octet mémoire est soumis @ une rotation sur sa
droite. Le bit 7 garde sa valeur d’origine et le bit 0 passe dans I’indi-
cateur de retenue. On utilise les modes indexé et étendu.

Exemple : MODE D’ADRESSAGE ETENDU (42 octets)

Programme assembleur

1 ORG $4A00

2 EXC DEBUT

3 DEBUT JSR $FBD4 : CLS

4 LDD #$4111 '

5 STD $BF21 : LETTRE A SOULIGNEE
6 LDD #$1400

7 STD #$BF26 ; COORDONNEES

8 LDD #$8001

9 STAA $BF23 ; COULEURS

10 LDX #3$8

11 SUITE STAB $BF28 ; EXECUTION
12 TEMPO LDAA $BF20

13 CMPA #$80
14 BHS TEMPO
15 ASR $BF23 : COULEURS
16 DEX
17 BNE SUITE
18 FIN BRA FIN
Commentaires

Lignes 4 a 9 : on veut procéder a P’affichage d’un caractére ; on
donne donc a Pordinateur les renseignements suivants :
* le code de ce caractére : $41 (lettre A)
le type de P’affichage : $11 (alphanumérique souligné)
Pabscisse sur I’écran : $00 (colonne de gauche)
Pordonnée : $14 (rangée du milieu)
la couleur : $80 (noir sur noir en vidéo inversée)

- 142 -

Ligne 10 : 1a boucle SUITE va étre exécutée 8 fois. Le registre
X, quand sa valeur sera ramenée a 0, indiquera au systéme que le pro-
gramme est terminé.

Lignes 11 a 17 : voyons ce que fait le microprocesseur dans la
boucle SUITE ; il donne P’ordre d’affichage de la lettre A, il attend
que cet affichage soit effectivement réalisé puis il fait subir aux bits
de ’octet $BF23 une rotation sur la droite. Puisque c¢’est de 'instruc-
tion ASR qu’il s’agit, cette rotation ne modifie pas la valeur du bit
7 de I’octet en question. Rappelons que le contenu de cet octet a une
influence directe sur le coloriage des caractéres. Voici donc les attri-
buts des huit lettres qui apparaissent sur ’écran :

Valeurs successives Couleurs correspondantes

de Poctet $BF23 - (vidéo inversée)
10000000 Noir sur noir
11000000 Noir sur bleu
11100000 Noir sur turquoise
11110000 Noir sur blanc
11111000 Noir sur blanc + clignotant
11111100 Bleu sur blanc+ clignotant
11111110 Turquoise sur blanc+ clignotant
11111111 Blanc sur blanc + clignotant

— 143 -

COMA

Le contenu de I’accumulateur est remplacé par son complément
logique. Chaque chiffre 1 est transformé en un chiffre 0 et récipro-
quement. Le mode d’adressage inhérent est le seul utilisable.

Exemple : MODE D’ADRESSAGE INHERENT (22 octets)

Programme assembleur

1 ORG $4A00

2 EXC DEBUT

3 DEBUT LDAA #SF ; 00001111 EN BINAIRE

4 PSHA

5 SUITE JSR $F883 ; INKEY$

6 CMPA #0

7 BEQ SUITE

8 LDAB #35 : DUREE

9 PULA

10 PSHA

11 JSR $FFAB ; SON

12 PULA

13 COMA

14 PSHA

15 BRA SUITE
Commentaires

Lignes 3 et 4 : Paccumulateur A est chargé avec le nombre qui
s’€écrit 00001111 sur 8 bits en binaire (15 décimal) et cette valeur est
aussitot sauvegardée dans la pile S.

Lignes 5, 6 et 7 : on envoie le microprocesseur exécuter la rou-
tine qui débute a ’adresse $F883. Cette routine a pour mission de nous
indiquer si une touche du clavier a été enfoncée. Elle agit en effet sur
le registre A en y inscrivant soit la valeur 0 (aucune touche n’a été
pressée), soit le code ASCII de la touche sur laquelle on a appuyé.
Notre programme se maintient donc dans la boucle SUITE tant que
nous n’intervenons pas sur le clavier.

- 144 -

Ligne 8 : une touche a été enfoncée. Une note de musique dont
la durée est définie par le registre B va &tre jouée.

Ligne 9 : A contient pour I'instant le code de la touche pressée ;
ce nombre n’a rigoureusement rien 4 voir avec notre programme et
nous allons d’ailleurs le perdre au profit de la valeur qui est ressortie
de la pile. A a maintenant la valeur $F (15 décimal).

Lignes 10 et 11 : on prend la précaution de remettre dans la pile
Paccumulateur A car la routine qui est appelée détruit son contenu.
Le passage du programme dans cette routine va produire un son grave
de durée 5 (registre B) et de hauteur 15 (registre A).

Lignes 12 et 13 : nous retrouvons la valeur initiale de A en allant
la chercher dans la pile et nous faisons agir notre nouvelle instruction :

avant COMA [ofofofol111]1]e—_ A

aprés COMA [1]1]1]{1]o]o]o]o|l A

Le registre prend la valeur $F0 (240 décimal).

Lignes 14 et 15 : on empile A et on retourne dans la routine de
scrutation du clavier, routine de laquelle nous ne sortirons qu’en enfon-
¢ant une touche. Ce qui aura pour conséquence de nous faire enten-
dre un nouveau son, tres aigu celui-1a (hauteur 240).

Puisque COMA aura fait reprendre au premier accumulateur la
valeur 15, le son suivant sera trés grave. Voila comment s’explique
Palternance entre les deux types de son que nous entendons.

COMB

Chaque chiffre du registre B est remplacé par son opposé binaire.
COMB est une instruction qui ne s’utilise que sur le mode inhérent.

- 145 —

COM

Cette instruction remplace le contenu d’un octet mémoire par son
complément logique. On peut employer les adressages indexé et étendu.

Exemple : MODE D’ADRESSAGE ETENDU (35 octets)

Programme assembleur

1 ORG $4A00

2 EXC DEBUT

3 DEBUT JSR $FBD4 ; CLS

4 CLR $BF26 ; COLONNE 0

5 CLR $BF27 ; LIGNE 0

6 LDD #3$2811

7 STAB $BF23 ; ROUGE/ROUGE
8 SUITE LDAB #31

©

STAB $BF28 ; EXECUTION
10 TEMPO LDAB $BF20

11 CMPB #$80
12 BHS TEMPO
13 COM $BF23 ; COULEUR
14 DECA
15 BNE SUITE
16 FIN BRA FIN
Commentaires

Lignes 4 et 5 : nous allons utiliser le générateur vidéo pour affi-
cher quarante caractéres en couleur sur la premiére ligne de ’écran.
En mettant & 0 les octets $BF26 et $BF27 on indique & 'ordinateur
que le premier caractére doit apparaitre en haut et a gauche de ’'image.

Lignes 6 et 7 : le registre A, chargé avec le nombre $28 (40 déci-
mal), va &tre décrémenté (ligne 14) a chaque fois qu’un caractére sera
affiché. C’est lui qui préviendra le microprocesseur que le programme

- 146 -

est terminé. Quant au registre B, il a comme réle initial d’écrire la
valeur $11 (17 décimal) dans I’octet $BF23. Cet octet a donc, pour
Pinstant, la structure suivante :

olofol1]olofol1]e— octet $BF23

rouge rouge

pas d’inversion vidéo pas de clignotant

Lignes 8 et 9 : on envoie I’ordre d’affichage a I’octet voulu et un
caractére apparait alors sur la premiére case de 'écran. Notons que
nous ne pouvons absolument pas savoir de quel caractére il s’agit mais
une chose est certaine : il est colorié en rouge sur rouge. Voici que
s’explique pourquoi nous ne voyons pas autre chose qu’un petit carré
rouge.

Lignes 10 a 13 : on laisse le temps au systeme vidéo de terminer
son travail et on remplace I’octet $BF23 par son complément logique.
Il a donc maintenant la configuration suivante :

t{1]t]o}1]1[1]0]«— octet $BF23

turquoise turquoise

inversion vidéo —» clignotant

Au passage suivant dans la boucle SUITE, il sera donc procédé a
Paffichage d’un petit carré bleu clair. Le fait qu’il soit dessiné en vidéo
inversée, et sur le mode clignotant, ne sera pas visible pour nous. Impos-
sible de distinguer quoi que ce soit quand P’affichage d’un caractére
et de son fond est fait en utilisant la méme couleur.

Lorsque le programme se terminera, nous pourrons voir en haut
de I’écran une succession de cases rouges et bleues ; 'octet $BF23 aura
pris alternativement les valeurs binaires complémentaires 00010001 et
11101110.

- 147 -

NEGA

La valeur du registre A est remplacée par son complément a deux.
NEGA s’utilise en mode d’adressage inhérent.

Exemple : MODE D’ADRESSAGE INHERENT (8 octets)

Programme assembleur

1 ORG $4A00

2 EXC DEBUT

3 DEBUT LDAA $4B00 ; 19200 DECIMAL
4 NEGA

5 STAA $4B01 ; 19201 DECIMAL
6 RTS

Programme BASIC

10 INPUT ““ DONNEZ UN NBRE ” ; N

20 POKE 19200 , N : EXEC 18944

30 PRINT “ EN COMPLEMENT A 2" ; —N;

40 PRINT “ S'ECRIT " ; PEEK({19201) : GOTO 10

Commentaires

Nous voici, avec ce programme, débarrassés de tous les problémes
d’écriture des nombres négatifs sur le mode complément 4 deux. L’ins-
truction NEGA effectue pour nous les deux opérations nécessaires :

e complémentation logique,
e addition de 1 au résultat obtenu.

Ligne 3 : ’accumulateur est chargé avec le nombre N que le
BASIC avait écrit dans ’octet 19200.

— 148 —

Ligne 4 : on recherche le complément & deux de N. Cette ligne
aurait pu étre remplacée par les deux instructions assembleur suivantes :

COMA
ADDA #3$1 {ou INCA)

I1 ne reste ensuite plus qu’a écrire la réponse dans I’octet voulu. On
a rencontré peu de programmes machine aussi faciles & comprendre,
aussi ne nous attardons pas plus. Passons directement a I’étude de I’ins-
truction suivante.

NEGB

Le complément a deux du contenu de B est calculé, puis remis dans
ce registre. Le mode d’adressage utilisable est I’'inhérent.

- 149 —

NEG

Le complément a deux du contenu d’un octet mémoire est effec-
tué. Les modes d’adressage indexé et étendu sont permis.

Exemple : MODE D’ADRESSAGE ETENDU (44 octets)

Programme assembleur

1 ORG $4A00
2 EXC DEBUT
3 DEBUT JSR $FBD4 ; CLS
4 LDD #$4F01
5 STD $BF21 ; LETTRE O
6 LDD #$0A0A
7 STD $BF26 ; LIGNE 10 COL. 10
8 LDD #$140F
9 STAB $BF23 ; NOIR/BLANC + CLIGNO
10 SUITE LDAB #$01
11 STAB $BF28 ; EXECUTION
12 TEMPO LDAB $BF20
13 CMPB #380
14 BHS TEMPO
15 NEG $BF23 ; CHANGEMENT COUL.
16 INC $BF26 ; LIGNE SUIVANTE
17 DECA
18 BNE SUITE
19 FIN BRA FIN
Commentaires

Lignes 4 a 11 : nous sommes maintenant habitués aux différen-
tes actions que le microprocesseur doit effectuer pour afficher des carac-
teres en couleur. Le premier de ceux-ci est un 0 qui clignotera en noir
sur blanc a Pintersection de la quatriéme ligne et de la onziéme colonne.

- 150 —

Ligne 15 : passons quelques instants a étudier les modifications
que réalise I’instruction NEG sur le contenu de ’octet $BF23. Il con-
tient au début du programme (ligne 9) le nombre hexadécimal $OF c’est-
a-dire le nombre binaire 000011111.

avant NEG [oJoJofo]1]1]1]1]
“noir | blanc
clignotant
aprés NEG [ifrf1fsfofofof1]
~ blanc | rouge
inversion vidéo image fixe

On en conclut qu’au deuxiéme passage de la boucle SUITE, la lettre
0 est dessinée en rouge sur blanc (en réalité : blanc sur rouge mais
inversé). Au troisiéme passage, le caractére affiché retrouve ses attri-
buts d’origine (noir sur blanc clignotant). Inutile de s’expliquer davan-
tage, on voit bien ce que finit par réaliser ce programme. Notez tou-
tefois que du fait que I’octet $BF26 est 4 chaque fois incrémenté, 1’af-
fichage change réguliérement de ligne. Voila pourquoi les caractéres
sont disposés en diagonale sur I’écran.

- 151 -

JMP

Abréviation de JUMP, cette instruction branche le programme
de maniére inconditionnelle a I’adresse qui suit. On I’emploie avec les
modes d’adressage indexé ou étendu.

Exemple : MODE D’ADRESSAGE ETENDU (22 octets)

Programme assembleur

1 ORG $4A00

2 EXC DEBUT

3 DEBUT JMP BIDON

4 BIDON LDD #IA ; 10 DECIMAL

5 LDX #$3346 ; 13126 DECIMAL
6 SUITE STD $2,X ; NOUVEAU N°
7 ADDD #$A ; N° LIGNE SUIV.
8 LDX $0,X

9 CPX #$0 ; FIN DU BASIC ?
10 BNE SUITE

1 RTS

Programme BASIC

5 REM RENUM
8 PRINT ~* CE PROGRAMME "
14 PRINT “ RENUMEROTE LES LIGNES
22 PRINT " DE 10 EN 10 "
24 EXEC 18944
27 LIST

Commentaires
Ceci est le programme de renumérotation automatique des lignes :

il permet d’obtenir des lignes BASIC écrites de 10 en 10. Démontons-
en le mécanisme.

- 152 —

Ligne 3 : voici une présentation tout 2 fait artificielle ; elle ne sert
qu’a mettre en avant la nouvelle instruction JMP. Celle-ci réalise un
branchement inconditionnel vers n’importe quel octet.de la mémoire ;
en I’occurrence, pour nous, ¢’est du premier octet de la ligne suivante
qu’il s’agit.

Lignes 4 et 5 : on charge D avec la valeur 10 ; c’est cet accumula-
teur qui nous servira 2 numéroter les lignes de 10 en 10. Puis on place

dans X P’adresse du premier octet du programme BASIC, loctet
13126 :

FOR I = 13126 TO 13141 : PRINT PEEK(l) ; : NEXT
Et voici la réponse :

5182051313282697885770
(premiére ligne BASIC)

51102 0 8 (début deuxiéme ligne BASIC)

51 et 82 donnent avec la regle poids fort/poids faible le nombre 13138,
c’est-a-dire I’adresse du premier octet de la deuxiéme ligne.
0 et 5 forment le numéro de la premiére ligne BASIC.
131 est le code du mot réservé REM.
32, 82, 69, 78, 85 et 77 sont les codes ASCII des caractéres qui suivent
REM.
0 est le séparateur de deux lignes BASIC.
51 et 102 donnent I’adresse du premier octet de la troisiéme ligne.
0 et 8 constituent le numéro de la deuxiéme ligne, etc.

Revenons a ’assembleur. X pointe au départ sur le nombre 51 et
ce que nous voulons, c’est remplacer les chiffres 0 et 5 par 0 et 10.

Lignes 6 et 7 : 0 est écrit dans Poctet 13128 et 10 dans le suivant.
On ajoute ensuite 10 2 D pour avoir le nouveau numéro de la ligne
BASIC 8.

Ligne 8 : on passe a la deuxiéme ligne du programme BASIC et
X, cette fois, va pointer sur ’octet 13138. C’est le numéro 20 qui se
verra attribuer cette ligne.

Le programme bouclera tant que les deux zéros consécutifs qui indi-
quent la fin du BASIC n’auront pas été rencontrés.

- 163 -

- TSTA |

Cette instruction teste le contenu de l’accumulateur. Une instruc-
tion de branchement doit suivre normalement TSTA. Le seul mode
d’adressage que I’on peut utiliser est I’inhérent.

Exemple : MODE D’ ADRESSAGE INHERENT (17 octets)

Programme assembleur

1 ORG $4A00

2 EXC DEBUT

3 DEBUT JSR EFF : CLS

4 CLR $E8

b SUITE JSR INKEY ; TOUCHE ?

6 TSTA

7 BEQ SUITE

8 JSR AFCAR ; AFFICHAGE

9 BRA SUITE

10 ;

11 EFF = $FBD4

12 INKEY = $F883

13 AFCAR = $FI9C6
Commentaires

Ligne 3 : ’écran est effacé a la suite de I’exécution de la routine
$FBD4. Et le curseur positionné en haut et 4 gauche du téléviseur.

Lignes 5, 6 et 7 : Pordinateur est envoyé dans la routine baptisée
INKEY. Rappelons qu’a son retour, nous saurons si une touche a été
enfoncée ou non et cela en éudiant le contenu du registre A. Si ce
contenu est nul, aucune touche n’aura été pressée, sinon il sera égal
au code ASCII de la touche appuyée.

- 154 —

L’instruction TSTA se borne a tester ’accumulateur A : a-t-il ou
n’a-t-il pas la valeur 0 ? Comme on le voit, elle est parfaitement équi-
valente 3 CMPA #$0. Dongc, tant qu’on ne touche pas le clavier,
TSTA teste un registre nul et le programme boucle en parcourant les
trais lignes 5, 6 et 7.

Ligne 8 : nous voici devant la routine que nous avons le plus sou-
vent utilisée dans ce livre ; elle affiche le caractére dont le code est
contenu par le registre A, c’est-a-dire trés précisément le caractére que
nous avons tapé au clavier. Ceci explique la raison pour laquelle ce
caractére est apparu sur la premiére case de I’écran.

Ligne 9 : Pordinateur est renvoyé de fagon inconditionnelle 4 la
ligne 5. La, il attendra de nouveau que nous enfoncions une touche
et, dés que ce sera fait, affichera le caractére correspondant sur I’écran,
juste a droite du précédent.

Voila, ceci se poursuivra jusqu’a ce que nous nous servions de la
touche d’initialisation.

INE:

C’est dans ce cas le contenu du registre B qui est testé. Cette ins-
truction ne s’emploie qu’avec le mode inhérent.

- 155 —

TST

Cette instruction teste le contenu d’un octet mémoire. Un bran-
chement doit normalement étre effectué apres ce test. On peut employer
les modes d’adressage indexé et étendu.

Exemple : MODE D’ADRESSAGE INDEXE (42 octets
+ octets de la chaine)

Programme assembleur

1 ORG $4A00

2 EXC DEBUT

3 DEBUT JSR $FBD4 ; CLS

4 LDD #$0118

5 STD $BF22 ; ROUGE/NOIR + CLIGNO.
6 LDD #$0A00

7 STD $BF26 ; LIGNE4 COL. 0
8 LDX #TEXTE

9 SUITE LDAA $0,X

10 STAA $BF21 ; CARACTERE
1 LDAA #$1

12 STAA $BF28 : EXECUTION
13 TEMPO LDAA $BF20

14 CMPA #$80

15 BHS TEMPO

16 INX

17 TST $0,X

18 BNE SUITE

19 FIN BRA FIN

20 :

21 TEXTE 'ALICE AU PAYS DES MERVEILLES
22 DFO $0

- 156 —

Commentaires

Lignes 4 a 7 : on se propose d’afficher le texte ““ALICE AU PAYS
DES MERVEILLES”’ a partir du début de la quatriéme rangée. En
inscrivant $18 (00011000 binaire) dans I’octet $BF23, on précise a I’or-
dinateur que les caractéres doivent apparaitre en rouge sur fond noir
et qu’ils doivent clignoter.

Lignes 8, 9 et 10 : le registre X est chargé, en mode immédiat,
avec adresse du premier octet de la chaine TEXTE. Le couple
d’instructions

LDAA $0,X
et STAA $BF21

va, par conséquent, écrire dans I’octet $BF21 le code ASCII de la pre-
miére lettre de notre phrase.

Lignes 11 a 15 : la lettre A, début du mot ALICE, apparaft sur
Pécran.

Ligne 16 : X est incrémenté et contient alors ’adresse de I’octet
qui correspond au caractére L, caractére situé en deuxiéme position
dans la chaine TEXTE.

Lignes 17 et 18 : instruction TST vérifie que le contenu de 1’oc-
tet pointé par X est différent de 0 et rebranche le programme a la ligne
9 pour, cette fois, provoquer I’apparition sur ’écran de la lettre L,
en rouge sur fond noir 14 encore.

Ce qui vient d’€tre réalisé sur deux lettres va étre reproduit pour
tous les caractéres de la phrase et le processus ne s’achévera que lorsque
le registre X pointera sur un octet nul. C’est pour cette raison que nous
avons réservé un octet contenant la valeur 0 en fin de programme (ins-
truction DF0 de la ligne 22).

- 157 -

TAB

TAB est une instruction qui permet de transférer le contenu du
premier accumulateur dans le second. On emploie le mode d’adres-
sage inhérent.

Exemple : MODE D’ADRESSAGE INHERENT (40 octets)

Programme assembleur

1 ORG $4A00

2 EXC DEBUT

3 DEBUT JSR $FBD4 ; CLS

4 LDX #$0

5 LDAA #$80 ; ASCII 128

6 LDAB #3$20 ; ASCII 32

7 CLR $ES

8 PROG JSR $FoCe ; AFCAR

9 PSHB

10 TAB

11 PULA

12 DEC OoCT

13 BNE SUITE

14 PSHB

15 LDAB #$28 ; 40 DECIMAL

16 STAB OCT

17 TAB

18 PULA

19 SUITE INX

20 CPX #$3E7 ; 999 CASES

21 BNE PROG

22 FIN BRA FIN

23 OCT DFO $28 ; 40 DECIMAL
— 158 -

Commentaires

Lignes 4, 5, 6 et 7 : le registre X est mis a zéro ; c’est lui qui comp-
tera les 999 cases de I’écran. Les accumulateurs A et B sont chargés
respectivement avec les codes ASCII de la case pleine — CHR$(128) —
et de la case vide — CHR$(32). D’autre part, ’octet $E8 est forcé a 0.

Ligne 8 : branchement vers le sous-programme d’affichage.
Puisque A contient la valeur 128, un petit carré va s’imprimer en haut
et a gauche du téléviseur.

Lignes 9, 10 et 11 : on sauvegarde la valeur du registre B, soit
32, dans la pile systéme S. On transfére le contenu de A dans B : &
ce moment précis, les deux registres contiennent le méme nombre 128.
Puis on ressort de la pile le nombre qui s’y trouvait pour I’écrire dans
A ; ce qui fait que A contient maintenant la valeur 32. Ces trois lignes
ont donc réalisé I’échange des deux accumulateurs.

Lignes 12 et 13 : on retranche 1 au contenu de ’octet OCT.
Comme ¢’est le nombre 40 que nous y avions placé (ligne 23), I’ins-
truction BNE va exécuter un branchement 2 la ligne 19 du programme.
L4, on rajoute 1 au registre X et on retourne au sous-programme d’af-
fichage. Puisque A vaut 32, c’est le caractére espace qui sera imprimé
sur la deuxiéme case de I’écran. Un nouvel échange des accumulateurs
va alors s’effectuer et au troisiéme passage de la boucle PROG, c’est
une case pleine qui apparaitra. L’alternance case foncée/case claire
explique donc I’effet de damier obtenu.

Reste a voir les détails :

Lignes 14 a 18 : quand Poctet OCT arrive a zéro, cela correspond
au fait que la droite de ’écran est atteinte. On procéde alors & un nouvel
échange des registres A et B pour que la deuxiéme ligne débute par
une case claire. Le programme respectera alors la structure d’un damier.
Naturellement il a fallu remettre au niveau 40 I’octet OCT pour que
le passage de la deuxiéme 2 la troisiéme ligne se fasse de fagon correcte.

TBA TAP TPA TSX TXS

Ces instructions réalisent, sur le mode d’adressage inhérent, des
transferts entre les registres qui sont écrits a la suite de la lettre T.

— 189 —

CONCLUSION

Ce livre a constitué une introduction a la programmation en assem-
bléur de I’ordinateur Alice. Nous en avons étudié les aspects les plus
importants et réalisé une série d’exercices qui vous ont montré, c’est
notre souhait, que ’assembleur pouvait étre assimilé sans difficulté
par un lecteur armé de sa seule bonne volonté. Nous sommes persua-
dés, pour notre part, qu’il est infiniment plus long d’acquérir la logi-
que de la programmation BASIC que celle de I’assembleur.

Vous étes maintenant en mesure de créer vos propres programines
et d’inclure dans vos lignes BASIC des effets spéciaux que seule I'im-
pressionnante rapidité de ’assembleur autorise. Si I’occasion se pré-
sente, vous ne manguerez pas de chercher a quoi correspondent les
codes machine que d’autres programmeurs auront obtenus, faisant
ainsi le travail inverse de celui qui a été effectué jusqu’a maintenant.
Cette opération, qui s’appelle le désassemblage, vous permettra de
reconstruire le programme assembleur et éventuellement de le modi-
fier pour qu’il s’adapte trés précisément a votre cas.

Naturellement, rien ne vous empéche de franchir une nouvelle étape
en vous orientant vers des ouvrages plus techniques que celui-ci'.
Vous y trouverez des programmes applicables & la gestion des péri-
phériques ainsi que des explications concernant les quelques instruc-
tions que nous avons volontairement passées sous silence, estimant
que, dans un premier temps en tout cas, leur intérét était négligeable.

Ce livre s’achéve sur deux programmes un peu plus compliqués que
les autres. Vous les aborderez sans complexes maintenant que vous
est ouvert I’étroit mais 6 combien royal chemin de I’assembleur.

L. Programmation du 6800 par Rodnay Zaks et Daniel Jean David.

- 161 —

~ ANNEXE A
TRI EN MEMOIRE CENTRALE

Programme assembleur

DEBUT
SuUIT2

SUIT1

OCONOCOBWN -

17 ECHAN

23
24
25
26
27
28
29
30
31
32
33 AUTRE
34
35
36
37
38
39
40
41 OCT1
42 O0OCT2

ORG
EXC
CLRA
TAB
INCB
PSHA
PSHB
LDX
TAB
ABX
LDAA
LDX
PULB
ABX
CMPA
BLS
STAA
LDAA
STAA
PULA
PSHA
PSHB
TAB
LDX
ABX
LDAA
STAA
PULB
LDX
ABX
LDAA
STAA
PULA
INCB
CMPB
BLS
INCA
CMPA
BLS
RTS
DFO
DFO

$4A00
DEBUT

#$4B00

$0,X
#3$4B00

$0,X
AUTRE
OoCTM
$0,X
0CT2

#3$4B00

OCT2
$0,X

#3$4B00
OCT1
$0,X
#$63
SUIT1

#3$62
SuIT2

$0
$0

- 164 —

; PREMIER ELEMENT

; PAS D’ECHANGE

; FIN D'UNE PASSE ?

; FIN DU TRI ?

Programme BASIC

10 DIMA(99) : FOR | = 0 TO 99

20 All) = RND(250) : POKE 19200 + 1, All)

30 NEXT : EXEC 18944

40 FOR | = 0 TO 99 : PRINT “* Al*;I;") VALAIT;All)
50 A(l) = PEEK(19200 +1)

60 PRINT “ A(*;I;”) VAUT”;A(l) : NEXT

Commentaires

Cent nombres compris entre 1 et 250 sont tirés au sort et placés dans
un tableau. Le but du programme assembleur est de trier les cent valeurs
et de les recopier, rangées par ordre croissant, dans le tableau. A(0)
sera donc I’élément minimum et A(99) I’élément maximum. Pour per-
mettre au programme de retrouver sans peine ces cent valeurs, elles
vont transiter dans les octets 19200 ($4B00) a 19299.

Lignes 3, 4 et 5 : les nombres 0 et 1 sont écrits respectivement
dans les accumulateurs A et B. Ces deux registres, quand ils seront
ajoutés a X, indigueront de quel élément du tableau il est question.

Lignes 8 a 11 : on fait pointer le registre X vers le premier €1¢-
ment du tableau (qui se trouve donc dans I’octet 19200) et I’on charge
A avec la valeur de cet élément.

Lignes 12 ¢ 16 : X pointe cette fois-ci sur I’octet 19201 et une com-
paraison entre les nombres écrits dans les octets 19200 et 19201 est
établie. Si le premier de ces nombres est inférieur ou égal au deuxiéme,
rien n’est modifié et le programme se branche directement a la ligne
33. La, le registre B est incrémenté et I’ordinateur retourne & I’étiquette
SUIT1 pour comparer le premier et le troisiéme élément du tableau.

Lignes 17 ¢ 32 : si, en revanche, le deuxiéme nombre est inférieur
au premier, on procéde & leur échange. Nous sommes donc siirs, &
la fin de la boucle SUIT1, que A(0) est I’élément minimum du tableau.

Lignes 37 a 39 : Paccumulateur A est incrémenté et un retour a
SUIT2 est programmeé. Pour, cette fois-ci, comparer A(1) avec les élé-
ments suivants, un échange sera effectué a chaque fois que I’on aura
trouvé un nombre plus petit que A(1).

- 165 —

Ainsi, aprés deux passages de la boucle SUIT2, A(0) et A(1) auront
les deux plus petites valeurs du tableau, et ceci dans I’ordre croissant.
Quand le programme arrivera a son terme, tous les éléments seront
rangés correctement et les lignes BASIC 40, 50 et 60 nous en donne-
ront la confirmation.

ANNEXE B
AFFICHAGE D'UN MESSAGE

— 166 —

Voici un programme qui permet ’affichage d’une phrase dans les
couleurs de son choix. L’affichage est réalisé en lettres clignotantes
de largeur double.

Programme assembleur (51 octets)

1 ORG $4A00

2 EXC DEBUT

3 DEBUT LDX #TEXTE

4 SUITE INC $BF27

5 LDD #$2001

6 STD $BF21 ;

7 BSR SPROG ; AFFICHAGE
8 DEC $BF27

9 DEC $BF27

10 LDAA $0,X

11 LDAB #$09 : DOUBLE LARGEUR
12 STD $BF21

13 BSR SPROG

14 INC $BF27

15 INX

16 TST $0,X : FIN DE PHRASE ?
17 BNE SUITE

18 RTS

19 ;

20 SPROG LDAA #$1

21 STAA $BF28 ; EXECUTION
22 TEMPO LDAA $BF20

23 CMPA #$80

24 BHS TEMPO

25 RTS

26 ;

27 TEXTE

- 168 —

Programme BASIC

10 CLEAR 100, 18000 : FOR | = 18944 TO 18994

20 READ J : POKE I, J : NEXT

30 INPUT ** DONNEZ UNE PHRASE " ; A$

40 L = LEN (A$) : IFL<1 OR L>19 THEN 30

50 FOR | = 1 TO L : POKE 18994 +1, ASC (MID$ (A$, I, 1))
60 NEXT : POKE 18994 + 1, 0

70 INPUT * COULEUR DES LETTRES " ; C

80 INPUT " COULEUR DU FOND " ; F

90 INPUT “ CLIGNOTANT " ; C$: CLS

100 POKE 48931 , 16«C+F—(C$="0") « 8 : REM COULEUR
110 POKE 48934 , 20 : REM CADRAGE HORIZONTAL
120 POKE 48935 , (40—2+L)/2 : REM CADRAGE VERTICAL
130 EXEC 18944
140 DATA 206 , 74 , 51, 124,191 ,39, 204,32, 1, 263, 191,

33,141, 24

150 DATA 122, 191,39, 122,191 ,39,166, 0, 198, 9, 253,
191, 33

160 DATA 141 ,9 124,191 ,39,8,109,0, 38, 222 , 57,
134,1,183

170 DATA 191,40, 182, 191,32, 129, 128, 36, 249, 57
Commentaires

Le programme BASIC écrit dans 1’octet 48931 la valeur correspon-
dant a notre choix de couleurs et dans les octets 48934 et 48935 les
coordonnées de la premicre lettre. C’est lui aussi qui place en mémoire,
a partir de I’adresse 18995, les codes ASCII des caractéres qui consti-
tuent le message a afficher. Cette liste de codes doit se finir par le chiffre
0 pour que ’ordinateur comprenne que le processus d’affichage est
terminé.

Les manipulations que nous faisons subir a ’octet $BF27 (incré-
mentations et décrémentations successives) tiennent au fait que lors-
que I’on veut faire apparaitre un caractére en double largeur, sur deux
cases donc, on est obligé de respecter I’enchainement suivant :

¢ coloration de la deuxiéme case dans les tons voulus : ceci se réalise
par impression d’un espace, de largeur normale, dans cette case ;

o affichage, dans la premiére case, du caractére ; son graphisme débor-
dera, avec les couleurs correctes, sur la deuxiéme case.

- 169 -

ANNEXE C
JEU D'INSTRUCTIONS DU 6803

INSTRUCTIONS

FORME

MODES D’ADRESSAGE

IMMEDIAT

DIRECT

INDEXE

ETENDU

INHERENT

CM

NO

CM

NO

CM

NO

CM

NO

CM

NO

MODES D’ADRESSAGE

COMA
COMB
COM

63

73

43
53

1
1

DAA

DAA

19

DEC

DECA
DECB
DEC
DES
DEX

6A

TA

4A
5A

34
09

EOR

EORA
EORB

88

98
D8

A8
E8

B8
F8

INC

INCA
INCB
INC

INX

6C

e

4C

31
08

IMP

JMP

6E

7E

JSR

JSR

w

AD

[

BD

w

LDAA
LDAB
LDD
LDS
LDX

WWWhN

DD N

A6

EC

EE

[S 3L S]

B6
F6
FC

FE

wWwWw W wWw

LSR

LSRA
LSRB
LSRD
LSR

64

74

44

04

MUL

MUL

3D

NEG

NEGA
NEGB
NEG

60

70

40
50

NOP

NOP

01

INSTRUCTIONS FORME [IMMEDIAT| DIRECT INDEXE | ETENDU [INHERENT
CM |NO |CM | NO |CM | NO |CM | NO | CM | NO
AB ABA 1B 1
ABX 3A 1
ADC ADCA 89 2 99 2 A9 2 B9 3
ADCB (04 2 D9 2 E9 2 F9 3
ADD ADDA 8B 2 9B 2 AB 2 BB 3
ADDB CB 2 DB 2 EB 2 FB 3
ADDD C3 3 D3 2 E3 2 F3 3
AND ANDA 84 2 94 2 A4 2 B4 3
ANDB 4 2 D4 2 E4 2 F4 3
ASL ASLA 48 1
ASLB 58 1
ASLD 05 1
ASL 68 2 78 3
ASR ASRA 47 1
ASRB 57 1
ASR 67 2 71 3
BIT BITA 85 2 95 2 A5 2 B5 3
BITB () 2 D5 2 E5 2 F5 3
CBA CBA 11 1
CLC CLC ocC 1
CLI CLI OE 1
CLR CLRA 4F 1
CLRB 5F 1
CLR 6F 2 7F 3
CLV CLV 0A 1
CMP CMPA 81 2 91 2 Al 2 B1 3
CMPB Cl1 2)| 2 El 2 F1 3
CPX 8C 3 9C 2 AC 2 BC 3

ORA

ORAA
ORAB

8A
CA

9A
DA

BA
FA

w W

-~ 172 —

PSH

PSHA
PSHB
PSHX

36
37
3C

PUL

PULA
PULB
PULX

32
33

38

- 173 -

MODES D’ADRESSAGE
INSTRUCTIONS FORME JIMMEDIAT| DIRECT INDEXE | ETENDU IINHERENT
CM |NO jCM | NO |CM [NO |CM | NO | CM | NO
ROL ROLA) 49 1
ROLB 59 1
ROL 69 2 79 3
ROR RORA 46 1
RORB 56 1
ROR 66 2 76 3
RTI RTI 3B 1
RTS RTS 39 1
SBA SBA 10 1
SBC SBCA 82 2 92 2 A2 2 B2 3
SBCB Cc2 2 D2 2 E2 2 F2 3
SEC SEC oD 1
SEI SEI OF 1
SEV SEV 0B 1
ST STAA 97 2 A7 2 B7 3
STAB D7 2 E7 2 F7 3
STD DD 2 ED 2 FD 3
STS 9F 2 AF 2 BF 3
STX DF 2 EF 2 FF 3
SUB SUBA 80 2 90 2 A0 2 BO 3
SUBB Co 2 DO 2 EO0 2 FO 3
SUBD 83 3 93 2 A3 2 B3 3
SWI Swi 3F 1
T TAB 16 1
TAP 06 1
TBA 17 1
TPA 07 1
TSX 30 1
TXS 35 1
TST TSTA 4D 1
TSTB 5D 1
TST 6D 2 7D 3
WAI WAI 3E 1

Note : LSL pourra étre employée a la place de ASL.

Abréviations utilisées dans les modes d’adressage :

® CM : code machine hexadécimal de P’instruction.

¢ NO : nombre total d’octets nécessaires.

- 174 —

ANNEXE D
INSTRUCTIONS
DE BRANCHEMENT

INSTRUCTION CODE MACHINE

UTILISATION

BRA
BRN
BHI

BLS

BHS
BLO
BNE
BEQ
BVC
BVS

BPL
BMI
BGE
BLT
BGT
BLE
BSR

20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
8D

Branchement inconditionnel
Branchement jamais
Branchement si supérieur
Branchement si inf. ou égal
Branchement si sup. ou égal
Branchement si inférieur
Branchement si non égal
Branchement si égal
Branchement si débordement a 0
Branchement si débordement a 1
Branchement si positif
Branchement si négatif
Branchement si sup. ou égal *
Branchement si inférieur *
Branchement si supérieur *
Branchement si inf. ou égal *
Branchement vers un s/programme

* valeurs en complément a deux.

Notes :

® Toutes ces instructions utilisent le mode d’adressage relatif (deux octets au total).
® BCC et BCS pourront &tre employées a la place de BHS et BLO.

- 176 -

ANNEXE E
TABLE DE CONVERSION
HEXADECIMALE

HEX] 0 1 2 3 4 5 6 7 8 9 A B C D E F o0 | 000
0 0 1 2 3 4 5 6 7 8 910 11 12 13 14 15 0 0
1 [1617 18 19 20 21 22 23 24 25 26 27 28 29 0 3 | 256 | 409
2 | 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 | 512 | @92
3 | 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 | 768 [12288
s | 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 | 1024 |16384
5 |8 81 82 83 84 B5 86 67 88 8 90 91 92 93 94 95 | 1280 |20480
6 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 1536 | 24576
7 M2 113 114 115116 117 118 119 120 121 122 123 124 125 126 127 1792 | 28672
8 |128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 | 2048 | 32768
9 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 2304 | 36864
A |160 161 162 163 164 165 166 167 168 169 170 171 172173174175 | 2560 | 40960
B 176 177 178 179 180 181 1B2 183 184 185 186 187 188 189 190 191 2816 | 45056
C | 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 | 3072 | 49152
D |208 209 210 211 212 213 214 215 216 217 218 219 220 221 222223 | 3328 | 53248
E | 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 | 3584 57344
F 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 | 3840 | 61440

5 a 3 2 0
mx] o |mex| oec [#ex] oec [mex] oec Jmex| pec [Hex| pec
0 of o o| o ol o ol o ol o 0
1 1048576 1 65536| 1 409%| 1 256 1 6] 1 1
2 207152| 2 BL072{ 2 8192(2 S12| 2 2| 2 2
3 3145728| 3 190608| 3 12288| 3 768| 3 8|3 3
4 4,194,304 | 4 262144 4 16,384 4 1,024 | 4 64| 4 4
5 5242880| 5 327,680 5 20,480(5 1,280 | 5 80| 5 5
6 629145 | 6 33216| 6 24576 6 1,53 6 % | 6 6
7 7240032 7 4s8752| 7 286727 1g92|7 @ N2|7 7
8 8388608 B 524288| 8 32768 8 2048|8 128(8 8
9 947184| 9 589.824| 9 36864| 9 2304| 9 1449 9
A 10485760 | A 655360| A 40960| A 2560| A 10| A 10
B 1150433 | B 720896 | B 45056 B 2816 B 176 B 1
C 12582912(C 786432| C 9152 Cc 30m2|c w2|c 12
D 13631.488| D 851968| D 53248| D 3328| D 208|D 13
E 14680064 | E 917,504 | E 57344 | E 3584 E 224 14
F 15728640 | F 983040 | F 61,440 | F 3840| F 240|F 15

- 178 —

INTRODUCTIONcciiiiiiiinnnnan
1 — L’arithmétique binaire
2 — La mémoire écran d’Alice ..

TABLE DES MATIERES

3 — I:’archjtecture interne du microprocesseur 6803
4 — Ftude d’un exemple

5 — Eléments de programmation du 6803

LDAA ..
LDD
JSR
STAA ...
STX ...
ADDA ..
ADDD ..
SUBA ...
MUL

BEQ BNE BRA BSR

INCA ...
INC
CLRA ..
CLR
DECA ..
DEC

BHI BLO BHS BLS

CMPA ..
CPX
ORAA ..
ANDA ..
EORA ..

PSHA PULA

LSRA ...

W

25
43
57
67
68
71
73
75
78
81
83
85
87
89
92
95
97
99
101
104
106

. 109

111

113

115
117
119
121

50 123 LA BIBLIOTHE‘OUE SYBEX

150, 127
RO A i i i i ettt e aaannaanas 129
20) I 132
RORA o it i ettt et cnararannnns 134
ROR . i i e e et et ittt 136
ADC A i it ettt 138
2 N] - N 140 .
ASR oo 142 OUVRAGES GENERAUX
@01 - N 144 VOTRE PREMIER ORDINATEUR par Roonay Zaks,
COM et e 146 296 pages, Réf. 394
NEGA e e e e 148 VOTRE ORDINATEUR ET VOUS par Roona Zaks,
NEG .t ettt e e e e 150 296 pages, Ref. 271 S :
IMP 152 ggecﬂMPDSANT AU SYSTEME : une introduction aux microprocessews par Roonay Zaxs,
--------- pages, Réf. 340
0 1 U 154 TECHNIOUES D'INTERFACE aux microprocesseurs par Austiv Lesen eT Roonay ZAxs,
5 1 156 450 pages, Réf. 339, 3éme édition
4 7N > S 158 LEXIOUE INTERNATIONAL MICROORDINATEURS, avec dictionnaire abrégé en 10 langues
CONCLUSION ...ttt e i 161 192 pages, Réf. 234
ANNEXE A : Tri en mémoire centrale 163 ?ﬂDEazgg nggfﬂoéggDINATEURS A MOINS 3000 F par Joéi Poncer,
ANNEXE B : Affichage d’un messagec..o.n.. 167 O
ANNEXE C : Jeu d’instructions du 6803 171 e IQUE par Pl Le e
ANNEXE D : Instructions de branchement 175 LA SOLUTION RS-232 par Netsow Forp,
ANNEXE E : Table de conversion hexadécimale 177 208 pages, Réf. 352
BASIC

VOTRE PREMIER PROGRAMME BASIC par Roonay Zaxs,

208 pages, Réf. 263

INTRODUCTION AU BASIC par Pierre Le Beux,

336 pages, Réf. 33b

LE BASIC PAR LA PRATIQUE : 60 exercices par Jean-Pierre LaMoimes,
252 pages, Réf. 395

LE BASIC POUR L'ENTREPRISE par Xuan Tung Bui,

204 pages, Réf. 253, 2eme édition

PROGRAMMES EN BASIC, Mathématiques, Statistigues, Informatique par AtavR. Maier,
318 pages, Réf. 259

AU COEUR DES JEUX EN BASIC par Rictaro Mateosian,

362 pages, Réf. 233

JEUX D’ORDINATEUR EN BASIC par Davio H. A,

192 pages, Réf. 246

NOUVEAUX JEUX DORDINATEUR EN BASIC par Davo H. Am,
204 pages, Réf. 247

- 180 — - 181 -

Imprimé en France pa:
ALSACIENNE D'IMPRESSION Colmar-Paris
Dépdt légal N° 5515 - Septembre 84

