“GUIDE TO HOMECQMP UTING

All you need to knoW about using yOUr_;a,t
Aquarius Home Cagnputer System.

s G
g14
e

A
-/

lllustrations: © Mattel, Inc. 1982. Hawthorne, CA 90250.

MHTTEL ELEETHD”lEEl@ [PRINTED IN HONG KONG. All Rights Reserved.

5931-0240-G1

EEEEES

___T1.r,------r-1:-iz:?"‘“““‘44‘4*ff4_________

N —

KEY POINTS FOR
TROUBLE FREE USE OF
YOUR AQUARIUS™ HOME
COMPUTER SYSTEM -

1. Place Aquarius on a flat,
sturdy surface, so the air vents
on the bottom can do their job.
Do not place ON CARPETED
SURFACES.

2. Keep fingers out of the open
end of program carlridges and
cartridge port(s).

3. Never lift Aquarius by any ex-
lernal wires, or by the Mini
Expander, or its hand controllers.

4. Protect both program car-
tridges and Aquarius from ex-
cessive hoal

5. Always insort (;;lll:i(ige port
dust cover when port is not in
use.

6. Turn Aquarius OFF and unplug
transformer from the wall outlet
when not in use,

Warning: This equipment has
been certified to comply with the

~ limits for a Class B computing

device pursuant to Subpart J of
Part 15 of FCC rules. Only pe-
ripherals (computer input/output
devices, terminals, printers, etc.)
certified to comply with the Class
B limits may be attached to this
computer. Operation with non-
certified peripherals is likely to
result in interference to radio and
TV reception.

The system scftware in the
Aquarius Computer is retained i
a Read Only Memory (ROM)
device. All-portions of this

‘system’s software, whether in-

ROM format or the ROM circuitry
are copyrighted and are
proprietary information. Any use,
reproduction, or publication of any
portion of this material without
prior written authorization by
Microsoft Inc. and Mattel Inc. is
strictly prohibited.

INTRODUCTION

AQUARIUS
GUIDE
TO
HOME
COMPUTING

Dear User:

That's you, the proud, new owner of an AQUARIUS home b:bm} 3

puter. Congratulations on a purchase that may prove to be the " -

most valuable tool you ever buy. Because AQUARIUS is one of
the most versatile tools you can buy. Once you learn how to com-
municate with it, you can use AQUARIUS to expand and enrich.
many areas of your life: business, play, home management, -
education...and you can play great games with it as welll

If there are children in your home, you may have to schedule in
time on your computer. Experience has shown that children
take to computers like bears take to honey. Don’t worry.
Aquarius is sturdy enough to take on child programmers, as
well as their adult counterparts.

If the AQUARIUS computer is your first computer, you're in for
a pleasant surprise. YOU DON’T NEED A MATH DEGREE to pro-
gram a computer. The AQUARIUS computer is easy to use. In a
short time you can be off and running, writing your own com-
puter programs in the BASIC language. A few hours will ac-

quaint you with the essential commands you need. And it’s FUN.

What a feeling of satisfaction comes with running your first
successful program. It’s enough to make an old programmer
envious!

So relax, follow the easy hook-up instructions, then prop this
book beside your computer and let it guide you through a fasci-

" nating new world. When you see examples or experiments, type

them in and run them to see how they work.

— - S . > Eome—— | —— LY 1

Nt

heep an eye out for special ‘“‘road signs’’ in this book. They point
to tips and facts that will make your computer expemence
smoother and more enjoyable.

KEY IDEAS GOOD HABITS
g TRY THIS COMPUTER TALK

pr=rm =—=——)

E BY THE WAY CONTROL SHORTCUTS
T

REMINDER %

Finally, wherever your computer takes you, have a great time!

Model No.

Serial No.

IMPORTANT

Before you meet your new com-
puter, please note this necessary
disclaimer:

Mattel Electronics does not
assume any liability or responsi-
bility for loss or damage, direct
or indirect, caused by or alleged
to be caused by any software
programs (whether sold by Mattel
Electronics or otherwise) or the
use made of any such programs
by the consumer.

NOTICE —
PROJECTION TV OWNERS

Some stationary game patterns
produced by this product may be
permanently imprinted on Projec-
tion TV tubes by extended use at
high brightness levels. Consult
Projection TV Owner’s manual
before use of this product.

TABLE OF

CONTENTS

" INTRODUCTION (Quick Tour of
~ the Aquarius™Computer, Hook-
Up Without Hang-Ups)

CHAPTER 1 “GETTING Y.OUR
FEET WET" (Modes, RTN —
The Action Key, Playing With
Immediate Mode, Arithmetic,

“ RUN, NEW, CONT, LIST, CTL
— The Shortcut Key, Playing
With Programmed Mode, More
About Line Numbers, Back To

The PRINT Command, How To -

Edit)

CHAPTER 2 “DIVING IN”
(Constants, Variables,
Reserved Words List, INPUT
— The Interactive Instruction,
LET, Punctuation)

CHAPTER 3 ‘‘CASSETTE COM-
MANDS — CSAVE & CLOAD”
(Saving Programs, Loading
Programs, Verify, Saving and
Loading Arrays)

' CHAPTER 4 "“BRANCHING -
OUT” (GOTO = The One-Way: - | .

Ticket, IF.. THEN — The Truth
Detector, Relational and
- Logical Expressions)

CHAPTER 5 “LOOPS THAT
COUNT" (The Long Way
Around, FOR...NEXT Loops,
One Step At A Time, The
Nesting Instinct, ““Digital
Clock” — Our First Reall
Program)

CHAPTER 6 ‘“A SPLASH OF
COLOR” (POKE, Character
RAM Matrix/Color RAM Matrix,

Number Relationships On The -

Matrix, PEEK, Drawing Lines,
The Fine Line — PSET, PRE-
SET, POINT)

CHAPTER 7 ““SUBROUTINES
— THE ROUND-TRIP TICKET
(GOSUB, RETURN, REMARK
— Notes To Yourself, Nesting
Subroutines, Computed GOTO
end GOSUB, Sound)

'CHAPTER 8 “READ..DATA —

THE EFFICIENCY EXPERTS”
(READ, DATA, Out Of Data,
The Flag, Restore)

CHAPTER 9 “MAXIMUM -
STORAGE WITH ARRAYS” -
(Intro, The Size Of An Array, -
Changing Dimensions — The

* CLEAR Statement, Assigning
Values To An Array, Multi-
Dimensions)

CHAPTER 10 "FUNCTIONS —.
THE SUPER SHORTCUTS
(Intro To Functions, Different
Kinds of Functions, Nested
Functions, Random Numbers
— Games of Chance, CHR$
— The Multi-Function Func-
tion, Other Handy Functions
— FRE, LEFT$, MID$,
RIGHTS$) '

CHAPTER 11 “DIGITAL -
CLOCK"

REFERENCE SECTION
APPENDIX
PRACTICE PROGRAMS

QUICK TOUR OF

THE AQUARIUS
COMPUTER SYSTEM

YOUR AQUARIUS™COMPUTER
(With built-in BASIC language)

KEYBOARD. Used to type in in-
formatiQn or instructions and play
games. Many keys print entire
BASIC commands in a single
keystroke, when used with the
CTL (Control) key.

POWER ON
INDICATOR LIGHT.

G

©

“"‘-—J-Fl /|@)] m
1/ (Input/Output) PORTS. Input
or Output devices (tape recorder
and printer) plug into your com-
puter here.

CARTRIDGE PORT. Accepts pre-
programmed Aquarius game car-
tridges -or the Aquarius Mini

Expander Module.

7 ~POWER
ON/OFF
SWITCH.

g 7/,_.,.,.“

POWER CORD
WITH ADAPTOR.

TV HOOK-UP CABLE with
ANTENNA SWITCH BOX.

—

: A9 ol AQUARIUS™ Data Recorder *
INPUT/OUTPUT i1 s 2 _ Uses standard cassette tape to
DEVICES ‘ : store program permanently.

(Each sold separately)

AQUARIUS ™ Mini Expander AQUARIUS™ Modem+ Links
Module Two ports allow pro- you with other data bases via

gram cartridge to interact with standard telephone line.
additional memory (4K and 16K

memory cartridges). Includes 2
more sound channels and hand
controllers for game play.

AQUARIUS™ Master Expansion
Modulet Allows you to add up
to 7 additional peripherals.
Simply plug in to increase
memory, attach disc drive or add
other peripherals.

AQUARIUS™ Printer (40 col-

umn) Provides permanent

hard copy for program or data.
: + PLANNED TO BE AVAILABLE IN 1983.

00KUP WITHOUT |
" HANG-UPS

Carefully unpack your computer.
Check to make sure that you
have all of these parts:

Computer

Power Cord with Adaptor

Television Hook-Up Cable
(10 foot)

Antenna Switch Box

(See illustration of these parts on
page 4.)

BEFORE YOU CONTINUE...
Take a minute to check the bot-
tom of your computer. You will
see two numbers — ‘a model
number and a serial number. Jot
these numbers down on page 2
of this section, in the spaces
‘provided.

FIND A PLACE FOR YOUR COMPUTER TO LIVE. Look for a flat,
sturdy surface, so the air vents on the bottom of your computer can do

- their job. Computers prefer a temperate climate. Avoid placing it near a

heating or air conditioning source. The TV connecting cable is 10 feet
long, so position your computer within that distance, near a 120 volt

wall outlet.

CONNECT YOUR COMPUTER
TO YOUR TV SET. Plug the
TV connecting cable into the
computer and the antenna switch
box, as shown.

The antenna switch box allows
you to use your TV screen as the
video monitor for your computer.
To connect the two, you will
need a screwdriver (flat head
and/or phillips head, depending
on your TV set). Follow the illus-
trations on the next page.

INSTALLATION WITH FLAT,
“TWIN LEAD” ANTENNA WIRE:

VHF/UHF

CovpuTeR

ANTENNA
ANTENNA N ON T
SWITCH BOX _ N 1R,

FLAT “TWIN LEAD"
WIRE FROM TV
ANTENNA

INSTALLATION WITH ROUND,

“COAX” ANTENNA WIRE:

| COAX-TO-TWIN LEAD CABLE TO
BALUN CONVERTER. COMPUTER.

| AVAILABLE AT MOST (.
ELECTRONICS PARTS
STORES.

ROUND VHF/UHF
ANTENNA TERMINALS
WIRE ON TV SET.

SPECIAL HOOK-UP
INFORMATION

Some newer televisions have a
separate input port for a cable
television. AQUARIUS™ can be
hooked up directly to this port
with the use of a standard
“Balun” converter (available at
most electronics stores).

If you own a video game, you
can hook up the video game
along with your AQUARIUS™
computer to the same television
set, with the use of a video

switch, also available at most "
electronics stores, or at Radio

Shack (catalog number 15-1254).

NOTE: NO CHANGE TO YOUR
UHF ANTENNA CONNECTION
IS REQUIRED FOR EITHER
TYPE OF INSTALLATION.

Find the Channel 3/Channel 4
selector switch on the back of
your computer. Set it to which-
ever channel has the weaker re-
ception in your area. (Use a
small screwdriver or the tip of a
ball point pen, as the switch is
recessed.) When you use your
computer,’set your television
channel selector to the same
channel.

IMPORTANT! FEDERAL COM-
MUNICATIONS COMMISSION
REGULATIONS REGARDING
THE USE OF YOUR ANTENNA
SWITCH BOX,

ing rules you may cause y
ence to nearby television sets...:
and you will be violating regula- - .
tions of the Federal-Communica-
tions Commission.

e Never attach loose wires to
your antenna terminals when
you are using your computer.

e The Antenna Switch Box
comes with its own twin lead
wire. Never substitute a longer
twin lead wire from the

" Antenna Switch Box to your
television set.

e Do not attach the twin lead
wire from the Antenna Switch
Box to any television antenna
or cable-TV outlet.

Your Aquarius™ home computer
comes with a plastic overlay that
fits over the keyboard. This over-
lay is your guide to keys that will
print entire BASIC words when
these keys are pressed
TOGETHER WITH the CTL key.
The BASIC word is printed on the
overlay ABOVE the key to be
used with the CTL key. Details
on how these keys work is on
page 5 of Chapter 1.

IF YOU ARE USING YOUR
COMPUTER WITH A
CASSETTE RECORDER,

CONNECT THE TWO
DEVICES, AS SHOWN
BELOW:

INSERT 5-PIN

PLUG ON CABLE
INTO CASSETTE
JACK ON
COMPUTER.

S INSERT EAR PLUG
ON CABLE INTO EAR

JACK ON RECORDER.

REM PLUG

IS NOT USED. INSERT MIC PLUG ON

CABLE INTO MIC JACK ON
RECORDER.

PLUG CASSETTE POWER
CORD INTO 120 VOLT
WALL OUTLET,

IF YOU ARE USING YOUR
AQUARIUS COMPUTER WITH
A PRINTER, CONNECT THE
PRINTER TO YOUR COMPUTER
FOLLOWING THE DIRECTIONS
THAT COME WITH YOUR
PRINTER.

READY TO POWER UP!

® Plug your Aquarius computer
into a 120 volt wall outlet.

e Set the Antenna Switch Box at
COMPUTER.

e Turn your television set on. Set
the channel for Channel 3 or 4.
(Make sure the TV channel
selected matches the channel
to which you set the selector
switch on your computer.)

® Turn your Aquarius computer
on. In a few seconds you will
see this display:

BASIC

Press RETURN key to start

INg

The screen color will change dur-
ing this display. Tune your TV set -

for color, clarity and sharpness.

Then press the (Return)
key. The display will change to:

Copyright © 1982 by Microsoft, Inc.

Ok
|

TURNING YOUR
AQUARIUS™
COMPUTER OFF

First turn your TV set off.

Then, turn the Aquarius off.

If you turn your Aquarius com-
puter off before you turn your TV
set off, the TV acts as though
you are getting very poor recep-

tion. A picture may or may not

be visible on the screen. If the
sound is turned up, you will hear
a loud hissing noise. You didn’t
do anything harmful to your TV.
Simply turn your TV set off.

@) COMPUTER TALK (-
> 8 Nobody wants to read
laldealed @ dictionary. But these
key words will help you get a
handle on some concepts you'll
be dealing with as you learn to -
use your computer. Other key
words will be explained at the
end of each chapter in this book.
Get acquainted with them...you'll
be doing yourself a favor.

DATA. Another word for INFOR-
MATION. It's WHAT YOU
WORK WITH when you write a
program. Some data is perma-
nently stored in the computer’s
memory. Most data is supplied
by you.

EXECUTE. Another way of saying
“perform’ or ‘‘carry out”. We
speak of executing a com-
mand.

RUN. A command that tells the
computer to execute the in-
structions in a program.

N9

INPUT. As a verb, it is the proc-
ess of entering data into the
computer, using the keyboard.
As a noun, it is data which is
entered int’o memory.

OUTPUT. As a verb, it is the

process of giving out data
from the computer. As a noun,
it is data from the computer,
given in any form (printed on
paper, displayed on a TV
screen, etc.).

RAM (Random Access Memory).

The computer's ‘‘working
memory’’. You temporarily
store a program in RAM when
you write, edit or run the pro-
gram. But RAM is not forever.
When you turn your computer
off, data stored in RAM is
erased. The length of program
you can run is determined by
the amount of RAM available
in your computer. (You have
1781 bytes available. More on
this on page 9 of Chapter 10.)

ROM (Read Only Memory). The

computer’s ‘“‘permanent
memory’’. You can not erase
or edit data stored in ROM:
You can only instruct the com-
puter to READ data in ROM
and manipulate it. Most of the
computer’s internal operating
instructions are stored in
ROM.

CHAPTER 1

“GETTING
YOUR FEET
WE"”

(Modes, Arithmetic,
RTN Key, RUN, NEW,
CONT, LIST, PRINT,
CTL Key,
Editing Features)

The Aquarius is set up and ready

- for you to program in BASIC.

BASIC is what we call a ‘‘high-
level” language. This means that
BASIC commands more closely
resemble the language we speak
than they do the language that
the computer ‘‘speaks’’. This
makes BASIC an easy language
for people to use. (Though the
computer needs its own built-in
interpreter.)

BASIC has a total-‘‘vocabuldry:
of about 60 words-and: a‘few:
symbols. The words, which:are
called KEYWORDS, are all de-

fined in the Reference Section of

this book. The words you will use

most often are explained in detail -

throughout the next 9 chapters.
We will start with fundamental
concepts and simple keywords
and build from there.

THATS EASY
FOR You

s g s e ML

" CHAPTER 1

RUSLLCTR

kg ! | Is your computer “powered up”

{turned on) and ready to go? If
not, flip back to page 8 in the In-
troduction Section and follow the
steps to display this screen:

Copyright © 1982 by Microsoft, Inc.
Ok
[]

CURSOR PROMPT

Pay particular attention to the
objects labeled PROMPT and
CURSOR. You will be seeing
them quite often,

KEY IDEAS

The word Ok is the

PROMPT. This ap-
pears whenever the Aquarius is
ready to receive your instruc-
tions.

The black square is the

CURSOR. It marks the next posi- -
tion on the screen where a letter,
number, symbol or space will ap-
pear when you.press a key on
the keyboard. The cursor helps
you keep track of “where you
are’’ on the screen.

You can use your Aquarius™
Computer in two different ways,
or MODES. In one mode,
Aquarius™ responds immediately
to each instruction you type, as
S00n as you press the RTN key.
For this reason, it is called the
IMMEDIATE Mode. (Some people
call it the Direct Mode.)

In the second mode, Aquarius is
a little more patient. It lets you
enter entire lists of instructions
and does not execute them until
you tell it to do so. These lists of
instructions are what we call
“programs”’, so this mode iS
called the PROGRAMMED Mode.
(Of course!)

There are other differences be-
tween Immediate and Pro-
grammed Modes. For example,
instructions are called
COMMANDS in Immediate Mode
and are NOT numbered. Instruc-
tions are called STATEMENTS in
Programmed Mode and ARE

numbered. These LINE
NUMBERS let the computer
know which mode you are in and
are very important. We'll explain
them in detail later in the
chapter.

OK
PRINT “HELLO" m

COMMAND IN IMMEDIATE MODE

Ok
10 PRINT “HELLO”
o

STATEMENT IN PROGRAMMED MODE

RTN —

THE ACTION KEY!

- The key is the key that

makes things happen. (RTN is
short for Return.) In Immediate
Mode, it tells Aquarius™ to exe-
cute the command you just gave.
In Programmed Mode, it tells
Aquarius™ to store the statement
you just typed, so that it can be
executed when you are finished
writing your program. IF YOU
DON'T PRESS THE KEY
AFTER TYPING IN EVERY COM-
MAND OR STATEMENT,
NOTHING WILL HAPPEN.

The key also sends the

cursor to the beginning of the
next line, so you're ready to type
your next command or state-
ment.

Key is also marked RETURN
on the overlay, but this is another
animal altogether. Don’t confuse
the two keys or you will end up
confusing yourself.

PLAYING WITH

IMMEDIATE MODE.

Type in this line:
PRINTA““HELLO"

BY THE WAY

The symbol ~ means
mmm SPACE. When you
see this symbol, press the
SPACE key. We will only use this
symbol when there is an impor-
tant reason to include a space.

9|

Now press the key to

enter the command. Did
Aquarius print HELLO?

Press again to drop down

another line. Then type
this: PRINT 2+4 and press
RTN. Did Aquarius print 67

Try another one. Type: PRINT 5%3 and press [RTN |. Aquarius
should have printed 15. Surprised? Maybe you didn’t recognize the
asterisk (*) as a multiplication sign.

ARITHMETIC KEYS

In BASIC we use these keys to do arithmetic operations.

; (UPPER CASE) to add Example: 2 + 2
T (lower case) to subtract Example: 16 — 12
o * (UPPER CASE) to multiply Example: 5 * 8
I (lower case) to divide Example: 20 / 4

You can also EXPONENTIATE (raise a number to a power) with the A

symbol. Example: 8 A2 = 8 to the second power (or 8 squared) = 64.

BY THE WAY
YOU CANNOT DIVIDE BY 0.

ARITHMETIC OPERATIONS —
WHICH COMES FIRST?

If you combine more than one
arithmetic operation in the same
expression (example: 5 + 16/
4), which operation does the
computer do first? Does it add 5
+ 16, then divide the result by
47 Or does it divide 16 by 4 and
add 5 to the result? The order of
precedence makes a difference
in the answer.

Here’s how your Aguarius™ Com-
puter deals with the question. It
scans the expression from left to
right, looking for arithmetic
operations in this order:

Parentheses

Exponentiation

Negation (giving a number a
negative value, like —5)
Multiplication and division
Addition and subtraction

Example 1: 5 * 6 + 4 /2

Aquarius first multiplies 5 * 6,
then divides 4 by 2. It then adds.
the results of these operations
(30 + 2) for a final result of 32.
This is a different result than if
Aquarius had multiplied 5 * 6,
then added 4 and divided that
result by 2, for a final answer of
17.

Example 2: 5 * (6 + 4) | 25

Aquarius first adds 6 + 4
(because this operation is in
parentheses). Then it multiplies
the result (10) by 5 and divides
that result (50) by 25. The final
answer is 2,

The order in which Aquarius
does arithmetic operations is
called OPERATOR
PRECEDENCE. For more infor-
mation on operator -precedence,
see page 11 in the Appendix.

There are other kinds of expres-
sions, too, called RELATIONAL
and LOGICAL expressions. These
are discussed in a later chapter.

NOTES ABOUT NUMBERS,
When you use numbers in
BASIC, they cannot contain
commas or special characters,
like the dollar sign.

$1,280.75 . NO
1250760 witie YES

CONTROL —

THE SHORTCUT KEY

The key marked CTL is called
the CONTROL key. When used
with another key, it allows us to
take shortcuts in writing many
keywords. To use the
key, always HOLD IT DOWN
while pressing the other key —
the same way you use the
SHIFT key to type upper case
characters. RUN and LIST are
examples of keywords that can
be “written”” using the
key with another key. Almost
every key on the keyboard can

be combined with the key
to instantly “write” a keyword or

do an editing function. Pretty
handy, huh? These keys are all
marked on the keyboard overlay.

There is a list of CTL shortcuts
for the keywords and editing
functions you learn in each
chapter. These lists are at the
end of each chapter.

When a key is to be used with
the key, the combination
is written as CTL-(key). FOR EX-
AMPLE, CTL-C “MANUALLY"
HALTS A PROGRAM THAT IS
RUNNING. (This key is marked
STOP on the overlay.)

F
o
-
o
<
o
o

16

'RUN, NEW,

CONT, LIST

The most frequently used com-
mands in Immediate Mode are
those that tell the computer to do
something with & PROGRAM.
Some of these are:

RUN — Tells Aguarius to
EXECUTE the instructions in a
hrogram. Type RUN and press

[RTN]. Or iress [cTC 1]

and then [RTN_|.

NEW — Tells Aquarius to
ERASE a program from
memory. Type NEW and press
[RIN]. There is no control

shortcut for this command.

CONT — CONT means
CONTINUE. It tells Aquarius to
resume executing the program
after it has been halted by a
STOP statement in the pro-
gram. (See pages 12 and 13 in
the Reference Section for
details.) There is no CTL short-
cut for this command.

LIST — Tells the computer to
PRINT A LIST of the instruc-
tions in a program. Type LIST
and press [RTN |. Or press
[CTL |—[2] and then [RIN].

There are two different ways to
list a program:

e Type LIST only. Aquarius will
print your entire program, one
screenful at a time. When the
screen fills up, listing will stop.
To see the next screenful, press
any key except [CTL |,
e Type LIST and a line number.
Aquarius will print your entire
program, beginning with that line
number, one screenful at a time.
To see the next screenful, press
any key except [CTL |,
or [RST |.

e To STOP LISTING when you
reach a line you want to change,
press [CTL |—{C] This will
temporarily take you out of LIST,
so you can edit. (See How To

Edit, page 10.) To continue
listing, when you are finished

editing, type LIST and press
[RTN |.

THE RESET KEY

RST

When you press the RST (short
for Reset) key, you go back to
the first screen display you saw
when you turned your Aquarius
on. On this screen is the instruc-
tion:

BASIC

Press RETURN key to start

If you press the RTN key after
pressing RST, you will see the
screen display with the copyright
notice. EVERYTHING STORED
IN MEMORY (RAM) WILL BE
ERASED. If you have a program
in RAM, it will be erased. In com-
puter talk, this is called a “‘cold
start”.

There is also something called a
“warm start”, which allows you
to use the RST key WITHOUT
erasing the memory. Simply -
press | CTL }{ C] (the STOP key)
after [RST |, instead of the RTN
key. A “‘warm start” is important
in two situations:

1. You pressed the RST key by
mistake.

2. Your computer experienced
a “‘system crash’’. This means
that Aquarius overloaded — it
had a “‘nervous breakdown’’. If
a program is running, it stops.
No key on the keyboard
works...except RST.

When you press CTL-C (STOP) in-
stead of RTN, for a “warm
start”, you see a Break
message, such as:

Break'in 30
Ok

Your stored Program and the
variables used in that program
are still in RAM. Any variables
you had used in Immediate Mode
are erased. After a “‘warm start”,
enter the RUN command to
begin running your program
again, from the start.

PLAYING WITH

PROGRAMMED
MODE

Let’s start with a clear slate.
Press the key, then the
key. This will take you
back to the copyright notice that
you started with when you turned

your computer on. There are
other ways to clear the screen;’
but this is the simplest way for
now. (Note: This erases the
screen AND anything stored in
memory.)

Type these statements, exactly
as you see them here:

10 PRINT “HELLO”

(and press [RTN J)

20 PRINT 2 + 4

(and press [RTN |)

You do not have to type key-
words (like PRINT) in upper case
letters. Aquarius automatically
stores keywords in upper case
letters, no matter how you type
them. You will see this when you
LIST your program.

ALWAYS PRESS AT THE
END OF EVERY STATEMENT
YOU TYPE. Remember that in-
dividual statements in Pro-
grammed Mode are NOT ex-
ecuted when you press [RTN .
The secret is in the line numbers.
They tell Aquarius to store those
statements in its memory, until
you are ready to RUN them as a
program.

bl

Try it! Type RUN and press
[[RTN]. You should see this:

Now type LIST and press

[RTN |. Aquarius will print your
statements 10 and 20, just as
you originally typed them.

Our little program is good prac-
tice, but not really worth saving.
So type NEW and press .
This erases the program from the

computer's memory. It does NOT
erase the screen.

Notice how you are switching
back and forth between Im-
mediate and Programmed
Modes. When you type state-
ments with line numbers, you are
in Programmed Mode. When you

type RUN to execute those
statements (or LIST or NEW), you
are in Immediate Mode.

MORE ABOUT

LINE NUMBERS

Just a few simple rules...

1. Whole numbers (integers) only.
Not 10.5 or 10Y.

2. Positive numbers only. Not
—10.

3. Numerals only. Not 10A.

4. Largest possible line number
— 65529. 66000 is too large.

If you try to enter a statement
with an invalid line number, you
will get a SYNTAX ERROR (SN
ERROR) message. This means,
“‘you goofed — try again.”
(There is a complete list of all er-
ror messages, starting on page 1
of the Appendix.)

If you try to enter a line number
that is too large, Aquarius will
chop off digits, working from
right to left, until it cuts your line
number down to a size it can
handle. This process is called
TRUNCATING. Example: 66,000
would become 6600. And you
would still get the error message.
What's more, if you already had
a line 6600 in your program, the
new line 6600 would REPLACE
the old line 6600. And that could -
mean big trouble.

88 GOOD HABITS
Yook ok
As a general rule,

leave gaps of at least
10 between line numbers.

Example: 10 PRINT “*“HELLO"
20 PRINT ““MY NAME
S

Then if you need to add state-
ments in later, you can do so
without renumbering.

BACK TO PRINT

What have you noticed about thé
keyword PRINT? So far we have
seen it followed by either:

® Characters enclosed in quotes
(called LITERALS)...
PRINT ‘‘Hello”

* An equation (the = sign is
understood) NOT enclosed in
quotes...PRINT 2 +5

PRINT can also be followed by
VARIABLES (which you will learn
about in Chapter 2) or a com-
bination of literals, equations
and variables...PRINT A + B.

When the PRINT command is
followed by LITERALS, Aquarius
prints EVERYTHING inside the
quotes, exactly as it is typed.

When the PRINT command is

- followed by an EQUATION,
Aquarius prints only the RESULT
of the equation. (When Aquarius
prints numbers, it prints a —
sign in front of negative
numbers and leaves a blank

space in front of positive
numbers.)

What happens if you forget the

quotes around a literal?

Type: PRINT HELLO and
press [RTN |.

Your Aquarius quickly informs
you of your mistake by printing
SN ERROR. (Syntax Error...
remember?)

Or what if you place quotes
around an equation? Try it and
see. Type: PRINT “2 % 5"
and press [RTN |. This time you
don’t get an error message, but
you don’t get the result of your
equation either. To get the best
of both worlds, combine literals
and equations with a SEM-
COLON.

Type this:
PRINT "2 * 5 = " . 9"%'g

When you press [RTN],
Aquarius will print:
2E kB 5E = 0

ANOTHER ALTERNATIVE: If you
type PRINT “2” 4+ “5" gnd

press [RTN]. Aquarius will pri

these TWO LITERALS next to™ ="
each other. (This is called CON- ~
CATENATION.) The résuilt will be .
25. If you place quotes arotnd
only ONE number in an equétion
(PRINT **2" 4+ 5), Aquarius wil
get totally confused and give'
you a TM Error message (
means Type Mismatch —
tried to mix apples ahd‘oraqge,

s g

BY THE WAY
E AN ABBREVIATION
= FOR THE PRINT
COMMAND IS THE QUESTION
MARK (?). EXAMPLE:

PREGELLC o2 0! « 5
E Computers are fast,
but unimaginative.

They only do EXACTLY what you
tell them to do. In general, every
quote, comma, semi-colon, etc.
has a very specific meaning. If
you substitute one for another,
you change the meaning of your
command or statement.

KEY IDEAS

CHAPTER 1

Spaces are a little different. Sometimes they have a specific meaning.
Most of the time though, they serve their *normal” function — to make
a line more READABLE. The computer usually does not view them as
necessary. For example, you can type: 10PRINT*2%5="":2%5 and
you will still see 2*5 =10 when you run the program.

HOW TO EDIT

LINE LENGTH Think of the screen as 40 columns across by 24 rows
down.

CENOMALN=O
i i

O e g T 0 e 20 R R IR AN AR SIS 3853

Normally you can type characters in columns 1 through 38. Aquarius
usually reserves columns 0 and 39 as margins.

If you type a character or space in column 38, the cursor will auto-
matically return to column 1 on the next line. THIS IS NOT THE SAME
AS PRESSING THE KEY, though the immediate result may look

the same. YOU MUST STILL
PRESS TO ENTER YOUR
COMMAND OR STATEMENT.
Otherwise the computer will treat
the second line as a continuation
of the first line.

There may be times when you
WANT this to happen (if you
have a statement that won't fit
on one line, for example). In this
case, you can type UP TO AND
INCLUDING COLUMN 34 on
the second line, before press-
ing [RTN]. This makes a total of
72 characters — the MAXIMUM
LINE LENGTH. When you have
typed 72 characters (including
spaces), Aquarius will BUZZ and
refuse to print any further char-

acters until you press [RTN .

Ok
10 PRINT “HELLO”
20 PRINT 2 + 4

abcdefghijklmnopqrstuvwxyn2345678901 23
456789012345678901234567890123456 M

COLUMN 34

(Pressing [RTN |, of course,

ends your statement.)

If you want to continue a PRINT
statement over 2 lines, you may °
need to break it up in a special
way, to make it READABLE when
it is run.

TYPE THESE LINES EXACTLY
AS YOU SEE THEM HERE:

10 PRINT ‘‘FORESCORE AND
SEVEN YEARS ' ;

, PRESS [[RTN .
20 PRINT ** = AGO, OUR ...”

PRESS [RTN |.

Don’t forget the SEMI-COLON at
the end of Line 10. (More on
punctuation use in Chapter 2.)

Now RUN this program. Notice
that the computer types ‘“ago”
right after “‘years’. This happens
because you placed the SEMI-
COLON at the end of your literal
(‘“Forescore and seven years"”)
on line 10. The space between
years and ago appears because
you typed a space before ‘‘ago”
in line 20. You could also have
typed the space AFTER *‘years”
in line 10.

DELETE CHARACTERS

In BOTH Immediate and Pro-
grammed Modes, you can erase
all or part of a line BEFORE YOU
PRESS [RTN |. You do this by
pressing the |<)| key. Each time
you press this key, the cursor
backs up one space, erasing the
character over which it passes.
(CTL-H does the same thing.)

TYPE: PRINT HELLO ... then
press [<)] twice, to see how it
works.

If you want to make a change
AFTER you press [RTN], simply
re-type the line. In Programmed
Mode, TYPE THE LINE NUMBER
TOO. You can re-type a program
statement anywhere on the
screen. The new statement will
replace the old statement, as
long as both have the same line
number.

DELETE PROGRAM LINE

In Programmed Mode, you can
delete an entire line BEFORE you
press [RTN |. Use the control

shortcut, [CTL | X]. (This key is

marked DELINE on the overlay.)

A # sign will appear at the end of
the line and the line will be
deleted, as you will notice when
you LIST or RUN your program.

To delete a line AFTER you przss
[[RTN], just type the line number
and press [RTN |. See example
on the next page.

2
oc
o
<
T
&)

10 PRINT “"HELLO AQUARIUS:
20 PRINT “*SOLVE THIS.”

You type in these 3 statements.
Remember to press after

SCUPRINTY Biwi5 = 2% each statement.

20 [RIN] Now you type the line number 20
and press [RTN |.

LIST Enter LiST to display your

10 PRINT “"HELLO AQUARIUS"
30 PRINT “*2 * &= : 2%5

program.
Notice that Line 20 is gone!

ADD A PEOGRAM LINE

In Programmed Mode, you can
add statements to a program in
any order, at any time. The LINE
NUMBER determines the order
in which a statement appears in
your program.

For example, suppose that you
wanted to add-a PRINT state-
ment between Lines 10 and 20
in this program:

TYPE:

10 PRINT ““HELLO™

20 PRINT “'PLEASE SOLVE”
30 PRINT **THIS EQUATION"’
40 PRINT *2 * 12 = ''; 2%12

15 PRINT “‘AQUARIUS”

LIST

You enter a 4-statement
program.

Remember to press after
each statement.

You pick a line number between
10 and 20. The line number must
not already exist in your pro-
gram. If you use an existing line
number, your new statement will
replace an existing statement.

After typing in your new line
number, you type in the
Statement.

You enter the LIST command to
display your revised program.

In your new program, Line 15 is
properly. placed between Lines
10 and 20.

CLEAR SCREEN (CHRS)

Earlier you learned that you can
clear the screen and erase
memory by pressing [RST |, then
[[RTN |. What if you want to

clear the screen WITHOUT eras-
ing the memory? Type this com-
mand:

PRINT CHR$(11)
or
2CHR$(11)

NOTE: The QUESTION MARK is:
short for PRINT. CTL-(Space key)
is the shortcut for CHRS. The
space key is marked CHR$ on
the overlay. (Of course, you still
have to type PRINT or ? before

CHR$ and press after it.)
When you press [RTN |, the

screen will clear and the cursor
will return to the HOME POSI-

TION (upper left corner of the
screen).

PRINT CHR$(11) can be used to
clear the screen in either Im-
mediate or Programmed Mode.
In Programmed Mode, type it as
you would any numbered state-
ment. When the program is run
and Aqguarius reaches that state-
ment, it will clear the screen and
continue the program.

CHRS is an example of a com-
puter function. Functions are ex-
plained later in the book. Don’t
worry about understanding this
function now. It's okay to just
use it for the time being.

COMMAND. An instruction with-
out line numbers used in
Immediate Mode."#" -

CONCATENATION. The act of
joining things together.

CURSOR. A pointer (in our case,
a black square) that marks the
next screen position in which
you can type a character or
space.

EXPONENTIATION. The process
of raising a number to a
power, that is, multiplying it by
itself a number of times.

HOME POSITION. The upper left
corner of the screen.

INTEGER. A whole number.

CHAPTER1 |

Al

INTERPRETER. A device that
“translates” your BASIC com-
mands into the machme Ian’

LINE NUM“BE“R. Ay pocie

integer preceding a statement:

in Programmed Mode.

LITERAL Anythlng enclosed in
quotation marks that is to be
printed exactly as typed.

MODE. A way of doing things.

PROMPT. Character (s) that tells
you the computer is ready for
your input. Aquarius uses OK
as its prompt.

STATEMENT. An instruction with
line number, used in Pro-
grammed Mode.

TRUNCATION. The act of
shortening a number or string
of characters by dropping
numbers or characters, start-
ing from the right.

21
\

CHRS.. m-

LIST..[CTL [2] (and press
| RTN)

RUN..[CTL }{ 1] (and press
[RTN_)

Delete program line... CTL |{ X]

(marked DELINE on overlay)

Delete character...[CTL [H]

Halt program execution...
| CTL [{ C] (marked STOP on

overlay)

' CONTROL
_ SHORTCUT

CHAPTER 2

“DIVING IN”

(Constants, Variables,
INPUT, LET, Reserved
Words, Punctuation)

When you write a program, you.
give Aguarius instructions
(statements or commands) that
tell it to do something with data.
(Remember data? That's our
word for information.)

Before we look at any more in-
structions, let’s look at the differ-
ent 'kinds of data we can have.
Data can be:

1. CONSTANT information which
DOES NOT CHANGE from
the way you write it.

2. VARIABLE information which
YOU OR THE COMPUTER
CAN CHANGE when your pro-
gram is run.

Either kind of data can consist of
NUMBERS ONLY or a COMBI-
NATION of numbers, letters,
spaces and special characters.
Data that consist of numbers
only are called NUMERIC DATA.

Data that COMBINE letters, num-

bers, etc. are called STRING
DATA. So we end up with four
different kinds of data:

NUMERIC CONSTANTS, STRING
CONSTANTS, NUMERIC

NUMERIC CONSTANTS

In Chapter 1, when we used the
PRINT instruction, we used it
with both numeric and string
constants. When we did ARITH-
METIC OPERATIONS we used
NUMERIC CONSTANTS. Exam-
ple:. PRINT 2 + 5. 2and5
are both numeric constants.
ONLY NUMERIC constants or
variables can be used in arith-
metic operations.

Numeric Constants

545 (an integer)

— 17 (a negative number)
29.45 (a decimal number. Can
also be negative.)

3.2E06 (a number larger than
999999, expressed in scientific

notation. This is scientific nota-
tion for 3200000.)

CHAPTER 2 i st o T A

9E-03 (a number smaller than
.01 expressed in scientific

nolation, This is scientific nota-

tion for 1009.)
STRING CONSTANTS

When we printed LITERALS
(characters inside quotation
marks), we used STRING CON-
STANTS. “‘Hello, Aquarius” is a
string constant. “2 + 5" s also
a string constant. When numbers
are enclosed in quotation marks,
we cannot perform arithmetic
operations on them, because
they are STRING constants (also
called LITERAL STRINGS). If we
tell Aquarius to PRINT “2” +
“5", it will print the 2 and the 5
next to each other. (Concatena-
tion...remember?)

String Constants
545 gr 5l REERt
(numbers only)

“Hello” (letters only)

“Pi=8.14%"" (a combination
of letters, numbers & special
characters.)

VARIABLES

If you have a program that works
only with constants, you have a
program that cannot change
when you run it. You cannot in-
teract with a program like this .
you can only watch it. A program
that doesn’t let you interact is
not much of a program.

In order to allow interaction, a
program must work with
VARIABLES, as well as con-
stants. Think of a variable as an
empty box that you can fill with
any data you like. Once you
store data in the box — we call
this ASSIGNING A VALUE to the
variable — Aquarius™ treats that
value as a constant until you
decide to put a different value in
the box. You can put either a
numeric value or a string value
into the box — but you cannot
mix these two kinds of values in
the same box.

Once you store a value in a box,
you need to LABEL the box, so
that you can find (retrieve) that
value when you want to use it.
String variables have different
labels than numeric variables.

NUMERIC VARIABLE NAMES
A...Any single letter
AB...Two letters, if unreservedt

SCORE...A name up to approxi-
mately 60 characters in
length, if unreservedst.
(Aquarius uses only the first
two letters, so it would con-
sider this example to be the
label SC.)

C5...A combination of a letter

and a number. The letter must
be the first character,

T SEE NOTE AT TOP OF PAGE 2-3.

2-2

STRING VARIABLE NAMES

A$...Any single letter, followed
by a dollar sign. (Example: A$
= “Hello”.)

NAMESS...Groups of letters up
to approximately 60 charac-
terst, followed by a dollar
sign. (Aquarius uses only the
first two characters and the
dollar sign, so it would con-
sider this example as NAS$.)

C8$...Any letter and number, fol-

lowed by a dollar sign. The let-
ter must be the first character.

t Note: The words listed here are all “RESERVED" because they have
special significance to the BASIC interpreter. No variable name can in-
clude letter combinations that spell one of these words. For example,
“BONUS" would not be a valid variable label because it contains the
sequence O-N — and that’s a reserved word.

ABS DIM LEFT$ ON RETURN STOP
AND END LEN OR RESTORE STR$
ASC EXP LET PEEK RIGHTS TAB
CHR$ FOR LIST POINT RND TAN
CLEAR FRE LLIST POKE RUN THEN
CLOAD GOSuUB LOG POS SGN TO
CONT GOTO LPRINT RRESEf L SINwe . USR
COPY IF MID$ PRINT SOUND VAL
COS INKEY$ NEW PSET SPC

CSAVE INPUT NEXT READ SQR

DATA INT NOT REM STEP

(ALL THESE WORDS ARE EXPLAINED IN DETAIL IN THE REFERENCE
SECTION. ALL WORDS ABOVE THAT END IN A $ CAN BE USED
WITHOUT THE $ AS NAMES FOR NUMERIC VARIABLES.)

o~
oc
-
o
<
L
o

E [
=5

INPUT — THE
INTERACTIVE
INSTRUCTION

That's not as weighty as it sounds. But INPUT is a very important state-
ment, because it lets you use variables to create a program that you
can interact with.

INPUT tells Aquarius to STOP RUNNING THE PROGRAM so you can
enter (or input) some data with the keys. There are two ways to write
an INPUT statement.

10 ““WHAT IS YOUR NAME’’: The print statement asks the
question. You do not need a
question mark after NAME
because the INPUT statement in
line 20 automatically prints a
question mark. The semi-colon at
the end of the PRINT statement
causes the question mark to ap-
pear at the end of line 10.

20 INPUT NAS . The input statement tells the

: : computer to stop and wait for
you to answer. Then it stores
that answer under the label NAS.
The dollar sign at the end of the
label tells Aquarius to expect
"'string’’ data.

The second way to write an
INPUT statement is on one line,
without the PRINT statement.

10 INPUT “WHAT IS YOUR
NAME";NA$

This is obviously a faster way to
write an INPUT statement.

Enter and run the short program,
“DAYS OLD”, to see how the
INPUT statement works.

QP REMINDER
If you make any mis-
.] . takes before complet-

ing a line, move the cursor
backward for corrections with
the . If you discover an error
after you have finished the line
and pressed [RTN |, just type
the line again, using the same
number.

REMEMBER TO PRESS
AT THE END OF EVERY PRO-
GRAM LINE!

“DAYS OLD”

PROGRAM

10 INPUT *'Hi..what's your name’’;
NAS

20 PRINT “How old are you,~";NAS;

EXPLANATION

The words inside quotation
marks are constant data, and will
be displayed just as you write
them.

The semicolon separates the
constant part of the statement
from the variable part of the
statement.

NAS is a label for your name (the
variable you will type in when the
program asks for it.) The dollar
sign at the end of the label tells
the computer to expect ‘‘string”’
data. Then this data will get put
into a memory location labeled
NAS.

Again, the words between the
quotation marks are constant.
Notice the blank space after the
‘you,’. It's needed there to put a
space between the last word of
the constant data and the first
letter of the variable data.

This line tells the computer to get
the data you stored in the
variable NA$ (your name) out of
its memory and PRINT it right
after the constant data.

Nk
oc
&
(o
<L
i
(&)

Niza

30 INPUT age

40 PRINT age;*‘! That's pretty young!"’

This line tells the computer to ex-
pect the input of a numeric
variable, which it can use to do
arithmetic calculations. Omission
of the dollar sign defines the
variable ‘age’ as numbers-only
data.

This line tells Aquarius to get the
data you stored in the numeric
variable ‘age’ and print it before
the constant data.

When you have entered this pro-
gram, RUN it to see how it
works.

The INPUT statement allows you to assign a value to a variable when
you RUN a program. The LET statement allows you to assign a value to
a variable when you WRITE a program. Then when you run your pro-
gram and Aquarius reads your LET statement, it automatically assigns
the value you chose to the variable you named.

WITH LET: LETA = 10
EETRAT =285
LETA =B + C
LETA =B
LETA =B + 5

LET A$ = “'Hello”
INCORRECT LET A$ = 5
INCORRECT LET A = “Hello”

WITHOUT LET:

>>>>>>
1 | |

&

Il

T
@
o

Notice that the word LET is op-
tional in a LET statement. Also
notice that you cannot normally
assign a numeric value to a
string variable or vice versa.

Once you assign a value to a
variable, it keeps that value until
you assign a different value or
use that variable in an INPUT
statement.

Let’s update our “*'DAYS OLD"
program, using the LET statement.

PROGRAM

10 INPUT “Hi..What‘s your name’’;
NAS

20 ? ““How old are you,~"";NA$;
30 INPUT age

40 LET DAYS = age*365

NUMERIC CONSTANT

50 ? “‘That’s at least’’;DAYS;"'m days.”’

EXPLANATION

The first 3 statements are the
same as our previous program.
Notice we used the ? instead of
the word PRINT in line 20.

The word LET is optional in a
LET statement. We could omit it
and get the same result. With
Line 40 we create another
numeric variable (DAYS) which
equals the numeric variable age
times the numeric constant 365.

Again, a PRINT statement con-
tains both constant and variable
data. The second semicolon tells
the computer that there is more
to be displayed on the same line.
The blank space before the literal
““days’’ puts a space between
the variable and the constant.

GOOD HABITS
It's a good idea to

Yk
Yok ok
*ok LIST your programs,

to check for any obvious errors.

As you see, the statements
INPUT, PRINT and LET are
capitalized, as well as the
variable names — even if you
didn’t type them that way.

Try your program now. Press
[CTLI] then [ATNT. You
should see the lines shown on
the next page.

CHAPTER 2

~

PROGRAM
Ok
RUN

Hi, what's your name?

How old are you, (your name)?
That's at least (result) days!

Ok

EXPLANATION

Type your name now. Then

PRESS [[RTN |.

Type in your age Nnow.

DID YOU HAVE ANY PROB-
LEMS? Don’t worry — it's a
chance to learn more. If there
were any ‘‘bugs’ in your pro-
gram that kept it from running,
you got an Error Message show-
ing the number of the first line
the computer encountered that it
could not execute. Check the list
of Error Message abbreviations
on pages 2 and 3 of the Appen-
dix to see what the message .
means. The process of finding
and correcting errors is called
“debugging’’, and-it's an in-
evitable part of programming. A
common cause of errors, even
by experienced programmers, is
mistyping or omitting punctuation
(quotation marks and semicolons
in this example).

|f your program wouldn’t RUN,
press [CTL H{ 2], then
to LIST your program. Double-
check each punctuation mark.
And make sure you were consis-
tent in spelling all the variable
names.

When you find an error, just
type the whole line again, using
the same number. When you
press [RTN |, your new line .
replaces the old one.

PUNCTUATION

When your program runs perfect-
ly, do some experimenting to
demonstrate the usefulness of
other kinds of punctuation. There
are three special punctuation
marks that you need to be aware
of.

SEMI-COLON (;)

e CAN BE USED TO SEPARATE

constants and variables in a

statement. This use is optional.

Example:

10 PRINT “‘My name is—'";A$;"".
~What’s yours?’’

e Causes a variable or constant
to be printed NEXT TO another
variable or constant.

Example:

10 PRINT “‘I am your computer.—'’;
20 PRINT ““You are my user.”’

If these statements were ex-
ecuted, Aquarius would print:
“l am your computer. You are
my user.”” on one line.

COMMA (,)

® SEPARATES variables when
more than one variable is used in
the same statement.

Example:

10 INPUT AS$,B$,C$

e Causes a variable or constant

to be printed in the automatic

TAB position, which is column 1

or column 15 on a line. If either

column is already occupied, the

data is printed in the next auto-

matic tab position.

Example:

10 PRINT ““Red’’, “‘Blue’’, ““Yellow'’,
“Green’’

If this statement were executed,
Aquarius would print:

COLON (;)

The colon can be used (optional-
ly) to separate statements, allow-
ing you to write more than one
program statement on a single
line. This is probably the way you
will use the colon as you gain ex-
perience, but the early examples
in this book will show each state-
ment on a different line. (Com-
bined statements are explained
in Chapter 5.)

o
|
!
i

BY THE WAY

Any time a punctua-
m— tion mark is used
INSIDE quotation marks, it is
used as a LITERAL character.”

@ COMPUTER TALK

BUG. An error in a program.

CONSTANT. Data that cannot
be changed during program
run.

DEBUGGING. The process of
correcting errors.

LABEL. The “name’’ under
which you store variable data.

LITERAL STRING. Constant data
that is enclosed in quotation
marks. Also called string
constant.

NUMERIC CONSTANT. Constant
data that can be used in arith-
metic operations. A number.

NUMERIC VARIABLE. A variable
whose value can be a number
only. -

RESERVED WORDS. Words that
have special meanings and
therefore cannot be used, in
whole or part, as variable
names.

STRING CONSTANT. Constant
data that is enclosed in quota-
tion marks. Also called literal
string.

STRING VARIABLE. A variable
which can contain letters,
symbols and numbers, but
which cannot be used in arith-
metic operations.

VARIABLE. Data that can be
changed by you or the com-
puter during program run.

S —d CONTROL

4l SHORTCUTS
.--‘\

INPUT ... [CTL T

CHAPTER 3

“CASSETTE
COMMANDS”

(CSAVE & CLOAD)

You are reaching the point where
you may want to save the pro-
grams you write. Normally, when
you press or turn
Aquarius off, your program in
RAM is erased. But Aquarius™
allows you to save programs on
magnetic cassette tape, then
load those programs into
memory when you want to run
them again.

Is your cassette recorder hooked

up to your computer? If not, turn
back to the Introduction Section,
page 7, for hook-up instructions.

CSAVE — Saving A

Program On Cassette

When you enter the CSAVE com-
mand, the program currently in
memory is recorded on cassette.
Use the CSAVE command in Im-
mediate Mode in this way:

1. Type CSAVE (or press

[CTL }{ A]), followed by your
PROGRAM NAME IN QUOTA-
TION MARKS. Then press

[RTN . (Although your program

name may be longer than six
characters, Aguarius will only
pay attention to the first six.) If
you do not give Aguarius a pro-
gram name, Aquarius will give
you an MO Error message.

2. Aquarius will respond with:
Press < RECORD >
Press RETURN key to start

3. On most cassette recorders,
begin recording by SIMUL-
TANEOUSLY PRESSING BOTH
THE AND THE

% KEYS. Then press the
key on your computer.
4. Wait while Aquarius records
your program. While saving is
taking place, you may hear the
data transfer through your TV
speaker, as several short bursts

of sound. When the program is
saved, Aquarius will respond:

Ok
|

5. Press the (STOP) key on the

recorder.

3-1

6. VERIFY that your program
was correctly CSAVED, following
the instructions on pages 3 and 4
of this chapter.

Once you CSAVE a program, it is
stored in two places — in RAM
and on the cassette tape. To
erase it from RAM, type NEW
and press [RTN |. When you try
to LIST the program, you'll find
that it is gone.

least 2 numbers.on the index
counter.

KEEP A LOG for each cassette.
Note the NAME and LOAD
POINT of each program on a
cassette.

USE THE RIGHT KIND OF TAPE.
High-quality, low noise recording
tape (no longer than 60 minutes)
will give the best results.

I8 GOOD HABITS
*okok When you save the
ok first program on a
cassette, set the counter on the
recorder to 0. 0 will be the start-
ing point (also called the LOAD
POINT) of your first program.
Then as you add programs to the
cassette, keep track of the load
point of each new program.

When you add a program to a
cassette, (FAST FORWARD)
past the end of the last program
on tape before you
your new program. Watch the in-

dex counter on your recorder
and separate programs by at

ADJUSTING VOLUME

Programs are saved on cassette
in a series of low- and high-
pitched squeaks. When you use
cassette recorders that allow you
to set the volume, you must ad-
just the volume. It must be loud
enough so that Aquarius can
understand what is being re-
corded. It must not be too loud,

however, or distortion may occur.

The proper volume adjustment
varies from recorder to recorder.
To set the volume on your
recorder, try saving a short pro-
gram a number of times. Each

~ time you save the program,

VERIFY it, following the
instructions on page 4 of this
chapter. If the program does not
verify, adjust the volume and try
again.

When you find the correct
volume setting, make a note of it.
Then you will always be able to
make the proper volume adjust-
ment after using the recorder for
other purposes.

LOADING

PROGRAMS

To reverse the CSAVE process
and copy the program from the
cassette tape to RAM, use the
CLOAD command in Immediate
Mode.

1. Use the (FAST FORWARD)

or (REWIND) key on your

reoorder to position the tape at
the load point for the program.

pe CLOAD (or press
ﬁ [CTL [Z]) followed by the
PROGRAM NAME IN QUOTA-

TION MARKS. Then press
[RTN]. (If you do not enter a
program name, Aquarius will load
the first program it finds.)

3. Aquarius™ will respond with:
. Press < PLAY >
Press RETURN key to start

4. In practice, it is better to press
the key on your computer
first. Then press the key
on your recorder. If you reverse

this process, you may miss your
load point.

5. Aquarius searches the tape for
the program name you entered.
When it finds the program, it
prints: Found: (your program
name)

6. After it finds your. program,
Aquarius automatically loads it
into RAM. When loading is com-
pleted, Aquarius displays:

Ok
L

7. Press the ((STOP) key on your

recorder. Your program is now
stored in RAM, ready for you to

RUN or LIST. (Of course, it is still
stored on cassette also.)

8. VERIFY that the program in
RAM matches the program on
cassette, following the directions
on page 4 of this chapter.

BY THE WAY

The CLOAD command
automatically gives a
NEW command also, which
erases everything stored in RAM.

l»|

SKIPPING OVER PROGRAMS

If the tape is not positioned at
the correct load point for a pro-
gram, Aquarius will search the
entire tape, load point by load
point until it finds the program
you have named. Each time it
reaches a program other than
the one you have named, it will
stop and display these
messages:

Skip (program name)
Press < PLAY >
Press RETURN to start

Aquarius displays the ““‘Skip’’
message for each program it
finds that does not match the
program you named when you
entered the CLOAD command.
The “‘Skip” message is always
followed by directions to press

PLAY) and the key. The
recorder will continue running, so
you do not need to press PLAY.
YOU MUST PRESS
EACH TIME, IN ORDER TO CON-
TINUE SEARCHING. If you do
not press RTN fast enough, you
may miss the load point for the
next program on tape.

If you miss the load point for a
program, rewind the cassette
prior to the load point for the pro-

gram, and press the key

on your cassette recorder.

When Aquarius finds the program
you named, it will display this
message:

Found: (program name)

It will then automatically load
that program into RAM. When
loading is complete, Aquarius will
display the Ok prompt.

'CHAPTER 3 |

iiag

34

VERIFY —

DID IT COPY?

After saving or loading a pro-
gram, you can VERIFY that the
program on cassette matches
the program in RAM. Follow
these steps:

1. (REWIND) the cassette to the
load point for the program you
just saved or loaded.

2. TYPE CLOAD? followed by the
PROGRAM NAME IN QUOTA-
TION MARKS. Then press

[RTN]

DON'T FORGET THE QUESTION
MARK AFTER CLOAD! If you
leave it off, Aquarius will think
you gave the CLOAD command
and erase everything stored in
RAM (including your original pro-
gram, if you have just CSAVED).

3. Aquarius will respond:
Press < PLAY >
Press RETURN key to start

4. In practice, it is better to press
the key on your computer
first. Then press the key
on your recorder. If you reverse
this process, you may miss your
load point. If you miss the load
point for your program, Aguarius
will not find your program.

and try again.

5. When Aquarius finds your pro-
gram, it will print:

Found: (your program name)

If the program on cassette mat-
ches the program in RAM,

Aquarius will print: Ok. This
means your program has verified
and you can go on to the next
command.

6. If the program on cassette
DOES NOT match the program
in RAM, Aquarius will print:

Bad
Ok

The Ok prompts you to enter the
next command. It does not mean
your program verified. Try saving
or loading the program again.
Then verify again.

SAVING AND

LOADING ARRAYS

You can save large blocks of
data in ARRAYS on cassette.
(Arrays are explained in Chapter
9.) Then you can load this data
into the program currently stored
in RAM, into the memory block
reserved by the program for that
data. Saving and loading arrays
is slightly different than saving
and loading programs. Here is
how to do it

A NOTE TO THE NOVICE: Until
you understand and use arrays,
you do not need to understand
this section. Skip it, until you
need it,

To Save An Array

The array must be a numeric ar-
ray. The array that you save
must be dimensioned by the pro-
gram of which it is a part.

Example: 10 DIM A (100)

In Immediate or Programmed
Mode, save the data stored in
your dimensioned array with the
command CSAVE* followed by
the array name (A in the example
above). Do NOT put quotation
marks around an array name.

Example: 500 CSAVE* A

When the CSAVE* command is
executed, either when you press
after typing the command
or when that program statement

is executed, Aquarius will tell you:

Press < RECORD >
Press RETURN key to start

Press the (RECORD) key on

your recorder, then the

key on your computer. After sav-
ing your array, Aquarius will
display: Ok.

Press the (STOP key on your

recorder. Be sure to use the in-
dex counter on your recorder to
keep track of the load point and
end point of your saved array.

To replace an array with a new
version, position the tape at the
load point for the old version. Be
aware that the new version may
replace part of the next program
or array, if the new version is
significantly longer than the old
version.

If you want to save both old and
new array data, dimension both
an input array and an output ar-
ray, when writing your program.
After loading array A from
cassette, process the data in the
array and save the results in ar-

ray B on cassette. When the pro-

gram has ended, your cassette
contains both the original data
and the revised data.

Example: 10 DIM A (100)
20 DIM B (100)
30 CLOAD* A

900 CSAVE* B

'CHAPTER 3

35

To Load An Array

“The CLOAD* command loads a
numeric array into memory from
cassette.

You must DIMENSION an array
before you can load it into
memory. Once you dimension an
array, you may load that array
any number of times. Each time
you enter the CLOAD * com-
mand, Aguarius erases the array
currently in the memory block re-
served for it by your program.
(The size of the memory block in
your program must match the
size of the dimension you give
the array.) Then, Aquarius reloads
the array from cassette data.

Notice that array names are NOT
enclosed in quotation marks in
the CLOAD* command.

Before you enter the CLOAD *
command, position the tape a lit-
tle before the array load point.
Aquarius skips over arrays
whose names do not match the
name in the CLOAD * command.
If you think that you have missed
a load point, the tape
and try again.

CLOAD* Example 1: You load array C1 in Immediate Mode.

DIM C1 (100) Dimension array CT1.

CLOAD=* CH Enter the CLOAD * command.
Press < PLAY >

Aquarius tells you to press the
Press RETURN key to start key on your recorder

and the key on your com-
puter. :
PLAY Press the (PLAY) key, then
IMMEDIATELY press [RTN |. Or

press both keys together.

Aquarius does not tell you when it finds the array or whether the array
is being loaded into memory. It displays the Ok prompt AFTER the ar-
ray has been loaded. Press the STOP) key on your recorder.

CLOAD* Example 2: You load array A in Programmed Mode. Your ar-
ray is too large to be loaded in a single step. To use the data in the ar-
ray, you previously saved it in smaller groups. Each group of data has
the same array name. :

Notice that you dimension array A BEFORE loading the data for the ar-
ray. After loading the array, you print the data in the array, and load
another portion of the array. Each time you load array A, you replace
the previous contents of the array in memory.

To effectively use this approach
to loading array data, you must
accurately position the cassette
at the load point for each array.

10 DIM A (100)

20 CLOAD* A

30 FOR I=1 TO 100
40 PRINT A (l);

50 NEXT |

60 GOTO 20

BY THE WAY

The CLOAD * com-

mand is NOT used to
VERIFY whether an array in
memory matches an array on
cassette.

l»]

- CONTROL
l SHORTCUTS
.---\

CSAVE...[CTL {A]
CLOAD..[CTL [{Z]

COMPUTER TALK
) & -
AEEEn

- LOAD POINT. The start point

for a program loaded on
cassette tape.

™
o
-
o
<
=
&)

CHAPTER 4

BRANCHING
OouT

(GOTO, IF..THEN and
STOP)

So far the programs we have
written have been like the main
street of a town. Aquarius™ goes
down this street, step by step,
stopping along the way to carry
out any instructions that it finds.

But Aquarius can do a lot more
than march straight down the

street. It can skip ahead or jump

back along that street...or go to
another street altogether. It can
also travel in circles.

All of these abilities are very use-

ful to us in programming and
they all come under the general
heading of BRANCHING. When-
ever you tell Aquarius to stop go-
ing straight down the street and
go somewhere else, you are giv-
ing it a BRANCHING instruction.
When you tell Aquarius to travel
in circles, you are giving it a
special kind of branching instruc-
tion, called a LOOPING instruc-
tion.

There are two ways to set up
any branching instruction (includ-
ing looping instructions). You can
write an UNCONDITIONAL

BRANCHING instruction, which
is like saying to Aquarius, ‘‘Go
here, no matter what other condi-
tions exist in my program.’’ Or
you can write a CONDITIONAL
BRANCHING instruction, which
says to Aquarius, ‘“‘Wait a
minute. First, check and see if a
certain condition exists in my
program. If it does, go one place.
If it doesn’t, go another place.”

In this chapter, we will learn how
to use two commands that will
let us write branching instruc-
tions. They are GOTO and IF...
THEN.

GOTO — THE

ONE-WAY TICKET

GOTO is a BASIC command that
does exactly what it sounds like.
It tells Aquarius to GO TO some
other line. It doesn't tell Aquarius
to come back — GOTO is a one-
way ticket. Because Aquarius
has to know which line to go to,
the command GOTO is followed
by a line number.

<.
x|
R
<
&) i

41

EXAMPLE: GOTO 80

This tells Aquarius™ to go to Line
80 in the program.

GOTO can be used to send
Aquarius either forward or back-
ward in a program. One of its
most common uses is to send
Aguarius BACK in a program, to
repeat a group of statements
over. This is called LOOPING
and the group of repeated state-
ments is called the LOOP. Add
line 60 below to your “Getting
Acquaintid’’ program, to see
how it works. The program will
look like this:

10 INPUT **Hi, what's your name'':NA$

20 ? "‘How old are you, ~ '";NA$:

30 INPUT age

40 LET DAYS =age* 365

50 ?*“That's at least”’;DAYS;”
rdays!”

60 GOTO 10

When you run this program,
Aquarius will wait after each
question until you type in a

response and press [RTN |.

Then it will print the number of

days in your age, go back to the
start of the program and run it
again...and again. Boring, huh?

This little program is an example
of a PERPETUAL LOOP. TO
STOP IT PRESS [CTL J{C].
There are not many instances
where a perpetual loop is desir-
able. You might use it to create
a kaleidoscope...or to drive
someone crazy with repeating
tones. But more often, you will

want to put'a limit on your loops.
One way to limit a loop is with
CONDITIONAL branching.

A perpetual loop is an example
of UNCONDITIONAL branching.
If we make our branching condi-
tional, we give ourselves a way
out of the perpetual loop. For this
we use a two-part statement, IF...
THEN.

IF..THEN
(THE TRUTH

DETECTOR)

IF.. THEN lets Aquarius
EVALUATE AN EXPRESSION and
CHOOSE A COURSE OF AC-
TION, depending on whether the
expression is true or false.

Example:
IF X = 10 THEN GOTO 100

X = 10 is the expression GOTO
100 is the course of action.

Aquarius checks the value of X.
If it finds that X does equal 10, it
evaluates the expression as
TRUE and executes the state-
ment following the word THEN.
In the example above, that state-
ment is GOTO 100. (The word
GOTO is usually omitted because
it is understood. Example: IF X
= 10 THEN 100.) However, you
can use any valid statement.
Example: IF X = 10 THEN
PRINT “HELLO".

If Aquarius evaluates the expression as FALSE, it branches to the next
LINE of the program (NOT the next statement on the same line).

Add lines 60-90 below to your “‘Getting Acquainted’’ program, to see
how the IF...THEN statement works.

PROGRAM EXPLANATION

10 INPUT **Hi, what's your name?"’: NA$

20 ? “‘How old are you,~'";NA$;

30 INPUT age

40 LET DAYS = age*365

50 ? “‘That's at least'’;DAYS; " days!"’
60 ? “‘Anyone else (y = yes)?" New line 60 calls for the letter y
to be typed if the answer is yes.

70 INPUT P$
80 IFP§ = “‘y’ THEN 10

Branches back to line 10 IF P$
= “y". Quotes around define it
as a literal, rather than a
variable.

90 END If P$ is any literal other than *‘y"
the program ends.

The expression that Aquarius™ evaluates in an IF... THEN instruction
may be a NUMBER OR ARITHMETIC EXPRESSION. If it is, Aquarius
looks at the TRUTH VALUE of the number or expression. If the value is
0, the expression is judged FALSE. If it is NOT 0, it is judged TRUE.
You can file this information away for future reference, because it is

- not the kind of expression that you will normally use.

c
3
b |
<<)
£ el
&

., a3

4-4

The evaluated expression is
usually a RELATIONAL or
LOGICAL EXPRESSION.

RELATIONAL
AND LOGICAL

EXPRESSIONS!
WHAT ARE THEY?

Nothing to get scared about. Just
take a moment to get familiar
with them.

RELATIONAL EXPRESSIONS
compare values and show the
relationship between them. Call
one value X and the other value
Y. These are the relationships
that can exist between X and Y:

Xequals Y (X = Y)t
X is greater than Y (X > Y)t
X is less than Y (X < Y)t

+ THE SHORTHAND EXPRESSION
Equals (=), greater than (>)

and less than (<) are
RELATIONAL OPERATORS. Rela-

tional operators can be com-
bined, like this:

X is less than or greater than Y
(X < >Y). Also means X does
NOT equal Y.

X is equal to or greater than Y (X
> = Y). Also means X is NOT
less than Y.

X is equal to or less than Y (X <
= Y). Also means X is NOT
greater than Y.

These are the keys you use to
type relational operators.

LESS THAN
GREATER THAN

[=] eauats
and LESS THAN OR

GREATER THAN

and [= | Less THAN OR

EQUAL TO

and [=_] GREATER THAN OR

EQUAL TO

If Aquarius has to make more
than one comparison in an ex-
pression, it makes the com-
parisons in order, from left to
right. b X

Example: If Aquarius reads

X = Y > Z, it will first look at
whether X and Y are equal, then
whether X and Y are both
greater than Z.

If Aquarius has both arithmetic
and relational operations to deal
with in the same expression, it
will perform the arithmetic opera-
tions first and evaluate the rela-
tionship second. Example: A +
B=C+ D.

LOGICAL EXPRESSIONS

If more than one relational ex-
pression has to be evaluated as
true or false, they are combined
in a LOGICAL expression by.the
words AND or OR.

IFA>BORC =D
Means if EITHER relational ex-
pression is true, the entire
logical expression is true. OR
is the “‘logical operator’'.

IFA>BANDC = D
Means if BOTH. relational ex-
pressions are true, the entire
logical expression is true. AND
is the “‘logical operator’’.

The word NOT is also a logical
operator. It is used to reverse the
true/false value of a constant,
variable or the result of evaluat-
ing a relational expression. Ex-
ample: NOT A.

The order-in which Aquarius
checks logical operators is:

NOT
AND
OR

If Aquarius™ runs across a COM-
BINATION of arithmetic, rela-
tional AND logical expressions, it
evaluates them in that order.

END / STOP

Notice the new use of an END
statement in our program. END
is just a way of telling Aquarius

to halt execution of a program. If
there is no branching in a pro-
gram, the END statement is un-
necessary. With more compli-
cated programs, however,
Aguarius doesn’t have an auto-
matic stopping point. So we add

in the END statement to “‘flag it
down”. The END statement does
not always appear on the last
line of a program. It is, however,
the last statement executed in a
program. Once a program is
ENDed, it cannot be CONTinued.
It can only be RUN again, from
the beginning.

Like END, the STOP statement is
a way of halting program execu-
tion. It can be placed anywhere

in a program. When Aquarius en-

counters a STOP statement, it

displays a “Break in..."” message
indicating the last program line
that it executed. You can resume
program execution after a STOP
statement, using the CONT com-
mand in Immediate Mode...un-
less Aquarius encounters an er-
ror in Immediate Mode during
the pause.

@} COMPUTER TALK

BRANCH. The decision point in a
program, where the computer
““decides’’ on an alternate
course to take.

LOGICAL EXPRESSION. An ex-
pression that combines two or
more arithmetic or relational
expressions, using the words
AND, OR or NOT.

LOGICAL OPERATOR. One of the
words AND, OR or NOT, used
to combine the elements of a
logical expression.

<

e
4
o
<
o
(&)

45

~ LOOP. A group of repeated state-
ments in a program.

PERPETUAL LOOP. A loop that
repeats endlessly, unless the
program is halted manually.

RELATIONAL EXPRESSION. An
expression that compares
values.

RELATIONAL OPERATORS. The
symbols =, >, <, <>, >=
and < = used to compare
values in a relational
expression.

K9 CONTROL
@ sHorTcuTs

GOTO..[CTL }{5]
IF..[CTLI{3]
THEN..[CTL J[[4]

CHAPTER 5

“LOOPS THAT
COUNT”

(FOR...NEXT Loops
“Digital Clock”)

In Chapter 4 we learned how to
use the GOTO statement to
create perpetual loops. We also
learned that perpetual loops are
not very useful. In general, for a
loop to be really useful, it needs
to be limited by:

e the CONDITIONS under
which it will repeat; or

e the NUMBER OF TIMES it
will repeat.

We have seen how to limit the
conditions under which a loop
will repeat, using the IF...THEN
statement. In this chapter, we
will see how to limit the number
of times a loop will repeat. This,
in turn, will open the door to one
of our computer's more powerful
abilities — the ability to COUNT.

THE LONG WAY

AROUND

The program below is an exam-
ple of a GOTO loop that counts.

PROGRAM

10 1'=0
20 PRINT I;

301 =1+2
40 GOTO 20

EXPLANATION

The semi-colon tells Aquarius to
print the numbers next to each
other, instead of in a vertical
column. .

n
o
E
o
=
o
o

| hel |

e

R

Ltee

In this program we have a
variable |. In line 10, we set the
starting value of | to 0. This is

called INITIALIZING the variable.

It is not always necessary to in-
itialize a variable whose starting
value is to be 0, because the
RUN command automatically
sets all variables at 0.

In line 20 we print the value
stored in the variable |. The first
time through the loop, 0 is
printed.

In line 30 we have a (LET) state-
ment that at first glance may
look like nonsense. Mathematic-
ally, it is nonsense. But in BASIC,
the = sign in a LET statement
does not mean ‘“‘equals’’. It
means | “‘is to be replaced by" |
+ 2. When Aquarius™ sees this
statement, it takes the current
value of |, adds 2 to it and stores
this new value under the label I.
This is our COUNTER. It causes
the value of | to be “INCRE-
MENTED” by 2 each time the

statement is executed.

Finally, in line 40 we send
Aquarius back to the PRINT
statement in line 20, to print the
new value of |.

If you try this little program, be
ready to use - to stop
the program. Otherwise, Aguarius
will count from O to 1E + 38.
(That's scientific notation for 1

followed by 38 zeroes.)

ADDING IF..THEN

So far we have a loop that
counts, but for all practical pur-
poses it's still a perpetual loop.
The reason is that we have given
our counter a starting point, but
we haven't given it a stopping
point. (1E + 38 hardly qualifies as
a stopping point.)

'So we'll add an IF...THEN state-
ment to set an ending point.

101=0
20 PRINT I;
30 | =1 + 2

40 IF | < 100 THEN 20

50 STOP

Tells Aquarius to check the value
of I. As long as | is less than (<)
100 the expression is true and
the statement (GOTO) 20 is ex-
ecuted. When | reaches 100, the
expression is no longer true, so
Aquarius proceeds to the next
line, 50, which contains the
STOP statement.

If you RUN this program now,
Aquarius™ will print the even
numbers from O to 98, then stop.

Notice that the numbers are
separated by a space. Aquarius
always prints positive numbers
with a leading blank.

FOR...NEXT LOOPS

The companion FOR and NEXT
statements do the same thing as
our counting GOTO loop, but
they do it more efficiently.

PROGRAM
10 FOR | = | to 100

20 PRINT I,

30 NEXT |

CONTINUED ON NEXT PAGE

EXPLANATION

The FOR statement sets a
variable | whose values range
from 1 to 100. This is called an
Index Variable. It is our counter.

Aquarius prints the current value
of I.

The NEXT statement marks the
end of the loop and signals the
next repetition of the loop, until
the ending value of | is executed.

CHAPTER 5

- e S N 3
- 3 R
e AR ¢
e il S Z <

40 END

When | = 101, Aquarius leaves
the loop and proceeds to the
next line.

The FOR statement can also
contain variables. For example:

10 INPUT *‘Enter a number (3-15)"";N

You enter a number from 3 to 15
(say 5) during program run. This
number is stored as variable N.

20 FOR I=1TO N: PRINT I;

When Aquarius sees the variable
N, it replaces it with the value
you entered. Line 20 becomes
FOR I=1 TO 5:PRINT I.

30 NEXT |

FOR...NEXT COUNTDOWN
(TIME DELAY LOOPS)

Computers are fast...sometimes
too fast! Computers can print a
string of numbers so fast it
makes your eyes ache to watch
it!

You can use the FOR and NEXT
statements in their simplest form,
to set up a time delay loop and
slow Aquarius down. A time
delay loop tells Aguarius to count
to some number before it exe-
cutes the next command. (Sort of
like counting to 10 before you
blow your top.)

A time delay loop looks like this:
10 FOR T = 1 to 500

20 NEXT T

You can use any numeric

variable to define a time loop.
We picked T for Time.

COMBINING STATEMENTS —
THE SPACE SAVER

You can combine statements on
one line, as long as you separate
them with a COLON.

Example:

FOR T = 1 to 500:NEXT T

FOR | = 1 to 100:PRINT | ;:NEXT |

ONE STEP AT A TIME

When Aquarius executes a FOR..
NEXT loop, it automatically in-
creases (“'INCREMENTS") the
variable by 1 each time the loop
is repeated. This “increment’ of
1 is called the DEFAULT incre-
ment.

You can select a different incre-
ment than 1, using the keyword
STEP with the increment you
want.

Example:

FOR | = 5 to 100 STEP 5

sets an index variable whose
values range from 5 to 100 and
are incremented by 5 each time
the loop is executed. When the
value of | is GREATER than 100,
Aquarius breaks out of the loop.

FOR | = 100 to 5 STEP —5
sets an index variable whose
values range from 100 to 5 and
are decremented (decreased) by
5 each time the loop is executed.
When the value of | is LESS than
5, Aquarius breaks out of the
loop.

BY THE WAY

Whenever we speak
e Of 2 DEFAULT value
or operation, we mean a value or
operation that Aquarius
automatically assumes unless
you specify some other value or
operation.

THE NESTING

INSTINCT

When a FOR...NEXT loop is used within another FOR...NEXT loop, the
loops are said to be NESTED. Nested loops are useful when you want
to repeat one loop several times for EACH time you repeat another

loop.

PROGRAM

10 FORI = 1103
20 PRINT *Hello"
30 FORK = 1103
40 PRINT “‘Aquarius’’
50 NEXT K

60 NEXT |

70 END

EXPLANATION
Aquarius begins the outside loop,

prints ‘‘Hello”,

then begins the inside loop. It ex-

ecutes the inside loop 3 times,
printing “‘Aquarius’’ 3 times.

After the inside loop is executed
3 times, the next outside loop is
executed.

When the 3rd outside loop is
completed, the program ends.

CHAPTER 5

When you RUN this-program,
your screen should look like this:

Hello
GITELTE)
Aquarius
Aquarius
Hello
Aquarius
G IELVES
Aquarius
Hello

Aquarius
Aquarius
Aquarius
Ok

o

KEY IDEAS
WHEN LOOPS ARE
NESTED, THE INNER-

MOST LOOP IS EXECUTED
THROUGH ITS COMPLETE
RANGE OF VALUES BEFORE
THE NEXT OUTSIDE LOOP IS
REPEATED.

Example:
10 FOR A=1T0 4
20 PRINT *“*A";
30 FORB=1T0 5
40 PRINT “B™’;
50 NEXT B
60 NEXT A

Aquarius prints:
ABBBBBABBBBBABBBBBABBBBB

In other words, for each repeti-
tion of an outside loop, the
nested loop is executed through
its entire range of values. In the
example above, you cannot
switch the order of lines 50 and
60. B is the nested loop and
must be executed first.

“DIGITAL CLOCK” —

OUR FIRST “REAL”
PROGRAM

So far you've seen how various
commands work in simple pro-
grams that do little more than
print messages. Perhaps you're
getting eager to try a more
challenging program. ‘‘Digital
Clock’ will enable you to use
your new programming skills to
build a real though simple digital
clock.

Rather than just giving you in the
program to copy, we will develop
it together, step by step, so you
can see the PROCESS of writing
a program.

But first, there is a new word
that we need to examine.

TAB

Usually, when you tell Aquarius
to PRINT data, it starts at the left
margin, in column 1. Agquarius
leaves columns 0 and 39 blank.
If you want Aquarius to start
printing at some other point on
the screen, use the TAB
function. t

+ FUNCTIONS ARE EXPLAINED IN DETAIL IN
CHAPTER 10. FOR NOW, JUST USE THE
TAB FUNCTION.

TAB FUNCTION
TAB(15)

? TAB(15) ‘‘HELLO”

2 TAB(10) “*HELLO" TAB(20)

“AQUARIUS™

"2 TAB(10) ANS

? TAB(35); ‘AQUARIUS’’

? TAB(90) **HELLO"

CONTINUED ON NEXT PAGE

EXPLANATION

This means start printing in col-
umn 16. The first literal printed
always appears in the NEXT
COLUMN AFTER the one you
specify.

This tells Aquarius to print
HELLO starting in column 16.

This tells Aquarius to print
HELLO starting in column 11 and
to print AQUARIUS starting in
column 21.

This tells Aquarius to print the
value stored in AN$, starting in
column 11.

This causes AQU to be printed at
the end of one line and ARIUS to
be printed at the start of the next
line (because there are 38 posi-
tions per line on which charac-
ters can be printed).

This causes-HELLO to be printed
starting in column 15, 3 rows
below the TAB instruction.

0 .
oc
Ll
-
o
<
am
&
B

58

? TAB(14+38%2) "*HELLO"

Another way of writing TAB(90).
Here 14 is the column number
that will cause data to be printed
in the 15th column. 38 *2 adds 2
rows of 38 columns each, drop-
ping the final tab position down
to the 3rd row,

READY TO START

PROGRAMMING

Type in each statement as you
see it. Read the accompanying
explanation, so you understand
what you are doing. The program
starts with the simplest step —
setting up the screen format —
then adds steps that increase in
complexity.

AN IMPORTANT REMINDER
— YOU CAN STOP ANY TIME
YOU LIKE. If you reach a point
where nothing makes sense any-
more (called OVERLOAD), just
save what you’ve done so far
and stop for a while. When you
come back to the program, you'll
have a fresh outlook. All pro-
grammers experience overload.,
The smart ones recognize it as
“quittin’ time”’,

“Digital Clock”

PROGRAM
? CHR$(11) |

? TAB(17) “TIME”
? TAB(17+38%*4) “TIME"

EXPLANATION

In IMMEDIATE MODE, clear the
screen.

Test print your title, centered.

Test print the title again, this time
centered 5 rows down.

Now let's write the first segment of the program. Our purpose will be to
print the word TIME on the screen, allowing the person running the pro-
gram to select the number of lines (from O to 6) between the top of the
screen and the line on which the word is printed.

10 ? “‘Enter the # of lines (0-6):"
20 INPUT L

30 T = L*38+17

CONTINUED ON NEXT PAGE

Aquarius waits for you to select a
number of lines, then stores this
number under the label L.

This (LET) statement plugs the

value we gave L into the formula
for a tab position that centers the
word TIME on the line we chose.

-Aquarius does the arithmetic

operation and stores the result
under the label T (for TAB posi-
tion).

T}
o
-
(a 8
<
I
(&)

TR e o AT — A
b, e A 5 5, OB - BT
T S]
A .
gt s, wjx“' kt

3 i

|

i
}
ol &

40 2CHR$(11)
50 7 TAB(T) ““TIME”

This clears the screen.

This prints TIME in the tab POSi-
tion we chose.

Now stop and RUN your pro-
gram. When Aquarius™ asks for a
line number, type a number from
0 to 6, then press to
make sure the program works.
What happens if you input a
number larger than 6? Try it. To
avoid this problem, we add a
conditional loop that sends us
back to line 10 if the number we
input is greater than 6. If our
number is 6 or less, Aquarius
continues with the next state-
ment.

PROGRAM
25 |F L > 6 then ?CHRS(7):GOTO 10

EXPLANATION

Type this line, then list your pro-
gram. Notice that Aquarius auto-
matically inserts it between lines
20 and 30. Note: CHRS(7) is a

function that produces a SHORT

BEEP.

Now continue adding to your program. Print a sample houf and
minutes, to see how they work on the screen.

60 H=10:M=51

70 T=17

80 ? TAB(TH 2" M

H is our variable label for hours.
M is our variable label for -
minutes. A COLON separates the

" two (LET) statements.

We temporarily change the value
of variable T (tab position).

We print the values stored in
variables H and M at tab position
T. We print the literal *':"" be-
tween the values for hours &
minutes.

Now RUN the program again.
We have a time printed in hours
and minutes, but things are a lit-
tle lopsided. To correct the prob-
lem, we change the value of T to
move our HOURS:MINUTES dis-
play more nearly under the word
TIME. And we add a space
before the literal colon, to bal-
ance the space after it. (Aquarius
prints all positive numbers with a
space in front..remember?) Re-
type lines 70 and 80. When you
LIST the program, the new lines
70 and 80 will replace the old
lines 70 and 80.

70 T=16

80 ? TAB(T) H “~:" M

Next step — make the time variables (H and M) interactive. Use the

INPUT command to allow the person running the program to enter the
starting time in hours and minutes. Here’'s where we see the value of
incrementing line numbers by at least 10. We need to add statements

between lines 60 and 70.

60 ?“‘Enter HOUR (1-12):"’

62 INPUT H

64 ? *‘Enter MINUTES (0-59):"

66 INPUT M

Replace the old line 60 with one
that will prompt you to enter the
time in hours.

This stores number of hours you
entered under label H.

This prompts you to enter
minutes.

This stores number of minutes
you entered under label M.

Once again, we need to add conditional loops that will return to the
“prompt” statements (lines 60 and 64) if the numbers entered are out

of range for hours and minutes.

63 IF H > 12 THEN ?CHR$(7):
GOTO 60

67 IF M > 59 THEN ?CHR$(7):
GOTO 64 :

Rings bell and repeats “prompt’’
Statement if value entered for H
is greater than 12.

Rings bell and repeéts “prompt’’
Statement if value entered for M
is greater than 59.

5-11 |

Tp)
o
e
Q.
=
+
o

Now we have a program that lets us set a time and print it in a par-
ticular place on the screen. That's interesting, but it's not a clock. A
clock INCREMENTS minutes and hours — it COUNTS and shows the
result of its counting. We can make our program count, too, by adding
an index variable loop to increment minutes.

90 M=M+1

150 GOTO 80

Each time Aquarius executes this
Statement, it adds 1 to the value
of M.

This sends Aquarius back to line
80, to print the value of H and
the new value of M.

RUN the program and see what
you've got now. You've got a
new problem to solve! Aquarius
prints each new time on a dif-
ferent line! The word TIME dis-
appears (scrolls) off the top of
the screen.

To fix this problem, we move the
statements that clear the screen
and set tab positions so they are
executed just before the hours
and minutes are printed. Then
we change line 150 so our
“‘clear screen’ and ‘“set tab”
statements are part of the GOTO
loop. Here's how:

1. LIST the program.

2. Re-type line 30 with new line
number 72.

3. Re-type line 40 with new line
number 74.

4. Re-type line 50 with new line
number 76.

5. Re-type line 70 with new line
number 78.

6. Erase old lines 30, 40, 50 and
70 by typing each line number
and pressing return.

7. Re-type line 150 to read GOTO
72.

Your program should now look
like this: :

10 ? “‘Enter # of lines (0-6):”

20 INPUT L

25 IF L > 6 THEN ? CHR$(7):
GOTO 10]

60 ? “‘Enter HOUR (1-12):”

62 INPUT H

63 IF H > 12 THEN ? CHR$(7):
GOTO 60

64 ? “‘Enter MINUTES (1-59):"

66 INPUT M

67 IF M > 59 THEN ? CHR$(7):
GOTO 64

72 T = L*38+17

74 ? CHR$(11)

76 2 TAB(T) ‘TIME”

78 T=16

80 ? TAB(T) H'm:""M

90 M=M+1

150 GOTO 72

110 IF M > 59 THEN H=H+1 Increments the value of H When
minutes increment past 59.

120 IF M > 59 THEN M=0 Resets value of M to 0 when M
increments past 59,

Now we’ll add a similar statement to reset the hour when it reaches
and goes beyond 12.

130 IF H > 12 THEN H=1.

RUN the program. It is now beginning to resemble a clock, but we can
still improve it. Let’s add seconds.

80 ? TAB(T)H “~:” M “‘~:"" S Change line 80 so it prints sec-
onds as well as hours and
minutes.

85 S=S+1 Increment the seconds.

90 IFS>59 THEN M=M +1 Increments the value of M when

seconds increment past 59.

. 95 IF S > 59 THEN S=0 Resets value of S to 0 when S in-

crements past 59.

n
c
L
B
<
o5
o

RUN the program. Our ‘‘clock’’
now increments seconds,
minutes and hours and prints the
current value of each under the
heading TIME. The last step we
will complete is to set the timing
on our clock. To do this, we add
a simple time delay loop which
we can adjust.

140 FOR P=0 TO 850: NEXT P

It takes Aquarius approximately 1
second to count from O to 850 in
this program. So this loop estab-
lishes the duration of our second.
This duration may need some ad-
justment because the computer
takes some time to process the
Statements. Adjust the duration
by changing the range of P.

LIST your complete program. It
should look like this:

10 PRINT *‘Enter # of lines (0-6):"

20 INPUT L

25 IF L > THEN PRINT CHR$(7):
GOTO 10

60 PRINT ‘“‘Enter HOUR (1-12):"

62 INPUT H

63 IF H > 12 THEN PRINT CHR$(7):
GOTO 60

64 PRINT “‘Enter MINUTES (1-59):"

66 INPUT M

67 IF M > 59 THEN PRINT CHR$(7):
GOTO 64

72 T=L*38 + 17

74 PRINT CHR$(11)

76 PRINT TAB(T) ‘‘TIME"

(BRTN=N6

80 PRINT TAB(T) H “‘=:"" M ““=:"’S

85 S =S+ 1

90 IFS>59THENM = M + 1

95 [FS>59THEN S = 0

110 IFM>59 THENH = H + 1

120 IF M > 59 THEN M = 0

130 IFH> 12 THEN H = 1

140 FOR P = 0 TO 850:NEXT P

150 GOTO 72

Now RUN the program. Is it a
clock? It is! We'll build a fancier
version in Chapter 11, but for
now we DO have a clock. If you
want your clock to stop, press
-. The next time you
RUN your program, you can
reset your clock again.

(P.S. Don't forget to save this
program if you have a cassette
recorder hooked up to your com-
puter.)

COMPUTER TALK
miEEm
T

DECREMENT. To decrease. Also,
the amount by which a value
is decreased.

DEFAULT. To automatically re-
vert to a value or operation
unless another is specified.
Also, the value or operation
that Aquarius automatically
reverts to unless another is
specified.

INCREMENT. To increase. Also,
the amount by which a value
is increased.

INDEX VARIABLE. The variable
in a FOR...NEXT loop that con-
trols the number of times the
loop repeats.

NESTING. Inclusion of one loop
or subroutine within another.
(Nested subroutines are dis-
cussed in Chapter 7.)

TIME DELAY LOOP. The simplest
form of FOR...NEXT loop, one
that tells Aquarius to count to
some number before execut-
ing the next statement.

KY W CONTROL
48 SHORTCUTS
.- b) ‘\

FOR..[CTL{Z]
NEXT..[CTL }Z]

u)?
oc
Lu
&
<
L
(&)
=

CHAPTER 6

“A SPLASH OF
COLOR”

(PEEK and POKE,
RAM matrix, PSET,
PRESET and POINT)

Everything you have, typed so far has appeared as black characters on
a light blue background. Aquarius™ has much more than this to offer in
the way of color. In this chapter we will discover how to use the full
range of color built into your Aquarius home computer. There is math
involved in using color, but fortunately, YOU DON'T HAVE TO DO IT.
ALL YOU HAVE TO DO IS PLUG NUMBERS INTO A COUPLE OF
SIMPLE FORMULAS AND AQUARIUS WILL HANDLE THE MATH FOR
YOU. So don't let the numbers put you off. Color makes a world of
difference. (By the way, you will need a color TV set to get the most
out of this chapter.)

/POKE A LITTE HERE.)
\POKE A LITTLE THERE

. CHAPTER 6

POKING AROUND

POKE is a way of telling your
computer to POKE something in-
to a position on your TV screen.
That something can be a CHAR-
ACTER or a COLOR — FORE-
GROUND and/or BACKGROUND
color.

POKE A CHARACTER

You must give Aquarius 2 pieces
of information:

® WHICH CHARACTER to
poke..given as a NUMBER. You
get the number from the Charac-
ter Code List starting on page 6
of the Appendix.

® WHERE on the TV screen to
poke it. This is one of 960 -
squares which the screen is
divided into. You specify which
square by a NUMBER. You get
the number from the CHARAC-
TER RAM MATRIX on page 4 of
the Appendix.

Example of a statement to POKE
A CHARACTER:

POKE 12328,65

This tells Aquarius™ to POKE the
letter A into the Home Position

on the TV screen. 65 is the Char-

acter Code number for the letter
A. 12328 is the number for the
Home Position on the Character
RAM Matrix.

These numbers were simply
plugged into a FORMULA. The
FORMULA is the important thing
to know, because you can look
up the number for any character
Or any screen position on the
lists. The FORMULA is:

POKE (screen position), (charac-
ter number)

NOTE THE COMMA
POKE A COLOR

You must give Aquarius 3 pieces
of information:;

°* WHAT FOREGROUND COLOR
to poke (if you want one). This is

the color you give to whatever
CHARACTER is printed in a par-
ticular screen position. This color
is given as a NUMBER. You get
the number from the Color Code
List on page 3 of this chapter.

* WHAT BACKGROUND COLOR
to poke (if you want one). This is
the color of the screen itself in a
particular position. This color is
also given as a NUMBER, which
you get from the Color Code List
on page 3.

° WHERE on the screen to poke
these colors. This is one of 960
squares which the screen is
divided into. You specify which
square by a NUMBER, which you
get from the COLOR RAM
MATRIX on page 5 of the Appen-
dix.

Example of a statement to POKE
A COLOR:

POKE 13352,5 * 16 + 3

NOTE THE COMMA

This tells Aquarius™ to POKE the
FOREGROUND COLOR, VIOLET
and the BACKGROUND COLOR,
YELLOW into the HOME POSI-
TION. 13352 is the number for
the Home Position on the COL-
OR RAM MATRIX. 5 is the
number for violet. 3 is the
number for yellow.’

These numbers were PLUGGED
INTO A FORMULA. The FOR-
MULA is what you need to know
to plug ANY color into ANY
screen position. (You can always
look the number up.) The FOR-
MULA IS:

POKE (screen position), (fore-
ground color) * 16 +
(background color)

If you don'’t specify a foreground
color, you will get BLACK.

If you don't specify a background
color, you will get LIGHT BLUE-
GREEN.

POKE BOTH CHARACTER
AND COLOR

If you want to POKE BOTH a
character and color into the
same screen position, you will
need to use TWO POKE state-
ments — one for the character
and one for the color. Example..

To POKE a RED letter A into a

DARK BLUE BACKGROUND in
the HOME POSITION, use these
two statements:

POKE 12328,65
POKE 13352, 1 * 16 + 11 (1 is

the color code for Red and 11 is
the color code for dark blue.)

COLOR CODE LISTt

COLOR CODE
Bl LG Koyt ot e e 0
FRe peel e CE R 1
Gireemils e a8l D il 2
Yeellow:t it e e S 3
Bllie st tatasntiar e foal, S 1ol 4
VOl el e e e el e S 5
Light Blue-Green. 6
Whiterr sy e e el 7

tCOLORS MAY VARY FROM TV SET TO TV SET.

COLOR

CODE
LignEEGRAY oo e 8
Blue-Green 9
Magenta 10
DalkSBels e RN E SR 11
Light Yellow. 12
Light Green. 113
(Ol 1A10[2) o i e s e 14
BankiEray R 15

“¥

©
o
L
=
o
<
=
&)

CHARACTER RAM

MATRIX/ COLOR
RAM MATRIX

Let’s look at your television
screen again.

Aquarius™ divides your TV screen
into 24 rows and 40 columns.
When you type a program, you
can type in 38 of the 40 col-

umns. But ALL 40 COLUMNS
can contain a color or character,
when a program is run, if you
use the POKE statement.

Because computers start with 0
when they number things, ROWS
are numbered 0 to 23 and COL-
UMNS are numbered 0 to 39.
Row 0, Column 0 is the HOME
POSITION.

There are 960 possible positions
on the screen where Aquarius

OCONORWN=O

OrANMINONDOD O
-

can print a color and/or charac-
ter. In order to keep track of all
these screen positions, Aquarius
stores 2 *‘grids’ in its memory.
One grid is for color; the other is
for characters.

EACH POSITION ON THE COL-
OR GRID HAS A NUMBER
CODE. EACH POSITION ON THE
CHARACTER GRID HAS A DIF-
FERENT NUMBER CODE. The
grids are related. The difference
between number codes for cor-
responding positions-on the two
grids is ALWAYS 1024. (Add
1024 to any character code
number and you have the cor-
responding color code number.)

Because Aquarius stores these
grids in RAM, they are called the
COLOR RAM MATRIX and the
CHARACTER RAM MATRIX. You
will find the Color RAM Matrix on
page 5 of the Appendix. The
Character RAM Matrix is on page
4 of the Appendix.

Let's take a look at the entire range of colors which is available to you.
DETAILS — Enter and RUN this program:

NUMBER This clears the memory.

RELATIONSHIPS
ON THE MATRIX 10 PRINT CHR$(11) This clears the screen when you
RUN the program.

20 CS=12328+ 1024 This stores the home position of
the Color RAM Matrix in the vari-
able CS. Colors will be displayed

pal starting from the home position

: on the screen.

HOME POSITION

©.
o ;
o
<
i i
&

SONEOR=0TO S Loop gives the variable | a range
of 16 values (0-15), which will be
used to set color codes and to
select screen positions that ad-
vance 1 column right each time
the loop is executed.

1. HOME POSITION on the Char-

acter RAM Matrix — 12328. 40 POKE CS+1,! CS + 1 gives the current position
; on the Color RAM Matrix into
2. Move 1 COLUMN right —add 1. which the current value of | is to
be POKED.

3. Move 1 ROW down — add 40.
When | =0, the color Black (code

4. Diffgrence lbletween aorre: 0) is poked into the home posi-
sponding positions on Character ‘ tion (CS +0). When I =1, the col-
RAM. Matrix and Color RAM. or Red is poked into the next col-
Matrix — 1024. Home position umn right. And so on, up to 15.

on Color RAM Matrix =
12328 + 1024. CONTINUED ON NEXT PAGE

50 NEXT | Ends the loop and signals the
next loop repetition, until the end-
ing value of | is reached.

When you RUN this program, all 16 colors are displayed in a row.
Depending on how your TV set is tuned, the colors displayed may vary.
Tune your TV set to suit your color preferences.

To see the color range displayed in 2 rows of 8 colors each, enter and
RUN this variation of the last program.

PROGRAM EXPLANATION

NEW Clear the memory.

10 PRINT CHR$(11) | Clear the screen.

20 CS=12328+1024 Store home position of Color
RAM Matrix in variable CS.

30 N=15 Give a value of 15 to variable N.

40 FOR I=0T0 7 Establish a loop that will repeat 8

times. Give variable | a range of
8 values (0-7).

50 POKE CS+1,! Establish the current position on
Row 1 of the Color RAM Matrix
CONTINUED ON NEXT PAGE (CS + 1) and insert the color code

60 POKE CS+1+40,N

70 N=N-1

80 NEXT |

90 PRINT:PRINT

corresponding to the current
value of |I.

‘Establish current position on Row

2 of the Color RAM Matrix

(CS + 1+ 40) and insert the color
code corresponding to the cur-
rent value of N (starting at
IN=H5).

Decrement the value of N by 1,
So that you can print color selec-
tion codes 15-8 in descending
order.

End loop. Signal next loop repeti-

 tion until ending value of | is

reached.

Two PRINT statements used
alone prints two blank lines, so
the Ok prompt appears below
our color bars.

When you RUN this program, Aquarius will print 16 colors, one column
at a time, switching back and forth between Row 1 and Row 2.

CHAPTER 6

“COLOR ME”

TRY THIS

The program to the

right will let you ex-
periment with changing
foreground and background col-
ors on characters you print.

PROGRAM
NEW

10 ? CHR$(11)
20 ? CHR$(13)

30 ? ““Choose foreground color (0-15)"";

40 INPUT A

50 ? ““Choose background color (0-15)"";

60 INPUT B

70 ? “It's a beautiful world!""
80 R=4

90 D=A*16+B

CONTINUED ON NEXT PAGE

EXPLANATION

Erases screen.

Moves cursor down 1 row from
top.

Tells Aquarius to wait while you
enter a foreground color number.
Stores that number under label A.

Tells Aquarius to wait while you
enter a background color
number. Stores that number
under label B.

Gives R a value of 2 (for Row 2).

Computes the formula for fore-
ground and background colors
and stores the result under the
label D.

100 FOR C=1TO 23

110 POKE 12328+ 1024 +R*40 +C,D

120 NEXT C
125 FOR T=1 TO 2000: NEXT T

130 GOTO 10

Gives C a range of 23 values
from O to 22 (number of column

. positions filled by sentence in

line 70).

Calculates position on the Color
RAM Matrix for each column
0-24 in Row 2 and pokes the
foreground and background col-
ors selected into those positions.

Creates a time delay loop to slow
down program execution.

Starts the program over. Press

| CTL H C] to stop program

execution.

CHAPTER 6

PEEK

PEEK is a handy ‘‘sidekick’’ to
POKE. POKE says, “Insert this
color or character into a particu-
lar screen position.”

PEEK asks, ‘“What color or char-
acter exists in a particular
screen position?”’ + The com-
puter responds to your PEEK
question with the NUMBER

CODE for the color or character

in that screen position. (You can
then look up the color or charac-
ter that matches this number
code, on the lists on pages 6 to
10 of the Appendix.)

Because Aquarius responds by
PRINTING a number code, PEEK
is used with a PRINT statement.

Example:
PRINT PEEK (12328)

You can also write:
10 C = PEEK (12328)
20 PRINT C

or
10 C = PEEK (12328+1024)

20 PRINT C

This tells Aquarius to print the
number code for whatever char-
acter is in the home position on
the Character RAM Matrix.

This sets a NUMERIC VARIABLE
equal to the result of the PEEK
command. The variable must be
numeric since the result of the
PEEK command is expressed as
a number. In the second exam-
ple, you look to see what COLOR
occupies the home position on
the Color RAM Matrix.

tNOTE FOR ADVANCED PROGRAMMERS: As with POKE, this is a very specific use of PEEK. The
general use of PEEK is to determine what value is stored at a particular memory location.

DRAWING LINES

When you use the POKE state-
ment to display colors on the
screen, each screen position is
calculated as:

CS + (40 R) + C
where:

CS = the starting position on
the Color RAM Matrix;

R = the ROW in which the
current position occurs; and

C = the COLUMN in which
the current position occurs.

TO DRAW A VERTICAL LINE, create a loop in which the COLUMN
number (C) is CONSTANT and the ROW number (R) VARIES.

Example:

NEW

10 ? CHR$(11)

20 CS = 12328 + 1024
30 C =10

40 FORR = 0 T0 23

50 POKE CS +(40 * R)+C,1

60 NEXT R

You assign a constant value of
10 to variable C (for Column).
This will print the line in Column
10.

You assign a range of values
(0-23) to variable R (for Row).

Each time the program loops
through this statement, a block
of red (color code 1) is added to
column 10 a row at a time.

e
o
o
<
T
&)

TO DRAW HORIZONTAL LINES, create a loop in which the ROW
number (R) is CONSTANT and the COLUMN number (C) VARIES.

Example:

NEW

10 ? CHR$(11)

20 CS = 12328 + 1024
30 R =10

40 FORC = 0 TO 39

50 POKE CS +(40 * R)+C,1

60 NEXT C

You assign a constant value of
10 to R (Row). This will print the

. line in Row 10.

You assign a range of values
(0-39) to variable C (Column).

Each time the program loops
through this statement, a block

of red is added to Row 10, a col-
umn at a time. :

TO DRAW DIAGONAL LINES, create a loop in which BOTH THE
ROW NUMBER (R) AND THE COLUMN NUMBER (C) VARY.

e If you INCREASE both R and C, the line will slant down to the RIGHT.

e |f you DECREASE both R and C, the line will slant up to the LEFT.

* |f you INCREASE R and DECREASE C, the line will slant down to the

LEFT.

* If you INCREASE C and DECREASE R, the line will slant up to the

RIGHT.
Example:
NEW
10 ? CHR$(11)
Z20NRE=N0

25 CS=12328 + 1024
30 FOR C=0 TO 39

40 POKE CS +(40* R)+C,1

CC 'TINUED ON NEXT PAGE

R is set to 0 so that the line will
Start in the home position.

You calculate the starting posi-
tion for CS. ;

C is given a range of values that
INCREASE from 0-39. *

~ Each time the program loops

through this statement, a block
of red is added to the next col-
umn and row position.

O
mv
i
<
i
(&)

90 R = R+1

60 IF R > 23 THEN 80

70 NEXT C
80 END

You INCREASE R so that the line
is drawn from left to right and
from top to bottom.

Each time you increase the value
of R, you check R to make sure
you don’t draw the line off the
screen. This statement gives you
a way to branch out of the loop
when you need to.

THE FINE LINE
(Using PSET, PRESET

and POINT
statements)

PSET, PRESET and POINT allow
you to divide the screen into a
finer grid than 40 by 24. With
these statements, you divide the
screen into 80 columns and 72
rows. That is, each character
position on the screen is divided
into 6 squares — 3 down and 2
across.

® PSET fills in a square.
® PRESET erases a square.

® POINT tells you whether a
square is filled in.

You use these statements with
COORDINATES that specify the
location of a square on the 80 x
72 grid.

® The first coordinate is the
COLUMN.

e The second coordinate is the
ROW.

Examples:

e PSET(0,0) fills in the square in
the upper left corner.

e PSET(39,35) fills in the center
square.

" e PRESET(39,35) erases the
center square.

e ? POINT(39,35) prints a 0 if the
center square is NOT filled in
or a 1 if the center square IS
filled in.

NOTICE THAT POINT IS USED
AS PART OF A PRINT STATE-

MENT. This permits the response

to the POINT “‘question’ to be
printed on the screen.

COLORING THE FINE LINE

This simple program will draw a fine vertical line, then add in

foreground and background color.
NEW

10 ? CHR$(11)

20 C=10

30 FOR R=0TO 71

40 PSET(C,R)

50 NEXT R
60 FOR R=0TO 23

.70 FOR C=0TO 8

CONTINUED ON NEXT PAGE

You set the column position for
your vertical line. This will be
drawn in the 10th column out of
80.

Loop sets a range of values for R
which includes all row positions.

You fill in each square in the col-
umn, row by row.

You assign a new range of
values to R. R now indicates a
row on the 40 column by 24 row
screen.

You assign a new range of
values to C. C now indicates a
column on the 40 column by 24
row screen.

o LT

e

 CHAPTER 6

80 POKE 12328+ 1024 +R*40+C,7%
16+ 1

90 NEXT C
100 NEXT R

You calculate positions on the
Color RAM Matrix and poke
WHITE foreground and RED
background colors into those
positions.

Signal next repetition of loop C.

Signal next repetition of loop R.

COMPUTER TALK

COLOR RAM MATRIX. The 24 by
40 “memory grid”’ on which
Aquarius stores all screen
positions in which COLOR can
be inserted.

CHARACTER RAM MATRIX. The
24 by 40 “‘memory grid”’ on
which Aquarius stores all
screen positions in which
CHARACTERS can be
inserted. '

COLOR CODE. The number code~
under which a color is stored
in RAM.

CHARACTER CODE. The number
code under which a character
is stored in RAM.

- CONTROL
4l SHORTCUTS
.- | -\

PSET.. CTL H J]
PRESET... CTL [K]
POINT..[CTL [{ L]
POKE..[CTL @]
PEEK...[CTL %]

CHAPTER 7

“SUBROUTINES
— THE ROUND-
TRIP TICKET”

(GOSUB, RETURN,
Nested Subroutines,
REMARK, Computed

GOTO and GOSUB,
SOUND)

In Chapter 4 we compared a program to a town with a Main Street. (In
a program, Main Street is called the MAIN ROUTINE.) We learned that
we can send Aquarius™ straight down Main Street, or make it jump
from point to point using the GOTO statement.

But what happens when our town starts growing? We can add to both
ends of Main Street, until the town is miles long and one street wide.
But that is not an efficient way to build a town...or a program.

e

CHAPTER 7

When programs get lengthy, it
tends to be because certain
groups of statements are
repeated at different points in the
program. For example, if you
POKE a color several times in a
program, with other statements
in between, you probably repeat
an entire sequence of statements
each time you poke the color.

Rather than re-typing a group of
statements each time you want
to use it, Aquarius™ lets you use
the group as a SUBROUTINE. A
subroutine is like a side street
that branches off from Main
Street, sending you back to Main
Street when you reach the end.

To get to a subroutine, use the
GOSUB statement with the start-
ing line number of the sub-
routine. Example: GOSUB 100

You can branch backwards or
forwards, to any subroutine in a
program at any time. When you
branch to a subroutine, you
speak of CALLING that sub-
routine.

The last statement in a sub-
routine is always RETURN. This
marks the end of the subroutine
and sends Aquarius back to the
main routine, TO THE STATE-
MENT IMMEDIATELY FOLLOW-
ING THE GOSUB STATEMENT
FROM WHICH IT LEFT.

REMARK — NOTES

TO YOURSELF

Experienced programmers start
each subroutine with a REMARK
statement. A REMARK statement
is literally a note to yourself,
identifying a subroutine or mark-
ing a particular point in the
program.

A REMARK statement is NOT
EXECUTED when the program is
RUN. It only appears when you
LIST or print your program. You

still have to give a REMARK
statement a line number, how-
ever, and it still uses memory.

To enter a REMARK statement,
type REM followed by your
‘“‘note’’ (up to 72 characters
long). Or press [CTL [{W], then
type your note. You do not have
to enclose your note in quotation
marks, since the statement is not
executed.

frm——————r)

BY THE WAY
E You can use the
Pr—] REMARK statement
by itself, without a note, to insert
nearly blank lines in your pro-
gram list. This can make a pro-
gram list easier to read.

The following program illustrates subroutine branching. In this program,
Aquarius bounces a ‘‘ball’’ across the screen from side to side. Notice
that making a character appear to move across the screen is nearly
the same as drawing a line. You display and erase the character in one
position before displaying it in the next position.

PROGRAM
NEW
10 ? CHR$(11)

20 PS=12328

30 R=10

40 FOR C=0 TO 39

- 50 GOSUB 100

CONTINUED ON NEXT PAGE

EXPLANATION
Clear memory.

Clear the screen when the pro-
gram is RUN.

Store the starting position on the
Character RAM Matrix in variable
PS.

Give variable R a value of 10 (for
Row 10). In this program you
want the “ball’”’ to bounce
horizontally between the sides of
the screen in Row 10.

Use a loop to increment the col-
umn number, stored as variable
C, from column O to column 39.

Call the subroutine that begins

on line 100, to draw and erase
the graphic.

60 NEXT, C

70 GOTO 40

100 REM DRAW/ERASE GRAPHIC

110 P=PS+(40*R)+C

120 POKE P,135

130 POKE P,32

140 RETURN

Continuation of the main routine.
Indicate end of FOR..NEXT loop
begun in line 40.

After the FOR..NEXT loop has
moved the “ball’’ through all 40
columns, go back to statement
40 and start all over again.

Use a REMARK statement to
identify the beginning of the sub-
routine.

Set up a formula that tells
Aquarius the current position of
the ball on the screen. The
results of the formula are stored
as variable P.

Poke the code for a filled in cir-
cle (the ball) into the current
position (P) on the screen. See
Character Codes, pages 6-10 in
the Appendix.

Erase the ball by poking the
character code for a blank space
in the same character position.

Tell Aquatrius to return to the
statement following the GOSUB
Statement which called it. In this
program, it returns to statement
60.

RUN your program. The ball will
move so quickly that you will
have to slow it down in order to
see it. We will learn how to do
this in the next section of this
chapter. For now, press
- to STOP the

program.

NESTING

SUBROUTINES

Subroutines can not only branch
off from the main routine, they
can branch off from other sub-
routines as well! This is called

NESTING the subroutines. A pic-

ture of nested subroutines might
look like the diagram below:

=
m
s
=
=

=
w
=]
=
=
=
=
@
=
7

1

1

1

1

1
4

MAIN ROUTINE

In this diagram, Aquarius™ bran-
ches from the main routine to
subroutine 1. Before it reaches
the RETURN statement at the
end of subroutine 1 it branches
to subroutine 2. At the end of
subroutine 2, Aquarius reaches
its first RETURN statement. It
returns to subroutine 1 and con-

tinues on until it reaches the
RETURN statement at the end of
that subroutine. This RETURN
statement sends it back to the
MAIN ROUTINE.

WHEN AQUARIUS BRANCHES
INTO NESTED SUBROUTINES,
IT MUST RETRACE THE SAME
PATH BACK TO THE MAIN
ROUTINE. This is really just
another way of saying that ANY
RETURN statement ALWAYS

sends Aquarius back to the state-

ment FOLLOWING THE MOST
RECENT GOSUB statement from
which it branched.

NOTE: Be careful in nesting sub-

routines. It's easy to accidentally
change the value of a variable
when more than one subroutine
is nested. In the unlikely event
that you try to nest more than
100 levels of subroutines,
Aquarius may stop program ex-
ecution with an OM Error (Out of
‘Memory) message.

88 GOOD HABITS
:** Avoid using a GOTO

statement to branch
out of a subroutine. When you
use GOTO in this manner,
Aquarius forgets where to return,
unless you use another GOTO
statement to branch back into
the same subroutine again. It's
complicated and best left alone.

On the next page is a modifica-
tion of our bouncing ball pro-
gram, that uses a nested sub-
routine to slow down the ball’s
movement. Add these statements
to the program on pages 3 and
4,

PROGRAM EXPLANATION -

Branch from subroutine 100 to
nested subroutine 200.

125 GOSUB 200

200 REM DELAY LOOP Use a REMARK statement to
identify the beginning of sub-

routine 200.

Create a TIME DELAY LOORP that
counts up to 50 between esch
movement of the ball.

210 FOR |=1 TO 50

220 NEXT | Indicate the end of the time
delay loop.
230 RETURN Tell Aquarius to return to the

statement following the GOSUB
statement in subroutine 100
which called it. '

RUN your revised program with the nested subroutines. Notice how
the time delay loop creates the illusion of a ball moving across the
screen. Press - to stop the program. Change statement 210
if you want to change the speed at which the ball moves.

EARLY RETURNS

You must have at least one RETURN statement in a subroutiné, at the
end. You can have MORE THAN ONE RETURN statement ina

subroutine, however. For exam-
ple, by combining a second
RETURN statement with an
IF..THEN statement, you can tell
Aquarius™ to leave the subroutine
early and return, when the condi-
tions of the IF.THEN statement
occur.

Add this statement to your
bouncing ball program, to pre-
vent the ball from moving past
column 30.

115 IF C>30 THEN RETURN

This tells Aquarius to check the
next position where the ball is to
be displayed. If the next position
is to the right of column 30
(C>30) Aquarius returns to the
main routine at statement 60.

RUN your revised program.

Press [CTL J{ C] to stop the

program:

Note: Don’t enter the NEW com-
mand or turn Aquarius off. Either
will erase this program and we
are not finished with it yet.

COMPUTED GOTO

AND GOSUB

ON...GOTO

A computed GOTO statement
looks like this:

10 ON S GOTO 100,150,500, 720

NOTICE COMMAS BETWEEN NUMBERS.

S is a NUMERIC VARIABLE
whose value you assign else-
where in the program. In this ex-

ample, the value of S would be a

number from 1 to 4.

The numbers 100, 150, 500 and
720 are LINE NUMBERS. Of
course, Aguarius cannot go to all
4 lines at once. These line num-
bers give Agquarius a CHOICE of
lines to go to. The value of S tells
Aqguarius which line to choose.

If S=1, GOTO 100
(the 1st line number)

If S=2, GOTO 150
(the 2nd line number)

If S=3, GOTO 500
(the 3rd line number)

If S=4, GOTO 720
(the 4th line number)

Wait a minute! Notice anything
familiar here? Add the word
THEN to the statements above.

IF S=1 THEN GOTO 100

One computed GOTO statement
does the same job as several
IF..THEN statements...and uses a
lot less memory space.

ABOUT S (OR WHATEVER
YOU WANT TO CALL IT)

The NUMERIC VARIABLE that
determines which line Aquarius
will GOTO must follow a few
rules:

“e |t must be a positive number.

(Negative numbers will result in
an error message.)

® |ts minimum value is 1. (A
value of O will cause Aguarius to
ignore the ON..GOTO statement.)

e |ts maximum value is the num-
ber of line numbers listed in the
ON..GOTO statement.

310 S=7
320 ON S GOTO 110,320,450

These statements taken together
make no sense, because there is
no 7th line number given in state-
ment 320. Aquarius would agree.
It would ignore line 320 and pro-
ceed onward to the next state-
ment in the program.

ON..GOSuUB

The computed GOSUB statement
works in exactly the same way
as the computed GOTO state-
ment, except that the line num-
bers given in the statement indi-
cate the starting line of a sub-
routine. Therefore, when
Aqguarius RETURNS from the
subroutine, it returns to the state-
ment immediately following the
ON...GOSUB statement.

~
et
e
o
< 3
T
(&)

Let’s return to our bouncing bail
program and tinker with it some
more. We will create two new
subroutines: one to move the ball
from left to right and the other to
move the ball from right to left.
Each subroutine will set the
value of S to either 1 or 2, so
that Aquarius will branch to the
other subroutine when it returns
to the main routine.

First LIST the program. Notice
that all statements are printed in
UPPER CASE, even if you
entered them in lower case. This
is the DEFAULT printing. Only
LITERALS enclosed in quotation
marks are printed in upper and
lower case, if you type them that
way.

Change the main routine of the
program (and line 115) as shown.

PROGRAM

115 (press [RTN])
25 R=10
30 S=1

35 ON S GOSUB 45,75

40 GOTO 35

45 REM LEFT TO RIGHT
50 FOR C=0TO 39

55 GNSUB 100

60 NEXT C

65 S=2
70 RETURN

EXPLANATION

Delete statement 115.

Re-enter statement 30 with a
new line number to make room
for other statements. ‘

Give S a value of 1 for use in
selecting a subroutine in the
computed GOSUB statement on
line 35. :

Use a computed GOSUB state-

ment to branch to subroutine 45
when S=1 or to branch to sub-
routine 75 when S=2.

Send Aquarius back to the com-
puted GOSUB statement when it
returns from subroutine 45 or 75.
This subroutine provides column
positions for subroutines 100 and
200.

Program branches to nested
Subroutine 100, which moves the
ball from left to right.

Note that S is set to 2 at-the
end of the subroutine, so that
Aquarius will branch to
Ssubroutine 75 when it executes
the computed GOSUB statement
on line 35.

75 REM RIGHT TO LEFT .
80 FOR C=39 TO O STEP -1
85 GOSUB 100

90 NEXT C

95 §=H

97 RETURN

This subroutine moves the ball
from right to left. Note that S is
set to 1 at the end of the sub-
routine, so that Aquarius will
branch to subroutine 45 when it
executes the computed GOSUB
statement on line 35.

Subroutines 100 and 200 remain unchanged, except for the deletion of
line 115 in subroutine 100. This line was deleted so that the ball would
travel all the way to column 39 before returning.

RUN the revised program, using [CTL }{ C] to stop it.

ADDING SOUND —

THE FROSTING ON
THE CAKE!

Sound is made up of two things
— DURATION and TONE.

DURATION is the length of
time the sound lasts.

TONE is the relative “pitch’ of
the sound.

You can use Aquarius™ to create
an astonishing range of sounds
by specifying duration and tone
with the SOUND statement. You
don’t have to be an audio
engineer either. You’ll have more
fun just experimenting with dif-
ferent numbers for tone and
duration. In general, the HIGHER
THE DURATION NUMBER, THE
LONGER THE SOUND. THE
HIGHER THE TONE NUMBER,

'THE LOWER THE TONE.

Here is how you write the
SOUND statement. Notice that
there is no space between the
key word SOUND and the first
parenthesis.

SOUND(50,5)

SPECIFY COMMA SPECIFY
DURATION TONE

Experiment with SOUND in Im-
mediate Mode. If you don’t get
any sound at all, you may have
specified a pitch that is out of
hearing range for the human ear
(though you may cause a dog's
ear to perk up).

Example:

SOUND (50,50)
Creates a high-frequency tone.

SOUND (50,500)
Creates a low-frequency tone.

SOUND (0,500)
No sound created.

m.
t
o
<
T
(&)

Let's add one last nested subroutine to our bouncing ball program, to
add a sound effect each time the ball moves on the screen.

PROGRAM
205 GOSUB 300

300 REM SOUND BEEP
310 SOUND(50,5)

320 RETURN

EXPLANATION

Add a statement in subroutine
200 to branch to subroutine 300
before the time delay loop is
executed.

Use a REMARK statement to
identify subroutine 300.

Generate a sound with a duration
of 50 and a tone of 5.

Tell Aquarius to return to the
statement following the GOSUB
statement from which it left on
line 205. This will execute the
time delay loop after each sound
is generated.

COMPUTER TALK
EEEER
EEEER

CALL. Another word for branch.
To “call’” a subroutine means
the same thing as to “‘branch
to’’ a subroutine.

COMPUTED GOTO/GOSUB. A
statement which causes
Aquarius to branch to one of
several lines or subroutines,
depending on the value of the
numeric variable contained in
the statement.

DURATION. The length of time
that a sound lasts.

MAIN ROUTINE. That part of a
program from which all sub-
routines branch. A program
minus subroutines.

NESTED SUBROUTINE. A sub-
routine that branches off from
another subroutine.

SUBROUTINE. A group of state-
ments that branch off from the
Main Routine of a program
and end in a RETURN state-
ment, which sends Aquarius
back to the Main Routine.

TONE. The relative “pitch” of a
sound.

GOSUB..[CTL H{ 7]
RETURN...[CTL [{ 8]
REMARK..[CTL [W]

ON..[CTL}{6]

CONTROL
SHORTCUTS

CHAPTER 8

“READ...DATA —

THE
EFFICIENCY
EXPERTS”

(READ, DATA,
RESTORE)

Let's make up a simple color
quiz program. This quiz will ask
for the color of 5 different ob-
jects and tell us if our answer is
correct. You don't have to enter
this program; just read through to
see how it works.

“Color Quiz 1”

10 PRINT CHR$(11)

20 PRINT ‘“‘What color is the sky~"";

30 INPUT 0%

40 IF 0% = ‘“Blue”’ THEN 70

50 PRINT ‘*Not exactly.”

60 GOTO 80

70 PRINT “‘Very good!"’

80 PRINT ‘‘What color is an
elephant—"’;

90 INPUT 0%

100 IF 0% = *‘Gray’’ THEN 130

110 PRINT *‘Not exactly.’’

120 GOTO 140

130 PRINT “‘Very good!"’

140 PRINT “‘What color is..."
etc. etc.

It's not hard to see that this pro-
gram is very repetitious...and
longer than it has to be, if you in-
clude 5 questions. (A 5-question
quiz program like this would re-
quire more than 25 statements.)

We can write our quiz program
much more efficiently, using the
READ and DATA statements.
Here is the same quiz, with all 5
questions, in 14 statements. We
could also write it as a
10-question quiz and we would
only have to add 2 more state-
ments. Enter the program below.
Just copy it for now and see how
it works. Then we’ll explain it.

“Color Quiz 2”

10 PRINT CHR$(11)

20 READ A$,B$

30 IF A$="'00PS’’ THEN 110

40 PRINT *‘What color is—'"; A$;

50 INPUT 0%

60 IF 0$=B$ THEN 90

70 PRINT “‘Not exactly.”

80 GOTO 20

90 PRINT *‘Very good!"’

100 GOTO 20

110 PRINT ‘‘That’s all. You did very

- well.”

120 DATA ‘‘the sky’’, ‘‘blue’’,
““an elephant’’, ‘‘gray”’

130 DATA ‘‘grass’’, ‘‘green’’,
“wheat”", “‘gold”’

140 DATA ‘“‘a strawberry”’,
“red”’, “‘00PS’’, *‘0O0PS"

NOTE: When you enter lines
110-140, type in the entire line

before you press [RTN |.

WHEN YOU HAVE A VARIABLE
IN A PROGRAM AND YOU
NEED TO USE IT SEVERAL
TIMES, WITH A DIFFERENT

VALUE ASSIGNED TO IT EACH
TIME YOU USE IT, THE READ

AND DATA STATEMENTS LET

YOU:

e Store all the values for that
variable in a DATA statement;
and

® Call those values out of
memory, one at a time, with a
READ statement that assigns
those values to one or more
variables.

A READ statement is like a
super-efficient LET statement. It
sets up one or more variables,
then gets values for those vari-
ables from a DATA statement
and stores them for later use.

Here are some examples of
READ statements:

10 READ A
20 READ D$
30 READ A,B,F$

NOTICE THE COMMAS SEPARATING
VARIABLES.

Statement 10 tells Aquarius,™
“Go to the current DATA state-
ment. Read the next item of data
you find there and store it as the
NUMERIC VARIABLE A.

Statement 20 tells Aquarius to
find the next item of data and
store it as the STRING
VARIABLE D$. '

Statement 30 says, “Go to the
current DATA statement. Read
the next item of data you find
and store it as numeric variable
A. Read the next item after that
and store it as numeric variable
B. Read the next item after that
and store it as string variable
F$.”

IF A READ STATEMENT SENDS
AQUARIUS LOOKING FOR
NUMERIC DATA AND IT FINDS
STRING DATA INSTEAD (OR
VICE VERSA), IT WILL GET CON-
FUSED AND GIVE YOU A TM
(Type Mismatch) ERROR
MESSAGE.

The DATA statements in a pro-
gram establish ALL the values
that the variables set up in the
READ statement(s) will have.
These values include NUMERIC
and/or STRING CONSTANTS. (No
variables allowed here.)

You can store as many values in
a DATA statement as you like,
UP TO THE MAXIMUM LINE
LENGTH. This works out to about
64 characters. However, it is
sometimes easier to work with
data when you enter related sets
of values in separate DATA state-
ments.

Example:
READ P,R,N

DATA 100,75
DATA 300,7.8

Where P is principal, R is rate
and N is number of years.

Rather than:

READ P,R,N
DATA 100,7,5,300,7,8

Though this is perfectly legal.

SOME IMPORTANT THINGS
TO KNOW ABOUT DATA
STATEMENTS ARE:

1. If there is a READ statement,
there must be at least one DATA
statement.

2. ALL DATA statements in a
program are considered a DATA
BLOCK, even if they are located

. in different sections of the pro-

gram. You can place DATA
statements anywhere you like.
Many programmers prefer to
place all DATA statements

together at the beginning or end
of a program. Others place them
near the READ statements to
which they relate.

3. There must be at least as
many items in the DATA BLOCK
as there are variables in the
READ statements. If Aquarius
loops 5 times to a READ state-
ment containing 6 variables, then
there must be at least 30 values
in the DATA BLOCK.

4. The items in ‘a DATA BLOCK
are read in sequence from left to

[] CHAPTER 8

right, in order of line number.
You cannot skip around within
the data block, selecting par-
ticular items to read. Imagine a
pointer that moves past each
item in the data block, after that
item is read. Aquarius™ goes to
the item CURRENTLY BEING
POINTED TO each time it en-
counters a new READ variable.

Ok
10 DATA 100,200,300,400,500,600,700 B

DATA ITEM CURRENTLY BEING READ.

5. The value CURRENTLY BEING
POINTED TO in the DATA
BLOCK must match IN TYPE the
variable CURRENTLY BEING
ASSIGNED A VALUE in a READ
statement. A string variable can-
not be given a numeric value.

Example:

READ G1,A$,BR$
DATA 10, “Contented’’,'‘Cows’’

READ G1,X,BR$
DATA 10,"'Contented’’,*“Cows"’

CORRECT:
Values match variables.

INCORRECT:

String constant ‘‘contented’’
does not match numeric
variable X.

The example below shows how READ and DATA statements work

together.

10 READ A,BS$,C9
20 DATA 7,'*Hi’*,10,55,"‘Box’", 2

30 PRINT A

40 IF C9=10 THEN PRINT B$

Aquarius sees the READ state-
ment and goes looking for a
DATA statement. It finds the
DATA in line 20 and reads the
first 3 values. It stores numeric
constant 7 as numeric variable
A, string constant “Hi’’ as string
variable B$, and numeric con-
stant 10 as numeric variable C9.

Aquarius proceeds to line 30. It
prints the value stored in A,
which is 7.

In line 40 Aquarius checks to see
if C9=10. It does, so Aquarius
prints the value stored in B$,
which is “Hi".

50 [F C9<>10 THEN STOP
60 GOTO 10

In line 50 Aquarius checks to see
if C9 is greater or less than 10. It
is not, so Aquarius goes on to
line 60, which returns it to the
READ statement in line 10.

Aquarius goes back and READS
more DATA, picking up WHERE
IT LEFT OFF. It assigns a new
value of 65 to A, a new value of
“Box”’ to B$ and a new value of
2 to C9.

It prints A, which is 55. It checks
to see if C9=10, finds the ex-
pression false, so goes on. It
checks to see if C9 is less or
greater than 10, finds the expres-
sion true and STOPS.

OUT OF DATA

When Aquarius has read all the
items in the data block, it stops.
The pointer does not reset to the
start of the data block again. So
if you have more READ variables
than you have DATA items, you
will eventually see this message:

? OD Error in 20
Ok

This means that Aquarius went to
the cupboard and the cupboard
was bare. OD stands for OUT OF
DATA.

There are two ways to avoid get-
ting the dreaded OD message.
One is with a FLAG. The other is
with the RESTORE statement.

CHAPTERS

1
i
|
1
|
]

THE FLAG

A flag is an UNLIKELY CON-
STANT placed at the end of the
data block. It is used with an
IF..THEN statement to stop pro-
gram execution or send Aguarius
elsewhere in the program, when
the data block runs dry.

To see how this works, let's
return to our ‘‘Color Quiz 2" pro-
gram. It shouldn’t look quite so
strange now. Look at lines 30
and 140. The last value in the
data block is the last value in line
140. That string constant is
“O0PS”. Line 30 tells Aquarius
to keep an eye out for “OOPS"
and branch down to the ending
statement in line 110 when it en-
counters it. It's that simple!

There is one caution you must
take in setting a flag. If you are
working with both numeric and
string variables in your READ
statements, make sure your
FLAG matches IN TYPE your last
variable read.

RESTORE

The RESTORE statement sets the
pointer back at the beginning of
the DATA BLOCK or to the
beginning of a particular DATA
STATEMENT. This lets you
REPEAT data items as often as
you wish, before continuing on in
the data block.

Example 1:

If you want to store the same 3
values as 2 sets of variables, use
RESTORE between the 2 READ
statements.

10 READ A,B,C

20 RESTORE

30 READ X,Y,Z

40 PRINT A;B;C

50 PRINT X;Y;Z°

60 DATA 5,10,15,20,25,30

This example will cause Aguarius
to print:

Example 2:

If you want to return to a par-
ticular DATA statement, use
RESTORE with a LINE NUMBER.

10 READ A$,B$,CH

20 RESTORE

30 READ X$,Y$,Z$.
40 PRINT A$;'‘~"";BS$;"‘~"";C$
50 PRINT X$;“m"";Y$;""~""Z8
60 READ Q$,R$,S$

70 RESTORE 120

80 READ T$,U$,V$

90 PRINT Q$;'‘~"";R$;"'"";S$
100 PRINT T$;“~"";U$;"'~"";V$
110 DATA “‘Oh’’, “‘happy’’, ‘‘day!”
120 DATA “‘I”’, ‘‘feel’’, ‘‘great!”

This example will cause Aquarius

i o CONTROL
0 print: SHORTCUTS
B DATA BLOCK. Al of the data READ..[CTLI{D]
50 PRINT XS ; values contained in all of the
DATA statements in a DATA..[CTL H{F]

$,VS
90 PRINT

100 PRINT program.
110 DATA "

120 DATA i

RUN

Slinappyday! FLAG. An unlikely value placed
L!E:.' el -at the end of the DATA

. BLOCK. A flag is used with an
IF..THEN statement to stop
program execution or cause
Aquarius to branch to another
part of the program when the
end of the data block is
reached.

©
o
L
K
<
=
&
L]

CHAPTER 9

“MAXIMUM
STORAGE WITH
ARRAYS”

(Array Variables,
Multi-Dimension
Arrays, DIM, CLEAR)

One way to store a number of
values for a variable is with
READ and DATA statements.
These statements are particularly
useful when you have a number
of values to be used IN A PAR-
TICULAR ORDER.

But what if you will not be using
data values in sequential order?
Imagine that you want to keep
track of your household ex-
penses for one year. You want to
set up different spending cate-
gories, such as Food, Gasoline,
Electricity, Phone..etc. You then
want to store each month’s ex-
penditures for each category.

And you want to be able to easily
get the data on ANY particular
month’s expenditures in ANY
particular category, perhaps for
comparison purposes.

Then you need to store this data
in ARRAY VARIABLES (also
called SUBSCRIPTED
VARIABLES.) Why? Let’s look at
arrays and find out.

If a variable is like a box in which
you store a value, an array vari-
able is like a large box divided in-
to a number of compartments (as
many as you like). You can store
a different value in each com-

/4,
Ky
OP
f ‘

e

partment and still keep all the
values together under one
general label (such as Food,
Gasoline, etc.) You can set up an
array with either numeric or
string values in it, but you cannot
mix both types of values in the

_ same array.

Each value stored in one of the
compartments in our large box is
called an ARRAY ELEMENT.
(Each month’s expenditures in a
spending category would be an
element in that category’s array.)
Each array element is identified
by a NUMBER in parentheses,
next to the variable name. This
number is called a SUBSCRIPT.
(Hence the name Subscripted
Variable).

Example:
X$(5) is an array element in a
STRING ARRAY which has at

. least 6 elements.

FOOD (11) is an array element in
a NUMERIC ARRAY which has
at least 12 elements. This might
be the 12th month’s expenditures
in an array that stored all FOOD
COSTS for one year.

THE SIZE OF AN

ARRAY

When you set up an array vari-
able, you first decide how many
different elements you need to
cover all the data items you will
be using. If there are 12 items in
your data block and you want to
be able to use any of them at
any time, you will need an array
with 12 elements. Array elements
are numbered starting at 0, so 12
elements would be numbered 0
to 11.

Once you decide how many ele-
ments you want in your array,
you pass this information along
to Aquarius” via a DIMENSION
(abbreviated DIM) statement, that
also assigns the array variable
name.

Examples:
DIM FOOD (11) sets up a

numeric array variable FOOD
with 12 values.

DIM A$(9) sets up a string array
variable A$ containing 10 values
(0-9).

DIM X(29),Y(24) sets up 2
numeric arrays, X and Y. X con-
tains 30 elements. Y contains 25
elements. :

In the programs that you write,
be careful not to assign values to
more elements than you have
allowed for in your DIM state-
ment. If you dimension an array
X$(4) and try to assign a value to
X$(5), you will get a BS Error
message. (BS stands for Bad
Subscript.) This means your sub-
script (5) was OUT OF RANGE
for the array dimension.

Note: You do not need to dimen-
sion an array that contains 10
elements or less, but it is a good
programming practice to do so.

CHANGING |
DIMENSIONS — THE
CLEAR STATEMENT

Once you establish the dimen-
sion of an array, the only ways to
change it are with the NEW com-
mand (which erases everything in
memory) or the CLEAR state-
ment. The CLEAR statement
ERASES THE VALUES STORED
IN ALL VARIABLES UP TO THAT
STATEMENT.

Example:
10 DIM FOOD (11)

20 FOOD(0) = 300.00

30 FOOD(1) = 290.00

40 FOOD(2) = 330.00

- 50 ? FOOD(0) ,FOOD(1) ,FOOD(2)

60 CLEAR

70 PHONE(0) = 70.00
80 PHONE(1) = 52.00

90 ? PHONE(0) ,PHONE(1)

100 ? FOOD(0) ,FOOD(1) ,FOOD(2)

Establishes a string array with
room for 12 elements.

Assigns values to first 3
elements of the array.

Prints values of first three array
elements.

Sets dimensions of FOOD to O.
Sets values of FOOD(0), FOOD(1)
and FOOD(3) to zero.

Assigns values to PHONE(O) and
PHONE(1).

Prints values of PHONE(0) and
PHONE(1). Notice that these
values were not affected by the
preceding CLEAR statement.

Prints value of FOOD array
elements which are now blank
(represented by Aquarius as 0).

Be careful that you don’t aécidentally erase the value of a variable
which you-want to use again. If you do, re-assign the erased value to

that variable.

CHAPTER 9

ASSIGNING VALUES

TO AN ARRAY

Once you set up an array, you
can assign values to the array
elements in three ways — with
LET statements, INPUT state-
ments or READ and DATA
statements.

The LET statement is useful if
you have a small array.

Example 1:

10 DIM FOOD(2)

20 FOOD(0) = 300.00
30 FOOD(1) = 280.00
40 FOOD(2) = 330.00

If array values are to be assigned during program run, use the INPUT
statement. The example below uses arrays in calculating the average

weight of up to 100 people.
PROGRAM

10 INPUT ““How many people did
you weigh’’;P

20 DIM W(P)

S0NFORN =R TOP

40 ? “'Weight number’’; ;*'mis '';

50 INPUT W(I)

60 T=T + W(I)

70 NEXT |

80 AV=T/P

90 ?‘‘Average weight is’’;AV

EXPLANATION

Array has room for the same
number of elements as people
weighed. i

Loop creates variable | with
values from 1 to P.

Prompts the next INPUT state-
ment.

Sets subscript for array element
as current value of I. Stores
weight entered as value of this
array element.

Adds weight entered to current
total.

Signals next repetition of loops
up to maximum value of P.

Formula calculates average
weight.

Prints result.

When you have a large array, it
is often easier to READ values
from a DATA statement.
(However, this does use a lot of
memory space.)

Example 1:

10 DIM X(19)

20 FORB = 0 TO 19
30 READ X(B)

40 NEXT B

50 DATA 5,10,15,20,25,30,35,40,
45,50

60 DATA 55,60,65,70,75,80,85,
90,95,100

The example above accomp-
lishes in 6 statements what it
would have taken 21 statements
to accomplish, if we had used
LET statements.

Example 2:

10 DIM X(9),Y(9)
20 FORB = 070 9
30 READ X(B),Y(B)
40 NEXT B

50 DATA 5,10,15,20,25,30,35,40,
45,50

X0 YO XM o Y()

60 DATA 55,60,65,70,75,80,85,
90,95,100

In this example, X(0) would be
assigned a value of 5. Y(0) would
be assigned a value of 10. X(1)
would have a value of 15; Y(1)
would have a value of 20...and
SO on.

. CHAPTER 9

MULTI-DIMENSIONS

The arrays that we have looked
at so far are all ONE-
DIMENSION arrays. This is the
kind of array that you will prob-
ably use most often. But it is not
the only kind. You can have two-
dimension, three-dimension, up
to five-dimension arrays.

If you think of a one-dimension
array as a single ROW of values,
then a two-dimension array is a
MATRIX with ROWS and COL-
UMNS. The subscript on a two-
dimension array element there-
fore contains TWO numbers (or
COORDINATES). The first coor-
dinate tells the row and the sec-
ond coordinate tells the column.
You can think of your TV screen,
for example, as a two-dimension
array of positions, labeled by row
and column coordinates.

X(3,4) is a element in a two-
dimension array. The value of
X(3,4) is located in Row 3, Col-
umn 4 of the two dimensional
array X.

How about a three-dimension ar-
ray? What might we use a three-
dimension array to represent?
How about a chart of financial
obligations, based on balance
owed, rate of interest and month-
ly payment. The first dimension

“would be the balance owed; the

second dimension would be the
rate of interest; and the third
dimension would be the monthly
payment.

If a two-dimension array contains
two coordinates, then a three-
dimension array should contain
three coordinates..and it does! A
four-dimension array contains
four coordinates and a five-
dimension array contains five
coordinates. In fact, you can
always tell the number of dimen-
sions of an array by the number
of coordinates in its subscript.

.You can also tell the total num-

ber of array elements in a multi-
dimension array by adding 1 to
each coordinate, then multiplying
the coordinates together. For ex-
ample, a two dimension array
with the coordinates (9,9) would
contain a total of 100 elements.
The maximum number of ele-
ments you can have in any array
(no matter how many dimensions
it has) is approximately 400. And
it doesn’t take long to use up
400 elements in a five-dimension
array. DIM X(2,2,2,2,2) for ex-
ample, contains 243 elements.
DIM X (3,3,3,3,3) contains 1024
elements! If you attempt to
establish an array that contains
too many array elements,
Aquarius™ displays the OM (Out
of Memory) message.

~ Use multi-dimension arrays spar-

ingly. They eat up memory
quickly! :

In the following program, you de-
fine an array called CL that con-
tains the screen positions for the
upper left-hand corner of the
Color RAM Matrix. After loading
the array with screen positions,
you use the array elements in
POKE statements that draw col-
ored lines on the screen.

PROGRAM
NEW

5 ?CHR$(11)
10 DIM CL(3,3)

20 FORR=0TO 3
30 FOR C=0TO 3

40 CL(R,C)=12328+ 1024+ (R*40)+C

50 NEXT C
60 NEXT R

70 C=0

80 FOR R=0TO 3

CONTINUED ON NEXT PAGE

EXPLANATION
Erase memory.
Clear the screen.

Reserve space for a 2-dimension
array containing up to 16 ele-
ments (that is, 4 times 4).

Use a nested FOR-NEXT loop to
load screen positions in the array
based on row and column
numbers.

Calculate the position for
each row/column coordinate
(R,C) in a 4 by 4 square in the
upper left-hand corner of the
Color Ram Matrix.

Indicate the end of the loop for
variables C and R."

Set variable C to 0 so that you
can draw a red line in that
column.

Use a FOR-NEXT loop to incre-
ment the value of R, representing
row positions.

pric
o
s
0.
<
T
o

90 POKE CL(R,C),1

100 NEXT R

110 PRINT:PRINT

Use the array CL to represent
screen positions based on row/
column coordinates.

Indicate the end of the FOR-
NEXT loop for variable R.

Move cursor down 2 rows.

When you RUN your program,
Aquarius™ draws a vertical red
line from the home position. Try
changing lines 70 to 100 to draw
a horizontal red line in the third
row.

70 R=2

80 FOR C=0TO 3
90 POKE CL(R,C),1
100 NEXT C

110 PRINT:PRINT

[

COMPUTER TALK

ARRAY. An ordered list of values
assigned to a numeric or
string variable.

ARRAY ELEMENT. An individual
value stored in an array.

DIMENSION. The number of ele-
ments in an array.

MATRIX. A set of values arranged
in rows and columns.

SUBSCRIPT. The number in
parentheses next to the array
variable name, which identifies
a particular element in the
array.

SUBSCRIPTED VARIABLE.
Another name for an array.

KXY ¥ CONTROL
4l SHORTCUTS

DIM..[CTL { E]

CHAPTER 10

“FUNCTIONS —
THE SUPER
SHORTCUTS”

(Functions, Random
Numbers, CHRS,
FRE, LEFTS$, MIDS,
RIGHTS)

A function works like a built-in mini-program that has one job to do.
That job is to generate a single value or result that you can print or use
as a value in an expression. (We say that a function RETURNS a single
value.) A function is therefore never used alone as a program state-
ment. It is always used with another keyword (or keywords) such as

PRINT or IF..THEN.

10 IF'Y > SQR(39) THEN 80
10 PRINT CHR$(11)
10 PRINT FRE(X)

These statements all contain
functions. SQR, CHR$ and FRE
are all FUNCTION NAMES.

(39, (11) and (X) are
ARGUMENTS. An argument is
THE VALUE ON WHICH- A
FUNCTION OPERATES to return
a single result. SQR(39) returns
the square root of 39. CHR$(11)
returns the control character that
clears the screen. FRE(X) returns
the number of unused bytes of
memory.

AN ARGUMENT IS ALWAYS
ENCLOSED IN PARENTHESES.

‘There are many functions permanently stored in your Aguarius™ com-
puter's memory. All are available to you whenever you need them.

P

~ CHAP

102

DIFFERENT KINDS

OF FUNCTIONS

Aquarius ™ uses three types of
functions: NUMERIC, STRING
and SYSTEM.

NUMERIC functions return a
numeric value. SQR(X) is a
numeric function that returns the
square root of any numeric value
assigned to (X). Numeric func-
tions are handy to have around,
because they take care of messy
mathematical operations (like
finding square roots, sines and
cosines, etc.) for you.

STRING functions may:

® Return one or more characters
from a character string.

Example: LEFT$(X$,)

e Convert a character string con-
taining numbers into a numeric
value.

Example: VAL(X$)

® Convert a numeric value into a
character string.

Example: STR$(N)
SYSTEM functions:

e Provide information about the
amount of memory available to
you. FRE(X)

e Give control over HOW things
are displayed on the screen.

Example: CHR$(11)

e Provide information about the
contents of memory locations.

Example: PEEK (12328)

We will take a closer look in this
chapter at a FEW commonly
used functions. See the
Reference Section, pages 40 to
55, for descriptions of all
Aguarius functions.

NESTED FUNCTIONS

The argument of a function may
be another function. This is
called NESTING and the function
that provides the argument is
said to be nested within the other
function. For example, we could
take the square root of a number
contained in a character string.
Then the function that returns a
numeric value for a number con-
tained in a character string,
VAL(X$), would become the argu-
ment for the SQR function. The
entire function would look like
this:

10 X$=""1063 HIGHLAND STREET"’
20 PRINT SQR(VAL(X$))

Aquarius would print the square
root of 1063.

One of the most frequently used
examples of nested functions is
random number generation. We
will look at random numbers
next.

RANDOM

NUMBERS — GAMES
OF CHANCE

If you want Aquarius™ to pick a
number at random from a certain
range of numbers, use the RND
(Random) function. If you want
Aquarius to pick a WHOLE
number at random from a range
of whole numbers, use the RND
function, nested within the INT
(Integer) function. (An integer is a
whole number.)

Random number generation is
just about essential in creating
any game where chance is an
element. Random numbers are
most useful when they are whole
numbers. In a game where dice
are rolled to determine moves, a
roll of 3.146 would be
meaningless.

When you generate a random in-
teger, you actually generate a
RANGE of random integers —
for example, a range of 11

numbers from 5 to 15, including
both 5 and 15. To do this you
specify:

® The LOWEST NUMBER in the
range. Call this number A. In our
example, A = 5,

® The number of POSSIBLE inte-
gers within the range. Call this
number B. In our example, B =
11

Our formula for generating a ran-

dom integer (called X) is:
X = INT(B * RND(1) + A)
Note that (Bx RND(1) + A) is the

nested function within the INT
function.

/7 AHA ! ’
10.56823.

(7o THAT iF
b YOUACAN.

CHAPTER 10} .

The statement used to printa
random integer generated by our
formula could be either:

PRINT INT(B * RND(1) + A)
or: ‘
X=INT(B * RND(1) + A): PRINT X

Plug the values from our exam-
ple into one of these statements
and we get:

PRINT INT(11 * RND(1) + 5)

BY THE WAY
[} The argument for the
e RND function can be
any whole, positive number. The
number chosen does not affect
the results of the function. This
kind of argument is called a
DUMMY ARGUMENT. (However,
if you use 0 as the argument for
RND, the last number generated
will be repeated.)

The following ‘“Multiplication
Tables’ program generates a
random integer for use in a
“times tables’’ drill.

“Multiplication

Tables”

PROGRAM

NEW

5 7 CHR$(11)

10 J = INT(11*RND(1) + 2)

20 FOR I=1TO 12

30 GOSUB 100

40 NEXT |

50 GOTO 10

100 REM PROMPT ANSWER

EXPLANATION
Clear memory.
Clear the screen.

Generate a random number be-
tween 2 and 12, including 2 and
12, to be used as multiplicand.
Store this number as the variable
J

Use FOR...NEXT loop to set
values for multiplier and store
values as |.

Branch to subroutine 100.

Signal next repetition of loop until
end value of | is reached.

Generate a new random number
to be used as next multiplicand.

Use REMARK statement to iden-
tify subroutine.

110 K=I*J
120 ?“‘What is'’;|;*‘—times’’;J:*‘?"

130 SOUND(25,100)

140 INPUT AN

150 IF K<>AN THEN GOSUB 200
160 IF K<>AN THEN GOTO 120

170 IF K=AN THEN GOSUB 300

180 RETURN

CONTINUED ON NEXT PAGE

Establish correct answer for
each | times J and store answer
as variable K.

Print the question “What is |
times J?”’ with current values of |
and J inserted.

Generate a sound to accompany
the question.

Stop program until answer is
entered. Store answer as vari-
able AN.

Test the answer to see if it
matches the correct answer K. If
it does not, branch to subroutine
200.

Aquarius returns from subroutine
200 to this statement, which
sends it back to 120 to repeat
the question.

If AN equals the right answer K,
branch to subroutine 300.

End subroutine 100 and return to
line 40.

=
r-
o
L
=
o
<
i
&

106

200 REM WRONG ANSWER

210 ?*‘Oops. Try again!’’;CHR$(10)

220 SOUND(50,50)

230 RETURN

300 REM RIGHT ANSWER

310 ?*‘Right!”’;CHR$(10)

320 SOUND(50,80)

330 SOUND(80,50)

340 RETURN

Use REMARK statement to iden-
tify subroutine 200.

Print wrong answer response and
skip one line after response.

Generate a sound to accompany
response.

End subroutine 200 and return to
line 160.

- Use REMARK statement to iden-

tify subroutine 300.

Print right answer response and
skip one line after response.

Generate 2 sounds to accom-
pany response.

End subroutine 300 and return to
line 160.

RUN your ‘‘Multiplication Tables™ program now. When you are through,

press [CTL |{ C | to stop.

CHR$ — THE

MULTI-FUNCTION
FUNCTION

CHRS$ is the CHARACTER FUNC-
TION. It is a very versatile string
function that allows you to print
characters from the entire char-
acter set or to control the way in-
formation is displayed on the
screen.

THE CHARACTER SET

All of the letters, numbers and
special characters on your key-
board are members of the char-
acter set. But this is not the
ENTIRE set. There are 256 char-
acters in the character set and
each one of them is represented
by a different number from O to
255. This number is called a
CHARACTER CODE. (You met
character codes in chapter 6.)

Most of the characters can be printed on the screen, using a PRINT
statement. For example: PRINT CHR$(197), where 197 is the char-
acter code. It is also the argument of the CHR$ function. Some are
special graphics characters that can ONLY be printed by means of the
CHR$ function, because they do not appear on the keyboard. You will
find all characters and their character codes starting on page 6 of the
Appendix.

EF X ¥ 3 - © = &= T | A & v N
= "'.' - - -

AT T T U &RLP AN .
> ok + - s B 1 2 3 4 5
6E 7 8 9 : ; £ = » T @ A B
C DE F GHI JKILMMDOD

B oo o S de LS W, X, Y £ EF % 1
A d b cd e f g h i |

k 1 m{n o}p q.r sl 1 ufv Lugx
y & i

o — oW A b o e A WSS
L - B ETm L E, l*-l o e Mt

- ‘-._ -=l..:l. ﬂ-ﬂ I.l1=l1J'.=-I-

SPECIAL GRAPHICS CHARACTERS

TRY THIS
Use the CHR$ func-
tion to print quotation

marks as part of a string literal.
The character code for quotation
marks is 34.

Example: PRINT CHR$(34) ‘‘My
name is Aquarius.” CHR$(34)

You can display part of the
character set with the following
short program.

10 FOR [=0 TO 255

20 PRINT CHR$(I);

30 FOR T=1 TO 50:NEXT T
40 NEXT |

When you RUN this program,
Aquarius™ will print the first few
characters, then clear the screen
and print the remaining char-
acters in the character set. This
happens when Aquarius reaches
character code 11. By now
you've used CHR$(11) often

(=
=
o
=
o
<
e
o

enough to know what happens -
when Aquarius prints this
member of the character set.

If you want to display the EN-
TIRE character set, including
characters you cannot display
using the CHR$ function, enter
and RUN this short program:

5 2 CHR$(11)
10 A = 12328
.20 FOR 1=0 TO 255
30 POKEA + | * 3, |
40 NEXT |

50 GOTO 20

USING CONTROL
CHARACTERS

When used in the CHR$ function,
some character codes do not
cause a character to be dis-
played. Instead, they control the
WAY IN WHICH data is dis-
played on the screen, in either
Immediate or Programmed

Mode. You have already seen
how this works with CHR$(11).
You can type 2CHR$(11) and
press in Immediate Mode
to clear the screen. Or you can
type a line in a program —

10 ?CHR(11) — to clear the

screen when Aquarius executes
that line.

There are four other control char-
acters, in addition to CHR$(11),
that we will take a special look at
here.

CHR$(7) — BELL

To create a bell sound in Im-
mediateode, you can press

| CTL [{ G . But you cannot
write [CTL H{ G| into a PRINT
statement in Programmed Mode.
If you want a bell sound to be
generated during program execu-
tion, use CHR$(7) in a PRINT
statement.,

Example: 10 PRINT CHR$(7)

When this statement is executed,
you will hear a bell sound. (You
may have to turn the volume on
your TV set up slightly.)

CHARACTER DELETE

To delete the character to the
left of the cursor, when you are
in Immediate Mode, you can
press the [Y]. But this key only
works in Immediate Mode. If you
want a character to be deleted
during program execution, use
CHRS$(8) in a PRINT statement.

Example:
10 PRINT *1234"";CHR$(8)

The semi-colon in this statement
causes control character 8 to be
“printed” next to the character
string *1234", After *“1234" has
been printed, the cursor is to the
right of the number 4. Control
character 8 then deletes the
character to the left of the cur-
sor. That character is the
number 4. This happens so fast
that all you ever see printed is
the character string ‘123"

CARRIAGE RETURN

To skip a line and return the cur-
sor to the start of the next line

you can press in Im-

mediate Mode. If you want to

skip a line and return the cursor
DURING PROGRAM EXECU-
TION, use CHR$(10) or CHR$(13)
in a PRINT statement.

The differences between
CHR$(13) and CHR$(10) are:

e CHR$(13) MUST be used in its
own PRINT statement. It
causes only ONE carriage
return to occur each time it is
used.

Example:

PRINT CHR$(13) —
One carriage return occurs.

PRINT CHR$(13);CHR$(13) —
Still only one carriage return
oceurs.

e CHR$(10) may be used in the
same PRINT statement with
constants and variables. It can
be used more than once in the
same statement, to cause
multiple carriage returns. If it is
used BEFORE a constant or
variable in the same PRINT
statement, the carriage return

occurs before the constant or
variable is printed.

Example:

PRINT ‘“‘Hello’’;CHR$(10) —
Hello is printed, then carriage
return occurs.

or:

PRINT CHR$(10);CHR$(10) —
Three carriage returns occur.
(Three? That'’s right. An extra
carriage return occurs when
two or more CHR$(10) control
functions are used in succes-
sion in a PRINT statement.)

or;
PRINT CHR$(10);*‘Hello"” —

Carriage return, then Hello is
printed at start of next line.

OTHER HANDY

FUNCTIONS

FRE(X) — THE MEMORY
MINDER

Aguarius™ provides you with
1781 BYTES of memory to work
with (1731 bytes for program
statements and numeric values,
plus 50 bytes for string data).
Each letter, number, special
graphic character, space and
punctuation mark you type
equals 1 byte of memory. If you
write a very long program, it is
possible to run out of memory
(and get the OM Error
Message)..especially if you make
much use of array variables.

You can find out how many
bytes of memory you still have
available by using the FRE(X)
function in a PRINT statement.
You can use FRE(X) in either Im-
mediate or Programmed Mode.
The argument (the value in
parentheses) for this function is
called a DUMMY ARGUMENT,

'CHAPTER 10

which means it can be any
number or letter as long as you
do not enclose the argument in
quotation marks. For example:

PRINT FRE(X)
When you press [RTN |,

Aquarius prints the number of un-

used bytes of memory available
to you. ‘

NOT:

PRINT FRE(*‘Bytes'") or
PRINT FRE(*‘B")

This will return the number of
unused bytes available for string
data in Immediate Mode.

LEFT$, MID$ AND RIGHT$ —
MANIPULATING STRINGS

We have seen that it is possible
to store an entire string of char-
acters under one string variable
name. For example: NA$ =
“My name is Aquarius.”

If you tell Aquarius to PRINT
NAS, it will print, ““My name is
Aquarius.” Fine! But Aquarius

can do more with a string of characters than print the entire string. You
can tell Aquarius to print any part of a character string, starting from
the left, the right or the middle of the string. To do this, use the LEFTS,
MID$ and RIGHT$ functions in a PRINT statement.

10 A$ = “‘AQUARIUS" You give A$ the value
“AQUARIUS".

20 PRINT A$ Aquarius prints “AQUARIUS"".

30 PRINT LEFT$(AS,4) Aquarius prints “AQUA".
40 PRINT MID$(AS,3,4) Aquarius prints “UARI".

50 PRINT RIGHT$(A$,4) Aquarius prints “RIUS”.

The arguments of LEFT$, and RIGHT$ contain two elements. The first
element is the NAME OF THE STRING VARIABLE being printed. The
second element is the NUMBER OF CHARACTERS to be printed. With
LEFT$ Aquarius starts at the left end of the string and prints the
number of characters specified. With RIGHT$, Aquarius starts at the
right end of the string and prints the number of characters specified.

The argument of MID$ has three elements. The first element is the
name of the string variable. The second element is the string character
at which Aquarius is to begin printing. The third element tells the
number of characters to print.

@) COMPUTER TALK
|]

ARGUMENT. The value on which
a function operates to return
another value. CHR$(11) — 11
is the argument of the CHR$
function.

DUMMY ARGUMENT. An argu-
ment that can be any number
or letter. FRE(X) uses a
dummy argument. So does the
RND function.

FUNCTION. A built-in “‘mini-
program’’ that returns a single
value that you can use in a
program command or state-
ment.

INTEGER. A whole number.
RANDOM NUMBER. A number

selected at random from a
range of numbers.

N -d CONTROL
4l SHORTCUTS

CHRS..[CTL | [s7ce]
LEFTS..[CTL H V]
MID$..[CTL [B
RIGHTS..[CTL N

o
-
o
LL
e
o
<
L=
o

NOTES

In Chapter 5 we explored a program that set up a simple digital clock.
In this, our final chapter, we will examine a more sophisticated version
of the same program. As you enter each line of the program, read the
accompanying explanation, so you understand why the program does
what it does. When you are finished, RUN your digital clock and take a
few minutes to admire your own handiwork. You see, you are no longer
“D'GlTAL a beginner .. and it wasn't so hard, was it? If you have a cassette
recorder hooked up to your Aquarius™ computer, make sure you save

CLOC K” i this program. Now, let’s get started.

CHAPTER 11

PROGRAM EXPLANATION
10 REM--INPUT DATA Use REMARK statements to note
what each section of your pro- |
gram does. LRl L
e
20 ? CHR$(11) Clear the screen. o
30 ? **Enter HOUR (1-12):” /nput data for beginning hour N
(BH). : f
F ".
35 INPUT BH |
40 |IF BH > 12 THEN ? CHR$(7): Note: CHR$(7) creates a bell o ‘
GOTO 30 sound. Ll
-
| o
50 ? “‘Enter MINUTES (0-59):" Input data for beginning minutes <
(BM). s
O

CONTINUED ON NEXT PAGE

55 INPUT BM

60 IF BM > 59 THEN ? CHR$(7):
GOTO 50

70 FH=BH:FM=BM

75 7 CHR$(11)
77 POKE 12369, 32
80 GOTO 400

100 REM--PRINT DISPLAY

110 T = 11*%40+17

125 CH=12328 + T

130 POKE CH,84: POKE CH+2,73:

POKE CH+4,77: POKE CH
+6,69

CONTINUED ON NEXT PAGE

FH is the first hour in the loop.
FM is the first minute. When the
clock starts, the first hour and
the beginning hour are the
same...as are the first minutes
and the beginning minutes.

Erase the cursor, by poking a
blank into that screen position.
Branch to subroutine that pokes
screen color and clock face.

This section prints the hour and
minute display, using data input
in previous section.

Sets TAB position for start of
TIME display on line 11.

Calculate starting position for
TIME display on Character RAM
Matrix.

POKE letters T,I,M,E into posi-
tions on Character RAM Matrix.
NOTE: Do not press until
entire line 130 has been typed.

140 ND=CH+ 80

150 POKE ND+2,58:POKE ND+ 5,58

151 GOTO 200

152 REM--TIME DELAY LOOP

155 FOR P=0 TO 430:NEXT P
160 RETURN
200 REM--INCREMENT

210 FOR H=FH T0 12
211 FH=1

212 H$=STR$(H)

CONTINUED ON NEXT PAGE

Calculate starting position for

-hour & minute display, 2 lines

below TIME display.

POKE colons (:) for hour and
minute display.

Branch to program section that
increments seconds, minutes
and hours.

Line 155 sets up a one-second
time delay loop (approximately).

Return to line 245.

This section increments seconds,
minutes and hours.

First loop sets value for hour.

Reset the first hour to 1 after it
passes 12.

Use the STR$ function to change
the NUMERICAL variable H into

a STRING variable H$ that can

be manipulated by string func-
tions MID$ & RIGHTS.

[] CHAPTER 11

214 T$(0)=MID$(H$,2,1)

216 IF H < 10 THEN T$(0)=""0"
218 T$(1)=RIGHT$(HS, 1)

220 FOR M=FM TO 59

221 FM = 0
222 M$ = STR$(M)

224 T$(2) = MID$(M$,2,1)

CONTINUED ON NEXT PAGE

Aquarius prints all numbers with
a leading blank. Use the MID$
function to tell Aquarius to ignore
the leading blank and regard the
second digit of the string as the
first digit of the hour. This digit is
stored as T$(0) — the first ele-
ment in string array T$.

If the hour is a 1-digit number,
you want a leading zero printed.
(Ex: 07). Line 216 restores the
leading zero for 1-digit numbers.

Use the RIGHT$ function to get
the right digit of the hour and
store it as T$(1). This is the sec-
ond element of array T$.

The second loop, line 220 to 228,
repeats the above process for
minutes.

Resets the minutes to O after
they pass 59.

Put first digit of minutes into a
string.

Tell Aquarius to ignore leading
blank and regard second digit of
string as first digit of minutes.

226 IF M < 10 THEN T$(2)=""0’
228 T$(3) = RIGHTS(MS,1)

230 FOR S=0 TO 59

231 IF S/5 = INT(S/5) THEN
SOUND (50,50)

232 S$=STRY(S)

233 T$(4) = MID$(S$,2,1)
234 IF S < 10 THEN T$(4)=""0"
235 T$(5)=RIGHT$(SS, 1)

236 FOR Q=0 TO 5: T(Q)=VAL
(T$(Q)) + 48: NEXT Q

CONTINUED ON NEXT PAGE

Create leading zero for 1-digit
numbers.

Put second digit of minutes into
a string.

Third loop increments seconds.

Create a tone to be heard every
5 seconds (whenever S is an

_ even multiple of 5).

Put first digit of seconds into a
string.

Create leading zero for 1-digit
numbers.

Put second digit of seconds into
a string.

This loop changes string values
of T$ array elements back into
numerical values, then adds 48
to convert those numerical
values to character codes that
can be POKED into screen posi-
tions. Character codes are stored
as elements in numerical array T.
NOTE: Do not press until
entire line 236 has been typed.

F
F
oc
L
-
o
<
e
&

237 POKE ND,T(0): POKE ND+1,T(1):
POKE ND+3,T(2):POKE ND+4,
T(3)

238 POKE ND+6,T(4):POKE ND+7,
T(5)

240 GOSUB 152

245 NEXT S

250 NEXT M

260 NEXT H

300 REM--REPEAT 12 HOUR LOOP

310 GOTO 200
400 REM--COLORIZE

410 CA=12328+1024

420 FOR |=CA TO CA+959:POKE
|,83: NEXT |

CONTINUED ON NEXT PAGE

POKE character codes for hours,
minutes and seconds into screen
positions, skipping colons. Do not
press until entire num-
bered line has been typed.

Branch to time delay loop.

Signal next repetition of seconds
loop.

Signal next repetition of minutes
loop.

Signal next repetition of hours
loop.

12 hours have now been
counted. Start over again.

This section adds color and a
“clock face’’ to the screen.

Calculate starting position on
Color RAM Matrix.

Loop calculates all positions on
the screen, then pokes violet
foreground and yellow back-
ground colors into all positions.

430
440

450

460

470

480

490
495

DIM X(11), Y(11)

DATA 20,0,25,2,29,6,31,11,29,
17,25,21
DATA 20,22,14,21,10,17,9,11,

10,6,14,2
FOR ZZ=0 TO 11

READ X(22), Y(Z2)

POKE 13352 + X(ZZ) + Y(ZZ)*
40,1

NEXT ZZ
GOTO 100

Set the dimensions of two
numerical arrays, X and Y.
Values of the elements in these
arrays are X and Y (column &
row) coordinates for “‘clock
face’’ squares.

Loop sets 12 subscript values for
X and Y array elements.

Aquarius reads a value for X and
a value for Y out of the DATA
Statements, each time it loops

- through this statement. A total of

12 values each is stored for X
and Y. Each value is stored as a
separate element of array X or
array Y.

POKES a red square into each
position calculated by the X and
Y coordinates.

Signals next repetition of loop.

Go back to line 100 and continue
program.

When you have entered this pro-
gram, LIST it and double-check
for any “‘typing" errors. If you
find any, correct them by re-
typing the line in which they ap-
pear. When you have carefully
checked your program, RUN it. If
your clock seems to be a little
slow or fast, go back and adjust
the number 430 in line 155. This
is your ‘‘seconds’’ counter.

Congratulations! You have just
entered your first major program.

o

-
b e
m-’.
-
o,
<L
i
O

INTRODUCTION
TO
REFERENCE
SECTION

WHAT HAVE |
BOUGHT?

You've bought a computer — a
machine that manipulates
numbers at super high speeds.
That is ALL a computer does, but
because it does this job so fast,
it can be used to get many other
jobs done. It can:

® Receive DATA (facts that you
provide).

e Store data.

e Give out data that has been
stored.

e Receive and store instructions.

e Carry out instructions (provided
it is connected to another
machine capable of doing the job
we request. For example, a com-
puter can print a program only if
it is hooked up to a printer.

But a computer cannot do much
by itself. It needs ‘‘helpers” to
take in or give out data. Helpers

"that take in data are called IN-

PUT DEVICES. Helpers that take
data out from the computer are
called OUTPUT DEVICES. The

keyboard on your computer is an
input device. The TV screen or a
printer are output devices.

THE MEMORY

MACHINE

A computer is useful because it
is fast. It is also useful because it
REMEMBERS. This is another
way of saying that it “‘stores
data”. A computer stores data in
the form of minute electrical
charges. The amount of space
required to store those charges
is not great, but sooner or later,
any computer will run out of stor-
age space. The point at which
this happens depends on how
much memory space it has in
the first place. Your Aquarius™
computer has 4K (or 4096)
BYTES of RAM. A byte equals
the amount of memory space
needed to store one character or
space that you type.

Some of the memory in your
Aguarius™ computer is needed

'REFERENCE

Lo

m—— e

16 run the computer and to inter-
pret your BASIC language in-
structions into the machine
language that Aquarius
understands. The amount that is
|eft after these jobs are done is
1781 bytes of RAM.

Earlier we defined a computer as
a machine that works with
numbers. Actually, numbers are
the only things that a computer
really understands ... and only
two numbers at that, O and 1. A
limited vocabulary, you might
say, but it's quite sufficient for a
computer.

Remember that data is stored in
a computer's memory in the
form of tiny electrical charges.
An electrical charge is either
there or it's not there. It's on or
it's off. The command for ON is
the number 1. The command for
OFF is 0. So when data is
stored, it is stored in strings of
ones and zeroes, like this:

01010001110000101010100010101
11011011100100100011111101011
11110100010110110111100010101
01011101110000101110000011110
01111100010101100110011110010
01100011101010101110111010110
01111100001101010101011111010

This is MACHINE LANGUAGE,
the language which our machine,
the computer, speaks. If the
computer is to understand the in-
structions we give it, those in-
structions must be given in
machine language. Unfortunately,
machine language is extremely
tedious for human beings to Use.
So our computer has a puilt-in
INTERPRETER, that “translates’
our programs into machine
language.

But still, why BASIC? If Aquarius™
contains a built-in interpreter,
why can't we write our com-
mands in English? The answer
lies again in the very nature of
computers. Computers do EX-
ACTLY what we tell them 10 do
. and English is not an exact

language. Many English words
have more than one meaning.
For example, what does the word
PLAIN mean? Or BEAR? We use
special languages to speak to
computers, SO that we can give
exact commands. There are
many computer languages and
BASIC is just one of them. The
name BASIC stands for
Beginner’s All-purpose Symbolic
Instruction Code. But more im-
portant, BASIC stands for easy
programming.

In the following Reference Sec-
tion, you can become familiar
with the entire BASIC vocabulary
built into your Aguarius com-
puter. Some of the keywords in
this section have been explained
in earlier chapters of the book.
Others you may meet here for
the first time. The purpose of this
section is to give you a brief
description of the use and func-
tion of each BASIC keyword. It is
a “refresher course”, @ handy
guide that you can refer to when-
ever you encounter a term you
are unsure of.

KEYWORDS PAGE | FUNCTIONS PAGE j§
CEEAR netenne i meini) RI0 | ABS. .. Gateoianhotal = WS
AQUARIUS QUEAD . . Ri1 || SO C L Ra2 | ASke
CENT . . rotins . st b R12 | CHR$........... .. .%u. . R2 | FYe
COPY ... oo Bigull '6os . L s R4z | B0
GSAVE o RA4 T EXE et o 1 G et 1 R43 ﬂi :
REFERENCE DETAT o e S (B EEE . SHE enhi hettes R44 | Im
B e s Ri7 | INKEYE: e R44 | fm]
SECTION EpjmeaEs 1 IO DYE REARIESEIESRB AR Crayvl S 3 R45 | et
FORINEXT B2z | I LEFpE At v Dand Ll o R46 :
Th'S Sect|on deSCrIbeS GOSUB .' R23 LEN R46 A
BONO .. oo e Roa L IBGBGL . - R47
all the BASIC [REEN s e s v Re5 || B e R47
keywords and 'Lf\é';UT ------------------ R26 EcEmErth ------------------ gjg
AP OerPP | LT . o7 | ROTNGMES o Al AZas
functions you need for [T SSSSSERR R B | LBl e RS0
writing and executing tHRSIL.T ggg S}?DHW ----------------- Eg?
programs on Aquarius. [l I A B8 | SElERlin el A R52
@il . Meibd GiUseve) oD | ET e R52
BOIRE: ol oo el | &R6 . R53
ERESETOUU0e%R MEned o Ree | @R .. R53
BRINT. oo o Bas o} SIRS. i R54
REEMaun et AOTE. & puniing Rez | TAB. R54
BERD. EETIR O R55
BEMttenest. v, s & B8 | WUSR R56
BESTORE . .« Bee | vaL. R56
BEMUBNL. .o s ittt i R38
BN, B RO 10N Reo W RETYEEo R7
SOUND, o B89 | STPLST. 0o R27
CioP! BIED DI ETgo S R40

] e

SR

“WHAT TO USE”

INDEX

If you know what you want
Aquarius to do, but you can't
recall the BASIC keyword or
function you need, check this
Index:

LISTING, SAVING,
LOADING AND

RUNNING
PROGRAMS

TO DO THIS...

e List program on screen

e List program on printer

e Copy screen display on printer

e Record program on cassette

e Record array on cassette

e Copy program from cassette to memory
e Copy array from cassette to memory
e Verify copy program match

e Run (execute) program

e Stop program execution (can continue)
e Continue a STOP-interrupted program
e End a program run (optional)

e Reset variables to zero or blank

e Erase program and data from memory

e Stop LIST display

USE
LIST
LLIST
COPY
CSAVE
CSAVE*
CLOAD
CLOAD*
CLOAD?
RUN
STOP
CONT
END
CLEAR
NEW
CTL &

. STPLST

SEE PAGE
R27
R28
R13
R14
R14
R11
R11
R11
R39
R40
R12
R21
R10
R28

R27

CONTROLLING

PROGRAM
EXECUTION
SEQUENCE

TO DO THIS...
e Branch to specified lire
e Compute branch to specified line

e Conditional branch to specified line, or
other operation (e.g., PRINT)

e Branch to specified subroutine line
e Compute branch to specified subroutine

e After subroutine execution, branch to the
statement following GOSUB

e Repeat enclosed statements specified
number of times

e Specify FOR-NEXT increment, if other
than +1

e Branch to user-created machine language
subroutine

USE
GOTO
ON...GOTO
IF..THEN

GOSuUB
ON...GOSUB

RETURN

FOR-NEXT

STEP

USR

SEE PAGE
R24
R29
R25

R23
R29
R38

R22
R22

R55

 REFERENCE

'SECTION

USING DATA AND |

VARIABLES"

TO DO THIS...

e Print data inside quotation marks;fprint
following variable(s); skip a line

e Enter data during a program run; print
data inside quotation marks

e Assign a keystroke character to a string
variable

e Set variable values (optional)

e |nclude data items in program

e Read DATA statement items into memory
e Set maximum size of an array

e Return to first item in DATA block

e Print program comments in LIST or LLIST
display (can be branch destination)

USE
PRINT

INPUT
INKEY$

LET |
DATA
READ
DIM
RESTORE
REM

e

SEE PAGE
R33

R26

R44

R27
R15
R34
R17
R36
R35

TO DO THIS... USE . SEE PAGE
e Display following data; skip a line ' V-'--"PIIRI'NT s R33

e Send output to line printer LPRINT R28

e Set cursor position (horizontal) TAB R54

e Display cursor position (horizontal) POS R50

e |nsert specified number of blanks SPC R53

e Repeat line (before RTN) CTL &

RETYPE
TO DO THIS... USE SEE PAGE
CL(,)SLIg g Eﬁ é Fgg)llcj: ﬁ’D e |ndicate if specified graphic square is set POINT R49

e Put values in a specified memory location = POKE R31

to display special characters and colors

e “Turn off” specified graphics block PRESET R32

e “Turn on’’ specified graphics block PSET R32

e Sound tone, specify pitch & duration SOUND R39

Z
Z v i
m‘ﬁ
)
m 5

3 USING CHARACTER
STRINGS

7O DO THIS...

e Get character code for the first character
in a string

e Get character with specified code
e Get number of characters in a string
e Read a keystroke

e Select specified number of characters
starting from left end of a string

e Select specified number of characters
in middle of a string

e Select specified number of characters
starting from right end of a string

e Convert a numeric expression into a string
e Get numeric values in a string
e Clear all variables. Reset numeric

variables to zero. Erase contents of string
variables

USE
ASC

CHR$
LEN
INKEY$
LEFT$

MID$
RIGHTS

STR$
VAL

CLEAR

SEE PAGE
R42

R42
R46
R43
R46

R47

R50

R54
R56

R10

USING
MATHEMATICAL
AND

TRIGONOMETRIC
FUNCTIONS

TO DO THIS... gizirrngs

""""

e Get absolute value of specified number

e Get cosine (in radians) of the specified
angle

e Get the constant E (2.71827) raised to the
specified power

e Get number of unused bytes in RAM

e Convert the specified number to an
integer (rounded down)

e Get the “natural log" E logarithm of the
specified number

e Show contents of specified memory
address

e Generate a random number

e Test sign of specified number and indicate
ifitis +, — or0

e Get the sine value (in radians) of specified
angle

e Get the square root value of specified
number

e Get the tangent of specified angle
(in radians)

USE

ABS

COS

EXP

FRE
INT

LOG

PEEK

RND
SGN

SIN

SQR

TAN

SEE PAGE
R41

R43

R43

R44

R45

Ra7

R48

R51

R52

R52

R53

R55

L
Ox
<
LLJ
LL
L
o

f oot

Ri0N "

KEYWORDS

Clears all variables previously ex-

ecuted, resetting numeric vari-
ables to zero and erasing the
contents of string variables. To
erase variables and change
string buffer capacity, use
CLEAR with a numeric argument
(e.g., CLEAR(100) clears
variables and sets string buffer
for 100 characters).

Example:

10
20
30
40
50
60
70
80

90

A=55

B$=""TEST STRING"
PRINT “‘BEFORE, A ="";A
PRINT ““AND B$ IS: "";B$
CLEAR

C=66

PRINT *“*AFTER, A ="";A
PRINT **B$ IS: "’;B$
PRINT ““AND C ="";C

SEE ALSO: RUN

Output:

BEFORE, A = 55

AND B$ IS: TEST STRING
AFTER, A = 0

B$ IS:

AND C = 66

CLOAD
CLOAD?

CLOAD *

CASSETTE LOAD (CLOAD)
copies a program from cassette
to memory. THE NEWLY
LOADED PROGRAM ERASES
ANY PROGRAM OR DATA CUR-
RENTLY IN MEMORY. To identify
the program you wish to load,
write its name in quote marks
following the command. If the
program is not identified,
Aquarius will load the first pro-
gram it encounters on the
cassette. '

Program names, because they
are written in quotes, are treated

as string literals. Aquarius recog-

nizes names that can have from
1 to 6 letters, numbers and/or
special characters (such as * or
+). CONTINUED 1st COLUMN NEXT PAGE

NOTE: BE SURE CASSETTE PLAYER IS PROPERLY CONNECTED TO'
AQUARIUS — DETAILS ON PAGE INTRO 7.

PROGRAM LOAD PROCEDURE

1. Type CLOAD and program
name. Example: CLOAD

“progrm’’ (max. 6. letters)
Press

2. Follow directions on screen

® Press button on
cassette player unit

® Press

3. Aquarius searches cassette
for specified program and reports

“Skip”” when other programs are
encountered. When called pro-

gram is located, displays ‘‘Found’'.

The cassette recorder does not
stop when “*Skip’’ is displayed.

You must press [RTN |. If you
don't press quickly
enough, you may miss reading the
load point for the next program on

tape. Simply back up to the load
point and press m

4. “Ok” means program is loaded

ARRAY LOAD PROCEDURE

1. In Immediate Mode, dimension
array. Example: DIM ar(100)

Press

2. Enter CLOAD* command with
array name.
Example: CLOAD* ar

Press

3. Press (PLAY) on recorder
and follow directions on screen

4. When array is located, “Ok”
is displayed (no other messages)

NOTE: When loading programs,
identifying name is optional.
When loading arrays, names (not
in quotes) are required.

CASSETTE LOAD VERIFY

(CLOAD?) verifies that the pro-
gram loaded into memory is an
exact duplicate of the cassette

copy.

- CASSETTE LOAD ARRAY
(CLOAD *) transfers an array
from cassette to memory. The
array must be dimensioned
before it can be loaded. Array

names are not enclosed in quota-

tion marks. CLOAD* does not

verify the accuracy of the array
load operation. You will need to
do that by running the program.

The CLOAD* command must be
followed by the array name used
in the program.

LOAD VERIFICATION
PROCEDURE

After program is loaded, you can
have Aquarius check its work
and re-read the tape, comparing
it with the copy in memory.

1. Rewind cassette to load point.

2. Type CLOAD? “‘program name'

3. If the two versions are identical
Aquarius repeats the ‘Ok’ prompt;
if there is any difference, it shows
the message, ‘‘Bad’’.

LOAD AND VERIFY
COMMANDS: (Immediate Mode)

CLOAD...load 1st program
encountered

CLOAD?...read 1st program en-
countered and verify if it
matches program in memory

CLOAD “‘progrm'’...search
cassette for “‘progrm’’ and load it
into memory

CLOAD? “‘progrm’...search for
“progrm’’ and verify if it matches
version in memory

CLOAD* array name...load iden-
tified array into memory

SEE ALSO: CSAVE, CSAVE *

CONTINUE is used only in Im-
mediate Mode (no line number).
This command restarts the ex-
ecution of a program that has
been halted by a STOP state-
ment. Program execution
resumes at the first statement
following STOP.

NOTE: CONT will not work if pro-
gram break occurred during ex-
ecution of a loop.

During the break, it is possible to
PRINT and reset variables in Im-
mediate Mode before CONTinu-
ing. Note, however, that the pro-
gram will not continue if any er-
rors are made in Immediate
Mode during the break. In the
following example, if you were to
type in the misspelled command
‘PRUNT A’ during one of the
breaks, you would get a CN Error
Message when you attempted to
CONTinue execution.

SEE ALSO: GOTO, STOP

Example:
10FA="1:B=2:C=3

20 PRINT A;*“...I'M RUNNING"’
30 STOP

40 PRINT B;'*...AS FAST"

50 STOP

60 PRINT C;""...AS | CAN!"

Output:

1...I'M RUNNING
Break in 30

Ok

CONT (RTN)
2...AS FAST
Break in 50

Ok

CONT (RTN)
3...AS | CAN!

Ok

COPY writes the contents of the
current TV screen display on the
line printer. Carriage return, form
feed and special non-keyboard
characters are not sent to the
printer.

Al

CASSETTE SAVE (CSAVE) copies
a program in memory to a
cassette. The command must be
followed by the program name
enclosed in quotation marks. This
name flags the cassette copy of
the program, and allows
Aquarius to identify the program
when you want to CLOAD it.

Program names are treated as
string literals. Aquarius recog-
nizes as many as 6 characters
and/or numbers to identify each
program. NOTE: To verify a
CSAVE operation, use CLOAD?
(see page R-11).

- CASSETTE SAVE ARRAY
(CSAVE*) transfers an array in
memory to an cassette. The

command must be followed by the variable which identifies the array in

the program.

NOTE: BE SURE CASSETTE PLAYER IS PROPERLY CONNECTED TO
AQUARIUS — DETAILS ON PAGE INTRO 7.

PROGRAM SAVE PROCEDURE

1. Type CSAVE and program
name. Example: CSAVE
“progrm”

Press

2. Follow directions on screen

® Press and RECORD

on cassette player unit

e Press

3. “Ok’" means program is saved

STOP CASSETTE

ARRAY SAVE PROCEDURE

1. Type CSAVE* and variable -

name. Example: CSAVE* AR

Press

2. Follow directions on screen
e Press (PLAY) and RECORD
on cassette player unit

e Press

3. “Ok’" means array is saved

STOP CASSETTE

SAVE VERIFICATION
PROCEDURE

After program is saved, you can
have Aquarius check its work
and re-read the tape, comparing
it with the copy in memory.

1. Rewind cassette to load point

2. Type CLOAD? “‘program
name’’

3. If the two versions are identi-
cal Aquarius repeats the ‘Ok’
prompt; if there is any difference,
it shows the message, ‘‘Bad’’.

SAVE AND VERIFY
COMMANDS: (Immediate Mode)

CSAVE “‘progrm’’...copy program
in memory on cassette, under its
name (Example: “‘progrm’’)-

CLOAD? “‘progrm’...verify that
both versions of ‘progrm’’ are
identical (IMPORTANT: BE SURE
TO INCLUDE QUESTION MARK,
OR YOU WILL RELOAD THE
PROGRAM AND LOSE THE VER-
SION IN MEMORY!)

CSAVE* array name...load iden-
tified array into memory

SEE ALSO: CLOAD, CLOAD?,
CLOAD*

DATA statements are used to
store numeric and/or string con-
stants in a program. They must
always have an associated READ
statement to access these data.

DATA statements contain
specific data items to be READ
by Aguarius in their line number
sequence. Each data item is
separated from the others by
commas. The limit on data items
in one DATA statement is the
maximum length of the line (72
characters, including the line

number, ‘DATA’, and ¢
separators).

String data must be enclosed in *
quotation marks only when they
contain commas, colons, or lead-
ing or trailing blanks. Otherwise,
quotation marks are optional.
String data may not contain
guotation marks.

A RESTORE statement can be
used to change the pointer to the
first (or another specified) DATA
statement. Example on next

page.

Example:
10 PRINT ‘WHO’S ON THE MONEY?"’
20 FOR X=1T0 10

30 READ DES$, NA$

40 PRINT DES;** BILL IS: **;NA$
50 NEXT X

60 DATA $1,WASHINGTON,$2,
JEFFERSON

70 DATA $5,LINCOLN,$10,HAMILTON,
$20,JACKSON

80 DATA $50,GRANT,$100,FRANKLIN,
$500,McKINLEY

90 DATA $1000,CLEVELAND,$10000,
CHASE

SEE ALSO: READ, RESTORE

Comments:

20: Indicate the number of DATA
items, if more than one.

30: READ statement must in-
clude variable names to identify
data item categories (in this
case, DE$ = denomination,

NA$ = name).

The DIMENSION statement is
used to specify the maximum
number of elements in a numeric
or string array, and to reserve
memory space for the array.

The DIMension is set by writing
the array variable name and size
(in parentheses) after the DIM
statement.

For example, DIM AR(15) allows
the array variable ‘AR’ to contain
the 16 numeric elements from
AR(0) to AR(15).

Example:

10 DIM AR(15)

20 FOR X=01o 15
30 AR(X)=X

40 PRINT AR(X);

50 NEXT X

Comments:

10: Specifies 16 numeric ele-
ments in a single-dimensioned
array

30: As index variable X in-
creases, its value becomes the
array subscript, as X=0, X=1,
etc.

Output is a list of all array
elements

~ REFERENCE

A string array can be DIM-
ensioned simply by giving it a
string variable name. A conven-
ient way to create string arrays
is through the use of READ and
DATA statements:

Example:
10 DIM AR$(7)

20 FORR=0TO 7
30 READ AR$(R)

40 NEXT R

50 PRINT ‘MY NAME IS ';
60 FbR P=0TO 7

70 PRINT AR$(P);

80 NEXT P
90 DATA A,Q,U,AR,U,S

Comments:

10: Specifies 8 string elements in
a single-dimensioned array

30: The ‘“‘read loop’’ R loads 8
character elements in AR$

70: The “‘print loop’’ P prints the
8 elements AR$(0) to AR$(7)

To display array values one at a
time, use Immediate Mode to
PRINT AR$(0), PRINT AR$(1), etc.

Arrays can also have two dimen-
sions. The DIM statement must
reserve memory space for both:

Exahple:
10 DIM A$(5,1)

20 A$(0,0)="1960"":A$(0,1)=
*“KENNEDY"’

30 A$(1,0)=""1964"":A$(1,1)=
“JOHNSON™’

40 A$(2,0)="1968"":A$(2,1)=
“NIXON*’

50 A$(3,0)="1972":A$(3,1) =

“NIXON/FORD’’

60 A$(4,0)=""1976"":A$(4,1)=
““‘CARTER”

70 A$(5,0)="1980"":A$(5,1)=
“‘REAGAN’’

80 PRINT ““AMERICAN PRESIDENTS
SINCE "’;A$(0,0)

90 PRINT ““AND THEIR ELECTION

YEARS":PRINT

Comments:

10: Two dimensions are reserved
(DIM numbers always start at 0,
not 1), the 1st with 6 elements,
the 2nd with 2 elements

20-70: Array values for every
String element

Ll
O
<
L
.
L,
LL
L
oc

oo IoN

100 FOR X=0TO 5

110 PRINT A$(X,0); TAB(8)AS(X, 1)
120 PRINT
130 NEXT X

100: The FOR-NEXT index
counter uses 1st dimension’s
values (0-5)

The END statement terminates
program execution. Its use is op-
tional, since Aquarius ends the
program when there are no more
statements to be executed. END
does not necessarily have to ap-
pear in the highest-numbered
program line. It can be a branch-
ing statement destination. Or it
can be inserted, as in the exam-
ple, to prevent continuous execu-
tion when all program steps are
completed.

After being ENDed, the program
can be re-executed with RUN,
not CONT.

Example:

10 PRINT ““WHO’S ON THE MONEY?"’

20 FOR QU=1 to 10

" 30 READ DES$, NA$

40 PRINT DES,‘*---"";

50 INPUT AN$

60 IF AN$=NA$ goto 130

70 PRINT ““WRONG. IT'S '";NA$
80 WR=WR+1

90 NEXT QU

100 PRINT ““YOU SCORED'’;100
*RI/(Rl+WR);

110 PRINT ** PER CENT"’

120 END

130 RI=RI+1

140 PRINT “‘RIGHT!™

150 GOTO 90

160 DATA $1,WASHINGTON,$2,
JEFFERSON,$5, LINCOLN,$10,
HAMILTON

170 DATA $20,JACKSON, $50,
GRANT,$100,FRANKLIN,$500,
MCKINLEY

180 DATA $1000,CLEVELAND,
$10000,CHASE

Variables:

QU = question number

DE$ = denomination (in DATA)
NA$ = name (in DATA)

AN$ = user’s answer

WR' = number of wrong
answers

Rl = number of right answers

.

oz
W= -
o =
wo
L Ll
wo
e

FOR...NEXT is a two-part state-
ment which repeats enclosed
program steps a specified

number of times. The FOR state-

ment contains the starting value,
‘TO’ the ending value and incre-
ment (default is 1). If the incre-
ment is other than 1 or if values
decrement, a STEP clause is re-
quired. Starting and ending
values can be numeric variables
and/or expressions (FOR Z=T
TO T*4).

The NEXT statement branches
Aquarius back to its associated
FOR, until all specified loops
have been executed. FOR and
NEXT statements are related to
each other by assignment of the
same numeric “index’’ variable.

Examples:

(To repeat functions)
10 FOR X=1 TO 912
20 PRINT ““*="";

30 NEXT X

(To use index variable increment
values)

10 FOR X=14 TO 255

20 PRINT CHR$(X);*" '

30 NEXT X

(To add time-delay cycles)

10 FOR X=14 TO 255

12 FOR T=0 TO 200 STEP 2
14 NEXT T

20 PRINT CHR$(X);"* '

30 NEXT X

Comments:

This loop fills the screen with the
equal sign character by repeating
it 912 times (38 columns by 24
rows)

This loop uses the incrementing
value of index variable ‘X’ for
character codes 14-255

Same output as previous exam-
ple, but now Aquarius counts the
even numbers from O to 200
before printing each character.

GOSUB, like GOTO, is an uncon-
ditional branch. The first line
number of the subroutine must
follow GOSUB. The subroutine is
terminated with a RETURN state-
ment, which gives program con-
trol to the first statement follow-
ing the GOSUB. Multiple
RETURN statements with condi-
tions (for example, IF A > B
THEN RETURN) can be used in
a subroutine to transfer control
back to the relevant GOSUB.

A subroutine can be called any
number of times in a program,
and may be called from another
subroutine.

CONTINUED NEXT PAGE

Example:

10 GOTO 60

20 REM DISPLAY CHARACTER
SUBR.

30 PRINT CHR$(A)

40 PRINT

50 RETURN

60 PRINT ““ENTER A NUMBER
FROM'";

70 INPUT ** 0 TO 255: ;A

80 PRINT ““THIS IS THE
CHARACTER: "*;

90 GOSUB 20
100 GOTO 60

SEE ALSO: RETURN, ON...
GOSUB

istart of sub-
‘A’ is input
3

20: Labels subrouting’ start

routine until varig

50: Returns control to main
program

90: Branch to subroutine

100: Unconditional branch to do
another input.

L
=
Ll
oc
L
LL
Ll
oc

Although subroutines may appear
anywhere in a program, it is a
good practice to separate them
in different line number groups
and to identify each one with a
REM statement.

To prevent unintended execution
of a subroutine, it is a good idea
to precede it with a STOP, END
or GOTO statement so that the
only access is controlled by a
GOSUB.

GOTO (or GO TO) is used to
branch to any specified program
line unconditionally. It can also
be used to re-start the program
after a STOP, END, or

[CTL }{ C] termination.

Example:

10
20
30
40
50
60
70
80
90

GOTO 60

PRINT “*is’’;

GOTO 80

PRINT “‘branching.”’
END

PRINT *‘This’’;

GOTO 20

PRINT “* unconditional’”;

GOTO 40

SEE ALSO: ON...GOTO

Output:
(Program RUN)

This is unconditional branching

(Immediate Mode: GOTO 80)
unconditional branching

If line 50 is deleted, the program
is in an “‘endless loop’’. Press

[CTL }{ C] to stop it.

IF..THEN

The IF statement specifies a
relational or logical condition and
a THEN clause specifies some
program instruction if the condi-
tion is True. When the IF condi-
tion is False, program control
proceeds to the following
statement.

The second clause of the IF
statement starts with THEN,
which must precede all resulting
operations (optional for GOTO).

Examples of ‘IF’ Conditions

IFA>B

IFA+B<C*3

IF A*xB=C

IF A$ =‘“yes”

Note: String data must be en-

closed in quotes for ‘IF..THEN’
comparisons.

SEE ALSO: ON...GOTO, ON...
GOSuUB

Examples of ‘THEN® . -
Instructions

THEN PRINT “A IS LARGER”
GOTO 100

THEN C=C+ 1

THEN GOSUB éOO

Note: Any BASIC statement may

be used as the result of a True
condition.

L
g
ok
u.ra
Lo

R

INPUT allows the Aquarius user
to enter data while the program
waits. INPUT stops program ex-
ecution until the user types in

data on the keyboard and
presses [RTN J.

Data entered when INPUT is be-
ing executed are assigned to the
variable(s) named in the state-
ment. Optionally, you.may
specify a constant “prompt’ to
tell the user what is being IN-
PUT. Whether you include a
prompt or not, Aquarius auto-
matically displays one or two
question marks (depending on
how many input variables).

When you include a prompting
constant and multiple variables,

the prompt and one question mark are shown for the first input item.

For subsequent variables, only ‘??'
the variables in the INPUT list, fro

is shown. Values are assigned to
m left to right.

If non-numeric characters are input when a numeric variable is ex-
pected, Aquarius displays the REDO FROM START message and waits

for input in the correct form.,

Example:

10 INPUT *'Hi, what's your
name "';N$ 4

20 INPUT **How old are you '*:AG

30 PRINT ‘‘Give me first names of "

40 INPUT '3 friends "'A$,B$,C$
50 INPUT “‘---and their ages *':D,E,F

60 PRINT *‘The average age of ':A$

70 PRINT ““ and "':B$;"* and "’:C$
80 PRINT ** and you, "":N$:*" . is"

90 PRINT (AG+D+E+F)/4; years”

Comment:

10: Prompt and one string
variable

20: Prompt and one numeric
variable

40-50: Multiple variables. (use
comma separators)

60-90: Output using all data
entered

LET is used to assign numeric
values to numeric variables, and
characters to string variables.
String data must be assigned str-
ing variable names; numeric ex-
pressions must be named
numeric variables. The keyword
LET is optional, because
Aquarius understands that an
equal sign means the same
thing.

10 LET A=5 is the same as...
10 A=5

20 LET A$="Yes" is the same
as...20 A$="‘"Yes"

LIST displays the program cur-
rently in memory on the TV
screen. It allows you to list all or
part of the program, one screen
at a time. Press any key except

LCTL |, [SHIFT] or [RST] to ad-
vance one screen.

1. To LIST entire program, use:
LIST

2. To LIST entire program, start-
ing with a specific line number,
add the starting line number
(LIST 80)

3. While LIST is being executed,
you have these options:
1) CANCEL LISTING: Press
and at same time

(2) INTERRUPT LISTING:
Press [CTL] and [STPLST |
at same time

(3) RESUME LISTING AFTER
INTERRUPT: Press [CTL | and
[STPLST] at same time — or

any key except | CTL | (alone),

[[SHIFT] or [RST |

SEE ALSO: LLIST

i

m.
Ly
i
L
LL
L
o

- SECTION

" R28

LLIST writes a listing of the pro-
gram in memory on the printer.

1. To print a listing of entire pro-
gram, use LLIST

2. To print a listing starting after
the first line of the program, use
LLIST followed by the starting
line number; for example,

LLIST 80

3. Unlike the LIST command,
m [C]and [CTL }{S]have
no effect on LLIST. To cancel a
LLIST command, turn the printer
off until the operation is
completed.

SEE ALSO: LIST

LPRINT

LPRINT writes specified data on
the printer. It is used the same
way as the PRINT statement.
Example:

LPRINT A$;B$;CHR$(10)

or 10 LPRINT A$;B$;CHR$(10)

SEE ALSO: PRINT

NEW is used to erase all con-
tents of memory. NOTE: BE
SURE, BEFORE ENTERING THIS
COMMAND, THAT YOU REALLY
WANT TO ERASE ALL PRO-
GRAM LINES AND DATA!
Before starting a completely new
program it's a good idea to use
NEW, to delete possible un-
wanted statements that might not
be replaced by line-to-line re-
writing.

If NEW is used in Programmed
Mode, it will cause the program
to “‘self-destruct”’. In Immediate
Mode, NEW can be useful to
clear out all memory addresses
to test sizes of planned arrays.

In this example, you could quickly determine that arrays A and B re-

quire 584 bytes of memory (1731 minus 1147):

Example:

NEW

PRINT FRE(0)

DIM A(10,10), B(20)
PRINT FRE(0)

SEE ALSO: CLEAR

Output:

NEW

Ok

PRINT FRE(O)

1731

Ok

DIM A(10,10), B(20)
Ok

PRINT FRE(O)

1147

ON is always used as a prefix to

one of the branching statements:

GOSUB or GOTO. It branches
program control to a list of pro-

gram lines or subroutines, select-

ing the destination based on the
value of specified numeric
variables.

The format is: ON expression
GOTO (or GOSUB) DE1,DE2. If
the lower expression is selected,
branch goes to the first destina-
tion (DE1). If the higher expres-
sion is selected, the branch is to
DE2.

See example on next page.

REFERENCE - |2
-~ -SECTION &8

. R29

Example:

10 PRINT**1: CONVERT TO
FAHRENHEIT"’

20 PRINT*'2: CONVERT TO
CELSIUS™

30 PRINT‘3: END PROGRAM NOW™

40 INPUT*'WHAT'S YOUR
CHOICE"";CH

50 IF CH > 2 GOTO 999
60 IF CH < 1 GOTO 10
70 INPUT*'TEMPERATURE IS:"";TE

80 ON CH GOSUB 100,200

90 PRINT:GOTO 10 -

100 REM Subroutine for Fahrenheit

Comment:

80: At this point in the program,
CH equals either 1 or 2. Ifitis 1,
the GOSUB branch is to the 1st
destination in the list (100). If
CH =2, the branch is to the 2nd
destination. There could be as
many destinations as there are
variable value possibilities.

Example: (Cont.)

110 F=(9/5*TE)+32

120 PRINT*‘FAHRENHEIT DEG. ="";F
130 RETURN

200 REM Subroutine for Celsius

210 C=5/9*(TE-32)

220 PRINT'‘CELSIUS DEG. ="";C
230 RETURN

999 END

POKE stores a numeric value in
a specified memory location.
Usually, POKE is used to display
special characters and produce
colors on the screen. To display
the code of a character stored in
a specific location, use PEEK.

POKE is followed by two specifi-
cations: a memory address and a
character code number or value
in the range from O through 255.

SEE ALSO: PEEK

Examples:
(TO PRODUCE COLOR)
10 =1

20 MA=12328+1024

30 FOR X=0:T0'5
40 FOR Y=0TO 23
50 POKE MA+X+Y*40,C

60 NEXT Y,X

(TO DISPLAY CHARACTERS)
10 PRINT CHR$(11)

20 P=12328
30 FOR X=0 TO 255
40 POKE P+X,X

50 NEXT X

BONZP020- 70

Comments:

10: Set color code (red)

20: Set memory address to color
section :

30: X =columns 0-5
40: Y = rows 0-23

50: POKE produces color in left 6
columns

10: First clear screen
20: P = starting address
30: Cycles through character set

40: POKEs addresses from
12328 through 12583

60: Blank line spacing keeps
cursor and prompt from being
superimposed on characters

[11]
O
<
L
oc
10|
LL
L
oc

SECTIO

PRESET

PSET

PRESET erases a graphic block
on the screen that was drawn by
a PSET statement.

PSET and PRESET divide the
screen into a grid consisting of
80 columns and 72 rows. This
graphics grid can be thought of
as being superimposed on the
character grid, which consists of
39 columns and 24 rows. Each
character position is divided into
6 small rectangles — three verti-
cal and 2 horizontal. All of these
smaller graphics blocks can be
independently “set” (with PSET
or erased (with PRESET).

The PRESET statement must be followed by two specifications: the col-
umn location (from 0 to 79), and the row (from 0 to 71).
The POINT statement is used to determine whether a specific block is

set or not set.

Example:

10 PSET (0,0)

20 FOR I=1 TO 500:NEXT |

30 PRESET (0,0)

SEE ALSO: POINT
SEE ALSO: PEEK

Comments:

10: Sets “home position" block
— column 0O, row 0

20: Delay loop allows you to see
block before it's erased.

30: Erases ‘‘home position”
block — column O, row O

PRINT can be used either in Im-
mediate or Programmed Mode.
In Immediate Mode, it is a useful
debugging aid to display the
values of numeric variables and
the contents of string variables

. stored in memory.

In either mode, PRINT displays
following constants and vari-
ables. Each element of the line is
separated by a comma or semi-
colon. Output is on the TV
screen.

Another use for this statement is
to “print"” a blank line; in other
words, to skip a line.

PRINT can be abbreviated with a question mark. Aquanus will show the
entire word when the program is listed. j

Example: ‘ Output:

10 PRINT “‘TEST RUN FOR '’; TEST RUN FOR ‘PRINT’
20 PRINT ** ‘PRINT’

30 PRINT A+B=9

40 A=5:B=4

50 ?‘A+B="";A+B

G0N END DEMO

70 PRINT *“*END DEMO”’

80 END

Note: To indicate some form of quotes to emphasize characters be-
tween quotation marks, use apostrophes.

SEE ALSO: LPRINT

R

The READ statement is used to
read items from DATA state-
ments and assign that data to a
variable. Every time READ ex-
ecutes, one data item is read. A
pointer moves to the next data
item and waits for READ to be
executed again.

DATA statements may appear
anywhere in a program. The first
such statement represents the
start of data. Each subsequent
DATA statement is considered to
be a continuation.

If a READ statement does not
assign all data items to variables,
the next READ statement assigns
following data items. If there are
no more READ statements, the
leftover DATA is unused.

An out-of-data condition (OD Er-
ror) occurs when the last value
has been assigned and a READ
statement attempts to assign
another value to a variable. A
RESTORE statement resets the
pointer to the first DATA state-
ment in the program.

The type of variables in a READ
statement must match the data
type of corresponding items in
DATA statements.

Refer to DATA for a program
example.

SEE ALSO: DATA, RESTORE

REM is used to insert comments
in a program. These comments
are displayed when the program
is LISTed, not when it is RUN.
The comments do not have to be
enclosed in quotation marks.

Even though REM statements are
not displayed during program ex-
ecution, their line numbers can
be branching destinations for
GOSUB and GOTO instructions.

It is a good programming practice to u
purposes, to identify subroutines and rbgram operations, provide
descriptions of variables and so forth.'However, if memory space is
limited, REM statements should be deleted to free some capacity for
program essentials. .

“REM statements for memo

Example: Output:

10 REM THIS IS A COMMENT LINE

20 PRINT ““THIS IS A PRINT LINE” THIS IS A PRINT LINE

30 C=C+1 THIS IS A PRINT LINE

40 IF C< 4'GOTO 10 THIS IS A PRINT LINE

50 END

LLl
(S
z 1
i
LLI S
LL
LLl
o

A%

RESTORE

RESTORE allows data to be re-
read from a specified line
number. If no line number is

specified, all data in the program

is re-read.

After an unspecific RESTORE
statement (written as simply
RESTORE) is executed, the next
READ statement accesses the
first item in the program’s first
DATA statement. If RESTORE

specifies a line number (example:

RESTORE 150), the next READ
statement accesses the first
DATA item in that line.

If a DATA statement does not ap-

pear on the specified line, the
READ statement accesses the
first item in the next DATA state-
ment.

Example:
10SXEI0 =6

20 FORR=XTO Y
30 READ DS$

40 PRINT DS$;** ™,

50 NEXT R

60 IF R> 13 THEN END
70 PRINT CHR$(13)

80 RESTORE 180

90 FOR R=1T0 3
100 READ DS$

110 PRINT DS$;*" ";
120 NEXT R

130 PRINT CHR$(13)
140 RESTORE

Comments:

20-50: Reads and prints all data

80: Moves pointer to 1st data
item in 180

100: Next READ statement starts
at 180

140: Moves pointer to start of all
data

160 X=1:Y=13

ot
<

160 GOTO 20 160: Repeats READ loop

170 DATA One,two,three,four

180 DATA five,six,seven

REFERENCE
SECTION

Output:
One two three four five six seven
five six seven

One two three four five six seven

SEE ALSO: DATA, READ

RETURN

RETURN is the branching state-
ment that transfers program con-
trol from a subroutine back to
the main program. The destina-
tion of the RETURN branch is the
program statement immediately
following the GOSUB statement
that called the subroutine. A sub-
routine may contain multiple
RETURN statements if they have
different conditions.

Examples:
10 GOSUB 40

20 PRINT *‘SUBROUTINE
RETURNS HERE"’

30 END
40 PRINT *‘SUBROUTINE”
50 RETURN

Comments:
Sequence of line execution:

10, 40, 50, 20, 30

10 GOSUB 100

20 PRINT **SUBROUTINE 100
RETURN’’

30 END
100 PRINT *‘SUBROUTINE 100"
110 GOSUB 200

120 PRINT *‘SUBROUTINE 200
RETURN™’

130 RETURN
200 PRINT ““SUBROUTINE 200"
210 RETURN

Sequence of line execution:

10, 100, 110, 200, 210, 120,
130, 20, 30

This program illustrates how one
subroutine can be called from
another subroutine.

RUN starts execution of the pro-
gram in memory at the lowest
line number. You can begin ex-
ecution at a higher line number
by adding the starting line to the
command (e.g., RUN 120).

When RUN is entered, all vari-
ables are set to zero or blank. To
preserve variable contents after
a STOP interruption, use CONT
or GOTO to restart execution.

Example:

10 PRINT “THIS IS "';

20 PRINT *‘A TEST FOR ’;

30 PRINT “‘RUN COMMAND"

Program Display:

Ok
RUN

THIS IS A TEST FOR RUN
COMMAND '

Ok

RUN 20

A TEST FOR RUN COMMAND
Ok

SOUND generates a tone. The
SOUND statement must be
- followed by two specifications,
written in parentheses and
separated by a comma: duration
and tone.

The generated tone is expressed
as a numeric variable, constant,
or expression. A low value, such
as 10, gives a high-frequency
tone. A high value, such as 500,
gives a low-frequency tone.

Duration is the duration of the
tone, and can be set with a
numeric variable, constant or ex-
pression. Usually, duration values
used are in the range from 5 to
500. The higher the value, the
longer the tone lasts. The actual
duration of the tone increases
when high values are used for
Tone, even though Duration
values remain the same.

'REFERENCE
-~ "SECTION

Example:
10 For X=1TO 8
20 SOUND(50,80)

30 SOUND(80,50)

40 NEXT X

Comments:

20: Specify high-pitch tone (50),
duration 80

30: Specify a slightly lower tone
(80), duration 50

This short program demonstrates
an oscillating tone signal.

STOP halts program execution.
When STOP is executed,
Aquarius displays a Break
message indicating the last pro-
gram line done. The program run
may be resumed by entering
CONT or GOTO, unless an Im-
mediate Mode error occurs dur-
ing the break.

See CONT for a program exam-
ple using STOP.

SEE ALSO: GOTO

FUNCTIONS

Aquarius provides three categor-
ies of functions: NUMERIC,
STRING and SYSTEM.

NUMERIC functions return
numeric values that are usually
employed in mathematical and
trigonometric calculations.

STRING functions provide infor-
mation about the contents of
character strings.

SYSTEM functions provide infor-
mation about memory availability
and contents, and control the
cursor location.

NUMERIC

ABS LOG SQR
CoS RND TAN
EXP SGN USR
INT SIN

STRING
ASC
CHR$
INKEY$
SYSTEM

FRE
PEEK

LEFT$
LEN
MID$

POINT
POS

RIGHT$
STR$
VAL

SPC
TAB

Returns the absolute value of a number (the number alone, without a
plus or minus sign). The value returned is always positive.

REFERENCE
SECTION

Format:
ABS(ex)
ex = an arithmetic expression, numeric constant or variable
Example: Result:
X=ABS(-65) 65

PRINT X

R4t

Returns the ASCII character code for the first character in a

string variable.

Format:
ASC(SV$)
SV$ = a string variable

Example: Result:

SV§="XYZ" PRINT 88

ASC(SV$) ..0r,

PRINT ASC(“‘X"") 88

Special Function Code Function

CHR$(7) Ring bell

CHR$(8) Delete character left of cursor

CHR$(10) Carriage return may be used in
same PRINT statement with data

CHR$(11) Clear screen, return cursor to
home position

Displays the character specified CHR$(13) Carriage return, ignored when

from the character set numbered
from O to 225.

used in same PRINT statement
as data

NOTE: ONLY CODES 10 AND 13 ARE CONTROL FUNCTIONS WITH

LLIST.

Format:

CHR$(ex)
ex = an arithmetic expression,
numeric constant or variable
(range: 0 to 255)

Example: Result:

PRINT CHR$(65) A

Returns the cosine (in radians) of the argument.

Format:
COS(ex)
ex = an arithmetic expression, numeric constant or variable
Example: Result:
Pl=3.14159 1

PRINT COS(2*PI)

Returns the value of the mathematical constant e (2.71827), raised to
the power of the argument. The argument cannot be larger than
87.3365, or the result will be the Overflow Error: ?20V.

Format:

EXP(ex)

~ex = an arithmetic expression, numeric constant or variable
Example: Result:

PRINT EXP(3) 20.0855

REFERENCE
SECTION

R43.

Returns the number of available bytes (characters) in memory. When
the argument is numeric, the result is the amount of memory not being
used by BASIC. When the argument is a string, the result is the total
number of string characters you can use in Immediate or Programmed
mode.

Format:

FRE(ex)
ex = an arithmetic or string expression, or
a numeric or string constant, or
a numeric or string variable

Example: - Result:
PRINT FRE(X) 1731 (no programs in memory)
PRINT FRE(*‘A"") 50 (no programs in memory)

INKEY$

KEY INPUT reads a keyboard character while the program is running.
Unlike INPUT, INKEY$ does not stop program execution and wait for
to be pressed. Aquarius keeps cycling until it receives the
specified message from the keyboard. It assigns that single-key
message to a string variable.

INKEY$ has value in certain types of game routines when you want
Aquarius to instantly recognize keyboard input without stopping pro-
gram execution.

R

Example:

10 PRINT CHR$(11)

20 PRINT “‘PRESS ANY KEY"’
30 X$=INKEY$

40 IF X$="""GOTO 30

50 PRINT **YOU JUST PRESSED '’;X$

60 PRINT ““PRESS "’;X$;"* AGAIN TO
RESTART."”’

70 IF INKEY$=X$ GOTO 10
80 GOTO 70

Output:

PRESS ANY KEY \
YOU JUST PRESSED (K) .
PRESS (k) AGAIN TO RESTART
Note: These keys don’t work
with Inkey$: | CTL | SHIFT |.
These keys work, but do not get
printed on screen:

[RTN <.
Do not use [RST |.

Returns the integer (whole number) value of the argument. In the case
of negative numbers with decimals, the integer result will be rounded to
a number less than the value of the argument.

Format:
INT(ex)

ex = an arithmetic expression, numeric constant or variable

. Example:

PRINT INT(24.66)
PRINT INT(—24.66)

Result:
24
—25

m6

il

[LEFTS

ke

Returns a specified number of characters from the left end of a
character string. Character positions are numbered from left to right,
starting with 1.

Format:

LEFT$(sv$, n)
sv$ = the same of the string variable
n = a numeric constant, variable or expression indicating number
of characters to be returned

Example: Result:
SV§="‘AQUARIUS” AQU
PRINT LEFT$(SV$,3)

Note: If string is created by a STR$ operation, then it has a leading
blank as leftmost character.

Returns the number of characters, including blanks, in a character string.

Format:
LEN(sv$)

SV$ = the name of the string variable
Example: Resuilt:
SV$="‘MATTEL ELECTRONICS"’ 18

PRINT LEN(SVS$)

Returns the natural logarithm (e) of the argument. Te ar must
be greater than zero. ' e

Format:

LOG(ex) e -
ex = an arithmetic,expression, numeric constant or varidgble

FERENCE

Example: Result:

RE

PRINT LOG(9) 219722

Returns a specified series of chéracters from the middle of a character
string. Character positions in a string are numbered from left to right,
starting with 1.

Format:

MID$(sv$,fc,n)
sv$ = the name of the string variable
fc = position of the first character to be returned. May be an
arithmetic expression, or numeric constant or variable
n = the number of characters to be retrieved; can be an arithmetic
expression, or numeric constant or variable

Example: Result:
- SV§="AQUARIUS" UARI
PRINT MID$(SV$,3,4)

Note: If string is created by a STR$ operation, then it has a leading
blank as leftmost character.

a7

Returns the code of the specified character stored in the character
RAM matrix, or the code of the specified color stored in the color RAM
matrix.

In the example, the first step is to POKE the letter A (whose code is 65)
into the home position of the screen. Then PEEK indicates the code of
that character. Note that characters, but not colors, scroll off the top of
the screen after it is filled.
Format:
PEEK(nc)

nc = an arithmetic expression,

numeric constant or variable
Example: Result:
10 CHR$(11)
20 POKE 12328,65

30 PRINT PEEK (12328)

The POINT function is used to
determine if a specified square
of the graphics grid has been
““set”. POINT produces one of
two answers: ‘1’ if the specified
square is set, ‘0’ if it is not set.

The PSET and PRESET state-
ments divide the screen into a
grid of 80 columns and 72 rows.
Each square can be inde-
pendently PSET or PRESET (to
be filled with a color, for
example).

In order to test any of these
squares, POINT must include, in
following parentheses, column
and row locations.

Example:

10

20

30

40

50

60

70

80

90

PRINT CHR$(11)
PSET(0,0):PSET(0,1)

PRINT “*SQUARE 0,0 IS:’’;
PRINT POINT (0,0)

PRINT **SQUARE 0,1 IS:"";
PRINT POINT (0,1)

INPUT X

PRESET (0,1)

PRINT ““NOW SQUARE 0,1 IS:"";

100 PRINT POINT (0,1)

Comments:
10: Clear screen first
20: Set squares 0,0 and 0,1

(Column 0, Row 0 and Column O,
Row 1)

40: Report POINT test of 0,0

" 60: Report POINT test of 0,1

70: Causes pause until input is
entered, for time to see result

80: Unset square 0,1

100: Report current state of
block 0,1

R

RSO

Returns the current column position of the cursor. The leftmost column
is number zero.

Format:

POS(ex)
ex = a numeric constant or variable, or a string constant or variable
(a “‘dummy argument’’ — can be any value)

Example: Result:

10 PRINT*‘CURSOR IN CURSOR IN COLUMN 16

COLUMN'*;POS(0)

RIGHTS

Returns the specified series of characters from the right end of a
character string. Character positions are numbered from left to right,
starting with 1.

Format:

RIGHT$(SV$,n)
SV$ = the name of the string variable
n = arithmetic expression, numeric constant or variable specifying
number of characters to be returned

Example: Result:
SV$="‘‘AQUARIUS™ RIUS
PRINT RIGHT$(SV$,4)

Note: If string is created by a STR$ operation, then it has a leading
blank as leftmost character.

Generates a‘random number. Used alone, the RN[Q?”{
a 6-digit number between zero and one (example: .2
whole random numbers, use RND and INT together.

Format:

m * RND (da) + mi [
rn = range of possible random numbers (arithmetic exf’(:’rfeé:gion,
numeric constant or variable).
da = dummy argument; can be any number or expression, but
(0) repeats last random number generated
(1) generates a new number each time
mi = smallest number to be generated (numeric expression, constant
or variable)

Examples: Results: (num exp, const or
variable)

PRINT RND(1) A random number between 1
and 0...such as: .762304

PRINT 6*RND(1)+ 1 A random number between 6
and 1...such as: 2.47073

PRINT INT(25*RND(1)+12) A random integer between 36
and 12...such as: 22

- 10 FOR X=1T0 10 Random integers between 6 and
20 RN=INT(6*RND(1)+1) 1..suchas:2432526316
30 PRINT RN;

40 NEXT X

Returns the sign of the argument, as:

1 if the argument is positive
0 if the argument is zero
—1 if the argument is negative

Format:
SGN(ex)
ex = an arithmetic expression, numeric constant or variable
Examples: Result:
PRINT SGN(29);SGN(0);SGN(—66) 10 -1

Returns the sine (in radians) of the argument.

Format:
SIN(ex) :
ex = an arithmetic expression, numeric constant or variable
Examples: Result:
Pl=3.14159 : 1

PRINT SIN(PI/2)

w2

Inserts specified number of blanks in a PRINT line. If too man Y- spaces
are inserted to allow PRINT output to fit on one line, the re
spaces are inserted on the next line.

Format:

SPC(ex) ' ;
- ex = an arithmetic expression, numeric constant or varrable |n the
range 0 to 255

Examples: =i Result:
PRINT*‘PLAY"’;SPC(8); PLAY INTELLIVISION
“INTELLIVISION™"

* LPRINT**PLAY;SPC(3); PLAY INTELLIVISION
“INTELLIVISION’’

Returns the square root of the argument.

Format:

SQR(ex)
ex = an arithmetic expression, numeric constant or variable
(cannot be negative)

- Example: Resulit:
PRINT SQR(39)) 6.245

I.IJ"
Q
Z 2
L
I:
Lu
LL
Ll
o

Converts a number into a character string. Note: STR$ is the inverse of
VAL. Can be used to change a numeric value into a string, so it can
then be used with any string function. Note: there will be a leading
blank for positive numbers).

Format:
STR$(ex)
ex = an arithmetic expression, numeric constant or variable
Examples: Result:
10 A=176 17 (preceded by blank)

20 A$=STR$(A)

30 PRINT LEFT$(AS,3)

Advances cursor to a specified column. Data is printed in the next
available print positions. '

Columns are numbered from 0 (left margin) to 39 (right margin). If the
position specified in the TAB argument overflows the right margin, the
remaining spaces are inserted on following line.

Format:
TAB(ex)

ex = an arithmetic expression, numeric constant or variable in the
range 0 to 255

Examples:

PRINT*‘AQUARIUS’’; TAB(12)
““LOVES YoU™

10 FOR X=2 TO 10 STEP 2
20 PRINT TAB(X)‘‘AQUARIUS”
30 NEXT X

To move cursor down the screen a specified number of lines (L) to a
specified TAB position (P), use this formula: TAB(L* 38+ P)

AQUARIUS L

T v R

Result:

AQUARIUS
AQUARIUS
AQUARIUS'
AQUARIUS "
AQUARIUS

Returns the tangent (in radians) of the argument.

Format:

TAN(ex)

ex = an arithmetic expression, numeric constant or variable

Examples:

PRINT TAN(45)

Result:

1.61977

Branches to a user-created machine code subroutine. Machine code
has certain advantages over BASIC, in terms of execution speed and
memory requirements. It is not as easy to learn as BASIC, and it is
beyond the scope of this guide. You may want to study machine code
and learn it use it in BASIC program subroutines to make your pro-
grams more efficient and responsive.

Only one USR function may be defined in memory. The starting
memory address of machine code subroutines are stored in addresses
14340 and 14341.

Converts a character string into
a numeric value. VAL is the in-
verse of STR$. The string must
contain valid numbers. If string
contains a plus or minus sign, it
must precede:numbers. The
function returns a value of zero if
the first character of the string is

.not a number or valid sign.

Format:
VAL(SV$)

SV$ = name of the string variable containing the character string
Examples: Result:
10 INPUT SV$? —99
20 PRINT VAL(SVS$) —-99
30 GOTO 10 ?31—

31

? xyz
0

?79-2
9

?

(]

[

[)

R56

AQUARIUS

APPENDIX

APPENDIX

CONTENTS

PROGRAMMING “BUGS” AND ERROR MESSAGES . . \ o

MEMORY MAPS
CHARACTERS

PROGRAMMING
“BUGS” AND

ERROR MESSAGES

Aquarius detects several different
types of errors that keep pro-
grams from being executed.
When an error is encountered,
the program stops running and
an Error Message appears.

‘These messages indicate the

program line number where the
“bug’’ is$ found, together with an
abbreviation of the general error
type.

Aguarius does NOT find logic
flaws that affect program results.
It does act as an editor to point
you to any lines in your program
where you made a ‘‘basic”’
mistake.

Errors of syntax (primarily spell-
ing and punctuation) are com-
mon types. As you gain more ex-
perience with Aquarius and the
rules of BASIC you should have
fewer and fewer syntax errors.

Use the key with specific -

instruction keys as much as
possible, to reduce the chance of
spelling and typing errors.

>
o
=
]
&
=

A

-

- 2al misiakes (such as
Branching to the wrong line, call-
ing the wrong s ibroutine, forget-
ting arithmetic priorities, etc.) will
be appzirent when you test your
progranis agair.st known-to-be-
correct results. Use the Im-
mediate Mode to double-check
calculations and current variable
values at various stages in the
program.

When you correct an error or
change the program in any way,
re-start execution at the begin-
ning with the RUN command.

BS BAD SUBSCRIPT. The sub-
script used to reference an array
is inconsistent with the dimen-
sion range specified.

CN CAN'T CONTINUE. After a
STOP statement halts a program,
CONT can be entered in Im-
mediate Mode to restart execu-
tion. After an END halt, GOTO
will restart at a specified line.
The CN message indicates that

one or more of the following con-

ditions prevent execution from
continuing:

® An Immediate Mode error
occurred during the break

® A program is not currently in
memory

® Program was halted because
of an error

DD DUPLICATE DIMENSIONS.

Duplicate DIM statements are
being used to dimension the
same array, or a DIM statement
appears in the program after
default dimensions were
assumed.

10 DIVISION BY ZERO. Arith-
metic expression resulted in at-
tempted division by zero. Can
never be done. ;

FC ILLEGAL FUNCTION CALL.

An invalid (out-of-range) value
was used with a function (e.g., a
negative number with SQR or a
negative or very large subscript).

ID ILLEGAL DIRECT. An illegal
Programmed Mode keyword
(e.g., INPUT) was used in Im-
mediate Mode.

LS STRING TOO LONG. At
tempted to create a string longer
than 255 characters.

MO MISSING OPERAND. A
keyword is missing a required
operand (e.g. CSAVE without a
program name).

NF NEXT WITHOUT FOR. The
index variable in related FOR and
NEXT statements is not the
same. Or program was halted
while in a loop and cannot be
CONTinued. -

OD OUTOF DATA. When a
READ statement was executed
all DATA statements had already
been read. Or insufficient data
was included in the program’s
DATA statements. One way to
avoid this error is to execute a
RESTORE before READ, if
appropriate. Or, use an end-of-
data flag.

OM OUT OF MEMORY. This
message indicates one or more
of the following conditions:

e Program too large for available
memory

e An array is too large for avail-
able memory

e Too many values for a variable

e Subroutines or loops are
nested too deeply

° Expressibn(s) too complicated

To conserve memory space, try
to: eliminate REM statements...
re-use variables wherever possi-
ble...use subroutines to avoid re-
dundant groups of statements...
write multiple statements on
single lines.

OS OUT OF STRING SPACE.
Not enough available memory to
store strings. Use CLEAR to in-
crease string buffer size.

OV OVERFLOW. The result of
an arithmetic operation was too
large to be represented in
BASIC’s range of numbers.

RG RETURN WITHOUT
GOSUB. A RETURN statement
was executed for which a corre-
sponding GOSUB statement
could not be found.

SN SYNTAX ERROR. Incorrect
or missing punctuation, an illegal
character, misspelled keyword or
function, etc.

ST STRING FORMULA TOO
COMPLEX. String expression
contains too many functions
and/or operators. Break the ex-
pression down into smaller
pieces. ‘

TM TYPE MISMATCH. A
numeric value is assigned to a
string, or vice versa; illegal
operation combining data types.

UF UNDEFINED USER FUNC-
TION. A USR function is called
before it is defined. '

UL UNDEFINED LINE. Attemp-

" ted branch to a line that is not in

memory, or deletion of a non-
existent line.

YRV
G

v nurzroed

igod

A

a
=)
<
L
o
o
<

CHARACTER RAM MATRIX

P

Starting Address

12328
12368 ’
12408
12448
12488
12528
12568
12608
12648
12688
12728
Rows 12768
12808
12848
12888
12928
12968
13008
13048
13088
13128
13168
13208
13248

NN = = o b ocd b od b ok ;
WN=-=0O0ONONAEAWN=00COENOONIAWN=0

Use this formula to locate char-
acter display positions:

© v N D O MO D

% Columns

.Jl

12328 + R*40 + C

R = row number (Range 0O to 23)

C = column number (Range 0 to 39)
12328 = starting location in matrix

COLOR RAM MATRIX
Starting Address
OT-ANMTWONON
13352 (]
13430 2
o lE
150 3t 13852
13512 4
13532 5 x
135 6 =)
13632 7 =
13672 8 <
13712 9 L
13752 10 o
Rows 13792 11 o.
13832 12 <T
13872 13 :
13912 14 :
13952 15
13992 16
14032 17 [
14072 18
14112 19
14152 20
14192 21
14232 22
14272 23
To display color, add 1024 to the
character RAM address.

o

To insert a character in a specific memory location, use POKE followed
by the character matrix address and the character code number. For
example:

POKE 12328,65 puts an “A” (code 65) in the memory’s home position.

To display a character without specifying its location, use PRINT and
CHR$ statements and the character code. For example, PRINT
CHR$(65) prints “A” at the cursor’s current position.

10 T 15 nzo Iglzs .-30' H s
i |
21 26 31 36

. n* m* ¥

' |]
T 17 'r' 2 W 5 c2 b
l 18 a8 g 28 | s R =

=) n . a
19 H 24 29 34 39
o]

F e e

i
o

41

42

43

44

45

46

47

=] 0 N AW M= &

48

49

50

- 51

52

53

54

55

. T V4

56
57
58
59
60
61
62

63

O M m O 0O M I

(0]
iss

65

66

67

68

69

70

71

0O ZFZ =T I & L +H I

~ ~ =g
IN w ST

~
()]

76
77
78

79

81

5
R
5
Y
I
y
X

82

83

84

85

86

87

>

89

90

91

92

a s PN <

938

94

95

5D

- I 2 1M

IP.

97

BO8

99

100

101

102

103

=
-l
o
o
<

v o2 W 120 . TS G I 152 160
105 4 13 L] 12 i 120 i 17 . 145 . el e
06} 4 F o2 @1 * 138 [i',l 146 p} 154 -. 162
07 & 15 4 123 1' 131 * 139 ri." 147 * (e —
08 T 16 124 weg 192 g 140 PR s Ll 56 = 164
09 I 17 F 125 E 133 ﬂ 141 ﬁ 149 ﬁ' 157 W 165
10 W 118~ 126 ﬁ 134 h 142 . 150 -‘ 156 w166
111 U 119 . 127 iy 135 ‘ 143 I 151 T 150 M o7

i L F

168

169

170

171

172

173

174

175

o\ =

176

T

178

179

180

181

182

183

T% 7T19 %W % %

184

185

186

187

188

189

190

191

H {4 F A

&

192

193

194

195

196

197

198

199

+

R O TR

201

202

203

204

205

206

207

+
+

209

210

211

212

213

214

215

i216™4

218

219

220

221

222

223

206¢

227

228

229

230

231

APPENDIX

B

iy “ﬂ 235 d 238
; m. 233 v 236 . 239
234 s 237 240

' &ﬂ =

241 - 244 : 247 J 250 h 253
242 L 245 ol 2 : 251 ‘ 254
243 ‘ 246 : 249 B 2 . 255

FUNCTION CHARACTERS
CODE

CHR$(7)

CHR$(8)

CHR$(10)

CHR$(11)
CHR$(13)

FUNCTION
Ring bell

Delete one character left of
cursor

Carriage return (used with PRINT
and data/variables)

Clear screen

Carriage return (used with PRINT
only)

s

ARITHMETIC
OPERATOR

PRECEDENCE

The order in which Aquarius
does arithmetic operations is
called OPERATOR
PRECEDENCE.

If you combine more than one
arithmetic operation in the same
expression (example: 5 + 16/
4), which operation does the
computer do first? Does it add 5
+ 16, then divide the result by
47 Or does it divide 16 by 4 and
add 5 to the result? The order of
precedence makes a difference
in the answer.

Aquarius scans arithmetic and

< logical expressions from left

right, giving operations this order
of priority:

Parentheses B
Exponentiation

Negation (giving a number a
negative value, like —5)
Multiplication and division
Addition and subtraction

Example 1: 5*6 + 4/2

Aquarius first multiplies 5 * 6,
then divides 4 by 2. It then adds
the results of these operations
(80 + 2) for a final result of 32.
This is a different result than if
Aquarius had multiplied 5 * 6,
then added 4 and divided that
result by 2, for a final answer of
7

Example 22 5 * (6 + 4)/ 25

Aquarius first adds 6 + 4
(because this operation is in
parentheses). Then it multiplies
the result (10) by 5 and divides
that result (50) by 25. The final
answer is 2.

.} Iithere is.mor
' tion of the 'same ki

hd, ?‘ﬁqu{ .
woriss from left to right, doing the ||
left-riiost operation first. If there |

&

... are parentheses inside parenthe-

ses, Aquaritis works from the in-

_side out, doing the inner-most

operations first.

Example 3: ¢ %
G*@®6+4/2n2

The first operation Aquarius does -
in this example is to add 6 and 4.
Now the expression reads (5 *
10 / 2) A 2. Aquarius sweeps
through again and performs the
multiplication and division from
left to right, since these opera-
tions are on the same prece-
dence level. This gives (50/2) A2
or 25 A2. Finally, 25 is raised to
the second power, giving a result
of 625.

AQUARIUS

PRACTICE
PROGRAMS

The following .programs will
demonstrate some of the capa-
bilities of your Aquarius Com-
puter. Enter and RUN them, for
practice and for fun. If you have
a cassette tape recorder, save
them on tape, then try a few
modifications of your own.

“Kaleidoscope”
10 REM--KALEIDOSCOPE

20 PRINT CHR$(11)
25 POKE 12328 + 41,32

30 M=40: N=24: REM--#0F X
AND Y

40 GOTO 160

v60 REM--CA = color address

70 REM--COLOR PLOT SUBROUTINE

75 REM--STAY IN RANGE

80 IFX> M — 1 THg

90 IFY < 0 THEN Y

100 1IFY>N - 1THEN Y = N — 1

110 IF X< OTHEN X = 0

115 REM--CALCULATE ADDRESS
120 PA = 12328 + X + Y * 40
130 CA = PA + 1024

140 POKE CA, C

150 RETURN

160 REM--START LOOPS

180 FOR | = 0 TO M/2 — 1

|

190 FOR J

Il

0TOM/2 — 1
200K = | + J

205 REM--C = COLOR 1 TO 14
210 C = INT(14 * RND(1) + 1)
250 REM--8 PLOT POINTS

CONTINUED ON NEXT PAGE

PRACTICE

PROGRAMS |

'UB 7
YR = R We e GOSUB 75

PR e Mo Y = 1 = K
E0SUB 75

20X =M - K:Y = N = |:
GOSUB 75

300X =K Y =N - I GOSUB 75
310X =M = I: Y = K: GOSUB 75
820X = 1:Y = N — K: GOSUB 75
330X =M - K: Y = I: GOSUB 75
3352

FRE(X)
340 NEXT J, |
350 GOTO 160

- For variety, delete line 180 and
ada:

1951 = J
Then change line 340 to:

340 NEXT J

“Concentric Circles”

5 PRINT CHR$(11)
10 Pl = 3.14159

20 FOR J = 30 T0 2 STEP —2
30R = J

40FOR | = 0TO 2 * Pl STEP 1

Il

50 X = R * C0S(l)

60 Y = R * SIN (1)

Il

70 .PSET (40 + X, 40 + V)

80 NEXT |

90 NEXT J

See what happens when you

change the values after STEP in
lines 20 and 40. :

“Boxes”
1 GOTO 50
ZEA= At D + X 4+ 40

- 3 POKE CA, CP

4 RETURN
6 IF CP = 16 THEN CP = 1
8IFCP = 8THEN CP = g

12 RETURN
90 A = 12328
60 D = 1024

62 W§ = CHR$(11): PRINT W§
65 INPUT “‘# 1-12"; W

66 IF W< 10RW > 12 THEN 65
67W = W-1

687 = 1
70 PRINT W$

75 POKE A + 41, 32

80 CP = 1

1001 = 0: J = 39: K = 23
110 FOR X = 170 J

5 G =10
120Y = C + |

130 GOSUB 2
140Y =K - C

150 GOSUB 2

152 IF | = 12 AND C = 2 THEN 400
155 IF C = W THEN 180
160C = C + 1

170 GOTO 120

180 NEXT X

200FORY = | + CTOK — C

PAITE I

220 X'=.C + I

230 GOSUB 2

240 X 2] - G

250 GOSUB 2

260 IF C = W THEN 290
210C =C + 1

280 GOTO 220

290 NEXT Y

300I=1+ZJ=J-ZK=
K-2

310 CP = CP + 1
312 GOSUB 6

315 IF | = 11 THEN 500
320 GOTO 110

400 GOTO 62

500 FOR X = I 70 J

510 YV & 11120BSUB2 Y &I = X 089
520 Y & 12:260SUB-2Y N = ¥ OTS

H30INEXT X 4 = ¥ : = M= X088

Y e

600 CP = CP + 1

= Y A

610 GOSUB 6
620 GOTO 100-- * -

=
<< ¢
(o
Ok
(@
o
o

-PRACTICE

“Paletin”

10FOR | = 0 TO|.'/. 'ﬁE/%f’} T$(1)
15 NEXT |

20A = 17 "BrB = 959
2OVE=NI 8

28 DIM C$(15)

30 W§ = CHR$(11): REM--WIPE
SCREEN

40 PRINT W$

S0 FOR | = 0 T0 6

60 T = 20 — (LEN(T$(1)))/2
63 PRINT TAB(T)

65 PRINT T$(1)

80 NEXT |

90 FOR | = 070 15 READ CS1)
106 NEXT |

107 GOTO 150

110 FOR | = 070 15

115 PRINT TAB(S— (I<10))

117 GOTO 130

119 REM--1 SPACE IN 120

120 IF | < 10 THEN PRINT ** "
125 REM--DOT & 4 SPACES IN 130
130 PRINT I;*. -~ *;C8()

140 NEXT |

145 GOTO 230

150 REM--COLOR SWATCH

155 FOR | = 0 T0 15

160Y =1+ 7

170 CA = A + X + Y * 40 + 1024
175C = |

S 7T EOR'S = 0 703

180 POKE CA + S,C

185 NEXT S

190 FORL = 0 70 11

el 16 =

192 POKE CA + 4 + L,C * 16 + BG
194 NEXT L

200 NEXT |

210 GOTO 110

230 PRINT TAB(5): INPUT FC
240 IF FC > 15 THEN 300
250 GOTO 355

300 REM--OUT OF RANGE

310 PRINT WS$;*‘Please use 0-15'";
CHR$(7);CHR$(7);CHR$(7)

320 FOR P = 0 TO 1000: NEXT P
330 GOTO 35

355 PRINT W$

360 PRINT ““FOREGROUND color ="’
C$(FC)

372 PRINT: PRINT: PRINT: PRINT
374 PRINT TAB(8)T$(7)

380 FOR| = 0 TO 15

390Y = | 47

400 CA = A+ X + Y * 40 + 1024
41OC=I.

420 FOR'L = 0:'TO 19

430 POKE CA + L, FC * 16 + |
440 NEXT L,

450 FOR | = 0 TO 15

460 PRINT TAB(8—(I<10))

465 REM--DOT & 4 SPACES in 470
470 PRINT 1. ":C$(1)
480 NEXT |

490 INPUT BC

810 C = BC + 16 * FC: A
1024 '

820 PRINT WS

825 PRINT FC,BC;C

827 L = 0 :

830 FOR| = ATOA + B
833 IF L > 255 THEN L = 0
835 POKE | — 1024,L

840 POKE 1,C

847 L = | + 1

850 NEXT |

900 REM--TITLE HEADINGS

910 DATA MATTEL ELECTRONIGS,
PRESENTS,AQUARIUS,**"’,
--PALETTE--

920 DATA Select FOREGROUND Color,

", Select BACKGROUND Color
950 REM--COLORS

980 DATA Light Yellow, Li#¥3tgen,
Orangs,Dark Gray .
pdg ! UARZH 0 o=

Mattel Electronics warrants 1 1ie
original consumer. purchasér i the
United States of its Aquarius “iHome
Computer System that the p:oduct
will be free of defects in material or
workmanship for a period of 90 days
from the date of purchase under
normal in home use.

During the warranty period Mattel -
Electronics will, at its sole option,
repair or replace the product
without charge for parts or labor
when the product is returned
postage prepaid to Mattel
Electronics authorized service facil-
ity with proof of the date of pur-
chase. Mattel Electronics strongly
recommends that if the product is to
be shipped to a Mattel Electronics
service facility that the product be
insured prior to shipment. Mattel
Electronics reserves the right to
utilize reconditioned parts in repair-
ing the product or to utilize recondi-
tioned units in replacing the product.

Please read the Aquarius™Guide to
Home Computing thoroughly prior to

apuration of the product. If you have
¢lifficulty or require service
assistance, please call one of the
Matiei Electronics Servicel/-
informiation numbers listed below.

in the EASTERN UNITED STATES
1300) 257-5185;

NEW JERSEY RESIDENTS MUST
CALL (609) 655-3533 direct or
collect; :

In the WESTERN UNITED STATES
(800) 421-2826;

ALASKA, CALIFORNIA, or
HAWAII RESIDENTS MUST CALL
(213) 978-6850 direct or collect.

This warranty excludes incidental or
consequential damages resulting
from the product or use of the prod-
uct. (Some states do not allow the
exclusion of incidental or con-
sequential damages, so the fore-
going exclusion may not apply to
you.) This warranty gives you
specific rights and you may have
other rights which vary from state to
state.

. Units returned without proof of the

date of purchase or units returned
after the 90 day limited warranty

period has expired will be repaired
or replaced (at our option) for a
service charge. Contact the follow-

ing toll free telephone number to ob-

tain the location of the nearest serv-
ice facility and the amount of the
service charge.

IF YOU NEED SERVICE,
CALL ONE OF THE SERVICE/
INFORMATION NUMBERS
LISTED ON THIS PAGE.

This warranty does not apply if the
product has been altered, modified,

or serviced by anyone other than an

authorized Mattel Electronics serv-
ice facility or if the product has
been subject to purchaser abuse,
accident, negligence, or damage
subsequent to purchase.

You may write us, but DO NOT
SEND PRODUCT FOR REPAIR, at
the following address:

Mattel Electronics,

5000 West 147th Street,

Hawthorne, California 90250

- I'r\lflllz
b 'V:I'-:Iv: .nlw I“_'I |“r
o 1

I

\ HOME COMPUTER SYSTEM

MATTEL £LECTRONICS®

