AUTO
FORMATION

SUR
hector HRX

SOMMAIRE

SOMMAIRE Page 2
GENERALITES Page 4
CHARGEMENT DU PROGRAMME Page 7
PRESENTATION DES LECONS Page 10
LECON 1 Page 15
LECON 2 Page 18
LECON 3 Page 29
LECON 4 Page 34
LECON 5 Page 42
LECON 6 Page 54
EXEMPLES DE PROGRAMMES Page 63

Vous allez suivre une AUTO-FORMATION en six legons pour vous permettre
de manipuler et programmer en BASIC sur HECTOR HRX.

La composition de chacune des six legons est détaillée dans ce fascicule dans

'ordre chronologique de I’étude.

Le BASIC 3X est le langage de programmation BASIC spécialement adapté
sur HECTOR HRX.

Chaque lecon de FAUTO-FORMATION a été élaborée grice a BASIC 3X.
Cela nous a permis une totale concordance entre les listings affichés et les
exécutions correspondantes et vous permettra d‘apprécier les possibilités du
langage BASIC 3X (les listings de certains passages de programmes sont

édités en derniéres pages et illustrent l'effet de quelques mots BASIC).

L'ensemble AUTO-FORMATION sur HRX se compose de 3 cassettes dont

chaque face supporte une legon (1/2, 3/4 et 5/6). Chaque legon représentant
prés de 30 K.octets de BASIC, le chargement peut atteindre 2 minutes. Le
message & [|'‘écran qui accompagne le chargement et qui précise les numéros

de cassette et legon vous permettra de juger du bon chargement du programme.

BASIC 3X sur HECTOR HRX passe par une pratique assidue et progressive

a laquelle le plus doué d’entre nous ne peut se soustraire."

L'AUTO-FORMATION sur HRX ne peut et ne doit constituer que le début
de votre découverte du langage BASIC 3X.

FRESENTATION D UN MOT:

EN ILLUSTRATION DU CHAFITRE FRESENTATION DES LECONS.

Ze MOLUME i @ 265

IMIT % “OLUME

~: IMSTRUCT IO

DIRECT ET IMDIRECT

WOLUME ¢ drapeaw i THIT

TOUS LES DESSINS GUI ILLUSTRENT CE MANUEL SONT DES COFIES D®ECRAN
IMFRIMES SUR FAFIER GRACE AU FROGRAMME °*COFIE D" ECRAN E3IX®.

1/_CHARGEMENT PREALABLE DU BASIC 3X

Le BASIC 3X ayant servi de support de création a chacune des legons d’auto-

formation, son chargement préalable est impératif.

3 hypothéses sont a envisager.

a) Vous possédez une cassette sur laquelle est gravé BASIC 3X

- BRANCHER et allumer HECTOR
- OUVRIR la platine du magnéto-cassette & l'aide de la TOUCHE STOP-EJECT
- INSERER la cassette BASIC 3X dans la platine, fermer le couvercle et enfoncer

fa touche LECTURE.

Des points de vue Electrique et Mécanique, le lecteur est prét & lire la cassette

introduite.

- APPUYER sur la touche 2 qui, dans le texte du menu proposé par HECTOR,

désigne la lecture d'une cassette.

Le moteur tourne, le programme se charge ...

b) Vous possédez une cartouche

- Connecter la cartouche au connecteur qui se trouve a la gauche de I'appareil
- Brancher et allumer HECTOR

- Appuyer sur la touche 3, qui, dans le texte du menu proposé par HECTOR,

désigne la lecture d’une cartouche.

Le langage de programmation BASIC 3X se charge ...

c) Vous possédez une unité de disquette et un disque Systéme contenant
BASIC 3X

- Connecter l'unité de disque & votre HECTOR HRX par l'intermédiaire du cable
plat

- Brancher et allumer HECTOR et DISC Ii

- Introduire dans le lecteur de gauche le disque systétme BASIC 3X

- Appuyer sur la touche 4, qui dans le texte du menu proposé par HECTOR HRX,
désigne la lecture d'une disquette.

- Aprés laffichage des messages de titres et versions du CP/m ,taper le mot B3X.

Le langage de programmation BASIC 3X se charge .

Quels que soient le support du langage de programmation BASIC 3X et le mode

de chargement, l'apparition du message ...

BASIC 3X 3.n

COPYRIGHT 19B4 par MICRONIQUE, FRANCE
31741 Octets libres

OK

... indique la disponibilité de [I'interpréteur BASIC 3X.

2/ CHARGEMENT D’'UNE CASSETTE AUTO-FORMATION SUR HRX

- Placer la cassette dans le lecteur comme nous I’avons détaillé pour le chargement

de BASIC 3X en cassette
- Au clavier, tapez le mot LOAD qui provoque la lecture d’'un programme sur

cassette.

Le programme une fois entré commence seul.

1/ _MENU

Les 5 legons (2 a4 6 : DICTIONNAIRE ILLUSTRE) qui constituent la seconde
partie d'AUTO-FORMATION sur HRX, se présentent toutes de la méme fagon.

La premiére page se résume a Iaffichage de tous les mots qui seront détaillés
dans la lecon, le dernier étant le mot ''tous” destiné a reprendre tous les autre!

de fagon continue.

La sélection du mot désiré peut se faire soit par commande du clavier, soit par
manipulation du contréleur a main, les touches B, H, G et D provoquant
respectivement un déplacement du curseur vers les BAS, HAUT, GAUCHE et
DROITE de l'‘écran et imitant a ce titre les quatre directions disponibles sur Ile

controleur & main.

Le déplacement du curseur se traduit par laffichage en rouge (initialement jaune)

du numéro d’ordre du mot dans le menu.

La validation du mot, une fois repéré, est obtenue par I‘appui de la touche -

au clavier ou du bouton poussoir du controleur.

Le mot validé est alors détaillé comme nous le verrons dans le chapitre suivant.

Un mot sélectionné dés le menu implique un retour 3 ce méme menu.

La position du mot déja étudié est prise en compte et chaque retour au menu

replace le curseur & l'endroit qu’il avait quitté.

-10-

La couleur du mot initialement blanche est alors jaune de fagon & ce que les

mots restants soient mis en évidence.

L'appui de la touche R vous permettra de rembobiner la cassette aprés lecture,

la touche S permettant elle d'arréter le moteur.

2/ PRESENTATION DU MOT ETUDIE

Elle est uniforme quel que soit le mot considéré.

Sont indiqués en premiére page le libellé du mot (pour orthographe) la page
de “DICTIONNAIRE DES BASIC” qui lui fait référence, sa traduction en

frangais, sa syntaxe ainsi que les modes de programmation admissibles (DIRECT,
INDIRECT ou les deux).

Tous ces renseignements restent visibles en permanence en haut de page car le

développement des explications s’‘opére dans un écran partiel.

Certains mots trop liés pour étre dissociés sont développés simultanément. Le
numéro de page indique alors celle qui, du dictionnaire, illustre le plus important

de tous.

3/ DERQULEMENT

Le déroulement des explications d’un mot est interrompu de trés nombreuses

fois dans |'attente d’'une confirmation.

Cet arrét s'illustre d’une petite animation représentant un doigt appuyant sur

une touche, car c’est en fait ce que vous aurez & faire pour poursuivre.

-11-

Toutes les touches sont entendues par HECTOR comme une autorisation de

continuer. Seule la touche s provoque un retour au menu.

Cette obligation d’appuyer sur une touche et donc de rester devant le clavier
pourrait paraitre ennuyeuse si nous n‘avions pensé a étendre les possibilités de
répondre au contrbleur @ main. Le bouton poussoir permet également de

confirmer & HECTOR que la page d’'explication a été assimilée et qu'il peut

poursuivre.

Dans le méme esprit, rappelons que les deux touches ﬁ (ou SHIFT) supprime
pauses et délais et qu'a ce titre elles peuvent aider a la compréhension en
accélérant les passages connus ou déja vus. Le flux d’explications est donc soun

au bon wvouloir de chaque utilisateur dont la disponibilité est toute circonstanciel
L'étude de chaque mot se termine par la question
VOULEZ-VOUS REVOIR LE MOT ..?

a laquelle la touche @ du clavier et la direction GAUCHE répondent OUI
alors que la touche 1 et la direction DROITE répondent NON.

4/ EXERCICES D’'APPLICATION

La plupart des mots étudiés sont illustrés ou d’exemples ou d‘exercices.

Il existe deux types d’exercices qui se différencient par la fagon d’'y répondre.

Si a la question posée il suffit de répondre en donnant une des solutions
proposées par HECTOR, il s'agit alors du premier type d’exercices dans lequel

aucune aide n’est apportée a Vutilisateur.

-12-

Le deuxiéme type d’exercices auxquels les réponses doivent étre données

directement sans choix possible s’accompagne d‘une possibilité d’aide.

L'appui de la touche A (AIDE) inscrit la réponse & la place de |'utilisateur
qui peut donc, quand |'exercice entraine plusieurs réponses, ne s’attacher qu’a
détailler un point précis de I'étude ou plus simplement éviter les exercices dans

le cas d’'une révision r exemple.
p

Ainsi, & la suite du mot COLOR, la question suivante est posée

Pour obtenir COLOR NOIR, BLANC, ROUGE, VERT
il faut taper COLOR ?
a laquelle on peut répondre @, 7, 1, 2 ou B A, 1, 2

si l'on a oubli¢ que 7 représente la couleur blanche.

5/ NOTATION

Si le mot est suivi d'exercices, ils sont au nombre de 5, le tout étant noté
sur 20.

Chaque recours a l'aide et bien sGr chaque mauvaise réponse enléve un point.

Le premier exercice est noté sur quatre points et autorise quatre mauvaises

réponses auquel cas la note reste bloquée a seize sur vingt méme si une

cinquitme ou une sixiéme vient s’ajouter aux premiéres.

Le second exercice est noté sur quatre points auxquels on ajoute éventuellement

les points gagnés lors du premier.

-13-

En conclusion, on ne peut perdre au cours d'un exercice que quatre points
et éventuellement ceux que |'on avait réussi & gagner lors des exercices
précédents.

Si par exemple, au premier exercice, deux mauvaises réponses ont précédé la
bonne, vous serez noté 18/20; mais le prochain exercice met en jeu les quatre

points qui lui sont propres et les deux que vous avez gagné précédemment.

-14 -

LECON 1 : CLAVIER ET EDITEUR DE LIGNE

Les commandes d’'HECTOR se résument & 3 types de touches

1/ TOUCHES SPECIALES (OU ELECTRIQUES)
2/ TOUCHES CASSETTES (OU MECANIQUES)
3/ TOUCHES CLAVIER

1/ _TOUCHES SPECIALES

Ce sont des touches dont leffet est uniquement électrique.

L'interruption de marche arrét établit

ou coupe l'alimentation.
La consommation du HECTOR HRX est

'd'environ 20 Watts (moteur du magnéto

lR!T!VlUfl[D'Pf—{}—J { cassette bloqué).
fF[G|H|J{K[L[M[# -

lciviB[n]. - T. T2+ {8
ESPaceE R |

Le bouton poussoir

|1.2 — INIT: TOUCHE SPECTIALE
INIT (ou RESET P —

ou RAZ) permet le retour au menu

proposé par le HRX. Son emploi ne

détruit aucune information contenue

= |+
dans |'appareil et restitue les A ‘TSIIT[LTILTATFLTJT ‘El' lTJ' ‘J If
programmes dans I’‘état ol ils étaient. - l" l“ !C l""' ‘B l” ‘ i ‘? l‘”’

-15-

2/ TOUCHES CASSETTES

Des 5 touches disponibles sur le magnéto cassette, 2 seulement s'accompagnent

d'effets électriques.

Il s'agit de LECTURE et ECRITURE qui soumettent la téte de lecture de

la platine aux circuits d’entrée ou de sortie de HECTOR.

[2.1 - TOUCHE CASSETTE ‘

Les instructions BASIC de lecture,

écriture ou rembobinage doivent étre

L OERTURE
E LA complétées des actions sur les touches
FLATIHE
CHSEETTE correspondantes.
SOOBETIEMT
EH EHFORHCEHT
LA TOLWHE =
LHE LEDGHDE
Folsz,

3/ TOUCHES DE CLAVIER

Pour définir le clavier on
distingue 2 familles de touches

dans lesquelles 2 groupes

seront encore déterminés.

-15-1-

3.1. Touche directe

Il s'agit 13 de la premiére famille. Elle regroupe toutes les touches qui générent
3 elles seules caractéres ou fonctions. Cette derniére distinction établie les 2

groupes dont nous parlions plus haut.

3.1.1. Touche directe simple

L’appui sur une touche directe simple produit 1 caractére. C'est le cas pour

- les 26 lettres de [alphabet (A a 2)
- les 10 chiffres (0 a 9)
les 4 caractéres de ponctuation (, ; . ?)
les 5 opérations arithmétiques (—, +, «, /, =)

Vespace ou séparateur.

3.1.2. Touche directe de fonction

L'appui sur une touche directe de fonction produit 1 fonction. C'est le cas pour

- <}J (ou RETURN) qui confirme les commandes & HECTOR.

- ﬁ (ou SHIFT) qui permet d’'accéder aux caractéres situés
dans la partie supérieure des cabochons ainsi

gu’aux minuscules.

- REP (ou LOCK) qui répéte la derniére touche appuyée.
- — (ou TAB) qui déplace d’un cran sur la droite e
curseur

-15-2-

- <}— (ou BACK SPACE) qui déplace le curseur d'un cran sur la

gauche

- CTL (ou CONTROL) qui permet de générer diverses fonctions en

association avec d‘autres touches.

3.2. Touche indirecte

Cette deuxiéme famille regroupe toutes les touches qui nécessitent V'appui d’une
seconde touche (dite touche d'accompagnement) pour produire caractéres ou

fonctions.

3.2.1. Touche indirecte simple

Les touches d'accompagnement sont au nombre de 2.

Touche indirecte simple générée par 0 (SHIFT)

13.2.1 - INDIRECTE SIMPLE !|

La touche SHIFT permet presque

d’attribuer & chaque touche un second

caractere.

Touche indirecte simple générée par CTL (CONTROL)

|3.2.1. - INDIRECTE SIMPLE l

La touche contrdle permet de générer
les minuscules accentuées ainsi que 3

autres caractéres particuliers ([] [}

3.2.2. Touche indirecte de fonction

La touche controle est la seule & pouvoir engendrer des fonctions. Ces
derniéres correspondent pour la plupart & des fonctions d’éditeur de ligne c’est-a-dire
qu’elles ont pour but essentiel d'offrir a Vutilisateur des moyens rapides et

performants pour éditer et modifier une ligne de programmation.

[$.2.2 - FONCTION INDIRECTE | Les effets des 16 touches de
i R fonctions sont illustrés dans un petit

exemple de modification d’une ligne

et détaillés a partir d'un tableau

reprenant un a un les roles des

1lzlzjalsle |7 s |9|o|- |+
A B I I

touches indirectes de fonctions.

P IS <RI TR R i i

La sélection de la fonction étudiée

s‘opére en 2 temps.

- Pointer le curseur devant le mot

a Vaide du contrbleur a3 main ou

des touches B, H, D et G qui
générent respectivement les déplacements
BAS, HAUT, DROITE et GAUCHE du
curseur.

- Valider le choix en appuyant ou sur
le bouton poussoir de contréleur ou

sur la touche(—'du clavier.

-16-

N.B. Bien que les touches <}— et —{> ne soient pas des touches
indirectes de fonctions, leurs rbéles sont tout de méme illustrés dans le chapitre
éditeur de ligne car elles contribuent en grande partie a rendre efficace les

touches indirectes de fonction en plagant le curseur a I’endroit désiré.

JEU : MEMO-CLAVIER

Pour ceux qui découvriraient le clavier d’'HECTOR, un petit jeu leur est proposé

pour les entrainer & lire le clavier avec les mains et non plus avec les yeux.

Une série de lettres s’affiche en haut de I’écran. Un & un les caractéres
commencent & descendre. Vous devez les en empécher en appuyant sur la
touche correspondante. Trés rapidement vous devez taper sur la touche sans la

voir pour concentrer sur lécran toute votre attention visuelie.

-17=

COULEURS

ET
GRAPHISME

. « SPECTIAL
. STANDARD

.. CIRCLE
-« . PAINT
s e s POINT
.« VOLUME

CASSETTE NUMERO :

°
'Y

LECON NUMERO

N

1/ COLOR

L'instruction COLOR est celle autour de laquelle s'articule toutes les autres

‘relatives & la couleur.

Elle permet, parmi les 8 couleurs de base de HECTOR, de sélectionner les 4 qui

seront a Vécran.

Ainsi pour sélectionner les couleurs BLEU, NOIR, VERT et ROUGE, il faudra
écrire COLOR 4, 0, 2, 1

ot O désigne le noir, 2 le vert, 1 le rouge et 4 le bleu.

Le tableau ci-dessous vous aidera & retrouver vos couleurs.

0 : NOIR 4 : BLEU

1 : ROUGE 5 : MAGENTA
2 : VERT 6 : CYAN

3 : JAUNE 7 : BLANC

Les quatre couleurs une fois sélectionnées sont désignées non plus par le numéro

ci-dessus qui leur est propre mais par le rang qu'elles occupent dans la palette.

Ainsi dans le COLOR ci-dessus le BLEU est toujours bien la quatriéme couleur
de HECTOR mais c’est aussi la couleur de rang @ de la palette. C'est en tant

que couleur numéro @ que le bleu sera désormais entendu.

(N.B. : Certains programmeurs ont pris pour habitude d’associer & ce numéro
de rang une fonction particuliére. Ainsi la couleur de rang @ est considérée comme
la couleur de fond d’écran. Ces conventions facilitent les attributions de couleurs

aux textes et autres dessins).

-19-

2/ BRIGHT

L'instruction BRIGHT n’est active que sur la couleur numéro 2. Elle atténue son

intensité et multiplie ainsi par 2 le registre des couleurs d'HECTOR.

3/ FLASH n, x

L'instruction FLASH déclenche x fois l'alternance de la couleur n et de son

complément 3 7.

Ainsi COLOR 0, 1, 7, 3 : FLASH 2, 50
déclenche 50 fois le passage du BLANC (7) au NOIR (@) de la couleur de rang 2

FLASH 2, 50 peut se traduire

10 FOR Z2 = 1 TO 50

20 COLOR 0, 1, 7, 3 : COLOR O, 1, O, 3
30 NEXT

4/ WIPE

Efface la totalité de I’écran et replace le curseur en haut de I'écran.

5/ CLS

Efface les écrans partiels définis par I'instruction SCREEN.

-20-

6/ RUB

Efface la totalité de I'écran sans en détruire les pointeurs.

7/ PEN - PAPER

L'instruction PEN attribue aux caractéres une couleur prélevée dans la palette COLOR.

L'instruction PAPER définit la couleur de fond sur lequel sont affichés les

caractéres.

La couleur définie par PAPER est aussi celle utilisée par les instructions
d'effacement d‘écran (WIPE, CLS et RUB).

8/ COVER n

Signifie aux instructions d’‘affichage de caractéres (PRINT, OUTPUT -...) si elles

doivent tenir compte de la couleur PAPER.

COVER O répond non. Le caractére seul est affiché en superposition avec I’écran

(décalcomanie).

COVER 1 répond oui. Le caractére est affiché sur un rectangle de couleur PAPER

qui efface I'écran a l'endroit ol il est écrit.
9/ VIDEO n

Echange les couleurs PEN et PAPER. L'instruction VIDEO permet d’obtenir des
affichages de texte en VIDEO normale (VIDEC Q) et en VIDEO inverse (VIDEO 1)
a l'image de positifs et négatifs de photographie.

21

10/ HOME

Replace le curseur en haut d’écran. En spécial, !'instruction HOME raméne 3 1,1

I"échelle d’affichage de caractéres.

11/ BIG

BIG est, avec LITTLE, I'un des 2 modes de résolution d’écran. La figure ci-dessous

illustre le mot BIG et rappelle les instructions affectées.

RESOLUTION DE L'ECRAN EN MODE BIG

Elle est définie par le plus grand nombre de points LISTE DES INSTRUCTIONS
BIG affichables a I'écran. Elle est de 228 points de DONT LES PARAMETRES
hauteur par 64 de largeur. SONT LIES AU MODE BIG

PLOT

BAR

LINE
FROM.TOWARDS
BOX

. CIRCLE
Abscisse Point BIG
omn POINT

14

PAINT
SCREEN

WAASRLAIARAAESIAIRLEE]

Ordonnée

Le point BIG est appelé OCTET c'est-a-dire le point (ou la derniére donnée

de fagon générale) dont le traitement par HECTOR est le plus souple et le plus
rapide. |l se compose en fait de 4 points LITTLE et peut donc prendre une
des 256 couleurs composites que forment les différentes combinaisons.

-22=-

12/ INK n

INK signifie aux instructions graphiques la couleur de la palette & utiliser. n posséde

2 domaines de définition selon la résolution (BIG ou LITTLE) adoptée.

En mode LITTLE n varie de ® & 3 (les 4 couleurs de la palette COLOR).

En mode BIG n varie de @ & 255 (l'ensemble des possibilités de combinaisons

des 4 couleurs de la palette entre-elles).

13/ RINK

Assure la rotation d'un point BIG pour permettre une homogénéité des couleurs

composites de INK.

14/ LITTLE

La figure ci-dessous illustre le mode LITTLE et rappelle les instructions affectées.

23

RESOLUTION DE L'ECRAN EN MODE LITTLE

Elle est définie par le plus grand nombre de points
LITTLE affichables a I'écran. Elle est de 228 points

de hauteur par 256 de largeur.

Abscisse

Point LITTLE

Ordonnée

LISTE DES INSTRUCTIONS
DONT LES PARAMETRES
SONT LIES AU MODE
LITTLE

PLOT

BAR

LINE
FROM.TOWARDS
BOX

CIRCLE

POINT

PAINT

SCREEN (en mode
STANDARD?*)

* L'instruction SCREEN bien
que suivie de coordonnées
LITTLE définie un écran
dont chaque paramétre
(position, hauteur, longueur)
est arrondi au point BIG
le plus proche.

Le point LITTLE est appelé PIXEL c'est-a-dire le plus petit point affichable

& l'écran. 1l ne peut prendre qu‘une des 8 couleurs disponibles sur HECTOR.

15/ SPECIAL

SPECIAL est, avec STANDARD, I'un des 2 modes de définition de caractére. La

figure ci-dessous illustre le mode SPECIAL et rappelle les instructions affectées.

-24-

DEFINITION DE L'ECRAN EN MODE SPECIAL

La déclaration du mode SPECIAL intéresse par les LISTE DES INSTRUCTIONS
instructions graphiques car leurs paramétres ne sont liés DONT LES PARAMETRES
qu’'au choix de résolution BIG ou LITTLE seules les SONT LIES AU MODE
instructions d’édition de texte sont affectées. SPECIAL

B OUTPUT
CURSOR
SRR TAB
POS
PRINT
SCREEN

Note : Les matrices de
lettres en mode SPECIAL
sont toujours affichables en
mode papier (COVER 1).
Une instruction COVER @
déclarée en mode SPECIAL
n‘aura d‘effet qu’‘en retour
au mode STANDARD.

L'instruction SCALE est indissociable du mode SPECIAL. Clest elle qui fixe I'échelle
des coordonnées. Ainsi les 4 lettres “E” affichées a I|'écran le sont toutes aux

coordonnées 0,0 mais avec une échelle différente.

16/ STANDARD

La figure ci-dessous illustre le mode STANDARD et rappelle les instructions affectées.

=25~

DEFINITION DE L'ECRAN EN MODE STANDARD

La déclaration du mode STANDARD intéresse peu les

instructions graphiques car leurs paramétres ne sont
qu'au choix de résolution BIG ou LITTLE. Seules
instructions d’édition de texte sont affectées.

Abscisse

£

Ordonnée

liés
les

INSTRUCTIONS DE TRACES GRAPHIQUES

LISTE DES INSTRUCTION:!
DONT LES PARAMETRES
SONT LIES AU MODE
STANDARD

OUTPUT
CURSOR
TAB

POS
PRINT

Elles sont au nombre de 7 : PLOT, BAR, LINE, FROM, TOWARDS, BOX et
CIRCLE. Leurs paramétres qui désignent des coordonnées d'écran sont liés a la

résolution adoptée (voir les résolutions BIG et LITTLE). La couleur du tracé est

définie par INK.

-26-

17/ _PLOT

Affiche un point.

18/ BAR

Trace une ligne horizontale.

19/ LINE

Trace une ligne entre 2 points spécifiés.

20/ _FROM

Enregistre I'origine d'une ligne tracée par TOWARDS.

21/ TOWARDS

Trace une ligne entre le point désigné par FROM et celui Spéciflié aprées TOWARDS.
Aprés exécution le dernier TOWARDS est considéré comme un FROM.

TOWARDS permet donc de tracer une ligne dont I'extrémité ‘est le début d'une

autre.
22/ BOX

Trace un rectangle plein entre 2 points opposés,

-27-

23/ CIRCLE

Trace une ellipse ou un cercle de rayons horizontaux et verticaux définis. Les
figures obtenues sont constituées de points joints. Elles peuvent donc étre peintes

grdce a [’instruction PAINT.

24/ PAINT

Peint & partir du point spécifié jusqu'd la rencontre d'un obstacle. PAINT ne doit

donc opéré qu’'a lintérieur de surfaces fermées.

25/ POINT

Renvoie le numéro de rang de la couleur du point dont les coordonnées sont

spécifiées.

26/ VOLUME & INIT

Permet de rendre aux tracés graphiques leur troisiéme dimension en éliminant

les lignes cachées.

28

CHAINES

RIGHTS
-« LEN
- ASC
CHRs

STRs
» VAL
92......8pPC
10<L > PRINT

CASSETTE NUMERO

CURSOR
SCREEN
SCROLL
. SCALE
. INPUT
INSTRs
INKEYS

. POS

. TAB

LECON NUMERO

1/ _LEFTS

Permet d’extraire la partie gauche d‘un texte.

2/_MID3

Permet d’extraire une partie d'un texte.

3/ RIGHTS

Permet d‘extraire la partie droite d'un texte.

4/ LEN

Renvoie la longueur d’une chaine de caractéres.

5/ _ASC

Renvoie le code ASCIl du caractére spécifié.

6/ CHRS

Renvoie le caractéare dont le code ASCIl est spécifié.

- 30~

7/ _STRS

Permet de traiter un élément numérique en élément caténique pour, par exemple,
le soumettre aux fonctions LEFTS, MIDS, RIGHTS ou LEN.

8/ VAL

Permet de traiter un élément caténique en élément numérique pour, par exemple,

le soumettre aux opérateurs de calcul (+, —, x, 3).

9/ SPC n

Remplace n espaces par une fonction beaucoup moins gourmande que I'écriture

des N espaces.

10/ _PRINT

Instruction d’affichage simple. L’instruction PRINT ne permet pas de positionner
le texte a l'écran. Le message est affiché a I’endroit pointé par le curseur (endroi

qui peut étre redéfini par I'instruction CURSOR).

L'instruction PRINT supporte dans sa syntaxe des variantes :

PRINT ” ", : affiche le texte spécifié et laisse le curseur pointé en

fin de texte.

PRINT ” "o " : Tabule l'écran de 14 caractéres en 14 caractéres.

11/ _OUTPUT

Affichage de texte spécifié aux coordonnées spécifiés.

-31=-

12/ _CURSOR

Permet de positionner le curseur avant |’affichage d'un message par PRINT.

13/ SCREEN

Permet de déclarer des écrans partiels dont les dimensions sont spécifiées. Les
affichages de texte sont limités & cet écran sauf si l'on utilise I'instruction QUTPUT.

L'instruction CLS permet d’effacer cet écran sans rien détruire du reste de |’écran.

14/ SCROLL

Permet de déplacer I’écran dans toutes les directions.

Les paramétres du SCROLL sont toujours entendus comme des paramétres de
résolution BIG.

Les déplacements horizontaux sont des rotations car |'écran est entiérement conservé.

Les déplacements verticaux sont des décalages car les parties d’écran qui ne sont

plus visibles sont détruites.

16/ SCALE

N’est opérationnelle qu’en mode SPECIAL.

de 1 & 28, l'instruction SCALE détermine la taille d’un caractére par rapport a

une matrice minimale de 8 points sur 8.

-32-

16/ _INPUT

Permet de saisir un texte au clavier. Les fonctions de [’éditeur de ligne y sont

opérationnelles.

17/ RECTIFY

Restitue & I'écran un texte dans le but d‘une modification.

18/ INSTRS (n)

Attend la saisie de n touches au clavier. Les caractéres des touches
appuyées ne sont pas affichées. Le programme ne peut continuer qu'a la saisie

du nombre de touches spécifié.

19/ INKEYS (n)

Autorise n scrutations du clavier dans I'attente d'une saisie. Le programme peut

continuer aprés les n scrutations méme si aucune touche n‘a été appuyée.

20/ _POS

Renseigne sur la position du curseur. Les valeurs retournées sont propres au mode
d’écriture (SPECIAL ou STANDARD) considéré.

21/ TAB

Permet, associée & l'instruction PRINT, d‘afficher des textes en respectant une

tabulation précise.

—33-

BOUCLES

FOR TO

. . NEXT
«» . GOTO
. GOSUB
. RETURN

IF. THEN
.ON GOTO
S.0N GOSUB
9......DIM
10DATA. READ

CASSETTE NUMERO

- RESTORE

.LET
SwWAP

» OR

. « « « AND
<{WIPEEK
<(WVWIPOKE
- . USR
VARFPTR

LECON NUMERO

1/ _FOR_TO 2/ NEXT

Permet de répéter une tache. La séquence doit s'inclure entre les instructions
FOR TO et NEXT.

10 FOR X = 1 TO 10
20 PRINT "BONJOUR"
30 NEXT

La ligne 20 se répéte 10 fois, autant de fois que met X partant de 1 pour
égaler 10,

Certaines séquences utilisent le compteur de Boucle pour assurer des taches
différentes.

10 FOR X = 0 TO 3
20 FLASH X, 50
30 NEXT

Les boucles peuvent s‘inclure 1'une dans I'autre, le premier NEXT renvoyant au
dernier FOR TO.

10 FOR Y = 10 TO 50 STEP 10
20 FOR X = 0 TO 3

30 FLASH X, Y

40 NEXT : NEXT

le mot STEP signifie au compteur de Boucle de s’incrémenter & chaque passage

de [|'argument précisé.

-35-

3/ _GOTO

Assure le branchement au numéro de ligne spécifié.

4/ GOSUB 5/ RETURN

Assure le branchement & un sous-programme dont la premiére ligne est spécifiée.

Le sous-programme est terminé par un RETURN qui renvoie I‘exécution 2

I'instruction qui suit le GOSUB.

6/ IF .. THEN ELSE

Permet de soumettre a une condition des traitement différents. Si la condition
est remplie, les instructions suivant le THEN sont exécutées sinon ceux sont

celles qui suivent ELSE qui le sont.

7/ _ON GOTO 8/ ON_GOSsuB

Permet d’envisager une distribution des tiches selon le contenu d‘une variable.

9/ DIM

Dimensionne un tableau. Les variables indicées du type A (n) sont autorisées
jusqu’a A (10). Au-dessus de 10, il faut dimensionner le tableau A (4 une seule
dimension), grace a l'instruction DIM A (20) aprés laquelle 21 valeurs (0 a 21)

sont autorisées.

-36-

Les variables indicées dont I’‘argument est inférieur & 10 peuvent également étre

dimensionnées pour éviter une perte de place.

DIM A (5) limite & 5 les valeurs admissibles.

10/ DATA READ 11/ _RESTORE

L'instruction DATA permet de constituer un stock d’informations. Les informations
numériques ou caténiques sont écrites a la suite de linstruction DATA, séparées
par des virgules et éventuellement encadrées de guillemets si elles contiennent

elles-mémes une virgule.

10 DATA BONJOUR, "3,50 F”, 16, AUREVOIR

L'instruction READ attribue & la variable spécifiée la premiére information de
la ligne DATA.

Dans le cas fréquent de plusieurs lignes de DATA, l'instruction RESTORE permet
de signifier & READ dans quelle ligne- il doit piocher.

A titre d'exemple, regardez le programme d’illustration du mot TONE.

12/ LET

L'instruction LET est facultative et permet seulement d‘attribuer un contenu a

une variable.

LET A = 10 peut s'écrire A = 10

-37-

13/ SWAP

Echange les contenus de 2 variables. La plupart des méthodes de tri et

classement s’articule autour de [Iinstruction SWAP.
Parmi les plus connues on note

La méthode BUBBLE SORT qui consiste & comparer d'abord le premier élément
4 tous les autres (en inversant & chaque fois que I'un de ceuxci remplit la

condition de tri mieux que le premier élément). L’opération est répétée en

comparant le second élément et ainsi de suite.

Exemple: soit a classer dans |‘ordre croissant les nombres A (1) & A (10)

10 FOR | = 1 TO 9
20 FOR J =1 + 1 TO 10

30 IF A (J) < A (I) THEN SWAP A (i), A (J)
40 NEXT

50 NEXT

La méthode SHELL METZNER

MWT=10:P=T

20 P = INT (P/2) : IF P1 THEN END
30DJ=1:K=T--P

40 | = J

50 L =1 +P

60 IF A (I) <A (L) THEN GOTO 90

-38-

70 SWAP A (L), A (l)
80 | =1 — P :IF 1<1 THEN GOTO 90 : ELSE GOTO 50
90 J =J + 1 :IF J>K THEN GOTO 20 : ELSE GOTO 40

la méthode du RIPPLE amélioré dans laquelle les nombres consécutifs sont

comparés et interchangés si nécessaires.

Le programme signale si il a procédé a un échange en notant une variable
Z=0.

Cette méthode peut étre longue si le nombre le plus petit est le dernier.

10 K = 10

20 Z =20

30 FOR I = 1 TO K - 1

4 IF A (I+1) < A (1) THEN SWAP A (I+1), A (I) : 2 =1
50 NEXT

60 IF Z = 1 THEN K = K - 1 : GOTO 20

14/ OR 156/ AND

Permettent d'établir un test & 2 conditions.

OR validant le test si l'une des deux conditions est remplie. AND le validant

si les 2 sont remplies.

10 IF A = 10 OR A = B THEN

Si A vaut 10 ou B le traitement est assuré.

_39-

10 IF A = 10 AND C = B THEN

Si A vaut 10 et si C vaut B le traitement est assuré.

OR et AND peuvent aussi étre entendus comme des opérateurs logiques. Les

opérandes sont alors obligatoirement traduit en binaire.

16/ _(VIPEEK

Les 64 K de ram d’'HECTOR sont découpées en 4 pages de 16 K dont deux

ont les mémes adresses.

Ces deux pages sont sélectées par une bascule et ne peuvent étre obtenues
simultanément.

Ces deux pages ont pour nom page vidéo et page programme. PEEK est
Finstruction qui permet de lire le contenu d’une adresse en page programme.
VPEEK elle, agit en page VIDEO.

Les adresses des pages communes (jusqu’a & CO0@) peuvent étre lues
indifféremment par PEEK et VPEEK.

17/ (V) POKE

Permet de stocker une valeur 3 I'adresse spécifiée.

-40-

18/ USR

——

Permet d’exécuter & partir du BASIC des sous-programmes en langage machine.

Essayez USR & 19DA, USR & 19D0, USR & C057

19/ VARPTR

Renvoie I'adresse de stockage de la variable numérique ou caténique spécifiée.

10 A3 = "AAAAAAA"
20 POKE VARPTR(A$),2
30 PRINT A$

-41-

DIVERS

INP.DUT
PAUSE
SPEED

. TIME

CASSETTE NUMERO

15. « . SRR
16. SIGNE
17.... . INT
15.RND. SEED
19...DEF FN
20. .C0S.SIN

21. . TAN.ATN
22.......PIX
23. .EXP.LOG
24. .. .CLEAR
25....FORTH
26. .

a St
IR

. « ABS

LECON NUMERO

1/_SON

Dans ce chapitre sont regroupés 4 sons particuliers (LASER, BELL, BEEP et SHOT)

dont les durées sont fixes et finies.

L'instruction SHOT n génére un bruit différent selon que n vaut @ (Un tir d'arme
a4 feu) ou 1 (Rafale).

2/ SIREN

L'instruction SIREN génére un bruit de SIRENE dont la durée est illimitée. Le

recours 3 l'instruction HUSH est alors nécessaire pour arréter le son.

3/ HUSH - 4/ SOUND

L’instruction SOUND génére tout une série de sons divers dont la plupart ont
une durée illimitée. Comme pour linstruction SIREN le recours & HUSH est alors

nécessaire.

Pour arréter un son on peut également déclarer un nouveau sound qui remplacera

le précédent.

REMARQUES IMPORTANTES : HECTOR ne fait que provoquer |’émission de sons

qu’il a préalablement paramétré. Dés que le son est émis, HECTOR peut retourner

3 l'exécution du reste du programme.

-43-

10
18

20

21
22
26
34

36

37
38
50
52

5/ TONE

TONE est un son “SOFT” c'est-a-dire qu’il est fabriqué par le micro-processeur
lui-méme et non pas par un circuit périphérique comme c'est le cas pour SOUND.

HECTOR est donc immobilisé tout le temps que dure le tone demandé.

Certains tone correspondent par leur fréquence 3 des notes de musique. Voici le

sous-programme qui a servi 3 illustrer le mot tone.

A=0
DATA97,24,97,12,131,24,131,12,97,36,131,36,131,24,131,12,124,24,124,12,
124,12,110,12,124,12,131, 36
DATA131,12,124,12,131,12,131,24,148,12,148,12,131,12,148,12,148,24,168,
12,168,12,148,12,168,12,168,24,179,12,179,12,168,12,179,12,200, 36
RESTORE18:A=A+1:FORI=1TO033

GOSUB50:NEXT

IFA=2THENGOT034:ELSEGOTO18
DATA224,12,200,12,179,12,168,12,179,12,168,12,131,12,139,12,131,12,110,
24,110,12,110,12,97,12,110,12,110,24,124,12,124,12,110,12,124,12,124,24,
131,12
DATA224,12,200,12,179,12,168,12,179,12,168,12,131,12,139,12,131,12,110,
24,110,12,110,12,117,12,110,12,85,12,97,12,110,12,124,12,131,12,148,12,
168,36

RESTORE34:FORI=1TO042

GOSUBS50:NEXT:END

READC,D

TONEC,D*1000/C:RETURN

** INSTRUCTIONS DE LECTURE DES CONTROLEURS A MAIN **

Les indices (n) ® ou 1 désignent respectivement le controleur ‘gauche et celui de

droite.
4
5 6
6/ JOY (n)
Lecture des directions du manche 10 2
9 10
8

-44-

NORD

N.QUEST
. Mécaniquement les contacts assurant les
OUEST EST positions diagonales n‘existent pas. s
sont entendus comme les appuis
simultanés des contacts qui les entourent.
SuD
7/ _POT (n)

Lecture de la valeur du potentiométre.

8/ FIRE (n)

Interprétation de I'état du poussoir. Si la valeur retournée est @ le poussoir

enfoncé. Si elle vaut 1 le poussoir est reldché.

** INSTRUCTIONS D'ENTREE/SORTIE _SUR PORT PARALLELE **

9/ INP

Renvoie la valeur de |‘octet présent sur le port spécifié.

Ecrit l'octet spécifié sur le port précisé.

** |INSTRUCTIONS EN RELATION AVEC L'HORLOGE DE HECTOR **

HECTOR posséde une horloge interne dont la capacité est de 24 h qui

s‘incrémente toutes les 20 ms.

-45-

est

4 registres sont donc disponibles

Celui des 50iéme de seconde : TIME (0)

des secondes : TIME (1)
des minutes : TIME (2)
des heures : TIME (3)

10/ PAUSE (n)

L'argument n spécifie le nombre de seconde et donc la durée de la pause.
L'appui sur la touche ﬁ (ou SHIFT) annule les pauses.

11/ _SPEED n

Permet de préciser la vitesse d'exécution d'un programme par [I'intercalage de

pause entre chaque instruction.

12/ TIME (n)

L'argument (n) spécifie le registre de I'unité de mesure du temps. Les 4

registres sont disponibles 3 tout moment.

13/ TISET

Remet & zéro chacun des 4 registres de [|'horloge interne.

-46-

** INSTRUCTIONS ET FONCTIONS MATHEMATIQUES OU ASSIMILEES **

14/ ABS (N)

Renvoie la valeur absolue du nombre N

15/ _SQR (N)

Renvoie la racine carrée positive du nombre N. Si N est négatif une erreur

de code 5 (IV : lllegal value) est générée.

16/ _SIGNE (N)

Renvoie un chiffre représentant le signe du nombre N. (Ce chiffre est en fait

le rapport du nombre N sur sa propre valeur absolue).

17/ _INT (N)

Retourne la partie entiére du nombre N.

18/ RND (A, B)

Génére un nombre aléatoire selon une régle de calcul précisée par SEED.

Le domaine de définition d'une fonction RND (A, B) est [A, B[

18/ SEED n

Etablit une régle de calcul & partir de laquelle RND génére des nombres

aléatoires.

-47-

(Les nombres générés par RND sont dits pseudo-aléatoires puisqu’ils sont

déterminés a partir d'une régle mathématique).

19/ DEF _FN

Permet de définir une fois pour toutes une fonction précise dont les variables

ne seront rencontrées qu'en cours de programme.

20/ _COS - SIN 21/ _TAN. ATN 22/ Pl (n)

Ceux sont les fonctions trigonométriques COSINUS, SINUS, TANGENTE et
ARCTANGENTE dont les angles sont exprimés en radians. Pl (n) est une fonction

de n qui affecte 3 la variable précisée la valeur n x T

23/ EXP - LOG

Ceux sont les fonctions exponentielle et logarithme de base e.

24/ CLEAR D, n

Cette seule instruction a trois effets bien distincts

1/ Remise & zéro des variables et tableaux

Si le BASIC 3X rencontre linstruction CLEAR méme sans paramétres, il remet
3 zéro, les variables déja utilisées et supprime les emplacements de variables

alloués par I'instruction DIM.

-48-

2/ Détermination de la taille de [I'espace caténique

L'espace caténique est une zone mémoire réservée aux chaines de caractéres
créées dans un programme BASIC. Cet espace caténique se remplit 3 |'image

d’'un barillet de révolver.

Toutes les chaines de caractéres y sont stockées sous références les unes

derriére les autres.

(ATTENTION : Dans le cas de la redéfinition d‘une méme chaine, BASIC
considére en un premier temps la seconde chaine comme une nouvelle. Ce n’est

qu‘aprés qu’il supprime la premiére de l'espace caténique.

Ainsi une chaine de caractéres de longueur 129 peut trés bien ne pas pouvoir
s'inclure dans [|'espace caténique restant (et donc générer une erreur de code
(OS : débordement d'espace caténique)) si la chaine qu’elle vient remplacer est

de longueur 128).

Exemple : Soit un espace caténique initialement dimensionné & 255 dont 248
octets sont déjad occupés par différentes chaines de caractéres dont A%= ""BONJOUR".

Si la chaine A$ est redéfinie A$= Y“AUREVOIR"”, le BASIC ne peut mémoriser
a la fois BONJOUR et AUREVOIR sans dépasser l'espace qui lui est imparti.

Dans ce cas il n'existe qu'une seule solution, redimensionner |‘espace caténique

grdce a Vlinstruction CLEAR.

De fagon générale, I'espace caténique doit pouvoir contenir I'ensemble des chaines
déclarées lors du programme (Pour deux chaines de méme nom, la plus longue

est a considérer) auquel on rajoute la plus longue de toutes.

-49-

3/ Reéservation d‘un espace mémoire

Il est parfois nécessaire de réserver un espace dans la mémoire pour "'mettre &

I'abri”” des programmes en langage machine ou autres tables de redéfinition de
caractéres.

C'est encore [’instruction CLEAR qui s‘en charge en amputant |‘espace utilisateur

BASIC d‘autant de place que vous l‘aviez spécifié en argument.

REMARQUE IMPORTANTE : Les instructions RUN et EDIT provoquent un
CLEAR. Lorsque vous recherchez une erreur liée & une variable, il est plus
commode de lister les lignes soupgonnées que de les éditer de fagon a
conserver tous les paramétres disponibles dans I'‘état ou ils étaient quand I’erreur

s‘est manifestée.

Pour bien comprendre le role de CLEAR, regardons la ventilation de
Vinterpréteur BASIC 3X dans la ram HECTOR.

— 4201 : début de tous les programmes BASIC
PROGRAMME

{LLLL—1 : Fin du programme BASIC
LLLL : début de stockage des variables

VARIABLES

— BOOO : 500 octets

— HHHH : Fin de !'espace caténique
ESPACE CATENIQUE BEFF : Début de I'espace caténique
BFOO : Début du logiciel interpréteur BASIC

INTERPRETEUR
BASIC

— F400 : Fin du logiciel INTERPRETEUR BASIC.

- 90'

(NOTE : Les 4 paramétres principaux de structure du programme utilisateur BASIC
(4201, LLLL, HHHH et BEFF) sont stockés respectivement aux adresses F720,
F722, F724 et F726).

L'instruction CLEAR permet donc de dimensionner |'espace caténique et de le
déplacer en le rapprochant de la zone variable de fagon & créer une zone libre

entre le début de I'espace caténique et celui de Iinterpréteur BASIC.

Exemple : CLEAR 500, BOOG

dimensionne et déplace |'‘espace caténique comme le montre la figure en créant

ainsi un espace libre entre BOOO et BEFF

25/ FORTH COoLD

HECTOR HRX est doté d'un langage puissant : le FORTH.

Le BASIC 3X vous offre la possibilit¢ d'interpeller le FORTH & partir du BASIC.

Pour cela il faudra

- Calculer la place mémoire qui sera utilisée par le supplément au Dictionnaire

FORTH que vous désirez créer.
- Amputer le BASIC d‘autant de place que nécessite votre programme FORTH.

- Communiquer au FORTH Iendroit et la taille de l'espace que vous lui avez
réservé.

1/ _Calcul de la place mémoire

-51=

La longueur que vous accordez au DICTIONNAIRE FORTH dépend du nombre

de mots, de variables ou d’'images que vous voulez créer. sous FORTH.

La longueur réservée a deux buffers d'édition, elle, est fixe et correspond

a 674 octets en hexadécimal, c’est-d-dire 1652 octets en décimal.

Supposons que vous souhaitiez réserver 1 K octets pour le dictionnaire du

forth, la place totale est donc

Hexa : 674 + 400 = A74 H
Décimal : 1652 + 1024 = 2676

2/ Abaissement du sommet mémoire du BASIC

Il faut maintenant restreindre l|'espace adressable par BASIC de maniére 2
placer la zone de Forth au-deld. Reprenons l|‘exemple ci-dessus, dans lequel nous
réservons 1 K pour le dictionnaire et l'espace de deux buffers d’édition. Le

sommet mémoire devient

Hexa : BFOO — A74 = B48C H
Décimal : 48896 - 2676 = 46220

Pour le modifier il suffit donc d’écrire en mode direct ou indirect

CLEAR 255,46220 ou CLEAR &FF,&B48C

3/ Initialisation des paramétres avec COLD

Aprés avoir réservé la place mémoire, il convient d’informer Forth des adresses

que l'on Ilui a réservé.

-52-

C'est le role de linstruction COLD. Le premier paramétre, qui précise l'adresse

du dictionnaire, doit étre l'adresse du sommet mémoire plus un.

Le deuxiéme paramétre, qui précise |‘adresse des buffers d‘édition, doit

correspondre au calcul suivant

Hexadécimal : BF@® — 674 = B88C H
Décimal : 48896 — 1652 = 47244

Dans !'exemple évoqué, cela s'écrit

COLD 46221,47244 ou bien COLD &B48D,&B88C

Il est indispensable que l!a réservation par CLEAR ait eu lieu avant |utilisation
de COLD.

-53-

EDITEUR
DE
PROGRAMME

« o« s RUN 12, LOCATE
CL>LIST 13. - MERGE
-REM 14. APPEND
.END 15. . « FREE
EDIT 16. . .FRENCH
+«NEW 17STOP-CONT

LAST 1S.....TAPE
LAUTO 19. REWIND

« RENUM 20, - SAVE
.DELETE 21. . LOAD
.EXTRACT 22. ERROR
» TOUS

s

W

CASSETTE NUMERO :

o

LECON NUMERO :

1/_RUN (n)

Permet I’'exécution du programme a partir de la n’iéme ligne ou a défaut de

la premiére.

L'instruction RUN effectue un CLEAR implicite. Toutes les variables sont donc

nulles.

2/ (L) LIST A, B

Affiche les lignes de A a B. Des nuances de syntaxe permettent plusieurs

applications.

LLIST imprime sur papier les lignes spécifiées.

3/ REM ou '

Permet d’inclure dans vos programmes des lignes de commentaires. L’instruction
REM peut se situer n'importe ou dans la ligne : Tout ce qui suit n’est pas
interprété par BASIC 3X.

4/ END

Souvent facultative, l'instruction END est parfois indispensable pour séparer
programme principal et sous-programmes. Elle évite que linterpréteur, en fin de
programme, ne débouche sur des lignes de sous-programmes qui ne peuvent étre
appelées que par un GOSUB et dont I‘exécution n'aurait chronologiquement aucun

sens.

=-55=

5/ EDIT n

Permet de modifier le contenu d'une ligne n, en la soumettant a ['éditeur

de ligne.

L'emploi de EDIT est souvent liée a la détection par [I'interpréteur d’une

erreur dans une ligne.

Si cette erreur porte sur des contenus incorrects de variables, il est préférable
de lister la ligne, le temps de trouver votre erreur, ce qui vous garantie le

maintien des contenus de vos variables.

L'instruction EDIT remet & zéro les variables déja initialisées.

6/ NEW

Permet d’'écraser le programme en mémoire.

7/ LAST

Permet de connaitre le numéro et le contenu de la derniére ligne.
8/ AUTO

Utile dans ['élaboration de vos programmes. Elle permet la numérotation des

lignes que vous allez frappé.

=56 -

9 / RENUM

Permet de renuméroter les lignes de programmes. L’instruction RENUM rectifie
les adresses des GOTO, GOSUB, RESTORE qui auraient changé.

10/ DELETE

Permet d’effacer des parties entiéres de programme.

11/ EXTRACT A, B

Permet d‘effacer toutes les lignes d'un programme sauf celles placées entre

les lignes A et B.

12/ LOCATE

Permet de localiser une variable ou une instruction dans le programme.

L'instruction LOCATE liste toutes les lignes contenant |‘expression demandée.

N.B. : Il peut étre pratique d’'imprimer les lignes désignées par un LOCATE.
Pour se fabriquer ce "LLOCATE” on procéde ainsi

- On reléve le contenu de l'adresse FEC9 en page vidéo.

- On le traduit en binaire en ne s'intéressant qu'aux 2 bits de poids faible,

le bit @ désignant l'écran, le bit 1 I'imprimante

On place a ladresse FEC9 le contenu prélevé en ayant adapté les 2 bits

de poids faible au résultat que !‘on escompte.

-57-

Ex : PRINT VPEEK (& FEC9)
& 89 1000 1001
Le bit O est 4 1 : L'écran est donc sélectionné
VPOKE &FEC9, & 8A

Le bit 1 est & 1 : L'imprimante est donc sélectionnée.

Tapez ensuite linstruction LOCATE suivie de |'expression recherchée. Les lignes

retournées seront imprimées.

13/ _MERGE

Fusionne le programme en mémoire avec celui se trouvant sur cassette. Les
lignes du programme sur bande s'imbriquent & leurs places parmi celles du
programme en mémoire. Une ligne du programme sur bande remplace la ligne

en mémoire. qui porte le méme numéro.

14/ APPEND

Ajoute & la suite du programme en mémoire le programme contenu dans la
cassette que vous aurez placé dans le lecteur. Les lignes du programme sur

bande sont renumérotées & partir du dernier numéro du programme en mémoire.

15/ FREE

L'instruction FREE renseigne sur [‘occupation statique de la mémoire. 2 nombres

sont retournés.

Le premier désigne le nombre d'octets occupés par les lignes de programme, le

second le nombre d'octets disponibles.

—08—

La somme des 2 nombres est toujours égale & la place totale disponible
(31999) & laquelle on retire une valeur correspondant & la taille de |‘espace
caténique défini par CLEAR (lI'espace caténique définit par CLEAR.

Pour un CLEAR 255, la somme est toujours égale & 31744.

Les fonctions FREE (@) et FREE (A$) renseignent elles sur I'occupation des
secteurs réservés aux variables du méme type que l'indique |‘argument de la

fonction.

Ainsi FREE (@) indique le nombre d'octets réservés aux variables numériques

et encore disponibles. FREE (A$%) indique le nombre d’octets réservé aux variables
caténiques et encore disponibles a lintérieur de !'‘espace qui leur est imparti
(défini par CLEAR).

Les nombres retournés par les fonctions FREE promettent d’évaluer la place
dynamiquement utilisée par un programme. Leurs valeurs étant liées & |’exécution
du programme, leur affichage en fin de programme ne permet de connaitre la
place utilisée que dans la derniére partie du programme, ce qui ne peut suffir

a évaluer les disponibilités des espaces numériques et caténiques.

Une évaluation correcte doit correspondre & un ensemble de relevés, répartis
tout le long du programme, dont la densité peut étre multipliée dans les

zones 3 forte consommation.

16/ FRENCH

Les mots (instructions ou fonctions) anglais sont remplacés par leurs équivalents

frangais.

=59~

17/ STOP-CONT

Alors que STOP interrompt le programme, CONT permet de reprendre |‘exécution

a l'endroit de l'interruption.
18/ TAPE n

n précise dans quel état doit étre le moteur du magnéto-cassette. Si n = 0

le moteur est & l'arrét et si n = 1 il est en marche.
19/ REWIND

Actionne le moteur du magnéto-cassette. Contrairement & TAPE, I'instruction
REWIND immobilise le programme tant qu‘une touche n'a pas 6té appuyée lui

indiquant l'arrét du moteur. REWIND peut s'écrire

10 TAPE 1
20 A% = INSTR$ (1)
30 TAPE 0

20/ SAVE

Permet la sauvegarde sur cassette du programme en mémoire. Cette sauvegarde
consiste en I'écriture de 2 blocs bien distincts qui sont représentés sur la

figure suivante

=650 =

4200
4201

NNNN

cccc
BEFF

F740
F75F

FFFF

BLOC 1

écrites les

début de tous les programmes BASIC

BLOC 1

—— début de I'espace numérique

— fin de l'espace caténique

— début de ['espace caténique

..............

BLOC 2

Il correspond & la partie de l'espace utilisateur dans laquelle sont

lignes de programme.

Il s'étend de I|'adresse 4201 (en hexadécimal} a

I'adresse NNNN propre a chaque programme.

BLOC 2

Il correspond & la partie de I'interpréteur BASIC 3X dans laquelle

sont notées les informations suivantes :

- (F740 - F741) début
- (F742 - F743) début

du programme (initialement 4201)

de I'espace numérique
p

-61=

(F744 - F745) fin de I'espace caténique

(F746 - F747) début de I'espace caténique ou RAMTOP
- nom du programme

- F758 drapeau d’AUTORUN

Le BLOC 2 est physiquement écrit le premier sur la cassette de fagon 2

faciliter le chargement d'un programme dont le nom est spécifié.

Le BLOC 2 permet en réalit¢ de définir la configuration du programme
sauvegardé. Nous avons vu que cette configuration pouvait étre modifiée par

I'instruction CLEAR qui place et dimensionne |‘espace caténique.

Le programme chargé est alors placé dans les mémes conditions de fonctionnement

qui le régiraient avant la sauvegarde.

21/ LOAD

Permet la lecture des blocs 1 et 2 d'un programme sur cassette. Si I'instruction
LOAD ne peut reconnaitre en téte de chargement le bloc numéro 2, le
programme sur cassette est alors considéré comme un bloc autonome et chargé

aux adresses qu’il précise.

22/ ERROR n

Permet de substituer au traitement d'erreur exécuté & la rencontre de chacune
d’'entre elles par [l'interpréteur BASIC 3X, un traitement particulier dont la

premiére ligne est spécifiée. L'instruction CLEAR posséde un témoin qui assure
son exécution. Ce témoin, validé dés la rencontre de linstruction ERROR, est
invalidé par chaque traitement d'erreur. Il convient donc que I‘organigramme du

programme prévoit la lecture du mot ERROR aprés chaque traitement.

-2~

10
12
14
16

18 -

20
22
24
26
28
30
32
34
36
38
40
42

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38

~ ILLUSTRATION DES MOTS
- COLOR,PEN ET PAPER

-~ APPARITION POINT PAR POINT
D“UN TEXTE A L”ECRAN
WIPE:COLORO,1,0,7:INK2
SPECIAL:HOME:PEN2
OUTPUT"HECTOR",7,12:PEN3

INK3:FOR X=1 TO 1000
X=RND(50,110):Y=RND(122,130)
INKPOINT(X,Y)+1
IFPOINT(X,Y)=3THENGOTO42
IFPOINT(X,Y)=1THENGOTO42
PLOTX, Y

NEXT

- ILLUSTRATION DES MOTS
~ LINE,BOX ET PAINT

“ COLORIAGE D“UN COULOIR

WIPE:INK3:B0X10,220,230,10
INKO:BOX11,219,229,11

INK3
FORY=13T0227STEP8:A=0
FORX=YTOY+4STEP4
LINEX,11+A,X,217+A:A=2
NEXT:NEXT

INK1:PAINTI1,11

-63-

10 -

ILLUSTRATION DES MOTS

12 ~ FROM,TOWARDS ET DEFFN
14 -~
16 ~ DESSIN DANS UN CERCLE
18 ~
20 DEFFNB(X)=100-80%COS(X)
22 DEFFNA(X)=100-80*SIN(X)
24 ~

26
27

WIPE:FORC=1TO4
FROM100,180

28 INKC:FORX=0TO500STEP3
30 TOWARDSFNA(X),FNB(X)
32 NEXT:NEXT

10 ©~ ILLUSTRATION DES MOTS
12 ©~ BIG,INK ET RINK

14 -

16 ~ MOSAIQUE 64 COULEURS
18 -

19 WIPE

20 FORU=0TOl5

22 FORV=0TO1l5

23 BIG:INKU+16*V:LITTLE

24
27
28
30
32

10
12
14
16
18
19
20
24
26
28
32

FORY=U*13TO(U+1)*13
FROM100,180
BAR16+V*13,16+(V+1)*13,Y
RINK:NEXT

NEXT:NEXT

“ ILLUSTRATION DES MOTS
“ VOLUME ET INIT

“ TOLE ONDULEE

WIPE:VOLUME1:INIT
FORD=40TO80STEP4
DEFFNB(X)=D+30*SIN(X)
FORC=.1TO20STEP.1
PLOTC*10+D-30,FNB(C)
NEXT:NEXT

-64-

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42

10
12
14
16
18
20
22
24
26
28
30

10
12
14
16
18
20
22
24
26
28
30
32
34
36

“ ILLUSTRATION DES MOTS
- MID$ ET OUTPUT

“ LETTRES DE CREDITS
WIPE:A$="CREDITS"

FORX=1TO07:GOSUB30:NEXT
X=INT(RND(1,8)):GOSUB34:GOSUB30
GOTO26

FORY=150TO50STEP-3

GOSUB38 :NEXT:RETURN
FORY=50TO150STEP3
GOSUB38:NEXT:RETURN
OUTPUTMID$(A$,X,1),100+X*10,¥
TONEY+X*10,2

RETURN

~ ILLUSTRATION DU MOT
“ SCROLL

-~ LIMITES ECRAN
WIPE:INK3:B0X10,10,20,1

FORX=1TO54:SCROLL256:NEX1
FORX=1TO54 :SCROLL-1:NEXT
FORX=1TO54:SCROLL-256:NEXT
FORX=1TO54:SCROLL1:NEXT

“ ILLUSTRATION DES MOTS
“ SPECIAL ET SCALE

“ TEXTE ELASTIQUE

SPECIAL:HOME:WIPE
FORX=7T028
GOSUB32:NEXT
FORX=28TO7STEP-1
GOSUB32:NEXT

GOT022

SCALEZ2,X
OUTPUT"ELASTIQUE",1,0
RETURN

-65_

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56

10
12
14
16
18
20
22
24
26
28
30
32
34

“ ILLUSTRATION DES MOTS
DATA,READ ET RESTORE

- DESSIN DU DOIGT

- APPUYANT SUR UNE TOUCHE
DATA3,15,28,59,227,65,227,224
DATA63,127,0,227,67,65,227,224
DATA0,0,0,0,0,0,0,0
DATA251,251,251,123,59,251,243
DATA0,0,0,0,0,0,0,0
DATA28,24,24,16,0,48,48,0
DATA108,108,36,72,0,0,0,0
DATA108,254,108,108,108,254,10

RESTORE22:GOSUB54:SPECIAL
HOME : VPOKE&FEAD, 0

OUTPUT" !#",25,4:PAUSE.5
OUTPUT" #",25,4:PAUSE.S5
IFVPEEK(SFEAD)=0THENGOTO42
RESTORE30:GOSUB54: END

FORX=&§F900TO&F91E:READ U
VPOKEX,U:NEXT:RETURN

“ILLUSTRATION DES MOTS
“POINT ET PLOT

“DUPLICATION D“UN DESSIN
WIPE:SPECIAL:HOME
PEN2:0UTPUT"TEXTE RECOPIE",3,1
INK2:BAR26,127,105

FOR X=20 TO 130
FOR Y=104 TO 114

IF POINT(X,Y)=2 THEN PLOT X,Y+50:PLOT250-X,Y+50

NEXT: NEXT

8

4

-66-

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90

“ ILLUSTRATION DES MOTS
POKE ET USR

“ DEFILEMENT D" UN BANDEAU

“ EN BAS DE L7ECRAN

4

WIPE
DATAZ243
DATA223

DATA33,0,246
DATAL7,0,246

DATA6,9
DATA197
DATA126
DATA35

DATAL,63,0
DATA237,176

DATA1S8
DATAL1S9
DATA193

DATA16,243
DATAL1,211,12
DATA205,246,7

DATALl,1,0

DATAS58,0,56

DATA60
DATA192
DATALl
DATA120
DATAL177

DATA32,246
DATA195,2,64

RESTORE24:FORX=1T045

:“DEBUT

DI
RST 18H

LD HL,F600H
LD DE,F600H
LD B,09H
PUSH BC

LD A, (HL)
INC HL

LD BC,0039H
LDIR

LD A, (DE)
INC DE

POP BC

DINZ STO

LD BC,0CD3H
CALL O7F6H

LD BC,0001H
LD A,(3800H)
INC A

RET 2

DEC BC

LD A,B

OR C

JR Nz,STI
JP DEBUT

READA:POKE&3FFF+X,A: NEXT

OUTPUT"ILLUSTRATION DES MOTS POKE ET USR",20,10

FOR X=1 TO 100

USR&4000
NEXT

-57=

10
12

16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62
64
66
68
70
72

14

“ ILLUSTRATION DU MOT
“ SAVE

SAUVEGARDE D“UN PROGRAMME
“ AVEC BANIERE

CLEAR255,&B000
DATA0,0,16,0,0,0,0
DATA255,64,247,32,0,32,247
DATA254,0,8,1,0,0,0
DATA254,0,192,0,57,0,0
DATA251,192,219,0,3,0,192
DATA254,8,8,1,0,
DATA255,1,66,0,5
DATA253,0,0,0,0,

O
-
O

RESTORE24:FORX=1TO056
READA:POKE&AFFF+X, A: NEXT

DATA221,33,0,176
DATA62,1
DATA205,40,3
DATA201

RESTORE48:FORX=1TO1l0
READA:POKESBOFF+X,A: NEXT

WIPE:PEN3

OUTPUT"ESSAI BANIERE",80,228
POKE&BO2D,PEEK(&F722)
POKE&BO2E,PEEK(&F723)-PEEK(&F721)+1
USR&B100

-68-

