NORBERT RIMOUX—

GUDE DETUTILISATEUR

ALICIE IZT
ALICIE9D

Paris * Berkeley ¢ Diisseldorf e Londres

Photo de couverture : Dominique Weachter

Tous les efforts ont été faits pour fournir dans ce livre une information compléte et
exacte. Néanmoins, SYBEX n’assume de responsabilités, ni pour son utilisation, ni
pour les contrefagons de brevets ou atteintes aux droits de tierces personnes qui pour-
raient résulter de cette utilisation.

Copyright © 1984, SYBEX

Tous droits réservés. Toute reproduction, méme partielle, par quelque procédé gue
ce soit, est interdite sans autorisation préalable. Une copie par xérographie, photo-
graphie, film, bande magnétique ou autre, constitue une contrefacon passible des
peines prévues par la loi sur la protection des droits d’auteur.

ISBN : 2-7361-0078-8

Le domaine de la micro-informatique familiale est aujourd’hui
en pleine expansion. L’accroissement du nombre de machines de cette
catégorie promet d’étre spectaculaire dans les trois années a venir.

Dans un tel contexte, les machines a bas prix comme Alice repré-
sentent un marché non négligeable.

En effet, il est préférable de s’initier a la programmation sur un
micro-ordinateur bon marché plutét que de faire I’acquisition d’un
systéeme plus évolué et surtout plus spécialisé, qui risque fort de ter-
miner sa carriére en tant que simple console de jeu.

Le but de cet ouvrage n’est pas de faire découvrir au lecteur un
langage aussi courant que le BASIC, la documentation du construc-
teur remplit fort bien cette mission, mais plutot d’exposer les techni-
ques générales de programmation adaptées a Alice ou a son jumeau,
le MC 10 de TANDY.

La démarche adoptée s’inspire plus de la pratique que du cours
magistral, tout en développant certaines notions générales d’informa-
tiques indispensables a une bonne compréhension des processus de
fonctionnement d’un ordinateur. Bien évidemment, avant de s’atta-
quer directement aux astuces de la programmation, un tel apprentis-
sage passe d’abord par la maitrise d’un langage évolué, en I’occur-
rence le BASIC. Mais bien peu de projets ambitieux sont réalisables
sans aucune connaissance des arcanes du fonctionnement interne d’un
appareil spécifique. Pour cette raison, ce livre contient une introduc-
tion au fonctionnement du micro-processeur 6803 ainsi qu’a sa pro-
grammation. Quoique relativement déroutante pour le débutant, cette
section est sans conteste la plus riche d’enseignements quant a la
maniére de tirer le meilleur profit d’un systéme informatique.

-5 -

1

GENERALITES

QU'EST-CE
QU'UN ORDINATEUR

Un ordinateur est un appareil électronique sophistiqué dont la
tache est de traiter I’information, au sens large du terme. Cela signi-
fie, en clair, qu’il est théoriquement capable de tout faire. Mais nous
n’en sommes pas encore a ce niveau. Pratiquement, Alice peut traiter
des informations numériques, des textes, voire de I'image. Dans cer-
tains cas particuliers, et moyennant un équipement additionnel, ce
micro-ordinateur est capable de piloter de 'appareillage externe, cafe-
tiére, alarme, thermostat d’ambiance, etc.

Ces possibilités restent toutefois réservées aux bricoleurs de 1’élec-
tronique, a moins qu’un constructeur ne commercialise un dispositif
particulier “‘prét a ’emploi’’.

Pour beaucoup, ’ordinateur est devenu un mythe souvent un peu
angoissant d’autant que notre vie est en passe de devenir tributaire
de ’informatique. Mais un ordinateur n’est qu’un outil, certes per-
formant, mais parfaitement obéissant comme vous serez en mesure
de vous en rendre compte tout au long de ce livre. Il est particuliére-
ment pratique pour les tiches monotones et répétitives ou sa rapidité
de traitement et sa ‘‘patience’’ infinie en font un auxiliaire indispen-
sable. Mais sa vocation n’est pas toujours axée sur des applications
professionnelles, surtout pour un modéle familial qui passe prés de
soixante pour cent de son temps a des applications purement ludiques.

STRUCTURE INTERNE

Les capacités de traitement d’Alice sont dues & un seul petit cormi-
posant €lectronique : le microprocesseur. 1l est en fait le véritable ‘‘cer-
veau’’ de la machine, le décisionnaire en quelque sorte.

Malheureusement pour lui, il n’est capable d’effectuer qu’un nom-
bre tres restreint de tiches élémentaires... seulement si on lui en donne
Pordre. Seul, il est complétement inexploitable car il n’a absolument
aucune mémoire ; de ce fait, il ne lui est méme pas possible de se sou-
venir d’un ordre recu. 1l est donc évident qu’un ordinateur se doit d’en
posséder une. Dans ce cas précis ce sont d’autres composants qui rem-
plissent cette fonction. 1l en est des ordinateurs, comme des humains ;

-8 -

plusieurs types de mémoires sont nécessaires. Imaginez un instant que
vous soyez obligé de vous rappeler toutes les étapes de la digestion
puis de les effectuer ; il ne vous resterait alors que bien peu de temps
pour vivre. Il existe donc bien une mémoire inconsciente qui dicte a
notre organisme la bonne maniére de fonctionner. Dans un micro-
ordinateur, cette mémoire est celle qui contient toutes les instructions
de démarrage lors de la mise sous tension. Les boitiers qui tiennent
ce role sont les ROM ou MEM (mémoires mortes). Les ROM sont
normalement inaltérables, le processeur ne peut qu’y lire des instruc-
tions, mais en aucun cas, il n’en modifie le contenu.

Parallélement, le processeur est doté d’une mémoire beaucoup
plus souple qui constitue son aire de travail. La RAM ou MEV
(mémoire vive) est analogue a la feuille de papier sur laquelle nous
jetons les résultats de nos raisonnements les plus profonds. Le pro-
cesseur peut y écrire, la lire, I’effacer et y effectuer d’autres opéra-
tions aussi indispensables.

La technologiec employée pour la fabrication des composants de
RAM actuels présente un petit inconvénient. La mémorisation de I’in-
formation provient de la charge de plusicurs dizaines de milliers de
minuscules condensateurs intégrés sur une pastille de silicium de quel-
ques millimeétres carrés. Si le courant d’alimentation est coupé, les con-
densateurs se déchargent complétement et 'information qu’ils repré-
sentaient est perdue. Dés que I’on éteint un ordinateur, toutes les don-
nées ou programmes introduits y sont irrémédiablement perdus.

C’est a ce moment que ’on prend conscience de 'utilité d’un
moyen de stockage permanent. La mémoire dite de masse assure cette
tache, au mé€me titre que les livres sans lesquels notre savoir serait des
plus restreints.

La mémoire de masse n’est pas un dispositif réellement actif. Le
processeur doit d’abord charger son contenu en mémoire vive avant
de pouvoir I’exploiter.

Les problémes techniques que posent les mémoires de masse sont
particuliérement ardus et sont fonction de la méthode employée. A
I’heure actuelle, trois supports se partagent la faveur des constructeurs :
® la mini-cassette standard ;

e [e disque souple ;
e [e disque dur.

L’éventail de leurs performances est aussi large que celui de leur
prix.

¢
MC6B47P
AN4B319

[RSN AR NN

CETTcrvaad e

PH
qsw\mtiﬂn
) rlrrrl-rr“ .
. =t£

Figure 1.1. Photo de l'intérieur de I’Alice. On apercoit distinctement les différents
composants.

- 10 -

ROM

ROM

= =
}?

L

LECTURE & STOCKAGE
DES INSTRUCTIONS
EN MEMOIRE DE TRAVAIL

< mmuumuns
s>

[

]

[
|

1

|
|

TRADUCTION DES INSTRUCTIONS

A L AIDE DE LA ROM

PUIS EXECUTION

Figure 1.2. Schema du fonctionnement interne.

-1 -

RAM

RAM

Nous nous bornerons 4 examiner la fagcon dont procede Alice pour
sauvegarder des informations sur une bande magnétique standard,
puisqu’aucun autre moyen n’existe pour cette machine.

[l manque encore au microprocesseur les capacités de communi-
cation avec [’utilisateur ; ses sens en quelque sorte.

La liaison avec 'utilisateur se fait par le biais des deux appareils
périphériques de 'ordinateur : I’écran de visualisation et le clavier.
Dans ce domaine également les disparités sont spectaculaires.

Heureusement, les ordinateurs a vocation familiale sont tous batis
sur un mode¢le quasiment commun.

L’¢cran de visualisation, qui gére le flot de données du proces-
seur vers I’utilisateur, est généralement un téléviseur couleur classi-
que. Cette solution est sans aucun doute la plus valable puisque bon
nombre d’utilisateurs potentiels disposent déja d’un tel périphérique.

Dans le cas d’Alice, le clavier et ’ordinateur sont intégrés. Bien
qu’il ressemble par bien des cOtés a celui d’une machine a écrire, il
posséde certaines touches spécifiques susceptibles de varier d’un modéle
a autre. Nous verrons plus loin le détail de celui de I’Alice.

MICRO ORDINATEUR COULEUR

ONT CBAVE CLOWD |.||1

X

OfL. MEBTOAE rom LA BTEP WNREYS wPUT
mﬂi-llﬂﬂ-
GOSUS METUAN OTO PEER
a1 s) 1 D S
ASS Sin

EZD 0 £B 60 60 ch £ 8 R e
R

Figure 1.3. Le clavier de I'Alice. On remarque les touches spéciales ENTER,
CONTROL...

- 12 -

Papen
Feep POweg

Figure 1.4. Imprimante thermique.

VISUALISATION
IMPRIMANTE
UNITE MEMOIRE DE
CENTRALE SAUVEGARDE
MANETTES
DE JEU

CLAVIER

Figure 1.5. Synoptique de configuration.

- 13 -

L’unité centrale (UC) accompagnée de son écran et de son magné-
tophone a cassette est préte a fonctionner dans de bonnes conditions.

Mais il n’est pas rare de rencontrer des systémes informatiques
munis de périphériques supplémentaires. Ainsi, Alice peut €tre con-
necté a une petite imprimante thermique trés utile pour I’archivage
des données sur papier.

Une configuration classique répond a la synoptique suivante, et

LA COMMUNICATION
AVEC L'ORDINATEUR

Le microprocesseur est un composant programmable, ¢’est-a-dire
gu’il est possible de lui fournir une liste d’instructions qu’il est capa-
ble de ‘‘comprendre’’. Cette liste représente un programme dans le
langage de la machine.

Malheureusement pour nous, la CPU (Central Processing Unir)
ne reconnait que des quantités numériques. Ainsi, chaque instruction
de base est-elle codée par un nombre. Un programme en /langage
machine n’est donc qu’une suite de chiffres peu représentatifs de leurs
effets. C’est pour cette raison que les informaticiens ont congu des
langages évolués.

Quoique beaucoup plus compréhensible pour le programmeur,
un langage de programmation n’est qu’un péle substitut au langage
naturel (généralement ’anglais). Notrc maniére de parler comporte
bien trop d’ambiguités et de ‘‘sous-entendus’’ pour étre facilement
analysée par un programme d’ordinateur. A I’heure actuelle, il existe
plus d’une centaine de langages évolués ‘‘tournant’’ sur des ordina-
teurs. Mais le plus simple a apprendre est sans nul doute le BASIC.
Ce n’est pas sans raisons que I’immense majorité des constructeurs
propose ce langage intégré en version de base sur leur machine. Avant
d’approfondir ce langage en particulier, voyons d’abord les caracté-
ristiques d’un langage.

Schématiquement, il est possible de dire que chaque langage pos-
séde un domaine dans lequel il excelle. Mais il n’en existe aucun qui
soit universel, loin s’en faut. Seul la bonne connaissance de la pro-
grammation permet de se faire une bonne idée de ses besoins en matiére
de langage. Mais plus un langage est performant, plus son mode d’em-

— 14 -

ploi est ésotérique. Pour vous en convaincre, il suffit de regarder com-
ment est fait un programme APL,FORTH ou, dans une moindre
mesure, un programme en Pascal.

Toujours est-il que la connaissance des méthodes de program-
mation est bien plus importante que celle de la syntaxe d’un langage
donné.

C’est pourquoi le BASIC est trés bien adapté a apprentissage
de la programmation pourvu que I’on se souvienne qu’il n’en est que
’un des supports possibles.

PRESENTATION
DU BASIC

Le BASIC est le langage résident dans la ROM de I’Alice. C’est
donc lui qui nous servira de référence tout au long de ce livre.

Il est constitué d’un ccrtain nombre de mots clés exécutant des
taches précises.

Ces instructions, proches de ’anglais, décrivent aussi fidélement
que possible leurs effets.

Par exemple, PRINT signifie imprimer dans la langue de Sha-
kespeare et instruction BASIC PRINT “BONJOUR”’ affichera BON-
JOUR sur P’écran de visualisation.

Le BASIC a un grand nombre de détracteurs.

Le reproche le plus courant qui lui est fait est sa lenteur. Ceci
provient du fait qu’il est presque toujours interprété, ¢’est-a-dire que
chaque instruction est préalablement décodée avant d’étre exécutée ;
au contraire des langages dits compilés, qui traduisent d’abord glo-
balement I’ensemble des instructions du programme avant d’exécuter
le tout. Il y a donc un gain de temps considérable lors de I’exécution
de celui-ci.

Mais un compilateur nécessite beaucoup plus de place en mémoire
qu’un interpréteur, ce qui est inacceptable sur une machine comme
Alicc relativement limitée dans ce domaine.

- 15 —

» code machine 1

icode machine 1

icode machine 2

INSTRUCTION 1
DECODAGE
EN LANGAGE
MACHINE
INSTRUCTION 1
INSTRUCTION 2
g
DECODAGE
|| EN LANGAGE
MACHINE
L~

— 16 —

A

INSTRUCTION 1

INSTRUCTION 2
INSTRUCTION 3

INSTRUCTION 1

INSTRUCTION 3

INSTRUCTION n;
—_

INSTRUCTION 2 /

ode machine 1
icode machine 2

A

v

DECODAGE
EN LANGAGE
MACHINE

DECODAGE
EN LANGAGE
MACHINE

- 17 -

icode machine 3

—_—
|

icode machine 1

icode machine 2

icode machine 3

¥ code machine rﬂ

-

INSTRUCTION 1

|

INSTRUCTION 2
INSTRUCTION 3

|

INSTRUCTION 1
INSTRUCTION 2
INSTRUCTION 3

P ——
INSTRUCTION n

AN

A

AN

—_ —_———/
INSTRUCTIONNn|

—»code machine 1

_—=—>EXECUTION

A

code machine 2

- 18 —

—>EXECUTION

r |
INSTRUCTION 1| .

—_

INSTRUCTION 2| _ -

INSTRUCTION 3| =

INSTRUCTION 1| -
INSTRUCTION 2| -
INSTRUCTION3 -

-~

INSTRUCTION n,

—>code machine 3|

—>EXECUTION

ﬁ i)
_T7———"code machinen

Figure 1.6. Schéma comparatif interpréteur-compilateur.

- 19 -

—>EXECUTION

Le BASIC n’est capable de travailler que sur deux types de don-
nées différents :

e les données numériques ;
e les données alphanumériques.

Les données numériques sont interprétées selon leur vrai sens,
¢’est-a-dire comme autant de nombres susceptibles d’€tre traités arith-
métiquement. Dans le second cas, Uinterpréteur BASIC ne cherche
en aucune maniére leur signification.

Ces données sont considérées comme des symboles sans aucune
signification.

Les alphanumériques peuvent étre n’importe lequel des caracté-
res ou groupe de caractéres obtenu a partir du clavier.

Pour achever cette description générale du BASIC, rappelons que
ce type de programmation impose certaines régles trés rigides.

e Les instructions sont regroupées par lignes de programme.
e Chaque ligne est numérotée.

e [’exécution se fait dans I’ordre croissant des numéros de lignes, sauf
spécification contraire du programmeur.

® Si aucun numéro de ligne n’est spécifié, la commande est immédia-
tement exécutée et n’est pas mémorisée.

— 20 -

=
—cH
=M

=
=0

E

FONCTIO

FONCTIONNEMENT
DE L'INTERPRETEUR BASIC

L’interpréteur BASIC cst un programme en langage machine qui
assure le décodage des ordres du programmeur et les exécute.
Il peut fonctionner selon deux modes :

® [e mode immediat ;
¢ le mode différé.

Dans le premier cas, I'instruction ou la suite d’instructions est
stockée a l1a fois sur I’écran et dans une zone spécialisée de 1a mémoire
dénommée buffer. Le processus est ainsi répété jusqu’au moment ou
la frappe de la touche ENTER est détectée. A ce moment I’ordina-
teur va analyser le contenu du buffer puis exécuter les instructions qu’il
contient. En fin d’exécution, celui-ci est réinitialisé et les instructions
entrées par I’opérateur sont perdues. Il faut signaler, et cela reste valable
quelle que soit la machine, que la taille du buffer ne dépasse jamais
255 caractéres (127 pour Alice). Le nombre d’instructions exécutables
“‘simultanément’’ en mode immédiat est donc tres limité,

Le mode immédiat est assez peu usité. C’est en fait le mode dif-
féré ou mode programme qui fait tout I’intérét d’un ordinateur.

Lorsqu’une ligne d’instructions est précédée par un nombre, I’or-
dinateur réagit différemment. Lorsque I’entrée d’une ligne a été vali-
dée par la touche ENTER, celle-ci est simplement recopiée dans la
mémoirc vive RAM d’Alice. Puis Pinterpréteur va a nouveau scruter
le clavier sans exécuter la ligne de programme.

RUN est la commande qui ordonne a ’ordinateur d’exécuter les
instructions stockées. Aprés ’exécution compléte, le programme est
intact et peut étre réutilisé autant de fois que nécessaire.

L’interpréteur va tout d’abord chercher a reconnaitre les “‘vraies’’
quantités numériques puis les instructions BASIC, et enfin les quan-
tités variables. Si 4 un moment donné une erreur est détectée, il stoppe
I’exécution et affiche sur ’écran un message décrivant le type d’er-
reur et I’endroit ou elle est localisée (voir Annexe 2).

- 22 -

SCRUTATION

v

CLAVIER
non . STOCKAGE
oui
; LE BASIC FONCTIONNE
EXECUTION COMME UNE BOUCLE

PERPETUELLE

Figure 2.1. Diagramme de fonctionnement du BASIC.

EDITION D'UN PROGRAMME

Il est nécessaire de respecter un certain nombre de conventions
sous peine d’obtenir un message d’erreur. Ainsi, les numéros de lignes
doivent impérativement €tre compris entrc 0 ct 63999. Les raisons de
cette limitation apparaitront plus clairement lorsque nous aborderons
les chapitres sur le langage machine.

A titre d’exemple entrez les lignes suivantes :

—1 PRINT ENTER
10 PRINT ENTER
64000 PRINT ENTER

ct observons la réaction de ’ordinateur.

Avant ‘‘d’attaquer’’ un programme il est nécessaire de connaitre
un certain nombre d’instructions et de ‘“‘ruses’’. Mis a part 'exécu-
tion, il est indispensable de visualiser le programme résident dans la
mémoire vive. C’est le role du mot clé LIST qui est susceptible d’étre
utilisé de plusieurs maniéres ; on dit aussi qu’il dispose de plusieurs
syntaxes d’utilisation.

e LIST utilisé seul fait défiler sur I’écran I’ensemble du programme
résident en mémoire RAM.

- 23 -

o LIST suivi d’un numéro de ligne ne visnalisera que 12 ligne concer-
née si elle existe. ’

e LIST No - No imprimera toutes les lignes dont 165 IUMEros sont
compris entre Jes deux nombres mentionnés, limites COMPTISES.

Entrez le programme ci-dessous et essayez plusiCUrs variantes.

Si on désire supprimer une ligne, il suffit de tapeT SOI NUMEro
et de le valider. Le processus est exactement le méme ¢! €28 de modi-
fication, la nouvelle ligne se substituera a 1’ancienn®: A ce sujet, il
est interdit d’employer des numéros de ligne décimauX- Pans ce cas,
le BASIC ne signalera pas I’erreur mais risque de détruire une ligne
existante.

10.5 PRINT ENTER
LIST ENTER
10.5 PRINT

Seule la partie entiére a été interprétée comme un numéro de ligne.

Ainsi, s’il existait une ligne 10 celle-ci a été détruite par une ligne
erronée de surcroit.

- 24 -

11 faut savoir que le BASIC stocke et exécute les lignes de pro-
gramme selon leur numérotation, du plus petit au plus grand nombre.

10 PRINT ENTER

30 PRINT ENTER

25 PRINT ENTER
5 PRINT ENTER

LIST ENTER

5 PRINT

10 PRINT

25 PRINT

30 PRINT

Pour cette raison, une bonne habitude a prendre consiste a rédi-
ger ses programmes en utilisant une numérotation de ligne de 10 en
10. Ainsi, il est facile d’insérer de nouvelles instructions si besoin est,
sans avoir a réajuster le programme déja présent en mémoire.

Notons que I’instruction NEW efface complétement les lignes de
programme présentes en mémoire. Il est donc fortement conseillé de
I’utiliser avant de commencer un nouveau programme pour éviter les
interactions avec des instructions résiduelles. Mais son emploi en mode
différé est a proscrire impérativement, car un programme ainsi con¢u
s’autodétruirait sans possibilité de le récupérer.

GEOGRAPHIE DE L'ECRAN

L’écran de visualisation, dans le cas d’Alice, est un simple télévi-

;;;;;;

cessus de visualisation est confié 4 un circuit spécialisé dit CRTC
(Cathod Ray Tube Controler). Nous n’entrerons certes pas dans le
détail de son fonctionnement qui importe peu au niveau de la
programmation.

Mais plus importante est la maniére dont 'unité centrale gere
I’affichage.

Une portion de mémoire est réservée pour I'image vidéo. Cette
RAM vidéo est en fait une représentation numérique de I’écran tel que
nous le voyons sur le téléviseur. Chaque caractere possede un numéro
de code.

Lorsque ’un d’entre eux est destiné a &tre affiché, son code est
introduit dans la mémoire vidéo. A ce moment, une autre partie de
la mémoire est lue, qui contient I’image du caractére sous forme de
points, puis le CRTC s’occupe de transformer ces informations en un
signal compatible avec le téléviseur.

Par exemple, le code du ““A’’ est 65 (voir annexe 1), la 65¢ forme
dans la mémoire des caractéres sera :

*%
* *

k| K|k |k |k
KKK |k K

Chaque caractére occupe une case de la mémoire encore appelée
octet.

La mémoire vidéo d’Alice peut en contenir 512 répartis en 16 lignes
de 32 caractéres.

O 1 2 3 ¢ 3 6 7 8 01011121314 1516 1718 19 20 21322 23 24 23 26 27 28 29 30 I

Figure 2.2. RAM video.

-2 —

La position d’affichage sur ’écran est symbolisée par un curseur
clignotant alternativement vert et bleu foncé. Pour des raisons de con-
fort d’utilisation, il est préférable de changer le vert du curseur en unc
autre couleur. Il suffit d’appuyer simultanément sur les touches
CONTROL et 0.

Si vous répétez cette opération, le curseur deviendra tour a tour :
jaune ; bleu clair ; rouge ; blanc ; bleu pale ; magenia ; orange ; vert.

La couleur de ’affichage des caractéres est toujours noire sur fond
vert sauf lorsqu’on tape les touches SHIFT et 0 en méme temps, auquel
cas, les caractéres apparaitront verts sur fond noir. Ce mode n’est pré-
sent que pour signaler le passage a un affichage des caractéres en minus-
cules. Si ceux-ci sont destinés & étre envoyés vers une imprimante, par
exemple. Le BASIC ne reconnait plus les mots clés s’ils sont entrés
dans ce mode.

VISUALISATION A L'ECRAN

La premiére instruction BASIC gu’il est nécessaire d’analyser est
bien entendu celle qui permet de visualiser une donnée a ’écran.

Il s’agit bien entendu de PRINT gue nous avons déja introduit
dans le premier chapitre.

LES DONNEES DE PRINT

PRINT ne peut manipuler que deux types de données : des nom-
bres ou des caractéres sans aucune signification pour ’ordinateur.

10 PRINT 3

inscrira un trois a la position courante sur ’écran.
Par contre :

10 PRINT A
n’imprimera qu’un 0.
L’explication en est simple : le BASIC cherche a interpréter tous

les messages entrés a partir du clavier. Pour lui, A n’est ni un nom-
bre, ni une instruction qu’il soit en mesure d’exécuter. Si I’on désire

- 27 -

que la lettre A soit imprimée, il faut lui signaler qu’il ne doit en aucune
maniére lui chercher une signification dans le cadre du BASIC.
Ce réle cst attribué aux guillemets.
Ainsi :

10 PRINT A"

fera bien apparaitre la lettre A sur le téléviseur.

Nous pouvons généraliser cette notion en disant que tout carac-
tére entre guillemets est considéré comme un simple symbole sans
aucune signification et destiné a étre reproduit tel quel par I’ordinateur.

Ces données purement symboliques sont appelées chaines de carac-
téres ou alphanumériques (alphabétique-numérique).

LES SYNTAXES DE PRINT
l

PRINT peut également étre employé avec diverses syntaxes :
Essayons ces trois programmes :

10 PRINT “BONJOUR"”
20 PRINT “VvOUS”

10 PRINT “BONJOUR";
20 PRINT ““VvOUS”

10 PRINT “BONJOUR",
20 PRINT “VOUS"

Les trois messages suivants seront respectivement affichés :
BONJOUR
VOUS
BONJOURVOUS
BONJOUR VQUS
St aucune ponctuation n’est employée en complément de PRINT,
le programme efface la fin de la ligne puis envoie un retour-chariot
¢t I'impression se fera dans la premiére colonne de la ligne suivante.

Le point virgule annule ce dernier effet et ’affichage se fait a la
position immédiatement consécutive.

- 28 -

Quant a la virgule, son action est un peu plus complexe. Elle sépare
I’écran en deux portions indépendantes. Elle agit comme une tabula-

tion automatique.

Mais plut6t que d’épiloguer a ce sujet, mieux vaut expérimenter
son effet en écrivant un programme du type :

10 PRINT “BONJOUR",

20 PRINT ““VOUS",

30 PRINT ““LA VIE EST BELLE",

40 PRINT ““POUR LES PROGRAMMEURS";

Sur une méme ligne de programme, une seule instruction PRINT
suffit a afficher plusieurs données, pourvu qu’elles soient séparées par
’une des deux ponctuations standard. De cette facon, le programme
précédent aurait pu étre condensé en une seule ligne.

10 PRINT “BONJOUR",”’VOUS"",“LA VIE EST BELLE",
“POUR LES PROGRAMMEURS";

L’affichage des nombres présente aussi quelques caractéristiques
spéciales qui ne se retrouvent pas toujours dans les autres BASIC.

Lors de la visualisation, un nombre quelconque sera précédé par
un espace séparateur plus un caractére ‘-’ si le nombre est négatif,
ou un autre espace s’il est positif sauf si un point-virgule a été employé.
Dans ce cas, I’espace séparateur est éliminé.

10 PRINT “NUMERO"’;3
20 PRINT “NUMERQ";-3

affichera :

NUMERO 3
NUMERQ-3

LA TABULATION

I est heureusement possible de positionner les données & impri-
mer a sa guise. L’instruction PRINT@ permet de sélectionner I'une
des 512 positions de ’écran. Si H représcnte la coordonnée horizon-

— 29 _

tale entre O et 31 et V la verticale entre O et 15, la position se calcule
selon I’équation :

32 xV+H

Le programme visualise les deux quantités alphanumériques en
lignes 10 et 12, colonne 5 (6¢ colonne).

Une autre option est représentée par ’utilisation conjointe de
PRINT et TAB. TAB émet autant d’espace que spécifié par son opé-
rande. Le résultat en est une tabulation relative par rapport a la posi-
tion courante d’affichage, mais avec effacement des caractéres qui
pourraient étre entre les deux.

Remarquez la ligne 30 qui permet de tabuler I’écran a la ligne 12
sans effacer le message déja inscrit (utilisation du point-virgule).

L’effacement complet de I’écran s obtient avec la commande CLS.
Le curseur est alors positionné en ligne 0 et colonne 0. CLS peut étre
suivie d’un nombre, auquel cas, la couleur du fond de I’écran est modi-
fiée. Cet opérande est un nombre compris entre 0 et 255, mais seules
les valeurs de 0 a 8 sont significatives.

CALCUL NUMERIQUE

Les nombres que peut traiter Alice sont des réels positifs ou néga-
tifs dont la plage de variation est située entre les bornes :
10" et —10%
La notation informatique de ces nombres en virgule flottante suit les
régles suivantes :

® E représente ’exposant ou la puissance de dix associée.
® Le point est ’équivalent de notre virgule.

- 30 -

Ainsi 1000 peut s’écrire 1E + 3,
0,001 1E—3.

La représentation sur ’écran est au maximum de neuf chiffres.
Il faut signaler que dans le cas ou cette limite est atteinte, la derniére
décimale est arrondie.

Les performances d’Alice, et de tous les autres ordinateurs fami-
liaux d’ailleurs, sont nettement inférieures a celles des calculettes
spécialisées.

Bien entendu, le BASIC dispose des opérateurs algébriques
classiques :

Addition +
Soustraction —
Division /

Multiplication #

La méthode de programmation des calculs est exactement calquée
sur notre facon de travailler a I’aide d’une feuille de papier. Le calcul
s’effectue de gauche a droite, les opérateurs / et * sont prioritaires
sur + et —. Les parenthéses modifient ces priorités.

Exemple 1
10 PRINT 10+3
- > 13
Exemple 2
10 PRINT 10+ 3+5
-> 25
Exemple 3
10 PRINT (10 +3)+5

- > 65

- 31 -

Exemple 4

10 PRINT “8+7="
20 PRINT 3+2

- > 8+7=5
Cet exemple démontre bien la différence que fait I’ordinateur cntre
une chaine de caractéres et des quantités numérigues.

Attention, si vous désirez voir le résultat, il est nécessaire d’or-
donner a la machine de le visualiser a I’écran par un PRINT.

LES VARIABLES

LES VARIABLES NUMERIQUES

Certaines quantités numériques ne peuvent pas étre directement
incorporées dans un programme BASIC, car elles ne sont pas cons-
tantes. Il est alors nécessaire de les paramétrer. En clair, cela signifie
que l’on fait référence a sa représentation et non plus a sa valeur.

Prenons par exemple une éguation simple qui nous permet de
retrouver la distance parcourue en fonction de la vitesse moyenne et
du temps. Elle peut se symboliser sous la forme :

D=V xT
avec D : distance ; V : vitesse ; T : temps.

Sous cette forme, I’équation reste trés générale. Pour une appli-
cation donnée, il suffit de remplacer les quantités symboliques par leur
valeur numérique.

D, V el T sont des variables.

Le BASIC est prévu pour employer des variables. Lors de ’exé-
cution, toute variable rencontrée est remplacée par la valeur qu’elle
contient a ce moment,

Il suffit qu’elle soit mentionnée pour gu’elle soit créée. Dans le
cas de figure qui nous préoccupe, une variable est une zone de la
mémoire de travail réservée. Elle occupe sept cases de mémoire dont
deux pour le nom de la variable ct cinq pour la valeur résidente.

Le label mentionné dans le programme peut avoir un grand nom-
bre de caractéres, mais seuls les deux premiers sont significatifs.

- 32 -

Exemple 1

10 ADRESSE = 10
20 PRINT ADMISE

- > 10

ADresse et ADmise sont un seul et méme label pour 'interpré-
teur. Cette caractéristique est la cause de bon nombre d’erreurs diffi-
ciles a découvrir.

Le BASIC cherche d’abord a détecter les mots clés de son voca-
bulaire, le nom d’une variable ne doit donc pas contenir le nom d’une
instruction.

Exemple 2

10 PRINTEMP = 0

sera interprété comme PRINT EMP = 0.

Nous verrons que cette ligne de programme ne ‘‘perturbe’’ abso-
lument pas ’'interpréteur ; aucun message d’erreur n’est émis, mais
I’effet produit n’a plus aucun rapport avec le but du programmeur.
C’est 'une des deux ou trois erreurs les plus difficiles & mettre en évi-
dence dans un programme un tant soit peu évolué.

11 est conseillé d’utiliser des variables dont le label ne dépasse pas
deux caractéres. Si le listing résultant est moins lisible, les possibilités
d’erreurs en sont d’autant réduites.

Les variables imposent les contraintes suivantes :

* Le nom doit commencer par un caractere alphabétique. AB, Al,
Bs ...

* Seuls les deux premiers caractéres sont significatifs.
* Le nom ne doit pas contenir un des mots clés du BASIC.

En revanche, 'utilisation des variables numériques en BASIC est
extrémement souple. Elle est basée sur le symbole d’affectation ‘=",
une autre syntaxe est également tolérée ; LET ... =. Mais attention,
= n’est pas ici opérateur mathématique. A = B est différent de B=A.
L’expression de droite est d’abord évaluée puis stockée dans la varia-
ble a gauche du signe.

Ceci explique que des expressions comme A = A + 1 sont parfai-

- 33 -

¥

INSTRUCTION |oui
BASIC ? EXECUTION

non

v

QUANTITE |ow | STOCKAGE
NUMERIQUE TEMPORAIRE

non

A 4

CREATION
D’ UNE VARIABLE

Figure 2.3. Analyse de ['interprétation.

tement exactes en informatique ; la valeur finale de A sera égale a sa
valeur initiale plus 1.

Exemple 3

10 A=10

20B8=22

30C=A+8B

40 PRINT A;”"+":B;”"="":C

On obtient :
- > 10+22=32

Signalons enfin qu’a sa création une variable numérique contient
la valeur 0 et ce, jusqu’a ce qu’une valeur lui soit affectée. L’instruc-
tion de démarrage RUN réinitialise les variables.

LES VARIABLES ALPHANUMERIQUES

Les données numériques ne sont pas les seules a4 pouvoir étre
symbolisées. Il en va de méme des chaines de caractéres. Toutes les
regles générales restent valables dans ce cas. 11 faut cependant tou-
jours tenir compte du type de la variable, car selon les instructions

— 34 -

qui sont paramétrées, celles-ci réclament un opérande soit numérique,
soit alphanumérique. Si une erreur survient en cours d’exécution, un
message d’erreur est affiché (voir Annexe 2).

L’instruction ‘‘ + '’ est une des exceptions a cette régle. Mais elle
agit différemment selon le type de variable utilisée.

La différenciation se fait a ’aide d’un symbole particulier : ““$”.

Les variables A et A$ sont donc traitées différemment par

I’interpréteur.

Exemple 1
10 A$= "BON"
20 B$= “JOUR”
30 C$= ""SOIR”
40 D$= A$+BS
50 E$= A$+CS

60 PRINT ~“A$="";AS;
70 PRINT “B$=",BS$;
80 PRINT “C$=",C$
90 PRINT D$;” ",E$

On obtient :
-> A$=BON B$=JOUR C$=SOIR
BONJOUR BONSOIR

Le signe ¢+ est un opérateur de concaténation pour les chai-
nes de caractéres. Il met bout a bout les deux chaines avant de les stoc-
ker dans la variable réceptrice.

STRUCTURE ET CODE ASCII

La structure des variables alphanumériques est plus complexe que
celle des numériques. Si I’apparence reste la méme, deux octets pour
le label et cinq pour le stockage, le processus de lecture et d’écriture
se fait en temps. Les cing octets contiennent la longueur de la chaine
de caractéres ainsi que son emplacement dans une autre mémoire réser-
vée a cet effet.

Nous verrons comment mettre a profit une telle structure de
maniere rusée. Mais les chaines sont de taille réduite, au maximum
255 caractéres (retenez bien ce nombre car il est I’une des clés de la

- 35 -

CREATION DE A $

P
NOM{ 65
128
LONGUEUR 0
INUTILISE -
X X

POINTEUR
XX

INUTILISE

A $ =“ SAUMON”

INUTILISE

POINTEUR {
INUTILISE

Figure 2.4. Ecriture des variables alphanumerique.

36.

micro-informatique). Mais pour parvenir a cette limite, il est néces-
saire d’intervenir directement au niveau de la variable.

En utilisation normale, iec nombre de caractéres susceptibles d’étre
emmagasinés dans la mémoirc spéciale est de 100. En cas de dépasse-
ment, un message d’erreur apparait a I’écran. Il est heureusement pos-
sible de pallier cet inconvénient a I’aide de P’instruction CLEAR sui-
vie d’un nombre qui représente la taille en nombre de caracteéres, de
la mémoire des variables alphanumériques. En fait, CLEAR a d’au-
tres effets secondaires :

e Mise a 0 des variables numériques.
e [es variables alphanumériques sont égales a la chaine vide ‘“°.

La mémoire restreinte d’ Alice ne permet pas toujours de jongler
comme on le voudrait avec les chaines de caractéres. L’illustration en
sera faite lorsque nous verrons la réalisation d’un fichier d’adresses.

Nous avons vu que les caractéres étaient enregistrés dans la
mémoire vive (RAM). Mais la forme sous laquelle ils le sont n’est pas
trés simple & comprendre, du moins pour le débutant.

En fait, le processeur n’est pas capable de traiter des données
autres que des nombres. Il a donc fallu user d’un artifice pour qu’il
traite des textes divers.

La transition entre le symbole d’imprimerie et la donnée infor-
matique est réalisée grace a un codage numérique standardisé des tou-
ches du clavier ; ¢’est la norme ASCII (American Standard Code for
Information Interchange).

L’ensemble des codes est répertorié dans I’Annexe 1. La valeur
du code associé a un caractere est comprise entre 0 et 255. Le proces-
seur peut ainsi travailler sur des nombres, et réaliser une simulation
de traitement des textes.

Dans le cas des variables alphanumériques, ce sont les codes de
tous les caractéres qui sont enregistrés. La visualisation s’opére selon
le processus décrit au Chapitre 1.

LES TABLEAUX

Dans beaucoup de programmes, il est pratique d’avoir a sa dis-
position une série de variables entre lesquelles il existe une corréla-
tion. Une table dc multiplication, un déterminant de matrice, un tableau
comparatif sont des structures nécessitant ce type de variables. Le

- 37 -

BASIC dispose de cette option sous le nom de fableau ou plus rare-
ment de vecteur. Un tableau informatique est un ensemble de varia-
bles élémentaires qui sont repérées en fonction de leur indice.

Un tableau peut avoir plusieurs dimensions. Une liste n’est qu’un
tableau a une dimension, une table a deux dimensions, etc.

Chacune des cases du tableau se comporte exactement comme une
variable numérique ou alphanumérique. Mais il est nécessaire de signa-
ler a ’interpréteur le nombre maximum d’éléments qu’est susceptible
de contenir un vecteur donné. Il réservera alors une place dans la
mémoire de travail. Cette opération est le dimensionnement ; il est
effectué par l’instruction DIM.

Exemple 1

Si nous désirons fabriquer un tableau numérique nommeé TA pos-
sédant deux dimensions avec respectivement dix et douze éléments pour
chacune d’entre elles, il suffit de taper ’'instruction

10 DIM TA (10,12

Le redimensionnement au cours d’un programme est formelle-
ment interdit, aussij est-il préférable de dimensionner les tableaux une
fois pour toutes en début de programme. Si aucune instruction DIM
n’a été mentionnée, un tableau sera automatiquement formaté a 10
par dimensions, soit onze éléments numérotés de 0 a 10.

Exemple 2

On obtient :
- > 1

2

3

4

Comme on le constate, chaque élément constitutif du tableau peut
étre considéré comme indépendant. L’avantage de ce procédé est de
pouvoir sélectionner une donnée par calcul,

Exemple 3

Si nous rajoutons les lignes :

100 A=1

110 PRINT B(A,A-1)
On obtient :
_ > 1

2

3

4

2

Les tableaux peuvent aussi étre déclarés avec des variables alpha-
numériques avec les mémes conventions que pour les variables simples.

Le nombre de dimensions utilisables pratiquement est limité a 10,
mais il faut savoir que la mémoire risque d’étre bien vite saturée avec
des tableaux moins vastes mais possédant un nombre plus élevé d’élé-
ments par dimension.

FONCTIONS MATHEMATIQUES

Malgré des performances moyennes en calcul numérique pur, Alice
est doté de tout un éventail de fonctions mathématiques pures.

Un petit détail peut s’avérer génant lors de I'utilisation des fonc-
tions trigonométriques. Le calcul fait appel a des développements
limités.

Malheureusement, aucune conversion de mesure d’angle n’est pré-
vue, il faut donc utiliser des opérandes en radians.

Fxemple 1

— 39 -

On obtient :

-> 1.32613524E-06
1
754070.905

L’imprécision du premier résultat provient du fait que notre PI
n’est pas trés précis, mais la méthode de calcul entraine également une
erreur.

Les autres fonctions ne posent aucun probléme. Pour leur syntaxe,
référez-vous a I’Annexe 3.

ENTREE DES DONNEES

Généralement, un programme d’ordinateur ne peut pas toujours
avoir ses données de travail incorporées.

Considérons par exemple un distributeur de billets de banque.
11 s’agit d’un petit ordinateur qui ne posséde qu’un programme. Celui-ci
a besoin de données extérieures pour étre capable d’effectuer le trai-
tement pour lequel il a été congu. En I’occurence, le numéro de code
de I’utilisateur.

Un programme doit donc pouvoir suspendre temporairement son
exécution et redonner le contrdle au clavier jusqu’a ce que I’entrée
des données soit terminée.

Bien évidemment, il existe une instruction BASIC qui assure ce
rOle de messager : INPUT.

Elle dispose de presque autant de syntaxes différentes que PRINT.

I1 est nécessaire de lui indiquer une ou plusieurs variables récep-
trices des données externes. Dans le cas ou plusieurs variables sont
concernées, il est impératif qu’elles soient séparées par une virgule.

Examinons plutot la signification d’une ligne de programme
comme :

10 INPUT AS

SCRUTATION CLAVIER [+
|

non . STOCKAGE

oui

AFFECTATION
A LA VARIABLE

L

SUITE
DU PROGRAMME

Figure 3.1. Organigramme INPUT.

- 42 -

Si la donnée est incompatible avec la variable réceptrice, INPUT
refuse I’entrée et en demande une nouvelle en affichant un message
REDO.

Nous verrons au chapitre suivant une méthode de programma-
tion permettant de pallier cet inconvénient.

INPUT affiche toujours un point d’interrogation sur I’écran pour
signifier ’attente d’une entrée.

Une bonne habitude consiste a afficher un message descriptif dans
le but de guider ’opérateur.

Exemple

10 PRINT "“QUEL EST VOTRE NOM";

20 INPUT N3
30 PRINT N$;”VOUS ETES BELLE"

40 PRINT
50 PRINT “DANS LE DOUTE"
60 PRINT “SOYONS GALANT 1"

On obtient :

- > QUEL EST VOTRE NOM ? MIMI ENTER
MIMI VOUS ETES BELLE
DANS LE DOUTE
SOYONS GALANT !!

Il n’y a plus de dilemme, vous ne risquez plus de rentrer le prix
du kilo de colle forte en lieu et place de votre nom (2 moins d’en avoir
un vraiment original).

INPUT est prévu pour afficher une telle phrase optionnelle. On
ne peut malheureusement pas profiter de toutes les possibilités de tabu-
lation de PRINT.

Exemple

10 INPUT “VOTRE NOM"";N$
20 PRINT N$;”VOUS ETES”;
30 PRINT "TOUJOURS BELLE"”

On obtient :

- > VOTRE NOM ? MIMI ENTER
MiIMI VOUS ETES TOUJOURS BELLE

- 43 -

Mais certains programmes requierent ’entrée d’une seule don-
née sans interruption visible du traitement. Vous avez certainement
déja jou¢ avec une console de jeu, voire une machine de café. Votre
action sur le clavier ou les manettes de jeu est prise en compte par
le programme sans que celui-ci ne s’arréte.

Cette saisie au vol est le role de INKEYS$. La variable réccptacle
doit obligatoirement étre alphanumérique.

En réalité, INKEYS$ va observer le buffer du clavier (un octet)
et voir si une touche a été actionnée depuis la précédente scrutation.
Si tel cst le cas, la valeur de la touche est affectée a la variable, sinon
celle-ci est réinitialisée a 1I’élément vide “*”’.

L’ensemble du processus ne prend que quelques milliemes de
seconde, ce qui explique son caractére quasi instantané. INKEY$ est
plus souple que INPUT en ce sens que chaque caractére entré peut
étre testé.

L’Annexe 3 donne un exemple de simulation de INPUT grice a
INKEYS.

PRISE DE DECISION

Bien entendu, un programme doit posséder des options de déci-
sion. Reprenons I’exemple du distributeur de billets de banque. Si le
code est conforme, ’opération se déroule correctement. Si, par contre,
la donnée est erronée, la carte sera avalée.

Face & une action précise, le programme de gestion peut réagir
selon deux schémas directeurs, en fonction de I’état de I’environnement.

11 est donc capable de tester et de décider en fonction des consé-
quences de ces tests.

S| CODE VALABLE ALORS ACTION SUIVANTE
SINON AVALER LA CARTE

Le programme aurait pu étre écrit dans un tel langage.

Mais le BASIC est d’origine anglo-saxonne, et I’instruction BASIC
se traduit par IF THEN.

La partie située entre IF et THEN est un test de véracité. Si le
résultat est faux (0 pour Alice), I’interpréteur se déroutera sur la ligne
suivante sans exécuter les instructions en aval de THEN. Sinon, celles-ci
sont exécutées.

IF

v

oui | CONDITION |non
VRAI ?

) 4

THEN

v
—| TRAITEMENT

vy
SUITE

Figure 3.2. Diagramme de IF THEN.

4

Si la programmation de ’alternative est maintenant possible,
encore faut-il pouvoir réaliser un test ou une comparaison.

Le BASIC poss¢de un nombre confortable d’opératcurs de
comparaison :

Il

test d’égalité ;
strictement supérieur ;
strictement inférieur ;
différent de ;

= supérieur ou égal ;

= inférieur ou égal.

[]
AV AAYV
\%

Ces tests générent les valeurs 0 si le test est faux ; -1 dans les autres
cas. Notons qu’ils sont aussi applicables aux quantités alphanuméri-
ques au sein desquelles ce sont les codes ASCII eux-mémes qui sont
comparés un a un.

~ 45 —

Exemple

10 A$=""CLONE”
20 B$="EDEN"

30 IF A$=B$ THEN PRINT “EGALITE”

40 IF A$ < > BS THEN PRINT ““DIFFERENT"
50 IF A$ < B$ THEN PRINT “INFERIEUR”

60 IF A$ > B$ THEN PRINT ““SUPERIEUR"

On obtient :
- > DIFFERENT
INFERIEUR

Le codc de C est plus petit que celui de E (voir Annexe 1), donc
CLONE est bien inférieur a EDEN. Essayez plusieurs valeurs de A$
et BS.

BRANCHEMENTS

Nous avons vu que interpréteur exécutait les instructions en fonc-
tion de leur numéro de ligne. Du plus petit au plus grand. Il est toute-
fois utile de pouvoir le dérouter a certains moments a ’intérieur du
programme. L’instruction GOTO le forcera a examiner la ligne men-
tionnée dans I’opérande. Toutefois, il est possible d’omettre GOTO
si le branchement est conditionnel, ¢’est-a-dire s’il est placé juste apres
un THEN.

5 INPUT “VALEUR DE A:";A
10 IF A=10 THEN GOTO 50
20 PRINT A EST DIFFERENT DE 10”: GOTO 60
50 PRINT “A EGAL 10"
60 GOTO 5

On obtient :

-> 8 ENTER
A EST DIFFERENT DE 10
10 ENTER
A EGAL 10

La ligne 10 aurait pu étre écrite :
10 IF A=10 THEN 50

~ 46 —

EXEMPLE DE STRUCTURE
ALTERNATIVE

Nous allons aborder ce sujet par I’étude d’un exemple d’applica-
tion. Voyons comment fabriquer un programme de nombre mysté-
rieux. Il peut se résumer ainsi :

CHOIX D’'UN NOMBRE ALEATOIRE

SCORE A0

ENTREE D'UN NOMBRE

AUGMENTER SCORE

S| DONNEE INFERIEURE AU NOMBRE MYSTERIEUX
ALORS IMPRIMER “PLUS GRAND"” PUIS RETOURNER
A L'ENTREE D'UN NOMBRE

S| DONNEE SUPERIEURE ALORS IMPRIMER

“PLUS PETIT” PUIS RETOURNER A L'ENTREE
D'UN NOMBRE

ECRIRE BRAVO AINSI QUE LE SCORE

FIN

Pour ceux qui préferent les schémas, voici I’organigramme du
programme,

Traduite en BASIC, la petite analyse précédente donne le listing
suivant :

RND génére un nombre au hasard, entre 1 et 999 dans ce cas.
Les deux points signalent a 'interpréteur que plusieurs instructions
sont présentes sur la méme ligne de programme.

- 47 -

Comme on peut le constater, si le test n’est pas vérifié, ce sont
toutes les instructions aprés THEN qui sont ignorées. Bien entendu,
le but du jeu est de découvrir le nombre mystérieux. Nous avons bien
affaire @ un programme décisionnel, puisqu’il est capable de réagir
différemment selon la donnée introduite.

OPERATEURS LOGIQUES

Les structures alternatives sont une des bases de la programma-
tion et, souvent, plusieurs paramétres doivent €tre testés avant toute
indirection (branchement). Jusqu’a maintenant, nous avons vu que
si une seule comparaison était facile & mettre en ceuvre, plusieurs cri-
teres sont plus difficiles a évaluer.

Reprenons une derniérc fois ce fameux guichet automatique. L’al-
gorithme de ce programme suit le schéma suivant :

SI CODE CORRECT ET SI COMPTE APPROVISIONNE
ALORS DONNER LES BILLETS

ET constitue un opérateur logique permettant de regrouper les
différents tests.

L’ensemble est vrai si et seulement si les deux tests sont vrais. Dans
tous les autres cas, la proposition globale est considérée comme fausse.

L’effet de ET peut étre symbolisé par une table de vérité ou, par
convention, V signifie vrai et F, faux.

Soient les résultats de deux tests A et B :

AND| B \Y F

A
\Y \Y F
F F F

AND étant ’opérateur BASIC ““ET”’.

Si A vrai, B vrai alors A AND B vrai.

Si A faux, B vrai alors A AND B faux.
Si A vrai, B faux alors A AND B faux.
Si A faux, B faux alors A AND B faux.

Un autre opérateur logique est utilisable sur Alice, qui représente
le OU du langage courant : OR.

Les programmeurs ’appellent OU inclusif.

En voici la table de vérité :

OR B \Y F

A
\Y \Y v
F \Y F

Si A vrai, B vrai alors A OR B vrai.
Si A vrai, B faux alors A OR B vrai.
Si A faux, B vrai alors A OR B vrai.
Si A faux, B faux alors A OR B faux.

Un nombre quelconque de tests peut ainsi étre chainé pourvu que
la longueur totale ne dépasse pas 127 caracteres (limite d’une ligne
de programme). Les parenthéses peuvent privilégier certaines des
séquences de ’instruction. La prise de décision peut ainsi étre fonc-
tion de la valeur d’une dizaine de paramétres.

Si nous avions a programmer une sortie au restaurant nous pour-
rions le faire de cette fagon :

S| (COMPTE APPROVISIONNE OU INVITATION) ET
ACCOMPAGNE PAR JOLIE FILLE
ALORS ALLER RESTAURANT.

11 suffit d’ajuster les paramétres et de traduire le texte en anglais,

— 49 —

pour obtenir la version BASIC de cette évaluation de la situation. La
quantité entre parenthése est la premiére a étre ‘‘calculée’ et cc, quelle
que soit sa position dans le test.

Autrement, le traitement est effectué de la gauche vers la droite.

SIMULATION DE BOUCLE

Les ordinateurs sont bien connus pour leur capacité a mener &
bien des taches répétitives.
11 faut malgré tout les programmer.

10 PRINT “BONJOUR"
20 PRINT “BONJOUR”

Est bien entendu une tiche répétitive. Mais imaginez que vous
ayez a imprimer un message un nombre infini de fois.

Votre vie n’y suffirait pas, ni la capacité de votre appareil.

11 est bien plus intéressant de dérouter ’interpréteur vers le trai-
tement a effectuer dés la fin de celui-ci.

10 PRINT “BONJOUR"”
20 GOTO 10

Le cahier des charges est bien rempli, mais la boucle de programme
n’est pas contrélée. Seule une interruption par la touche BREAK, INIT
ou SHIFT @ peut stopper le programme.

L’étape suivante est de réaliser une boucle paramétrée.
Pour se faire, il faut disposer d’une variable qui compte les

“‘tours’’ jusqu’a une valeur limite spécifiée par I’utilisateur.

10 INPUT “VALEUR LIMITE";VL

20 CO=1
30 PRINT “BONJOUR"”
40 CO=CO+1

50 IF CO < = VL THEN 30
60 PRINT “FIN DE BOUCLE"

- 50 —

On obtient :
- > VALEUR LIMITE?3 ENTER
BONJOUR
BONJOUR
BONJOUR
FIN DE BOUCLE

Si une valeur 1000 avait été mentionnée, 1000 ‘‘bonjour’’ auraient
été imprimés. La boucle est ainsi maitrisée.

[1 suffit de paramétrer de la méme fagon la valeur inféricure de
la boucle.

Vous avez sans doute remarqué que le compteur augmentait de
I a chaque passage (les informaticiens appellent cette opération 1in-
crémentation). 1] est évident qu’en changeant cet incrément, il est aisé
d’écrire tous les nombres compris entre 1 et 1000 avec un ‘‘pas’’ de 0.5.

10 INPUT “DE,JUSQU’A PAS”;VI,VL,PA
20 CO=VI

30 PRINT CO

40 CO=CO+PA

50 IF CO < = VL THEN 30

60 PRINT “FIN DE BOUCLE"”

On obtient :

- > DE,JUSQU’'A,PAS ?2,5,0.5 ENTER

2

2.5

3

3.5

4

45

5

FIN DE BOUCLE

Nous sommes en mesure de faire répéter une tache autant de fois
que nécessaire, en contrdlant ’intégralité des parametres de la boucle.

LES BOUCLES

La méthode que nous venons de décrire a le mérite de fonction-
ner, mais elle est grosse consommatrice de variables et de lignes de
programme donc de place en mémoire centrale.

- 51 -

En fait, tout le travail que nous venons d’accomplir n’a qu’un
intérét purement didactique, car le BASIC est capable de réaliser ce
type de tiche grace & des instructions spéciales incorporées.

FOR indique quelle variable fait office de compteur et lui four-
nit sa valeur initiale.

TO précise la valeur finale du compteur.

STEP sert a introduire le pas de ’'incrémentation. 1l est option-
nel et, dans le cas ou il n’est pas utilisé, le pas est automatiquement
de 1.

NEXT délimite la fin de la boucle, et renvoie I'interpréteur au
début de celle-ci, tant que le compteur n’a pas atteint la valeur limite.

Le processus suivi est absolument identique a celui que nous avons
simulé au paragraphe précédent.

10 FOR CO=1TO 10
20 PRINT “BONJOUR”
30 NEXT CO

- > Imprimera dix fois BONJOUR sur le téléviseur.

La mention du label de la variable indice de boucle est option-
nelle dans le cadre de NEXT, mais il vaux mieux prendre ’habitude
de procéder ainsi pour que 'interpréteur puisse différencier les bou-
cles au cas ol plusieurs d’entre elles sont présentes dans une phase
du programme.

11 est bon de prendre certaines précautions lors de ’emploi des
fonctions de boucle, notamment lorsqu’elles sont imbriquées.

10FORI = 1TO 10
20 FORJ = 1TO 10
30 PRINT “TEST”
40 NEXT J

50 NEXT !

- > Cent fois TEST.

Le programme est parfaitement reconnu par I’interpréteur car les
deux boucles se comportent exactement comme des ‘‘poupées russes’’.

MFORI =1T09
20 FORJ = 1TO 10

—~ 52 —

30 PRINT “RATAGE"”
40 NEXT |
50 NEXT J

> RATAGE
RATAGE
RATAGE
RATAGE
RATAGE
RATAGE
RATAGE
RATAGE
RATAGE
?NF ERROR IN 50

Les boucles ne sont pas correctement imbriquées, ainsi, lors de
I’exécution de la premiére boucle en I, I’erreur n’est pas encore mise
a jour. En revanche, une fois arrivé en ligne 50, il rencontre un NEXT
1 qui, pour lui, ne correspond plus a rien. Un message d’crreur est
alors émis.

1l faut signaler qu’une seule instruction NEXT peut gérer plusieurs
indiccs de boucle.

M FORI =1TO3
20FORJ = 170 2
30 PRINT “TEST"”
40 NEXT J,I

- > TEST
TEST
TEST
TEST
TEST
TEST

Mais I’ordre des indices est extrémement important, pour les rai-

sons précédemment exposées. 11 est donc fortement recommandé d’ou-
blier cette option, du moins jusqu’a une maitrise du BASIC suffisante.

LES TRIS

Tri et échec sont sans doute les domaines ol les spécialistes ont

— B3 -

le plus fait preuve de ténacité et de créativité. S’il est hors de question
d’écrire un jeu d’échec en BASIC, surtout sur Alice, certaines métho-
des de tri numérique ou alphabétique, bien adaptées a cet ordinateur,
nous sont maintenant accessibles.

Les deux exemples que nous allons développer dans ce paragra-
phe traitent des listes alphabétiques. La généralisation aux tris numé-
riques en est évidente.

La premiére étape consiste a établir une liste des données a trier.

Un tableau alphanumérique semble étre le moyen le mieux adapté
pour parvenir a ce résultat.

Mais plus importante est la méthode de tri utilisée. En voici ’exem-
ple le plus simple :

PRENDRE LE PREMIER ELEMENT

COMPARER AVEC LE SECOND

S'IL EST PLUS GRAND, ECHANGER CES ELEMENTS
DU TABLEAU

PRENDRE LE TROISIEME ELEMENT

COMPARER AVEC LE PREMIER

ECHANGER S’IL Y A LIEU

PRENDRE LE ENIEME

COMPARER AVEC LE PREMIER

ECHANGER S’IL Y A LIEU

PRENDRE LE SECOND ELEMENT

RECOMMENCER LE PROCESSUS

PRENDRE LE ENIEME ET RECOMMENCER LE PROCESSUS

Apres la premiére passe, le premier élément est dans le bon ordre ;
aprés la seconde, les deux premiers éléments sont ordonnés.
Ce programme demande toujours :

1+2+3+4..... + N
soit N/2 x (N + 1) passages, ou N représente le nombre de données
a trier moins une,

Le gros défaut provient du fait que, méme si la liste est ordonnée
ou partiellement ordonnée, le programme s’exécutera dans son ensem-
ble. Si ce n’est pas trop grave dans le cas oli le nombre de données
reste restreint (environ cinquante), imaginons le temps nécessaire au
classement de vingt mille mots compte tenu du fait qu’environ trois
secondes sont nécessaires pour neufs prénoms féminins.

Voyons la programmation en tant que telle.

— B4 —

Les lignes 10 a 60 représentent I’établissement de la liste. Celle-ci
¢st volontairement limitée a 31, place mémoire oblige. Si un message
OS ERROR survient, CLEAR (Annexe 3) permettra peut-étre de régler
ce petit probléme.

Si ENTER seul est actionné, ligne 30, le tri commence, lignes
100-160.

Le résultat est ensuite visualisé, lignes 170-230.

Le résultat peut &tre sauvegardé sur une imprimante en employant
la commande LIST.

- 65 —

Deux améliorations peuvent facilement étre faites a ce programme.

L’une sur le fond, un algorithme de tri différent ; I’autre sur un
détail : en effet, lors de la visualisation des résultats, il n’est pas pos-
sible de stopper le défilement du listing. Si la liste est longue, il devient
donc vital de prévoir une pause toutes les dix données pour que 1’uti-
lisateur ne soit pas frustré.

Toutes ces modifications sont contenues dans le listing suivant :

I HELT

La ligne 215 crée une pause dans I’affichage jusqu’au moment
ou I'utilisateur tape ENTER.

Si cette méthode est valable dans le cas ou moins de vingt élé-
ments ont été triés, elle n’est pas générale.

Une des solutions de ce probléme serait de dire :

DIVISER COMPTEUR PAR 10
PARTIE ENTIERE DE COMPTEUR DIVISE PAR DIX
S| EGAL, ALORS PAUSE

Si la valeur du compteur est égale 2 0 modulo 10, c’est-a-dire si
elle est un multiple de dix, alors il faut suspendre le défilement.

Si la division génére un nombre entier, alors la condition est
réalisée.

La ligne 215 devient alors

215 tF J/10 = INT (J/10) THEN PRINT;: INPUT
"“TAPEZ ENTER";A$

Ce genre de détails fait la différence entre un logiciel qui fonc-
tionne correctement, et un autre qui peut &tre utilisé par tout le monde.

Le président de la société américaine Microsoft (voyez le petit mes-
sage en haut de I’écran), Bill Gates, a coutume de dire qu’un logiciel
est commercialisable si sa vieille grand-mére est capable de 'utiliser
sans probléme.

- b7 -~

Pour ce faire, il convient donc de documenter au maximum chaque
phase du programme et d’utiliser au maximum des messages descrip-
tifs au cours de son déroulement.

Mais ’amélioration majeure est représentée par la nouvelle
méthode de tri introduite dans les lignes 120-160. Elle est dénommée
tri a bulle.

Chaque élément de la liste est comparé tour a tour avec le sui-
vant et ils sont permutés s’il y a lieu. Apres un passage, les éléments
les plus petits ont été hissés d’un rang vers le haut.

Il suffit de réitérer N fois la boucle pour que le tri soit totalement
effectué. Mais le principal avantage du tri a bulle consiste en sa capa-
cité a détecter si la liste est ordonnée avant d’avoir parcouru tout le
cycle, d’ott gain de temps parfois important sur la premiere méthode
proposée.

En effet, si au cours d’une boucle aucune permutation n’a eu lieu,
cela implique que la liste est triée. C’est la variable FL qui assure cette
détection et la ligne 155 cl6t le tri s’il y a lieu.

Le tri a bulle fait partie des méthodes les plus simples a mettre
en ceuvre mais, si la liste dépasse une cinquantaine d’éléments, elle
s’avcre trop lente. Nous n’exposerons pas ici les autres classiques car
Alice n’est pas capable de contenir une liste susceptible de mettre leurs
avantages en valeur.

Mais sachez que de nombreux ouvrages fort volumineux traitent
uniquement cet aspect de la programmation.

S| NOMBRE DE
PERMUTATIONS
#0

Figure 3.3. Synoptique du tri a bulle.

— 58 —

4

STRUCTURATION

STRUCTURATION
DES PROGRAMMES

En BASIC, si on n’y prend garde, un listing peut n’étre plus qu’un
fouillis de tests et autres branchements anarchiques.

Une des régles de base de la programmation est de structurer ses
programmes. Si cela ne pose pas de probleme avec d’autres langages
qui ne supportent pas d’autre méthode (Forth, Pascal...), il est sou-
vent tentant, en BASIC, d’adopter une attitude brouillonne sous pré-
texte que les lignes de programme peuvent directement étre rentrées
sans travail préparatoire et, ma foi, si quelque chose ne va pas, il est
toujours possible de rajouter quelques tests ou branchements a ’aide
d’une ligne intermédiaire.

De cette fagon, I’écriture d’un logiciel relativement complexe
demandera trois fois plus de temps de développement que s’il avait
¢té préalablement structuré sur papier. La recherche des erreurs en
est facilitée et, plus important, celles qui sont du domaine méme de
la conception s’avérent quasiment inexistantes.

Mais comment structurer ?

En fait, la méthode est simple.

Il suffit de procéder comme les généalogistes. Un programme est
constitué de taches principales, elles-mémes subdivisées en plusieurs
petits modules spécialisés, etc.

La structuration consiste a isoler chacun des composants capa-
bles de travailler de fagon autonome du reste du programme. Une fois
ce travail effectué, il suffit de relier entre eux chacun des modules pour
obtenir le produit final.

Reprenons le tri du chapitre précédent.

Il peut se décomposer comme suit :

Examiner une paire.

Inverser I'ordre s’it y a lieu.

En cas d’inversion, mettre un drapeau a 1.

Examiner la paire suivante.

Recommencer le processus jusgu’en fin de liste.

Si le drapeau est a 0, le tri est terminé.

Sinon recommencer les opérations précédentes en mettant le drapeau
ao.

Figure 4.1. Décomposition du tri.

A ce stade, quatre-vingts pour cent du travail est fait. Il ne reste
plus qu’a écrire le programme. Cette logique de programmation est
universelle en informatique et, une fois bien maitrisée, le passage d’un
langage a un autre n’est que de I’apprentissage de vocabulaire et de
de compte, mais leur incidence reste faible dans le cadre de la pro-
grammation structurée.

Trois outils sont a notre disposition pour structurer un programme
en BASIC :

GOSuB
ON...GOTO
ON...GOSUB

NOTION DE SOUS-PROGRAMME

Un sous-programme est une partie de programme entiérement
autonome qui n’est reliée avec I’extérieur que par un seul ‘“‘point d’en-
trée’’. Sa tache reste trés spécialisée et, s’il a été bien pensé, il est sus-
ceptible d’étre réutilisé tel quel dans un programme différent.

Un exemple simple de sous-programme serait celui qui réalise la
conversion de mesure d’angle degré-radian.

Celui-ci a une grande utilité sur Alice. En effet, toutes les fonc-
tions trigonométriques voient leur argument exprimé en radian, alors
que, mis a part les mathématiciens, on a coutume d’employer les degrés.

Le sous-programme s’écrit :

10 P1=3.141592654
20 AN=AN = PI/180

PI est une constante locale du sous-programme, et AN est la varia-
ble qui réalise la liaison entre ce sous-programme de conversion et le
programme principal. Elle en constitue le seul point d’entrée.

Tel qu’il est, ce sous-programme peut étre implanté dans un pro-
gramme quelconque, a condition de renuméroter les lignes.

Il n’y a plus qu’a réaliser le chainage. Nous utiliserons a cet effet
les instructions GOSUB et RETURN.

— 61 —

Exemple

4
L

"WRLELR DE LORHGLE:":

Mais si la valeur 90 est entrée, la ligne 60 implique une division
par 0, ce qui génére un message d’erreur. Il devient donc nécessaire
de prévoir P’erreur. Ceci est possible par ’adjonction d’un sous-
programme.

- 62 —

Ces programmes peuvent €tre insérés a n’importe quel endroit
d'un programme de calcul trigonométrique.

Comme vous |’avez sirement remarqué, la séquence GOSUB
RETURN posséde des propriétés originales.

Si GOSUB se comporte apparemment comme GOTO, cette
impression est bien vite infirmée par ’expérience. En effet, ’inter-
préteur est bien dérouté vers le numéro de ligne mentionné comme
argument mais, dés qu’il rencontre 'instruction RETURN, il revient
au point de départ et I’exécution continue normalement.

Nous en déduisons donc que GOSUB effectue le branchement
désiré, mais qu’il stocke quelque part en mémoire, le point de départ
du branchement. RETURN se comporte également comme un bran-
chement, mais il va chercher une opérande dans la mémoire de sauve-
garde des ‘‘adresses’’ de retour.

Rien ne vous empéche d’avoir plusieurs niveaux de sous-
programmes.

Le processus répond alors au principe suivant :

GOSUB 1 ———— | retour 1]

GOSUB 2 ——— | retour 2
retour 1

RETURN 1 ———— > retour 1
branchement a retour 2

RETURN 2 » PILE VIDE

branchement a retour 1

Figure 4.2. GOSUB imbriqués.

Les adresses de retour sont littéralement empilées les unes sur les
autres a chaque GOSUB exécuté, ensuite, les RETURN vont se servir
sur le haut de la pile.

— 63 -

GOSUB 1 ———+ | retour

GOSUB 2 ——— | retour
retour

GOSUB 3 ———— | retour
retour
retour 1|

GosuBn ———— M

/_\/
retour 3

retour 2
retour 1

NW| =N |-

Figure 4.3. Empilement par RETURN.

Essayons le petit programme ci-dessous.

Le programme fonctionne parfaitement 422 fois, puis Alice, sur-
chargé, signale que sa mémoire est saturée : OM ERROR.
Si vous ajoutez la ligne

15 REM %

la boucle ne sera parcourue que 419 fois.

Nous pouvons maintenant donner I’explication de ce résultat.

Si on analyse soigneusement le listing, on s’apercoit que le
RETURN de la ligne 150 n’est jamais exécuté. Il est ‘“‘court-circuité”’
par I’indirection de la ligne 140.

— 64 —

En conséquence de quoi, les GOSUB continuent sans cesse a empi-
ler des adresses de retour. Celles-ci occupent deux octets chacune. La
mémoire d’Alice étant limitée, il n’est pas possible d’entasser ainsi des
nombres sans la saturer complétement.

D’autant plus qu’une partie de la mémoire contient le programme
lui-méme. Si celui-ci est rallongé, la place disponible pour stocker les
adresses de retour diminue d’autant.

Ce type d’erreur est parfois trés difficile & mettre en évidence,
et il ne faut pas chercher plus loin les raisons de bien des investiga-
tions laborieuses.

Il est donc trés vivement déconseillé d’employer une indirection
GOTO vers un numéro de ligne situé hors du sous-programme. Signa-
lons toutefois que certains BASIC disposent d’une instruction POP
qui efface la premiére adresse de retour sur ’empilement. Son usage
peut éviter certains désagréments ; malheureusement Alice n’en posséde
pas.

MENUS

La plupart des programmes disposent de plusieurs options de trai-
tement sélectionnables par I’utilisateur. Un moyen fort répandu pour
effectuer ce choix est illustré par la notion de menu.

Les options apparaissent sur 1’écran, précédées d’un numéro. Il
suffit d’entrer le numéro correspondant pour accéder au traitement
voulu.

Le programme ci-dessous est un exemple simple de menu :

=
P
juit}

On obtient :

-> 1) ADDITION
2) SOUSTRACTION
3) MULTIPLICATION
4) DIVISION
VOTRE CHOIX (1-4) ? 3 ENTER
— > VALEURS A,B:? 56,87 ENTER
- >56 x 87 = 4872

La ligne 90 teste si les valeurs entrées par I’utilisateur sont
compatibles.

11 est toutefois possible de s’affranchir de tous les tests des lignes
100 a 130, en utilisant une seule instruction :

Remplacons ce groupe par la ligne :

100 ON C GOTO 200,300,400,500

Le programme fonctionnera exactement de la méme maniére.
Selon la valeur de la variable placée entre ON et GOTO, le pro-
gramme se déroulera en :

200
200
300
400
500
200

OOO0O0O0
v i
phwWNM-oO
|
VVVVVYV

- 66 —

Il est impératif de tester la valeur de ’option avant d’exécuter
un ON GOTO, sous peine de résultats incorrects.

Le ON peut tout aussi bien convenir a un branchement paramé-
tré au sous-programme.

TRAITEMENT DES CHAINES

Le BASIC de I’Alice dispose d’instructions supplémentaires qui
permettent de traiter les chaines.
Elles peuvent étre subdivisées en trois catégories :

e Conversion ASCII— > alphanumérique
alphanumérique — > ASCII

e Conversion alphanumérique — > numérigue
numérique — > alphanumérique
¢ Extraction de chaines de caractéres.

CONVERSIONS

Illustrons d’abord les conversions.

Les codes ASCII de tous les caractéres sont affichés, ainsi que
les caractéres correspondants.

CHRS convertit un code ASCII en son symbole associé. On remar-
que que les trente-deux premiers codes ne générent pas grand-chose
mis a part le code 13 qui est équivalent a la frappe de la touche ENTER.
Les codes sont tous compris entre 0 et 255.

— 67 -

Inversement, ASC fournit le code ASCII du premier caractére
d’une chaine. L’exemple ci-dessus imprime les codes des touches du
clavier enfoncées, ainsi que le symbole associé.

Une autre conversion fondamentale est celle qui permet de trans-
férer des données d’une variable numérique dans une variable chaine
de caractéres, et vice versa.

C’est le role de STRS et VAL.

Le principal probléme rencontré avec STRS provient du format
des nombres.

Souvenez-vous qu’un nombre lorsqu’il est imprimé est accom-
pagné par un espace (si le nombre est positif) réservé au signe — s’il
y a lieu.

Lors de la conversion en chaine de caractéres, celui-ci est pris en
compte.

On obtient :
B$= "~ " + AS$

Ce petit détail risque de vous réserver certaines surprises désa-
gréables si vous I’oubliez.

L’instruction VAL en est la réciproque, mais attention, ““E’’ et
‘“.”> sont considérés comme partie prenante d’un nombre. Si lors de
la conversion un symbole non numérique est rencontré, la conversion
est terminée. Si le premier symbole est non numérique, le résultat est
un 0. Ceci peut étre exploité dans un test. Nous pouvons savoir, par
exemple, si ’ordinateur interpréte une donnée comme un nombre ou
du texte.

On obtient :

- > TEST? POLI ENTER
ALPHANUMERIQUE

_ > TEST? 23ADE ENTER
NUMERIQUE

EXTRACTION DE CHAINE

La manipulation de chaines de caractéres est un des domaines les
plus spectaculaires de la micro-informatique. Avec un petit peu d’ima-
gination, il est possible de créer des programmes extrémement
intéressants.

Ces fonctions sont indispensables et I’éventail de leur utilisation
va du traitement d’erreur au traitement de texte en passant par les rou-
tines de conversions mathématiques.

Toutes les options existent en ce domaine :

e extraction de la partie droite (RIGHTS) ;
e extraction de la partie gauche (LEFTS$) ;
e extraction quelconque (MID$).

Lors de I’entrée d’une donnée en cours de programme, il faut la
tester pour savoir si I’utilisateur n’a pas fait d’erreur. Hl est important
avec un INPUT de ne pas entrer une donnée alphanumérique lorsque
le programme attend un nombre. La solution la plus siire est de faire
appel a une variable alphanumérique pour le stockage, quitte a faire
la conversion ultérieurement.

10 CLS

20 INPUT “NOMBRE ENTRE 1 ET 4”;A$

30 IF VAL{A$) <1 OR VAL(A$) >4 THEN PRINT “TRICHEUR"
40 END

Le programme est maintenant sdr.

REALISATION

Testons nos nouvelles acquisitions en élaborant un programme
illustrant ces caractéristiques.

- 69 -

11 s’agit, en l'occurrence, d’une version numérique du célébre

mastermind.
Analysons d’abord le programme : cherchons ses différents sous-

ensembles.

o GENERATION D'UN NOMBRE ALEATOIRE DE 6 CHIFFRES
e« CONVERSION EN CHAINE DE CARACTERES
e AFFECTATION DE CHACUN DES CARACTERES
DANS UN TABLEAU POUR TEST AVEC BOUCLE
e ENTREE DU NOMBRE
e COMPTEUR DE SCORE
o TEST DES CHIFFRES EN BONNE PLACE
e TEST DES CHIFFRES DESORDONNES
o AFFICHAGE DES CARACTERISTIQUES
e TEST DE GAIN OU DE PERTE DE LA PARTIE

La phase finale consiste a écrire le programme BASIC. La seule
difficulté réelle réside dans le choix de la méthode de test sur ’ordre
ou le désordre des chiffres. La solution proposée ici a le mérite d’étre
anthropomorphique.

Dans un premier temps, chacun des caractéres de la donnée entrée
est comparé avec son équivalent dans le tableau NO$. Chaque fois
gu’il y a égalité, une variable OD est incrémentée et I’élément corres-
pondant d’un tableau de test FL est mis a 1.

Nous connaissons alors le nombre de caractéres dans le bon ordre.

Reste a déterminer s’il en existe d’autres, communs a la donnée
entrée et au nombre aléatoire.

I1 suffit de comparer un a un :

* [Les chiffres qui n’ont pas le méme indice dans le tableau.
® Ccux dont la valeur test de méme indice est a 0.

Le reste du programme n’est que de la mise en page. Il est vrai
qu’en général le traitement complet dépasse rarement la moitié de la

taille du programme. La présentation étant souvent la partie la plus
fastidieuse a écrire. Mais la qualité du logiciel en dépend grandement.

s

2!

U [s
-
KA

|
no

FRIHNTA: " "
FRINT®4E, " "

FOR I=1 TO £

HO$C T v=MIDECAE. 1,10
FLOT »=g

—
U A

LA

WO) U e
i =

—
PoB

[}
i
m

—
—

n n
.

FEIHTE4ZE5. " Mg

IHFUT "WOTRE HOMERE:".EBf
IF YaL <EBx»=& THEH 13&
CoO=o0+1

(b= :DE=4G
FOR I= 1 T &

IF MIDHECRE, 1,1 »=HO%C I » THEHN
FLET p=1:00=00+1

G I b B e
s
Lo N
I -
—
I
o
T
L

—
(I

T
iy

o

et b ek b b bl bk
CNoFa 0 T e

[N |
|

)
]

oL

[e
AN
m =
=M
LS 2
—

—
I

T &

T0O
vECEF, 1.1 =HOEC 1y AHD

Fi¢Jds=@ THEHW FL{3=i:DE=DE+1

GOTO 246

MEXT

MEXT

[=
[I
M
[}
el
_

— 1Ty

ot a0 Tl
o

=
—
M
-T
=
et P
on
T HE = e

,.
[ax(}

Jo L
Y]

[}
T
S A
T e
-
=

[0 Foe P [0

[

F ool THEH 5@
FRINT®4EE, "GAGHE "

P TS H A

- 71 -

Voici une liste des variables et des sous-ensembles du Mastermind.

20
30

35
40

70-100

130-140
170-190
200-240
250-290
310-340
350-400

Cco
A
A$
NO$
FL
oD
DE
B$

Compteur a 0.

Choix du nombre aléatoire.

(voir Annexe 3 pour RND).

Elimination du blanc & ’extréme-gauche.

Affichage du nombre. Cette ligne n’est nécessaire que pour la
mise au point. Il faut I’effacer pour jouer.

Extraction des chiffres et stockage dans le tableau
comparatif.

Entrée de la donnée du joueur.

Test des chiffres dans I’ordre.

Test des chiffres dans le désordre.
Impression des caractéristiques du coup.
Partie gagnée.

Partie perdue.

Score.

Nombre aléatoire.

Stockage de A aprés conversion.
Tableau comparatif.

Tableau de stockage des tests.
Nombre de chiffres dans I’ordre.
Chiffres dans le désordre.
Donnée du joueur.

FICHIERS INTERNES

11 est parfois pratique de pouvoir stocker certaines données dans
un programme BASIC. Lorsque le programme est sauvegardé, les
variables sont remises a zéro. Une solution simple consisterait a com-
mencer un programme par le remplissage d’un tableau. Si cette méthode
convient avec trois données, il vous faudra bien du courage pour en
introduire cinquante.

Si le nombre de données a stocker reste raisonnable, le BASIC
permet de les incorporer dans un fichier interne. Elles sont au coeur
du programme.

- 72 -

Lors de son évaluation par U'interpréteur, le programme va étre
subdivisé en deux parties distinctes :

e les instructions et leurs opérandes ;
e les données du fichier interne.

Les DATA peuvent étre réparties avec des numéros quelconques.
Mais leur ordre propre en dépendra.

10 DATA MACHINE,FRANCE,OVNI
112 DATA RESTAURANT,45,756" ,FILM
1230 DATA PARANOIAQUE,MEGALOMANE

Ces lignes de DATA seront regroupées séquentiellement, confor-
mément au schéma suivant :

MACHINE

FRANCE

OVNI
RESTAURANT

45

56 (alphanumérique)
PARANOIAQUE
MEGALOMANE

La lecture des données est assurée par READ suivi d’une varia-
ble réceptacle. 1l faut bien évidemment respecter les régles régissant
I’affectation des données a une variable.

La lecture elle-méme n’est pas trés souple. Il existe un élément
de mémoire qui fait office de ‘‘fléche’’ vers la prochaine donnée lue
par READ. Cette petite mémoire est le pointeur des DATA. Aprés
chaque instruction READ, ce pointeur désigne le mot suivant dans
la liste. Lorsque celle-ci a été épuisée, il faut remettre le pointeur en
début de fichier interne. Ceci est réalisé par RESTORE.

10 DATA FLECHE,MOT,SIGNE

Le fichier aura cette forme.
pointeur — — > FLECHE
MOT
SIGNE

READ A$ A$ contient “FLECHE”
FLECHE

- 73 -

pointeur — — > MOT
SIGNE

READ A$ A$ contient “MOT”
FLECHE
MOT
pointeur — — > SIGNE
READ A$ A$ contient “SIGNE”

Le pointeur est positionné hors du fichier

RESTORE

pointeur — — > FLECHE
MOT

SIGNE

L
DATH FFR
DRTH MA
FOR 1=}
REAL AE
FRIMT A%
MET I

Pour lire le éniéme élément d’un fichier DATA, il faut lire tous
ceux qui le précédent. Pour ce faire, le moyen le plus commode est
d’introduire une boucle de 1 a N.

FICHIERS D'ADRESSES

Les fichiers internes ne sont qu’un expédient commode, utilisa-
bles dans certains cas trés particuliers.

Mais I’informatique fait souvent appel a la notion de gestion de
fichier.

- 74 —

Ce role est dévolu a des programmes relativement complexes dont
la structure est issue des recherches théoriques en ce domaine. La ges-
tion d’un fichier est entiérement tributaire de la mémoire de masse
disponible, disque dur, disque souple ou cassette.

Il ne faut pas se faire d’illusion, mais un appareil comme Alice
ne pcut étre comparé a un APPLE II ou un IBM PC. Nous ne ver-
rons donc pas ou peu les structures générales de ces programmes pro-
fessionnels. Mais il est tout de méme possible de réaliser un petit logi-
ciel efficace mais limité par la taille de la mémoire d’Alice et surtout
par la sauvegarde magnétophone.

FONCTIONNEMENT DE LA SAUVEGARDE

Le processus de sauvegarde est relativement simple et fait appel
a des principes désormais classiques.

Comme dans le cas d’une chaine stéréophonique, un signal élec-
trique sous forme d’impulsions est envoyé sur le périphérique de sau-
vegarde. La téte de lecture/écriture se comporte comme une petite
bobine et va engendrer un champ magnétique qui perturbe ’ordon-
nancement des particules ferromagnétiques de la surface de la bande.
L’information sera donc présente sous la forme d’un arrangement par-
ticulier des molécules d’oxyde de fer.

La lecture, elle, suit le méme protocole, mais en sens inverse cette
fois.

La bande, en défilant sous la téte, va induire de petites impul-
sions électriques qui seront décodées par P’ordinateur.

L’information a été restituée. En informatique, les signaux a traiter
sont beaucoup moins complexes que le son de la Cinquiéme de Bee-
thoven. Il est préférable d’opter pour un magnétophone standard et
des bandes standards (sauf pour le MC 10).

En effet, les amplificateurs trés performants font subir un tel nom-
bre de contraintes au signal qu’une simple donnée informatique peut
étre perdue car considérée comme un parasite.

Voici pour la technologie, mais qu’en est-il du ¢6té de I’ordinateur ?

Lors de la sauvegarde, celui-ci écrit un en-téte au programme ;
le HEADER. Il sert a reconnaitre ultérieurement le niveau sonore et
la gamme de fréquences sous lesquels le programme a été stocké. L’or-
dinateur peut ainsi ajuster, dans une faible mesure, les parametres qui
lui permettront de relire la bande.

A la fin du HEADER, certaines informations en rapport avec
le programme sont incorporées ; le nom (6 caractéres au maximum),
le type de données (programme ou tableau). L’ensemble du fichier est
terminé par une séquence codée signalant la fin du programme.

Le BASIC offre a P'utilisateur le controle de cette entrée/sortie
(voir Annexe 3 CSAVE,CLOAD...)

FICHIER INFORMATIQUE

Un gestionnaire de fichier fonctionne avec des principes identi-
ques a ceux des fichiers des anciens fonctionnaires.

Imaginez une grande boite comprenant un certain nombre de feuil-
les cartonnées. Celles-ci sont rangées dans ’ordre alphabétique des
noms de famille par exemple. Le fonctionnaire peut rapidement trou-
ver une fiche précise, ’exploiter, et la remettre a sa place.

Un fichier utilise la méme méthode de base. Mais les fiches sont
un ensemble de cases spécialisées réservées pour chacune d’entre elles.

Il existe deux possibilités de stockage :

® Soit le fichier est sur la mémoire de masse, auquel cas la recherche
a lieu dans la mémoire RAM, puis la fiche est chargée pour une opé-
ration ultérieure.

® Soit toutes les fiches sont présentes dans la RAM.

La premiére méthode exige une mémoire de masse a acces rapide,
disques souples ou durs. Elle est donc exclue dans le cas d’Alice.

Malheureusement, le second cas de figure est grand consomma-
teur de mémoire centrale.

La taille du fichier est donc directement limitée par celle de la
RAM de 'unité centrale.

Le carnet d’adresses que nous allons fabriquer sera limité a dix
fiches. Son extension ne pose aucune difficulté de programmation.

Examinons les différents sous-ensembles du carnet d’adresses.

1. Le masque de saisie

Il représente le format de la fiche avec les différentes rubriques
qu’elle comporte. Bien siir, il suffit de stocker les informations et non
le format. 11 est I’équivalent du formulaire de la Sécurité sociale que
vous avez rempli la semaine derniére, aprés avoir soigné votre rage
de dents.

- 76 —

2. L’éditeur
Ce sous-programme gere Pentrée des données de telle sorte que
lc curseur apparaisse face aux rubriques concernées.

3. Les modules de travail
Chacun d’entre eux représente une phase de travail.

» Edition et mise a jour d’une fiche.
e Recherche d’une fiche.

® Listage sur imprimante.

* Eventuellement tris divers.

4. La sauvegarde magnétophone
Voici le listing du programme de gestion de carnet d’adresses.

1a obs
28 ALECE. T = o
8 GOTER 186
45 CLE
75!

I B SR 1]
T T
DR

[N

4
448
d59 IF k=t
FETURH
IF FL=1 TH

F=p+l:
LoTo

I
=
o

f
GOSUE
GOT

ERENS

FOR
PRINT®:
o

edi HEXT
B4l BE=IHEEYE:IF AE="" 7
R]-F HE_IHEH T I-

S50

£S5 IF AE="%" THEH IH=I+1:GOTO

HEST 1

o
(A
fxa]

- 78 —

DOTO 1REA

FOR I=1 70 &
HOEC IH. T a=mr
HEST 1
ALEC ITH, B a="m”
COTO 1ARA

CLE

FRINT" RECHERDHE
FEIMT :FRIMT

FEIMT "1 FPAE MM
FREIHT"Z2» PAR FREMHOM
FRIMT"Z» FPAR RDREEZZ
FEIHT"4» PHRR WILLE"
FRIMT"S 2 FHE CORE®

FEIMT"&» FPHRE TEL"
THFRFLUT"VOTRE OPTIOH":HE

FRIMT - ITHRUT"CRITERE" EF

FOR I=1 TO YRL CHRDEFCE.D 235

IF RBOECT,VALCRE 320 BE THEHM
SEE

s o QUsUEB S@

FOoR J=1 TO &
PRIMTRZZE 24O -1 redd REECT . 0
HE=T

CE=IHEEYE:IF CFF="" THEH
IF CTE="E" THEH I} -GHT
IF CF="%5" THEH
TEE

HERT 1

COTO 1HEG

CLE

PREINT :PRINT®L
FPREINT :FRINT"Z:

.
1

RN R B) BRI kv]

-,
KX

—
=

.
O LD
T T

A

=
o
a3
D]

T
KA

—
[n]

0D LD

B i

e’

NIRRT
ot [en]

sy

N

—
[ex]

—
fn

._.
XN
[b=

TS
FEIMT:PRIMT 2
FRINT :PRIMT "4
FRIMT:FRINT
PRIMT"YOTRE
FFE=THKEY%: IF F
AECMLT OR AZ "4
MO=VRELCASE
PEIHT MO

FOR I=1 T @& HEET 1

T,
[un]

T
s,
ot

(Rl |
[

,..
kN
—

[kx]

FET IO

-
[kx}

—
1

L I o T I Y

-
[ex]

R S T LY r

o
bR

,...
KA
—

[yl

— e s
— et
)

—

Y

— 79 —

O MO
GOTO

CLE

FRIMT FRIMT"E
FRIHT Sy =i
FRIHT®">* FIHN
FRIMT"E: YRLIDF
PRIMT"<» RETG
FOR I=1 To
COTO a8

Comme vous P’avez sans doute remarqué, les tableaux ne sont
pas dimensionnés, le nombre de fiches utilisables est donc limité a dix.

Pour pallier cet inconvénient, I’auteur vous laisse le soin d’intro-
duire une instruction DIM judicieusement paramétrée.

La structuration est ici réalisée pour une part égale par des GOTO
et des GOSUB. L’éventail des fonctions utilisées est particuliérement
vaste, bien que nous ayons omis la sauvegarde sur la mémoire de masse.

Ce point peut étre aisément réglé avec CSAVE#* et CLOAD#* (voir
Annexe 3).

Il suffirait de greffer les sous-programmes de tri du chapitre pré-
cédent pour remplir complétement le cahier des charges que nous nous
sommes fixé.

Vous vous rendrez vite compte gque la programmation en elle-
méme n’est pas trés difficile ; en revanche, la détermination des moda-
lités d’emploi peut trés vite devenir un véritable casse-téte.

Pour notre part, P’accés aux différentes phases de travail se fait
de fagon mixte par menus ou par commandes intégrées dans chaque
module.

Quatre options sont disponibles a la mise en route.

1) EDITION

2) SOS

3) RECHERCHE
4) LISTAGE

OPTION 3

Un second menu décrit les possibilités du module.

- 80 —

RECHERCHE

1} PAR NOM

2) PAR PRENOM
3) PAR ADRESSE
4) PAR VILLE

5) PAR CODE

6) PAR TEL

11 suffit de donner le critére de choix et sa valeur pour que Ia fiche,
si elle existe apparaisse sur I’écran.
A ce niveau plusieurs traitements peuvent étre réalisés :

* Affichage des fiches suivantes, s’il y a lieu, la frappe d’une touche
quelconque, & I’exception de E,S et BREAK, implique ce choix.
® Mise a jour de la fiche par la touche E pour entrer dans I’éditeur.

» Suppression de la fiche par la touche S. La prochaine fiche créée
prendra en priorité la place vacante.

OPTION 4

Elle provoque le défilement de toutes les fiches présentes en
mémoire. Les commandes intégrées sont les mémes que précédemment.
L’ordre d’apparition a I’écran est I’ordre chronologique d’entrée des
fiches sauf dans le cas ou I’une d’entre elles a été effacée et unc autre
créée.

Le changement du PRINT de Ia ligne 630 en LPRINT entraine-
rait la création d’un listing sur imprimante.

OPTION 2

Un message d’aide décrivant succinctement les différentes com-
mandes intégrées apparait quelques secondes sur I’écran.

OPTION 1

C’est ’option maitresse du programme. Elle contient 1’éditeur,
le masque de saisie et le gestionnaire du tableau contenant les
informations.

L’éditeur est plus performant que celui qui équipe Alice d’origine.

Le curseur vient se placer en face de chaque rubrique a remplir.

La fléche a droite le positionne a la fin de la donnée inscrite ;
la fléche a gauche efface un caractére de la donnée.

- 81 -

Enfin, ENTER permet de passer a la rubrique suivante. S’il s’agit
de la sixiéme, le curseur se positionnera en début de fiche.

L’incorporation de la fiche est di a la frappe de la fléche en haut
ou du ‘‘a commercial’’.

Toutes les fiches sont stockées dans un tableau AD$ a deux

dimensions.

Sa premiére rubrique contient le nombre de fiches enregistrées.
Le premier élément de chaque fiche est en fait un état d’occupa-
tion. S’il est nul, la place est disponible, autrement, il est a 1.

Détail du programme

— 1000
— 500
— 600
— 800
— 1800
— 50
— 250
— 400

Point d’entrée du menu principal.

Point d’entrée du module d’édition.

Point d’entrée du module de listage.

Point d’entrée du module de recherche.

Point d’entrée du module d’aide.

Point d’entrée du module de masque de saisie.
Point d’entrée de I’éditeur.

Point d’entrée du module de gestion.

Bien vite, les limites de la capacité mémoire d’Alice sont atteintes.

Tout commence par un message OS ERROR.

La solution temporaire consiste a débuter le programme avec une
instruction CLEAR (voir Annexe 3).

La complémentation du programme, ainsi que sa capacité a trai-
ter un nombre de fiches correct, passent obligatoirement par ’acqui-
sition d’une extension mémoire 16K.

- 82 —

0

MATHEMATIQUES

Ce chapitre est destiné a la manipulation des fonctions mathé-
matiques que nous avons survolées dans le Chapitre 2.

Quelques exemples relativement simples serviront a les illustrer.
Mais vous constaterez trés vite que I’écriture de programmes mathé-
matiques est trés aisée. En effet, le BASIC travaille exactement comme
nous le ferions sur une feuille de papier.

FQUATION DU SECOND DEGRE

Nous ne développerons pas ici les tenants et les aboutissants de
la théorie mathématique des équations du second degré ou polynGmes
de degré 2.

Il faut simplement savoir qu’il existe une méthode efficace de cal-
cul des solutions. A titre indicatif, mentionnons le fait que les équa-
tions du troisiéme degré peuvent également 8tre résolues exactement
grace a la méthode de CARDAN, mais aucune méthode générale n’est
valable pour les polyndmes de degré supérieur.

IR

"COEFFICIENTS R.OELCM
CELUARTIONT

i

Al A

Ce programme calcule également les valeurs complexes des raci-

nes dans le cas ou le discriminant est négatif.

On obtient :

- >

COEFFICIENTS A,B,C

DE L'EQUATION

2 ,

AX + BX + C =0
A=?4.6 ENTER

B=? —32 ENTER

C=? -7 ENTER
46xt2+ -32x -7

t SIGNIFIE PUISSANCE
CORRECT (O/N)?0 ENTER

x 1= —.212272671
x 2=7.16879441

La présentation de I’équation peut étre plus soignée en employant
p

les fonctions de traitement de chaines de caractéres et en testant la
valeur du signe des constantes A,B,C.

— 85 —

RESOLUTION D'EQUATIONS
PAR ITERATIONS

Pour les équations de degré supérieur, la méthode dite par itéra-
tions est bien adaptée a ’ordinateur.

Elle est basée sur le fait qu’une valeur particuliére est calculée
a ’aide de la formule générale.

Cette valeur est ensuite réinjectée dans la formule, puis le pro-
cessus recommence.

Au bout d’un certain nombre de boucles, la valeur calculée ne
change quasiment plus. Cette valeur est la solution approchée de
I’équation.

Le programme proposé peut résoudre des polyndmes de degré dix.

I
I

Bl

F FRIMT
IMPUT “CORRECT (0-MiY;a$
IF B$7:"0" THEM 1@

Y b

T

L g
A i
= [T o 7

o

FRIMNT Cil.xi
CO=C0+1
IF RES

COTh 125
FEM

FEINT :PRIHT
FEIHT &1

n

—
m
|
[y
—
xI
m
s
(%]
[n)
[en]

o
o

12

PR

DU B TR O
ot

]
[
1=

—)
SOUNNOURE

En choisissant un polynome de degré 4 avec comme coefficients
-5, 8, 8, 31, 3; trente-quatre itérations sont nécessaires pour parve-
nir au résultat.

La suite des nombres ne convergera pas toujours a la méme vitesse.
Si le programme est trop long, il est possible de diminuer la précision
du résultat en modifiant la ligne 240, et de limiter le nombre d’itéra-
tions en fixant une valeur limite a CO.

245 IF CO > 20 THEN PRINT:PRINT “ITERATION STOPPEE'":
GOTO 300

GRAPHE D'UN POLYNOME QUELCONQUE
DE DEGRE 3

L’analyse mathématique est trés souvent représentée par des gra-
phiques en tout genre. En effet, il est plus pratique de voir ’allure
générale d’une courbe qu’un simple tableau de valeurs, infiniment
moins expressif.

Les possesseurs d’une imprimante peuvent exploiter lcur périphé-
rique avec efficacité.

En effet, la taille de I’écran étant réduite, il est beaucoup plus
logique d’imprimer le graphe sur une bande de papier qui n’est pas
limitée en longueur. Bien siir, I’amplitude des ordonnées doit &tre cir-
conscrite dans l'intervalle de trente-deux caractéres équivalent a une
ligne du téléviseur.

La largeur de la bande représentera donc les ordonnées et la lon-
gueur, les abscisses.

[.a courbe ne sera représentative qu’a la condition expresse qu’un
nombre suffisant de points ait été calculé.

Pour notre part, 32 est un chiffre suffisant pour de nombreuses
fonctions mathématiques. Mais vous verrez qu’il est extrémement sim-
ple d’affiner le calcul.

La méthode employée n’est pas véritablement complexe, mais elle
requiert un soin extréme lors de son écriture, sous peine de générer
des graphiques pour le moins curieux.

Le programme se décompose comme suit :
* Entrée de I’intervalle de travail.
* Découpage de cet espace en trente-deux valeurs.
* Calcul de ’ordonnée correspondant a chacune d’entre elles.
® Détermination des valeurs maximale et minimale.
® Impression des X et des Y.
® Calcul des tabulations en fonction de ’amplitude des Y et
de la valeur traitée.
* Impression d’un point sous la forme d’un astérisque.

Le graphe est subdivisé en deux parties correspondant aux ordon-
nées positives et négatives. Le fait d’utiliser des rapports dans le cal-
cul de ’argument de tabulation indique bien que la représentation de
la courbe est optimisée en fonction de la largeur de la bande de papier.

Les premiéres fonctions analysées sont des polynémes de degré
inférieur a 4.

- 89 -

™
5,
o,

Ay

THEH MMH=Y<k o

T T LN

i
|
|
t
!
I
I
|
1
i
!
|
1
1
1
1
1
|

|
i

(o R TN L B O SN,

FOR I=1 TO 22

LEPEINWT I:":";
H=15+THTC 150 MY MM 2y (T 0o
LFEINT THRECH»:; 4"

HEST 1

.__l

PR

[[o= = =
—= 5L
Lok B oy B

o+

-

HL

IMTEF

=
=
P
—
—

DT

- 91 -

— 92 —

- 93 -

Les deux fonctions particuliéres donnent une bonne idée de I’in-
1érét de la représentation graphique.

Mais voyons le détail du programme.

10-50 Entrées des paramétres, intervalle et coefficients du
polyndme. La ligne 40 a pour but d’extraire I’espace
contenu dans la variable numérique I. Cette opération
est effectuée & des fins de présentation plus ‘‘propre’’.

65-90 Calcul d’une valeur du polynéme.

95 Détermination des valeurs initiales du maximum et du
minimum dans P’intervalle considéré.

97-98 Encore une manceuvre de formattage de I’impression
du rang du point calculé. Si ce nombre est inférieur a
10, il est complété par un 0, ainsi 3 sera affiché 03.

99 Impressions des X et Y calculés.

100 Détermination du maximum.

110 Détermination du minimum.

170-210 Ecriture du graphe sur imprimante.

190 Calcul de lIa tabulation. C’est I’élément fondamental

du programme.

Pour en finir avec les polyndmes, en voici un exemple dont le gra-
phe est particuliérement significatif.

- 95 —

-97 —

La généralisation de ce programme a des polynomes de degrés
plus élevés ne pose aucun probléme de principe.

11 est toujours nécessaire d’apporter quelques modifications.

Les lignes 30, 40 et 70 sont liées au degré du polynome.

EXEMPLE DEGRE 6

30 FOR I=6 TO O STEP -1
40 Pas de modification car lc degré peut étre décrit par un seul
caractére.

70 FOR J=0TO 6

En outre, si le degré dépasse 10, il est obligatoire de dimensjon-
ner correctement le tableau A().

[>accroissement de la précision ne présente pas plus de difficultés.

Les lignes & modifier sont les suivantes :

5, 60, 98 et 99 si le nombre de points dépasse 99, et 170.

GRAPHE D'UNE FONCTION
QUELCONQUE

Les grandes lignes du programme précédent peuvent étre repri-
ses pour cette généralisation. Malheureusement, la fonction étudiée
devra étre préalablement introduite comme une ligne de programme
dont le numéro est 70.

Le grand changement réside donc dans la simplification du module
de calcul des ordonnées de la fonction.

Un probléme apparait toutefois avec les fonctions dotées d’un
point de singularité dans l’intervalle de travail.

Une division par zéro peut avoir lieu et le programme est stoppé
par I’émission d’un message d’erreur /0 ERROR. Le traitement d’er-
reur devra étre adapté a chaque fonction en particulier.

Par exemple, si la fonction étudiée est la TANGENTE entre — PI
et +PI, il faut tester la valeur du COSINUS et ‘‘sauter’’ le calcul de
la valeur de la fonction si celui-ci est nul.

Le traitement de SINUS entre —PI et + PI se fait simplement
avec la ligne 70 Y(K)= SIN(I).

- 98 —

— 99 —

2L
.ol

el

-
et

|

et

i

an

P

- 100 -

Le programme correspondant est le suivant :

N
[A

Jaoode Ll
R B N)

hn

[U P Y Ny

Si la plage de variation est trop élevée, le graphe risque d’étre trop
plat ou trop dispersé ; en tout cas peu visible.

Ce probléme peut souvent &tre résolu par un choix judicieux de
I’intervallie.

Ainsi la courbe d’équation :

(—X/X)?
XSIN(X) e

est, elle, spectaculaire dans les limites 2 a 18, mais elle n’est plus qu’un
agrégat désordonné d’étoiles pour certains autres cas.

- 101 -

- 102 -

Jasts

- 103 -

Nous ne pousserons pas plus loin I’étude de I’informatique appli-
quée aux mathématiques. Mais méme dans le cas ou cette branche ne
vous est pas utile, les méthodes de développement d’un programme
ainsi que certaines petites ‘‘ruses’ de présentation ou conception
devraient maintenant vous étre familiéres.

Si on ne dispose pas d’une imprimante, il est possible de parve-
nir a un résultat comparable, non pas a I’aide de I’écran texte, mais
avec les caractéres semi-graphiques dont est équipée Alice. Seuls les
modules d’impression d’un point changeront profondément, mais la
base du programme reste exactement la méme.

Si on adopte cette solution, il faut savoir qu’un calcul de coor-
données d’écran (0 a 31) sera probablement indispensable.

- 104 —

Dans une large mesure, les ordinateurs familiaux doivent leur suc-
cés a la capacité qu’ils ont de générer des images colorées et des sons.

Alice, du moins dans sa version de base, est relativement pauvre
dans ce domaine.

Malgré tout, certaines applications amusantes, voire méme uti-
les, sont réalisables.

Deux programmes qui concrétisent la description du fonctionne-
ment interne des ‘‘organes’’ audio-visuels d’ Alice vous seront présen-
tés dans ce chapitre.

LE GRAPHISME

Au cours du Chapitre 1, nous avons vu la configuration de I’écran
du téléviseur ainsi que de la mémoire vidéo chargée de stocker les don-
nées de I’écran. Il existe une autre possibilité ; elle consiste dans I’af-

(13

fichage de petits ‘‘pavés’’ colorés.

- > Affichage de pavés de couleur

On en déduit les codes des différentes couleurs

- — > vert

2— — > jaune
3— — > bleu

4— — > rouge
5— — > blanc
6— — > bleu clair
7— — > magenta
8 — — > orange

La géographie de I’écran est apparemment modifiée.

En effet, le nombre de pavés affichables est deux fois plus élevé
dans les deux dimensions que le nombre de caractéres. C’est-a-dire
64 X 32 pavés dont les coordonnées varient entre 0,63 et 0,31.

- 106 —

X=1

X=31 X=62
Y=0 III III

Y=15

Y=31

L

Figure 6.1. Ecran basse résolution.

[P e O R

Les apparences sont trompeuses.

— > La colonne précédente apparait bien correctement, mais celle
que nous avons rajoutée scintille, et seulement cing couleurs sont net-
tement visibles.

Un doute effleura alors Indiana Jones, qui lut le bas de la sta-
tue : et il vit écrit

$IF AE="Y OTHEM 7#

- 107 -

_ > Nous voyons apparaitre sur [’écran quatre fois la méme
séquence, a la couleur pres.

La premiére est verte

La seconde est jaune

La troisiéme est bleue

La quatriéme est rouge

Ce n’est évidemment pas une coincidence. Si on y réfléchit bien,
les petits pavés ont exactement la taille d’un quart de caractére texte.
Si on ne considére qu’un graphisme monochrome, le petit rectangle
peut étre soit allumé, soit éteint.

L’écran est subdivisé en 512 cases de la taille d’une lettre.

Affichons un pavé aux coordonnées 5,1 ,

Ceci correspond a un affichage dans le coin inférieur gauche de
la case texte numéro 2. Si I’écran.était vidé par une instruction CLSO
(fond uniformément bleu foncé), il suffit d’afficher le caractére cor-
respondant au pavé allumé en case texte 2.

Nous n'avons donc que I'illusion du graphisme.

En fait, le processus d’affichage est un peu plus complexe.

B P2 ™

128+C 129+C 130+C 131+C
E I & 5
132+C 133+C 134+C 135+C
d & (B 5
136+C 1374C 138+C 139+C
m u/ [(u

14p+C 141+C 1424C 143+C

Figure 6.2. Combinaison de 4 paves.

- 108 —

Le sous-programme qui en est chargé va d’abord examiner si la
case texte ne possede pas d’abord un pavé allumé. Auquel cas, le carac-
tere affiché sera le complément de celui qui est déja résident.

Vu la taille des pavés, seuls seize caractéres sont nécessaires pour
décrire toutes les combinaisons.

Comme il existe huit couleurs (le bleu foncé est réservé au fond),
il faut huit groupes de seize configurations de *‘points’’ pour parve-
nir a 'illusion d’une page graphique.

Au total, 128 caractéres spéciaux sont réservés a cet usage. Nous
en avons visualisé la moitié dans ’exemple précédent. Leur code ASCII
cst compris entre 128 et 255.

Nous sommes maintenant en mesure d’expliquer pourquoi la
colonne que nous avions greffée scintille.

® Le pavé jaune s’affiche

¢ Le bleu va étre étudié

® Le pavé jaune est détecté

¢ Le caractére choisi complémente la case texte

* La configuration sera choisie dans la couleur bleue (code 165)

® Le pavé jaune devient bleu

® Le processus continue avec ’affichage des autres pavés.

® Le programme reboucle, et le jeu de couleur alternatif recom-
mence, ce qui provoque le scintillement.

1l faut parfois prendre plus de précautions avec les instructions
graphiques. Pour plus de renseignemcnts, consulter I’ Annexe 3 aux
rubriques SET, RESET, POINT.

Comme d’habitude, la réalisation d’un programme vaut mieux
que tous les exercices.

En l'occurrence, il s’agit bien d’un logiciel dessinateur.

C’est un systéme de commandes intégrées qui est ici adopté.

La premiére ligne sert de ““STATUS”’ comme disent les Anglo-
Saxons, ¢’est-a-dire qu’elle fournit les renseignements sur I’état du pro-
gramme a tout moment.

COULEUR DE L'ENCRE
MODE DESSIN

MODE CURSEUR

RAPPEL DES COMMANDES

Bien siir, le curseur est clignotant et n’efface pas le fond, sauf
dans certains cas relevant du probléme évoqué dans le paragraphe
précédent.

- 109 -

- 10 -

Le déplacement est réalisé avec les touches

Z
Q S
A\
En outre, notre dessinateur dispose des commandes suivantes :
M- — > Sélection du mode, soit dessin, soit dépla-
cement sans tracé
G- — > Bascule du mode d’effacement. Cette
commande n’est efficace qu’en mode
déplacement
N—- — > Effacement d’écran
0—8—- — > Sélection de la couleur
CTRL Q- — > Chargement d’un dessin a partir du
magnétophone
CTRL S— — > Sauvegarde du dessin sur magnétophone
DETAIL
50-230 test de commande
250-270 clignotement du curseur sans effacement du fond
280-350 tracé du pavé s’il y a lieu
400-447 sauvegarde
500-620 chargement d’un dessin. Celui-ci sera superpos¢ a celui

qui réside déja sur Pécran.

- 1M1 -

La sauvegarde a été effectuée a ’aide d’un tableau. L’écran est
préalablement analys€, et si un pavé est allumé, son code de couleur
est placé a un endroit équivalent a sa position ‘‘géographique’’, dans
ce tableau.

Le chargement suit le processus inverse. Seule différence, il se con-
tente de réafficher les points. Si une position du tableau est nulle, un
pavé occupant les mémes coordonnées ne sera pas effacé, ce qui pro-
voque la superposition.

LE SON

L’instruction sonore d’Alice est extrémement facile 4 décrire, aussi
ne nous y attarderons-nous pas.

Les deux paramétres de SOUND spécifient respectivement la fré-
quence et la durée du son.

La solution la plus attrayante pour illustrer ce domaine est d’écrire
un programme ou sont mixés graphismes et sons.

xn]

S Al
m
[
=
ko
—
—
=
(]
—
(]
—
—r
s

T —

1 g
il
r
Lo

EEHM

DIM HOCLL 2
HOO 1 r=255
FOR I=1 ToO0 i@
Mo :

1

1

1

i
o
=
=

LY o T o T e R Y)

—
A

NI

LI) I

ol

ot

(A

S RUUN T) I Y

prls
ROUR N

]
bl
=

4
i
iz
=
ol

- 12 -

[
(i)
|
=
o

Lt

125 THEHR 1:za&

1za HEH Zoa

1325

140 13

145

146 =

147 SETL &

12a o070

ZaE IF RE="Z2"THEH

216 IF AF="E"THEMN HO=4%:C0TO
2e@ IF RAg="R" X
z IF Rg=v7"

24 IF HfE="y"

26 IF AF=vUn

26l IF QE=sIn

S S 1z2a

- i@

-
Y
P

Ia
.".
s
e

Le programme va tout d’abord dessiner un clavier du type piano
(une bonne dose d’imagination est nécessaire pour le reconnaitre en
tant que tel).

Un curseur pour chaque rangée de touches se positionnera sur
celle qui vient d’émettre une note.

NB : Cette petite illustration graphique est particuliérement appré-
ciée des moins de quatre ans...

[l n’y a plus qu’a pianoter sur le clavier pour enfanter une sympho-
nie synthétique digne des plus grands.

Mais tréve de plaisanteries, voyons plutdt si certaines astuces de
programmation peuvent étre réutilisées ultérieurement.

Ce programme illustre bien un fait courant en programmation.

Comparez les modules 125-140 et 200-310. Leur travail est abso-
lument identique, la génération d’une note a partir de la valeur de AS.

Dans un cas, quatre lignes de programmes, dans I’autre neuf, et
ne parlons pas de la rapidité d’cxécution.

- 13 -

La raison en est simple. Les touches numériques permettent d’éta-
blir un algorithme général trés court pour choisir la valeur d’une note.

La deuxiéme rangée, par contre, est formée par le groupe de
lettres :

ZERTYUI

Et 13, il est difficile de trouver une relation simple entre ces valeurs
d’ot découlerait la valeur de la note. Une solution peu ¢élégante s’im-
pose donc : tester chaque touche possible et effectuer le traitement
correspondant.

Mais si cette méthode ne consomme que peu de matiére grise, elle
handicape fortement le programme en matiere de rapidité d’exécu-
tion et surtout d’encombrement en mémoire centrale.

NB : L’auteur décline toute responsabilité dans le cas ou une oreille
mélomane serait blessée.

Vu ses connaissances musicales, celui-ci suggére de changer cer-
tains paramétres susceptibles de ne pas €tre en accord avec les régles
de ’art.

A titre indicatif, voici une table d’équivalence entre la valeur de
I’opérande et la note réelle.

Note | Valeur | Note | Valeur | Note | Valeur | Note | Valeur
FA 5 |FA 133 | FA 197 | FA 230
19 140 200 231
SOL 32 | SOL 147 | SOL 204 | SOL 232
45 153 207 234
LA 58 | LA 159 | LA 210 | LA 236
69 165 213 237
SI 79 | SI 170 | SI 216 | SI 238
DO 89 | DO 176 | DO 219 | DO 239
99 180 221 240
RE 108 | RE 185 | RE 223 | RE 242
117 189 225 243
MI 125 | MI 193 | MI 227 | Ml 244

SYSTEMES BINAIRE
ET HEXADECIMAL

Comme nous ’avons vu dans le Chapitre 1, lc cerveau de I’ordi-
nateur est ce fameux composant tant vanté dans les publicités de machi-
nes a laver.

Il fonctionne selon une logique a deux états. Mais clarifions un
peu les choses.

Schématiquement, les composants informatigques ne peuvent détec-
ter qu’un courant électrique donné. Pour eux, soit il y a établissement
d’unc tension, soit il n’y ¢n a pas.

Cette maniére de voir les choses est exactement calquée sur celle
des logiciens pour qui, seul le vrai et le faux représentent les éléments
fondamentaux de toutes choses.

En fait, ce raisonnement se retrouve partout, méme chez les Chi-
nois avec leur philosophie du Yin et du Yang.

Mais en informatique, la philosophie est difficilement applicable.

Ce sont les mathématiques qui, comme d'habitude, ont fourni
les outils nécessaires au traitement de I’'information. Cette dualité peut
étre décrite dans le cadre de la théorie des nombres.

SYSTEME DECIMAL

L’homme ayant généralement dix doigts, il est parvenu a décrire
toute entité numérique avec dix symboles.

Cela n’a pas été sans mal, et maints systémes ont vu le jour tout
au long du développement de la civilisation.

Celui qui est unjversellement adopté par tous nous vient des algé-
briciens arabes.

Grace a lui, tout nombre peut &tre décrit par une combinaison
adéquate des dix chiffres :

0,1,2,3,4,5,6,7,8,9

Ce systéme est dit de base 10 ou décimal. Examinons de plus prés
un nombre décimal quelconque, 123 par exemple.
Nous pouvons le décomposer sous la forme suivante :

123=100+20+3
123=10x10x1+10x2+3

- 116 -

Nous avons d¢ja fait apparaitre la base. Mais poussons plus loin
le raisonnement, en employant la convention suivante.

10° = 1

10" = 10

10° = 10x 10

10° = 10x10x 10

10" = 10x10x..... x 10 n fois

Notre nombre peut maintenant s’écrire :
123 = 1x10° + 2x10" + 3x10°
Recommencons le processus avec 1348.

1348 1000+ 300+40+ 8
1348 10x10x10+3x10x10+4x10+8
1348 = 1x10 + 3x10 + 4%x10 + 8x 10

Nous constatons que la valeur du nombre dépend en fait de trois
parametres : la base, les symboles et leur position dans le nombre.

Nous sommes désormais en mesure de donner une formulation
générale d’un nombre quelconque du systéme binaire.

Le rang d’un chiffre correspond a sa position diminuée de 1.

Pour 123, 3 est le chiffre numéro 1, son rang sera donc 0 ; le rang
de 2 sera 1, celui de 1 sera 2, etc.

Ainsi, la valeur d’un nombre sera la somme de tous les symboles
multipliés par la base élevée a la puissance du rang du symbole associé.

SYSTEME BINAIRE

Un ordinateur ne connait que deux symboles, le 1 ou le 0 ou, si
vous préférez, le vrai et le faux, voire une tension et pas de tension.

Le systéeme de numération employé est de base 2.

Si on applique les régles précédentes, il est trés facile de convertir
un nombre écrit en base 2, dans le systéme décimal.

EXEMPLE
1011 peut se décomposer comme suit :
1011 = 1x2° + O0x2® + 1x2' + 1x2°

- 17 -

1011 IX8+0x4+1x2+1x1
1011 = 840+2+1
1011 = 11 en base 10

Le processus de comptage reste toujours le méme. Le fonction-
nement des opérateurs arithmétiques est indépendant de la base

employée.

101011
+ 110010

s’effectuera de la gauche vers la droite ;

140 =1

1+1 0 retenue 1
1+40+0 1

1+0 1

0+1 1

1+1 0 retenue 1

Le total sera donc : 1011101

En informatique, les symboles 0 et 1 sont les bits. S’ils représen-
tent ’unité élémentaire d’information, le traitement se fait simulta-
nément sur un groupe de huit bits qui est ’octet dont nous avons déja
parlé et dont nous connaissons maintenant la signification exacte.

Un octet peut décrire tous les nombres compris entre O et 11111111,

Si nous convertissons dans le systéme décimal,

I =1X2"+ 1 X254+ 1 X2+ I x2°4+1x2+1x2?
+1x2'+1x2°
soit 128+64+32+16+8+4+2+1
255
Un octet est donc suffisant pour représenter tous les nombres entre
0 et 255 (souvenez-vous du nombre d’or de I'informatique).
Ce qui explique pourquoi un caractére a besoin d’un octet pour
étre stocké.

CONVERSION DECIMALE-BINAIRE

Cette opération suit exactement le méme principe de
décomposition.

- 118 -

Convertissons 254 en binaire.

254:2=127 reste 0
127:2= 63 reste 1
63:2= 31 reste 1
31:2= 15 reste 1
15:2= 7 reste 1
7:2= 3 reste |
3:2= 1 reste 1

D’ou 254=11111110, le dernier quotient est bien entendu a pren-
dre en compte.

SYSTEME HEXADECIMAL

A moins d’avoir un esprit particuliérement tortueux, on remar-
que que les calculs en binaire sont peu adaptés a notre propre mode
de fonctionnement. Aussi les informaticiens ont-ils simplifié le pro-
bléme en introduisant une nouvelle base numérique : la base 16 ou
systéme hexadécimal.

Nous verrons pourquoi, malgré son apparente complexité, ce
systéme est particuliérement adapté aux ordinateurs.

Bien siir, seize symboles sont nécessaires pour décrire un nom-
bre : les dix chiffres classiques auxquels viennent se greffer les six pre-
mieres lettres de ’alphabet.

0123456789 ABCDEF.
avec les correspondances suivantes :

Base 10 Base 16 Base 10 Base 16

0 0 8 8
2 2 9 9
3 3 10 A
4 4 11 B
5 5 12 C
6 6 13 D
7 7 14 E

15 F

Le systéme hexadécimal est moins gros consommateur de symboles
que la base 10 et a fortiori la base 2.

- 119 —

Les conversions se font toujours selon le méme principe.

AADE=10x16"+10X16"+13x16'+9Xx 16°
AADE=10x4096+10x256+13x16+9

AADE =43737

Par contre, la conversion hexadécimal-binaire, et vice versa, peut
étre grandement facilitée pourvu que I’on remarque une intéressante
relation entre ces deux systémes.

1111 =8+4+2+1
1111=15 en base 10
1111=F en base 16

Un seul symbole hexadécimal suffit a décrire un groupe de quatre

bits.
La conversion est donc chose aisée avec le tableau suivant.

Binaire Hexadécimal Binaire Hexadécimal
0000 0 1000 8
0001 1 1001 9
0010 2 1010 A
0011 3 1011 B
0100 4 1100 C
0101 5 1101 D
0110 6 1110 E
0111 7 1111 F
EXEMPLE

BAAE = 1011101010101110

inversement
101101 = 0010 1101
101101=2 D

101101 =2D en hexadécimal.

Un octet est donc un nombre compris entre 0 et FF en
hexadécimal.

- 120 -

INTRODUCTION AU FONCTIONNEMENT
INTERNE D'ALICE

Le microprocesseur qui équipe Alice est un MOTOROLA 6803.
Il est dérivé du 6800 et les ouvrages qui traitent de celui-ci sont équi-
valents au niveau de la programmation.

Le processeur est capable d’exécuter une cinquantaine d’instruc-
tions élémentaires au niveau de I’octet de donnée, voire méme des bits
qui le constituent.

Tous les traitements s’effectuent entre la mémoire de travail,
externe au processeur, et des mémoires intégrées privilégiées, les regis-
tres du processeur. La description des caractéristiques spécifiques du
6803 est le sujet du chapitre suivant.

Toujours est-il que la programmation du processeur consiste a
implanter dans la mémoire des codes numériques (codes opératoires)
qui, lorsqu’ils sont lus par le processeur, le forcent a exécuter une tiche
bien précise. Généralement ces codes sont rentrés en mémoire sous
forme hexadécimale. Ce type de programmation qui se situe a la source
méme de la machine s’appelle la programmation en langage machine.
Le chapitre suivant en est une introduction, mais les techniques de
programmation en hexadécimal peuvent occuper des ouvrages entiers,
aussi nous contenterons-nous d’en exposer les principes de base.

MEMOIRE

Mais comment le processeur gere-t-il sa mémoire externe ?

En fait de moyens magiques, ce ne sont que seize (hasard ?) fils
conducteurs qui assurent la sélection des cases de mémoires destinées
a travailler.

Chaque octet de mémoire occupe un emplacement numéroté que
I’on nomme son adresse mémoire, a ne pas confondre avec une ligne
de programme BASIC.

Le processeur va envoyer le numéro de la case sélectionnée, codé
sur ses seize fils (bus d’adresse).

Nous pouvons de ce fait calculer la taille maximum de la mémoire
que peut gérer le processeur.

- 121 -

Chacun des seize fils peut contenir un bit d’information ; le nom-
bre ainsi représenté se situe dans ’intervalle binaire

Oailtil 1111 1111 1111
ou 0 a 65535
ou 0 a FFFF

selon le systéme de numération considéré. En termes de documen-
tation, le maximum de mémoire directement adressable par le proces-
seur de I’Alice est de 64 Kilo-octet, étant bien entendu que Kilo signi-
fic 1024 en informatique.

Pour des raisons de commodités, nous ferons précéder tout
nombre hexadécimal par le symbole “‘$”’.

Mais Alice n’utilise pas au maximum les performances du pro-
cesseur au niveau de ’adressage de la mémoire.

La mémoire interne est répartic comme suit :

Huit K-octets de mémoire ROM contenant I’interpréteur BASIC,
et les divers programmes de gestion des périphériques.

Quatre K-octets de mémoire RAM, en version de base.

Celle-ci comprend une zone de stockage des lignes de programme,
la zone des variables numériques et celle des variables alphanumériques.

I ne faut pas non plus oublier la RAM de I’écran vidéo qui n’utilise
pas moins de 512 octets.

Seize K-octets de RAM d’extension optionnelle, mais indispen-
sable pour obtenir la haute résolution graphique.

La mémoire de travail est donc portée a prés de 20 K-octets, ce
qui est nettement plus confortable pour le programmeur. Un seul pro-
gramme de ce livre ne tient pas dans la version de base, il s’agit d’un
utilitaire du prochain chapitre, dit ‘‘désassembleur 6803’’. De toute
facon, 'exploitation des renseignements de ce chapitre requiert I’ex-
tension 16 K-octets.

BASIC

Nous savons déja que I’'interpréteur BASIC est un gros programme
écrit en langage machine.

Une des fonctions d’un langage évolué est justement d’affran-
chir le programmeur du type de processeur employé pour I’écriture
d’un logiciel.

C’est le langage qui s’occupe automatiquement de la liaison.

- 122 —

Malgré tout, aucun langage n’est parfait. Aussi est-il préférable
de lui adjoindre des fonctions offrant a I’utilisateur d’intervenir direc-
tement au cceur de la machine.

Ce sont les PEEK, POKE, EXEC, USR.

Nous en verrons un peu plus loin des exemples d’utilisation. Aupa-
ravant il nous faut signaler que ces directives laissent totalement I’ini-
tiative au programmeur. Aussi faut-il bien se rendre compte que I’on
ne dispose plus du ‘“‘garde-fou’’ que représente ’ensemble des tests
de validité du BASIC. Si une erreur est commise, ses conséquences
seront beaucoup plus néfastes. Il est donc nécessaire de faire preuve
d’un soin et d’une attention redoublés lors de ’emploi de telles
fonctions.

Nous n’approfondirons pas leur mode d’emploi. Pour plus de
précision, il est préférable de consulter I’ Annexe 3.

Les premiers outils de travail en ce domaine sont les routines de
conversion décimal a hexadécimal et inversement.

DECIMAL-HEXADECIMAL

La méthode est trés simple et basée sur les fonctions de chaines
de caracteres.

En effet, toutes les instructions d’Alice attendent un opérande
décimal.

L’utilité de cette routine est de pouvoir visualiser la valeur hexa-
décimale sur I’écran.

Pour ce faire, il est naturel d’utiliser une variable numérique
comme point d’entrée du sous-programme, et la variable alphanumé-
rique qui lui est associée, comme point de sortie.

Comme le BASIC ne reconnait pas les symboles A,B,C,D,E,F
en tant que valeurs numériques, leur affectation sera entiérement a
notre charge.

Le stockage des symboles surnuméraires se fera par le biais d’un
tableau COS.

Son initialisation doit avoir lieu au début du programme principal.

La routine de conversion proprement dite suit le processus énoncé
ci-dessous :

o Affecter la valeur décimale dans la variable AS.
¢ Déterminer le coefficient de 16'.
¢ Déterminer le coefficient de 16°.

- 123 -

e Extraire les parties droite et gauche du chiffre.

¢ Si la valeur est inférieure a 9, alors il n’y a pas de changement.
¢ Si la valeur est supérieure, on extrait le symbole correspondant du
tableau COS.

Nous I’écrirons, non pas a titre de sous-programme, mais sous
une forme autonome ; son réemploi dans un programme plus com-
plexe ne pose que trés peu de problémes, comme nous le verrons par
la suite.

16 REM 333 CONVERSIONEREE
=B REM ¥E#3iDECIMRLE REdE:
D8 REM d¥ddHERADECIMALIR®
22 DIM COfcT o

22 FOR I=1 TOD &

34 COfFC I d=CHE$C I+64)

25 MEWT 1

SE L=

dE IHPUT"YALEUFR

4% IF YALCHE

B A= THTCWRLOA

B E= WAL ARE D -H

a5 PRINTF
PEHE COTO46E

HEXADECIMAL-DECIMAL

Le probléme est ici un peu différent. Généralement cette routine
est destinée a faciliter la vie de ’utilisateur qui n’aura pas a effectuer
le calcul a la main.

Le point d’entrée est obligatoirement une variable alphanuméri-
que, puisque le BASIC ne ‘“‘comprend’’ que le systéme décimal. Par
contre, la variable de sortie sera numérique.

Encore une fois, la méthode reste simple.

¢ Sila chaine est plus petite que deux caractéres, rajouter ‘‘0’’ en pre-

miére position.

¢ Extraire les symboles de droite et de gauche.

e Comparer ceux-ci aux différents éléments du tableau.

» S’il y a égalité, affecter une valeur numérique fonction de I’indice

de la case du tableau comparée.

¢ Sinon affecter la valeur numérique associée.

e Recalculer la valeur finale en fonction des deux nombres extraits.
Ici, la méthode est illustrée par un véritable sous-programme.

Essayez de ’incorporer dans I’un de vos programmes, cela cons-
tituera un excellent exercice.

foe LIM COECF s

il FOR I=1 TO £

126 COFCI a=CHRE$C I+64 0

120 HEST I

2168 IF LEMCAE 242 THEH AE="G"+HE

2118 BE=RICGHT®IRE .1

Z1En CE=LEFTEORE. 1

2138 FOR L=1 70O &

2148 IF CHE=C0%00L » THEH CE=STRES
S+L D

2156 IF EBEF=COFCL >y THEHW BE=STREEH
S+

2168 HEXT L

2170 A=VALICEFIE+VALIES: S

2158 RETURH

- 125 —

FORMAT DES VARIABLES

Explorons un peu la manicre dont fonctionnent les variables en
BASIC. Nous disposons de la fonction VARPTR qui fournit la pre-
miére adresse en mémoire de la variable opérande.

10 A=10
20 B=10
30 PRINT VARPTR (A)
40 PRINT VARPTR (B)

— > [l en résulte deux nombres dont la différence est égale a sept.
Sachant que le label utilise deux octets, nous pouvons en déduire
que la valeur numérigue en occupe cing.

Ce petit programme permet de visualiser I’évolution du contenu
de la variable en cas de modifications.
Si nous le modifions pour traiter les variables alphanumériques :

A T’usage, on voit que le premier octet donne la longueur de la
chaine de caractéres. Les octets 2 et 3 sont en fait ’adresse de la
mémoire ot sont stockés les caractéres. C’est un pointeur.

Remarquez que le BASIC différencie les deux types de variables
par la valeur du dernier octet du label. Il y ajoute 128 pour les varia-
bles alphanumériques.

- 126 —

D’autre part, les autres octets n’ont pas de signification dans ce
cas précis.

Vérifions cette particularité.

Il suffit pour cela d’aller lire le contenu de la mémoire pointée
par le corps de la variable.

O S T
ANE B A

_n
I A R AR

L £
[t B M I

— > liste des codes ASCII constituant la variable.

Maintenant que ces variables ne sont plus un mystére pour nous,
mettons a profit les particularités précédemment décrites.

En effet, en modifiant le pointeur, il est possible de visionner tout
le contenu d’une portion de 255 octets de mémoire a I’aide d’une seule
instruction PRINT. La variable alphanumérique va nous servir de fené-
tre que nous pouvons ouvrir a notre guise dans la ROM et la RAM.

Une adresse occupe deux octets en mémoire ; de plus, elle est codée
en hexadécimale. Il est donc nécessaire d’extraire la valeur de ces deux
octets & partir d’une adresse de départ décimale.

ADRESSE = PARTIE HAUTE x 256 + PARTIE BASSE

- 127 -

DETAIL

60 entrée de I’adresse de visualisation
70-80 calcul des deux ‘‘composants’” de ’adresse
120 ajustement a 255 du nombre d’octets a visualiser
{(maximum)
130-140 ajustement du pointeur vers la zone de mémoire a
visualiser
150 visualisation
170-180 page suivante

Une notion vient d’apparaitre : celle de page de mémoire.

Pour une raison de commodité, la mémoire est divisée en page
de 256 octets numérotés de 0 a 255.

Si ’on utilise la notation hexadécimale, il est trés facile de décom-
poser une adresse.

L’octet de valeur la plus élevée est le numéro de page, et celui
de plus faible poids, le numéro au sein de cette page.

EXEMPLE

01 03 est le quatriéme octet de la seconde page de mémoire.

En usant de cette notation, le 6803 peut disposer dc 256 pages
de 256 octets, soient 65 536 caractéres.

La mémoire ainsi découpée est équivalente a un grand livre, plus
facile a gérer qu’une liste.

Généralement, PEEK est une instruction sans probléme puisqu’elle
se contente de lire la mémoire.

Il en est tout autrement de POKE qui perturbe la mémoire cen-
trale. Son utilisation nec doit cn aucun cas ¢tre brouillonne. Si par mal-
heur un probléme survient, la touche INIT constitue souvent un der-
nier recours.

- 128 -

Pour vous fixer les idées, voici un POKE particulierement
spectaculaire.

POKE 49088,80

Si votre percepteur vous rend visite, exécutez le petit programme
suivant et il ne sera plus capable d’étudier votre déclaration d’impdts.

10 POKE 49088,80
20 POKE 49088,154
30 GOTO 10

D’autres valeurs de I'argument engendreront des effets assez
sympathiques dont nous reparlerons plus en détail dans le prochain
chapitre.

LES OUTILS DE TRAVAIL

Pour travailler efficacement, il faut disposer d’un certain nom-
bre de programmes utilitaires destinés a simplifier les procédures de
programmation. Dans le cas de ce chapitre, nous allons réaliser deux
types de programmes indispensables :

Un dump de la mémoire, c’est-a-dire une visualisation sur impri-
mante ou sur I’écran d’une zone de mémoire sous forme mixte ASCII
et hexadécimale.

Un moniteur, qui va permettre d’implanter des codes directement
en mémoire, sans avoir a calculer d’adresses complexes, et d’ajuster
I’argument des instructions POKE.

Lors de la réalisation, il faut songer a faciliter au maximum I’usage
de chaque logiciel, méme si le temps de développement en est prolongé
d’autant.

DUMP DE LA MEMOIRE

La disposition adoptée permet I’affichage de dix lignes. Celles-ci
contiennent I’adresse de départ en décimal, les valeurs hexadécimales
des quatre octets adjacents et les équivalents en ASCII pour détecter
la présence de texte implanté en mémoire.

Plusieurs fonctions intégrées facilitent I’exploration de la mémoire.

- 129 -

Il faut pouvoir continuer le listage sans avoir a redéfinir I’adresse de

début. Celle-ci a donc pour valeur par défaut la prochaine position

dc mémoire. Le défilement quasi automatique est ainsi réalisé.
Mais il peut étre nécessaire de changer complétement cette adresse

ou de comparer élément par élément, deux zones de mémoire.
Nous en arrivons & I’analyse suivante :

e Entrer ’adresse.

e [’imprimer.

e Lire les quatre octets correspondants.

e Converlir les données en hexadécimal.

e Convertir les données en ASCII.

e Les afficher sur une ligne.

¢ Recommencer dix fois le cycle de lecture/impression.

e Tester le clavier.

e Si ““Z” retour & la zone précédente, enlever 80 a I’adresse.
e Si ““N’’, entrer la nouvelle adresse de départ.

e Si ‘“Q”’, retour au BASIC.

e Si “W”’ continuer le listage séquentiellement en fonction de la der-
niére adresse lue.

® Si ““C”, branchement au sous-programme de comparaison.

* Entrer les parameétres suivants : adresse de départ ; adresse d’arri-
vée ; longueur de la zone de comparaison.

¢ Comparer un a un les éléments correspondants des deux zones.
e Si différent, afficher adresses et valeurs.

¢ Si le nombre d’éléments comparés est inférieur a la longueur spéci-
fiée, recommencer le processus.

® Rctourner au programme principal.

Une traduction possible en BASIC peut étre :

- 130 -

- 131 -

;um
4

[~ o

FRINT"ALREESZE DE COMPARRIZON

IHPUTER
FREIMTYLOMGELR E L8 Z0HEY:
THFRFLT L0

I

FOoR d=DRE ToORE+LD
IF PEEEY 12 *FPEEEYAR+I-DE 3THE
FEINT ;" ", PEEED L3, AR+ I-DE: "

4 PEEKC RR+.1-DE 3

o
Y

—
[Y]

I A

!

DETAILS

32-90
100-110
115-190
130-170

172-178
200-290

300-460

A= IHKEYH

IFR$=CHE$7 123 THEW IHFPUTCEH
HE=T

EETURH

Sous-programme de conversion décimal 4 hexadécimal.
Entrée de I’adresse.

Boucle pour les dix lignes.

Boucle pour la lecture/impression/conversion des codes
en hexadécimal.

Boucle pour la lecture/impression/conversion des codes
en ASCII.

Test du clavier pour sélectionner les commandes
intégrées.

Sous-programme de comparaison de zones de mémoire.

A propos de la conversion des octets en ASCII, il faut noter que
les lignes 173 et 174 éliminent les valeurs supérieures & 127 ou infé-

ricures a 32.

Cette démarche a été développée car les codes écran ne sont pas
forcément les codes ASCII associés.

Nous pouvons profiter de ce programme pour tester une zone par-
ticulierement intéressante.

- 132 -

- 134 -

Comme vous pouvez le constater, il s’agit la de la table des mots
clés du BASIC débutant a I’adresse décimale 49220. Si vous observez
les codes hexadécimaux, vous constaterez que la derniére lettre d’un
mot clé voit son code augmenté de 128. C’est un moyen classique de
recherche.

En effet, ’interpréteur va comparer caractére par caractére la com-
mande et un mot clé. Si a un moment un caractere différe, il passe
au mot suivant dans la liste en testant toutes les valeurs. Si cette valeur
dépasse 128 cela signifie la fin du mot clé en cours de comparaison
et le début du suivant de la liste.

Si on utilise le dump par variable alphanumérique, le dernier carac-
tére de chaque mot du vocabulaire apparait sous la forme d’un pavé
semi-graphique coloré.

Ceci explique pourquoi nous avons été obligés de ramener tous
les codes ASCII a des valeurs inférieures a 128.

Les codes inférieurs a 32 ne sont pas affichés par le BASIC, aussi
sont-ils indiqués par un symbole spécial.

Si on continue plus avant notre exploration, on rencontre la liste
des messages d’erreur et le logo d’initialisation d’Alice :

MICROCOLOR BASIC 1.0
COPYRIGHT 1982 MICROSOFT

MONITEUR

Le programme précédent cantonne |’utilisateur dans un réle passif
d’observateur. Aussi est-il préférable de le complémenter en dévelop-
pant un programme dit moniteur. Celui-ci doit permettre d’interagir
directement avec la mémoire.

— 135 -

La maniére d’entrer les données est primordiale lorsqu’il est ques-
tion d’un travail soutenu en profondeur.

La solution adoptée est celle de I’éditeur pleine page.

Onze lignes de codes hexadécimaux précédées de I’adresse d’im-
plantation par groupe de huit octets sont visualisées sur I’écran. Un
curseur clignotant se place alors sur la premiére position courante, c’est-
a-dire celle du premier octet. Tout le temps que le curseur est posi-
tionné sur un octet, celui-ci alterne avec la valeur courante de 1’octet
précisé.

Cette méthode a ’avantage de tracer I’évolution du contenu d’une
case mémoire en fonction des traitements en cours.

Les fléches a droite et a gauche déplacent le curseur dans toutes
les directions de ce tableau, sans effacer la valeur précédente. Sia un
moment donné, une valeur est entrée sous forme hexadécimale, celle-
ci scra implantée en mémoire & I’adresse correspondant a la position
courante du curseur.

Une telle disposition est particuliérement intéressante, mais le
temps de développement du programme en est considérablement accru.

Les commandes intégrées sont trés simples d’emploi, puisqu’elles
nc sont qu’au nombre de 3 :

* Fléche droite.
¢ Fleche gauche.
Fleche en bas pour faire défiler les zones de travail.

[’analyse du programme peut étre menée de la fagon suivante :

Entrée de I’adresse de départ.

Lecture de donnécs succcssives en mémoire.

e Conversion en hexadécimal.

Affichage.

Positionnement du curseur.

Entréc des commandes.

Si valide, ajuster la position du curseur.

Sinon, considérer I’entrée comme une valeur a implanter en mémoire.

Conversion hexadécimal a décimal.

Affichage et implantation en mémoire.
* Avancer d'un cran la position du curseur.
* Recommencer la scrutation du clavier.

- 136 -

- 137 -

- 138 -

DETAIL
5-40

60-950
100-230
240-430
500-570
600-680
700-740

Initialisation des positions horizontale et verticale du
curseur ainsi que du tableau de conversion.

Entrée de ’adresse de départ.

Boucle d’affichage des onze lignes du contenu mémoire.
Editeur du moniteur.

Conversion décimal a hexadécimal.

Conversion hexadécimal a décimal.

Calcul de Padresse en fonction de la position du curseur.

Précisons un peu la description succinte que nous venons de faire
en disséquant certains blocs stratégiques du programme.

240-430

L’éditeur est sans conteste la partie la plus délicate a

réaliser car il faut bien calculer les positions du curseur sous peine de
voir le listage prendre une apparence malsaine, voire illisible.

240
270
280
2950

300
320
330

340
360-370

Affichage du curseur.

Test fleche en bas.

Test pour module fléche a4 gauche.

Restauration de la valeur de ’octet et décalage a gauche
du curseur.

Test si curseur arrive au début, alors curseur va a la fin.
Traitement pour fléche a droite.

Restauration de Poctet et déplacement & droite du
curseur.

Si curseur en fin de tableau, alors curseur va au début.

Restauration de Poctet de la position courante. Ceci
provoque le clignotcment.

En essayant le programme avec I’adresse 16384 des caractéres para-
sites vont venir infester ’écran de visualisation. C’est normal, puis-
que la RAM vidéo commence a cette adresse. A chaque fois que Pon
implante un code hexadécimal a cet endroit, le CRTC va le considé-
rer comme le code ASCII d’un caractére a afficher.

En fait, il y a une petite différence entre code ASCII et code
d’écran, mais elle ne sera pas analysée dans cet ouvrage.

- 139 -

Les heureux possesseurs d’une extension mémoire 16 K-octets peu-
vent regrouper ces deux programmes en un seul, voire méme y con-
necter le désassembleur du chapitre suivant. Ils disposcront ainsi d*un
logiciel indispensable pour les premiers pas en langage machine.

— 140 —

PRESENTATION DU 6803

Le but de ce chapitre est de familiariser le lecteur avec le langage
machine d’Alice. Mais il n’est pas question d’en faire un traité de pro-
grammation en assembleur, ce qui occuperait beaucoup plus de place
que ce livre ne peut en offrir. Malgré tout, les spécificités du micro-
processeur 6803 sont décrites pour que le lecteur qui souhaiterait aller
plus loin puisse avoir une base de départ. Dans ce cas, il est conseillé
de se procurer Pouvrage de Rodnay Zaks ct Danicl Jean David qui
traite de la programmation du 6800 (paru chez le méme éditeur).

Le 6803 est un processeur fabriqué par Motorola. 1l est dérivé
du treés classique 6800.

Mais avant de poursuivre plus avant I’énoncé des caractéristiques
de ce processeur, voyons quelques regles générales sur la programma-
tion en langage machine.

Nous savons déja que le processeur dispose d’un jeu d’instruc-
tions élémentaires qui sont représentées par un code opératoire
hexadécimal.

Comme il n’est pas trés commode de programmer numeérique-
ment, le constructeur propose un jeu de symboles sur trois ou quatre
caractéres qui est censé décrire effet d’une instruction donnée.

Le symbole en question ou mnémonique est I’abréviation (en
anglais) de la commande utilisée.

EXEMPLE

CPX — > compare X
INC — > incrément

Il est beaucoup plus lacile d’écrire une suite d’instructions a ’aide
des mnémoniques puis de les traduire en codes hexadécimaux a P’aide
d’une table avant de les implanter en mémoire a Paide d’un programme
spécialisé, le moniteur du Chapitre 7 par exemple.

Dans ce domaine existent des programmes spécialisés qui assu-
rent la traduction automatique des mnémoniques en codes opératoi-
res. Ce sont des programmes assembleurs.

— 142 -

|ES REGISTRES

Le processeur est ¢quipé d’un ensemble de cases mémoire privi-
jégiées qui assurent la gestion d’un programme en langage machine ;
ce sont les registres du microprocesseur.

Le 6803 dispose des registres suivants :

¢ Les registres A et B qui sont les accumulatcurs. Ils sont les registres
a tout faire du processeur, et la plupart des opérations passent par
lcur biais.

Leur taille est d’un octet.

Ils peuvent servir au stockage d’une donnée, aux additions et sous-
tractions simples, et a divers autres traitements.

¢ Leregistre d’index X. Sa taille est de seize bits soit deux octets. Son
role est trés spécialisé. Il permet une plus grande souplesse pour la
gestion de données dans une table de la mémoire centrale dont il peut
contenir Padresse de départ.

¢ Le registre SP, pointeur de pile (Stack Pointer). 1l va désigner
[*adresse du début de la pile du processeur en mémoire centrale. Sa
taille de deux octets permet de placer la pile a un endroit quelconque
de la mémoire.

Souvenez-vous de Pinstruction BASIC GOSUB : nous avions vu
qu’elle stockait les adresses de retour les unes sur les autres ; les
RETURN, eux, prennent le premier élément du haut pour dérouter
Iinterpréteur BASIC. Cette mémoire de stockage particuliére est une
pile, et SP permet de repérer son état & un moment donné.
¢ Le compteur ordinal PC, également sur deux octets, sert a suivrc
la progression d’un programme.
¢ Le registre d’état sur huit bits décrit les effets résultant d’une ins-
truction quelconque.

Chacun des bits a une signification précise.

Bit 0 C, indicateur de retenue, s’il est a 1, cela signifie qu’une opé-
ration a généré une retenue qui est stockée a cet endroit. Exemple :
255+ 1 =0 retenue 1, pour une addition sur un octet.

Le résultat peut étre écrit en base 16 :

$FF+3%1= %01 00

— 143 —

Bit 1 V, indicateur de dépassement (overflow).

Bit 2 Z, indicateur de 0. Si une opération a généré un résultat nul,
ce bit est mis a un.

Bit 3 N, indicateur de signe. Si une opération a généré un nombre
dont le bit 7 est a 1, N contiendra 1. En effet, en arithmétique
binaire, le bit 7 est réservé au signe du nombre traité.

Bit 4 I, il sert a gérer les interruptions.

Bit 5 H, indicateur de demi-retenue. Celle-ci est utilisée lors de la
programmation d’opérations arithmétiques complexes par

exemple.

Les autres bits ne sont pas utilisés.
Le registre d’état est particulierement adapté aux tests de I’état

du systéme,
Il permet la création de structures alternatives en langage machine.

LES MODES D'ADRESSAGE

Une instruction nécessite souvent un opérande précis.

Par exemple LDA A $FFFE chargera (Load) I’accumulateur A
avec le contenu de la mémoire situé a I’adresse décimale 65534, Mais
cette instruction peut charger un opérande d’une autre maniére.

LDA A # $0A

chargera directement ’accumulateur A avec la valeur décimale 10.
La facon dont une instruction charge un opérande s’appelle le
mode d’adressage.
Il en existe plusieurs sur le 6803 :

Adressage implicite. 11 n’est pas utile de spécifier ’opérande. TAB
transfere le contenu de A dans ’accumulateur B.

Adressage immédiat. Un registre est immédiatement chargé avec
une valeur numérique. En représentation symbolique, ’opérande est
précédé du symbole “‘diese”’

LDA B # 30B

charge immédiatement I’accumulateur B avec la valeur décimale 11.

- 144 -

Adressage en page zéro. L’opérande est contenu dans une adresse
en page zéro de la mémoire, c’est-a-dire une adresse sur un octet.
LDA A $FF chargera I’accumulateur avec le contenu de I’adresse déci-
male 255.

Adressage absolu. C’est une généralisation de 1’adressage en
page 0. L’adresse de I’opérande est spécifiée sur deux octets.

LDA B $4000

chargera I’accumulateur B avec le contenu de I’adresse décimale 16384.

Adressage indexé. 1’adresse de I’opérande est trouvée en addi-
tionnant le contenu du registre d’index X et un déplacement mentionné
dans I’instruction

LDX # $ FFOO
LDA A $0A.X

chargera I’accumulateur A avec le contenu de I’adresse $FF + $0A soit

$FFOA

Adressage relatif. 11 est utilisé par les opérations de branchement
relatif.

L’opérande est un nombre sur un octet précisant la distance du
saut par rapport a la position courante.

LE JEU D'INSTRUCTIONS

Nous ne décrirons pas le jeu d’instructions du 6803, mais seule-
ment ses fonctions additionnelles par rapport au 6800 (voir Annexe 4).

ABX : addition du contenu de B et X, le résultat cst rangé dans X.
L’indicateur C peut étre affecté.

ADDD : addition sur seize bits. Les accumulateurs A et B sont conca-
ténés pour former un registre accumulateur sur seize bits nommé
D (Double).

ASLD : décalage a gauche du pseudo-registre D. Le bit 7 de A est mis
dans I’indicateur C et le bit 0 de B cst mis a zéro.

LDD : charge le pseudo-registre D.

- 145 -

LSRD : décalage a droite du pseudo-registre D. Le bit 0 de B est stocké
dans I’indicateur C. Le bit 7 de A est mis a zéro.

MUL : multiplication de A par B, le résultat est stocké dans le pseudo-
registre D.

PSHX : place le contenu de X sur la pile.
PULX : place les deux premiers octets de la pile dans le registre X.
STD : place le contenu du pseudo-registre D a P’adresse spécifiée.

SUBD : soustraction sur deux octets a I’aide du pseudo-registre D.

La plupart des fonctions additionnelles proviennent du fait que,
sur le 6803, les registres A et B peuvent en former un seul sur seize
bits résultant de leur concaténation dans le sens A — B. Cctte possibi-
lité est particuliérement avantageuse a plus d’un titre et fait du 6803
un processeur beaucoup plus facile a mettre en ceuvre que le 6800.

Nous arréterons la la description du 6803, étant entendu que nous
n’avons pas développé ’aspect programmation de ce microprocesseur.

Ce paragraphe était destiné a donner un complément d’informa-
tion a I"utilisateur désireux de s’attaquer a la programmation assem-
bleur a I’aide d'un ouvrage spécialisé. 1l faut savoir surtout que toutes
ces explications un peu ésotériques ne sont en fait que le reflet d’un
jargon spécialisé. La programmation en langage machine est considé-
rée par beaucoup comme un croquemitaine, mais en fait, sans &tre
chose vraiment aisée, elle est abordable par tout un chacun, pourvu
que le facteur temps ne soit pas un probléme.

| REALISATION
D'UN DESASSEMBLEUR 6803

Nous avons vu qu’un assembleur est un programmec spccialisé
chargé de traduire les mnémoniques en codes opératoires. Mais il est
souvent tres utile de faire ’opération inverse, ¢’est-a-dire de désas-
sembler un programme en langage machine.

En effet, la ROM d’un micro-ordinateur contient souvent un grand
nombre de sous-programmes en langage machine trés utiles. Aussi faut-
il pouvoir les lister sous forme mnémonique pour en bien compren-

— 146 -

dre le fonctionnement et pouvoir ainsi les mettre en ceuvre au sein de
vos propres réalisations en assembleur.

Le programme, écrit en BASIC, proposé dans ce chapitre est un
exemple de désassembleur 6803. Méme si on ne veut pas savoir com-
ment il fonctionne, on peut le rentrer tel quel, il se révélera bien vite
un auxiliaire précieux.

- 147 -

La Al ot L

T
716
T
el
T4

L] |
e

=om .
o
14
-
=

LS}
N

-

Fr e

FL :

C=AL LGOS

IF MO i CE;
FRINT C#

C=TE:-GOsSUE 200 8&0 8 :=0F
Lo BRSIE

F.;

H

H

xI
m
=
[

[}
Doy

44
408

1 — =
™M T o M

A

_I
—
(|
_I
m
|
_I
]
M
[V,
Ty

AHD TIx11 THEH
¢332 LDAD

F TJd=% HHD TIxi1l THEH
AT o="ADLD" : GO0TO 7o

IF TJd=3 THEM 7o

IF TJ=12 THEM 79@

IF TI<1Z THEM Rfcd43="g ":
SIOaTO 794

- 149 -

- 160 -

Voila, par exemple, le listing désassemblé d’un sous-programme
de la ROM commencant 4 I’adresse $F058 et se terminant par un RTS
(Return from Subroutine, similaire au RETURN du BASIC) a I’adresse
$FO8A.

- 152

ANALYSE DU PROGRAMME

Si I'on étudie bien la table des codes opératoires du 6803
(Annexe 4), il est possible de la séparer en plusieurs zones caractéris-
tiques en fonction de I et J.

Pour I de 8 a $F
et Jde 0 a $B

Chaque colonne contient une seule mnémonique s’appliquant a
A ou B, celle-ci est fonction de 1. Les modes d’adressages dépendent
de J.

Les cas particuliers dont il faut tenir compte sont dans les colon-
nes J=3 et J=7. Il est possible de mettre au point une méthode géné-
rale simple pour cette zone.

Pour Ided4 a7
et J de 0 a SF

La aussi, les mnémoniques sont facilement exploitables, mise a
part la colonne J =$E.

Pour I de 8 a $F
et J de $C a SF

Une méthode générale peut étre mise au point pour le mode
d’adressage, mais le choix de la mnémonique est fonction de la valeur
de I. Il n’est pas possible de trouver un rapport simple pour ce choix.

Pour I de 0 a3
et J de 0 a SF
C’est I’anarchie, sauf pour la ligne 1 =2 dont le mode d’adres-

sage est toujours relatif.
Trois tableaux peuvent donc étre utilisés pour stocker les
mnémoniques.

- 183 -

ANS, IN$? et ENS$, qui est un tableau a deux dimensions repreé-
sentatif de la derniére zone décrite.

Détail du programme

5-220

300-380

400-580
590-620

700-790
1000-1160
1200-1260
1600-1710
1800-1850

2000-2080
3000-3180
790

800-840
850-890
900-940
950-970
1620-1710

Initialisation des différents tableaux dont celui de
conversion décimal-hexadécimal, et vice versa.
Les mnémoniques sont lues dans un fichier interne
DATA commenc¢ant en 5000.

Sous-programme de conversion décimal a
hexadécimal.

Désassemblage de dix instructions.

Test des commandes intégrées, si ENTER, suite du
désassemblage ; si CONTROL Q, nouvelle adresse
de désassemblage.

Traitement de la premiére zone.

Traitement de la deuxiéme zone.

Traitement de la troisieme zone.

Traitement de la derniére zone.

Calcul de la valeur de chaque octet constitutif d’une
adresse.

Affichage d’une ligne désassemblée a I’écran.
Conversion hexadécimal a décimal.

Cette ligne sélectionne les modes d’adressages immé-
diats, en page zéro, indexé ou en page zéro.
Adressage immédiat.

Adressage absolu.

Adressage indexé.

Adressage en page z€ro.

Adressage relatif avec calcul de P’adresse du
branchement.

L’adresse de départ peut étre entrée sous forme hexadécimale
pourvu qu’elle soit précédée du symbole ““$’° et qu’elle soit consti-
tuée de quatre symboles hexadécimaux.

Par exemple, $00FA est correct mais $FA ne ’est pas.

-~ 154 —

Un tirage des listings formatés est prévu sur imprimante. En cours
de listing, la trappe de la touche “‘L.”’ bascule le programme en mode
imprimante ou inhibe celui-ci. Dans le programme, c’est la variable
MO qui fait office de bascule entre les deux modes. MO peut prendre
les valeurs 1 ou —1 selon les cas.

Le contrdle imprimante est réalisé par les lignes de programmes
suivantes :

490, 530, 2010, 2070

La ligne 450 teste le clavier et bascule le logiciel en mode impres-
sion ou écran selon la valeur précédente de la variable MO.

Signalons pour terminer que la frappe de la touchc ENTER désas-
semble dix instructions de plus a partir de la derniére adresse traitée.

Une nouvelle adresse de désassemblage peut étre sélectionnée par
la fleche a gauche (CONTROL Q).

— 185 -

ANNEXE 1

TABLE DES CODES ASCI

NUMERQOS DES BITS
o Jo |o 0 [L T
+}o]o] v Joqfo | 1
'S — ol 1 0 1y o] 1| o 1
br| ba | ba | bu | by [by | bn HEX 1
‘ ‘ ‘ ‘ ‘ ‘ l 0) 2 3 a]|ls]e 7
HEX 0
olojofo 0 No{owe| sp | o @] P p
o]o o[1 soH o] 1t 1 |a|lQ@fa] a
oo |1]o 2 stx [oc2| - 2 |8 b '
oo |11 3 e [ocal 3 [c]s])« s
o|1jo]o 4 EOT |DCa| § 4 |o|T)|d)
o o] 5 NG | Nak]| % s Lefule v
o1 |1]o 6 ACK [syN| & 6 tF|v]+ v
o] 1 1 1 7 BEL | ETB ‘ 7 G| w] w
1/o]o]o 8 8s |caN| 8 |H|x]hn x
1o o | 3 HT | em |) s fal~] y
v]lo] |o 10 F{susf - sz] z
1o | | 1 vT |esc| +]|« {
111 {o]o 12 i | Fs < 1o N\|1 !
v o | 13 cr | as = [ml =]
| \ | Q 14 [> N A n -~
HERERE 15 s |us| ~ 2 Jo]_]e°] om
LES CARACTERES DE CONTROLE ASCII
NUL - - Null VT — Vertical Tabulation CAN — Cancel
SOH —- Start of Heading FF — Form Feed EM — End of Medium
STX — Start of Text CR — Carriage Relurn SUB - Substitute
ETX — End of Text SO - ShiftOut ESC — Escope
EOT — End of Transmission SI — Shifi In FS — File Separator
ENQ — Enguiry DLE — Data link Escope GS — Group Separator
ACK — Acknowledge DC — Device Control RS — Record Separator
BEL — Bell NAK — Negoative Acknowledge US — Unit Separator
B85S — Backspace SYN — Synchronous idle SP — Space (Black)

HT . Horizontal Tabulation ETB — End of Transmission Block DEL —- Delete
LF — line Feed

- 156 —

ANNEXE 2

MESSAGE
BS

CN
DD

FC
FM

1D

(0]

LS

NF
OM

oD

oS

ov

TABLE DES MESSAGES D'ERREUR

SIGNIFICATION

L’indice d’une fonction est hors limite.

Exemple : si un tableau A n’est pas dimensionné, une
instruction A(12) provoquera le message.

La machine ne peut accomplir une directive CONT.
Un tableau a été redimensionné, utilisez CLEAR si
c’est possible, ou changez la ligne contenant DIM.
L’opérande d’une instruction n’est pas correct.
Fichier incompatible. Ce message peut apparaitre lors
du chargement d’un programme a partir du lecteur
de cassette.

Une commande qui ne peut étre accomplie a été utili-
sée en mode immédiat ; READ répond a ce critére.
Erreur d’entrée/sortie. Elle apparait lorsqu’une ano-
malie a été détectée pendant une transmission avec un
périphérique.

Une chaine de caractéres a une longueur supérieure
a 255.

Il manque une instruction FOR dans une boucle.

CC.yy

La mémoire est saturée. Utilisez ‘‘:’’ pour compacter
lc programmc, supprimcz lcs REM, employez le maxi-
mum d’opérandes possibles avec chaque instruction.
Si ceci échoue, acheter une extension de mémoire vive.
Dans certains cas particuliers, le dépassement peut étre
dd a une mauvaise utilisation des GOSUB.

Typique d’une configuration READ-DATA. Le poin-
teur de fichier DATA a dépassé la fin. Voir les limi-
tes de boucles s’il y a lieu ou utiliser RESTORE.

La mémoire des chaines de caractéres est saturée. Pour
y remédier utilisez CLEAR No en début de
programme.

Dépassement de la capacité lors d’un calcul nuimérique.

- 157 -

RG

SN

ST

™

UL
/0

I manque un GOSUB dans un appel a un sous-
programmc. Ccci est souvent di a des indirections
GOTO anarchiques.

La plus répandue. La syntaxe d’une instruction n’est
pas respectée.

Une opération sur des chaines est trop complexe. La
création de variables intermédiaires pour fragmenter
le traitement résoud toujours le probléme.

Les données Llraitées ne sont pas compatibles.
Exemple : A= “BONJOUR’”’. Une chaine de carac-
téres ne peut étre affectée dans une variable numéri-
que, et vice versa.

Un branchement a une ligne inexistante a été tenté.

Tentative de division par zéro.

— 158 —

ANNEXE 3

vViiA> 4+ T

IF
INKEY$
INPUT
INT
LEFT$
LEN
LET

RESUME DES COMMANDES BASIC

LISTE ALPHABETIQUE

- 159 -

LIST
LLIST
LOG
LPRINT
MEM
MID$
NEW
NEXT
NOT
OFF
ON

OR
PEEK
POINT
POKE
PRINT
READ
REM
RESET
RESTORE
RETURN
RIGHTS
RND
RUN
SET
SGN
SIN
SKIPK
SOUND
SQR
STEP
STOP
STRS
TAB
TAN
THEN
TO
USR
VAL
VARPTR

- 160 -

La parenthése donne un niveau de priorité maximal pour un trai-
tement donné. Celle-ci doit étre utilisée conjointement avec la paren-
thése fermée comme délimiteur “¢)’’.

Attention, un trop grand nombre de parenthéses imbriquées peut
amener a une erreur du type ST, formule trop complexe.

Exemple 1

10 PRINT (5+3}+(8-2)

On obtient :
- > 48

Exemple 2

10 A$ = “BONJOUR"’
20T=1:U=3
30 PRINT LEFT$(AS$,(U - T)=2)

On obtient :
- > BONJ

Op¢rateur de la multiplication. Sa mise en ceuvre ne pose pas de
probléme particulier.

Exemple

10 PRINT 2«3

On obtient :
- > 6

Contexte : +,-,/, 1

- 161 -

NB : % est prioritaire sur + et — ; en revanche / a le méme degré
de priorite.

Pour une opération complexe, il est conseillé d’employer les

parentheses.
Enfin, I’élévation a la puissance ! est toujours calculée en

premier.

+

Opérateur d’addition. Voir =*,

Opérateur de soustraction. Voir +.

Opérateur de division. Il est possible de simuler la division entiére
en procédant comme suit.

10 A=23

20B=12

30 Q=INT(A/B)

40 R=A-Q«B

50 PRINT “QUOTIENT:”;Q
60 PRINT “RESTE:";R

On obtient :
- > QUOTIENT:1
RESTE: 11

Voir * pour complément d’information.

Opérateur ‘‘strictement inférieur &’’. Lors de la comparaison de
deux nombres, ce sont 0 ou — 1 qui seront générés si la proposition
est fausse ou vraie. Dans le cas d’une chaine de caractéres, ce sont
les codes ASCII qui sont comparés caractére par caractére.

Contexte : <,= IF, THEN, < =, > =

’

~ 162 —

Exemple

10 A$ ="AMI"
20 B = “BAIE"
30 PRINT A$ <B$
On obtient :
-> 0

En effet, le code de A est 65, celui de B, 66. Donc ‘““AMIE’’ n’est
pas inférieur a ‘“BAIE’’. La proposition est fausse.

Instruction d’affectation d’une donnée a une variable. Ou test
d’égalité.
Exemple

10 A=10
20 PRINT A

On obtient :
- > 10

Exemple

10 A=5
20B=5
30 PRINT A=8B
On obtient :
_ > -1

Dans ce cas, ‘“ ="’ s’est comporté comme un test de comparai-
son et non comme une instruction d’affectation.

LET peut éventuellement précéder un “ =’’, auquel cas, celui-ci
ne fonctionnera qu’en mode d’affectation.

<

Opérateur “‘strictement inférieur a’’. Voir > pour complément
d’information.

- 163 —

ABS

Valeur absolue d’un nombre. La valeur du nombre est extraite,
indépendamment de son signe.

Exemple

10 A=5
20B=5
30 PRINT ABS (A)
40 PRINT ABS (B)

On obtient :
- > 5
5

Contexte : INT, SIN, COS, TAN, LOG, EXP

AND

Opérateur logique permettant de regrouper le résultat de plusieurs
comparaisons. Il correspond au ET des mathématiciens.

Exemple

10 A=5
20B=6
30C=7
40 PRINT A>B AND B>C
50 PRINT A<B AND B<C

On obtient :
- > 0
-1

Chacune des deux propositions de la ligne 50 est vraie, I’ensem-
ble, li¢ par AND est vrai, ce qui n’est pas le cas ligne 40. Voir
Chapitre 1I1.
Contexte : OR, NOT, IF, THEN
ASC

Fournit le code ASCII d’un caractére ou du premier caractére
d’une chaine.

- 164 —

Exemple

10 AS="ALICE"

20 PRINT ASC (AS)
On obtient :
- > 65

Soixante-cing est bien le code du A (voir Annexe 1).
Contexte : CHRS, RIGHTS, LEFTS, MID$, LEN, VAL

CHRS$

C’est le contraire de la fonction ASC. A partir d’un code, il res-
titue le caractére correspondant.

Exemple

10 FOR 1=0 TO 255
20 PRINT CHRS(I);
30 NEXT |

-> Tous les caractéres que peut imprimer ALICE
Contexte : ASC, VAL, LEN, RIGHTS, LEFT$, MID$

CLEAR

Cette instruction a pour effet de ‘‘nettoyer’’ variables et tableaux.
Tous sont réinitialisés a 0. Les précédentes instructions DIM sont
inhibées.

CLEAR peut aussi étre utile pour redimensionner la taille de la
mémoire des chaines de caractéres. Celle-ci aura une longueur égale
a I’opérande spécifié. Un opérande additionnel, avec la virgule pour
séparateur, permet de fixer I’adresse mémoire la plus haute utilisable
par le BASIC.

Exemple
10 CLEAR 200

- > La zone des variables alphanumériques est alors de 200 octets.

- 165 -

CLOAD-CLOAD=*

Instruction de chargement a partir de la cassette. Elle peut étre
utilisée a partir d’un programme. Il suffit de mentionner le nom du
programme a charger entre guillemets.

Exemple

CLOAD “INVADERS”
- > Chargera le programme INVADERS.

Parallélement aux programmes, il est possible de charger des don-
nées organisées en tableaux. C’est I’ordre CLOAD=* qui nécessite le
nom du tableau qui sera affecté comme opérande supplémentaire. Le
chargement sous forme binaire peut étre réalisé avec CLOADM suivi
optionnellement de I’adresse de chargement en mémoire.

Exemple

CLOAD+ TAS, "PRENOM"”

- > Le fichier PRENOM sera chargé dans le tableau TA$. Bien
entendu, celui-ci doit étre suffisamment grand pour contenir toutes
les données. Toutes les restrictions d’usage d propos des tableaux s’ap-
pliquent a ce cas précis. Le programme résident en mémoire n’est pas
affecté par le chargement.

Contexte : SKIPF, CSAVE, CSAVE«

NB : Alice utilise n’importe quel lecteur de cassettes du commerce,
a la différence du Tandy MC 10 qui a besoin du magnétophone Tandy.
CLs

Effacement de I’écran. Si aucun opérande n’est spécifié, ’écran
reste vert, couleur d’affichage du texte.

En revanche, la couleur du fond peut varier selon le parameétre
employ¢ avec CLS.

CLS 0 — > BLEU FONCE
CLS 1 — > VERT

- 166 —

CLS 2 — > JAUNE

CLS 3 - > BLEU

CLS 4 — > ROUGE
CLS 5 — > BLANC

CLS 6 — > BLEU CLAIR
CLS 7 - > MAGENTA
CLS 8 — > ORANGE

Pour des valeurs supérieures a 8, le systéme affiche le copyright
du BASIC sur fond vert. Si I’opérande dépasse 255, un message d’er-
reur sera généré (FC error).

CONT

Aprés une interruption du programme, il est possible de conti-
nuer son exécution a I’endroit ou il s’est arrété en utilisant cette direc-
tive. Le contenu des variables et tableaux est sauvegardé, a I’opposé
de ce qui se passe avec RUN.

Exemple

Si la touche BREAK est enfoncée, CONT permet la reprise de
I’exécution.

Si la reprise n’est pas possible, un message d’erreur est envoyé
(CN error).

COS

Fonction mathématique cosinus. L’argument est en radian, il est
donc conseillé d’introduire une variable P1=3.14159265 avant de com-
mencer les calculs.

Exemple

10 Pl =23.14159265
20 PRINT COS (P1/4)

- > .707106782
Soit racine de 2 sur 2.

Contexte : SIN, TAN, SQR, LOG, EXP

- 167 -

CSAVE-CSAVE*

Ordre de sauvegarde sur bande magnétique. CSAVE concerne les
programmes BASIC. 1l suffit de mentionner le nom de sauvegarde

entre guillemets.
Exemple
CSAVE “INVADERS”

Effectue une copie du programmc résident cn mémoire sous le
nom INVADERS.

Les données peuvent aussi étre sauvegardées sous la forme d’un
tableau. Un opérande supplémentaire pour CSAVEx* est nécessaire,
pour indiquer dans quel tableau se trouvent les données a sauvegarder.

Exemple

10 DIM AS(3)

20 A%(0)="MONIQUE"

30 A${1)=""CAROLE"

40 A$(2)=""SYLVIE"

50 A$(3)="SOPHIE"”

60 CSAVEx A$,”PRENOM"”

Contexre : CLOAD, CLOAD«, SKIPF

DATA

Lorsque cette instruction est rencontrée, toutes les données pré-
sentes sur la ligne de programme sont stockées les unes aprés les autres
(séquentiellement) dans une portion de la mémoire réservée a cet effet.
Si plusieurs lignes de DATA existent dans un programme, les don-
nées de chacune d’entre elles sont rangées en fonction du numéro de
la ligne de programme.

Le numéro de ligne importe peu. Mais il est conseillé de regrou-
per toutes les lignes de DATA en début ou en fin de programme. Bien
entcndu, si ’ensemble des données excéde 127 caractéres, plusieurs
lignes de DATA sont nécessaires. La relecture du fichier interne se
fait par READ.

Attention, un fichier DATA n’est pas modifiable par le pro-
gramme BASIC.

- 168 -

Exemple

10 DATA 1,3,PILOTE,MERINGUE
20

80
90 DATA 6,SYBEX,ALICE

- > Le fichier interne sera de la forme
1 3 PILOTE MERINGUE 6 SYBEX ALICE

Contexte : READ, RESTORE

DIM

Dimensionnement d’un tableau. DIM réserve un emplacement de
mémoire au tableau concerné. Il est nécessaire de fixer le nombre d’élé-
ments par dimension. Si aucune instruction DIM n’est mentionnée,
un tableau sera automatiquement positionné a dix éléments par dimen-
sion. Le nombre d’éléments par dimension est égale a [’argument plus
1.

Exemple

10 DIM A(3,3)

20 FOR 1=0TO 3
30 FOR J=0TO 3
40 A(l,J)=J

50 PRINT A(l,J);
60 NEXT J

70 NEXT |

On obtient :
- > 0123012301230123

Attention : il est interdit de redimensionner un tableau pendant
le déroulement d’un programme.

END

Lorsque cette directive est rencontrée, le programme s’arréte et
le controle est redonné a I’utilisateur.

- 169 —

EXEC

Appel d’un programme en langage machine. 1.’opérande est
I’adresse décimale du début du programme.

Contexte : USR, LANGAGE MACHINE

EXP

Opérateur d’exponentiation. Fonction inverse du logarithme
népérien.

Exemple

10 PRINT EXP(1)
20 PRINT EXP({LOG(5))

On obtient :
- > 2.71828183
5

Contexte : LOG, SIN, COS, TAN, SQR ...

FOR

Une des instructions fondamentales du BASIC. Dans une bou-
cle, FOR sert a préciser le label de la variable qui fait office de
compteur.

Contexte : =, TO, STEP, NEXT

Gosus

Cette instruction est indispensable pour I’écriture de programmes
complexes. Elle sert a délimiter des ‘“morceaux’’ de programme indé-
pendants du programine principal.

Ce sont les sous-programmes. A chaque fois qu’un traitement doit
étre répété, il est plus simple dc le placer dans un sous-programme.
Ainsi, il sutfira de I’appeler grace a GOSUB toutes les fois qu’il est
nécessaire de le faire, d’ol un gain de place mémoire important. 1l
est conseille de placer tous les sous-programmes en début de
nrogramime,

- 170 -

La différence entre GOSUB et GOTO provient du fait que
GOSUB mémorise I'endroit d’ou le programme est parti. Dés qu’un
RETURN est rencontré, le BASIC se branche a I’endroit ol a eu lieu
I’appel.

Exemple

10 Pl =3.141592654

20 GOTO 50

30 A=A=P1/180

40 RETURN

50 INPUT "ANGLE EN DEGRE’":A
70 GOSUB 30

80 PRINT COS (A)

On obtient :

- > ANGLE EN DEGRE? 45
.707106781

Le sous-programme en lignes 20 a 30 s’occupe de la conversion
degrés-radians. Si le programme était plus complexe, un seul appel
a ce sous-programme suffirait & la conversion, pourvu que le para-
meétre A soit géré avec soin.

Attention : ’adresse de refour est sauvegardée en mémoire. Si
aucune instruction RETURN n’est interprétée, la mémoire qui stocke
ces adresses se retrouve vite saturée. Celte erreur est souvent difficile
a détecter. Un message OM error est émis.

Ce probléme survient souvent lorsqu’un GOTO mal utilisé effectue
un saut hors d’un sous-programme, ou lorsqu’une instruction
RETURN a été oubliée.

Exemple

10 GOTO 50
201=1+1

30 GOTO 50
40 RETURN
50 GOSUB 20

On obtijent :
- > OM error

- 17 -

La valeur finale de | est de 430. Mais celle-ci dépend de ’encom-
brement du programme résident.

Contexte ; GOTO, ON GOSUB, ON GOTO, RETURN

GOTO
Branchement 4 un numéro de ligne. L’interpréteur est déroute,

et ’exécution se poursuit au numéro de ligne mentionné.
Exemple

10 PRINT A"

20 GOTO 10
— > Ceprogramme imprimera des A jusqu’a la fin des temps, ou
Jusqu’a ce qu’il soit interrompu.

Contexte : GOSUB, ON GOTO, IF, THEN

IF

Début de test, tout traitement situé aprés IF sera considéré comme
une proposition logique dont les seuls résultats peuvent étre — 1 ou
0, vrai ou faux. Si, malgré tout, le traitement n’est pas un véritable
test, son résultat déterminera la validité de ’ensemble. Si nul, alors
la condition est fausse, sinon elle est vrai quel que soit le résultat.

Exemple

10 A=1

20B=3

30 IF A=B THEN PRINT “VRAI: GOTO 50
40 PRINT “FAUX"

50 END

- > FAUX
Exemple

10 IF 3+2 THEN PRINT “VRAI": GOTO 30
20 PRINT “FAUX"
30 END

- 177 —

-> VRAI

En effet, le résultat de I’opération est différent de zéro, il est donc
considéré comme une proposition vraie.

Contexte : THEN, GOTO, <, >, =, <=, > =

INKEY$S

Entrée d’un caractére a partir du clavier lors du déroulement d’un
programme. Le programme n’est pas arrété, mais si, & un moment
quelconque, une touche du clavier est enfoncée, sa valeur sera affec-
tée a la variable alphanumérique associée.

Cette fonction est particuliérement utile pour les jeux ou la saisie
d’une donnée caractére par caractére.

Exemple 1
10 PRINT "?";
20 A$=INKEYS$

30 IF A§=""" THEN 20

40 IF A$=CHR$(13) THEN 70: REM*x ENTER ?x#xxxx
45 PRINT AS;

50 B$=B3 + AS

60 GOTO 20

70 PRINT

80 PRINT BS$

On obtient :

> ?AZERTY
AZERTY

Nous venons de simuler la fonction INPUT BS, mais il est possi-
ble de tester tous les caractéres un a un au fur et 3 mesure de leur
entrée ; ce qui est impossible avec INPUT.

Exemple 2
10 B$=""RAME"":CLS
20 PRINT “MOT DE PASSE:"”;

30FOR! = 1TO 4
40 A =INKEYS: IF AS=""" THEN 40

- 173 -

50 IF A$ < > MID$(BS,I,1) THEN 100
60 NEXT |

70 END

100 PRINT @ 170,FRAUDEUR"
710 SOUND 15,56

120 PRINT @ 170, "
130 SOUND 20,5

140 GOTO 100

- > Silors de I’entrée d’une lettre, celle-ci s’avére différente de
celle qui lui correspond dans le mot de passe, un message clignote et
une siréne hulule. Il n’y a pas d’écho sur I’écran des caracteres entrés.

Contexte : INPUT

INPUT

Entrée d’une donnée en cours d’exécution de programme. Pour
une simulation de son fonctionnement, voir INKEYS. Il est possible
de lui adjoindre une phrase optionnelle qui indique a I’utilisateur du
programme quelle donnée est en attente. Plusieurs données peuvent
étre entrées avec une seule instruction INPUT.

Exemple

10 INPUT ““NOM,PRENOM,AGE:""; N§,P$,A
20 PRINT N$
30 PRINT P$
40 PRINT A

On obtient :
- > MINET,ROBERT,40 ENTER
MINET

ROBERT
40

Si une donnée n’est pas compatible avec la variable associée, un
message REDO est émis et ’instruction INPUT est réexécutée. Si le
nombre de données entrées est supérieur a ce qu’attendait I'INPUT,
seules les premiéres sont prises en compte et un message EXTRA
IGNORED est généré.

Contexte ; INKEY$

- 174 -

INT
Renvoie la partie entiére d’'un nombre quelconque.

Exemple 1

10 PRINT INT(4.78)

> 4
Exemple 2
10 A=13.45
20 EN=INT(A)
30 DE=A—-EN

40 PRINT *‘PARTIE ENTIERE:";EN
50 PRINT “PARTIE DECIMALE:":DE

On obtient :
- > PARTIE ENTIERE:13

PARTIE DECIMALE:.45
Nous venons de simuler Ia fonction complémentaire de INT.

Contexte : ABS, SGN

LEFTS

Extrait la partie gauche d’une chaine de caractéres. 1l faut spéci-
fier le nombre de caractéres a extraire.

Exemple

10 A$="BONJOUR"
20 PRINT LEFT$(AS,4)

On obtient :
- > BONJ

Contexte : RIGHTS, MIDS$, LEN, VAL, ASC, CHR$
LEN

Donne la longueur d’une chaine de caractéres.

- 175 -

Exemple

10 A$ =""BONJOUR"
20 PRINT LEN (AS$)

- > 7

Contexte : LEFTS, RIGHTS, MID$, VAL, ASC, CHR$

LET

Option pour ’affectation d’une valeur & une variable.

LET A=10
est équivalent a

A=10

LIST

Affiche sur I’écran I’ensemble du programme résident en mémoire
de travail. Il est possible de ne mentionner qu’une ligne ou un groupe
de lignes. Pour stopper le défilement taper SHIFT @,

Contexte : RUN, NEW, LLIST

LLIST

Méme fonctionnement que LIST, mais le listing est envoyé vers
I’imprimante.

LOG

Fonction logarithme népérien ou naturel. Pour plus d’informa-
tions, voir EXP.

LPRINT

Méme fonctionnement que PRINT, mais le texte est envoyé vers
I'imprimante.

MEM

Donne la valeur en octets de l1a mémoire vive libre.

- 176 -

MID$

Instruction permettant d’extraire n’importe quel sous-programme
d’une chaine de caractéres. Deux parameétres sont nécessaires, la posi-
tion du premier caractére et la longueur dc la chaine a cxtrairc,

Exemple

10 A$ =""BONJOUR"

20 PRINT MID$(AS,1,2)
30 PRINT MID3(AS,2,2)
40 PRINT MIDS$(AS,3,5)

On obtient :

- > BO
ON
NJOUR

Contexte : ASC, VAL, LEN, CHRS, LEFTS, RIGHTS

NEW

Effacement de la mémoire de travail. S’il y avait un programme
précédemment, il est définitivement perdu.

Contexte : RUN, LIST

NEXT

Un des composants d’une boucle. Il délimite la fin de la boucle
et teste si le compteur de boucle dépasse la limite finale. Si ce n’cst
pas le cas, I'interpréteur est renvoyé au début de la boucle, sinon le
programme se déroule séquentiellement.

Contexte : FOR, STEP, TO, =

NOT

Inverse le sens d’une proposition logique.

Exemple

10 A=6
20B=7

- 177 -

30 PRINT A<B
40 PRINT NOT (A <B)

On obtient :
- > -1
0

La proposition de la ligne 30 est vraie, elle est donc inversée en
ligne 40 et devient fausse.

Contexte : AND, OR, >, <, =, <>, >=, <=

ON

Instruction de paramétrage des GOTO et GOSUB. Elle permet
d’appliquer les régles de la programmation structurée. La ligne de bran-
chement est fonction de la valeur de la variable paramétre de UN,

Exemple

10 FOR1=1T0O 3

20 ON | GOSUB 50,70,90
30 NEXT |

40 END

50 PRINT “LIGNE 50"
60 RETURN

70 PRINT “LIGNE 70"
80 RETURN

90 PRINT “LIGNE 90"
100 RETURN

On obtient :

- > LIGNE 50
LIGNE 70
LIGNE 90

Selon la valeur de la variable, ici I, le branchement se fera au 1¢7,
2¢ ou 3¢ numéro.

OR

Opérateur logique OU inclusif. Permet de juxtaposer plusieurs
tests a I'intérieur d’une structure de décision du type IF THEN. Un

- 178 -

cnsemble de propositions logiques liées par OR est vrai si au moins
I’une d’entre elles ’est.

Exemple

10 A=10

20 B=5

30 IF A=10 OR B=4 THEN PRINT “VRAI:GOTO 50
40 PRINT “FAUX"

50 IF A=2 OR B > 10 THEN PRINT “VRAI":GOTO 70
60 PRINT “FAUX"

70 END

On obtient :

-> VRAI
FAUX

Contexte : AND, IF, THEN, <, >, =, <>, <=, > =

PEEK

Action directe sur la mémoire de ’ordinateur. PEEK permet de
lire la valeur d’un octet de mémoire.

Son utilisation est abondamment illustrée dans la seconde partie
de ce livre.

Contexte : POKE, USR, EXEC

POINT

Instruction graphique détectant la présence et la couleur d’un pavé
graphique.

Exemple

10 CLS O
20 SET (10,10,3)
30 PRINT POINT (10,10)

On obtient :
> 3

- 179 -

Si aucun pavé n’est spécifié, POINT générera 0 si le fond est bleu
foncé, et — 1 si le fond est celui de I'affichage du texte (vert).

Contexte : SET, RESET, CLS

POKE

11 s’agit du complémentaire de la directive PEEK. Elle permet de
placer un octet de valeur quelconque a un endroit spécifié¢ de la

mémoire.

Exemple

10 CLS

20 FOR 1=0 TO 255
30 POKE 16384+ 1,1
40 NEXT |

- > L’écran affiche la police de caractéres disponible sur Alice.

Nous avons imprimé un message directement dans la mémoire
vidéo sans utiliser d’instruction PRINT.

Contexte : PEEK, USR, EXEC

PRINT

Impression d’une donnéc sur ’écran. PRINT peut traiter des quan-
tités numériques et alphanumeériques. Une seule instruction permet d’af-
ficher plusieurs données, pourvu qu’elles soient séparées par une vir-
gule ou un point-virgule.

La virgule provoque une tabulation automatique de I’écran en
deux colonnes indépendantes de seize caractéres.

Le point-virgule annule le “‘retour chariot*‘, et I’impression sui-
vante sera directcment contigué.

Exemple

10 CLS

20 PRINT “VIRGULE"”,”0OU"
30 PRINT ““POINT-VIRGULE"
40 PRINT “TELLE;”EST";
50 PRINT “LA QUESTION"

- 180 -

On obtient :

- > VIRGULE OU
POINT-VIRGULE
TELLE EST LA QUESTION

Voir Chapitre 2 pour plus de détails.

Contexte : PRINT@, TAB

READ

Lecture d’un fichier interne sous forme de DATA. Si N instruc-
tions READ ont été employées, la suite va lire le N+ 1éme élément
du fichier interne s’il existe ; sinon un message d’erreur sera généré
(OD error).

La valeur lue est affectée dans la variable mentionnée avec READ,
il faut donc toujours vérifier si la donnée et la variable sont du méme
type.

Une fois arrivé en fin des données, il faut remettre le pointeur
des DATA a zéro a I’aide de RESTORE. Dans ce cas, la lecture recom-
mencera au début du fichier interne.

Exemple

10 DATA 1,2,3,4,5.6
20 FOR 1=1TO 3
30 READ NO

40 NEXT |

50 RESTORE

60 PRINT NO

- > 3
Ce programme lit le troisieme élément du fichier interne, I’affecte
a la variable NO, puis laisse le fichier dans I’état initial. On remarque

qu’il a été nécessaire de lire tous les nombres intermédiaires des DATA.

Comme pour INPUT, il est possible de mettre plusieurs varia-
bles dans une instruction READ.

Contexte : DATA, RESTORE

- 181 -

REM

Signale a I’interpréteur que la ligne de programme est un com-
mentaire et ne doit pas étre analysée. Les commentaires n’apparai-

trons qu’au cours du listage du programme.
Contexte : LIST

RESET

Instruction graphique destinée a effacer un pavé sur I’écran. Celui-
¢i devient bleu foncé, couleur du fond de dessin.

Exemple

10 CLS O

20 SET(10,10,5)

30 FOR 1=1 TO 1000
40 NEXT |

50 RESET(10,10)

60 GOTO 20

- > Un petit carré blanc va clignoter indéfiniment aux coordon-
nées horizontale 10, et verticale 10.

Contexte : SET, POINT, CLS

RESTORE

Remet le pointeur du fichier interne 4 sa position initiale.

Contexte : READ, DATA

RETURN
Cette directive va dérouter I’interpréteur BASIC vers I’endroit du
dernier GOSUB rencontré.

Contexte : GOSUB, ON GOSUB

RIGHTS

Fonction de traitement de chaine de caractéres. Cette instruction
extrait la partie droite d’une chaine alphanumérique, sur une longueur
spécifiée par le parametre.

- 182 —

Exemple
10 A$="MARINADE"”
20 PRINT RIGHTS$(AS,6)

On obtient :
- > RINADE

Contexte : STRS, LEN, VAL, MID$, LEFTS, CHR$

RND

Générateur de nombre aléatoire. Selon la valeur de I’opérande,
le nombre aura les valeurs suivantes.

RND (0)— > nombre N tel que 0<N< 1
RND (N)— > nombre compris entre 1 et N au sens large.

Exemple

10 PRINT “LANCE D'UN DE”

20 A=RND (6)

30 PRINT “LE RESULTAT EST:":A
40 FOR J=1 TO 1000:NEXT J

50 GOTO 10

L’écran affiche une infinité de nombres entre | et 6 choisis au
hasard.

Contexte . INT, ABS, SGN

RUN

Ordonne le début de ’exécution d’un programme BASIC rési-
dent en mémoire. RUN réinitialise toutes les variables et tableaux a
0 OU [XSA)

I1 est possible de commencer I’exécution au numéro de ligne men-
tionné si on utilise un opérande.

Exemple

10 PRINT “LIGNE 10"
20 PRINT “LIGNE 20"
RUN 20 ENTER

- 183 -

On obtient :
- > LIGNE 20

[.’exécution commence ligne 20.

Contexte : LIST, NEW

SET

Affiche un pavé graphique de la couleur spécifiée, aux coordon-
nées indiquées. X variede 0 a 63 et Y de 0 a 31. La couleur, elle, est
codée de 0 a 8.

Exemple

10 X=10
20 Y=12
30 C=5
40 SET (X,Y,C)
On obtient :
- > Pavé blanc en 10 et 12

Contexte : CLS, RESET, POINT

SGN

Teste le signe d’une quantité numérique : 1 si le nombre est posi-
tif ; 0s’ilest nul ; — 1 8’1l est négatif. 11 peut étre utilisé dans des cal-
culs ou comme test pour déterminer si un nombre est nul.

Exemple

10 INPUT “NOMBRE A TESTER'":A

20 IF SGN (A) THEN PRINT ““TEST POSITIF":GOTO 40
30 PRINT “TEST NEGATIF”

40 END

On obtient

- > NOMBRE A TESTER?0 ENTER
TEST NEGATIF

- 184 —

NOMBRE A TESTER? - 3 ENTER
TEST POSITIF

Contexte : ABS, RND, INT

SIN

Fonction trigonométrique SINUS. L’argument doit étre donné
en RADIANS.
Pour plus de détails voir la fonction COS.

Contexte : COS, TAN, EXP, LOG

SKIPF

Controle des programmes sur bande magnétique. Positionne la
lecture en fin de enregistrement mentionné.

Contexte : CSAVE, CSAVE=, CLOAD, CLOAD*

SOUND

Génération d’un son. Les deux paramétres précisent respective-
ment la fréquence et la durée du son. Leurs valeurs varient entre |
et 255.

Voir INKEYS$ pour un exemple d’utilisation.

SQR
Fonction racine carrée, attention aux nombres négatifs.
Exemple

10 PRINT SQR (4)
20 PRINT SQR (16)

On obtient :
- > 2
4

Contexte : COS, SIN, TAN, EXP, LOG

— 185 —

STEP

Instruction optionnelle de boucle. STEP précise le pas de 1a bou-
cle. C’est-a-dire la valeur ajoutée au compteur de boucle a chaque
passage. .

Lorsque le pas de la boucle n’est pas précisé, sa valeur par défaut

est 1.
Exemple

10 FOR 1=10 TO 0 STEP —1
20 CLS

30 PRINT |

40 SOUND 50,5

50 NEXT |

60 CLS

70 PRINT TABL(5),”IGNITION"

- > Compte a rebours sonorisé avec la mention IGNITION, en
fin de programme.

Contexte : FOR, TO, NEXT

STOP

Interruption momentanée d’un programme. La poursuite de ’ex¢-
cution a partir du point d’arrét est réalisée par CONT. Le contenu
des variables et tableaux est préservé. Cette instruction peut étre utile
lors de la mise au point d’un programme.

Contexte : END, LIST, RUN, CONT

STRS

Directive complémentaire de VAL. Traduil une valeur numéri-
que en une chaine de caractéres sans signification pour la machine.

Attention : “E”’ et **.”’ sont considérés comme des symboles
Aumeriques.

Exemple
10 A=1045
20 A$=STRS$(A)

- 186 —

30 PRINT A+1
40 PRINT A%+ 1"

On obtient :
- > 1046
10451

Contexte : VAL, LEN, CHRS, LEFTS, RIGHTS, MID$

TAB

Tabulation horizontale de I’écran. En réalité, elle émet autant de
caracteres espace qu’il est mentionné dans I’opérande. Le séparateur
avec la donnée d’impression est le point-virgule.

Exemple

10 FOR I=1TO 3
20 PRINT TABI(I);!
30 NEXT |

On obtient :
- > 1

2

3

Contexte : PRINT, PRINT @

TAN

Fonction trigonométrique TANGENTE. L’opérande doit étre en
radian (voir GOSUB pour un exemple de conversion). Mathématique-
ment, TANGENTE = SINUS/COSINUS. Pour plus de détails, voir
COS.

Contexte : SIN, COS, EXP, LOG ...

THEN

Délimiteur de test dans une structure de décision IF THEN. Si
le test qui précede THEN s’avere vrai, I’interpréteur exécutera les ins-
tructions placées aprés THEN. Sinon, il se branchera 4 la ligne de pro-
gramme suivante.

- 187 -

Voir IF pour plus de détails.
Contexte : IF, =, >, <, <>, >=, <=

TO

Sert a préciser la valeur finale d’un compteur de boucle dans une
structure FOR NEXT.

Contexte : FOR, STEP, NEXT

USR

Appel d’un sous-programme en langage machine avec transmis-
sion de parameétres.

Contexte : PEEK, POKE, EXEC

VAL

Fonction complémentaire de STR$. Convertit une donnée alpha-
numérique en un nombre directement utilisable par la machine.

Si un symbole non numérique est rencontré, la conversion s’ar-
réte, ou égale 0 si le symbole est le premier de la chaine de caractéres.

E et ““.” sont considérés comme des symboles numériques.
Exemple
10 A$ =""1045"
20 A=VAL(AS)
30 PRINT A+1
40 PRINT A+ 1"
On obtient :
- > 1046
10451

Contexte : STRS, RIGHTS, LEFTS$, MIDS$, LEN, CHR$

VARPTR

Donne I’adresse du premier emplacement d’une variable.
Voir les chapitres sur le traitement interne de la machine.

— 188 -

Contexte : POKE, PEEK, USR, EXEC

Elévation a la puissance. 3 } 5=3+3x3x3%3. Trés utile pour cer-
tains calculs mathématiques, elle est toutefois relativement lente et peut
introduire un facteur d’erreur discernable dans certains cas.

C’est pourquoi il est conseillé, toutes les fois ou cela est possible,
d’écrire I’opération avec des multiplications.

L’exponentiation est la plus prioritaire des opérations élémentaires.

Exemple

Mieux vaut écrire 5+5 que 5 t 2 ; par contre 5 1 16 est plus judi-
cleux que 5+5*5x5+5*x5 4545 %5 £5+5 5555 x5+5

Contexte : +, —, %, /

Séparateur d’instructions sur une méme ligne de programme. Mais
I’ensemble des instructions sur cette ligne ne doit pas dépasser une lon-
gueur de 127 caracteéres.

- 189 -

ANNEXE 4

TABLE DES INSTRUCTIONS DU 6803

INX
JMP
JSR

ABA
ABX
ADC

LDA
LDD
LDS
LDX
LSR

ADD

ADDD
AND
ASL

ASLD
ASR
BCC
BCS

LSRD
MUL
NEG
NDP
ORA
PSH

10

BEQ
BGE

BGT
BHI
BIT

PSHX
PUL

PULX

BLE
BLS
BLT
BMI

ROL
ROR
RTI
RTS
SBA
SBC
SEC
SEI

10

BNE
BPL

BRA
BSR

BVC
BvsS
CBA
CLC
CL

SEV
STA

STD
STS

STX
sus

CLR
cLv
CMp

SuUBD
Swi

12

CoM
CPX

TAB
TAP

DAA
DEC
DES

TBA
TPA
TST

DEX
EDR
INC

TSX
TXS
wai

INS

- 190 -

ANNEXE 5

LISTE PAR CODE OPERATION

’

HEXADECIMAL (1J)

1 2 3 4 5 6 7 B 9 A B c [¢] E F
NOP LSR D ASL D TAP TPA INX DEX CLv SEV c.c SEC cu SEI

SBA [of:7: TAB TBA DAA Asa

BRA BHI BLS BCcC BCS BNE BE2 BvC BvE BPL BMi1 B3GE BLT BGT BLE
TSX INS PUL A PUL B DES XS PSH A PSH B PUL X RTS ABX RTI PSH X MUL WAl Swi
NEG A Com A LSR A RORA A ASE A ASL A ROL A QEC A INC A TST A CLR A
NEG B coM B LSR B RDR B ASR B ASL B RDL 8 DEC B INC B TST B CLAR B
NE3 COoM LSR ROR ASR ASL ROL DEC INC TST JMP CLR
INCX INDX INDX INDX INDX INDX INDX INDX INDX INDX INDX INDX
NEG coM LSR ROR ASR ASL ROL DEC INC TST JMP CLR
ABS ABS ABS ABS ABS ABS ABS ABS ABS ABS ABS ABS
SUE A CMP A SBC A SUB D AND A BIT A LDA A EQR A ADC A ORA A ADD A CPXx BSR LDS

MM IMM IMM MM MM MM IMM IMM IMM MM IMM IMM

suB A CMP A SBC A SUB D AND A BIT A LDA A STA A EOR A ADC A DRA A ADD A CPX LCs 878
PAGE Z [PAGE Z | PAGE 2 PAGEZ | PAGEZ | PAGEZ | PACE Z | PAGEZ | PAGEZ | PAGE Z | PAGE Z | PAGE Z PACE Z | PAGE 2
SuB A CMP A SBC A SJB D AND A BIT A LDA A STA A EOR A ADC A ORA A ADD A CPX JSR Los STS
INDX INDX INDX INDX INDX INDX INDX INDX INDX INDX INDX INDX INDX INDX INDX
SUB A CMP A SBC A sUB D AND A BIT A LDA A STA A EQOR A ADC A ORA A ADD A CPX JSR Lbs STS
ABS ABS ABS ABS ABS ABS A8S ABS ABS ABS ABS ABS ABS ABS ABS
SuB 8 CMP B secs ADD D AND B BIT B LDA B €EOR B ADCSB CRA B ADD B LDA D LDX

MM IMM IMM IMM IMM MM IMM IMM MM IMM MM

sus B CMP B SBCB ADD D AND B BIT B LbA B STA B EOR B ADCSB ORA B ADD B LDA D) LDX 8TX
PAGE Z | PAGEZ | PAGEZ PAGEZ | PAGEZ | PAGEZ | PAGEZ | PAGEZ | PAGEZ | PAGE Z | PAGEZ PAGE Z | PAGE Z
suB B CMFP 8 sece ADD D AND B 8T B Lba s STA B EOR B ADC B ORA B ADD B LOA D 57D LDX §TX
INDX INDX INDX INDX INDX INDX INDX INDX INDX NDX INDX INDX INDX
SUR B CMP B SBC B ADD D AND 3 8T B LDA B STA B EDR B ADC B ORA B ADD 8 LDA D 570 LDX STX
ABS ABS ABS ABS ABS ABS ABS ABS ABS ABS ABS ! ABS ABS

- 19 -

ANNEXE b

TABLES DE BRANCHEMENTS RELATIFS

HRANCHIMENIS RETALITS TN AVAN]

S 6 v 2 3 4 5 6 7 8 9 A B C O E F
Mo
[¢] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
2 32 33 34 35 36 37 38 39 40 4) 42 43 44 45 44 47
3 |48 49 0 51 52 53 sa 55 56 57 S8 59 60 61 62 63
4 64 65 66 67 68 69 70 71 722 73 74 75 76 7?7 78 79
5 80 :]] 82 83 84 85 86 87 88 89 0 i 92 93 94 25
5 19 o7 98 9 100 10/ 102 103 104 105 106 107 08 105 110 111
7 112 n3 114 115 1é Nz 118 119 120 121 122 122 124 125 126 127

BRANCHEMINIS REDATHS TN ARRIRI

LSD
0 1 2 3 4 5] 7 8 9 A B C D E F

4
in
),

V2B 127 126 125 124 123 122 121 1200 119 VI8 117 116 1'5 114 113
1201 N0 109 108107 106105 104103 102 101100 99 98 97
96 95 94 3 92 Q1 0 a9 a8 87 a6 85 84 83 82 81
79 78 77 76 75 74 723 722 7 70 69 48 A7 66 45
64 63 62 61 60 59 58 57 5 55 54 53 52 5l 50 49
48 47 a6 45 44 43 42 41 40 39 38 37 36 35 34 33
32 3 30 29 28 227 26 25 24 23 22 2 FORE] 8 17
16 15 14 13 12 i 10 9 8 7 3 5 4 3 2 1

nelo o plom
@
[S)

- 192 -

ANNEXE /

TABLE DE CONVERSION HEXADECIMALE

HEX L O 1 2 3 4 5 6 7 8 9 A B C O E F 0] o0]
0 o 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 0 0
1 1 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3 25 | 4096
2 32 33 34 35 36 37 I8 I3 40 41 42 43 44 45 46 47 512 8192
3 A8 49 SO 51 52 53 54 55 56 S5? 58 59 60 61 62 63 768 | 12288
4 64 65 66 67 68 6% 70 71 72 73 724 75 76 77 78 79 1024 | 16384
5 B0 81 B2 83 B4 85 B6 B? 68 B3 90 91 92 93 94 95 1280 | 20480
6 96 97 98 99 100 101 102 103 104 105 106 107 106 109 110 111 1536 | 24576
7 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 1792 | 28672
a 128 129 130 131 132 133 134 135 136 137 138 133 140 141 142 143 2048 | 32768
9 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 2304 | 36864
A 160 161 162 163 164 165 166 167 168 163 170 171 172 173 174 175 2560 | 40960
B 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 2816 | 45056
C 192 193 194 135 196 137 198 139 200 201 202 203 204 205 206 207 3072 | 49152
o] 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 3328 | 53248
E | 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 3584 | 57344
F 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 3840 | 61440
5 4 3 2 1 0
rex| oec [rex] pec frex| oec [rex| oec [rex| oec Jrex| oec
0 o] O 0] O o] o o]l o 0 0 0
1 1,048,576] 1 65,536] 1 4,096] 1 2561 1 16 1 1
2 2,097152{ 2 131,072| 2 8,192] 2 5121 2 32 2 2
3 3,145,728 3 196,608} 3 12,288] 3 768 3 a8 | 3 3
4 4,194,304] 4 262,144f 4 16,384| 4 1,024 | 4 64 | 4 4
5 5242,880] 5 327.680] 5 20,480] 5 1,280 5 801 5 5
6 6,291,456] 6 393.216) 6 24,576 6 1,536) 6 96| 6 6
7 7,340,032] 7 458,752] 7 28,6721 7 1,792 7 nmw217 7
8 8,388,608 8 524,288] 8 32,768(B 2,048 8 128 | 8 8
9 9,437.184] 9 589,824] 9 36,864] 9 2,304] 9 144 | 9 9
A 10,485,760 A 6553601 A 40,960 A 2,560 A 160 A 10
B 11,534,336] B 720,896 B 45056| B 2,816| B 176 | B "
C 12,582,912] C 786,432] C 49152] C 3.072| C 192 | C 12
D 13,631,488 D 851,968/ D 53,248] D 3,328| D 208 D 13
E 14,680,064 E 917,504 E 57,344| E 3,584 E 224 E 14
F 15,728,640 F 983,040] F 61,440] F 3,840} F 240 | F 15

- 193 -

TABLE DES MATIERES

INTRODUCTION 5

_ 1

GENERALITES

Qu’est-ce qu’'un ordinateur 8
Structure iNteINE i 8
La communication avec l'ordinateur 14
Présentation du BASIC 15

2

FONCTIONNEMENT DU BASIC

Fonctionnement de l'interpréteur BASIC 22
Géographie de l'écran e 25
Visualisation a lI'écran i 27
Calcul nUM@rique 30
Les variables 32
Les tableaux 37
Fonctions mathématiques 39

3

LES BASES DE LA PROGRAMMATION

Entrée des données i 42
Prise de décision 44
Branchements e 46
Exemple de structure alternative 47
Opérateurs logiques 48
Simulation de boucle 50
Les boucles 51
Les tris ... 53

4

STRUCTURATION

Structuration des programmesc.i.eiiii i 60
Traitement des chalneso e 67
REalSatioN 69
Fichiers iNternes i e e 72
Fichiers d’adresses vt e 74

5

MATHEMATIQUES

Equation du second degréc...iiiiiiii i, 84
Résolution d’équations par itérations 86
Graphe d’un polynéme quelconque de degré 3 88
Graphe d'une fonction quelconque 98

6

DESSIN ET MUSIQUE

Le graphisme i e 106
L SON 112

7

NOTIONS DE MEMOIRE

Systémes binaire et hexadécimal, 116
Introduction au fonctionnement interne d’Alice 2
Les outils de travail i 129

8

NOTIONS DE LANGAGE MACHINE
Présentation du 6803 142
Réalisation d'un désassembleur 6803 146
ANNEXES

1. Table des codes ASCIl i, 156
2. Table des messages d'erreuro.uiriiraian .. 157
3. Résumé des commandes BASIC 159

4. Table des instructions 6803 190

5. Liste par codes opération hexadécimal (1.J.} 19N
6. Tables des branchements relatifs 192
7. Table de conversion hexadécimale 193

- 197 -

