MICRO-ORDINATEURS D

LA CONDUITE
DES ALICE 32
ET ALICE 90

par
Frangois BERNARD

Collection animée
par Richard SCHOMBERG

61, Boulevard Saint-Germain — 75005 Paris
EYROLLES 1985

Si vous désirez atre tenu au courant de nos
publications, il vous suffit d’'adresser votre
carte de visite au:

Service «Presse», Editions EYROLLES
61, Boulevard Saint-Germain,
75240 PARIS CEDEX 05,

en précisant les domaines qui vous intéressent.
Vous recevrez réguliérement un avis de paru-
tion des nouveautés en vente chez votre
libraire habituel.

«La loi du 11 mars 1957 n’autorisant, aux termes des alinéas 2 et 3 de I'article 41, d'une
part, que les «copies ou reproductions strictement réservées a I'usage privé du copiste et
non destinées a une utilisation collective» et, d'autre part, que les analyses et les courtes
citations dans un but d’exemple et d'illustration, «toute représentation ou reproduction inté-
grale, ou partielle, faite sans le consentement de I'auteur ou de ses ayants droit ou ayants
cause, est illiciten (alinéa 1°' de I'article 40)».

«Cette représentation ou reproduction, par quelque procédé que ce soit, constituerait une
contrefacon sanctionnée par les articles 425 et suivants du Code pénal».

© Editions EYROLLES, 1985

CHEZ LE MEME EDITEUR

Dans la méme collection

SAGUEZ et ANDRIEUX - Maftrisez les interfaces de votre micro-ordina-
teur - 144 p. ; 1984,

SCHOMBERG - Le Basic universel - 128 p. ; 1983.

SCHOMBERG - Micro-ordinateurs : comment ¢a marche ?- 96 p. ;
1983.

vVULDY - Graphisme 3 D sur votre micro-ordinateur -
128 p. ; 1985.

Autres ouvrages

DELAHAYE - Dessins géométriques et artistiques avec votre
micro-ordinateur - 256 p. ; 1985.

DELANNOY - Apprendre & programmer en Basic - 272 p. ;
1984.

DE ROSSI - Apprentissage rapide du Basic - 216 p. ; 1984,

(coll. Pratique de I'Informatique).
DUCAMP et SCHAEFFER - Réalisez vos jeux éducatifs - 144 p. ; 1985,

GROS - Dessiner, peindre et jouer avec ALICE et TANDY
MC 10- 152 p. ; 1984,

HIRSCH - Le Basic facile par une méthode progressive -
288 p. ; 1984, (coll. Pratique de I'Informatique).

O'MALLEY - 25 programmes graphiques en Basic Microsoft -
192 p. ; 1985.
PEZERET - Créez vos jeux d’aventure sur micro-ordinateur.

Méthodes et idées - 144 p. ; 1985.

_

Avant-propos

Ce livre s‘adresse a tous les possesseurs d’un Alice 32 ou d'un
Alice 9Q. En effet, ces deux machines, dotées d’'une mémoire et de
possibilités graphiques plus étendues que l'ancien Alice 4K, sont
totalement compatibles tant sur le point matériel que logiciel,
comme cela sera décrit tout au long de cet ouvrage et en particulier
dans le chapitre 3 traitant de leur architecture matérielle.

Un chapitre entier est associé a la description des diverses
instructions et commandes Basic. Le fonctionnement et la syntaxe
de chacune d'elles est décrit en profondeur et illustré d’exemples
pratiques.

Les possibilités graphiques de I'Alice ainsi que les différents
modes d’affichage font I'objet d'un chapitre particulier.

Cependant, la majeure partie de cet ouvrage est consacrée a
l'accés au langage assembleur. En effet, une des particularités les
plus intéressantes des Alice 32 et Alice 90 est la présence d’un
Editeur-Assembleur incorporé en ROM.

/‘llnsi, gréce aux chapitres 4 et 5, vous découvrirez la structure
t?’u microprocesseur qui équipe ces machines, le 68@3, ses registres
Internes, ses modes d'adressage et son jeu d’instructions.

Vil

Ces derniéres sont décrites les unes aprés les autres, illustréeg
de nombreux exemples qui utilisent la syntaxe de votre Editey,.
Assembleur. Pour ceux qui veulent aller plus loin dans ce domaine, e
chapitre 6 décrit des routines présentes dans la ROM de I'Alice ¢;
qui, par un simple appel, permettent d‘afficher des caracteéres sy,
écran, de lire le clavier, etc...

De plus, les passionnés de musique électronique trouveront
dans le chapitre 7 un certain nombre de routines assembleur quj
incorporées a des programmes Basic ou Assembleur, produisent des
effets sonores saisissants. Mais jugez-en par vous-méme.

Vil

Table des

matieres

Avant-propos
1.

2.

. L’architecture du systéme

. Introduction du 68 #3

..................

Premiére prise de contact

Le Basic de ’Alice

2.1. Introduction
2.2. Les variables
2.3. Les opérateurs
2.4. Les commandes Basic
2.5. Les instructions Basic

.............
.............

...........
......

.......

3.1. Larchitecture
3.2. Le Mapping

............

.............

4.1.
4.2.
4.3.
44.
4.5.

Introduction
Les systémes numériques
La syntaxe assembleur 6803 .

Les registres internes du 68 93

Les différents modes d’adressage du 68 93

.........................

.........................

.........................

.........................

.........................

.........................

.........................

.........................

.........................

.........................

.........................

.........................

.........................

.........................

.........................

................

AN AW W W

5. Le jeu d’instructionsdu 6883 73

S.I. Introductiont i e e 73
5.2. Les instructions de chargement 74
5.3. Lesinstructions arithmétiques 85
5.4. Lesinstructionslogiques, 102
5.5. Les instructions sur le registred’état 114
5.6. Les instructions de comparaisonc..nn.n 115
5.7. Les instructions de branchement 116
5.8. Les instructions d’appel et de retour de sous-programme 122
5.9. Lesinstructionssurlapile 123
5.10 Les instructions spécialeso, 126
6. Les sous-programmes systémec...c00neen... 130
7. Les possibilités sonores de PAlice 145
8. Les possibilités graphiques de PAlice 150
8.1. Introduction i e 150
8.2. Lesécransde’Alicecoiiiiiiiinnnnnnnn. 151
Table de conversion hexadécimal - décimal 159
Tableau récapitulatif des instructions du 6883 159

1
Premiére prise de contact

L’Alice, fabriqué par la société frangaise MATRA, est disponible
sous deux versions : I’Alice 32 et ’Alice 90. Ces deux machines sont tout
a fait différentes de la premiére version de I’Alice, similaire au MC 10 de
Tandy.

En effet, cette derniére machine ne possédait que 4 Koctets de
mémoire vive (RAM) et des possibilités graphiques quasiment inexis-
tantes. L’Alice 32 et I’Alice 99, au contraire, possédent respectivement
8 Koctets et 32 Koctets de RAM utilisateur. En plus de cela, ils dispo-
sent chacun d’une mémoire écran de 8 Koctets ce qui leur permet d’affi-
cher des graphismes en couleur de bonne résolution.

Mise a part la quantité de mémoire utilisateur et la présentation
(clavier en particulier) ces deux machines sont identiques car elles
possédent :

— le méme microprocesseur: le 6803,

— Le méme interpréteur Basic (similaire a celui de I’Alice
4K/Tandy MC 10),

— un éditeur-assembleur en ROM,

— les mémes modes d’affichage texte (16 lignes x 32 colonnes, 25
lignes x 4@ colonnes et 25 lignes x 8@ colonnes),

— les mémes modes d’affichage graphique (168 x 125 sous Basic
et 160 x 250 sous Assembleur),

— une sortie cassette pour la sauvegarde de données et
programmes,

— une sortie imprimante permettant de connecter soit I'imprimante
Alice, soit toute autre imprimante a liaison série.

Ces deux versions d’Alice sont connectables a tout téléviseur
couleur muni d’une prise PERITEL.

Si vous ne disposez pas de téléviseur muni d’une telle prise, vous
pourrez néanmoins disposer d’un affichage monochrome grace a un
adaptateur noir et blanc prévu pour fonctionner avec I’Alice.

Puisque, comme nous I'avons dit, ’Alice 32 et I’Alice 99 sont en
tous points similaires du point de vue fonctionnement, cet ouvrage
s’adresse indifféremment aux possesseurs de I’'une ou I’autre machine.

Le chapitre consacré a I’”” Architecture du systéme” donne tous les
détails nécessaires concernant la carte mémoire des deux versions, ceci
afin de permettre aux utilisateurs de I’Editeur-Assembleur de définir
’adresse d’implantation en mémoire de leurs programmes.

Cette mise au point faite, vous pouvez connecter I’alimentation a
votre Alice.ainsi que le cable PERITEL.

Lors de la mise sous tension, le logiciel contenu dans la ROM
16 Koctets initialise certaines variables nécessaires a son fonctionne-
‘ment ainsi que I’affichage. Vous vous trouvez alors en mode 16 lignes
sur 32 colonnes et vous devez voir s’afficher le message de bienvenue
suivant :

MICROCOLOR BASIC 1.0
(c:)%)PYRIGHT 1982 MICROSOFT

2

Le Basic de I'Alice

2.1. INTRODUCTION

Dans ce chapitre, nous vous proposons de décrire toutes les
instructions et commandes Basic présentes sur I’Alice. Nous avons
choisi de vous les présenter en les regroupant par affinités, ceci afin de
vous permettre de les utiliser plus rapidement de fagon plus efficace. De
plus, de nombreux exemples précisent leur emploi.

Ceci dit, ce chapitre ne prétend pas étre un cours de Basic: pour
plus de précisions concernant certaines instructions, vous pourrez vous
reporter a des ouvrages spécialisés tels que ” Le Basic Universel” paru
dans la méme collection.

2.2. LES VARIABLES

Le Basic de I’Alice accepte deux types de variables qui sont les
suivants :

— type réel,

— type chaine.

A chaque variable est attribué un nom comportant un ou deux
caractéres alphanumériques dont le premier est obligatoirement une

lettre. En fait, des noms plus longs peuvent étre utilisés mais 'interpré-
teur Basic ne prend en compte que les deux premiers caractéres.

Il convient donc de faire attention aux noms de variables différents
mais commengant par deux lettres semblables.

Une variable de type chaine est déclarée par le caractére addition-
nel $ (dollar). En ’absence de ce dernier, le Basic considére la variable
comme réelle.

Exemples :
AC B sont des variables réelles
A1$ B$ sont des chaines de caracteéres

2.3. LES OPERATEURS

Il existe trois types d’opérateurs:

— les opérateurs arithmétiques,
— les opérateurs de comparaison,
— les opérateurs logiques.

2.3.1. Les opérateurs arithmétiques

Ce sont:

— DP’addition +,

— la soustraction —,

— la multiplication «,

— la division /,

— I'élévation a une puissance T,

Il existe une hiérarchie entre ces différents opérateurs:

a) I'élévation & une puissance,
b) la multiplication ou la division,
c) I'addition ou la soustraction.

Exemple:

3.28 + 4 » 612 sera évalué de la fagon suivante:
3.28 + (4 * (612)) = 147.28

2.3.2. Les opérateurs de comparaison

Les comparaisons peuvent s’effectuer avec des variables numé-
riques ou de type chaine. Les opérateurs ont:

— égala P =

— inférieur a : < (inégalité stricte)
— supérieur a : > (inégalité stricte)
— inférieur ou égal a : <= (inégalité large)
— supérieurou égala : >= (inégalité large)
— différent de <>

Dans le cas de variables de type chaine, I’Alice prend chaque
caractére I’'un apreés I’autre et compare les codes ASCII correspondants.

2.3.3. Les opérateurs logiques

Les opérateurs logiques sont:

— le ”’ET” logique: AND

— le ”’NON” logique: NOT

— le”0OU” logique: OR

Ces trois opérateurs travaillent sur des entiers uniquement et les
opérations s’effectuent bit par bit.

Les tables de vérité de ces différents opérateurs sont données ci-
dessus:

AND X
0 1 |DoncX AND 1 =X
Y etX AND O =90
0 (1] (1]
1 1 5

(1] 1 |Donc X OR 1
X et X OR O

NOT donne le complément de la variable considérée. On aura
donc NOT X = X (X =complément de X)

X (1]} 1
x|1]| 0
Exemple:
36 AND 15=4
En effet:

36 = 09100100
15 = 98@01111

36 AND 15 = 060806190 = 4

De méme:
¢ 36 OR 15 =@d181111 = 47
e

NOT 36 = 11611611 = =37

(en notation en complément a deux qui sera décrite dans le chapitre inti-
tulé: ”Introduction au 6833”).

2.4. LES COMMANDES BASIC

Dans les lignes qui suivent nous allons décrire les diverses
commandes Basic disponibles sur 1’Alice.

6

CLOAD

Cette commande permet de charger en mémoire RAM un
programme Basic préalablement stocké sur cassette.

La syntaxe est la suivante:
CLOAD “"riow e fishiey!

Notons que le nom de fichier est optionnel et que, lorsqu’il est omis,
il y a chargement du premier programme situé sur cassette.

Le nom de fichier ne peut contenir plus de 8 caracteres.

Le bon fonctionnement de cette instruction est assuré par I’appari-
tion des lettres ”S” (venant de I’Anglais ”searching” signifiant cher-
cher) et ”F” (de I’Anglais ”found” signifiant trouve).

CLOAD+*

Cette commande est une variante de la commande CLOAD. En
effet, elle permet non pas de charger un programme enregistré sur
cassette mais des données stockées sous la forme d’un tableau.

La syntaxe est la suivante:
Do (JEbD® N, Vrmom ge fichuer”

N désignant le nom du tableau a charger (ses éléments seront donc
N(1), N(2),..., N(i), i désignant le nombre d’éléments, enregistrés sur
cassette, que I’on désire charger).

Le tableau N devra avoir été préalablement dimensionné par une
instruction DIM.

On aura par exemple:

TEDIM NG2)
ok ClLORD* N, "i0T0"

CLOADM

Cette commande permet de charger en mémoire RAM un
programme assembleur préalablement stocké sur cassette.

La syntaxe est la suivante:

CLOADM "nom de fichier”

Comme dans l'instruction CLOAD, le nom de fichier est optionnel
et ne peut contenir plus de huit caracteres.

CSAVE

A linverse de la commande CLOAD, la commande CSAVE
permet de sauvegarder un programme Basic se trouvant en mémoire sur
cassette.

La syntaxe est la suivante:

CSAVE "nom de fichier".
CSAVE=
Cette commande est a CSAVE ce que CLOAD=* est a CLOAD.

Elle permet donc de sauvegarder sur cassette des données stockées
a lintérieur d’un tableau.

La syntaxe est la suivante:

CSAVE* N, "nom de fichier".

N désignant toujours le nom du tableau constitué des éléments
N(1), N(2),..., N().

On aura par exemple:

12 DIM N(G2)

@ N{1)=1@

32 N(2)=21

49 CSAVE#* N, "TOTO"
SKIPF

Cette commande permet de positionner la cassette a la fin du
programme précisé.

La syntaxe est la suivante:

SKIPF "viom de fichier!

Remarque : cette commande permet également de vérifier que ’enregis-
trement du programme spécifié dans le nom de fichier” est correct.

CONT

Cette commande permet de relancer ’exécution d’un programme
stoppé préalablement par une instruction STOP ou par la pression sur la
touche BREAK.

Le programme continue alors a partir de la ligne ou il s’était arrété.
L'utilisation conjointe de I'instruction STOP et de la commande CONT
rend possible la mise au point de programmes. En effet, il est possible
d’examiner la valeur de variables utilisées par le programme lorsque
celui-ci est arrété.

Remarque: un fonctionnement similaire peut étre obtenu en pressant
simultanément sur les touches SHIFT et @, ce qui provoque un arrét
dans le déroulement du programme. Dans ce cas, il n’a pas d’affichage
du message ”BREAK IN N”, comme nous le verrons dans la descrip-
tion de l'instruction STOP.

L’exécution peut reprendre par une simple pression sur n’importe
quelle touche du clavier.

LIST ET LLIST

Ces commandes provoquent I’affichage de tout ou partie de votre
programme Basic.

La commande LIST permet d’obtenir un affichage sur écran.
La commande LLIST permet d’obtenir un affichage sur
imprimante.

La syntaxe est la suivante:

. LIST (numeéro ligne début)—(numéro ligne fin)
ou bien:
LLIST (numéro ligne début)—(numéro ligne fin)

Ainsi:

LIST provoque |'affichage de la totalité du programme.

LIST 204 provoque l'affichage de la ligne 280 uniqguement.

LIST 100240 provoque l'affichage des lignes 108 i 260.

LIST —20d %voque I'affichage du programme jusqu’a la ligne

LIST 260 rovoque l'affichage du programme & partir de la
a ligne 240.

et de méme dans le cas de instruction LLIST.
NEW

Cette commande détruit le programme Basic qui se trouve en
mémoire. En fait, elle ne touche pas au contenu de la mémoire mais se
contente de réinitialiser certains pointeurs de travail utilisés par I’Alice.

Cette commande peut étre utilisée en mode programme, sachant
qu’elle provoquera I’effacement de tout ce qui se trouve en mémoire au
moment de son exécution.

RUN
Cette commande permet de lancer I’exécution d’un programme.

La syntaxe est la suivante:

RUN (numéro de ligne)

Ainsi RUN permet le lancement du programme résidant en
mémoire a partir de la premiére ligne.

RUN 168 permet son lancement a partir de la ligne 140.

2.5. LES INSTRUCTIONS BASIC

2.5.1. Les instructions arithmétiques

Nous les avons regroupées sous la forme d’un tableau (p. 11).

10

, . Condition sur
Nom Fonction réalisée I'argument X
ABS(X) Valeur absolue de X aucune
COSI(X) Cosinus de X X en radians
EXP(X) Exponentielle de X X<88.03
INT(X) Partie entiére de X aucune
LOG(X) Logarithme népérien de X xX>@
RND(X) Génération d'un nombre aléatoire compris | aucune
entre @ et X (ou @ et 1 pour RND(@))
SGN(X) signe de X: +1 si X>0 aucune
—15siX<@
@ si X=0
SIN(X) Sinus de X X en radians
SQR(X) Racine carrée de X xX>=0
TAN(X) Tangente de X X=Pl/2 + KaPI,
K entier

2.5.2. Les instructions logiques
Ces instructions ont déja été rencontrées dans le paragraphe
consacré aux opérateurs Basic.

Il s’agit des instructions :

AND
OoR
NOT

Exemple :

X AND Y
NOT X
X OR Y

~ NN
]

2.5.3. Les instructions sur les chaines de caractéres

ASC

Cette instruction permet de renvoyer le code ASCII du premier
caractére d’une chaine X$.

11

La syntaxe est la suivante:

RSC (X%)

Exemple:

1@ X¢ = "ALICE"
@ PRINT ASC(X%)

et le résultat affiché sur I’écran sera donc 65 (code ASCII de la lettre A).

Notons que le nombre renvoyé par une instruction ASC est
toujours compris entre @ et 255.

CHR
Cette instruction réalise I'opération inverse de ASC.

En effet, elle permet de transformer un code ASCII en son carac-
tére équivalent.

La syntaxe est la suivante:

CHR% (X)

On écrira par exemple PRINT CHRS$(13) qui provoque un retour
chariot (ENTER) lors d’un affichage sur écran par exemple.

LEFT

Cette instruction permet de renvoyer les I premiers caractéres d’une
chaine X8$.

La syntaxe est la suivante:

LEFTS (X$, I)
Exemple: Si 'on tape:

PRINT LEFT$(X$,2) avec X$="ALICE”, on obtiendra la
chaine de caractéres ”AL”.

Notons que I doit toujours étre inférieur a 255 et que si I est supé-

12

rieur a la longueur de la chaine de caractéres X$, celle-ci sera entiére-
ment renvoyée comme résultat.

LEN
Cette instruction renvoie la longueur d’une chaine de caractéres.
La syntaxe est la suivante:
LN (X$)

Exemple:

19 X$= "ACICE"
22 PRINT LEN(X%)

donnera un résultat égal a 5.

MID

Cette instruction permet de fournir les J caractéres d’une chaine a
partir du Iéme.

La syntaxe est la suivante:
MID$ (X$, I,.J)
Exemple:

10 X$= "A_ICE"
2@ PRINT MID$(X$,2,3)

donnera en résultat la chaine ”LIC”.

Notons que I et J doivent étre inférieurs a 255. Si I>LEN(X$) ou si
J=0 le résultat obtenu est une chaine de caractéres ”vide”.

RIGHT

Cette instruction permet de renvoyer les I derniers caractéres d’une
chaine.

La syntaxe est la suivante:

RIGHTS (X$, I)

13

Exemple :

10 X¢="ALICE"
2@ PRINT RIGHT$(X%$,2)

donnera la chaine ”CE”.

STR

Cette instruction permet de transformer un nombre en une chaine
dont les caractéres sont ceux utilisés pour son affichage sur ’écran.

La syntaxe est la suivante:

STR% (X)
Exemple :

12 X=1.25E3

c@ YE=STR$ (X)

32 PRINT Y%
donnera le résultat 1250.
VAL

Cette instruction réalise ’opération inverse de STR. En effet, elle
renvoie la valeur numérique représentant la donnée présente dans la
chaine de caractéres.

La syntaxe est la suivante:
VAL (X%}
Exemple :
12 INPUT X%
o LF VAL IX$) 7501 AL VAL (X)) (75A212
THEN PRINT "PARIS ";RIGHT$(X$,)

Notons que si le premier caractére de la chaine X$ n’est pas un
chiffre ou I'un des signes + ou —, le résultat obtenu sera @.

14

2.5.4. Les instructions de branchement

END

Cette instruction marque la fin d’un programme Basic et provoque
’affichage du OK.

Notons que cette instruction n’est pas nécessaire car le programme
s’arréte automatiquement a la derniére ligne exécutable.

EXEC

Cette instruction permet de lancer I’exécution d’une routine écrite
en Assembleur et se terminant par une instruction de retour de sous-
programme RTS (I’équivalent du RETURN Basic).

La syntaxe de cette instruction est la suivante:

EXEC A

A désignant ’adresse de début de la routine concernée avec:

O AL65535
GOSUB
Il s’agit de I'instruction d’appel de sous-programme.

La syntaxe est la suivante:

GOSUB numéro de ligne
Exemple :

16 GOSUB 10¢

provoque un appel du sous-programme commengant a la ligne 10 et se
terminant par une instruction RETURN lorsque le programme exécute
la ligne numéro 10.

GOTO

Il s’agit de P'instruction de branchement inconditionnel classique.

15

La syntaxe est la suivante:

GOTO numéro de ligne

Exemple

GOTO 14¢

provoque un branchement a la ligne 180 lorsque le programme exécute
la ligne numéro 10.

IF... THEN

Il s’agit de I'instruction de branchement conditionnel au numéro de
ligne indiqué.

La syntaxe est la suivante:

IF expression THEN numéro de ligne
ou bien IF expression GOTO numéro de ligne
ou bien IF expression THEN suite d’instructions Basic

Si P’expression présente aprés le ”IF” est vraie alors il y a soit
branchement au numéro de ligne indiqué soit exécution de la suite
d’instructions présentes aprés le ”THEN”.

L’expression peut exprimer :
— une condition simple:

Exemple:

A>d
— une condition sous-entendue:

Exemple:

A OR B (la condition sous-entendue est A OR B =1 puisqu'il s'agit
d’une opération logique).

16

— plusieurs conditions :

Exemple :

A=2§ AND B=13

Exemple d'utilisation :

1@ INPUT N

€@ IF N>O THEN GOTO 40
3@ N=ABS (N)

43 PRINT SGR(N)

S@ END

ou bien:

1@ INPUT N

2@ IF N(@ THEN N=RES(N)
3@ PRINT SOR(N)

4@ END

ON

Cette instruction s’utilise avec les instructions GOTO et GOSUB.
Elle permet des branchements ou appels de sous-programmes ” calculés ™
comme nous allons le voir ci-dessous.

La syntaxe est la suivante:

ON variable GOTO numéro de Iigne 1 (,numéro de ligne 2, etc...)
ON variable GOSUB numéro de ligne 1 (,numéro de ligne 2, etc...)

Selon la valeur de la variable, il y a branchement a une ligne Basic
ou appel du sous-programme commengant a cette ligne.

Si variable=1, il y a branchement au premier numéro de ligne indi-
qué, si variable=2, on se branche au deuxiéme, etc... Le programme
suivant illustre le fonctionnement de ON... GOTO:

17

1@ INPUT A

22 ON A GOTO 30,59, 70
3@ PRINT "LIGNE 3@
42 GOTO 1@

52 PRINT "LIGNE S@"
6 GOTO 1@

7@ PRINT “LIGNE 7@"
8w GOTO 1@

9@ END

Le fonctionnement de ON... GOSUB est en tous points similaire.

RETURN

Comme nous I’avons vu plus haut, il s’agit de I'instruction de retour
de sous-programme.

STOP

Cette instruction provoque I’arrét du programme Basic et I'affi-
chage de BREAK IN N, N étant le numéro de la ligne contenant
'instruction STOP.

Cette instruction ne détruit pas les variables. Pour relancer le pro-
gramme a partir de la ligne ou se trouve le STOP, il suffit de taper au
clavier la commande CONT vue précédemment.

2.5.5. Les instructions d’'Entrées-Sorties

INKEY

Cette instruction permet de rentrer un caractére au vol a partir du
clavier sans avoir a taper sur la touche ENTER. Cette instruction sera
en général incluse dans une boucle d’attente.

La syntaxe est la suivante:

INKEY$S

18

Exemple 1:

12 A% = INKEY$

c@ IF A$ = "M" THEN PRINT "BONJOUR"
30 IF A% = "S" THEN PRINT "BONSOIR"
40 GOTO 1@

Exemple 2:

10 FOR I=1 TO S

20 A%$= INKEY®$

3@ IF A%= "" THEN 20
42 NEXT

S& END

INPUT

Cette instruction permet de rentrer la valeur de variables a partir du
clavier.

La syntaxe est la suivante:
INPUT (“TEXTE;) VARIABLE 1 (,VARIABLE 2,... VARIABLE N)

Exemple:

1@ INPUT "NOMERE "N
22 INPUT "ANIMAL ";A$
3@ PRINT A$;N

Le fonctionnement de l'instruction INPUT est le suivant:

— si aucune touche n’est frappée ou si vous ne tapez pas de
ENTER aprés avoir rentré la donnée, I’Alice reste en état d’attente,

— st une erreur sur le type de variable est faite (exemple : on rentre
une chaine de caractéres alors que la variable a été déclarée comme
réelle), le Basic renvoie le message RED@ ? invitant I’utilisateur a rentrer
a nouveau la variable.

— pour rentrer plusieurs données, il faut utiliser une virgule (”,”)
pour séparer chacune d’elles,

— si toutes les données nécessaires n’ont pas €té introduites, vous
voyez apparaitre sur I’écran un double point d’interrogation (”??”).

19

Notons que l’instruction INPUT ne peut étre utilisée qu’en mode
programme.

PRINT ET LPRINT

Ces instructions provoquent I’affichage sur I’écran (cas de I’instruc-
tion PRINT) ou P'imprimante (cas de P’instruction LPRINT) des textes et
valeurs de variables précises juste aprés.

La syntaxe est la suivante:

PRINT VARIAELE 1 (,VARIABLE &,...,VARIAELE N)

ou

LPRINT VARIAEBLE 1 (,VARIABLE &,...,VARIABLE N)

La syntaxe ci-dessus est bien slr valable pour des textes qui
devront étre donnés entre guillemets.

La virgule séparatrice (”,”) peut étre remplacée par un point-
virgule (”;”). Le formatage sera alors différent.

Dans le cas d’une virgule séparatrice, I’affichage des différentes
variables se fera tous les 16 caractéres. Par contre la présence d’un
point-virgule provoquera la juxtaposition de ces variables.

Notons que I'instruction PRINT (ou bien LPRINT) utilisée seule
provoque un retour a la ligne sans autre affichage.

PRINT TAB
Cette instruction permet de réaliser une tabulation.

La syntaxe est la suivante:

PRINT TAB(X)

Exemple: PRINT TAB(20) permet de positionner le curseur a la 20¢
colonne de I’écran (celles-ci étant numérotées de @ a 79 dans le cas d’un
affichage 8@ colonnes, par exemple).

Nota: X doit toujours étre inférieur a 255.

20

PRINT @

Cette instruction permet d’afficher des textes ou valeurs de
variables a partir d’une position déterminée sur I’écran.

La syntaxe est la suivante:
PRINT @X,VARIABLEL (, VARIABRLE:Z, ..., VARIABLE N}
X est un nombre compris entre:

— @et 511 dans le cas d’un affichage sur 32 colonnes,
— @et 999 dans le cas d’un affichage sur 4@ colonnes,
— @et 1999 dans le cas d’un affichage sur 8@ colonnes.

En effet, ces valeurs représentent le nombre maximal de caracteéres
qui peuvent étre affichés sur I'écran dans le mode d’affichage choisi.

Par exemple, pour commencer l'impression a la 6° ligne, 10¢
colonne, on écrira, dans le cas d’un affichage sur 40 colonnes:

PRINT @zS@, variablel,....variahbleN
En effet: 250 =6 = 40 + 10

2.5.6. Les instructions graphiques et sonores

Le réle succinct des diverses instructions graphiques est décrit ici.
Nous reviendrons en détail sur les possibilités graphiques de I’Alice dans
le chapitre 8 avec, en particulier, I’accés a partir de I’Assembleur.

CLS
Cette instruction permet d’accomplir deux taches.
La premiére permet de sélectionner le mode d’affichage choisi:

L’instruction CLS 32 sélectionne le mode sur 32 colonnes.
L’instruction CLS 40 sélectionne le mode sur 4@ colonnes.
L’instruction CLS 80 sélectionne le mode sur 8@ colonnes.

21

L’instruction CLS 81 sélectionne le mode sur 8@ colonnes en vidéo
inverse.

La deuxiéme permet d’effacer I’écran et de choisir la couleur de
fond (dans le cas des modes d’affichage sur 32 et 4@ colonnes
uniquement).

Dans le cas de I'instruction CLS, on obtiendra un écran vert.

Dans le cas de I’instruction CLS N, on obtiendra un écran dont la
couleur est déterminée par la valeur de N.

Le tableau suivant résume les couleurs possibles:

Couleur Valeur de N

a

noir

vert
jaune
bleu roi
rouge
ivoire
bleu pale
mauve
orange

O NP WN =

POINT

Cette instruction fait partie des trois instructions semi-graphiques
disponibles sur I’Alice.

Elle permet de savoir si un point situé sur I’écran est allumé ou non
et quel est le type d’information qu’il contient (information alphanumé-
rique, semi-graphique, couleur).

La syntaxe de cette instruction est la suivante:
POINTK, Y2

Les coordonnées du point considéré sont X et Y. X est I’abscisse et
peut donc varier entre @ et 31, 39 ou 79 selon le mode d’affichage choisi.

22

L’ordonnée est Y et peut donc varier entre @ et 15 ou 24 selon le mode
d'affichage choisi.

Le tableau suivant résume les informations retournées par I’instruc-
tion POINT en fonction du mode d’affichage choisi.

i Mode d’affichage Valeur Information
I

32 ou 40 colonnes (1] point éteint

32 ou 4@ colonnes -1 caractére alphanumérique
32 ou 4@ colonnes 1a8 couleur du point

8@ colonnes 0 couleur de marge

8@ colonnes -1 caractére alphanumérique
8@ colonnes 1 couleur d'intensité

8@ colonnes 1 couleur de demi-intensité
RESET

Cette instruction permet d’éteindre un point de coordonnées
données situé sur I’écran.

La syntaxe est la suivante:

RESET (X, Y)

X et Y étant définis comme dans linstruction POINT vue
précédemment.

En mode 32 ou 4@ colonnes, le point concerné prend donc la
couleur du fond de I’écran aprés une instruction RESET.

Dans le cas de I’affichage sur 8@ colonnes, la couleur prise par le
point sera la couleur de marge.

SET

Cette instruction permet d’allumer un point de coordonnées
données, ceci avec la couleur désirée.

La syntaxe de cette instruction est la suivante:

SET(X, Y, N)

23

X et Y ont été décrits précédemment et donnent la coordonnée du
point concerné.

N spécifie la couleur du point a allumer.

Dans le cas d’un affichage sur 32 ou 40 colonnes, la couleur N peut
varier entre @ et 8 tandis que dans le cas d’un affichage sur 8@ colonnes,
N varie entre @ et 2.

Ces différentes valeurs de N, dans le cas d’un affichage sur 80
colonnes, ont les significations suivantes:

— @ est relatif a la couleur de marge (couleur du cadre de I’écran
ainsi que des caractéres alphanumériques affichés),

— 1 est relatif a la couleur d’intensité (couleur du fond de I’écran),

— 2 est relatif a la couleur de demi-intensité (couleur d’affichage
de chaque point élémentaire).

Ces différentes couleurs sont spécifiées une fois pour toutes grace a
instruction SET* que nous allons décrire ci-dessous.

SET=*

Cette instruction est utile uniquement dans les modes d’affichage
sur 8@ colonnes sélectionnés grace aux instructions CLS 8@ et CLS 81.
Elle permet de sélectionner les couleurs de marge, d’intensité et de demi-
intensité.

Chacune de ces couleurs est donnée pour un nombre compris entre
@ et 8. La syntaxe est la suivante:
SET+« M,I,D

M désignant la couleur de marge,
I désignant la couleur d’intensité,
D désignant la couleur de demi-intensité.

Nous allons illustrer cette instruction ainsi que linstruction SET
par des exemples d’application.

Nous vous proposons tout d’abord de tracer sur I’écran la courbe:
sin(X)
Y="—"=
X

24

Le programme est le suivant:

3@ INSPUT "INTERVALLE D’ETUDE"; X1, XE
4@ PA=(XE&-X11/160@

5@ MI=1.7E38:MR=--1.7c38

6@ FOR x=@ 70 189

7@ X3=X1+X*PA

a8 IF X3=@ THEN Y=1:607T012%2

9@ Y=SIN(X3) /X3

1@ IF Y(MI THEN MI=Y

112 IF Y)MAR THEN MA=Y

12@ NEXT

13 RB=MAXIZ4/ (ME-MY) tR=124/7 (MI-MQ)
14@ SETH &, 8,4

15 FOR X=@ 170 139

16V X3=X1+XKH

170 [F X3E=a THEN Y=INT(R+BR) :GCTT 19
188 Y=IihT (I H*DT'\:‘:X._I)/XU)

1090 SET(X, Y.

2@ NEXT

21@ G370 &1ie

Aprés avoir rentré ce programme, tapez CLS 8@ puir RUN. Entrez
Iintervalle d’étude (par exemple 1,18). Aprés quelques secondes, vous

sin(X)
X

verrez s’afficher la courbe en rouge sur fond jaune.

Nous allons expliciter briévement le fonctionnement de ce
programme.

— la ligne 3@ permet de rentrer l'intervalle d’étude de cette fonc-
tion (valeurs minimale et maximale de I’abscisse).

— la ligne 40 calcule le " pas™, c’est-a-dire la distance selon I’axe

des X entre deux points étudiés, sachant que la résolution de I’affichage
est 160.

— les lignes 4@ a 120 permettent de calculer les minimum et

sin(X)

maximum de la fonction sur lintervalle d’étude, ceci afin

d'obtenir une mise a Iéchelle automatique.

25

— la ligne 8@ (ainsi que la ligne 17@) tiennent compte du cas parti-
culier sn_n(g)_ =1.
0]
— la ligne 14¢ permet de sélectionner les couleurs de marge,

d’intensité et de demi-intensité.

La couleur de marge est ici le jaune (code=2) de méme que la
couleur d’intensité, ce qui permet d’avoir des caractéres alphanumé-
riques invisibles et de ne conserver que l'affichage graphique haute-
résolution (de couleur rouge ici).

— les lignes 150 a 204 permettent de tracer la courbe proprement
dite.

Notons que ce programme est quasi-universel. Il peut étre utilisé
pour tracer toutes sortes de courbes. Il vous suffira de modifier les lignes
9@ et 18 ainsi que les lignes 83 et 17@ qui traitent les cas particuliers.

Le petit programme présenté ci-dessous permet de tracer une série
de cercles de rayon croissant arrangés de fagon a former un cone.

12 SET* Z,2,4:X1=1R:Y1=10&

2 FOR R=1@ 7L W& STER ©

@ FOR Q=4 70U .14159 570 @, ¢
Gl X=X 14+R% J“(lg
S¢ Y=Y L ER*FGFIN(QL
il SETOX, ¥, &) e
T Xi=Xx: 415:?&7

L@ NXT

u}

]

)

e
AN

Yi-5

Les lignes 3@ a 6@ permettent de tracer un cercle de rayon R, de
centre (X1,Y1).

L’équation du cercle est donnée en polaires :

X = X1 + Rcos(AL)
Y =Y1 + Rsin(AL)

SOUND
Cette instruction est la seule instruction sonore présente sur I’Alice.

Elle permet de générer une note musicale de durée et de fréquence

26

variables dans le haut-parleur présent sur votre téléviseur.

La syntaxe est la suivante:

SUUNDF, D

F permet de programmer la fréquence de la note musicale et est un
nombre compris entre @ et 255.

D permet de programmer la durée de la note musicale et est égale-
ment un nombre compris entre @ et 255.

Le petit programme suivant illustre le fonctionnement de cette
instruction et permet de jouer un air bien connu.

S@ FOR I=31 7O 13
¢ READ i, DU

3@ SOUND £, DU

35 FOR J=1 0 S@:NEXT

42 NEXT

=@ DATA 182,75, :8@,5,180,5, 1689, 5, 196, 10

R DATA 189,12, 189, 5, 196,53, 182, 5, 183, S, 180, 12
7 307D 7o

A chaque note est associée une fréquence (184 = DO, 189 = RE,
196 = MI) et une durée.

2.5.7. Les autres instructions

CLEAR
Cette instruction joue trois roles différents selon la syntaxe utilisée.

— Vlinstruction CLEAR permet de remettre a zéro toutes les
variables et chaines de caractéres.

— Plinstruction CLEAR N permet de réserver un espace de N/2
Cases-mémoires pour y stocker des chaines de caractéres.

En effet, la taille maximale d’une chaine de caractéres rentrée par
une instruction INPUT est égale a 127. Dans certains cas, il peut étre
nécessaire de limiter cette valeur a un nombre inférieur (pour économiser

27

la place mémoire) ou au contraire d’augmenter cette valeur (jusqu’a une
limite de 255 caractéres).

On écrira donc CLEAR N avec N compris entre @ et 510.

— Vl’instruction CLEAR N1,N2 est utilisée avec des programmes
écrits en Assembleur.

N1 permet de déterminer le nombre d’octets mémoire qui seront
utilisés pour le stockage de fichiers source. N2 permet de sélectionner
I’adresse de départ du fichier source.

C’est ainsi que CLEAR 100,20000 permet de réserver 10 cases-
mémoires a partir de I’adresse décimale 20000.

DATA

Cette instruction permet le stockage des données a I’intérieur d’un
programme Basic.

La syntaxe est la suivante:

DATA valeur1(,valeur2,...,valeurN)

Elle peut étre mise a n’importe quel endroit et est utilisée conjointe-
ment avec l'instruction READ.

Dans une ligne DATA, on peut stocker n’importe quoi (variable,
chaine de caractéres) en séparant chaque donnée par une virgule.

DIM
Il s’agit de I'instruction de déclaration de tableau.

La syntaxe est la suivante:

DIM variable1 (dim1,dim2) (,variable2(...),...,variableN(...)))

Les variables variablel et variable2 peuvent étre de type réel ou de
type chaine ($). Un tableau non déclaré par une instruction DIM est
automatiquement dimensionné a dix dans chaque dimension.

Notons qu’un tableau ne peut étre dimensionné qu’une fois au
cours d’un programme.

28

Exemple: un tableau déclaré par DIM A(2,1) contiendra les six éléments
guivants:

AR, @)

A(lL, @)

Az, a)

A, 1)

AL, 1)

A, 1)

Notons que le Basic de I’Alice ne supporte pas de tableaux
comprenant plus de deux dimensions.
FOR... TO... STEP

Cette instruction est la classique boucle FOR... NEXT.

La syntaxe est la suivante:

FOR variable=debut TO fin (STEP pas)

Un compteur de boucle est initialisé a la valeur début” et incré-
menté a chaque exécution de boucle de la valeur ”pas™ jusqu’a ce qu’il
atteigne la valeur ”fin”. Si aucun pas n’est précisé¢ (pas de STEP),
I'incrément est égal a 1.

Remarque : une boucle FOR... NEXT est toujours exécutée au moins
une fois, quelles que soient les valeurs ”début” et ”fin”. ‘

Exemple :

1@ FOR I=1 TO 1@
C@ PRINT I*4
3@ NEXT I

LET

Cette instruction est utilisée pour affecter une valeur a une variable.

La syntaxe est la suivante:

LET variable= expression

29

On écrira par exemple LET A=1@. En fait, cette instruction est
inutile et ne sert qu’a gaspiller de ’espace mémoire. On écrira a la place
A=10 tout simplement.

MEM

Cette instruction permet de connaitre a tout instant le nombre
d’octets de mémoire vive restant dans I’Alice.

On écrira:
PRINT MEM
PEEK

Cette instruction va lire le contenu de la case-mémoire d’adresse X.
La syntaxe est donc la suivante:

PEEK (X avec ¢ (= X (=68553%5
Exemple :

Y= PEEK (X)
ou bien

PRINT PEEK (X)

Le résultat est donné sous forme décimale et est donc compris entre
0 et 255.

POKE

Cette instruction permet de ranger une valeur dans une case-
mémoire déterminée.

La syntaxe est la suivante:

POKE adresse, valeur

eton a:

@ (=adresse (=€
@ (=valeur (=g

30

Exemple: POKE zQ@a, 45

READ

Cette instruction permet d’assigner des valeurs a des variables au
cours de I’exécution d’un programme. Elle est utilisée conjointement a
Iinstruction DATA.

La syntaxe est la suivante:

READ variablel (,variable&,...,variahleN).
Exemple:

1@ DATA 12,20, 3@, "VACHE"
2@ READ A,B.C,D$

A A sera donc effectée la valeur 19, a B 1a valeur 20, a C la valeur
30 et a D$ la chaine de caractéres VACHE.

Un méme variable peut accéder a différentes données et a diffé-
rentes lignes DATA.

Exemple :

1 DATA 1.8, 3, 4,5

&0 DATA 1@, 2@, 50,40, S0
3 FOR I=1 TO 1@

42 RERD A

513 DRINT A
G NEXT L

En effet, a chaque instruction READ, un pointeur est incrémenté et
va ainsi pointer sur la donnée suivante. Ce pointeur peut étre réinitialisé
a I'aide de I'instruction RESTORE comme précisé dans les prochaines
lignes.

Notons que le nombre de ”READ” entre deux " RESTORE” doit
toujours étre inférieur ou égal au nombre d’éléments présents sur
I'ensemble des lignes DATA qu comporte le programme Basic.

31

REM
L’instruction REM indique une ligne de commentaire.

Exemple:
1@ RENM PROGRAMME DE JEU

Lors de I’exécution du programme, l'interpréteur saute une ligne
qui commence par un REM et passe a la ligne suivante.

RESTORE

Cette instruction, utilisée conjointement avec les instructions
DATA et READ permet de remettre a zéro le pointeur de DATA (il
pointe alors sur le premier élément de la premiére ligne DATA présenté
dans le programme).

Le programme ci-dessous illustre le fonctionnement des instruc-
tions DATA, READ, RESTORE et permet de connaitre le jour de la
semaine en fonction de la date:

i@ INPUT J, M, =

c@ PRINT “"LE"sJg""smz "sry; bl Uin"
3¢ [F M(=2 THEN S@

4@ N=@:50T032

SE IF A=4*%INT(X/4)=0 THEN 78

e¥ N=2:60T0O9@

7@ IF AR=@ THEN &1

B N=1

92 C=INT(365. &S*A) +1INT (3@, SLxM) + J+N
1@ I=C-7%*INT(C/7)

112 FOR J=1 TO I+i:READ A%

2@ NEXT J

138 PRINT A2

140 RESTORE

190 JATA “"MERCREDIM, "JiZUDL'", "VENDREDLY, "SRMED
1G DATA "DIMQNCHE”q“LUNDI" "MAaRDI"
172 GO0 1@

32

Aprés avoir introduit ce programme, tapez RUN puis entrez le jour,
le mois et I’année (<99), par exemple 5, 3, 85 pour le 5 mars 1985.
VARATR

Cette instruction permet de connaitre ’adresse d’implantation en
mémoire d’une variable.

On écrira par exemple, apés un NEW:

1@ A=
20 PRINT VARPTR(A)

ce qui donne le résultat 13149.

Cette instruction ne vous sera probablement d’aucune utilité sauf si
vous désirez traiter en assembleur des variables utilisées par I'interpré-
teur Basic.

33

3

L’architecture du systéme

L’Alice est ce que I’on appelle un ” micro-ordinateur ” individuel. A
ce titre, il comporte tous les composants nécessaires a son fonctionne-
ment en tant que systéme autonome (mis a part I’écran bien sur). Le but
de ce chapitre est de vous faire comprendre le fonctionnement général de
votre machine sans rentrer dans I’’électronique” a proprement dit.

3.1. L'ARCHITECTURE

L’Alice est bati, comme tout micro-ordinateur, autour de ce cafard
appelé micro-processeur. Dans votre cas, il s’agit du 6803, dérivé du
6800 de MOTOROLA qui fut un des premiers microprocesseurs a appa-
raitre au début des années 7.

En fait le 6803 est plus qu’un simple microprocesseur puisqu’il
intégre sur la méme ” puce” (circuit intégré) un grand nombre de lignes
d’Entrées-Sorties, un Timer, 128 octets de mémoire vive et un interface
série, en plus bien slr du microprocesseur proprement dit.

Nous reviendrons sur ces notions un peu plus loin.
Le 6803 posséde comme tout microprocesseur, un bus d’adresses,

un bus de données ainsi qu’un bus de contrdle.

34

Ces bus permettent d’accéder a la mémoire contenant des
programmes (en Basic ou en langage machine). Celle-ci peut étre
divisée en deux groupes, la mémoire morte (ROM = Read Only
Memory) et la mémoire volatile (RAM = Random Access Memory). La

remiere, comme son nom l’indique, ne peut étre que lue et contient le
logiciel de I’Alice (g(;stion du clavier, de I’écran, de I’Interface cassette,
etc...), le Basic et ’Editeur-Assembleur.

La seconde contient d’une part les programmes utilisateurs
(programmes Basic ou en langage machine), d’autre part la mémoire
écran qui contient les codes de tous les caractéres affichés.

Nous n’allons pas, nous I’avons déja dit, aborder la fagon dont le
microprocesseur lit et écrit dans la mémoire, ni comment s’effectue la
synchronisation et I’enchainement de toutes les opérations élémentaires
nécessaires a I’exécution d’une tache plus complexe (comme par
exemple aller afficher un caractére sur I’écran).

Pour satisfaire votre curiosité et en apprendre plus sur le sujet,
reportez-vous plutot a des ouvrages spécialisés traitant de cette question
(et notamment au livre > Micro-ordinateurs, comment ¢a marche?”,
paru dans la méme collection). Nous nous contenterons ici de décrire les
schémas de principe du systéme.

En plus de la mémoire dont nous venons de parler, il existe un
circuit spécialisé ayant pour référence EF9345 qui n’est autre que le
contréleur d’écran dont le role est de générer tous les signaux nécessaires
a Iaffichage sur moniteur ou télévision, ceci de maniére totalement (ou
presque) transparente pour le microprocesseur. En mode alphanumé-
rique, la mémoire écran contient le code caractére a afficher et ce code
est presenté a I’entrée d’une mémoire appelée générateur de caracteére.
Cette mémoire peut étre de type RAM ou ROM. En fonctionnement
standard, le générateur de caractéres est situé dans une ROM contenue
dans le circuit intégré controleur d’écran. Celui-ci se charge alors de
générer, a partir des informations contenues dans cette ROM, le signal
RVB qui est ensuite envoyé sur votre téléviseur par Iintermédiaire du
cable PERITEL. Mais revenons sur le microprocesseur de type 6803.

) Il posséde un certain nombre de lignes d’Entrées-Sorties (29 pour
€tre précis) dont le role est de lui permettre de communiquer aisément

35

avec le monde extérieur (nous appellerons Entrée toute opération durant
laquelle le microprocesseur acquiert une information de Pextérieur, et
Sortie toute opération durant laquelle le microprocesseur envoie une
donnée vers l’extérieur).

Par exemple le lecteur de cassettes, ’écran sont des organes de
Sortie, tandis que le clavier constitue un organe d’Entrée.

Le réle principal joué par les lignes d’Entrées-Sorties du 6803 est la
gestion du clavier de I’Alice. Les touches de celui-ci sont arrangées sous
forme de matrice (8 lignes sur 7 colonnes).

Lorsqu’une touche est pressée, le code correspondant est chargé
dans le 6803 qui ’envoie ensuite vers le contrdleur d’écran en vue de son
affichage.

Les 128 octets de mémoire vive contenus dans le 6803 sont destinés
a stocker des variables systéme importantes. Ils constituent la zone de
travail du moniteur et du Basic.

L’interface série, lui, permet les liaisons avec imprimante via la
prise RS232 ainsi que la gestion de I’interface cassette.

Le schéma de principe de I’Alice est le suivant:

BUS D'ADRESSES

N
clavier NA A hA” Adresses
- ROM RAM " RAM
| moniteur contrdleur écran
microprocesseur + Basic utilisateur dé
6803 + Editeur dynamique cran 8K
Assemueut EF 9345
A\ A\ A\ |ponntes
p 7N N \/r \v/ \\//
N\A
BUS DE DONNEES

interface cassette

3
interface série signal RVB
RS232 prise PERITEL

36

Nous remarquons sur ce schéma de principe que la mémoire écran est
séparée de la mémoire utilisateur destinée a stocker des programmes
Basic ou Assembleur. Cette mémoire €cran est entierement gérée par le
contrdleur de type EF 9345 dont le role, comme nous I’avons dit préceé-
demment, est d’aller lire ou écrire dans cette RAM les informations qui
seront ensuite visualisées sur votre téléviseur.

La RAM utilisateur a une capacité différente selon qu’il s’agit d’'un
Alice 32 ou d’un Alice 9.

L’Alice 32 posséde 8 Koctets de RAM utilisateur tandis que
I'Alice 99 en posséde 32 Koctets. Nous allons maintenant envisager le
mapping de I’Alice, c’est-a-dire les emplacements dans I’espace adres-
sable du 68083 de tous les composants dont nous avons parlé jusqu’a
maintenant, a savoir mémoire RAM, ROM, circuit contréleur d’écran.

3.2. LE MAPPING

Nous avons dit que le microprocesseur possédait un bus d’adresses.
Ce dernier est formé de 16 bits comme c’est le cas de tous les micropro-
cesseurs 8 bits existant actuellement sur le marché. Il peut donc adresser
26 = 65536 cases différentes comprises entre les adresses $000@ = @ et
$FFFF = 65535.

Nous allons examiner dans ce paragrahe comment est divisé cet
espace en fonction des différents composants existant.

Mapping de I’Alice 99

Adresse Fonction

65535 = $FFFF

ROM moniteur + Basic + Editeur-Assembleur
16 Koctets

49152 = $COQQ
Espace inutilisé
45056 = $BOOY

RAM utilisateur 32 Koctets

37

Adresse Fonction
12288 = $3000
Espace inutilisé
256 =$0100
RAM interne du 6803 (128 octets)
128 = 30080
Espace inutilisé
32 =$0020
Registres internes au 6803
0 = 30000

Mapping de I’Alice 32

Adresse Fonction

65535 = $FFFF

ROM moniteur + Basic + Editeur-Assembleur
16 Koctets

49152 = $CO00
Espace inutilisé
20480 = $5000
RAM utilisateur 8 Koctets
12288 = $3000
Espace inutilisé

256 = $0100
RAM interne du 6803 (128 octets)
128 = $0080
Espace inutilisé
32 =$0020
Registres internes au 6803
0 =30000

T

Les Mapping des deux versions de I’Alice sont a peu prés similaires
et ne différent que par la quantit¢é de mémoire utilisateur disponible.

Les adressees $0000 a $801F contiennent les registres internes du
6803 destinés a controler les ports d’Entrées-Sorties, I’interface série et
le Timer (ou temporisateur).

38

Les adresses $0080 a $OPFF contiennent les 128 octets de RAM
interne au 68@3 dont nous avons parlé précédemment.

La RAM utilisateur est située a partir de Padresse $3000.

La ROM contenant le moniteur, le Basic ainsi que I’Editeur-
Assembleur se trouve en haut de ’espace adressable du 6803, a savoir
entre les adresses $CO0P et SFFFF.

Maintenant que vous connaissez un peu l’architecture de votre
micro-ordinateur, nous allons pouvoir passer a un sujet passionnant qui
est I’accés au langage-machine avec, tout d’abord, la description du 6803
et de son jeu d’instructions.

39

4
Introduction au 6803

4.1. INTRODUCTION

Dans ce chapitre, nous nous proposons de décrire la structure
interne du 6803, son mode de fonctionnement et de vous faire sentir
Iattrait de la programmation en Assembleur.

Le 6803 est, nous le rappelons, le microprocesseur équipant I’Alice.

Considérons le petit programme Basic suivant:

18 INPUT

2@ IF AC@ THeN GAOTO Se
3@ B=-A

4@ GOTO 6w

S@ B=A

€@ PRINT B

7@ END

Dans un programme Basic, I’interpréteur lit une ligne, la traduit en
instructions machine et ’exécute. De plus, les différentes lignes sont
traitées les unes aprés les autres. Ici, le déroulement est le suivant:

— le microprocesseur attend tout d’abord qu’une valeur soit
rentrée au clavier,

40

— lorsque celle-ci a été introduite, il teste si elle est négative,

— dans I’affirmative, il y a branchement a la ligne 5@ (il s’agit
donc d’un branchement conditionnel), sinon le programme continue a se
dérouler normalement a partir de la ligne 30.

Le ”50” du GOTO 5@, de méme que le ”6@” du GOTO 60 sont
des étiquettes de branchement.

— si A<Q alors B= A

— si A>) alors B=—A

— le programme se termine par I'impression de la valeur prise par

Comme vous avez pu le constater, tout cela n’a rien de sorcier. La
seule chose a toujours bien garder en téte, c’est la tache que I’on veut
faire exécuter a son programme. Le reste n’est finalement qu’une ques-
tion d’écriture, que ce soit en Basic, en Fortran ou en Assembleur
comme nous allons maintenant le voir.

Considérons le petit programme suivant:

LDAA VAR ;CHARGE A
BLT NEG 5S1 NEGATIF, B=A

NEGA 18I POSITIF, B=-R
NEG STARA AFFI ;RANGE EN MEMOIRE
SWI

Sous des apparences un peu barbares, ce petit programme effectue
quasiment la méme tache que le programme Basic donné précédemment.

Examinons-le un peu sans nous attacher a la signification des
symboles tels que "LDAA ™ etc

A premiére vue, nous voyons apparaitre quatre zones séparées
entre elles par un espace.

1) la zone étiquette: ”NEG”; cette étiquette correspond exacte-
ment au 5@ du programme Basic.

2) la zone instruction: exemple "LDAA”. Dans cette zone se
trouvent les mnémoniques ou ensembles de lettres correspondant a des
instructions exécutables par le microprocesseur. Notons que ces mnémo-

41

niques doivent étre traduits sous forme binaire afin de pouvoir étre
compris par la machine (nous reviendrons sur ce point un peu plus loin):
c’est la phase d’assemblage.

3) la zone opérande: exemple ”VAR™. Dans cette zone sont
rangés divers renseignements concernant les données sur lesquelles
s’effectue I’instruction placée sur la méme ligne.

4) la zone commentaire: exemple ”;SI NEGATIF B=A". Elle
n’intervient pas dans le programme exécuté par le microprocesseur mais
sert a expliquer le fonctionnement d’une ou de plusieurs lignes du
programme. Vous pouvez constater que, hormis la forme qui est un peu
différente, P’analogie entre un programme en Assembleur et un
programme en Basic est trés grande.

— une ligne de programme contient toutes les informations néces-
saires a son exécution correcte.

— les lignes sont exécutées les unes aprés les autres.

Examinons de plus prés notre programme.

A la premiére ligne on charge I’Accumulateur A, qui est une case-
mémoire particuliére située a ’intérieur du 68@3, avec la valeur A située
initialement a P’adresse VAR.

Grace a I'instruction BLT, cette valeur est comparée avec zéro et
dans le cas ou elle est négative, il y a branchement a I’étiquette NEG. La
valeur B=A est donc toujours stockée dans I’Accumulateur et est ensuite
rangée a I’adresse AFFI. Si par contre la valeur A avait été positive ou
nulle, le programme aurait continué normalement.

L’instruction NEGA calcule la valeur B=—A (nous ne rentrerons
pas ici dans les détails concernant cette instruction) qui est également
stockée dans I’Assembleur puis rangée a ’adresse AFFICH.

Pour effectuer exactement la méme tache que dans le programme
Basic, il faudrait rajouter au programme Assembleur deux routines:

— l'une permettant d’afficher sur P’écran cathodique ou sur
I'imprimante le contenu de la case-mémoire AFFI.

Ceci dit, la comparaison des deux programmes nous améne a une
réflexion : le temps d’exécution du programme Basic sera beaucoup plus
long que celui du programme Assembleur. En effet, I’interpréteur Basic

42

de I’Alice traduit tout d’abord chaque ligne de programme en une série
d’instructions machine” qui sont ensuite exécutées par le
microprocesseur.

En pratique, vous utiliserez 1’Assembleur :

— chaque fois que le facteur temps d’exécution aura une grande
importance : par exemple lorsque vous aurez de longs calculs a effectuer,
ou lorsque vous programmerez des jeux animés sur écran.

— lorsque vous aurez besoin de fonctions spécifiques dont le
Basic de I’Alice n’est pas doté; exemple: tracer une droite reliant deux
points sur P’écran.

Nous avons jusqu’a présent effectué une approche de I’Assembleur
a partir du Basic afin de vous faire sentir qu’aprés tout ce n’est pas si
compliqué que cela en a I’air a premiére vue.

Nous allons maintenant vous proposer une deuxiéme approche en
remontant aux sources et en partant, cette fois-ci, du microprocesseur.

Nous en profiterons pour expliquer au passage quelques termes
courants qui font partie du vocabulaire de I’Assembleur.

Au début était le microprocesseur: ”un cafard” a 40 pattes qui
finalement ne paye pas de mine: on ne soupgonnerait pas, en le voyant,
qu’il est capable d’effectuer par exemple plusieurs centaines de milliers
d’additions par seconde.

Or, s’il est sur qu’un microprocesseur est capable de beaucoup de
choses (pour ne pas dire des miracles), il faut tout de méme se faire a
Iidée que c’est un ”étre” profondément stupide. Ainsi il faut lui macher
le travail et lui indiquer & chaque instant ce qu’il a a faire car il n’aura
Jamais d’initiatives personnelles. Le 6833 posséde un jeu d’instructions
qui lui permet d’accomplir des tiches aussi diverses que chargements
mémoire, opérations arithmétiques, comparaisons, branchements, appels
de sous-programmes, etc... Mais ne rentrons pas dans les détails, nous
verrons cela de maniére plus approfondie plus loin.

Afin de voir de quelle fagon sont codées ces instructions, il nous
faut d’abord rappeler qu’un microprocesseur travaille avec de la mémoire
dans laquelle il stocke a la fois les programmes et les données sur
lesquelles ceux-ci travaillent. La mémoire est divisée en un certain

43

nombre de cases, chacune d’elles étant numérotée. Le nombre qui les
identifie est appelé ”adresse”.

Vous savez probablement qu’un ordinateur ne travaille qu’avec des
”@” ou des ”1” (le courant passe ou ne passe pas): c’est ce quon
appelle le binaire. Un chiffre binaire (donc @ ou 1) est appelé bit. La
mémoire, dans le cas du 6803, est composée de mots de 8 bits en octets
qui ne sont en fait que les cases-mémoire dont nous avons parlé ci-
dessus. Chacune d’elles regoit une adresse comprise entre @ et 65535, ce
dernier nombre représentant I’espace-mémoire maximal adressable par le
microprocesseur.

Un octet est donc de la forme suivante:

;| 3 | 3% | 33| 83| 3 | 38, | 39

avec a, = 1 ou @ pour #<ig7.

Le jeu d’instructions du 6803 est un ensemble d’octets (compris
entre @ et 255 ou bien entre $00 et $SFF en hexadécimal puisqu’avec
8 bits, il est possible de coder 2* mots différents): on les nomme code-
opérations.

Par définition, un programme exécutable par le 6803 sera une série
d’instructions associées a leurs opérandes respectives et destinées a
accomplir une tache déterminée.

Ces instructions sont exécutées par le microprocesseur séquentiel-
lement, donc les unes aprés les autres.

Afin de minimiser les risques d’erreurs liés a un codage manuel en
binaire (ou méme en hexadécimal), on associe a chaque instruction un
mnémonique de trois ou quatre lettres.

Exemple: I'addition peut s’écrire ADDA ou bien ADCB. Ainsi
ADDA $F823 veut dire additionner le contenu de la case-mémoire
d’adresse hexadécimale $F823 avec I’Accumulateur A (nous reviendrons
sur le systéme de numération hexadécimale un peu plus loin).

De plus des noms sont assignés aux différents registres internes du
6803.

44

Exemple:

A = Accumulateur
X = Registre d’index

Le réle de I’Assembleur contenu dans la ROM de I’Alice est de
traduire une suite de mnémoniques 6803 associés a des opérandes en un
ensemble d’octets exécutables par le microprocesseur.

L’ensemble de ces mnémoniques est appelé programme source
tandis que le résultat, aprés assemblage, est appelé code objet.

Dans les lignes ci-dessus que, nous l’espérons, vous n’avez pas
trouvées trop longues, nous avons essayé de vous faire sentir les avan-
tages de la programmation en Assembleur.

L’Alice possédant un Editeur-Assembleur incorporé en ROM, vous
allez pouvoir aborder sans probléme ce domaine passionnant dans les
pages qui vont suivre.

4.2. LES SYSTEMES NUMERIQUES

1) Le binaire
Le 6803, nous I’avons dit, ne comprend que ce type de numération.

De méme que le décimal travaille sur les chiffres, @, 1, 2, 3, 4, 5, 6,
7, 8, 9 le binaire ne travaille que sur @ et I.

On dit que le décimal et le binaire sont respectivement des systémes
de base 10 et 2.

~_Considérons par exemple le nombre 3783. Il est composé de
chiffres des milliers (3), des centaines (7), des dizaines (8) et des unités

(3).

On peut donc écrire:
3783 = (3 x 1000) + (7 x 180) + (8 x 18) + (3)
Ou bien encore:

3783 = (3 x 10%) + (7 x 10?) + (8 x 10") + (3 x 1%

45

Si nous nous plagons maintenant dans un systéme de base 2, nous
avons:
3783 = (1 x 2048) + (1 x 1024) + (1 x 512) + (@ x 256)
+(1x128) + (1 x64) + (@ x32)+(@x 16)
+@x8)+(Ux4)+(Ux2)+(Ix1)

ou encore:

3783 =(1x2") + (1 x219) + (1 x2%) + (B x2% + (1x27)
+(I1x2)+@x2)+@x2%+@x2% +(1x2?%
+(1x2Y +(1x29
Le nombre 3783 en base 2 s’écrira donc:

3783 = 111011000111

Ce nombre peut donc étre représenté en binaire a I’aide d’un
mot de 12 bits.

Un simple calcul montre qu’avec 12 bits, il est possible de coder des
nombres compris entre @ et 4095. De méme on peut montrer qu’avec
N bits, on peut coder des nombres compris entre @ et 2N—1.

Les code-opérations du 6803 étant codés sur un octet, il peut en
exister au plus 256. En fait leur nombre est inférieur a cette valeur car ils
ne sont pas tous utilisés.

2) L’hexadécimal

De méme qu’il existe des systémes numériques de base 10 (le déci-
mal) et de base 2 (le binaire) il existe un systéme numérique de base 16
que ’on nomme I’hexadécimal. Ce systéme comporte donc 16 caractéres
qui sont les suivants:

0’ 1, 2‘ 3’4’ 59 69 7’ 8’ 97A’ BQC’ ‘D, E’F

46

On a donc les équivalences suivantes:

Hexadécimal Décimal Binaire

2000
2001
0010
@011
2100
@101
0110
2111
1000
1001
10 1010
1 1911
12 1100
13 1101
14 1110
15 1111

CONDNPRWN =S

MTMOOTPOONONHARWN-=-Q

Afin de convertir un nombre binaire en hexadécimal, on le sépare,
de droite vers la gauche, en groupes de 4 bits, chacun de ces derniers
étant converti en son équivalent hexadécimal.

Par exemple on a:
0110 1001 = $69 en hexadécimal
6 9 = 1@5 en décimal
Le signe $ (dollar) indique que I’on est en présence d’un nombre
hexadécimal.

De méme, on aura:

1101001101101 =0011 0010 0110 1101

3 2 6 D
= $326D en hexadécimal.

3) Représentation des nombres négatifs

Jusqu'a présent, nous avons parlé de mots binaires sans en spécifier
le signe. De méme qu’il existe des nombres décimaux négatifs pourquoi
* M M . . 3 ’ 3
N'existerait-il pas des nombres binaires négatifs ?

47

Avec un octet il est possible de coder des nombres compris entre @
et 255 (ou bien $09 et SFF en hexadécimal).

Considérons I'opération §—1 = —1 en décimal et tentons de la
réaliser en binaire (sur un octet).

) 0000 0000
-1 —0000 0001
=—1 =1111 1111 =8FF

Donc —1 sera représenté par $FF.

De méme —2 sera représenté par $FF et ainsi de suite.

Cette méthode de détermination de la représentation binaire d’un
nombre négatif n’est pas trés commode, c’est pourquoi nous allons intro-
duire la notion de notation en complément a 2.

La méthode est la suivante:

— on prend le mot binaire correspondant a la valeur absolue du
nombre dont on veut déterminer I'opposé (soit X),

— tous les bits sont changés en leur opposé: (@-1 et 1-0),

— on ajoute 1 au nombre trouvé, ce qui donne la représentation
binaire de (—X).

Exemple: Soit a déterminer la représentation binaire —2. On a:
2 = 00000010

qui donne:

111111@1 aprés inversion des 8 bits

et:

11111110 = $FE aprés addition de 1.

Le résultat trouvé est bien le méme que précédemment.
Nous pourrons vérifier que I’opération +2—2 donne bien zéro (sur
8 bits).

Nous donnons en annexe un tableau donnant la valeur décimale
associée a chacune des valeurs $0@ a $FF (en notation en complément a
2 bien sfr).

48

La notation en complément a deux sur 16 bits, utile dans le cas de
certaines instructions arithmétiques du 68@3 suit exactement le méme
principe que la notation sur 8 bits vue ci-dessus.

4) Le code BCD (Binaire codé Décimal)

Ce code permet de représenter d’'une maniére simple les nombres
décimaux. Chaque chiffre décimal est transformé en son équivalent sur
4 bits. On a donc:

@ = 0000
1 = 0001
2=0010
3=0011
4=0100
5=0101
6=0110
7=0111
8 = 1000
9 = 1001

Dans un nombre décimal, chaque chiffre est remplacé par son équi-
valent binaire. Par exemple:

36=00110110
e p—
3 6
Cela nous ameéne a une constatation: ce code perd une grande
quantité de place mémoire. En effet un octet ne permet de coder que des
nombres décimaux compris entre @ et 99 (contre @ et 255 pour le
binaire). Ce code n’en reste pas moins trés utilisé.

4.3. LA SYNTAXE ASSEMBLEUR 68603

~ Dans ce paragraphe, avant d’envisager la description proprement
dite du 6803, nous allons décrire la syntaxe qui sera utilisée dans tout le
r,e‘stant de cet ouvrage. Cette syntaxe est bien sir celle utilisée par
I'Editeur-Assembleur de I’Alice.

Le chargement de celui-ci est instantané puisqu’il est contenu en
ROM. Son appel nécessite juste une initialisation préalable.

49

En effet, il est nécessaire de renseigner I’Editeur ou (a quelle
adresse) il va stocker les caractéres composant le programme source
(ensemble des mnémoniques et opérandes associés représentant le
programme destiné a étre assemblé).

Ceci peut se faire grace a 'instruction Basic CLEAR qui a été vue
dans le chapitre consacré au Basic.

La syntaxe de cette instruction est: CLEAR NI,N2

N1 étant le nombre d’octets a réserver en mémoire et N2 étant
’adresse de départ du programme source.

Notons que N2 ne correspond en aucune fagon a I’adresse de début
du programme objet (c’est-a-dire du programme assemblé).

Dans le cas de I’Alice 32, N2 peut prendre des valeurs comprises
entre 13287 et 20480 ($33E7 a $5000 en hexadécimal).

Dans le cas de I’Alice 32 avec extension RAM de 16 Koctets, N2
sera compris entre 13287 et 36864 ($33E7 a $9000 en hexadécimal).

Dans le cas de I’Alice 99, N2 sera compris entre 13287 et
45056 = SBOOD.

Aprés avoir effectué cette initialisation, tapez simultanément sur les
touches SHIFT et & puis ENTER. L’écran doit devenir alors bleu, indi-
quant que ’Editeur attend que vous rentriez des lignes assembleur.

Ceci correspond a4 un “démarrage a froid” de I’Editeur-
Assembleur : le programme source est chargé a partir de ’adresse N2 et
tout éventuel autre programme assembleur rentré préalablement est
perdu.

Pour sortir de ’Editeur-Assembleur il vous suffit de taper deux fois
sur la touche BREAK ce qui provoque I’affichage du ” OK ” caractéris-
tique de linterpréteur Basic.

Pour revenir a I’Editeur-Assembleur et ne pas perdre un éventuel
programme source présent en mémoire, il vous suffit de taper simultané-
ment sur les touches SHIFT et % puis ENTER. C’est ce que I’'on appelle
un démarrage a chaud.

Mais voyons maintenant comment écrire un programme dit
”source”. Une ligne en langage d’assemblage est subdivisée en un

50

certain nombre de parties appelées ”champ”. En effet, un programme
écrit en assembleur véhicule un certain nombre d’informations distinctes
qui, pour étre bien comprises par I’Assembleur, doivent étre bien séparées
les unes des autres.

Cette séparation peut s’effectuer par une pression simultanée sur
les touches CTRL et T (ce qui correspond a une tabulation). A chaque
fois que cette séquence de touches est rentrée au clavier le curseur se
déplace de six cases vers la droite. Nous allons passer en revue dans les
lignes qui suivent ces différents champs.

1) Le champ étiquette (label)

En Basic, une étiquette représente une adresse de branchement.
(Exemple: GOTO 109).

La zone étiquette est le premier champ dans une ligne écrite en
assembleur. Elle peut étre vide (pas d’étiquette) ou remplie. Les labels
sont utilisés lors des instructions de saut inconditionnel, conditionnel et
d’appel de sous-programme.

Du fait de la taille limitée du champ qui lui est affecté, une étiquette
doit avoir un nombre maximum de caractéres égal a 5.

Exemple:

BOUCL
BRAN
DECIM

ou si vous aimez I’Anglais:

LOOP
START

Nous vous donnons ci-dessous a titre indicatif le listing d’une ligne
en Assembleur :

SOMME ADDA ##%3@ EFFECTUE LA SOMME

champ
label

51

2) Le champ opération
Le champ opération est situé juste aprés le champ étiquette duquel
il est espacé par un espace ou une tabulation. Dans ce champ, on laisse
le mnémonique de l'instruction.
SOmMMiEE ADDA #4322 EFFECTUE LA SOMME

———

champ
opération

3) Le champ opérande

Ce champ est celui qui risque de poser le plus de problémes au
programmeur novice ou assembleur.

L’opérande sert a définir la donnée sur laquelle s’effectue I'instruc-
tion. Elle doit donner a I’'assembleur toutes les précisions nécessaires a sa
compréhension du programme et en particulier concernant le mode
d’adressage.

Dans ce champ opérande, on peut trouver:
— des nombres,
— des noms de variables,
— des étiquettes.
a) Les nombres

L’Assembleur de I’Alice n’accepte que des nombres hexadécimaux.
Le systéme de numération hexadécimale a été vu précédemment dans ce
chapitre. Par analogie avec la plupart des Assembleurs existant actuelle-
ment, les nombres hexadécimaux présentent comme caractére distinctif
la présence d’un $ (dollar).

C’est ainsi que 32F8 sera écrit $32F8 dans tout programme source.
b) Les noms de variables

Dans le champ opérande peuvent apparaitre des noms de variables
pour définir une adresse par exemple. L’Assembleur les traite comme des
nombres (a condition qu’une valeur ait été assignée a chacune d’elles
auparavant).

52

Exemple:
ADCA VALEUR

Supposons que VALEUR = $10, alors il y aura addition entre
|'’Accumulateur et la case-mémoire d’adresse $0910.

c) Les noms d'étiquette

Dans les instructions de branchement, par exemple, on peut voir
apparaitre une €tiquette dans le champ opérande. Cette étiquette posséde
les caractéristiques décrites précédemment.

Exemple :
JMp BOUCL

4) Le champ commentaire

Dans un programme en assembleur, le commentaire n’a aucune
influence (a condition, bien siir, qu’il soit placé au bon endroit et séparé
du champ opérande par un espace ou une tabulation ainsi que d’un
délimiteur.

Les commentaires, bien que trop souvent négligés, sont trés utiles
car ils permettent de documenter un programme et de ce fait de le rendre
plus intelligible.

Le délimiteur, destiné a signaler a I’assembleur qu’il est en présence
d’'un commentaire, est un point-virgule (”;”).

Exemple :

;BOUCLE DE DELAI

Contrairement a ce que I'on pourrait croire, écrire des commen-
taires utiles est assez difficile. En effet, il ne faut pas écrire n’importe
Quol. Voici quelques régles et conseils a observer:

— Les commentaires doivent servir a éclairer le fonctionnement
global du programme.

— Ils peuvent servir a expliquer non seulement I'utilit¢ d’une
lnstructlon particuliére mais aussi d’un morceau de programme (sous-
Programme par exemple).

53

— Un commentaire doit étre clair et concis.

— 11 est inutile de s’attarder sur des points évidents mais il ne faut
pas hésiter a insister sur des endroits clefs.

— Ecrivez par exemple: ” TEMPS MAXIMAL ECOULE?” oy
bien "TESTE SI L’INTERRUPTEUR EST FERME” plutét que
"TESTE LA VALEUR DU BIT N”, ’BRANCHEMENT AU
DEBUT”.

Il faut savoir que le temps passé a commenter un programme est
pratiquement toujours récupéré et méme fait gagner du temps lors de la
phase ”mise au point” par exemple.

Tous ces détails vous semblent peut-étre un peu abstraits. Ne vous
inquiétez pas, nous vous donnerons un peu plus loin un exemple de
listing en assembleur afin de vous familiariser avec la syntaxe. Mais
avant cela examinons un point trés important dans I’écriture d’un
programme en assembleur.

5) Les pseudo-instructions

Nous appelons pseudo-instructions les instructions qui ne font pas
partie de la bibliothéque du 68@3 et qui sont juste destinées a donner des
informations (ou directives) a I’Assembleur.

Nous allons repertorier toutes celles dont dispose I’Editeur-
Assembleur de I’Alice. Notons que les pseudo-instructions sont situées
dans le champ opération d’'un programme source.

a) La directive origine (ORG)

Elle permet de définir I’adresse de départ d’un programme. Suppo-
sons que nous voulions faire commencer votre programme a I’adresse
$5809, nous écrirons alors:

ORG $S5800

Aprés I’assemblage, I’adresse de la premiére instruction sera don¢

$5800.

54

p) Le point d’entrée du programme (EXC)

De méme qu’il est nécessaire de fournir a I’Assembleur une indica-
tion concernant I’adresse d’implantation en mémoire du programme, il
faut qu'il connaisse son adresse de lancement, c’est-a-dire I’adresse de la
premiére instruction qui devra étre exécutée.

Cette adresse peut dans certains cas étre égale a I’adresse d’implan-
tation déterminée par la pseudo-instruction ORG.

Le point d’entrée est déterminé par la pseudo-instruction EXC.

On écrira par exemple:

ORG $5800
EXC INTT
INIT Anrae

Dans ce cas la premiére instruction a exécuter sera située a
I’adresse $5800.

c) Affecter une valeur a une étiquette

Lorsqu’il est nécessaire d’attribuer une valeur hexadécimale a une
étiquette ou a une variable que 1’on désire par la suite référencer par un

”

nom, on utilisera la directive 7’ =".

On écrira par exemple: VAL = $3F58 qui attribue 4 VALEUR le
nombre hexadécimal $3F58.

ORG +58Q0
VAL = $3FS8

EXC INIT
INIT RTS

d) Définir une chaine de caractéres

A chaque caractére peut étre associé un code sur un octet que ’on
Nomme le code ASCII (de I’Anglais American Standard Code for Infor-
Mation Interchange).

La directive ”’” (apostrophe) permet de stocker en mémoire les

¢odes ASCII des caractéres présents dans la chaine précisée apres
apostrophe,

55

On écrira par exemple:

TEXT 'CECI EST UN ESSAI
e) Les directives de réservation d’espace-mémoire

Il peut arriver que I'on veuille réserver des octets, des doubles
octets ou des portions entiéres de mémoire pour y stocker des données
ou des tableaux. Nous allons définir ici un certain nombre de directives
qui remplissent ces roles.

— la directive DFO: elle permet de réserver un octet en mémoire.

Exemple:

VAL DFO $2@

Lorsque I’assembleur rencontre cette ligne, il place la valeur $00
dans la premiére case-mémoire et lui assigne le nom VAL.

— la directive DFD: elle permet de réserver un double octet en
meémoire.

Exemple :

VAL DFD $12F4

Lorsque I’assembleur rencontre cette ligne, il place la valeur $12
dans la premiére case-mémoire et lui assigne le nom VAL. Il place
ensuite la valeur $F4 dans la case-mémoire suivante.

— la directive BLC : elle permet de réserver un bloc mémoire. Ce
bloc a une taille inférieure ou égale a 255.

Exemple :

BLC $45

Quand I’Assembleur rencontre cette ligne, il saute $45 = 69 cases-
mémoire et reprend son assemblage. Ces 69 cases-mémoire pourront
sans dommage étre ensuite utilisées par le programme en langage
machine pour y stocker des données.

56

L’Editeur-Assembleur présent dans I’Alice n’est pas un des plus
performants existant actuellement. En revanche, il est trés simple d’utili-
sation et permet de résoudre tous les problémes courants de
programmation.

Nous vous donnons ci-dessous un exemple de programme non
assemblé (programme source) puis assemblé (programme source + code
objet géneére).

sDEBUT PROGRAMME

jMISE A ZERO DE VAL

; INVERSION DE VAL

sENVOIE CETTE VALEUR

;DANS GENERATEUR
;B MIS DANS A

BOUCLE D’ ATTENTE

P ;TERMINE?
s NON, CONT INUE
;B DIMINUE D*UNE UNITE
;SI ()@ CONTINUE
; SINON, RECOMMENCE
sVAL CONTIENT LA VALEUR A ENVOYER
;DANS LE GENERATEUR DE SON

ORG $4Q0@
EXC SON

SON LDAB #$FF
LDAA #$00
STAR VAL

INV LDAA VAL
EORA #$FF
STAR VAL
STAR $EFFF
TEA

LOOP DECA :
BNE LOO
DECE
BENE INV
JMP SON

VAL DFO $0@

Aprés assemblage, cela donne:

ASSEMELEUR ALICE REV 1.Q@%

COPYRIGHT

4000
420z
4004
4007
400A

NS W e

MATRA, 1984

C6FF SON
8e00
B74@1C
B6401C INV
88FF

ORG

EXC

LDRE
LDAA
STAA
LDAR
EORRA

$4000 ;DEBUT PROGRAMME
SON

#$FF
#$00 ;MISE A ZERD DE VAL
VAL

VAL ;INVERSION DE VAL
#$FF

57

8 408C B7401C STAR VAL

9 400F B7BFFF STAR $BFFF ;ENVOIE CETTE VALEUR
10 ;DANS GENERATEUR
11 4212 17 TBA ;B MIS DANS A
18 4@13 4A LOOP DECA ;7 BOUCLE D'ATTENTE
13 4014 2€FD BNE LOOP ;TERMINE?
14 s NON, CONT INUE
15 4816 SA DECE ;B DIMINUE DYUNE UNITE
16 4017 26EE BNE INV 3SI)@ CONTINUE
17 4019 7E4000 JmMp SON s SINON, RECOMMENCE
18 sVAL CONTIENT LA VALEUR A ENVOYER
19 sDANS LE GENERATEUR DE SON
20 401C 00 VAL DFO $00
21
22

@ ERREUR(S) PRSSE 1
@ ERREUR(S) PASSE 2
SYMBOLES :

SON =4200 INV =4007 LOOP =4013 VAL =401C

Si vous faites exécuter ce programme, vous obtiendrez un son
”galactique” dans le haut-parleur de votre téléviseur. Nous allons
décrire briévement les opérations effectuées lors de I’assemblage. Le role
d’un assembleur est de générer a partir d’'un programme source (dont la
structure a été décrite ci-dessus) un code-objet exécutable par la machine
(le 6803).

En fait, lors de I’assemblage, il se produit deux choses:

a) I’'assembleur produit un listing du programme assemblé qui
comporte les caractéristiques suivantes:

— a droite se trouve le programme source inchangé avec, en plus,
une numérotation des lignes;

— a gauche se trouvent deux colonnes qui représentent d’une part
le code-machine correspondant au programme (a gauche directement du
code-source) et d’autre part les adresses d’implantation en mémoire des
codes-opération ;

— il détecte les erreurs éventuelles (erreurs de syntaxe, sur des
variables, des étiquettes, etc...). Ces erreurs et les codes associés sont

58

décrits dans le guide d’instructions de I’Editeur-Assembleur”, c’est
pourquoi nous n’y reviendrons pas ici.

b) 'assembleur génére un code-objet destiné a étre stocké sur
cassette et qui est, lui, directement exécutable par le 68(3.

L’Assembleur de I’Alice fonctionne en deux passes (une passe est
une lecture du programme source). Dans la premiére, il examine chaque
instruction avec son opérande et il détermine la longueur (1, 2, ou 3
octets) du code-objet résultant. De plus il charge tous les symboles
(étiquettes, variables) dans une table.

Chaque fois qu’il rencontre une étiquette, il lui assigne I’adresse
qu’occupera le code-opération du mnémonique présent sur la méme
ligne. Afin que I’assembleur puisse connaitre cette adresse, il existe un
pointeur d’adresse que I’assembleur fixe a une valeur origine au début du
programme. A chaque instruction, ce pointeur est incrémenté selon la
longueur de celle-ci. Pendant cette premiére passe, I’assembleur détecte
les erreurs de syntaxe.

Durant la seconde passe, il fait I’assemblage proprement dit afin de
générer le code-objet. Chaque fois qu’il rencontre un symbole (nom de
variable, étiquette), il le recherche dans la table générée durant la passe 1
et lui affecte I’adresse ou la donnée correspondante.

Il détecte simultanément des erreurs plus délicates portant par
exemple sur des étiquettes ou des variables.

4.4. LES REGISTRES INTERNES DU 6803

a) Les Accumulateurs

Avant de vous présenter les différents registres du 6803, nous
allons essayer de vous faire sentir leur nécessité a travers un exemple.

Soit a effectuer I’addition de deux nombres x et y: z=x +y.

Nous allons supposer que x et y sont situés dans deux cases-
mémoire distinctes donc a deux adresses différentes que nous appelle-
rons adr(x) et adr(y).

Le résultat de I’addition, soit z, sera stocké a I’adresse adr(z).

59

Le chemin suivi par les données est le suivant:

65535

adrly) Yy

I=x+y

adr(x) X | X

adr(z) z

Nous avons déja dit que le 6833 pouvait adresser 64 Koctets de
mémoire (ou plus exactement 65536 = 2'¢ octets). Afin de pouvoir sélec-
tionner une case-mémoire et une seule, on définit une adresse sur 16 bits
(ce qui fait donc 2 mots de 8 bits). Nous avons vu d’autre part qu’une
instruction (ici addition) pouvait étre codée par un mot de 8 bits appelé
code-opération.

Pour effectuer I’addition z = x + y nous devons donc connaitre:

adr(x) : 2 octets
adrly) : 2 octets
code-opération: 1 octet

adr(z) : 2 octets
Total : 7 octets

7 octets sont donc nécessaires a I’exécution de cette opération. Il est

60

donc aisé de concevoir que si les choses se passaient comme décrit ci-
dessus, on arriverait rapidement a des programmes de taille gigantesque.

Fort heureusement les concepteurs du 68@3 se sont penchés sur le
probléme. Examinons maintenant la figure suivante:

I

¥

adr(y) y 1=x+y

Dans ce cas le contenu de I’adresse de y, (adr(y)) est ajouté a x
contenu dans une case-mémoire particuliére et située en dehors de
I’espace mémoire adressable du microprocesseur. Le résultat z=x + y
est ensuite mis dans cette méme case-mémoire.

Afin de définir complétement I'opération, nous devons donc
connaitre :

adr(y) . 2 octets
code-opération: 1 octet

Total : 3 octets

Comme vous pouvez le constater, nous avons réduit considérable-
ment le nombre de mots mémoire nécessaires pour définir I’addition de 2
nombres x et y. En revanche, cela a nécessité la présence d’une case-
mémoire particuliére (contenant x puis z = x + y) que nous nommerons
registre.

61

Plus précisément le role joué par celui-ci dans le cas qui nous inté-
resse est généralement confié a I’Accumulateur qui est un registre fonda-
mental du 6803. En fait, il existe dans ce dernier 2 accumulateurs de
8 bits, A et B qui jouent le méme roéle.

Pratiquement, on utilise ces accumulateurs pour les instructions
suivantes :

— les instructions arithmétiques et logiques,

— les instructions de comparaison.

Ils sont de plus utilisés lors de transferts Mémoire - Accumulateur,

Accumulateur » Mémoire, Registre -+ Accumulateur et Accumulateur -
Registre.

Les Accumulateurs A et B font partie de I’ensemble des registres
internes du 68@3.

Notons qu’ils peuvent étre réunis pour former un unique registre de
16 bits appelé D. (A constitue alors ’octet de poids fort tandis que B
constitue I'octet de poids faible).

Le 6803 dispose d’ailleurs d’instructions spécialisées dans le traite-
ment d’informations 16 bits.

b) Le registre d’index X

A coté des accumulateurs A et B, il existe un registre spécialisé de
16 bits appelé registre d’index X. Bien qu’il soit destiné plus particuliére-
ment 3 une utilisation dans le cadre du mode d’adressage indexé (nous
reviendrons sur ce point dans le prochain paragraphe) il peut étre consi-
déré comme un registre d’usage général, c’est-a-dire:

— comme registre de stockage de résultats intermédiaires,

— comme compteur de boucle.

En effet, il est mis en jeu dans les opérations de chargement, de
comparaison, etc...

c) Le registre de condition CCR

Ce registre est un pu particulier. Il comporte 8 bits dont seulement
6 sont utilisés.

62

Bit 7 6 5 4 3 2 1

Les bits 6 et 7 sont toujours positionnés a 1 et n’ont aucune signifi-
cation. Les bits @ a 5 sont les suivants:

bit 5 = H = indicateur de demi-retenue (en anglais HALF-CARRY)

bit4 =1 = masque d’interruption (IRQ)

bit 3 = N = indicateur de résultat négatif

bit 2 = Z = indicateur de zéro

bit | = V = indicateur de débordement (OVERFLOW)

bit ® = C = indicateur de retenue (CARRY)

Ces indicateurs peuvent jouer deux roles:

— ils peuvent influencer le déroulement futur d’'un programme si
on les prépositionne a une certaine valeur (@ ou 1),

— leur état peut dépendre des résultats d’un calcul antérieur et
peut donc constituer une information précieuse par la suite.

Le 6803 posséde des instructions particuliéres permettant de modi-
fier ou de lire la valeur prise par certains indicateurs du registre de
condition CCR. D’autre part, certaines instructions du 6803 ont un
déroulement qui dépend de la valeur prise par ces indicateurs (instruc-
tions de branchement conditionnel). Nous reviendrons sur ces indica-
teurs lors de la description des instructions du 6803.

d) Le compteur ordinal: registre PC

Un programme est exécuté par le microprocesseur de maniére
sequentielle, c’est-a-dire que celui-ci exécute les instructions contenues
dans la mémoire les unes aprés les autres (et une seule a la fois).

Afin que le programme se déroule correctement, il apparait évident
que le microprocesseur, lorsqu’il est en train d’exécuter une instruction,
doit connaitre ’adresse de la suivante.

Dans ce but, il existe dans le microprocesseur un registre spécial
appellé compteur ordinal (registre PC: de I’Anglais Program Counter).

63

Ce registre comporte 16 bits puisque ’adresse d’un mot mémoire est
définie de maniére unique a I’aide de 16 bits. Chaque fois que le micro-
processeur va chercher un octet en mémoire, le compteur ordinal est
incrémenté de 1.

e) Le pointeur de pile: registre SP

Revenons sur le réle du compteur ordinal (PC): nous avons vu
qu’il était nécessaire que le microprocesseur sache a tout instant
’adresse de la prochaine instruction a exécuter. Examinons ce qu’il se
passe lorsque le programme principal fait appel a un sous-programme.

déroulement Gosus déroulement du
du sous-programme
programme RETURN

\

principal

Le déroulement du programme est le suivant : le programme princi-
pal s’exécute normalement et atteint une instruction spécifique d’appel de
sous-programme (I’équivalent d’'un GOSUB en Basic). Le compteur ordi-
nal se charge alors avec I’adresse de début de ce sous-programme qui
s’exécute a son tour jusqu’a ce que le microprocesseur rencontre une
instruction de retour de sous-programme (I’équivalent de RETURN en
Basic). Le probléme est que le microprocesseur, tel que nous I’avons
décrit jusqu’a présent, ne sait absolument pas a quelle adresse reprendre
le déroulement du programme principal.

Il apparait donc nécessaire, lors de I’appel d’un sous-programme,
de mémoriser I'adresse de Iinstruction suivant immédiatement le
GOSUB.

64

Allons maintenant un peu plus loin: imaginons un programme
principal et un ensemble de sous-programmes imbriqués les uns dans les
autres :

prog. principal sous-prog.1 sous-prog.2 sous-prog.3
GOsuB1 GOSuB2 GOSuB3 RETURN
Adr.1 Adr.2 Adr.3
RETURN RETURN

Lors de I’appel du sous-programme 1, il est nécessaire de mémori-
ser la valeur de Adr.1 qui est I’adresse de I’instruction suivant immédia-
tement ’appel du sous-programme 1 dans le programme principal. Puis,
lors de I’appel du sous-programme 2, nous devons mémoriser Adr.2 et de
méme pour le sous-programme 3.

Lorsque, dans le déroulement de ce dernier, le processeur rencontre
I’instruction de retour de sous-programme, il faut que le compteur ordi-
nal vienne se charger avec la derniére adresse mémorisée soit Adr.3.
Ensuite, lorsque le sous-programme 2 aura fini de se dérouler, le PC
devra se charger avec ’avant-derniére adresse mémorisée soit Adr.2. Il
en sera de méme pour Adr.l. Donc la derniére adresse mémorisée est la
premiére sortie et la premiére adresse mémorisée la derniére sortie.

Imaginons une pile d’assiettes: on les empile une a une et on les
lave ensuite. La derniére posée sur le dessus sera la premiére lavée. Voila
qui nous ameéne directement a parler de la notion de pile dans un
microprocesseur.

65

Il existe une zone mémoire située dans I’espace adressable du
microprocesseur et qui fonctionne suivant le principe de la pile
d’assiettes décrite ci-dessus.

Cette zone mémoire est fixée par le contenu du registre SP qui
posséde 16 bits. Son contenu doit étre programmé chaque fois que le
6803 est mis sous tension, ceci par Iintermédiaire d’instructions qui
apparaitront au début du premier programme exécuté.

Cette pile peut donc étre située n’importe ou dans I’espace adres-
sable du 68@3. Considérons ’exemple choisi précédemment (appel de
sous-programmes). La pile contiendra aprés 1’appel du sous-programme
3 les octets suivants:

(SP) AD1L
(SP)—1 AD1H
(sP)—-2 AD2 L
(SP)-3 AD2 H
(sP)—-4 AD3 L
(SP)—5 AD3 H

pointeur —» (SP)—6

de pile

On notera:

AD3L = partie basse de I’adresse Adr.3 (bits de poids faible)
AD3H = partie haute de 'adresse Adr.3 (bits de poids fort)

bits 15 87 o

Adr.3 AD3 H AD3L

(SP) désignant le contenu du registre (SP) avant I’appel du sous-
programme 1.

On remarque que les adresses sont chargées dans la pile a partir du

66

haut. Lors du stockage d’une adresse de retour de sous-programme les
opérations suivantes sont effectuées :

— loctet de poids faible de ’adresse de retour est chargé dans la
pile;

— le pointeur de pile est décrémenté;

— Poctet de poids fort de I'adresse de retour est chargé dans la
pile;

— le pointeur de pile est décrémenté a nouveau.

Lors d’une instruction de retour de sous-programme, I’opération
inverse se produit: le compteur ordinal est chargé par I'octet de poids
fort puis par I'octet de poids faible de I’adresse de retour. Le pointeur de
pile se déplace vers le haut (est incrémenté de 2) et I'incrémentation se
fait avant le chargement (contrairement au cas de I’appel de sous-
programme).

Pour résumer ce paragraphe, les différents registres internes du
6803 sont présentés ci-dessous:

7 @ g

A=Accumulateur B=Accumulateur

registre D
15 g

X=Registre d'index
15 g

SP=Pointeur de pile
15 g

PC=Compteur ordinal

1T]1]H| I N|{Z|V{C| CCR = registre de condition

67

4.5. LES DIFFERENTS MODES D'ADRESSAGE DU 6803

Tout d’abord qu’appelle-t-on mode d’adressage ? Par définition, un
mode d’adressage est un moyen d’accéder a une case-mémoire donnée.

4.5.1. L’'adressage implicite

L’adressage implicite n’est pas en réalité un véritable mode d’adres-
sage. En effet aucune adresse n’est nécessaire pour définir les instruc-
tions correspondant a ce mode. Le code-opération de ces instructions
tient, comme c’est toujours le cas du 6833, sur un octet. On peut
mentionner parmi elles les instructions portant directement sur le
contenu de registres internes (instructions de décalage par exemple), les
instructions de retour de sous-programme ou d’interruption, les interrup-
tions logicielles, les instructions de transfert de registre interne, les
opérations sur la pile.

Exemples :

ASLA
RTI
SWI
TRR
PSHA

4.5.2. L'adressage immédiat

Dans ce mode d’adressage les instructions comportent deux
parties :

— le code-opération proprement dit qui est, comme d’habitude,
codé sur un octet,

— l’opérande qui comprend, selon le cas, un ou deux octets selon
que l’instruction considérée porte sur des mots de 8 bits ou de 16 bits.
Cette opérande correspond tout simplement a la donnée sur laquelle
porte Iinstruction considérée.

Exemple 1: Soit a additionner la valeur $05 au contenu de I’accumula-
teur A.

68

L’instruction sera la suivante:

ADDR #%25

Le symbole ”#” précise a I’assembleur que ’on est dans le cas
d’un adressage immédiat.

Exemple 2 : Soit a comparer le contenu du registre X avec la valeur 16
bits $12F3.
L’instruction sera la suivante:

CPRX #%12F3

4.5.3. L'adressage étendu

Ce mode d’adressage permet d’accéder a la totalité de I’espace
adressable du 68@3. L’opérande est ici une adresse de 16 bits (donc 4
chiffres hexadécimaux). La donnée située a cette adresse (et parfois a la
suivante dans le cas d’instructions portant sur des mots de 16 bits) est
utilisée par Pinstruction considérée.

Exemple 1: Soit a additionner le contenu de la case-mémoire d’adresse
$53F8 a I’accumulateur B.
L’instruction s’écrit :

ADDB $53F8

4.5.4. L’adressage direct

Ce mode d’adressage est similaire a ’adressage étendu sauf qu’ici
'opérande tient sur un seul octet. Elle permet donc d’adresser un espace-
mémoire de 256 octets. Cet espace est situé en page-zéro qui est la
premiére page de 256 octets adressable par le 6803 (adresses comprises
entre @ et 255).

Exemple: Soit a charger I’'accumulateur D avec le contenu des cases-
memoire d’adresses $12 et $13.
On écrira:

LDD < $12

69

Le symbole ”<” est destiné a renseigner ’assembleur qu’il est en
résence d’'un mode d’adressage direct.
p

4.5.5. L’'adressage relatif

L’adressage relatif est utilisé uniquement pour les instructions de
branchement conditionnel (le branchement n’a lieu que si la condition
désirée est réalisée). Ces instructions sont I’équivalent du IF... THEN en
Basic. Afin de bien saisir le fonctionnement de ce mode d’adressage, le
mieux est de donner un exemple.

Soit le petit programme suivant:

ADDA $53F8
BEQ® FIN

FIN SWI

On effectue ’addition du contenu de la case-mémoire d’adresse
$53F8 avec I’accumulateur. L’instruction BEQ veut dire ” branchement
si égalité”. Ici il y a donc branchement vers FIN si le contenu de
’accumulateur aprés addition est égal a zéro. Le bit Z du registre de
condition est alors égal a 1. Sinon, le programme continue et exécute les
instructions présentes aprés le BEQ. Supposons que le début du
programme (instruction ADDA) soit placé a P'adresse $0200. Nous
donnons ci-dessous le contenu de la mémoire a partir de cette adresse:

$0200 ADDA ADDA
$0201 $F8 $F8
$0202 $53 $53
$020¢3 BEQ < BEQ
$0204 FIN $10
$0205

$0215 SWiI sSwi

70

Nous n’avons pas introduit les code-opérations des instructions
ADDA, BEQ et SWI afin que le programme soit plus explicite.

L’étiquette FIN est située a I’adresse $@3215.

Lors d’un branchement relatif on charge ’octet suivant I’instruction
de branchement par la différence (en binaire) qui existe entre 1a valeur de
I’adresse d’arrivée (ici $0215) et la valeur du registre PC pointant sur
I’instruction qui suit immédiatement le BEQ, donc ici $0205. Nous char-
gerons donc la case-mémoire d’adresse $0204 par la valeur
hexadécimale :

$A21S5- $H2O5 =410

Le contenu de la case-mémoire d’adresse $8204 aurait trés bien pu
étre négatif (avec la notation en complément a 2) si le branchement avait
da étre effectué vers I’arriére.

Par exemple, pour un branchement en $0209, le contenu de la case-
mémoire d’adresse $0204 aurait été:

$-25
= $FE

S0~ $02S

La syntaxe assembleur relative au mode d’adressage relatif est la
suivante :

BEQ FIN (si on désire un branchement a l'étiquette FIN)

La valeur du déplacement ne dépend absolument pas de I’adresse
d’implantation en mémoire du programme. L’adressage relatif permet
donc d’avoir des programmes translatables (qui fonctionnent a n’importe
quelle adresse mémoire), ceci a condition que les branchements soient
tous relatifs a I’intérieur du programme. En particulier il ne doit pas y
avoir de sauts inconditionnels ni d’appels de sous-programmes internes.

4.5.6. Le mode d'adressage indexé

Dans ce mode d’adressage, I’adresse de la donnée désirée est
calculée de la maniére suivante:

71

Le contenu du registre d’index X est additionné en tenant compte
de la retenue a un déplacement considéré comme un nombre non signé et
correspondant au deuxiéme octet de I’instruction.

La syntaxe de ce mode d’adressage est la suivante.
ADCB $12,X dans le cas d’une instruction d’addition avec un déplace-
ment non signé égal a $12, ”,X” indiquant que I’on est en présence d’un
adressage indexé.

72

5
Le jeu d’instructions du 6803

5.1. INTRODUCTION

Dans ce chapitre, nous avons choisi de vous présenter le jeu
d’instructions du 68@3 afin que vous puissiez tirer au mieux parti de
I’Editeur-Assembleur qui est incorporé dans la mémoire morte de cette
machine.

Bien que le 6833 ne soit pas un des microprocesseurs les plus
complexes du marché, il ne posséde pas moins de 126 instructions diffé-
rentes, certaines d’entre elles travaillant avec différents modes
d’adressage.

Dans ce chapitre, chacune d’elle sera décrite de maniere détaillée
et, dans la mesure du possible illustrée d’un exemple écrit a I’aide de
I'’Assembleur de I’Alice, ceci afin de ne pas décourager les lecteurs
novices en programmation Assembleur.

Nous avons regroupé ces différentes instructions en 9 groupes qui
sont les suivants:

— les instructions de chargement,
— les instructions arithmétiques,
— les instructions logiques,

73

— les instructions sur le registre d’état,

— les instructions de comparaison,

— les instructions de branchement,

— les instructions d’appel et de retour de sous-programme,
— les instructions sur la pile,

— les instructions spéciales.

5.2. LES INSTRUCTIONS DE CHARGEMENT

Nous regrouperons sous cette appellation toutes les instructions qui
permettent de charger une case-mémoire ou un registre qu’elle qu’en soit
la source (mémoire, registre, etc...).

Il est logique de commencer par ce groupe d’instructions car les
opérations qu’effectue le microprocesseur portent bien évidemment sur le
contenu d’une case-mémoire ou d’un registre.

Nous allons tout de méme les séparer en trois groupes qui sont les
suivants :

— les instructions de chargement de registre,
— les instructions de chargement mémoire,
— les instructions d’échange de registres.

De plus certaines instructions opérent sur des octets tandis que
d’autres travaillent sur des mots de 16 bits. Nous serons donc amenés a
effectuer une distinction entre ces deux types d’instructions.

5.2.1. Les instructions de chargement de registre

I1 existe sous cette rubrique des instructions portant sur des octets
et des mots de 16 bits.

5.2.1.1. Instructions sur 8 bits
Il s’agit des instructions CLR, CLRA, CLRB, LDAA LDAB.

En bon anglais ”CL” veut dire ’CLEAR” (mettre a zéro). Par
conséquent les instructions CLRA, CLRB, CLR permettent de remettre

74

a zéro respectivement le contenu des registres A, B ou de la case-
mémoire d’adresse spécifiée.

En bon anglais "LD” veut dire ”LOAD” (charger). Donc les
instructions LDAA et LDAB permettent de charger respectivement les
registres A et B.

Par la suite, nous donnerons pour chaque instruction un tableau
regroupant les différents modes d’adressage, le code-opération corres-
pondant et les indicateurs du registre de condition qui sont affectés par
cette instruction.

Mais auparavant, effectuons un retour sur les bits N et Z du
registre de condition CCR.

Nous avons vu précédemment la signification de ces 2 bits:

N = indicateur de résultat négatif,
Z = indicateur de zéro.

Dans le cas des instructions de type "LD”, ces deux bits seront
positionnés a ”1” si la condition qu’ils représentent est réalisée.

Autrement dit, si "accumulateur est chargé avec la valeur $0@, le
bit Z sera mis a 1. Dans le cas contraire, il sera mis a zéro.

Le fonctionnement du bit ”N” est le suivant:

Nous savons qu’un octet peut représenter soit un nombre positif
compris entre @ et 255 soit un nombre signe compris entre —128 et
+127, un nombre négatif étant représenté par son complément a 2. Le bit
de poids fort (bit 7) représente alors le signe du nombre binaire.

7 6 5 4 3 2 1 ¢

T
bit 7 = bit N
Le bit N est donc tout simplement la recopie du bit 7 de I'octet.

Exemple :

El7=00@120111

75

d’ou N=@
$FO=11111002
d’ou N=1
a) Les instructions CLR, CLRA et CLRB

Grace a ces instructions il est possible, nous I’avons vu, de remettre
a zéro le contenu des registres A ou B ou le contenu de la case-mémoire
d’adresse spécifiée.

On aura donc:
@ - A (instruction CLRA)

@ -B (instruction CLRB)
@ -M (instruction CLR)

. . Code Indicateurs
Instruction Mode d’adressage Opération affectés
CLR $LL.X indexé 6F N=V=C=0,Z=1
CLR $HHLL étendu 7F N=V=C=0,Z=1
CLRA implicite 4F N=V=C=0,2=1
CLRB implicite 5F N=V=C=0,Z=1

Explicitons un peu les notations employées :

Les mnémoniques qui sont donnés (et ce sera vrai dans tout cet
ouvrage) sont les mnémoniques standard MOTOROLA et correspon-
dent a ceux employés dans I’Editeur-Assembleur de I’Alice.

Il en est de méme pour la syntaxe des différents modes d’adressage
qui a été décrite précédemment.

LL désigne une valeur hexadécimale (donc précédée d’un ” dollar™)
représentant un octet (2 chiffres hexadécimaux). HHLL représente une
valeur binaire sur 16 bits (4 chiffres hexadécimaux).

b) Les instructions LDAA et LDAB

Ces instructions permettent de charger les registres A et B a I'aide

76

du contenu d’une case-mémoire donnée ou avec un nombre binaire (cas
d’un adressage immédiat).

On aura donc:

M —=A (instruction LDAA)
M-B (instruction LDAB)

Instruction Mode d’adressage Op%?gte;on /n:;fce ‘Ztt‘:l;'s
LDAA #SLL immédiat 86 N,ZV=0
LDAA <SLL direct 96 N,ZV=0
LDAA $LL X indexé A6 N.ZV=0
LDAA $HHLL étendu B6 N.ZV=0
LDAB #SLL immédiat (o] N.ZV=0
LDAB <SLL direct D6 N.ZV=0
LDAB $LLX indexé E6 N.ZV=0
LDAB SHHLL étendu F6 N,ZV=0

Nous allons illustrer cette instruction par un exemple trés simple
utilisant I’adressage étendu.

Soit P’instruction suivante:
LRA $5800

Le contenu des registres du 6833 avant et aprés I’exécution de cette
instruction est le suivant (on suppose que la case-mémoire d’adresse
$5800 contient la valeur $@5 avant I’exécution de cette instruction).

Avant Aprés
A =S8LL A =805
B =8LL B =S8LL
X =S$HHLL X =8$HHLL
SP =S$HHLL SP =S$HHLL
PC =S$HHLL PC =$HHLL+3
CCR = 11 XXXXXX CCR = 11XX000X

71

Comme vu précédemment $LL désigne un octet tandis que $SHHLL
désigne un mot de 16 bits.

Dans I’exemple ci-dessus A = $LL indique que A contient un octet
non connu avant I’exécution de Iinstruction. Aprés son exécution, A
contient la valeur $05.

Le registre de condition est donné sous forme binaire pour bien
préciser les indicateurs positionnés par certaines instructions.

L’instruction LDAA affecte les bits N, Z et V du registre de condi-
tion CCR, comme nous I’avons vu plus haut.

Le chargement de la valeur $A5 provoque donc le résultat suivant :

N =@ (résultat positif ou nul)
Z =0 (résultat non nul)
V =0 (LDAA remet a zéro cet indicateur)

Si l'instruction avait été similaire mais avec ($5800) = $09 initiale-
ment (35800 désignant le contenu de la case-mémoire d’adresse $5800)
alors les indicateurs N, Z et V auraient été positionnés de la maniére
suivante :

N = @ (résultat positif ou nul)
Z =1 (résultat nul)
v=¢

De méme si on avait eu ($5800) = $AS, on aurait obtenu:

N = @ (résultat négatif)
Z == @ (résultat non nul)
v=¢g

5.2.1.2. Les instructions sur 16 bits

Il s’agit de I’instruction de chargement de registre 16 bits LDD qui
fonctionne de maniére similaire aux instructions LDAA et LDAB vues
précédemment ainsi que des instructions de chargement du registre
d’index X et du pointeur de pile SP.

Les instructions LDD, LDX et LDS permettent respectivement de
charger les registres D (constitué de la juxtaposition des registres A et

78

B), X et SP avec le contenu de la case-mémoire spécifiée ainsi que la
suivante, ou avec une valeur binaire codée sur 16 bits (cas d’un adres-
sage immédiat).

On aura donc:

M,M+1-D (instruction LDD)
M,M+1-SP (instruction LDS)

etc...

L’octet de poids fort du registre concerné est chargé en premier,
c’est-a-dire avec le contenu de la case-mémoire d’adresse M.

L’octet de poids faible est chargé en second avec le contenu de la
case-mémoire d’adresse M+1.

Instruction Mode d’‘adressage Op%(;.adts'on /n:;'ft;ztteézrs
LDD#S$HHLL immeédiat ccC N.ZV=0
LDD <$LL direct DC N.ZV=0
LDD $LL,X indexé EC N.Z,V=0
LDD $HHLL étendu FC N.Z V=0
LDS #$HHLL immeédiat 8E N.Z V=0
LDS <S$LL direct 9E N.Z,V=0
LDS $LL.X indexé AE N.ZV=0
LDS $HHLL étendu BE N.ZV=0
LDX #$SHHLL immeédiat CE N.ZV=0
LDX <$LL direct DE N,ZV=0
LDX $LLX indexé EE N.2V=0
LDX $HHLL étendu FE N.ZV=0

5.2.2. Les instructions de chargement mémoire

5.2.2.1. Les instructions de chargement 8 bits

Il s’agit des instructions STAA et STAB qui sont exactement
Péquivalent des instructions LDAA et LDAB. En anglais les deux lettres
”ST” veulent dire ”STORE” (ranger). Donc par exemple STAA range
le contenu de ’accumulateur A dans la case-mémoire d’adresse spécifiée.

79

On aura donc:

A—-M (instruction STAA)
B =M (instruction STAB)

Instruction Mode d’'adressage Opczr’adteion /":;;; ac‘:;;'s
STAA <SLL direct 97 N.ZV=0
STAA SLL.X indexé A7 N.ZV=0
STAA SHHLL étendu B7 N.ZV=0
STAB <SLL direct D7 N.Z V=0
STAB $LL.X indexé E7 N.Z,V=0
STAB $HHLL étendu F7 N.Z,V=0

En regardant ce tableau, on peut remarquer tout de suite qu’il n’y a
pas d’adressage immédiat puisque l'instruction STAA (par exemple)
range le contenu de I’accumulateur dans une case-mémoire d’adresse
définie.

5.2.2.2. Les instructions de chargement 16 bits

De méme qu’il existait des instructions de chargement de registre
16 bits LDD, LDX et LDS, il existe les instructions de chargement
mémoire correspondantes qui sont donc STD, STX et STS.

On aura donc:

D = M,M+1 (instruction STD)

SP—+M,M+1 (instruction STS)

etc...

Comme dans le cas des instructions de types ”LOAD” I'octet de
poids fort du registre concerne est chargé en premier (case-mémoire M)
et I'octet de poids faible est chargé en second (case-mémoire M+1).

. . Code Indicateurs
Instruction Mode d’'adressage Opération affectés
STD <$LL direct DD N,Z,V=0
STD $LL.X indexé ED N,ZV=0
STD $HHLL étendu FD N,Z V=0
STS <S$LL direct 9F N.ZV=0

80

Instruction Mode d’adressage Op%ggtion /":;z a;;z;rs
STS $LLX indexé AF N.Z V=0
STS $HHLL étendu BF N.ZV=0
STX <SLL direct DF N.ZV=0
STX $LL X indexé EF N,ZV=0
STX$HHLL étendu FF N.ZV=0

Nous allons illustrer les instructions LDD et STD a I’aide d’un
exemple.

Soit le petit programme trés simple suivant:

ORG $48020

EXC PROG
PROG LDD #slo0@

STD $4S52Q

RTS

Aprés avoir tapé par exemple CLEAR 1000,15000, entrez ce
programme a I'aide de I’Editeur-Assembleur.

L’instruction LDD #$ 1000 permet de charger le registre D a I’aide
de la valeur $1000. A, qui est I’octet de poids fort contient alors la valeur
$10 tandis que B, qui est 'octet de poids faible, contient la valeur $09.

Grace a I'instruction STD $4904, il est possible de sauvegarder le
contenu du registre D en mémoire a I’adresse $4900.

En: $4900 = 18688 on trouve donc 16 = $14
et en: $4941 = 18689 on trouve donc @ = $00

Apés avoir fait exécuter ce petit programme, vous pourrez vérifier
le contenu des cases-mémoire d’adresses 18688 et 18689 en tapant sous
Basic:

PRINT PEEK(18688)
et PRINT PEEK(18689)

81

Le contenu des registres internes du 68(3 aprés exécution de
'instruction LDD est le suivant:

A =%14
B =900
X =$HHLL
SP =$HHLL
PC =$HHLL

CCR = 11XX880X

5.2.3. Les instructions de transfert de registres

Ces instructions permettent de transférer le contenu d’un registre
dans un autre.

Le 6803 posséde dans cette catégorie les instructions suivantes:

TXS
TSX
TAB
TBA
TAP
TPA

(transfert du registre X dans le registre SP: X—1-SP)
(transfert du registre SP dans le registre X: SP+1 = X)
(transfert du registre A dans le registre B: A - B)
(transfert du registre B dans le registre B: B -+ A)
(transfert du registre A dans le registre CCR: A -+ CCR)
(transfert du registre CCR dans le registre A: CCR — A)

TXS et TSX ne sont pas exactement des instructions de transfert puisque
dans un cas, X—1 est transféré dans SP, dans |'autre SP+ 1 est trans-
féré dans X. Ce point est une particularité intéressante du 6833
comme nous allons le voir un peu plus loin.

Instruction Mode d’adressage Opgtr’gg‘on /":;}i actg;rs
TSX implicite 30 néant
TXS implicite 35 néant
TAB implicite 16 N.,ZV=0
TBA implicite 17 N,ZV=0
TAP implicite @6 tous
TPA implicite @7 néant

82

L’instruction TAP permet de programmer le contenu du registre
CCR. Il est ainsi possible de restaurer ainsi une ancienne valeur préala-
blement sauvegardée par une instruction TPA.

Les instructions TXS et TSX sont trés utiles pour rechercher des
tableaux de données en mémoire.

Considérons la pile contenant les 5 données A, B, C, D et E.
L’allure de cette pile est la suivante:

(SP)+5

(SP)+3

A
(SP)+4 B
c
D

(SP)+2

(SP)+1 E

(SP) -

Le pointeur de pile pointe toujours sur la premiére case disponible
équivalent au sommet de la pile.

Les données A, B, C, D et E sont donc situées respectivement aux
adresses (SP)+5, (SP)+4, (SP)+3, (SP)+2 et (SP)+1, (SP) désignant le
contenu du registre pointeur de pile.

Une instruction TSX transfére donc dans le registre d’index X
I’adresse méme de la donnée E. En incrémentant ensuite le registre X, il
est possible d’accéder successivement aux données D, C, B et A. (Nous
reviendrons sur les instructions d’incrémentation un peu plus loin dans
ce chapitre).

Inversement, aprés avoir stocké en mémoire un tableau de données
a I'aide d’un adressage indexé, il est possible de conserver celui-ci dans la
pile grace a une instruction TXS.

83

Le petit programme suivant illustre ces deux instructions:

; PROGRAMME DE DEMONSTRATION
;DES INSTRUCTIONS TSX ET TXS

ORG $480@
EXC PROG
; SRUVEGARDE DES DONNEES
PROG LDAA #$01 ;@1 DANS 490
LDX #$4900
5TAA 0@, X
LIAAR #$Q2 ;02 DANS $4921
TN
STAAR $0@, X
LDAA #$03 ;@3 DANS $4927
INX
STRA $0@, X
1XS iX—=1 -) Sp
: RESTAURATION DES DONNEES
TSX ;SP+1-) X
LDAS 20, X ;@3 DANS $43z@
S5TAA $4920
DEX
LDAA $2@, X ;02 DANS $4921
STAR $4921
DEX
LDAA $20, X ;@1 DANS $4922
STAAR 34922
BRG PROG

Aprés exécution de ce programme, on obtient en mémoire les
valeurs suivantes:

PEEK (18688) = 1

PEEK (18689) = 2

PEEK (18698) = 3

PEEK (18728) = 3

PEEK (18721) = 2

PEEK (18722) =1
Ce petit programme n’a bien slir qu’une valeur éducative. Nous
verrons plus loin qu’il est possible de sauvegarder des données directe-

ment a I'aide d’instructions travaillant sur la piie.

Nous venons de décrire le fonctionnement des instructions les plus
employées dans tout programme “tournant sur 68@3”. Inutile de dire

84

qu’il est nécessaire que vous en ayez saisi, sinon toutes les subtilités, du
moins les bases de fonctionnement.

5.3. LES INSTRUCTIONS ARITHMETIQUES

Nous appelerons instructions arithmétiques les instructions
suivantes :

— les instructions d’addition (8 bits et 16 bits): ADCA, ADCB,
ADDA, ADDB, ADDD, ABA, ABX;

— les instructions de soustraction (8 bits et 16 bits): SBCA,
SBCB, SUBA, SUBB, SUBD, SBA;

— TP’instruction MUL (multiplication);

— les instructions d’incrémentation: INC, INCA, INCB, INX,
INS;

— les instructions de décrémentation: DEC, DECA, DECB,
DEX, DES;

— les instructions de décalage arithmétique : ASR, ASRA, ASRB,
ASL, ASLA, ASLB, ASLD;

— les instructions de négation: NEG, NEGA, NEGB;

— VPinstruction DAA (nous expliciterons cette instruction un peu
plus loin).

5.3.1. Les instructions d’addition

5.3.1.1. Notion d’'addition sur les nombres binaires

Soit a additionner les deux nombres hexadécimaux suivants : $@5 et
$17.

On sait que ces deux nombres représentent respectivement @5 et 23
en décimal.

Leur représentation binaire est:

$95 = 0000 7141 $17 = @00 111
gt (S g gt
] 5 1 7

85

Une addition en binaire est en tous points identique a une addition
en décimal sauf que les chiffres utilisés, au lieu d’étre @, 1, 2, 3,4, 5, 6, 7,
8, 9 sont @ et 1.

On a donc:

g+d=0
g+1=1
1+0 =1
1+1= 168

L’addition de $05 et $17 donnera:

$45 a5 gagaa s
+$17 +23 + 88918111

=$1C =28 = @
ik

Cela n’a rien de trés compliqué.

Ceci dit, I’arithmétique binaire posséde quelques subtilités, mais
nous allons tout d’abord faire un retour sur le registre de condition CCR.

5.3.1.2. Retour sur le registre CCR
Nous allons en particulier étudier les 3 bits H, V et C, le bit N
ayant déja été étudié.
Nous avons vu précédemment le role succint de ces indicateurs.
C = indicateur de retenue,
H = indicateur de demi-retenue,
V = indicateur de débordement.
a) Le bit C

Supposons que nous ayons a effectuer la somme de deux nombres
$8A et $DS.

En représentation binaire on a:

+£8A 12101 @
$DS ligilelal

86

La somme de ces deux nombres donne:

$8A 120e121@
+ $D5 + 11212101
=$15F =(1)a1@11111

on voit que le résultat est un nombre de 9 bits. Le bit de retenue C est
positionné a 1 chaque fois qu’il y a une retenue sur la somme des bits de
poids fort des deux nombres binaires considérés.

Donc pour $05 + $17 =$1C on a C=0
et pour $8A + $D5 =S$15F on a C=1.

b) Le bit H

Le bit H fonctionne exactement de la méme fagcon que le bit C.
Cependant, au lieu de détecter un dépassement de capacité au niveau du
bit 7, il détecte un dépassement de capacité au niveau du bit 3. Ceci est
utile lors d’opérations sur des nombres codés BCD. Nous reviendrons
sur ce point avec I’étude de I'instruction DAA.

Par exemple, si nous voulons additionner les deux nombres $@9 et
$17 ($09 + $17 = $20), le bit H sera positionné a 1.

Par contre, si nous voulons additionner les deux nombres $@2 et
$17 (802 + $17 =819), le bit H restera a §.

c) Le bit V

Il faut d’abord retenir une chose: le microprocesseur effectue de la
méme maniére I’addition de deux nombres binaires qu’ils soient signés
ou non (ceci est d’ailleurs également valable dans le cas de nombres
codés BCD). C’est au programmeur d’en décider et de se fixer une
convention.

Nous avons vu précédemment que si la somme de deux nombres
binaires dépassait la capacité du microprocesseur il y avait positionne-
ment a 1 du bit C. Cela se comprend aisément dans le cas de deux
nombres compris entre @ et 255, mais que se passe-t-il lorsque les deux
nombres traités sont considérés comme signés par le programmeur ?

87

Nous savons que le bit 7 est le bit de signe ; par définition, il y aura
positionnement a 1 du bit indicateur de dépassement lorsque:

— soit il y a une retenue du bit 6 vers le bit 7, ceci sans retenue du
type “carry” vue précédemment,

— soit il n’y a pas de retenue du bit 6 vers le bit 7, mais par contre
il y a une retenue de type “carry”.

Examinons quelques exemples: nous voulons additionner $4B et

$71:
$4B = @Qladivll
$71 = @aii12u@1
$4R ied1d11

+ $71 + @li12001

= ¢£R = iA1111002

On a dans ce cas V=1 (retenue du bit 6 vers le bit 7 sans carry) et
C=4.

Si les deux nombres $4B et $71 sont considérés comme signes, ils
sont tous deux positifs (75 et 113) mais leur somme, qui est positive,
dépasse la capacité du microprocesseur (188 est supérieur a 127) donne
donc un résultat négatif.

Il est donc nécessaire d’indiquer que le résultat est erroné. C’est le
role du bit V qui dans ce cas est positionné a 1.

Ici $4B + $71 est égal a $BC alors que le résultat trouvé est égal a
$-—-42.

Nous allons voir maintenant ce que donne I’addition des deux

nombres $—01 et $—05.

$-01 11111111
+ -5 + 11111213
= $-26 =(1)11171012

Dans ce cas ci, le bit V est positionné a @ (retenue du bit 6 vers le
bit 7 et carry simultanée) et le bit C a 1.

88

Le résultat trouvé est égal a $—06 ce qui est exactement le résultat
escompte.

Nous voyons donc que dans certains cas, la somme de deux
nombres signés est exacte alors que dans d’autres elle est erronée.

Vous pourrez vérifier de vous-méme a I’aide d’exemples que
lorsque V est positionné a @ le résultat de I’addition de deux nombres
signes est exact alors que quand il est positionné a 1, le résultat est faux
et nécessite une correction adéquate afin de pouvoir étre utilisé
ultérieurement.

5.3.1.3. Les instructions sur 8 bits

Il s’agit, nous I’avons vu, des instructions ADCA, ADCB, ADDA,
ADDB et ABA.

Les deux premiéres qui signifient en anglais ”ADD WITH
CARRY ” (addition avec retenue) permettent d’ajouter a I’accumulateur
le contenu d’une case-mémoire spécifiée (ou bien une valeur binaire dans
le cas d’un adressage immédiat) ainsi que le bit de retenue C, le résultat
étant placé dans ’accumulateur A ou B suivant le cas.

On a donc 'opération suivante:

A + bitC + M=A
ou bien:
B + bitC + M=A

Instruction Mode d’adressage Opi?g;on ;r;fcz:gg:urs
ADCA #S$LL immédiat 89 HN2ZV.,C
ADCA <SLL direct 99 HNZV,C
ADCA $LL.X indexé A9 HN,ZV,C
ADCA $HHLL étendu B89 HN,ZV.C
ADCB #8$LL immédiat c9 HN,ZV,C
ADCB <$LL direct D9 H,N,ZV.C
ADCBSLLX indexé E9 H,N.ZV.C
ADCB $HHLL étendu F9 H,NZV.C

Considérons I’addition des deux nombres hexadécimaux $4B et
$71 ainsi que du bit de retenue égal a 1.

89

Nous allons réaliser cette opération a I’aide du programme suivant :

ORG $4000
EXC PROG

PROG SEC ;C=1
LDARA #%$4B ;;CHARGE 1ERE VALEUR
ADCA #%71 ;ADDITIONNE Z2EME VALEUR
STAA $4020 ;SAUVEGARDE EN MEMOIRE
RTS

L’instruction SEC permet, comme nous le verrons plus loin, de
positionner a 1 le bit de retenue C.

Aprés avoir fait exécuter ce programme, tapez sous interpréteur
Basic:

PRINT PEEK(16416)
ce qui doit donner la valeur 189 = $BD = $4B + §71 + 1.

Si ’on avait positionné a @ le bit C une instruction CLC (qui sera
également vue plus loin), le résultat aurait été alors:
188 = $BC = $4B + $71

Les instructions ADDA et ADDB fonctionnent comme les instruc-
tions ADCA et ADCB sauf que le bit C n’est pas ici pris en
considération.

On aura donc:

A+ M-A
ou bien:

B+M-B

, . Code Indicateurs
Instruction Mode d’adressage Opération affectés

ADDA #8$LL immédiat 8B H,N,ZV,C
ADDA <S$LL direct 9B H.NZV.C
ADDA $LLX indexé AB H,N,ZV,C

90

Instruction Mode d’adressage Op%%ﬁon /n:;}:? e;tteét;rs
ADDA SHHLL étendu BB HNZV,C
ADDB #$LL immédiat CB H,NZV.C
ADDB <SLL direct DB HN,ZV.C
ADDB $LL.C indexé EB H,N,ZV,C
ADDB $HHLL étendu FB H.N,ZV,C

L’instruction ABA permet d’additionner le contenu des accumula-

teurs A et B, le résultat étant stocké dans A.

On a donc:
A +B-A
, . Code Indicateurs
Instruction Mode d’adressage Opération affectés
ABA implicite 1B H.N,ZV.C

5.3.1.4. L'instruction DAA

Cette instruction est utilisée dans le cas d’opérations portant sur
des nombres codes BCD. Elle permet, comme son nom I’indique, d’effec-
tuer un ajustement décimal sur I'accumulateur A.

Cet ajustement fonctionne de la maniére suivante:

— si le contenu des 4 bits de poids faible de A est supérieur a 9 ou
si I'indicateur de demi-retenue H est égal a 1, alors la valeur 6 est addi-
tionnée aux 4 bits de poids faible de A.

— si, aprés I"opération ci-dessus effectuée, le contenu des 4 bits de
poids fort de A est supérieur a 9 ou si I'indicateur de demi-retenue H est
egal a 1, alors la valeur 6 est additionnée aux 4 bits de poids fort de A.

Par exemple, considérons les deux nombres BCD 8 et 7.
On a:

8 = #0de190d
7 = #60da111

8+7 = #@PB1111 = 15 en BCD

91

Le nombre binaire obtenu est $GF au lieu de 15 attendu en arithmé-
tique BCD. Si I’on ajoute la valeur 6 au résultat ci-dessus on obtient la
valeur 0310101 qui correspond exactement a 15 codé BCD.

. . Code Indicateurs
Instruction Mode d’'adressage Opération affectés
DAA implicite 19 N,ZV,C

Le programme suivant permet d’effectuer une addition BCD sur 16
bits. Son fonctionnement est trés simple et n’améne aucun commentaire.

ORG s4000
EXC PROG
;§ PROGRAMME D' ADDITION BCD 16 BITS
NAL DFO $12 ;OCTET DE POIDS FAIBLE R
NAH DFO $35 ;OCTET DE POIDS FORT A
NBL DFO $24 ;0CTET DE POIDS FARIBLE B
NBH DFO $45 ;O0CTET DE POIDS FORT B
RL DFO $20@ ;OCTET DE POIDS FAIBLE RESULTAT
RH DFO $2@ ;;OCTET DE POIDS FORT RESULTAT
PROG LDAA NAL ;CALCULE SOMME OCTETS DE POIDS FAIBLE

ADDA NEL

DAA §ARJUSTEMENT DECIMAL

STRA RL s SAUVEGARDE POIDS FAIBLE RESULTAT
LDRA NAH

ADCA NEH

DAA

STAA RH $SAUVEGARDE POIDS FORT RESULTAT
RTS

5.3.1.5. Les instructions sur 16 bits
Il s’agit des instructions ADDD et ABX.

L’instruction ADDD permet d’ajouter a ’ensemble formé par les
accumulateurs A et B le contenu de la case-mémoire spécifiée et de la
suivante (ou une valeur sur 16 bits dans le cas d’'un adressage immédiat).

On aura donc:

D+ MM+1-D

92

Instruction Mode d’adressage Opc;(:gzon /”:;z zt:;;rs
ADDD #$HHLL immédiat Cc3 N.ZV.C
ADDD <$LL direct D3 NzZV.C
ADDD $LLX indexé E3 N,ZV.C
ADDD $HHLL étendu F3 N.ZV.C

Considérons I’exemple suivant:
ORG $4000
EXC PROG
;STOCKE 1ERE VALEUR
PROG LDAAR #$1@ ;;OCTET DE POIDS FORT
STRA $4020
LDARA #$2@ ;0CTET DE POIDS FRIBLE

STRAAR %4021

;CHRRGE ZEME VALEUR

LDD #2020

ADDD %4020

; SAUVEGARDE SOMME EN MEMOIRE
STD 4@

]TS

Apres avoir fait exécuter ce programme, vous pouvez vérifier sous

Basic que:

(16416) = ($4028) = 16 = $1d = octet de poids fort de la 1 valeur
(16417) = ($4021) = 32 = $2d = octet de poids faible de la 1 valeur
(16418) = ($4022) = 48 = $3@ = octet de poids fort du résultat
(16419) = ($4023) = 64 = $40 = octet de poids faible du résultat

L’instruction ABX permet d’ajouter a ’accumulateur B le contenu

du registre X.

On a donc:
B + X—=X
. . Code Indicateurs
Instruction Mode d’adressage Opération affectés
ABX implicite 3A néant

93

5.3.2. Les instructions de soustraction

5.3.2.1. Notion de soustraction sur les nombres binaires

Il faut tout d’abord savoir qu’une soustraction n’est rien d’autre
qu’une addition particuliére. En effet, on additionne au premier nombre
'inverse du second. C’est ainsi qu’en arithmétique décimale classique on
a:

13-10=13 + (-18)

En arithmétique binaire on additionnera donc le complément a
deux. Supposons que nous voulions effectuer la soustraction suivante:
$20 — $15 = $20 + ($-15)
donc: $20 = dd10d000
$15= doggon

$-15= 11141911
$20-$15 = (1)00681611 = $16B

reten ue—I

La différence $20—$15 est un nombre positif ($¢B) et la retenue est
alors égale a 1.

Supposons maintenant que nous voulions faire $15—$20:

$—24 = 11140000
donc: $15-$20 = 11116141 = $F5 = $—0B

Cette fois-ci, la retenue est égale a zéro et le résultat est négatif.
Une soustraction binaire s’effectue alors trés simplement et on a les
résultats suivants:

C =1: le résultat est positif

C =0@: le résultat est négatif.

5.3.2.2. Les instructions sur 8 bits

Il s’agit des instructions SBCA, SBCB, SUBA, SUBB et SBA.
Les instructions SBCA et SBCB sont I’analogue des instructions
ADCA et ADCB et signifient donc ”soustraction avec retenue”.

94

Le contenu de la case-mémoire spécifiée (ou la valeur binaire dans
le cas d’un adresage immeédiat), ainsi que le bit C du registre CCR sont
retranchés a Paccumulateur A ou B. Le résultat est placé dans

|’accumulateur.

On a donc:

A — bit C — M-A

ou BIER: o it C — M-B
Instruction Mode d’adressage Opct;t::tion /n:;:e act:;;rs
SBCA #8LL immédiat 82 NzZV.C
SBCA <SLL direct 92 N.ZV,C
SBCA $LLX indexé A2 N,ZV.C
SBCA $HHLL étendu B2 N,ZV.C
SBCB #S$LL immédiat c2 N,ZV,C
SBCB <$LL direct D2 NZV.C
SBCB $LL,C indexé E2 N.ZV.C
SBCB $HHLL étendu F2 NZV.C

De méme les instructions SUBA et SUBB sont les analogues des

instructions ADDA et ADDB. La soustraction s’effectue alors sans

retenue.
On a donc:
A-M-A
ou bien:
B-M-B
, . Code Indicateurs
Instruction Mode d’adressage Opération affectés
SUBA #$LL immédiat 80 N,ZV.C
SUBA <$LL direct 90 N,ZV.C
SUBA $SLLX indexé AQ NZV.C
SUBA $HHLL étendu BO NZV.C
SUBB #$LL immédiat co N,ZV,C
SUBB <S$LL direct Do N,ZV,C
SuUBB $SLL X indexé EQ@ NZV.C
SUBB $HHLL étendu F@ N,ZV,C

95

L’instruction SBA est I’analogue de I'instruction ABA et permet
donc de retrancher le contenu de B a celui de A.

On a donc:
A —-B—A
, . Code Indicateurs
Instruction Mode d’'adressage Opération affectés
SBA implicite 10 NZV.C
5.3.2.3. Les instructions sur 16 bits
Il s’agit de I'instruction SUBD.
On a donc:
D-MM+1-D
, 5 Code Indicateurs
Instruction Mode d’adressage Opération affectés
SUBD #$HHLL immédiat 83 NZV.C
SUBD <SLL direct 93 NZV.C
SUBD S$LL,X indexé A3 NZV.C
SUBD $HHLL étendu B3 N2ZV.C

5.3.3. Les instructions d’incrémentation

Nous regroupons sous cette appellation les instructions INC,
INCA, INCB, INX et INS. L’instruction INC effectue une incrémenta-
tion en mémoire tandis que les instructions INCA, INCB, INX et INS
permettent respectivement d’incrémenter le contenu des registres A, B, X
et S. Il s’agit pour ces quatre derniéres d’un adressage implicite.

5.3.3.1. Notion d’'incrémentation

Il s’agit en fait de quelque chose de trés simple : ’'incrémentation
consiste a ajouter 1 au contenu de la case-mémoire désignée par
’opérande.

96

Exemple:

$45 donne $06

5.3.3.2. Les instructions INC, INCA, INCB, INX et INS

On aura donc:

M + 1M (cas de l'instruction INC)
A + 1A (cas de l'instruction INCA)

F Instruction Mode d’'adressage Opcc;ggteion /n:f'fce actteét;rs
INC $LL,X indexé 6C N2V
INC SHHLL étendu 7C N2V
INCA implicite 4C N.ZV
INCB implicite 5C N.ZV
INX implicite 08 z
INS implicite 31 néant

5.3.4. Les instructions de décrémentation

Nous regrouperons sous cette appellation les instructions DEC,
DECA, DECB, DEX et DES.

5.3.4.1. Notion de décrémentation

Le fonctionnement est exactement le méme que pour une incrémen-
tation sauf que I’on retranche 1 au contenu de la case-mémoire désignée
par I'opérande.

Exemple :

$05 donne $04

97

5.3.4.2. Les instructions DEC, DECA, DECB, DEX et DES

On aura donc:

M — 1M (cas de linstruction DEC)

B — 12 B (cas de l'instruction DECB)

etc...
. . Code Indicateurs
Instruction Mode d’adressage Opération affectés

DEC $LL,X indexé 6A NZV
DEC $HHLL étendu 7A N,ZV
DECA implicite 4A N.ZV
DECB implicite 5A N,ZV
DEX implicite @9 z

DES implicite 34 néant

Le programme ci-dessous illustre le fonctionnement de I’instruction
DEX et permet de réaliser ce que ’on appelle un délai logiciel.

En fait cela consiste a faire exécuter au microprocesseur un certain
nombre de fois la méme boucle:

ORG $4000

EXC PROG
PROG 1LDX #$FFFF ;NOMERE DE BOUCLES
LOOP DEX ; TERMINE?

ENE LOOP s NON, RECOMMENCE

RTS

5.3.5. L’instruction MUL

Cette instruction permet d’effectuer la multiplication des contenus
des registres A et B considérés comme des nombres non signés. Le résultat
est stocké dans le registre D formé par la réunion de ces deux registres.

En effet, la multiplication de 2 nombres de 8 bits donne un résultat
sur 16 bits.

98

La présence de cette instruction est une particularité du 68@3 rare-
ment trouvée sur les microprocesseurs 8 bits du marche.

Elle permet une exécution beaucoup plus rapide des calculs arith-
métiques la mettant en ceuvre.

. . Code Indicateurs
Instruction Mode d’adressage Opération affectés
MUL implicite 3D C

Exemple: Soit a effectuer la multiplication des deux nombres :

65 = $41 et 34 = $22

Le petit programme suivant permet de calculer ce produit:

ORG $4000
EXC PROG

PROG LDARR #%41 §A=MULTIPL ICATEUR
LDRE #s$=2 s B=MULTIPL. ICANDE
mMUL
STD s40:20 s SAUVEGARDE RESULTRAT
RTS

Aux adresses 16416 = $4020 et 16417 = $4021 on trouve respecti-
vement les octets de poids fort (8 = $@8) et de poids faible (162 = $A2)
du résultat.

5.3.6. Les instructions de négation

Il s’agit des instructions NEG, NEGA et NEGB. Elles donnent le
complément a deux du contenu de la case-mémoire spécifiée ou des
registres A et B.

On a donc:
A+ 1A soitf — A-A

ou bien:

B+ 1B soit# — B-B

99

ou bien:

M+ 1M soitd — MM

. . Code Indicateurs
Instruction Mode d’adressage Opération affectés
NEG SLLX indexé 60 NZV.C
NEG SHHLL étendu 70 N,ZV.C
NEGA implicite 40 N,ZV,C
NEGB implicite 50 NZV.C

5.3.7. Les instructions de décalage arithmétique
Il s’agit des instructions ASL, ASLA, ASLB, ASLD, ASR, ASRA
et ASRB.

— ASL: Arithmetic Shift Left: décalage arithmétique vers la
gauche;

— ASR: Arithmetic Shift Right: décalage arithmétique vers la
droite.

5.3.7.1. Fonctionnement des instructions de décalage arithmétique
a) ASL

Chaque bit est décalé d’un rang vers la gauche. Le bit @ est
remplacé par un 7@ et le bit 7 devient le bit de retenue (bit C). On no-
tera que le bit de signe (bit 7) est conservé dans la retenue d’ou le nom
de décalage arithmétique”.

Nous verrons plus loin en effet que le bit de signe n’est pas conserve
dans le cas d’un décalage logique.

Exemple: Soit I'instruction ASLA (adressage implicite).
On suppose que A = $9D initialement.
$3D0 = 1@hiilel
Aprés décalage cela nous donne $3A = @3111010 et C=1.

100

D’une maniére générale, nous avons donc le schéma suivant:

bit C 7 6 5 4 3 2 1 o
l - . 1—@
b) ASR

Chagque bit est ici décalé d’un rang vers la droite. Le bit @ devient le
bit de retenue (bit C) tandis que le bit de signe (bit 7) est recopié a la
place qu’il occupait précédemment.

La encore, ’appellation ” décalage arithmétique ” est justifiée par le
fait que le bit de signe est conservé.

Exemple: Soit Pinstruction ASRA.
On suppose que A = $9D initialement.
Aprés décalage cela nous donne:
¢CE = 11@@11:¢ et (Cw=1

D’une maniére générale, nous avons donc le schéma suivant:

' 7 6 5 4 3 2 1 (1] bit (o}
-+

5.3.7.2. Les instructions ASL, ASLA, ASLB, ASLD

Instruction Mode d’adressage Opc;‘r’;?on /":;;:e ztfé‘;’s
ASLSLLX indexé 68 N,ZV.C
ASL $HHLL étendu 78 N.ZV.C
ASLA implicite 48 NZV.C
ASLB implicite 58 N.ZV.C
ASLD implicite @5 NzZV.C

Notons que le décalage a gauche sur le registre D fonctionne exac-
tement comme les décalages sur A ou B, mais cette fois-ci sur 16 bits.

101

5.3.7.3. Les instructions ASR, ASRA et ASRB

. . Code Indicateurs
Instruction Mode d‘adressage Opération affectés
ASR $SLLX indexé 67 N2ZV.C
ASR $HHLL étendu 77 NZV.C
ASRA implicite 47 NZV.C
ASRB implicite 57 N.ZV.C

Exemple : Soit le programme suivant permettant de décaler vers la droite
le contenu de ’Accumulateur A = $9D.

ORG 4000

EXC PROG
PROG LDAA #%9D

ASRA

5TAA $4Q2@&

RTS

Le résultat obtenu a I’adresse 16416 = $4020 est égal a 206 = $CE.

5.4. LES INSTRUCTIONS LOGIQUES

Nous regrouperons sous cette appellation les instructions
suivantes :

— le ”ET” logique: ANDA, ANDB

— le ”OU” logique: ORAA, ORAB

— le ”OU” exclusif: EORA, EORB

— les instructions de complémentation: COM, COMA, COMB

— les instructions de décalage logique: LSL, LSLA, LSLB,
LSLD, LSR, LSRA, LSRB, LSRD

— les instructions de rotation: ROL, ROLA, ROLB, ROR,
RORA, RORB

— les instructions de test de bits: BITA, BITB, TST, TSTA,
TSTB.

102

5.41. Le "ET" logique

5.4.1.1. Notion de '"ET’’ logique

L’opération ”ET” appartient a une catégorie un peu particuliére
qui est TALGEBRE DE BOOLE. Dans I’algébre booléenne, le systéme
numeérique utilisé est le binaire. Une opération s’effectue entre deux
chiffres binaires et donne comme résultat un chiffre binaire unique. Les
opérations booléennes présentes dans le 6833 sont le ET”, le ”OU”, le
»OU exclusif” et le ”NON™”.

Le "ET” logique: on considére deux chiffres A et B binaires.
L’opération ”ET” (notée souvent A) est définie de la maniére sui-
vante :

si A=B=1alors AAB=1

sinon AAB=0

On peut définir une table de vérité pour cette opération.

Les chiffres inscrits dans les 4 cases centrales donnent la valeur de
A A B pour chaque combinaison de A et B.

Extension de la notion de ”ET” logique a un octet:
Le ”ET” s’effectue bit par bit.

Exemple: Soit a effectuer:
$12A$35

on a:

$12 = E016010
$35 = 96119181

$12A$35 = 9010060 = $16

103

5.4.1.2. Les instructions ANDA et ANDB

Ces instructions effectuent le ” ET” logique entre le contenu d’une
case-mémoire déterminée (ou une valeur binaire dans le cas d’un adres-
sage immédiat) et 'un des accumulateurs A ou B, le résultat final étant
stocké dans ce dernier.

On a donc:

AAM=A (cas de linstruction ANDA)

ou bien:
BAM-B (cas de l'instruction ANDB)

Instruction Mode d’adressage Opct;‘:gteian /n;l;fce zt:;;rs
ANDA #S$LL immédiat 84 N,ZV=0
ANDA <SLL direct 94 N,ZV=0
ANDA $LLX indexé A4 N,ZV=0
ANDA SHHLL étendu B4 N,ZV=0
ANDB #$LL immédiat C4 N,ZV=0
ANDB <S$LL direct D4 N,ZV=0
ANDB $LL,X indexé E4 N,Z V=0
ANDB $HHLL étendu F4 N,ZV=0

5.4.2. Le "OU"’ logique

5.4.2.1. Notion de '"OU’’ logique

L’opération ”OU” (notée souvent V) est définie de la maniére
suivante:

Si:
A=B=#0 alors AVB=6
sinon :

AVB=1

104

La table de vérité de cette opération est la suivante:

Comme dans le cas de I'opération ”ET™, le "OU” entre 2 octets
s'effectue bit par bit.

Exemple :
Soit a effectuer $12 V $35

$12 = 00010010
$35 = 06110101

$12V$35 = 80116111 = $37

5.4.2.2. Les instructions ORAA et ORAB

Ces instructions effectuent le ”OU” logique entre le contenu d’une
case-mémoire donnée (ou une valeur binaire dans le cas d’un adressage
immédiat) et I'un des accumulateurs A ou B.

On a donc:

AV M>=A (cas de linstruction ORAA)
BVM-B (cas de l'instruction ORAB)

Instruction Mode d’'adressage Opicr’.‘sjt‘;on In:;;:e ?;‘;’s
ORAA #S$LL immédiat 8A N.Z, V=0
ORAA <S$LL direct 9A N.Z.V=0
ORAA $LL.X indexé AA N.ZV=0
ORAA $HHLL étendu BA N.Z,V=0
ORAB #8$LL immeédiat CA N.Z V=0
ORAB <SLL direct DA N.ZV=0
ORAB $LL.X indexé EA N.ZV=0
ORAB $HHLL étendu FA N,ZV=0

105

5.4.3. Le 'OV’ exclusif

5.4.3.1. Notion de '"OU"’’ exclusif

L’opération ”OU exclusif” (notée souvent V) est définie de la
maniére suivante:

siA=BalorsAVB=4d

siA+Balors AVB=1

En d’autres termes, le résultat d’un ”OU exclusif” entre deux
chiffres binaires est 1 si un et un seul de ces deux chiffres est égal a 1.

La table de vérité de cette opération est la suivante:

A
1] 1
B
1] 1] 1
1 1 (1]

Le ”OU exclusif” sur un octet s’effectue bit par bit comme dans le
cas du "ET” et du ”OU”.

Exemple :
Soit a effectuer $12-¥-$35

$12 = 0dd19019
$35 = gg116101

$12v$35 = 09106111 = $27

5.4.3.2. Les instructions EORA et EORB

Ces opérations effectuent le ”OU exclusif” entre le contenu d’une
case-mémoire spécifiée (ou une valeur binaire dans le cas d’un adressage
immédiat) et 'un des accumulateurs A et B.

On a donc:

. AY¥M-A (cas de l'instruction EORA)
ou bien:
B**M B (cas de l'instruction EORB)

106

Instruction Mode d’adressage Op%ggteion /"g;}; ztteét;rs
EORA #SLL immeédiat 88 N,Z,V=0
EORA <SLL direct 98 N,Z2,V=0
EORA $LL.X indexé A8 N,Z, V=0
EORA $HHLL étendu B8 N,ZV=0
EORB #$LL immeédiat cs N,Z V=0
EORB <S$LL direct D8 N,Z V=0
EORB $LL,X indexé E8 N,ZV=0
EORB $HHLL étendu F8 N,Z,V=0

5.4.4. Les instructions de complémentation

5.4.4.1. Notion de complémentation

L’opération ” complémentation ” est définie de la maniere suivante :
si A=1 alors A =@ (A est le complément de A)
si A=@ alors A =1

Exemple: Soit a effectuer $12.

$12 = 90810016 alors $12 = 11181181

5.4.4.2. Les instructions COM, COMA et COMB

Ces instructions permettent de complémenter soit les registres A, B,
soit le contenu de la case-mémoire d’adresse spécifiée.

On a donc:

A- A (cas de l'instruction COMA)
BB (cas de l'instruction COMB)
M- M (cas de l'instruction COM)

. . Code Indicateurs
Instruction Mode d’adressage Opération sffectés
COMA implicite 43 N.2,C=1,v=0
comMmB implicite 53 N,Z2,C=1,V=0
COM SLL X indexé 63 N,ZC=1V=0
COM SHHLL étendu 73 N,Z2,C=1,Vv=0

107

5.4.5. Les instructions de décalage logique

Il s’agit des instructions suivantes:

— les instructions de décalage a gauche: LSL, LSLA, LSLB,
LSLD,

— les instructions de décalage a droite : LSR, LSRA, LSRB, LSRD.

5.4.5.1. Fonctionnement des instructions de décalage logique
a) LSL

Chaque bit est décalé d’un rang vers la gauche. Le bit 7 se trouve
propagé dans le bit C du registre CCR tandis que le bit @ est remplacé
par un @. Il est a remarquer que cette instruction est en tous points simi-
laire a linstruction ASL décrite dans le paragraphe concernant les
instructions arithmétiques.

En effet, un décalage logique vers la gauche conserve le bit de signe
par l'intermédiaire du bit C.

b) LSR

Ici le décalage se fait d’'un rang vers la droite. Le bit @ se trouve
propagé dans le bit C tandis que le bit 7 est remplacé par un zéro.
Contrairement au cas de Pinstruction ASR, le bit de signe n’est pas
conservé d’ou le nom de décalage logique.

Exemple: Soit I'instruction LSRA (adressage implicite).
On suppose que A = $9D initialement.
$9D = 111101

Aprés décalage cela nous donne:

$4E = QA1OQ111Q et C=i

D’une maniére générale, nous avons donc le schéma suivant:

7 6 5 4 3 2 1 L) bit C

108

5.4.5.2. Les instructions LSL, LSLA, LSLB, LSLD

Le décalage s’effectue soit sur I'un des accumulateurs A et B soit
sur le contenu d’une case-mémoire d’adresse spécifiée, soit sur la réunion
des registres A et B (registre D).

Instruction Mode d‘adressage OpC;‘::;on /":;fce 8;;2‘;’3
LSLA implicite 48 NZV.C
LSLB implicite 58 NZV.C
LSLD implicite 25 NZV.C
LSL $LL.X indexé 68 N,ZV.C
LSL $HHLL étendu 78 N2ZV.C

5.4.5.3. Les instructions LSR, LSRA, LSRB, LSRD

Le décalage s’effectue soit sur I’'un des accumulateurs A et B ou sur
le contenu d’une case-mémoire d’adresse spécifiée, soit sur le registre D.

Instruction Mode d'adressage Op%?.g;on /n:';g? ‘Ztteé‘;’s
LSRA implicite 44 ZV.CN=0
LSRB implicite 54 ZV,C.N=0
LSRD implicite @4 ZV,CN=0
LSR $LL.X indexé 64 ZV,.C.N=0
LSR $HHLL étendu 74 ZV,CN=0

5.4.6. Les instructions de rotation

Il s’agit des instructions suivantes :

— les instructions de rotation vers la gauche: ROLA, ROLB,
ROL

— les instructions de rotation vers la droite: RORA, RORB,
ROR

109

5.4.6.1. Fonctionnement des instructions de rotation
a) ROL

Chaque bit est décalé d’un rang vers la gauche. Le bit C devient le
bit @ tandis que le bit 7 se trouve propagé dans la retenue. Il y a donc
rotation suivante:

Co8+1-+253345596-7C

Exemple: Soit I'instruction ROLA avec A=$9D et C= initialement.

%3D
£3A

10211121 guyr dorve apres rotation
22111212 et C=1

nu

Plus généralement nous avons donc le schéma suivant:

L bit C 7 6 5 4 3 2 1 () J
-

b) ROR

Le fonctionnement est identique a celui de Pinstruction ROL sauf
que la rotation se fait maintenant vers la droite.

Exemple: Soit I'instruction RORA avec A=$9D et C=1. Cela nous
donne alors:

$CE = 11221113 2t C=1
Plus généralement nous avons le schéma suivant:

Lbit c 7 6 5 4 3 2 1 () J

-

5.4.6.2. Les instructons ROL, ROLA et ROLB

La rotation s’effectue soit sur I’'un des accumulateurs A et B ou sur
le contenu d’une case-mémoire d’adresse spécifiée.

110

. . Code Indicateurs
Instruction Mode d‘adressage Opération affectés
ROLA implicite 49 NZV.C
ROLB implicite 59 NZV.C
ROL $SLL.X indexé 69 NZV.C
ROL $HHLL étendu 79 N2zZV.C

5.4.6.3. Les instructions ROR, RORA et RORB

La rotation s’effectue soit sur I’'un des accumulateurs A et B soit
sur le contenu d’une case-mémoire d’adresse spécifiée.

. . Code Indicateurs
Instruction Mode d’adressage Opération affectés
RORA implicite 46 N,ZV.C
RORB implicite 56 NzZV.C
ROR $LL.X indexé 66 NZV.C
ROR $HHLL étendu 76 NzVv.C

5.4.7. Les instructions de test de bits

Il s’agit des instructions suivantes :

— les instructions BITA et BITB,
— les instructions TST, TSTA et TSTB

5.4.7.1. Fonctionnement des instructions ''BIT'’

Le 6803 effectue un ”ET” ‘logique entre ’accumulateur et le
contenu de la case-mémoire spécifiée (ou la valeur binaire dans le cas
d’un adressage immeédiat).

Nous allons envisager en détail la maniére dont sont affectés les
bits N et Z du registre de condition CC.

a) Le bit Z
Le bit Z est positionné a 1 ou @ de la méme fagon que dans les

instructions que nous avons rencontrées jusqu’a présent.

111

Si A est P'accumulateur et M la case-mémoire désignée par
I'opérande on a:

Z=1si AAM =46
Z=0si AAM =6

b) Le bit N
Le bit N est positionné a 1 ou @ selon que le résultat de I’instruction

est positif ou négatif.

5.4.7.2. Les instructions BITA et BITB

Instruction Mode d‘adressage Opicr)gteion In:;; itt‘:‘;'s
BITA #S$LL immédiat 85 N.ZV=0
BITA <SLL direct 95 N.ZV=0
BITASLLX indexé A5 N.ZV=0
BITA $HHLL étendu B5 N.ZV=0
BITB #$LL immédiat (o] N.ZV=0
BITB <$LL direct D5 N.ZV=0
BITB $LLX indexé ES N.ZV=0
BITB $HHLL étendu FS N.ZV=0

5.4.8. Les instructions TST, TSTA et TSTB

Ces instructions permettent tout simplement de tester la valeur
contenue soit dans un des deux accumulateurs soit dans une case-
mémoire donnée.

Les indicateurs N et Z sont positionnés suivant la valeur testée.
Les bits V et C sont mis a zéro.

Exemple: Soit l'instruction TSTA avec A=$B8=10101004.

L’accumulateur n’est pas modifié aprés une telle instruction mais le
bit Z est positionné a @ ($B8 est différent de zéro) et le bit N est posi-
tionné a 1 ($B8 est négatif puisque supérieur a 128).

112

. . Code Indicateurs

Instruction Mode d’adressage Opération affectés
TSTA implicite 4D N,ZV=C=0
TSTB implicite 5D N.ZV=C=0
TSTSLLX indexé 6D N.ZV=C=0
TST $HHLL étendu 7D N.ZV=C=0

Nous allons maintenant donner un exemple de programme utilisant
certaines des instructions de type logique rencontrées dans ce para-
graphe et permettant de convertir deux chiffres BCD en la valeur binaire
correspondante.

PROG

CHIF
VAR:
VARE

RES

Si nous prenons par exemple:

ORG
EXC

s PROG.

LDAA
ANDA
STAA
LDAA
ANDA
LSRA
STAA
LSRA
LSRA
ADDA
ADDA
STAA
RTS

DFO

DEQ

D0

DFO

4000
PROG

CONVERSION BCD-)BINAIRE

CHIF ;CHARGE NOMEBRE BCD
#$Q0F ;CHIFFRE POIDS FAIELE
VAR1 ;SAUVEGARDE TEMP.

CHIF

#eF@ SCHIFFRE POIDS FORT

;A=8 FOIS MSH

VARZ ;SAUVEGARDE TEMP.

;A=4 FOIS MSE
:A=2 FOIS MSE
VARZ 3A=1@ FOIS MSH

VAR1 3;RESULTAT

RES

k1]
p 1%
$a2
A

23 = 9@180911 en BCD

alors il nous faut calculer 23=2x10+3.

Le probléme est donc d’obtenir le 727, le 3" et de multiplier
ensuite 2 par 10. Or on sait que 1¢=8+2 ce qui permet d’obtenir facile-
ment le résultat escompté a I'aide de décalages adéquats.

113

Le nombre BCD est stocké en mémoire sous le nom CHIF.

Les variables temporaires VAR] et VAR2 permettent de stocker
respectivement le chiffre de poids faible (ici 3) et 8 fois le chiffre de poids
fort. Le résultat final est stocké sous le nom VAR.

5.5. LES INSTRUCTIONS SUR LE REGISTRE D'ETAT

Nous regrouperons sous cette appellation les instructions
suivantes :

- TiC, SEC
- CLI, SEI
- CLV, SEV

Les instructions CLC, CLI et CLV permettent respectivement de
positionner a zéro les bits C, I et V du registre de condition CCR.

Au contraire, les instructions SEC, SEI et SEV permettent de posi-
tionner a2 un ces mémes bits.

Instruction Mode d’adressage Op?r,gteion /"g;;,i ':'ctt‘:‘;’s
CLC implicite @c c=0
SEC implicite (]»] C=1
cul implicite QE =0
SEl implicite OF I=1
CLv implicite PA V=0
SEV implicite (0]:] V=1

Les instructions SEC et CLC ont été rencontrées précédemment
avec les instructions arithmétiques.

Les instructions CLI et SEI permettent respectivement d’autoriser
ou d’interdire les interruptions masquables de type IRQ. Nous revien-
drons sur la notion d’interruption a la fin de ce chapitre.

114

5.6. LES INSTRUCTIONS DE COMPARAISON

Nous regrouperons sous cette appellation les instructions CMPA,
CMPB, CBA, CPX.

Les trois premiéres opérent sur les accumulateurs A et B et portent
donc sur des mots de 8 bits. Au contraire, la derniére porte sur le registre
X qui posséde 16 bits.

Le fonctionnement de ces instructions est le méme pour chacune
d’entre elles. Afin d’effectuer une comparaison, le contenu de la case-
mémoire spécifiée ou la valeur binaire (dans le cas d’un adressage immé-
diat) est retranché au registre considéré. Les indicateurs N, Z, V et C du
registre de condition sont positionnés suivant le résultat de cette sous-
traction mais les contenus de la case-mémoire et des registres ne sont pas
affectés.

On effectuera donc de fagon interne I'opération suivante:

A—M pour linstruction CMPA,
X—M,M+1 pour l'instruction CPX.

Instruction Mode d’adressage Opigg;on /n:;)fe itteét;rs
CMPA #$LL immédiat 81 NZV.C
CMPA <SLL direct 91 NZV.C
CMPA $LLX indexé A1 NzV.C
CMPA $SHHLL étendu B1 NzV.C
CMPB #$LL immédiat c1 N.ZV.C
CMPB <SLL direct D1 N.zZV.C
CMPB S$LL.X indexé E1 N.ZV.C
CMPB $HHLL étendu F1 NzVv.C
CBA implicite 1 NzZV.C
CPX #$LL immédiat 8C NzZV.C
CPX <$LL direct 9C NzZV.C
CPX $SLL X indexé AC NZV.C
CPX $HHLL étendu BC NzZV.C

Programme d’application: il s’agit d’'un programme qui compare
deux chaines de caractéres ASCII.

115

Dans notre cas, ces deux chaines sont Alice 32 et Alice 32 et nous
voulons vérifier qu’elles sont bien identiques.

Ce programme fonctionne trés simplement: les caractéres sont
comparés un a un jusqu’au huitiéme.

Si les deux chaines sont égales, la valeur 255 = $FF est stockée a
’adresse 16640 = $4109.

Au contraire, dans le cas de chaines différentes, la valeur @ est
stockée a cette méme adresse.

Si vous faites tourner ce programme, vous devez donc obtenir 255
en 16640. Vous pourrez vérifier par vous-méme qu’en changeant la
chaine de caractéres TEXT2 par Alice 99 le résultat sera égal a @.

ORG 4000
EXC PROG

TEXT1 'ALICE 22

TEXT& 'ALICE 32

PROG LDAE #$2@ ;IND. CHAINE DIFF.
LDX #4000

SUIT LDARA $2@8,X ; 1 ER CARACTERE CHAINE 1
CMPA $08,X ;COMPARE 1 ER CARACTERE CHAINE
ENE FIN sDIFFERENT? TERMINE
INX 5 NON, RECOMMENCE
CcPX #$4008 ;DERNIER CARACTERE?
BCS SUIT ;NON, CARACTERE SUIVANT
LDAE #$FF ;CHAINES EGALES

FIN STARE $41202

a7a

5.7. LES INSTRUCTIONS DE BRANCHEMENT

Il existe deux grandes catégories d’instructions de branchement:

— les instructions de branchement inconditionnel: BRA, BRN,
BSR et JMP;

— les instructions de branchement conditionnel : (nous ne les liste-
rons pas ici étant donné leur nombre important).

116

5.7.1. Les instructions de branchement inconditionnel

La principale instruction de ce type (et la plus connue) est I’instruc-
tion JMP qui est I’équivalent du GOTO en Basic (du moins en ce qui
concerne les modes d’adressage direct et étendu), sauf qu’en assembleur
I’étiquette a un nom (par exemple ”BOUCLE™). Lorsque le micropro-
cesseur rencontre le code-opération de I'instruction JMP, il charge son
compteur ordinal avec I’adresse spécifiée dans I'opérande.

On a donc pour Pinstruction JMP:

EA-PC

EA désignant une adresse effective sur 16 bits.

. , Code Indicateurs
Instruction Mode d’adressage Opération affectés
JMP S$LL X indexé 6E aucun
JMPA SHHLL étendu 7E aucun

Nous avons inclus sous cette rubrique les instructions BRA, BRN,
BSR.

Ces instructions sont ce que ’on appelle des instructions de bran-
chement relatif. A ce titre, I’adresse de branchement est calculée en ajou-
tant au registre PC un déplacement signé (valeur en complément a deux).
Ce déplacement est codé sur 8 bits (pour accéder a un espace adressable
de 256 octets).

L’instruction BRA signifie ” branchement dans tous les cas” (branch
always). Elle correspond a I'instruction JMP avec un adressage relatif.

On a donc:

PC + Déplacement +PC

L’instruction BRN signifie ”jamais de branchement”. Elle est
I’équivalent de I’instruction NOP puisqu’elle n’effectue aucune action.
Elle est utilisée uniquement pour disposer de programmes plus facile-
ment lisibles.

L’instruction BSR signifie ”branchement a un sous-programme”.

117

Elle est donc I’équivalent de 'instruction JSR qui sera décrite plus loin,

mais cette fois-ci avec un adressage relatif.

On a donc pour cette derniére instruction :

— pousse PC bas sur la pile; SP—1 - SP
— pousse PC haut sur la pile; SP—1 - SP

— PC + déplacement - PC

. , Code Indicateurs
Instruction Mode d’adressage Opération affectés
BRA SLL relatif 20 aucun
BRN $LL relatif 21 aucun
BSR SLL relatif 8D aucun

5.7.2. Les instructions de branchement conditionnel

Comme leur nom [lindique, ces instructions ont un mode
d’exécution qui dépend d’une condition. En I’occurrence ici, C’est le
contenu d’un bit (ou de plusieurs bits) du registre de condition qui
importe. Toutes ces instructions ont un fonctionnement identique c’est
pourquoi nous n’en expliciterons qu’une seule.

Considérons par erxemple I’instruction BEQ. Elle signifie ”branch
if equal” (branchement si égalité a zéro). Il y aura donc branchement
relatif si le bit Z du registre de condition est égal a 1 (caractéristique d’un
résultat nul).

Instruction d ’a%:sdseage Opi‘;.;iz‘ion /n:;;itgt;rs

BCCSLL relatif 24 aucun, condition C=0

BCS $LL relatif 25 aucun, condition C=1

BEQ $LL relatif 27 aucun, condition Z=1

BGE $LL relatif 2C aucun, condition >=0

BGT SLL relatif 2E aucun, condition >0

BHI $LL relatif 22 aucun, condition supérieur a

BHS $LL relatif 24 aucun, condition supérieur ou égal a
BLE $LL relatif 2F aucun, condition <=0

BLO $LL relatif 25 aucun, condition inférieur &

118

nstruction d 'ag/;ggseage Opct;‘r,g;on /n:flffeactteézrs

LS SLL relatif 23 aucun, condition inférieur ou égal a
LT SLL relatif 2D aucun, condition <@

Ml relatif 2B aucun, condition N=1

NE relatif 26 aucun, condition Z=0

iPL relatif 2A aucun, condition N=@

VC relatif 28 aucun, condition V=0

VS relatif 29 aucun, condition V=1

Comme vous pouvez le constater le nombre de ces instructions est
<trémement important. De plus certaines d’entre elles semblent avoir
es modes de fonctionnement similaires. C’est pourquoi nous allons
ssayer de clarifier un peu tout cela dans les lignes qui suivent.

Pour cela nous allons regrouper ces instructions de branchement en
ois catégories :

a) celles qui traduisent une condition simple (par exemple dépen-
ant de la valeur d’un bit du registre de condition).

b) celles qui opérent sur des nombres signés.
¢) celles qui opérent sur des nombres non signés.

Notons que certaines instructions peuvent appartenir a plusieurs
roupes simultanément. En effet, ’égalité par exemple concerne les
ombres signés ou non signés de maniére similaire.

Nous allons examiner en détail les instructions appartenant a
hacun de ces trois groupes.

a) 1l s’agit des instructions BEQ, BNE, BMI, BPL, BCS, BCC,
3VS et BVC.

— les instructions BEQ (branchement si égalité) et BNE (branche-
nent si non égalité) testent la valeur du bit Z et donc I’égalité ou non a
'€ro.
donc si Z=1 I’égalité a zéro est vérifiée.

— les instructions BMI (branchement si moins ou N=1) et BPL
branchement si plus ou N=50) testent la valeur du bit N et donc le signe
lu nombre considéré. ’

— les instructions BCC (branchement si C=@ et BCS (branche-
nent si C=1) testent la valeur du bit C. 119

— les instructions BVC (branchement si V=0) et BVS (branche-
ment si V=1) permettent de tester la valeur du bit de dépassement V.

En théorie il est possible d’effectuer n’importe quel type de test a
I’aide de ces instructions. Cependant leur mode d’application peut diffé-
rer selon que I'on s’intéresse a des nombres signés ou non. C’est pour-
quoi il existe dans le 6833 un certain nombre d’instructions qui facilitent
le traitement de nombres de ces deux types, en utilisant par exemple
certaines combinaisons de bits du registre de condition. Bien entendu ces
combinaisons sont traitées de fagon interne par le 683 et I'utilisateur n’a
a se soucier que du résultat.

b) Les instructions portant sur des nombres signés sont les
suivantes : BGT, BLE, BLT, BEQ, BNE.

— Vlinstruction BGT (branchement si supérieur a zéro) teste un
inégalité stricte. En effet, la condition détectée est:

ZV (N XOR V)=@ (XOR désignant le "OU exclusif"’)

Le test sur Z donne I'inégalité stricte. En effet, si Z=1 le résulat est
nul.

Le test (N XOR V) permet de détecter si les deux bits N et V sont
égaux.

Généralement les instructions de branchement relatif portant sur
des nombres signés ou non ont lieu aprés une instruction de comparaison
dans laquelle un nombre (B) est retranché d’un nombre (A). Certains bits
du registre de condition sont alors testés par I’instruction de branche-
ment relatif considérée.

Exemple :

Soit les deux nombres A=$37 e B=$A8. Nous voulons tester si A
est strictement inférieur a B.

On a:
37 = i@l
Q6 = Q10
$--Q8 = Qi@ iR
SET- ¥ o= d@allil

120

Nous avons alors Z=f, N=1 et V=1 ce qui donne
Z V(N XOR V)=4.

Puisque nous étions en présence de nombres signés, A était positif
et B négatif (donc A était supérieur a B).

Vous pourrez vérifier par vous-méme a I’aide d’autres exemples que
la condition Z V(N XOR V) =0 est bien correcte pour A>B.

Le contraire de I'instruction BGT est Pinstruction BLE qui teste
donc I'inégalité large A<=B.
La condition nécessaire est donc Z V (N XOR V)= 1.

— T’instruction BGE fonctionne comme l'instruction BGT sauf
qu’ici 'inégalité au sens large est testée (A>=B) et la condition qui doit
étre vérifiée est la suivante:

(N XOF V) =1

Le contraire de cette instruction est BLT qui teste I'inégalité stricte
A<B et pour laquelle la condition nécessaire est:

(N XOR V) =1
— les instructions BEQ et BNE ont déja été rencontrées ci-dessus.

¢) Les instructions portant sur des nombres non signés sont les
suivantes: BHI, BLS, BHS, BLO, BEQ, BNE.

Comme dans le cas de nombres signés il y a possibilite de détecter
ici une égalité (instructions BHI et BLO) ou une inégalité au sens large
(instructions BHS et BLS).

L’instruction BHI teste la condition (C V Z) =@ qui est la condi-
tion nécessaire pour qu’un nombre non signé (A) soit supérieur a un
autre (B).

Au contraire I'instruction BLS teste la condition opposée (A<=B)
soit (CVZ)=1.

L'instruction BHS teste si C=@ qui est une condition suffisante
pour tester une inégalité au sens large entre deux nombres non signés.

121

5.8. LES INSTRUCTIONS D’'APPEL ET DE RETOUR DE
SOUS-PROGRAMME

Il s’agit des instructions JSR et RTS.

L’instruction JSR est ’équivalent du GOSUB en Basic et est donc
une instruction d’appel de sous-programme.

L’instruction RTS est ’équivalent du RETURN en Basic et est
donc une instruction de retour de sous-programme.

Lorsque le microprocesseur rencontre I'instruction JSR, il charge le
contenu du compteur ordinal dans la pile puis se branche a I’adresse
spécifiée par 'opérande.

On a donc les opérations suivantes:

charge PC bas sur la pile; SP-1-SP
charge PC haut sur la pile; SP-1-+SP
EA-PC

Lors d’une instruction JSR le pointeur de pile est donc décrémenté
de deux unités.

Lorsque le microprocesseur rencontre I’instruction RTS, il va cher-
cher I’adresse qui se trouve en haut de la pile et la charge ensuite dans le
compteur ordinal.

On a donc les opérations suivantes:

SP+1-+SP; charge PC haut avec le sommet de la pile;
SP+1-»SP; charge PC bas avec le sommet de la pile;

Lors d’une instruction RTS, le pointeur de pile est donc incrémenté
de deux unités;

, . Code Indicateurs
Instruction Mode d’adressage Opération affectés
JSR <S$LL direct 9D aucun
JSR $LL X indexé AD aucun
JSR $HHLL étendu BD aucun
RTS implicite 39 aucun

122

Nous allons illustrer le fonctionnement des instructions d’appel et
de retour de sous-programme par un retour sur le programme de généra-
tion de son donné dans le chapitre consacré a I’ Introduction au 68¢3 .

Nous donnons ci-dessous le listing d’un programme permettant de
réaliser la méme fonction mais utilisant, pour la génération du son
proprement dit, un sous-programme.

ORG 4000
EXC PROG
s PROGRAMME DE GENERATION DE SON
PROG LDAEB #$FF ;;PARAMETRE DE MODULATION
JSR SON ;GENERE SON

RTS

SON LDAAR #$@@ ;MISE A ZERO DE VAL
STARA VAL

INV LDAA VAL s INVERSION DE VAL
EORA #$FF
STAAR VAL
STAA $BFFF 3;ENVOIE DANS GENERATEUR
TBA ;B MIS DANS A

LOOP DECA s BOUCLE D'ATTENTE TERMINEE?
BNE LOOP ;NON, CONTINUE
DECB ;B DIMINUE D'UNE UNITE
BNE INV ;SI () @, RECOMMENCE
RTS

VAL DFO 22

5.9. LES INSTRUCTIONS SUR LA PILE

Elles sont au nombre de six et comprennent les instructions d’empi-
lement et de dépilement.

— empilement PSHA, PSHB et PSHX
— dépilement PULA, PULB et PULX

123

5.9.1. Fonctionnement des instructions d’empilement

Ces instructions permettent de sauvegarder le contenu d’un registre
interne du 6803 au sommet de la pile.

Grace a ces instructions les registres A, B ou X peuvent étre stockés
sur la pile.

Donc les instructions PSHA, PSHB et PSHX permettent
respectivement de charger le contenu des registres A, B ou X sur le
sommet de la pile.

5.9.2. Fonctionnement des instructions de dépilement
Ces instructions permettent de charger un registre interne du 6803
a l'aide d’octets situés dans la pile.

Grace a ces instructions les registres A, B ou X peuvent étre char-
gés a partir de la pile.

5.9.3. Les instructions PSHA, PSHB, PSHX, PULA, PULB,
PULX

Les opérations suivantes sont effectuées lors de P’exécution des
instructions d’empilement :

pousse A sur le sommet de la pile, SP—1—SP
(cas de linstruction PSHA)

pousse X bas sur le sommet de la pile, SP—1-SP

pousse X haut sur le sommet de la pile, SP-1-SP
(cas de l'instruction PSHX)

Dans le cas des opérations de dépilement on aura:

SP+1-SP, charge A avec le sommet de la pile
(cas de I'instruction PULA)

SP+1-SP, charge X haut avec le sommet de la pile

SP+1-SP, charge X bas avec le sommet de la pile
(cas de l'instruction PULX)

124

mrucﬁon Mode d’adressage Opcc;ggte}on In:f'fi. i’;";’s
PSHA immédiat 36 aucun
PSHB immédiat 37 aucun
PSHX immédiat 3C aucun
PULA immédiat 32 aucun
PULB immédiat 33 aucun
PULX immédiat 38 aucun

Exemple d'application : Les instructions d’empilement ou de dépilement
sont trés utiles quand il s’agit de stocker des données temporairement.
Comme nous I’avons dit lors de la description du registre pointeur
de pile, la premiére donnée rentrée est alors la derniére sortie.
Le programme suivant permet de ”’sauvegarder le contexte”, c’est-
a-dire le contenu de tous les registres internes du microprocesseur.
Ceci peut étre utile lors de I’exécution d’une routine d’interruption
(les interruptions seront décrites en fin de chapitre).

ORG 4002

EXC PROG

;ROUTINE DE SAUVEGARDE REGISTRES
PROG PSHA ;REGISTRE A

PSHE ;REGISTRE B

PSHX jREGISTRE X

TPA

PSHR ;REGISTRE CCR

TSX

DEX

PSHX REGISTRE SP

Au contraire la routine suivante permet de “restaurer le contexte ”,
C’est-a-dire de recharger une ancienne configuration des registres
internes du 68@3.

ORG $4002

EXC PROG .
;ROUTINE DE RESTAURATION REGISTRES
PROG PULX

125

INX
TXS ;REGISTRE SP

PULRA

TAP sREGISTRE CCR
PULX ;REGISTRE X
PULB ;REGISTRE B
PLI_Z ;REGISTRE A

Les deux routines ci-dessus tiennent compte des particularités des
instructions TSX et TXS décrites précédemment, ce qui explique la
présence des instructions d’incrémentation et de décrémentation.

5.10. LES INSTRUCTIONS SPECIALES

Il s’agit des instructions suivantes:

— Jlinstruction NOP
— Dlinstruction RTI
— Dlinstruction SWI
— Dlinstruction WAI

Nous allons envisager chacune d’entre elles chacune a son tour.

5.10.1. L’instruction NOP

Le fonctionnement de cette instruction est trés facile a comprendre
puisqu’elle ne fait rien, ou presque: elle se contente juste d’incrémenter le
compteur ordinal.

Mais quelle est I'utilité d’une instruction qui ne fait rien? En fait
elle peut servir a beaucoup de choses et ceux d’entre vous qui ont utilisé
des calculatrices programmables doivent le savoir:

— remplacer une instruction non utile par un NOP permet de ne
pas avoir a réécrire tout le programme lors d’un assemblage a la main ou
pendant la mise au point. Sans cela, il faudrait recalculer tous les
branchements.

Cet inconvénient est limité dans le cas de I’Alice puisque cette
machine dispose d’un Editeur-Assembleur incorporé.

126

— provoquer un délai de durée fixe dans I’exécution d’un
programme.

— mettre au point un programme partie par partie en remplagant,
par exemple, certains sous-programmes par des NOP.

Il est évident bien siir que le programme définitif doit étre débar-
rassé de ces instructions inutiles afin d’en diminuer le temps d’exécution.

, . Code Indicateurs
Instruction Mode d’adressage Opération affectés
NOP implicite 01 aucun

5.10.2. L’instruction RTI

En pratique, vous n’aurez probablement jamais a I’utiliser au méme
titre que l'instruction WAL

Nous allons tout de méme décrire briévement ce qu’est une
interruption.

Nous avons vu qu’il existait une instruction d’appel de sous-
programme JSR. Cette instruction permet donc de faire un appel de
sous-programme a partir du logiciel.

Par définition, une interruption est un appel de sous-programme
provoqué par le matériel (par opposition au logiciel dans le cas de JSR). Il
y a donc possibilité, a I’aide d’un signal externe, de se brancher a un
sous-programme spécialisé dont I'instruction de retour est RTI (retour
d’interruption).

Il existe dans le 6833 deux types d’interruptions matérielles.

— Dinterruption NMI (de I’anglais ” Non Maskable Interrupt” qui
signifie “interruption non masquable).
Lorsqu’un signal actif est appliqué a la broche NMI du 6803, celui-ci
sauvegarde le contenu de tous ses registres internes et se branche auto-
matiquement a une routine dont I’adresse de départ est donnée par le
contenu des cases-mémoire d’adresses $SFFFC et $FFFD.

127

Cette interruption ne peut étre interdite d’ou son nom.

— Tlinterruption masquable IRQ.

Contrairement a la précédente cette interruption peut ou non étre auto-
risée. Ceci peut se faire grace au bit I (bit 4) du registre de condition CC.
Lorsque ce bit est positionné a 1, linterruption IRQ est interdite.
L’adresse de début de la routine de traitement de ce type d’interruptions
est donnée par le contenu des adresses $FFF8 et $FFF9.

Les routines de traitement des interruptions se terminent toutes par une
instruction RTIL. Lorsque le 6833 rencontre cette instruction, les registres
internes sont chargés les uns aprés les autres dans 'ordre PC bas, PC
haut, X bas, X haut, A, B, CCR.

Instruction Mode Code Indicateurs
structs d’adressage | Opération affectés
RT! implicite 3B tous (registre CCR restauré)

Remarque: I’accés aux interruptions nécessite d’accéder au ”bus” de
I’Alice situ¢ a I’arriére de I’appareil et suppose donc la connaissance des
différents signaux qui y véhiculent.

5.10.3. L’instruction SWI

Nous avons vu précédemment que certains signaux externes
pouvaient provoquer une interruption et brancher le microprocesseur a
un sous-programme spécialisé dont Pinstruction de retour était RTI.

Il est possible de réaliser la méme chose grace a des instructions
appelées interruptions logicielles. Lorsqu’un programme est exécuté et
que le microprocesseur rencontre une de ces instructions, celui-ci sauve-
garde I’état complet des registres internes dans la pile systéme suivant la
procédure suivante:

Le bit du registre CCR est positionné a 1 afin d’interdire les inter-
ruptions matérielles de type IRQ.

128

X bas -+ (SP) ; SP—1 - SP
Xhaut = (SP) ; SP-1 - SP
A - (SP) ; SP-1 - SP
B - (§P) ; SP-1 - SP
CCR -+ (SP) ; SP-1 - SP

(SP) désignant le contenu de la case-mémoire dont I’adresse est
donnée par le registre SP.

Aprés la sauvegarde de ces registres, le PC est chargé avec le
contenu des adresses $FFFA et $FFFB. L’adresse $FFFA contient
I'octet de poids faible d’'une adresse de branchement tandis que I’adresse
SFFFB en contient I'octet de poids fort.

Selon la valeur du vecteur de branchement, il y aura appel du
programme moniteur du systéme, du Basic, ou de tout autre programme.
Cette instruction est trés utilisée pour la mise au point des programmes
car elle permet d’en arréter le déroulement la ou on le désire.

. . Code Indicateurs
Instruction Mode d’adressage Opération affectés
SWi implicite 3F 1=1

5.10.4 L’instruction WAI

Cette instruction permet de synchroniser le 6833 sur un événement
extérieur. Ceci peut étre utile par exemple dans le cas d’une application
biprocesseur ou les taches sont partagées. L'un des deux microproces-
seurs peut avoir a attendre que l’autre ait terminé I’exécution d’un
programme donné avant de pouvoir continuer sa propre tache.

Lorsque le 6833 rencontre une instruction WAL, il s’arréte et attend
qu’une interruption se produise. Lorsque celle-ci intervient. les registres
internes du 6803 sont sauvegardés sur la pile et il y a exécution de la
routine d’interruption de type IRQ se terminant bien sur par un RTL

, . Code Indicateurs
Instruction Mode d’adressage Opération affectés
WAI implicite 3E aucun

129

6

Les sous-programmes
systéeme

Nous avons vu précédemment (chapitre 3) un apergu de la configu-
ration matérielle de I’Alice. Il est nécessaire maintenant de voir, sans
rentrer bien sir dans les détails, comment le systéme fonctionne du point
de vue logiciel. Ce dernier est, nous I’avons dit, contenu dans une
mémoire morte de 16 Koctets. Cette derniére contient I’interpréteur
Basic (table des instructions et commandes, routines de calcul en virgule
flottante, etc..), le systtme d’exploitation et bien sar I’Editeur-
Assembleur qui est une des particularités les plus intéressantes de
I’Alice.

Mais revenons sur le systéme d’exploitation. Les taches accomplies
par ce dernier sont trés diverses.

— gestion de I’écran par I’intermédiaire du circuit contrdleur de
type 9345,

— gestion des Entrées-Sorties (clavier, interface cassette,
imprimante),

— éditeur de textes pour I’entrée des programmes,

— initialisation du systéme a la mise sous tension.

130

Afin de vous faire sentir comment interagissent le systéme d’exploi-
tation et le Basic, prenons un exemple. Soit le programme suivant :

10 INPUT A
26 PRINT A

Lorsque I’interpréteur Basic rencontre le code (sur un octet) relatif
a linstruction INPUT, il se branche a une routine dont le réle est
d’attendre qu’un caractére soit rentré au clavier.

De méme, lorsque I'interpréteur Basic rencontre le code relatif a
Pinstruction PRINT, il se branche a une routine chargée d’afficher A
sous la forme d’une chaine de caractéres sur I’écran.

Les diverses routines d’Entrées-Sorties ainsi que bien d’autres sont
accessibles a I'utilisateur. Elles sont appelées comme de vulgaires”
sous-programmes.

Par exemple la routine qui permet d’afficher un caractére sur
I’écran est appelée a I’adresse hexadécimale $D4@C.

L’utilisation des sous-programmes de la ROM moniteur se fait en
un certain nombre d’étapes qui sont en général les suivantes:

— on charge les registres de communication (A, B, X) avec les
parameétres a passer a la routine considérée;

— on appelle la routine proprement dite par une instruction JSR ;

— on gére éventuellement les données retournées par cette routine
(par exemple code ASCII d’un caractére frappé au clavier).

Nous allons maintenant décrire les différentes routines mises a la
disposition du programmeur en assembleur.

1) Initialisation de P’affichage en 48 colonnes

Cette routine, située a I'adresse $D4@0 permet d’initialiser le
contrdleur d’écran de maniére a ce qu’il fonctionne en mode 49 colonnes,
avec écran noir.

L’utilisateur de cette routine pourra se faire aisément a I’aide de la
routine assembleur suivante (I’adresse de départ est ici $5800 ce qui
convient dans le cas d’un Alice 9. Les possesseurs d’Alice 32 pourront

131

assembler le programme a partir de I’adresse $4000 par exemple).

H ORG E580

=z EXC INIT

2 S8¢e pDD4nd [(NIT JSP $D4Q7

Notons que le contenu des registres A, B et X du 6803 est affecté
par cette routine.
2) Affichage d’un caractere semi-graphique sur I’écran

Cette routine permet d’afficher un caractére graphique sur la tota-
lit¢ de P’écran. Elle est située a 1’adresse $D406.

La routine assembleur suivante permet d’afficher des pavés jaunes
sur I’écran:

! ORG FELGE
- =XC INIT
3 Ssdg T2 INTT O DB R$SL
40 ZH2s BDD4RG J8R +D4 L
3 ABEE JESA2 Jme TN

Le caractére a afficher est déterminé par Iintermédiaire de
I’Accumulateur B; celui-ci est donc chargé par le code semi-graphique
désiré avant I’appel de la routine.

Le manuel d’utilisation de I’Alice donne la maniére de calculer la
valeur des codes semi-graphiques en fonction de la forme et de la couleur
désirée (p. 171 du manuel de I’Alice 96).

Dans notre cas:

$91 (hexadécimal) = 145 = 129+16

Ceci nous donne bien le caractére suivant de couleur jaune.

132

La petite routine assembleur suivante permet de visualiser successi-
vement les différents caractéres semi-graphiques dans les différentes
couleurs disponibles.

ASSEMBLEUR ALICE REV 1.00@%
COPYRIGHT MATRA, 1984

1 ORG 5800

2 EXC INIT

3 S8ew Cesde INIT LDAE #%8@ ;PREMIER CODE

4 580z F75818 STAE CODE s SAUVEGARDE

S 5805 BDD4QE& AFF JSR $D4Q6 ;AFFICHE CE CODE

€ S58v8 CEFFFF LDX #3FFFF ;PROVOQUE UN DELAI
7 S8QE 293 LOOP DEX sDELAI TERMINE ?

8 S8wC =&FD ENE LOOP sNON, ATTEND

9 SBQE FES818 LDAE CODE ;0UI, PROCHAIN CODE
1@ 3811 5C INCE
11 581z F75818 STRE CODE
12 5815 7ESBRS JmMp RFF ;s RECOMMENCE PROCEDURE
13 5618 a2 CODE D¥0 02
14
15
16
17

@ ZRREUR(S) PASSE
@ ERREUR(S) PASSE
SYMBOLES :

INIT =580@ AFF =5805 LOOP =58k CODE =5818

M=

Le premier code a afficher est le code $8@ qui correspond a un
rectangle noir. Chaque fois que cette routine est exécutée, ce code est
incrémenté. Les 16 caractéres semi-graphiques sont donc passés en revue
chacun a son tour, ceci pour les couleurs suivantes:

jaune (nombre associé = 16)
bleu-roi (nombre associé = 32)
rouge (nombre associé = 48)
ivoire (nombre associé = 64)
bleu pdle (nombre associé = 8@)
mauve (nombre associé = 96)
orange (nombre associé = 112)

133

Nous rappelons en effet ci-dessous 1a maniére dont sont obtenus les
différents codes semi-graphiques.

IPARRLAT

128=9$8¢ 129=881 139=$82 131=883 132=%84 133=$85 134=$86 135=%$87
136=%88 137=%89 138=$8A 139=988 149=$8C 141=$80 142=88¢ 143=88F

Le code semi-graphique résultant est obtenu en faisant la somme du
code ci-dessus avec le nombre associé a la couleur considérée.

C’est ainsi que pour un rectangle rouge, le code sera égal a:
143 + 48 = 191 = $BF

Les registres A, B et X sont affectés pour ’appel de cette routine.

3) Déplacement de Pécran vers le haut

La routine d’adresse $D4@9 permet de déplacer ce qui est affiché
sur I’écran d’une rangée vers le haut chaque fois qu’elle est appelée. (Il
s’agit donc de ce que 'on appelle en anglais un scrolling).

La petite routine assembleur ci-dessous illustre trés simplement son
fonctionnement :

ORG $58¢:¢

EXC INIT
S82@ BDD4@9 INIT JSK $D4@% :D:=CALAGE [*LUN RANG
5803 CEzoow LDX #4200 :DELAI
5806 @5 LOOP Ditx sDELAL TERMINE 7
S6@7 zZeFD BNE Q0P sNON, ATTEND
5829 7ES8QQ Jme INL1T ;0UI, RECGIMMENCE

\JU\L;" 4 Ly 1 o-e

Nota: Seul le registre X est modifié par I’appel de cette routine.

134

4) Ecriture d’un caractére sur Pécran

Cette routine, d’adresse $D4@C, permet d’afficher un caractére a la
position désirée sur ’écran. Le caractére en question est représenté par
son code ASCII.

Le fonctionnement de cette routine est le suivant:

— le code ASCII du caractére a visualiser doit étre chargé dans
I’Accumulateur A.

— le registre d’index X doit étre chargé avec un mot de 16 bits
dont les 8 bits de poids fort représentent le numéro de la rangée ou sera
affiché le caractére et dont les 8 bits de poids faible représentent le
numéro de la colonne ou ce caractére sera affiché.

Exemple: La routine assembleur suivante permet d’afficher le mot
” Alice” au milieu de I’écran (rangée n° 16, colonne n® 16 a 21).

ASSEMBLEUR ALICE REV 1.2
COPYRIGHT MATRA, 1384

1 ORG $5800

2 EXC INIT

3 5800 8641 INIT LDAA #341 ; LETTRE R

4 S8oc CEe@AlR LDX #$20A1@ ; LIGNE 1@,COLONNE 16
S S8@S BDD4w@C JSR $D4@C

€& S58@8 8e4C LDARR #$4C i LETTRE L

7 S8wA CEVA1L1L LDX #$20A11 ; COLONNE SUIVANTE
8 58@D BDD4RC JSR $D4@C

9 58102 8649 LDAA #%$49 ; LETTRE I
12 581e CE@A1L12 LDX #$Q0A1c
11 5815 BDD4@C JSR $D4@C
12 5818 8643 LDARA #$43 ; LETTRE C
13 581A CEwA13 LDX #40A13
14 581D BDD4@C JSR $D4@aC
1S S8ce 8645 LDAAR #345 ; LETTRE E
16 S8&e CE@RL4 LDX #B0A14
17 5825 BDD4®@C JSR $D4@C
18 5828 7ES8RQQ Jmp INIT

19

2@

@ ERREUR(S) PASSE 1
@ ERREUR(S) PASSE 2
SYMBOLES :

NIT =580
! - 135

Notons que cette routine (adresse $D40C) modifie le contenu des
registres A et B.

5) Lecture d’un caractére sur I’écran

A Pinverse de la routine précédente qui permettait d’afficher un
caractére sur Pécran, la routine considérée ici, d’adresse $D40QF, permet -
de lire le caractére affiché a une position donnée de I’écran. L’exemple ci-
dessous illustre le fonctionnement de cette routine.

Aprés avoir affiché le mot Alice comme précédemment, nous
voulons le recopier une ligne en dessous. Le programme assembleur
réalisant cette opération sera le suivant:

Avant le ”JMP INIT” du programme précédent, on insére les
lignes suivantes:

S8
sae3
5806
5829
s8ec
S8aF
s81e
3815
5818
S81E
S81E
3821
o824
a8&7
S8R
582D
S83u
5833
3836

2833

SUNENOAPURN- SO W

R e S T L Ll ruy SRy 1o

Iy

O N

CE@A ¢
EDD4F
CEvRl@
BDD4@C
CERR11
BDD4@F
CEagrii
EDD42C
CERALlE
BDD42F
CERE1Z
BDD4@C
CERRLS
EDD4QF
CERZR13
EDD4@C
CERAl4
BDD4QF
CEREI4
BEDD4QC

DX
JER
LDX
JSR
LDX
JSR
LDX
JSR
LDX
JSR
LDX
JSR
LDX
JSR
DX
JSF
LDX
JSR
DX
ISR

#EZALQ
D4 2F
HEQB1Q
$D42C
#H2A11
$D4QF
#%0R11
$D4aC
#$2A1Z
$D4QF
#$0B1Z
$D412C
#EQALZ
*D4QF
#HOBH13
$D4@C
#EOA14
$D4AF
#ECEL14
s$D4aC

jLIT PREMIERE LETTRE

;RECOPIE LIGNE 11

sLETTRE

sLETTRE

sLETTRE

sLETTRE

SUIVANTE

SUIVANTE

SUIVANTE

SUIVANTE

Le fonctionnement de cette routine est donc le suivant : le registre
d’index X est chargé avec la position désirée sur ’écran, comme décrit

136

précédemment (octet de poids fort = n° de rangée, octet de poids
faible = n® de colonne).

Aprés I'appel de la routine d’adresse $D40F, le registre A est
chargé avec le code ASCII du caractére occupant la position spécifiée
sur I’écran.

Notons que le contenu du registre B est modifié lors de I’appel de
cette routine.

6) Affichage d’un méme caractére sur une ligne de I’écran

Comme son nom I’indique, cette routine permet d’afficher un carac-
tére quelconque sur la totalité d’une ligne de I’écran.

Ce caractére devra préalablement avoir été stocké dans les registres
internes du 9345.

Ceci peut se réaliser aisément conjointement avec la routine
d’adresse $D40C, vue précédemment, et qui permet I'affichage d'un
caractére sur l'écran.

Le petit programme suivant illustre le fonctionnement de ces deux
routines et permet 'affichage du caractére semi-graphique de code $91
sur la ligne 16.

ORG $5821

EXC INIT
8e9i SNIT LDAA #3991
CE 1@ _DX 3 v
EDD4AC JOK $D4aC
BOD41H JSR D41k
TZ58U JMP INTT

Notons que cette routine modifie le contenu des accumulateurs A et
B.

7) Effacement d’une ligne de caractéres sur I’écran

Tout comme nous avons vu qu'il existait une routine capable d’affi-
cher un caractére identique sur une ligne de I'écran, il existe une routine
permettant d'effacer une ligne. Elle réside a I’adresse $D429.

Le registre X doit étre chargé avec le numéro de la rangée (octet
de poids fort) avant I'appel de cette routine.

137

Le petit programme assembleur suivant illustre son fonctionne-
ment, il permet d’allumer et d’éteindre successivement une rangée de
caractéres semi-graphiques jaunes a la ligne 16 de I’écran.

1 ORG $S800

< EXC INIT

3 S8ee 8691 INIT LDRA #$91 sAFFICHE CRRACTERE

4 S8ez CEloow LDX #$1000

S 58S BDD4QC JSR $D4@C ; UNE FOIS

€& 5808 BDD41E JSR $D41B ; SUR TOUTE LA LIGNE
7 S8@QE CEFFFF LDX #$FFFF ; DELRAI

8 S80E @9 LOOP! DEX

9 S8@F 26FD ENE LOOP1
12 5811 CEi1eww@ LDX #$100Q ; ETEINT CETTE LIGNE
11 5814 BDD429 JSR $D4c9
1& S817 CEFFFF LDX #$FFFF ;3 DELAI

12 S81R @9 LO0OPz DEX
14 581EB Z6FD ENE Looprz
15 5&1D 7ES8w@ Jmp INIT ; RECOMMENCE

Notons que les accumulateurs A et B sont affectés par I’appel de
cette routine.
8) Initialisation de Pécran

Une routine d’adresse $D42C permet d’initialiser le controleur
d’écran pour fonctionner, selon le cas, en mode 32, 40 ou 8@ colonnes.

Le fonctionnement de cette routine est le suivant:

On charge tout d’abord la case-mémoire d’adresse $301A avec la
valeur @, 1 ou 2.

On a respectivement :

@ - initialisation sur 8@ colonnes
1 - initialisation sur 4@colonnes
2 - initialisation sur 32 colonnes

Aprés avoir chargé cette case-mémoire avec la valeur désirée, la
routine concernée ici est appelée pour une instruction JSR.

138

Le contenu des registres A, B et X est modifié par I'appel de cette
routine.

Exemple: Pour un affichage sur 4@ colonnes, on écrira:

1 ORG $580@
3 EXC INIT
3 SB@ BEQ1 INIT LDAA #$@:
4 S8@& EDD4EC ISR $D4EC
§ 5805 7ESB2S LODP JMP LOOP

La ligne 5 de ce programme permet juste de visualiser le fonction-
nement de cette routine et n’apporte rien au programme en lui-méme.

9) Initialisation du systéme

La routine d’adresse $D42F permet de réinitialiser I’Alice, ceci
sans modifier le contenu de la RAM utilisateur. Il y a alors retour au
Basic. On écrira:

JSR $D42F
10) Scrutation du clavier

Nous avons vu des routines permettant d’afficher des caractéres sur
I'écran et représentant donc des sorties.

Notre description ne serait pas compléte sans une routine permet-
tant une entrée a partir du clavier.

Cette routine réside a I’adresse $F883.

Aprés P’appel de cette routine, I’Accumulateur contient le code
ASCII de la touche enfoncée (ou @ si aucune touche n’est enfoncée).

Le petit programme suivant permet d’aller scruter le clavier et
d’afficher sur I’écran le caractére tapé au clavier.

1 ORG $580Q

e EXC INIT

2 S8w@ BDF8B3 INIT JSR $F883 ;SRUTE LE CLAVIER

4 S8@Z 8100 CMPA #3020 sCARACTERE DISPONIBLE
S S58@s 27F9 BEQ INIT ; NON, RECOMMENCE

& S8@7 CEwS@s L DX #$0503 :0UI.RFFICHE LE

7 S8@AR BDD4@C JSK $D4@C

8 58ep 7ES8ew Jmp INIT

139

11) Emission de notes musicales

La routine d’adresse SFFAB permet d’envoyer une note de
fréquence et de durée programmables dans le haut-parleur de votre
teléviseur.

Le fonctionnement de cette routine est le suivant:

— laccumulateur A doit étre chargé avec un octet (381 a $FF)
représentant la fréquence de la note,

— Paccumulateur B doit étre chargé avec un octet ($01 a $FF)
représentant la durée de la note.

— la routine d’adresse $FFAB est ensuite appelée.

Le petit programme suivant permet de jouer un air qui vous
semblera familier.

AGLEMOLEUR ALICE REV 1,00~
SUSYRYGHT MATRAE, 1984

GRS F e

L
2 EXC INQT
3 SAp2 B86&E6 INTT LDRA #3566
4 S50z BDSBZ8 JSR NOYTE
S S80S 8666 LDAR =%EE
& S8@a7 BDS828 JSR NOTE
7 S580A 8&E&E LDRAR #%$E6L
8 580C BDSB8ESH JSR NOTE
3 S8@F B8&77 _DRB #%77
L@ 5811 BDLHAES J8R NOTE
1i 3614 8&£87 CDRAE B$A7
1z 5816 BDSBEZEE JER mMOTIE
L3 SR19 8577 LGAR w377
14 DBILEB BDSUAB JER NOTE
L5 5BLE AGhEL CDAR mERD
(6 SB&R RDSE3ES J5R LT
17 SAZ3 8687 LDAR #$EA7
18 5825 BDSLEAR ISR NCTE
13 5828 8677 i.DAA #%77
2 S8EA RDSAESs JSR NOTE
21 98gDh 8677 _DRA R#$7

140

532F BD3B38 JaR NG TiE

23 5832 8666 i_DAR #46E
c4 5834 BDS838 JSR NOTE
g 5837 39 RTS

<& 5838 Cews NOTE LDAB #%05
=7 S683A BDFFAE JGR BFFAR
=8 583D CEFFrF LDX #HESF S
23 S840 29 LJCP DEX

3¢ 5841 =6FD EBNE LOge
31 5843 39 RTS

@ ERREUR(S) BASSE 1§
@ ERREUR(S) PASSE &
SYMBOLES

INIT =858@& NOTE =5838 L0O0OP =5840

Le tableau des fréquences en fonction de la valeur prise par
I’Accumulateur est le méme que dans le cas de programmes Basic et de
I'utilisation de linstruction SOUND. Ce tableau est donné dans le
manuel d’utilisation de I’Alice.

12) Emission d’un caractére sur écran ou imprimante

Cette routine permet d’envoyer un caractére soit sur I’écran soit sur
une imprimante connectée a I’Alice.

Cette routine est appelée a 'adresse $F9C6.
Son fonctionnement est le suivant:

-— on charge tout d’abord la case-mémoire d’adresse $E8 avec 0
ou 1 (@ indique que le caractére sera envoyé sur I’écran tandis que 1
indique que le caractére sera envoyé sur I'imprimante);

— on charge la case-mémoire d’adresse $3280 avec le numéro de
la rangée ou devra s’effectuer I'affichage (cas d’un affichage sur écran
uniquement);

141

— on charge la case-mémoire d’adresse $3281 avec le numéro de
la colonne ou devra s’effectuer I’affichage (cas de I’écran uniquement);

— on charge 'accumulateur A avec le code ASCII du caractére

que 'on

désire afficher;

— on appelle la routine d’adresse $F9C6 par une instruction
d’appel de sous-programme.

Exemple 1: On désire afficher la lettre T sur I’écran a la colonne 16,
rangée 16. Le programme assembleur correspondant s’écrira:

$5822
INIT
#$00
$E8
#%$1Q
$3281
#P12
35281
FPoM
- 3CE
L00P

;AFFICHAGE ECRAN
; RANGEE. 1@
sCO_ONRE 1@

JLETTRE T

Exemple 2: On désire maintenant afficher le méme caractére T sur
imprimante. Cette lettre devra étre validée par un retour chariot
(CHR$(13) en Basic, $OD en assembleur). Le programme assembleur

1 ORG
c EXC
3 o8uoe scow INIT LDAA
4 580 B70RES8 5TAA
5 S605 BELQ LDAA
€& S8u7 B7IZZ8e STAR
7 S8R 86i@ LDAAR
8 SB8BL B72c8. STAR
2 S8EF B&S4 DA/
12 S81. BDFICE JGR
i1 5814 7ES814 LOOP JMP
correspondant s’écrira:
1 ORG
c EXC
3 S800 86v1 INIT LDAR
4 5802 R700ES8 STAR
S 5805 BES4 LDAA
€& S8@7 EDFICE JSR
7 S82AR 860D LDARA
8 S8eC BDF9C6e JSR
9 S8@F 7ESBQF LOOP JMP

$580Q2
INIT
#4021
$E8
#4554
$F9CE
#saD
$F9CE
LOOP

$AFF ICHAGE ECRAN
sLETTRE T

$RETOUR CHRRIOT

13) Emission d’une chaine de caractére sur écran ou imprimante

Cette routine permet d’afficher sur écran ou sur imprimante une
chaine de caractéres quelconque. Elle fonctionne de maniére similaire a

142

la routine précédente. Il est de plus nécessaire de préciser I’emplacement
mémoire contenant les codes ASCII de la chaine a afficher. Les opéra-
tions suivantes doivent donc étre effectuées:

— on charge la case-mémoire d’adresse $E8 avec @ ou 1 (@ indique
que le caractére sera envoyé sur I’écran tandis que 1 indique que le
caractére sera envoyé sur l'imprimante), comme nous I’avons vu
précédemment ;

— on charge les cases-mémoire d’adresses $3280 et $3281 avec
respectivement les numéros de rangée et colonne de ’endroit ou devra
s’effectuer Paffichage (cas de I’écran uniquement);

— on charge le registre d’index X avec I’adresse, décrémentée de
une unité, du premier caractére constituant la chaine de caractéres;

— on appelle alors la routine d’adresse SE7A8 par une instruction
JSR.

Le petit programme suivant illustre le fonctionnement de cette
routine lors d’un affichage sur écran:

H ORG +38QQ

c EXC INIT

3 Sben acue INIT LDRA #$20

4 582 H720ES STRA $E8

S S8wvs 86w LDRA &#%12 i RANGEE 16
. 287 R73:=80 STAA $3z88

7 S8R 8605 LDAR #3025 ; CO_ONNE 3
& S8lC BE73281 STAA $3:201

9 Leer CzSeI7 DX #465817

i HaL1s BDEVAS JSR FTL7AS

i1 G5els 7ES81S LOOP JMP Q0P

i BH1L8 454543 TEXT TCECI EST UN ETRfd

143

[y

Lors d’un affichage sur imprimante, on pourrait écrire:

ORG $S80Q

BN

& EXC INIT

S S8ee 8GRl INIT LDARR #$21 ;AFFICHAGE
IMPRIMANTE

4 SaRS B700ES8 STAR $E8

S S80S CES8BiZ LDX #4581

€ %88 BDE7AS8 - JSR $E7R8 ;AFFICHAGE CHARINE

7 S8QE 86@D LDAR #$@D ;RETOUR CHARIOT

6 S8@D BDF3C6& JSR $F3CE

2 5812 7ES81@ LOOP JMP LOOP

2 S813 434543 TEXT 'CECI EST UN ESSAT

L’envoi du ”retour chariot” (code $OD) est destiné a provoquer
I'impression du texte “ceci est un essai” qui sinon resterait stocké dans
le buffer (tampon) situé dans 'imprimante jusqu’a ce qu’il soit compléte-
ment rempli. (En effet, une imprimante contient généralement une
mémoire volatile de faible capacité destinée a conserver l'équivalent
d’une ligne de texte, par exemple).

Nous en avons maintenant terminé avec la description des routines
moniteur les plus utiles contenues dans la ROM de I’Alice. Elles
devraient vous aider a écrire facilement des programmes assembleur
possédant des Entrées-Sorties clavier/écran intéressantes.

Il existe de plus un certain nombre de cases-mémoire utilisées par le
moniteur ou l'interpréteur Basic. Nous n’allons bien sir pas toutes les
passer en revue mais certaines d’entre elles vous seront bien utiles.

® adresse du curseur: la case-mémoire d’adresse $3280 donne le
numéro de la rangée ou se trouve le curseur (@ a 24).

De méme la case-mémoire d’adresse $3281 donne le numéro de la
colonne ou se trouve le curseur (@ a 79).

e indicateur de répétition automatique : la case-mémoire d’adresse
$3008 permet de déterminer si les touches ont une fonction d’auto-
repeat. Normalement elle contient la valeur $00 et cette fonction est
inhibée. Lorsque par contre elle contient la valeur $81, les touches du
clavier auront une fonction d’Auto-Repeat.

144

7

Les possibilités sonores
de I'Alice

7.1. ACCES A PARTIR DU BASIC

Nous avons vu dans le chapitre consacré au Basic de I’Alice que la
seule instruction disponible pour rajouter du son a vos programmes était
instruction SOUND.

La syntaxe de cette instruction est, nous le rappelons, la suivante:

SOUND F,D
F désignant la fréquence de la note désirée et D sa durée.

Ne possédant qu’un générateur unique sur 3 octaves, I’Alice ne
comporte que des possibilités sonores trés limitées surtout si I'on se
contente de cette simple instruction SOUND.

C’est pourquoi nous allons décrire dans les pages qui vont suivre
un ensemble de routines en assembleur permettant d’animer vos
programmes, qu’ils soient en Basic ou en Assembleur.

A partir du Basic, elles pourront étre appelées a I'aide d’une
instruction EXEC, tandis que dans un programme Assembleur, elles
pourront étre des sous-programmes, tout simplement.

145

7.2. ACCES A PARTIR DE L'ASSEMBLEUR

1. Génération d’une note isolée

Nous allons commencer par la routine la plus simple qui consiste a
produire une note isolée de fréquence et de durée déterminées.

Elle est I’analogue de I'instruction Basic SOUND et similaire a la
routine moniteur d’adresse $SFFAB décrite dans le chapitre précédent.

Le programme correspondant est le suivant:

ASSEMELEUR ALICE REV 1.Q0@*
COPYRIGHT MATRA, 1384

1 ORG $40200

< EXC PROG

3 ;s PROGRAMME DE GENERATION DE NOTE ISOLEE

4 4000 FF DUREE DFO $FF sDUREE DE LA NOTE:

S 4001 Q@72 FRE@ DFD $2Q72 ;FREQUENCE DE LA NOTE

6 4025 8ec@R PROG LDARR #300

7 4005 Fe400Q LDAE DUREE ;INITIALISE COMPTEUR DE DUREE
8 4008 88FF LOOP1 EORA #$FF

9 4Q2RA B7BFFF STRAR $EBFFF
10 40@D FE4Q@Q1 LDX FRE@ INITIALISE COMPTEUR FREQUENCE
11 421@ @9 LoOP2 DEX s TERMINE?
12 4@11 26FD BNE LOOP2 ;NON, ATTEND AVANT INVERSION
13 4@13 SR DECE sDUREE ECOULEE?
14 4014 26F2 ENE LOOP1 ;NON, CONTINUE

15 4016 39 RTS
16

@ ERREUR(S) PASSE 1
@ ERREUR(S) PASSE 2
SYMBOLES :

DUREE=40202 FREQR =421 PROG =403 LOOP1=4208 LOOP2=40210

Il permet de générer dans le haut-parleur de votre téléviseur une
note musicale de fréquence et de durée programmables.

La fréquence est déterminée par le contenu des deux cases-mémoire
d’adresses $4001 et $4002. La durée est déterminée par le contenu de la
case-mémoire d’adresse $400). Bien sir ces adresses, de méme que
I’adresse d’implantation en mémoire du programme ci-dessus, peuvent
étre modifiées a volonté.

146

Le fonctionnement de ce programme est le suivant:

Dans I’accumulateur, on stocke une valeur qui va étre envoyée a
I’adresse $BFFF correspondant au générateur de son.

En effet pour produire une note musicale, il suffit d’envoyer a cette
adresse un signal carré d’allure suivante:

L

—
1/FREQ

DUREE

Un ”1” logique est envoyé a cette adresse puis un ”@” et ainsi de
suite. Le temps pendant lequel le signal reste a ”@” ou a ”1” est égal a
une demi-période du signal et correspond a 1/FREQ, FREQ étant carac-
téristique de la fréquence du signal et programmable dans le programme
ci-dessus.

La durée du signal (DUREE) correspond au nombre de demi-
périodes successives.

Examinons maintenant de plus prés les instructions que constituent
notre programme.

Le passage du signal de ”1” a @ et de ”@” a ” 1” est réalisé a
’aide de Pinstruction EORA (”OU” exclusif).

Le registre d’index est chargé périodiquement avec une valeur
binaire de 16 bits caractérisant la fréquence du signal. La touche
LOOP2 est donc parcourue un nombre de fois égal au contenu de ce
registre X.

L’Accumulateur B, quant a lui, est chargé avec la variable
DUREE. La boucle LOOP1 permet donc de compter le nombre de
demi-périodes du signal.

2. Génération d’un signal modulé en fréquence

Grace au programme ci-dessous, nous nous proposons de générer
un signal dont la fréquence varie continuement en fonction du temps de
maniére a imiter une siréne.

147

ASSEMBLEUR ALICE REV 1.0@%

Le programme correspondant est le suivant:

COPYRIGHT MATRA, 1384

WONOWMS WM~

ce
23
24
a5
26
27

@ ERREUR(S)
@ ERREUR(S)
SYMBOLES
DUREE=420@ FREQ

=4Q07 SON

402
4201
4@z
4003
4204
4207
420R
400D
4012
4012
4214
4017
401A
4@1D
401F
4022
4225
4028
4029
402B
402E
4232

148

o

a2

oS

o
BE40201
BE4QQC
B74001
BD4@12
20F2
CEFF
Fasoa1
F74020
BE4QQ3
88FF
B74023
B7BFFF
Fe40R1
SA
26FD
7R420@
26ER
39

DUREE
FREQ
INT
VAL
PROG

SON

LOOP1

LoOpP2

PARSSE 1
PASSE 2

ORG
EXC

$4000Q
PROG

;PROGRAMME DE GENERATION DE SON AVEC
$§MODULATION DE FREQUENCE

DFO
DFO
DFO
DFO
LDAA
ADDA
STAA
JSR
BRA
LDAB
SUBB
STARB
LDARA
EORA
STAA
STAAR
LDARE
DECB
BNE
DEC
BNE
RTS

=4021 INT

$2Q
$2Q
$Q5
$QQ2
FREQ
INT
FREQG
SON
PROG
HSFF
FREQ
DUREE
vAaL
HSFF
VAL
$BFFF
FREQ

LoopP2

DUREE
LOOP1

=40z

sDUREE DE LA NOTE ELEMENTAIRE

sFREQUENCE DE LA NOTE

s INTERVALLE DE FREQUENCE ENTRE & NOTES
;§VALEUR ENVOYEE DANS LE GENERATEUR DE SON
sPREMIERE FREQUENCE

sENVOIE UN SON ELEMENTAIRE

s INITIALISE COMPTEUR DE DUREE

;s INVERSE LE CRENEARU

;ENVOIE VALEUR DANS LE GENERATEUR DE SON
;INITIALISE COMPTEUR FREQUENCE

; TERMINE?

;NON, ATTEND AVANT INVERSION

;DUREE ECOULEE"

s NON, CONT INUE

VAL =40223 PROG =4024

=4Q1& I_00P1=4@1A LOOPZ=4028

Les variables utilisées par ce programme sont les suivantes:

— DUREE détermine la durée d’une note élémentaire, le signal
résultant étant constitué d’une suite de notes élémentaires de fréquences
différentes.

— FREQ détermine la fréquence de la note élémentaire.

— INT détermine l'intervalle de fréquence qu’il existe entre deux
notes élémentaires.

— VAL contient la valeur ”@” ou ”1” qui sera envoyé dans le
L q y
generateur de son d’adresse $BFFF.

Le fonctionnement général du programme est donc le suivant:

— on considére une premiére fréquence égale 8 FREQ + INT et
on envoie une note élémentaire de durée ($FF — FREQ). En soustrayant
chaque valeur de FREQ a $FF, il est possible d’obtenir des notes
élémentaires de durée constante et donc un signal résultant plus réaliste.
Les notes élémentaires sont générées par le sous-programme SON.

— la fréquence est ensuite incrémenté (FREQ+INT+INT) de
maniére a générer la note élémentaire suivante.

— le programme continue de cette maniére indéfiniment.

Les paramétres INT et de durée réelle (caractérisée par le $FF de
Iinstruction LDAB #8FF) peuvent étre aisément modifiées a votre greé.
Nous en avons terminé avec ce court chapitre. Comme nous I’avons dit,
les possibilités sonores de I’Alice sont limitées mais les routines décrites
ci-dessus permettront tout de méme d’”égailler” avantageusement vos
programmes.

149

Les possibilités graphiques
de I'Alice

8.1. INTRODUCTION

Dans ce chapitre, nous allons décrire de maniére détaillée les diffé-
rents modes d’affichage de I’Alice.

C’est sur ce sujet que les versions 32 et 9@ de I’Alice différent
le plus fondamentalement de I’’ancien” Alice 4K. Ceci est rendu
possible par I'utilisation d’un contréleur d’écran plus performant et que
nous avons déja mentionné dans le chapitre consacré a I Architecture
du Systéme™.

Son réle est, nous I’avons dit, de lire de fagon permanente les infor-
mations se trouvant dans la mémoire écran. Pour chacune des cases
qu’elle comporte, il transforme le code qu’elle contient en un ensemble
d’informations électriques -permettant d’afficher caractéres ou graphi-
ques sur votre téléviseur.

La mémoire-écran de I’Alice posséde 8 Koctets et est séparée de la

mémoire utilisateur. Le microprocesseur n’y ‘a donc pas accés directe-
ment et c’est le controleur d’écran qui se charge de sa gestion.

Ces 8 Koctets sont suffisants pour permettre d’afficher des carac-
téres alphanumériques, semi-graphiques ou méme des graphiques haute-
résolution, le tout en couleurs.

150

8.2. LES ECRANS DE L'ALICE

8.2.1. Affichage sur 16 lignes de 32 colonnes

Lors de la mise sous tension, I’Alice est mis automatiquement en
mode 16 lignes de 32 colonnes.

Il permet alors d’afficher des caractéres alphanumériques ou semi-
graphiques sur Pécran.

Ce mode d’affichage se présente sous la forme d’un cadre de fond
vert entouré de noir et peut étre réinitialisé a I’aide de Pinstruction CLS
32.

La couleur du fond de ’écran peut aisément étre modifiée a Paide
de Pinstruction CLS suivie d’un numéro de couleur.

Nous rappelons ci-dessous les différentes couleurs disponibles sur
I’Alice.

Code Couleur

A=)

noir

vert
jaune
bleu roi
rouge
ivoire
bleu péle
mauve
orange

O N A WN =

C’est ainsi que CLS 1 correspond au mode d’affichage disponible
lors de la mise sous tension.

Les caractéres alphanumériques affichés sont de type majuscule et
peuvent étre affichés en vidéo normale ou inverse.

La commutation entre ces deux modes se fait par pression simul-
tanée sur les touches SHIFT et @.

Chaque caractére alphanumérique est défini par une matrice de
points de taille 8x 10.
151

L’obtention de graphismes basse-résolution peut se faire de deux
fagons:

— affichage de caractéres semi-graphiques,
— utilisation des instructions SET, RESET et POINT.
Nous allons passer en revue ces deux méthodes:

a) Affichage de caractéres semi-graphiques

Le clavier de I’Alice posséde un certain nombre de touches permet-
tant I’affichage de caractéres semi-graphiques, au méme titre que des
caractéres alphanumeériques classiques. Ils sont au nombre de 16 et
correspondent a toutes les combinaisons possibles de remplissage d’un
”pave” de taille 2x2.

Chaque caractére de I’écran 16x32 peut étre divisé en 4 cases,

2

—

chacune d’entre elles pouvant étre individuellement ”éteinte” ou
”allumée”. L’ensemble des caractéres semi-graphiques de I’Alice a déja
été décrit dans le chapitre consacré aux routines moniteurs.

L’affichage de ces caractéres pourra étre réalisé a I’aide d’instruc-
tions PRINT classiques. Leur couleur est alors uniforme sur la totalité
de P’écran (noire sur fond de couleur spécifiée par I’instruction CLS).

Cependant, a chacun de ces caractéres correspond un code qui peut
étre utilisé conjointement a une instruction de type CHRS.

Ces codes ont également été donnés dans le chapitre consacré aux
routines moniteur.

Rappelons tout de méme que le code de chaque caractére est
composé de deux parties, ’'une spécifiant son type (1 parmi 16 caractéres
semi-graphiques disponibles), P’autre spécifiant sa couleur (1 parmi 8
couleurs différentes, en plus du noir).

152

C’est ainsi que l’instruction:

PRINT CHR$(191) permet d’obtenir un carré.

En effet:
191 = 143 + 48
np— M p—)
code correspondant code correspondant
a toutes les cases a une couleur
du pavé 2 x2 vides rouge

L’avantage de cette méthode est qu’elle permet de” dissimuler” des
graphismes plus ou moins complexes a P'intérieur de chaines de carac-
téres dites ”chaines graphiques”.

Pour produire un dessin sur I’écran, il suffira d’afficher une ou
plusieurs chaines a I'aide de Iinstruction PRINT.

La construction de la chaine pourra se faire caractére par caractére
pour concaténations successives.

Exemple .

S PRINT TRE(1@)

1@ PRINT TAR(1@) ;CHR$(138) :

c@ FOR I=1 TO 10

3@ PRINT CHR$(Z11) ;:NEXT I

4@ PRINT CHR$(133)

S@ FOR J=1 70 &

6@ PRINT TAB(1Q@) ;CHR$(138) ; :GOSUEB11@; :PRINT CHR$ (133) :NEXT J
78 PRINT TRE(1Q) ;CHR$(138) ;

82 FOR I=1 TO 1@

9@ PRINT CHR$ (Z&@) j :NEXT I

122 PRINT CHR$(133) :END

11@ FOR I=1 70 1@

180 PRINT CHR$(223) 5 :NEXT 1:RETURN

Le petit programme ci-dessus permet de dessiner un rectangle de
couleur bleue sur ’écran.

L’utilisation de caractéres semi-graphiques a partir de codes de
type CHRS peut sembler un peu fastidieuse quand il s’agit de réaliser des
dessins complexes. C’est pourquoi existent les instructions SET, RESET
et POINT que nous allons décrire ci-dessous.

153

b) Utilisation des instructions SET, RESET et POINT

Comme nous I’avons vu dans le chapitre consacré au Basic, ces
instructions permettent d’allumer, d’éteindre ou de tester le contenu de
points de I’écran.

Dans le cas d’un affichage de 16 lignes sur 32 colonnes, chaque
caractére est divisé en une matrice 2x2 comme nous l’avons vu ci-
dessus.

C’est ainsi que la résolution de I’affichage est égale a 64 dans le
sens horizontal et 32 dans le sens vertical.

La syntaxe des instructions SET, RESET et POINT est la
suivante : i

— SET(X,Y,N)

X désignant I’abscisse du point que ’on désire allumer (@<X<63),
Y désignant son ordonnée (B<Y<31) et N son code couleur.

Pour allumer le point de coordonnées X=10 et Y=15 et lui donner
la couleur rouge, on écrira alors:

SET(14,15,4)

aprés avoir fait un CLS @ qui colorie tout 1’écran en noir.

— RESET(X,Y)

X et Y désignant les coordonnées du point a éteindre.
Pour éteindre le point de coordonnées X=1@ et Y=15, on écrira
donc:

RESET(14,15)
— POINT(X,Y)

X,Y désignant les coordonnées du point dont on veut connaitre
I’état. En effet, trois cas peuvent se présenter :

— soit il a été allumé par une instruction de type SET et posséde
une couleur donnée et dans ce cas I'instruction POINT renvoie le code
couleur correspondant (@ a 8);

— soit il est éteint et instruction POINT renvoie la valeur @;

154

— soit il se trouve a un endroit ou un caractére alphanumérique
est affiché et dans ce cas, I'instruction POINT renvoie la valeur — 1.

Exemple: Aprés un CLS @, tapez SET (63,31,4) puis:
PRINT POINT (63,31)
vous devez obtenir la valeur 4.

Le programme suivant utilise I'instruction SET et permet de tracer
un triangle sur I’écran.

5 CLs Bv:J=31

1@ FOR I=c@ TO 4@

ce SET(I, 32,6) :NEXT I

3@ FOR I=2@ TO 2@

@ SET(I,J,6) :J=J-1:NEXT
@ FOR I=321 TO 41

Bid J=TJ+1:1SET(I,J,.6) tNEXT

8.2.2. Affichage sur 25 lignes de 40 colonnes
Ce mode d’affichage est pratiquement similaire au mode 16
lignes x 32 colonnes décrit dans les lignes précédentes.

Il permet d’afficher des caractéres alphanumériques ou semi-
graphiques sur I’écran et peut étre réinitialisé a I’aide de I’instruction
CLS 40.

La couleur du fond de I’écran peut étre modifiée a laide de
Pinstruction CLS suivie d’un numéro de couleur.

Le fonctionnement des instructions SET, RESET et POINT ne
différe que par les valeurs prises par les coordonnées X et Y.

En effet, le mode d’affichage de 25 lignes sur 4@ colonnes permet
d’obtenir une résolution de 8@ en horizontal et de 5@ en vertical, dans le
cas d’un affichage graphique basse-résolution.

Nous n’allons pas plus nous attarder sur ce mode d’affichage.

8.2.3. Affichage sur 25 lignes de 80 colonnes

Ce mode d’affichage est une particularité intéressante pour un
micro-ordinateur de la catégorie de I’Alice puisque les affichages > 8¢

155

colonnes” sont en général réservés a des machines plus ”profes-
sionnelles ™.

Comme son nom l'indique, ce mode d’affichage permet d’afficher
25 lignes de 80 caractéres. Afin d’obtenir une bonne lisibilité, il vous
faudra disposer d’un téléviseur de bonne qualité ou mieux d’'un moniteur
couleur.

Ce mode d’affichage est plutot destiné a des applications de type
”traitement de texte” pour lesquelles 40 caractéres par ligne ne sont pas
suffisants.

Dans ce mode, I’Alice ne posséde plus de jeu de caractéres semi-
graphiques. En remplacement, il permet d’afficher des caractéres
minuscules.

Les jeux de caractéres majuscules et minuscules peuvent étre
commutés grace a une pression simultanée sur les touches SHIFT et @.
Ce mode d’affichage existe sous deux formes:

— affichage de caractéres noirs sur fond vert et sélectionné par
Iinstruction CLS 80;

— affichage de caractéres verts sur fond noir et sélectionné par
Pinstruction CLS 81.

Les instructions CLS @ a CLS 8 ne fonctionnent pas dans ce mode.
Cependant, les couleurs d’affichage des caractéres, des graphismes
(comme nous le verrons plus loin) et la couleur du fond de I’écran
peuvent étre modifiés a I’aide de I'instruction spécialisée SETs.

L’écran, en mode 8@ colonnes est caractérisé par un rectangle (dans
lequel seront affichés les caractéres et graphismes) appelé fond de
’écran” entouré d’un cadre ou ”marge”. Le fond de I’écran est caracté-
risé par la couleur d’” Intensité”.

Les caractéres alphanumériques sont affichés en prenant la couleur
de marge. Ils sont définis par une matrice de points de taille 6 x 6, réduite
par rapport aux cas des affichages sur 32 et 49 colonnes.

En mode 8@ colonnes, I’écran peut étre divisé en 20 0 points
¢lémentaires. Ceci permet d’obtenir un affichage moyenne résolution de
160 (résolution horizontale) sur 125 (résolution verticale).

Chacun de ces points peut étre isolément allumé ou éteint et prend
alors une couleur de ”demi-intensité”.

156

Ces points sont regroupés sous forme de matrices 2x5 (il existe
donc 8@ matrices selon I’axe horizontal et 25 matrices selon I’axe
vertical).

Lorsqu’un point élémentaire est allumé, la matrice a laquelle il
appartient est considérée comme un caractére et prend en conséquence la
couleur de marge, sauf le point considéré qui, lui, prend I’'une des trois
couleurs :

— couleur de marge,
— couleur de demi-intensiteé,
— couleur d’intensité.

Ces couleurs peuvent étre sélectionnées grace a I'instruction SET»
comme nous ’avons déja dit.

La syntaxe de cette instruction est:

SET+ M,1,D

M désignant la couleur de marge, I la couleur d’intensité et D la
couleur de demi-intensite.

M, I et D sont données par un code couleur compris entre @ et 8 et
similaire a ce qui a été vu jusqu’a présent.

Exemple :
SETs 2,3,4
permet d’obtenir:

— des caractéres jaunes (couleur de marge),
— un fond bleu roi (couleur d’intensité),
— une couleur de demi-intensité rouge.

157

L’affichage d’un point élémentaire se fait grace a une instruction
SET dont la syntaxe est:

SET(X,Y,N)

X désignant PI’abscisse du point a allumer (@<X<159), Y son
ordonnée (AY<124) et N permettant de choisir la couleur d’affichage
de chaque point élémentaire.

N peut prendre les valeurs suivantes:

— @ ce qui donne un point dont la couleur est la couleur de
marge;

— 1 ce qui donne un point dont la couleur est la couleur
d’intensité ;

— 2 ce qui donne un point dont la couleur est la couleur de demi-
intensite.

C’est ainsi que, aprés avoir tapé SET» 2,34 puis SET (10,20,2)
on obtiendra un point rouge.

L’instruction RESET, dont la syntaxe est RESET(X,Y) permet
d’éteindre un point élémentaire allumé préalablement a I’aide d’une
instruction SET.

Nous avons donné dans le chapitre consacré au Basic de I’Alice un
exemple d’utilisation des instructions SET et RESET dans un
programme de tracé de courbe en haute-résolution.

Les lecteurs intéressés pourront donc se reporter a ce chapitre.

L’instruction POINT, quant a elle, fonctionne de maniére similaire
a celle rencontrée dans le cas des affichages sur 32 ou 4@ colonnes.

Si le point est occupé par un caractére, elle renvoie la valeur — 1,
sinon elle renvoie un code égal a @, 1 ou 2 selon que le point considéré a
la couleur de marge, d’intensité ou de demi-intensité.

Nous en avons terminé avec ce chapitre qui vous permettra, nous
’espérons, de tirer au mieux parti des possibilités graphiques offertes par
votre Alice. Les instructions rencontrées ici en permettent un accés aisé
a partir de I'Interpréteur Basic.

Les lecteurs intéressés trouveront dans le chapitre 6 un certain
nombre de routines moniteur permettant de produire des affichages
alphanumériques ou semi-graphiques directement en Assembleur.

158

TABLE DE CONVERSION HEXADECIMAL - DECIMAL

0 1 2 3 4 5 6 7 8 9 A] [D 3 F
o] o 1 2 3 4 5 6 7 8 9 |1 11213 14]15
11161781920 2122|2324]|25]|2 |27 |28]|2]3]3
2132 | 33 | 34 | 35 | 36| 37| 38|39 |40 | 41| 42| 43| 44) 45 46| 4
3] 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 6@ | 61 | 62 | 63
4| 64 | 65 | 66 | 67 | 68 | 69 | 7@ | MM | 72 | 13| 14| 56|17 18]
5|80 | 81 | 82 | 83 | 84 | 85 | 8 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95
6] 96 | 97 | 98 | 99 | 100|101 | 192 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111
TP M2 M3 g N4 115 | 16] 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127
8]-128 | -127 | -126 | -125 | -124 | -123 | -122 | -121 | -12@ | -119 | -118 | -117 | -116 | -115 | -114 | -113
9|-M12 -1 |-110|-109]-108 | -107 | -106 | -105 | -104 | -103 | -102 | -101 [-100| 99 | 98 | -97
Al 96| 95] -94| 93| 82| 91| 90| -89) 88| 87| 8 | 85| -84] 83 | 82 | -81
B| 8O | -19|-18|-717|-16]-15)-14]|-13|-12]-11]-10] 69| 68| 67| 66| 65
C| 64| 63| 62| 61| 60| -59 | -58 | 57] -56 | -55 | -54 | -63 | -52 | -51 | -50 | 49
D] 48 | 47 | 46 | 45 | 44 | 43 | 42 | 41 | 40 | -39 | 38 | -37 | -36 | -35 | -34 | -33
E| 32|31 |30 -29|-28|-27|-26|-25|-24]-23)-22|-21|-2@8]-18]-18]-17
Fl-6]-5)-4-3)-12|nj1o2| 9] 8|76} 5]|4]|-3]-2]-

TABLEAU RECAPITULATIF DES INSTRUCTIONS DU 6803

Instructions portant sur les Accumulateurs et la mémoire

Instruction Mode d’adressage Indicateurs affectés
Mnémonique IMM | DIR | IND |ETE{ IMP [H| | [N|] Z |V C
ABA B [S S |
ABX 3A
ADCA 89 99 A9 B9 3 h o I O A S
ADCB c9 D9 E9 F9 i 11 1
ADDA 88 98 AB BB by O 0 O I N S
ADDB c8 DB EB FB $ A S I R S
ADDD c3 03 E3 F3 SO I S
ANDA 84 94 A4 B4 11119
ANDB c4 D4 E4 F4 119 b
ASL 68 78
ASLA 48 % % % %
ASLD #5 RS,
ASR 67 n s
ASRA 47 1|3 f %

159

Instruction Mode d'adressage Indicateurs affectés

Mnémonique IMM |DIR| IND | ETE | IMP | N |Z| V |C
ASRB 57 t 1t ¢ |3
BITA 85 95| A5 | B5 1 ({3 9
BITB c5 |05| E5 | F5 t i3l @
CBA 1 S O I I S
CLR 6F | 7F g (1| 9 |9
CLRA 4F g {1 9 |9
CLRB v 5F g (1| 9 |4
CMPA 81 {91 | a1 |81 SO O e S 4
CMPB ¢ || Bt | m DO I O A §
coMm 63 | 73 T 18 9 |1
COMA 43 S S B
comB 53 |8 0 |
DAA 19 SO S A |
DEC BA | TA t it
DECA 4A t 1t
DECB 5A S I ¢
EORA 88 (98| A8 | B8 1 1t 9
EORB c8 (08| €8 | f8 11t 9
INC 6c | 7C O I O I §
INCA 4C 11t ¢
INCB 5C A I S
LDAA 86 [96| A6 | BB t 1t 9
LDAB c6 |[po6| e | f8 T (84
LDD cc |bc| EC | FC 118 9
LSt 88 | 78 S S I S I S
LSLA 48 t |t ¢t |2
LSLB 58 Tttt |2
LSLD g5 RO O I A ¢
LSR 64 | 78 g3t |2
LSRA " g3t
LSRB 54 g (3183
LSRD ga gt |3
MUL 30 s
NEG 6¢ | 70 S S A ¢
NEGA ag O I T R
NEGB 5¢ A A
NOP '
ORAA 8A |[9A| M | BA 1 |2 9
ORAB CA |DA| EA | FA 11t 9
PSHA 36
PSHB 37
PULA 32
PULB 33 :
ROL 69 | 79 O I O T A ¢
ROLA 49 SO S I A §
ROLB 59 SO o I A
ROR 66 | 78 R

160

Instruction Mode d’'adressage Indicateurs affectés

Mnémonique M| o | ino | eTe [l W [t N |z] v]c
RORA 48 O I O I S I
RORB 58 11t ¢t |2
SBA 19 1ttt
SBCA 82 | 92 | A2 | B2 N S A I ¢
SBCB c2| 02 | 2| F2 t |ttt
STAA 97 | A7 | 87 O I
STAB D7 | €7 | F1 11t 4
STD 0D | ED | FD T 13w
SUBA 89 | 99 | av | By O I S I S ¢
SuBB Cd | og | E9 | FO S S O I R
SUBD 83 | 93 | A3 | 83 P O I
TAB 18 FO I |
TBA 17 O
8T 60 | 70 TS| 9|4
TSTA 40 1| 9 |9
TST8 50 T (S| 9|9

Instructions portant sur les registres d’index, pointeur de pile e¢ CCR

Instruction Mode d'adressage Indicateurs affectés
Mnémonique IMM| DIR | IND | ETE |IMP| H | N|2Z| V |C
CPX 8c | oc | AC | sC O I A A 5
DEX 9 !

DES 3

INX g8 !

INS 3

LDX ceE [DE | EE | FE T8 9

LDS BE | 9E | AE | BE ORI S|

STX OF | E | FF 113 9

STS 9F | AF | BF 1 (s ¢

™s 35

TSX 3

ABX 3A

PSHX 3

PULX 38

cLe ac]
CcL OF (]

cv 0A]

SEC 0D 1
SEI OF 1

SEV 08 1

TAP | 3|T{s || TS
TPA g7

161

Instructions de saut

Instruction Mode d’'adressage Indicateurs affectés
Mnémonique DR |REL| IND |ETE [IMP| H| 1 | N |{Z]| V
BRA 2
BRN 21
BCC 2
BCS 25
BEQ 27
BGE 2C
BGT 2%
BHI 22
BHS 24
BLE %
BLO 25
BLS 23
BLY 20
BMI 28
BNE 26
BVC 28
BVS 29
BPL 2A
BSR 8D
JMP 6E | 7E
JSR 90 AD | BD
NOP]|
RTI <1 J I O I O O S O
RTS 39
SWI 3F 1
wal 3E
NOTATIONS
IMM = mode d’adressage immeédiat.
DIR = mode d’adressage direct.
IND = mode d’adressage indexé
ETE = mode d’adressage étendu.
IMP = mode d’adressage implicite.

162

REL = mode d’adressage relatif.

! = indicateur mis a 1 ou a @ selon le résultat de I'instruction
considérée.

1 = indicateur mis a 1 aprés exécution de I'instruction considérée.

0 = indicateur mis a @ aprés exécution de I’instruction consi-
dérée.

163

