Jean-Francois Gallet Alain Pierrot

Les Astuces
d’Alice 32 et 90

MATRA ET HACHETTE

Les auteurs tiennent a remercier les membres de I'équipe de MATRA-TANDY
ELECTRONIQUE, qui ont aimablement communiqué de précieux renseigne-
ments techniques permettant la réalisation de ce livre.

© HACHETTE 1985

Laloi du 11 mars 1957 n"autonsant, aux termes des afinéas 2 et 3 de I'article 41, d’une part que
les «coples ou reproductions strictement réservées a I'usage prvé du copiste et non destinées
une utiisation collective», et, d"autre part, que les analyses et les courtes citations dans un but
d"exemple et dillustration, « toute représentation, ou reproduction intégrale, ou partelle, fate sans
le consentement de l'auteur ou de ses ayants droit ou ayants cause, est ilicites (alinéa i
de l'article 40)

Cette représentation ou reproduction, par quelque procédé que ce soit, constituerait donc une con-
trefacon sanctionnée par les articles 425 et suvants du Code pénal

Tous droits de reproduction et d*adaptation réservés pour tous pays.

Préambule

Les notations utilisées

Ce livre ne concerne qu’ALICE 90 et la nouvelle version d’ALICE,
qui contient ’éditeur-assembleur. Comme cette derniére ne se distin-
gue pas vraiment de la premiére version plus simple, dont il ne sera
Jamais question ici, on désignera systématiquement cette version qui
contient I’éditeur-assembleur sous le nom d’ALICE 32, pour rappe-
ler sa taille-mémoire (16 K de mémoire morte + 16 K de mémoire
vive).
Les notations hexadécimale et binaire seront respectivement mar-
quées par les préfixes $ et %, pour les distinguer de la notation déci-
male. Par exemple :

143 = $8F = %100p1111.
Le chiffre zéro est noté @, par opposition 2 la lettre O.
A Tintérieur d’un octet, les bits sont numérotés dans Pordre suivant :

B7 B6 B5 B4 B3 B2 Bl B

1 0060 0 0 06 0

La valeur de P'octet codé ci-dessus est $80.

Informations communiquées par I'auteur le ler mai 2011

Je lance ce sujet car jai retrouvé la 1ére épreuve du livre les Astuces d'Alice sur
laquelle j'avais noté les erreurs que j'avais détectées. Sur l'autre exemplaire que je
posséde. elles ne sont pas corrigées, donc jimagine que Matra Hachette a édité le
livre sans en tenir compte. Donc voila la liste des erreurs que j'avais vues a I'époque:

page 13 : c'est SFBD4 et non $F8D4

page 13 : c'est SFBD6 et non $F8D6

page 36 : c'est SDF90 et non $DFAOQ (soit 53232 au lieu de 57248)

page 79 : c'est Alice 90 et non Alice 9 (OK, tout le monde avait deviné...)

page 159 : cest un connecteur 36 points (et non 34), avec 2 précisions
supplémentaires : broche 35: non utilisée, broche 36: Entrée son

page 160 : c'est le schéma d'un Alice 32, et page 162, celui d'un Alice 90
(ce n'était pas indiqué)

page 165 : le programme K7WRT se trouve en $DF90 et non DFAO

Bon, jlespére que cela ne vous avait pas trop perturbes..

Informations communiquées par un lecteur le ler mai 2011

1y en a d'autres !

-p7:M4"A"CO:1C : 2A+

- p 12 : POLCA a remplacer par OUTCA

-p 37 : K7REA, en $DFBC devient $DFAC

- p 84 . mode choisi 40 ou 80 caractéres et cette définition n'est possible qu'en mode

40 caracteres,

- p 105 : bas de la page aprés R1 en dessous c'est R3 et non R2

- p 149 : en haut de la page Basic 16 Ko de mémoire morte la place de 18 Ko,
en bas de page $3745 a remplacer 2 fois par $3345

- p 150 : en bas de page "qui se trouve en $3250 et $3251 et non en $3280 et $3281

- p 159 : manque les barres de complémentation sur W, SEL, RESET, NMI

- Schéma du Alice 90 manque des n°s de connexion EF 9345 (Z12) (cf page hardware
dans le wiki d'Alice carte mére Alice 90 rubrique sortie vidéo - schéma)

- p 165 : bas de page KSINP a remplacer par KDINP

-p 172 : bas de page Un registre d'état & 8 bits "F" et non "P" et manque pour un
compteur programme a 16 bits "PC"

1

Les bases

Introduction

Cet ouvrage est destiné a compléter la documentation succincte qui
accompagne votre micro-ordinateur ALICE 90 ou ALICE 32. Elle
suppose de la part du lecteur un niveau déja honnéte pour la pro-
grammation du BASIC, ainsi qu’une connaissance minimale du lan-
gage assembleur : son but n’est pas I'initiation, mais plutdt la fourni-
ture d’outils permettant la réalisation de programmes trés élaborés, &
la limite des programmes professionnels. Vous ne trouverez donc pas
la liste des instructions du microprocesseur MC 6803 (qui se tronve
dans la brochure fournie avec ALICE), ni d’indications sur les bases
de la programmation en assembleur (que vous pouvez trouver dans
Ies livres cités dans la bibliographie, Annexe 1).

Les particularités du VIC 6803

Certains aspects du MC 6803 sont originaux par rapport aux micro-
processeurs que vous avez pu utiliser. Ce chapitre leur est consacré.

Le microprocesseur MC 6803 représente I’évolution de la famille
Motorola MC 680¢. Bien que compatible avec le MC 680(, il pré-
sente plusieurs caractéristiques propres :

— la Iiste des instructions permet dutiliser un nouveau registre, le
registre D, constitué par la réunion des registres A et B. Ce registre
permet la réalisation d’opérations sur 16 bits, comme MUL, qui évite
de nombreuses boucles, donc une perte de temps. Les instructions
LDD, STD, ADD, SUBD, ASLD, LSLD permettent des calculs pra-
tiques sur des adresses ou de grands nombres.

— trois instructions nouvelles concernent le registre d’indexation,
PSHX et PULX, qui operent sur la pile, et ABX, qui additionne les
registres B et X.

6 Les bases

— Tinstruction CPX, trop souvent méconnue, voit sa puissance
accrue; elle permet de positionner tous les registres de condition du
6803, alors que le 6800 ne permet que les tests d’égalité.

Qutre ces instructions particulierement notables, il faut attirer Iatten-
tion sur un point que la lecture du guide ’ALICE ne permet pas de
découvrir : Paspect “hardware” du 68(3. 11 possede en effet quelques
particularités matérielles :

— une mémoire vive interne de 128 octets est accessible. Elle est
trés utilisée par le BASIC de Microsoft, et présente donc peu ¢’inté-
rét. sauf pour les programmes écrits en assembleur qui ne profitent
d’aucune des ressources du BASIC. Dans ce dernier cas, cette zone
mémoire 2 acces rapide permet de concevoir des applications plus
performantes.

— deux ports d’entrées-sorties servent a gérer le clavier CALICE. On
peut les utiliser dans un programme assembleur pour réaliser sa pro-
pre gestion du clavier, mais nous verrons qu’il y a d’autres méthodes,
plus simples, pour redéfinir le clavier.

— un port d’entrées-sorties série est utilisé principalement pour
Pimpression. Le faible nombre de signaux disponibles restreint son
domaine d’application : piloter un modem bi-directionnel simultané
dans ces conditions est pratiquement impossible, mais on donnera un
exemple Q’utilisation dans un logiciel spécialement adapté pour faire
communiguer deux ALICE

— une horloge programmable, bien que peu employée par le moni-
teur BASIC, offre des perspectives intéressantes pour la programma-
tion en assembleur. En pratique, cette horloge peut servir a déclencher
une fonction aprés un délai prédéterminé. Durant ce délai, le micro-
processeur peut exécuter un autre programme.

Le programme moniteur

Un programme en assembleur est trés rapide. bien adapté aux possi-
bilités de la machine sur laquelle il s’exécute, et il occupe (en général)
moins de place qu'un programme en langage évolué. Ce serait donc
un outil de programmation idéal, n’étaient quelques inconvénients :
— comme toutes les opérations doivent étre détaillées a l'aide des
instructions élémentaires du processeur, certaines fonctions, €lémen-
taires en BASIC, demandent des prodiges d'imagination au program-
meur en assembleur.

— la mise au point des programmes est difficile, car une éventuelle
erreur dans un programme assembleur vous oblige dans le meilleur
des cas a reprendre le controle ’ALICE en faisant RESET. En cas
de «beau plantage», il ne vous reste que la ressource d’éteindre. d’oil
Iintérét de faire de fréquentes sauvegardes.

— il est trés difficile de controler Pexécution d’un programme assem-
bleur étape par étape.

Les bases 7

L’ensemble de ces difficultés nous a amenés & écrire le programme
MONITEUR qui se trouve en annexe & la fin de cet ouvrage. Avant
de programmer les exemples fourms dans ce livre, nous vous enga-
geons a entrer le programme MONITEUR, méme si vous ne compre-
nez pas encore son fonctionnement ; il vous aidera a la mise au point
des exemples.

Le programme MONITEUR vous offre les facilités suivantes :

— examiner n’importe quel emplacement mémoire, et en modifier le
contenu, si ¢’est un emplacement de la mémoire vive;

— examiner et modifier si nécessaire les registres du 6803, y compris
le pointeur de pile S;

— lancer I'exécution d’un segment de programme, avec un point
d’arrét & une adresse pré-déterminée.

Ce programme présente 'avantage d’étre relogeable. il peut fonction-
ner a n'importe quelle adresse de la mémoire vive. En fait, il est en
général pratique de Pinstaller 4 la fin de la mémoire vive dispo-
nible, c’est-a-dire en SAD@P pour ALICE 90, $4D@ pour ALICE 32
sans extension mémoire, et $8DPP pour ALICE 32 avec Iexten-
sion mémoire.

Les commandes du moniteur

M suivi d’une adresse en hexadécimal sur quatre chiffres (sans le
signe dollar) permet de visualiser le contenu d'un emplacement. Une
fois la valeur affichée, vous pouvez :

— modifier le contenu de I'emplacement en entrant la nouvelle
valeur, en hexadécimal;

— visualiser 'emplacement mémoire suivant en appuyant sur +;
— visualiser 'emplacement mémoire précédent en appuyant sur —;
— arréter cette commande en appuyant sur une autre touche, comme
BREAK, par exemple.

Quand vous passez d’un emplacement mémoire 4 un autre sans le
modifier, et quand vous arrétez la commande, un signe % signale que
le contenu est inchangé.

Voici un exemple de 1'utilisation de la commande M :

M4CQ : 1C : 2A+ modification + visualisation de |'adresse
suivante

4ACT1: 93 : + % visualisation de l'adresse suivanie sans
modification

4AC2 : 14 : 02 — modification + visualisation de ['adresse
précédente

4ACT : 93 : — % visualisation de lI'adresse précédente sans

modification
4ACQ: 2A : <BREAK> %k fin de la commande sans modification.

8 Les bases

<ENTER> visualise le contenu de chaque registre du microproces-
seur; sur la premiére ligne se trouve le nom du registre, au-dessus de
sa valeur. Les registres A et B sont des registres sur 8 bits, qui sont
réunis cote & cote pour donner la valeur du registre D. Les regis-
tres X (index), PC (valeur courante du compteur ordinal, c’est-a-dire
I’adresse a laquelle est arrété le programme) et SP (registre S, poin-
teur de la pile) sont sur 16 bits. Le registre contenant les drapeaux
(flags), appelé ici F, est détaillé bit par bit; en fait seuls six bits sont
utilisés, les deux bits de poids fort valant généralement 1.

Exemple de leffet de la commande <ENTER> :

HINZVC A B X PC SP

P11091 1A 20 C7B3 430D 3681
A, B et F suivis de 2 chiffres modifient le contenu des registres cor-
respondants, puis visualisent 2 nouveau la totalité des registres.

X, P et S suivis de 4 chiffres agissent de méme pour les registres sur
16 bits.

A4
HINZVC A B X PC Sp
A110@1 40 2 C7B3 430D 3681
Fe2
HINZVC A B X PC Sp
10010 4 o C7B3 43D 3681
XB8CY
HINZVC

A B X PC sp
90010 40 2@ BBCY 43@D 3681

H suivi d’une adresse sur quatre chiffres permet de reprendre ’exécu-
tion du programme & partir de ’adresse contenue dans le registre PC,
Jjusqu’a P'adresse spécifiée dans Ia commande. A cette adresse le pro-
gramme rendra le contrdle au programme MONITEUR, qui affichera
alors les registres. comme avec la fonction ENTER. Ainsi

H4B65E

HINZVC A B X PC sP

111001 1A 43 C2F) 465E 3688
fait exécuter le programme entre les instructions situées entre 430D
et 465E. Attention, I'adresse d’arrivée doit étre le premier octet, lors-
que I'instruction est codée sur plusieurs.
C lance P'exécution du programme a partir de I'adresse courante, sans
mettre de point d’arrét.

Pour commencer 4 contréler votre programme TOTO, implanté a
Iadresse $5000 (20480), il faut suivre la procédure suivante :

1. réserver la place nécessaire pour le programme et le MONITEUR,
par CLEAR 100, 20480,

Les bases 9

2. charger les deux programmes dans la mémoire ’ALICE :

CLDADM « MONITEUR», 30@A7@

CLOADM «TOTO»
il faut préciser I'adresse d’implantation du MONITEUR, sinon 1l se
charge a I'adresse PP00, ce qui produit quelques dégats?);

3. entrer dans le MONITEUR :

EXEC 30200
le MONITEUR vous souhaite alors la bienvenue);

4. indiquer au moniteur 'adresse d’exécution de votre programme en
utilisant la fonction H :

H 5000

Ensuite peut commencer la chasse aux erreurs, en utilisant les fonc-
tions vues précédemment.

Régles de programmation en assembleur

Ftant donné la difficulté de comprendre un programme assembleur,
a la syntaxe tres éloignée du langage courant, méme pour un angli-
ciste, il faut se plier & certaines régles.

— Découper le programme en modules cohérents. Tester un pro-
gramme module par module est plus facile que pour un programme
d’une seule piece.

— Bien préciser, module par module, les paramétres d’enirée et de
sortie, les registres modifiés. et. bien sir. la fonction du module.

— Commenter le programme module par module plutdt qu’avec une
ligne de commentaire & chaque instruction.

— Paramétrer autant que possible le programme : écrire
ETATI = $1 en début de programme, puis
LDAA $ETAT1

6RAB tETATI dans le corps du programme, plutét que
LDAA 1$1

ORAB 1 $1.
Cela évitera de longues modifications le jour ot ETAT] ne vaudra
plus 1, mais 2...

— Commencer le programme par un en-téte, comprenant le titre du
programme, sa date de création ou de modification, un numéro de
version si nécessaire. Rappeler aussi le but du programme, 'amnésie
vient vite!

10 Les bases

Particularités de I'éditeur-assembleur
d"ALICE

La syntaxe de I'instruciion CLEAR, nécessaire a la réservation de
place pour le fichier source et le fichier objet n’est pas évidente; un
coup d’eil a ’Annexe Carte mémoire d’ALICE permet de comprendre
les effets de cette instruction.

Pour éviter des erreurs dues & 'oubli d’un signe dollar, comme 1'édi-
teur-assembleur ne reconnait que ’hexadécimal, il est conseillé de
commencer le programme par des définitions des valeurs fréquentes
comme :

0 =380

=$1
Souvenez-vous que la directive d’assemblage BLC réserve de la place
en mémoire, mais guwelle ne linitialise pas : le contenu de la zone
réservée doit étre donné par programme.

2

Les entrées-sorties
standard

(clavier, écran &
imprimante)

Ce chapitre propose un certain nombre d’astuces destinées a faciliter
TI'écriture de programmes de gestion d’écran et de clavier. Ces tech-
niques n’utilisent pas pleinement les richesses graphiques d’ALICE,
mais elles préparent 4 leur exposé systématique, auguel sont consa-
crés les chapitres 10, 11 et 12.

Ecrire un caractére sur I’écran ou sur
I'imprimante

Le livret d’accompagnement d’ALICE mentionne P'existence de quel-
ques routines de sortie, aprés I’exposé sur les instructions du 6803 :

POLCA $Fg883 scrutation du clavier
OUTCA $FIC6 émission d’un caractere
OUTTX S$ETAS8 émission d’une chaine de caracteres

GRNCH $FBD4 effacement de I’écran
Nous allons examiner plus en détail leur fonctionnement.

Les programmes d’écriture sur I’écran et sur I'imprimante sont com-
muns : la sortie se fait sur Iécran ou sur Iimprimante suivant
Fétat d’'un registre appelé DEVNU (numéro du périphérique), dont
I'adresse est $E8.

— Si le contenu de DEVNU est §, I’affichage se fait sur I'écran.

— Si le contenu de DEVNU est différent de § (le BASIC écrit $FE,
mais toute autre valeur a le méme effet), I'affichage se fait sur impri-
manie.

12 Les entrées-sorties standard

L’affichage sur I'écran peut étre effectué a I’endroit que I'on veut
en utilisant les registres CURAD et CURAD + 1 (adresse du curseur
$328@). CURAD contient le numéro de la rangée (numérotée a par-
tir de zéro, du haut de Pécran vers le bas), et CURAD + 1 contient le
numéro de la colonne (la colonne la plus & gauche est la colonne @).
Ecrire dans ces deux registres aménera donc le curseur & la posi-
tion choisie.

Muni de ces renseignements, vous avez alors deux possibilités :

— écrire un caractere, 4 Paide du programme OUTCA ($F9C6). Dans
ce cas, il faut fournir 2 POLCA le code ASCII du caractere 2 afficher,
dans le tegistre A du 6803. Par exemple, le programme qui suit affi-
che le caractére ‘E’sur la deuxiéme colonne de la cinquiéme rangée
de Pécran :

DEVNU = $E8
CURAD = $328f
DUTCA = $F3CB .
CLR DEVNU ; SDRTIE SUR ECRAN)
LDD 3:$@4@1 : RANGEES CDLDNNE 2
STD CURAD
LDAA 1$45 . CODE ASCIIl DE 'E’
JSR OUTCA
BOUCL BRA BDUCL
— écrire toute une chaine de caracteres : pour éviter d’écrire le texte
caractére par caractere, utilisez le programme OUTTX ($E7ASR). i
faut fournir 2 OUTTX dans le registre X du 6803 I'adresse — 1 du
premier caractére de la chaine 2 afficher. La fin du texte doitl étre
marquée par un octet mis a (. Par exemple, pour écrire un texte sur
Timprimante, vous pouvez utiliser le petit programme suivant :

DEVNU = SEB

ouTTX = $SE7AB

LDAA #$1 ; SORTIE BUR IMPRIMANTE
STAA DEVNU

LDX $TEXTE—$1 : ADRESSE — 1

JSR ouTTX

BDUCL BRA BOUCL
TEXTE °CECI £EST UN TEXTE
DFD $PDAD

On définit deux octets apres les caracteres de la chaine a Faide de
DFD : 0D est le code ASCII du retour chariot, qui permet en I'occur-
rence d’envoyer 4 la ligne apres I'affichage de 1a chaine, mais ce retour
chariot n’est pas obligatoire ; par contre Poctet suivant a #@ est obli-
gatoire pour signaler 2 OUTTX la fin de la chaine.

Attention : le programme OUTTX est utilisé par le BASIC d’ALICE

»

pour écrire des textes qui se trouvent entre guillemets (le signe ,

Les entrées-sorties standard 13

appelé par les anglo-saxons ‘quotes’). Or OUTTX arréte Pimpression
orsqu’il rencontre le code des guillemets dans la chaine de caracte-
res 2 afficher, ce qui a pour inconvénient de vous interdire Pusage du
caractere ” dans une chaine.

L'effacement de I"écran

Pour effacer I'écran, inutile d’écrire des espaces un par un sur tout
Técran : appelez plutét le programme GRNCH ($F8D4) qui est con-
sacré 4 cette fonction. Notez Pastuce suivante : si vous voulez écrire
sur tout Pécran un caractere graphique, mettez le code de ce caractére
dans le registre B du 6803, et appelez le programme en $F8D6. Sou-
venez-vous que les caractéres graphiques sont codés entre $8¢ et $FF,
soit 128 et 255 en décimal, comme Cest rappelé dans le manuel
d"ALICE.

Choisir la vitesse de son imprimante

La vitesse de communication avec Pimprimante est normalement de
60 bauds. Si vous avez le livret «ALLEZ PLUS LOIN AVEC
ALICEw, livré avec Pextension mémoire de 16 K-octets, vous pourrez
v trouver les valeurs a écrire en $4224 (décimal 16932) pour obtenir
des vitesses différentes. Malheureusement, ces vitesses ne sont vala-
bles que pour la premiére version d’ALICE, qui était contrélée par
une horloge dont le quartz était plus lent; d’autre part I'adresse des
variables-systeéme a changé.

Voici donc les valeurs correspondant aux nouvelles versions
’ALICE. II faut les écrire a Padresse $3223 (déc. 12835), sur deux
octets.

Vitesse Valeurs hexadécimales Valeurs décimales
$3223 et $3224 12835 et 12836
300 bauds $Q1 OF 1 15
600 bauds $OQ 81 0] 129
1200 bauds $00 41 0 65
240Q bauds $B@ 1E 0 30
4800 bauds $0Q ¢c 0 12

N.B. N’oubliez pas que le 6803 permet d’écrire sur deux octets adja-
cents grice a Pinstruction STD; Paffectation s’écrit en deux lignes
d’assembleur :

LDD 3$@10F

STD $3223

14 Les entrées-sorties standard

Ecrire un nombre

Comme vous le verrez en détail dans le programme du chapitre sui-
vant, il est assez compliqué d’écrire un nombre sur Pécran ou Pimpri-
mante en assembleur. On est loin de I'instruction BASIC :
A=128+4+6

PRINT A

En assembleur, il faut décomposer le nombre en chiffres que I'on va
afficher un par un ensuite. Cette décomposition se fait par divi-
sions successives (par les puissances de 10} si on affiche un nombre
décimal).

Il existe heureusement un programme dans la mémoire morte
d’ALICE dont la raison d’étre est I'affichage des numéros de lignes des
programmes BASIC. On peut bien entendu s’en servir aussi dans un
programme assembleur. Le nom de cette routine est LIPRT, et elle se
trouve a I'adresse $F419. 11 faut lui fournir dans le registre D (c’est-a-
dire les registres A et B concaténés) une valeur hexadécimale com-
prise entre $¢ et $FFFF. Sur Pécran s’affiche la valeur décimale cor-
respondante (entre § et 65535).

Pour ce qui est des nombres en format flottant, ¢’est-a-dire des nom-
bres comportant soit des virgules (1,258 par exemple), soit des expo-
sants (4E + 1(par exemple), cela devient trés compliqué. La meil-
leure solution est sirement de désassembler la ROM ’ALICE, pour
trouver le programme adapté; bon courage...

La gestion du clavier

Contrairement a certains autres micro-ordinateurs, ALICE ne gére pas
son clavier grace & des interruptions. Simplement, chaque fois qu’un
programme a besoin d’une entrée au clavier, dans les instructions
INPUT ou INKEY$ par exemple, le BASIC fait appel 2 un pro-
gramme qui va scruter un port du 68@3 et en déduit la ou les tou-
ches enfoncées.

Nous allons voir deux méthodes pour gérer le clavier :

— Tout d’abord nous verrons une méthode utilisant les ressources du
MONITEUR BASIC. Elle permet d’acquérir trés facilement la touche
enfoncée par Putilisateur.

— La deuxitme méthode est destinée aux jeux d’action ou il est
nécessaire de scruter trés vite le clavier. Dans ce cas, on utilisera sans
doute seulement quelques touches du clavier, mais on gérera entiére-
ment le clavier par nous-mémes.

Gérer le clavier grice au moniteur BASIC

Pour interroger le clavier, en assembleur comme en BASIC, il existe
deux possibilités : on peut attendre gu'une touche soit enfoncée, ou
simplement scruter I'état du clavier.

Les entrées-sorties standard 15

— Lattente d’une touche est gérée par le programme KDINP, dont

adresse est $F868. Ce programme se comporte un peu comme Pins-

wuction INPUT du BASIC : un curseur clignote en attente de la

frappe. Lorsqu’une touche a été enfoncée, le programme KDINP ren-
ie son code ASCII dans le registre A.

Arention : ce programme ne fait pas Pécho de la touche enfoncée sur
clavier a I'écran. 11 faut, si on le désire, utiliser un programme pour
faire — par exemple OUTCA, comme dans le programme ci-des-

souS :

JSR KDINP ;. acquisition d’'une
touche
JSR OUTCA ; €écho sur Pécran

Gérer le clavier pour les jeux d’action

— Un autre programme permet de tester fugitivement le clavier,
comme Pinstruction INKEY$ du BASIC. En assembleur, il faut uti-
hser le programme POLCA (adresse $F883). POLCA redonne immé-
diaternent le contréle au programme qui Pappelle. Si une touche est
enfoncée, son code ASCII se trouve dans le registre A, et le bit Z du
registre d’état est a). Si aucune touche n’est enfoncée, le registre A
est 2) et le bit Z du registre d’état est a 1. On peut écrire le pro-
gramine comme Suit :

JSR PDLCA

BEQ RIEN ; saut en RIEN si aucune touche

;. n’est enfoncée

traitement de la touche
Nota : il existe deux exceptions; aucun de ces programimes ne vous
fournira de code pour P'appui simultané sur les touches SHIFT et §,
ainsi que pour les touches CONTROL et §. Ces deux combinaisons
servent 4 mettre a jour des indicateurs qui influenceront ensuite les
codes ASCII qui vous seront rendus : comme en BASIC, SHIFT+§
fait passer du mode majuscules au mode minuscules et inversement,
et CONTROL+ fait changer de couleur les caractéres graphiques, et
change donc le code des touches comme SHIFT+B, SHIFT+Q, etc.

La réaffectation des touches du clavier

Il est possible de changer Iaffectation des touches du clavier, par
exemple pour avoir un clavier QWERTY 2 la place d'un clavier
AZERTY.

Aux adresses $3009 et $300A se trouve I'adresse d’un tableau qui con-
tient les adresses de quatre tables; la premiére table correspond aux
touches normales, la seconde aux touches associées 34 CONTROL, la
troisieme 2 celles associées a2 SHIFT; la quatrieme table répete les
touches associées 8 CONTROL.

16 Les enirées-sorties standard

Dans le cas usuel, on trouve les valeurs suivantes :

contenu de

TABAD
TABNOR
TABCON
TABSHF
TABCON

($3009 — 300A) — $D421

($D421 — D422) — $F986
($D423 — D424) = $D838
($D425 — D426) = $DSPP
($D427 — D428) = $D838

Le tableau qui suit donne la correspondance entre les touches du cla-
vier et les codes trouvés dans les tables.

Touches TABNOR

$0

$40
$51
$42
$43
$44
$45
$46

$47
$48

| | |§-<><N < C-HWWIDIPTVO Z~-FXR-"TIn0 'ﬂmUOmO@I
@
kY
ful

TABSHF TABCON

$0 $0
$13 $88
$8F $08
$80 $B3
$82 $B2
$87 $82
$8D $9B
$86 $90
$85 $84
$48 $A3
$49 $8A
$4A $81
$4B $OE
$4C $BC
$3F $BA
$4E $B9
$4F $AB
$50 $C7
$89 $15
$8C $9C
$88 $09
$8B $8C
$8F $80
$81 $B5
$84 $5E
$83 $B1
$8A $8F
$8E $OA
$0 $0
$0 $0
0 $0
$¢0D $0D
$06 $07

Début de table +

Les entrées-sorties standard 17

Touches TABNOR TABSHF TABCON Début de table +

$31 $21 $8E $22

2 $32 $22 $93 $23
3 $33 $23 $98 $24
4 $34 $24 $97 $25
5 $35 $25 $96 $26
6 $36 $26 $94 $27
7 $37 $27 $95 $28
8 $38 $28 $9D $29
9 $39 $29 $86 $2A
$3A $2A $89 $2B

M $4D $4D $92 $2C
$2C $3C $BB $2D

— $2D $3D $91 $2E
$2E $3E $B7 $2F

: $3B $2B $B6 $30
— $0 $0 $0 $31
— $0 $0 $0 $32
BREAK $03 $03 $03 $33
fleche «— $08 $08 $08 $34
fleche — $0A $OA $QA $35
fleche | $09 $09 $09 $36
fleche 1 $OB $0B $0B $37

Ces tables se trouvent dans la mémoire morte d’ALICE. Par consé-
quent, pour modifier Paffectation des touches, il vous faut les redéfi-
nir entierement dans une table implantée en mémoire vive, et don-
ner Padresse de cette table en $3009-$300A.

Gestion du clavier par le port d’entrée
d’ALICE

Si la méthode que nous venons de voir pour gérer le clavier est trop
lente pour un jeu d’action, et si quelques touches suffisent (les fleches
par exemple), il est avantageux d’utiliser directement le port d’entrées-
sorties ’ALICE. Voici ce quil faut en connaitre : la gestion du cla-
vier utilise les deux ports du 6803, ainsi quune adresse réservée aux
entrées-sorties ($BFFF). Les deux ports d’entrées-sorties du 6803 sont
programmeés en sortie pour le port 1 et en entrée pour le port 2 a Pini-
tialisation. Le clavier se lit par colonne : il y a huit colonnes. Pour lire
Ie contenu d’une colonne, il faut écrire dans le port 1, dont 'adresse
est $02, un mot dont on met un bit & @ : le bit § correspond 2 la
colonne @, le bit 1 2 la colonne 1 et ainsi de suite.

Le contenu de la colonne se trouve alors dans $BFFF. Un bit a ¢
indigue que la touche correspondante est enfoncée. Voici la table de
correspondance entre les bits et les touches :

18 Les enirées-sorties standara

Colonne Code de
I'octet
0 1 2 314|656 6 7
bit @ @ Q B C|D|E F G FE
bit 1 H 1 J K|L]|/? N o FD
bit 2 P A R S|TluU v z FB
bit 3 — Y w — |—| — | ENTER |espace F7
bit 4 1] 1 2 3|45 6 7 EF
bitb 8 9 : M|, <|—= > +; DF
bit6 | CONTROL | X | BREAK |« |—| | T SHIFT BF
bit 7 — — = == =] = —

Le port 2 (port d’entrée) est utilis€ pour les touches CONTROL et
SHIFT. Pour la touche SHIFT, il faut avoir dans le port 1 ($02) la
valeur $7F, puis lire le port 2 (adresse $03). Le bit 1 du port 2 est 2
si 1a touche SHIFT est enfoncée.

Pour la touche CONTROL, il faut écrire dans le port 1 la valeur $FE,
puis lire le port 2. Le bit | du port 2 est a @ si la touche CONTROL
est enfoncée.

Ces renseignements peuvent étre intéressants pour des jeux rapides :
quelques instructions du type STAA $02 et LDAA $03 suffisent pour
lire P’état de ces touches. Mais cette rapidité n’est pas possible si vous
voulez scruter tout le clavier.

Attention : si vous gérez vous-méme le clavier, il est prudent de relire
pour savoir si la touche est toujours enfoncée quelques millisecondes
aprés une premiere lecture, cect pour éviter les rebonds aprés I'appui
sur une touche. On peut utiliser une boucle contrélée par le registre X
a cet effet, en décrémentant X de $ 1000 a @ par exemple. avant de
recommencer la lecture.

3

Premier programme :
la fonction RENUM

Nous vous proposons, dans ce chapitre, un programme qui complete
le BASIC ¢’ALICE. En effet, le BASIC d’ALICE ne permet pas de
renuméroter les lignes d’un programme en mémoire. Lors de la mise
au point d’un programme, il vous est siirement arrivé de vous trou-
ver a court de numéros de lignes ; faute d’une fonction de renumérota-
tion, vous étes dans I'obligation de retaper une partie du programme
pour intercaler les lignes supplémentaires.

Gréce 2 Passembleur contenu dans ALICE, nous allons donc écrire
cette fonction qui lui faisait défaut jusqu'ici. Ce programme ne se
contente pas de renuméroter les lignes. Il recalcule aussi les paramé-
tres suivant les instructions GOTO, GOSUB, ON...GOTO, ON...GO-
SUB et THEN, comme il se doit pour que la renumérotation soit
effective, mais il vérifie aussi les branchements du programme
BASIC - si un GOTO n’est pas suivi d’un numéro de ligne corres-
pondant 2 une ligne existante, Perreur sera signalée, et la ligne erro-
née sera dénoncée.

Attention : ce programme est assez long (environ 62f) lignes de pro-
gramme source) et il nécessite Putilisation de Iextension mémoire de
16 K-octets pour un ALICE 32. Mais il est possible de le réduire en
supprimant les commentaires. Le programme objet (environ
1200 octets plus un tableau qui exige guatr - octets pour chague ligne
de BASIC) laisse de la place, méme pour un ALICE 32 sans exten-
sion mémoire.

20 La fonction RENUM

Structure d'un programme BASIC en
meémoire
Avant d’entamer I'explication du programme proprement dit, il est

bon de voir comment est rangé un programme BASIC dans la
mémoire ’ALICE.

— L’adresse du début du programme BASIC se trouve dans le mot
TXTAB, a I'adresse $93-$94. Cette adresse est fixée par le moniteur
BASIC, et elle est toujours égale 2 $3346 (= 13126).

— L’adresse de la fin du programme BASIC est en fait Padresse de
la premiére variable utilisée par le programme BASIC. Elle se trouve
dans le mot VARTA, a Padresse $95-$96.

— Chaque ligne de programme se compose des éléments suivants :
— deux octets qui donnent Padresse de la ligne BASIC suivante.
Ces deux octets valent § pour la derniére ligne,

— deux octets qui forment le numéro de ligne en hexadécimal.
Par exemple, la ligne 158 sera codée $00 et $9E.

— la ligne de programme proprement dite. Les mots clés du
BASIC sont codés sur un octet, tout le reste étant représenté par
la traduction en ASCIIL. Par exemple, GOTO 1000 devient

$81 $20 $31, $30, $30, $30

code de espace 100 en ASCII

GOTO

— la fin de la ligne est marquée par un octet & $O@.

— La fin du programme est marquée par deux octets a $00.

L’exemple ci-dessus (Pinstruction GOTO 1$@f) met en évidence Pune
des difficultés que doit régler le programme : les numéros de lignes
sont codés différemment en début de ligne et dans les instructions du
type GOTO. 11 faut convertir les nombres d’un code 4 Pautre.

Exemple pratique avec le programme
MONITEUR

Nous allons examiner le contenu de la mémoire avec le programme
MONITEUR. Vous Pavez entré grice a Péditeur, puis assemblé et
sauvegardé sous forme d’un fichier objet sur une cassette. Pour Putj-
liser, entrez les instructions suivantes (réservation de la place pour le
programme) :

CLEAR 10, 4 % 1613 + 13% 161 2

CLOADM “MONITEUR", 4 % 1613+ 13% 1612
Mettez en route le magnétophone; lorsque le fichier est chargé, arré-
tez le magnétophone.

La fonction RENUM 21

Pour cet exemple, nous allons examiner le programme suivant :

1BA=1
20} PRINT A
3@ A=A+1:060T020

Tapez donc ce programime, puis lancez 'exécution du MONITEUR
en tapant :

EXEC4 % 1673+ 13% 1612

Apres les présentations d’usage, le MONITEUR est prét a prendre en
compte vos commandes. Pour Pinstant, nous n’en utiliserons qu’une,
la visualisation de mémoire, c’est-a-dire la commande M.
Examinons le contenu de TXTAB :

M@P@93 : 33 :

Cela confirme ce que nous avons vu plus haut; pour examiner le con-
tenu de $0094, il suffit de faire +. Comme le contenu de $@093 n’a
pas été modifié, un astérisque s’affiche.

M@PO3 : 33 : + %k
0094 : 46 : + %
@Q95 : 33 : + %
0096 : 68 : x

Un appui sur BREAK a demandé I'arrét de la commande M.
Le programme BASIC réside donc entre I'adresse $3346 et I'adresse
$3367. Examinons le :

M3346 : 33 : + % poids fort de I'adresse de la ligne suivante
3347 1 4E : + % poids faible de I'adresse de la ligne suivante
3348 : 00 : + % 10 poids fort du numéro de la ligne
3349 : 0A . + % poids faible du numéro de la ligne

334A :4l: + % A ctode ASCIl de ‘A’

334B: AF: + = code de la fonction =
334C:31:+1 code ASCIl de “1"

334D : 00 : + fin de la ligne BASIC

334E:33: + % adresse de la ligne suivante

334F : 56 : + %

3350 : 00 : + % 20 numeéro de la ligne sur deux octets
3351: 14 : + % *

3352: 86 : + % PRINT code de la fonction PRINT

3353: 20 : + % espace

3354:41: + %A code ASCIl de "A’

3355 : 0 : + % fin de la ligne

3356 :33: + %

3357 : 66 : + 3k

3358 : 00 : + * 3¢ numéro de la ligne sur deux octets
3359: 1E : + %

335A:41:+%A code ASCIl de ‘A’

335B: AF: + %= code de la fonction =

22 La fonction RENUM

335C:41:+ kA code ASCH de A’
336D : A7: + %k + code de la fonction +
336E:31:+ %1 code ASCIl de ‘1’
3356F : 20 : +. % espace

3360 : 3A: + % code ASCll de " "
3361 :81: + %k GOTO code de la fonction GOTO
3362 :20: + % espace
3363:32:+%2 code ASCII de ‘2’
3364 :30: +% @ code ASCII de ‘¢’
3365 : 0@ : + % fin de la ligne

ggg? gg 1 i fin du programme

Apres avoir interrompu la visualisation du programme par BREAK,
vous pouvez le modifier; par exemple, si vous faites
M3349 : PA : 11 (BREAK)

la premiére ligne devient la ligne 17 (= $11). Faites RESET puis LIST
pour le vérifier.

Organigramme du programme RENUM

Nous allons découper le programme en modules assez importants que
nous détaillerons ensuite :

Initialisations

!

Caicul des nouveaux
numéros de lignes

:

Modification du
programme BASIC

initialisations :

Partie 2 du programme

Partie 3 du programme

Partie 4/5 du programme

Partie 6/7

Partie 8

La fonction RENUM 23

Effacement de
I'écran

'

Initialisation
des pointeurs

!

Remplissage du
tableau TABLI
avec les n®

de ligne

'

Affichage de la
taille du pro-
gramme

= Fichier vide

¥

Acquiisition du
numéro de la

1 ligne et de I'in-
crément

EXIT

'

Erreur : ligne

Vérification des
valeurs

plus grande que
64000

'

suite

Le tableau TABLI comprend quatre octets par ligne BASIC. Les
deux premiers octets (que nous remplissons ici), contiennent I’ancien
numéro de la ligne. Les deux suivants contiendront le nouveau
numeéro de la ligne.

Calcul des nouveaux numéros de lignes :

Cest la partie 9 du programme. La deuxiéme partie du tableau
TABLI est remplie graice 3 PRLIG (numéro de la nouvelle premiére
ligne) et 2 INCRM (valeur de I'incrément). Le nombre de lignes du
programme BASIC se trouve dans NBLIG.

24 La fonction RENUM

Modification du programme BASIC :

Partie 10 Modification des
numéros de lignes

t

Partie 11 Modification des
GOTO, GOSUB, THEN

!

La partie de modification des numéros de lignes est simple, il suffit
de prendre la deuxiéme partie du tableau pour la mettre dans
le programme.

Par contre, la seconde partie est plus compliquée :

— il faut d’abord retrouver les GOTO, GOSUB et THEN dans les
lignes BASIC; c’est le role dévolu au programme ANLIG en 12.6;

— puis il faut retrouver le numéro de la ligne qui suit le GOTO (ou
le GOSUB ou le THEN). C’est le role de TRTGO en 12.8;

— ensuite, il faut vérifier que cette ligne existait bien dans le pro-
gramme BASIC avec les anciens numéros de lignes. Sinon, on affiche
un texte d’erreur (programme SNBLI en 12.11);

— puis I'on remplace 'ancien numéro de ligne par le nouveau. Ce
n'est pas toujours simple : si Pon remplace un GOTO 10 par un
GOTO 106. il faut agrandir le fichier et en décaler la fin. L'inverse
est aussi possible. C’est le programme ASREP en 2.9 qui fait cela,
avec I'aide du programme DECAL en 12.12.

Listing commenté du programme :

Ce programme, tel que vous le trouvez ici, est écrit pour un ALICE 32
avec P’extension mémoire de 16 K-octets. Pour I'adapter aux autres
versions, il suffit de changer la valeur suivant la directive ORG :

— pour ALICE 32, mettre ORG $440¢)
— pour ALICE 90, mettre ORG $AQ80

Ces valeurs sont aussi fonction de la taille du programme BASIC (le
tableau TABLI se trouve a la fin du programme. Si il n’a pas assez
de place, il risque de déborder en dehors de 1a mémoire ’ALICE et
de détruire le programme BASIC.

La fonction RENUM 25

Programme RENUM
Ce programve permet de renumercter
autamatiquevent les ligrnes du pro—
gramme BASIC qui se trouve en me —
soire. I1 modifie les instructions
8070 et GOSUE .

WONOU S WR -

Auteur @ J-F Gallet '
Date : 23 Novembre 1934 i

10 3

ORG $€000
EXC RENUM

CONSTANTES UTILISEES i

= $0

= %1

= $2

= $4

= $35
25 TXTAB = 4393 ;DEBUT DU PROGRAMME BAGIC
26 VARTA = $95 sFIN OU PROGRAMME ERSIC
27 OUTTX = $E7AR8 ;AFFICHAGE D*UN TEXTE
za KDINP = $FBEe 3ACOUISITION D”UN CARACTERE
29 DUTCA = $F9CE ;AFFICHAGE D*UN CARACTERE
30 GRNCH = $FED4 sEFFACEMENT DE L’ ECRAN

Initialisation des variables &

JSR SRNCH ;EFFRACEMENT DE L°ECRAN
LDX #TITRE-1
JSR OUTTX 3AFFEICHAGE DU TITRE

#0

LDX
8TX NELIG sINIT DU NOMEBRE DE LIGNES A O
LDX #TABLI
8TX ATDLI
&TX ATCLI ;INIT DES POINTEURS
LDX TXTRE
8TX ADFIC ;ADRESSE DANS LE FICHIER
46 33. Remplissage de la lere partie du tableau @

{anciens numeros de lignes)

LDD ©0,X
50 BEQ FICVI sFIN DU FICHIER (PODINTEUR = 0)
51 LoD z,X
52 LDX ATCLI
53 sTD 0,X sSTOCKAGE DU NUMERO DE LIGNE COURANT
sS4 LDAB #4
55 ABX
56 8TX ATCLI sARTICLE SUIVANT ~) TABLEAU DE LIGNES
57 LDX NBLIG
sa INX
59 STX NELIG :NOMERE DE LIGNES + 1
60 LDX ADFIC
61 LDX ©,X sLIGNE DE PROGRAMME SUIVANTE
62 STX ADFIC

63 EBRA REM1P

26 La fonction RENUM

HH

FICOK

;6.

H
B1LIG

7.

H
BINCR

39

REMZR

REM21

Le fichier BASIC est-il vide ?

LDX
8TX

ATCLY

ATFLI

NELIG

FICOK sIL Y A UN FICHIER BASIC EN MEMOIRE
#TEFVD-1

ouTTX sAFFICHAGE DU TEXTE D’ ERREUR

Affichage du nombre de lignes du fichier BRSIC =

LDX
JSR
LDX
JER
LDX
JSR

Acquisition du numere de la lere ligne &

LDX

#TNBL1-1

OuTTX sAFFICHAGE DE LA 1ERE PARTIE DU TEXTE
NELIG

RAFFNE $sAFFICHAGE DU NOMERE DE LIBNES
#TNBL.2-1

OUTTX <AFFICHABE DE LA FIN DU TEXTE

#T1LIG~1

ACREP sACQUIGITION D”UNE REPONSE NUMERIGUE
PRLIG

#0

QILIEG :LIGNE O INTERDITE

#EFAOO

Q1LIG sLIBNE SUPERIEURE A 64000 INTERDITE

Acquisition de la valeur du pas d* incrementation =

LDX
JSR
87X
CcPX
BHS

#TINCR-1

ACRER sACRUISITION D*UNE REPONSE NUMERIGUE
INCRM

#$100

QINCR sLIMITEE A 255

verification des numeros de lignes =

LDX
LDD

PRLIS
NELIG ;BOUCLE SUR TDUTES LES LIGNEG

#$1
REMZP

INCRM+1
#$FACO

QI1LIG 3RUCUNE LIGNE SUPERIEURE A 64000
VRNLY

Remplissage de la Zeme partie du tableau

{nouveaux rumeros de ligres)

ATDLI

ATCLI 3POINTEUR COURANT AU DEBUT DU TRBLEAU
NBLIS ;NOMBRE DE LIGNES

PRLIG sNUMERT DE LA 1ERE LIGNE

La fonction RENUM 27

129 PSHX
130 LDX ATCLI
131 STD 2, X sNDUVERU NUMERD DE LIENE
132 ADDD INCRM
133 INX
134 INX
135 INX
136 INX s+4 = LONGUEUR D*UN ARTICLE DU TRBLEAU|
137 STX ATCLI sNOUVEAU POINTEUR COURANT
138 PULX
139 DEX
140 BNE REMZ1 ;BOUCLE SI PARS LA DERNIERE LIGNE
141
142 310. Change les numereos de lignes dans le programme BASIC 1
143 53—
144 LDX TXTAB
145 STX ADFIC sADRESGE DU DEBUT DU PRUGRAMME EAGIC
146 LDX ATDLI
147 BTX ATCLI ;POINTEUR DANS LE TABLEAU DES LIGNES
148 CHLIB
LDX ATCLI
LD 2,X
INX
INX
INX
INX
8TX ATCLI ;NOUVEAU POINTYEUR —) TRABLEAU DE LIGNES
LDX RDFIC
LDX ©O,X
BEG RGOTO sFIN DU FICHIER BASIC
LDX ADFIC
STD 2, X sNOUVEAU NLUIMERD DE LIGNE —) FICHIER
LDX 0,X
87X ADFIC sNOUVEAU POINTEUR —) FICHIER BASIC

BRA CHLIS

f la recherche des GOTO et BOSUB :

167 RGBOTO

168 LDX TXTAE

16% RGO10

170 LBD ©,X

171 BER RNFIN sFIN DU PROGRAMME BASIC

172 JSR ANLIG ;ANALYSE DE LA LIGNE BASIC COURANTE
173 LDX 0, X sLIGNE SUIVANTE

174 ERA RGO10

175 RNFIN

17e LDX HTXFIN-1 .

177 JGR ouTTX ;ECRITURE DU YEXTE DE FIN

178 RTS

179

180 ;12. Sous—programmes ?

161 3—-

182

183 ;12.1 Affichage d’un nombre 2

184 ;ENTREE = X = NOMERE A AFFICHER SUR L*ECRAN

185 ;GORTIE * NEANT

186 AFFNE

187 STX NBASC

188 ESR CENRS ;CONVERSION ASCII

189 LDX #ASBUF

190 LDAE #5 ;NOMBRE DE CHIFFREE DANS LE NOMBRE
191 AFF10 sELIMINE LES ZERDS NON SIGNIFICATIFS
192 LDRR O, X

193 CHMPA #$30 30 ASCIT

28 La fonction RENUM

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208

258

AFF20

INX

INCE
CHMPB

ENE
RTS

112.3
;ENTREE

{SORTIE

DVDIX
L

DVD1O

VD20

JSR

AFFZ0 ;CHIFFRE SIGNIFICATIF

AFF10

0,X%

ouTcA sAFFICHE LES CHIFFRES 1 PAR 1
AFF20

Conversion hexadecimal -) ASCIT &
NBASC = NDMBRE A CONVERTIR
NOMBRE EN ASCII SUR 5 CHIFFRES DANS ASBUF

:INIT DU NOMERE DE CHIFFRES
#ASBUF ;INIT ADRESSE DANS LE BUFFER
DVDIX ;DIVISIDN PAR 10 PUISSANCE (5-E)
#$30 ;POUR CONVERSION ASCIE
0,X :STOCKASE DANS LE BUFFER ASBUF
:NOUVERU POINTEUR DANS ASBUF
#3
CEN10O

Division par les puissances de 10 &
NOMERE A DIVISER DANS NBRASC
E = 5 — PUISSANCE DE 10

S1 B=0 ON DIVISE PAR 10 PUISSANCE 5 ...
RESTE DANS NBASC
A = QUOTIENT

H#TAB1O ;TABLE DES PUISSANCES DE 10
0, X s*VALEUR DE 10 PUISSANCE 5-B
PUILO

RESUL sINITIALISATION DU QUOTIENT
NERSC ;NOMERE A DIVISER

PUI1O

ovD20 sDIVISION TERMINEE

RESUL ; INCREMENTATION DU GUOTIENT
NERSC

VD10

RESUL ;PARAMETRE DE SORTIE DANS A

Acquisition d’une reponse numerique 2
= PDRESSE DU TEXTE DE LA QUESTION
= NOMEBRE ENTRE PAR L’OPERATEUR

X

X
$BAUVEGARDE EN CAS D” ERREUR
sRECUPERATION DE LA QUEGTION

oUTTX sAFFICHAGE DE LA QUESTION

ACR20

PCRSO

ADDD

RTS

w
o
3
=)
-
m

ANLOO

ANL1O

ANL20

ANL30

ANFIN

cmpA
BNE
ESR

INX
ERA

X

#O
NERSC
KDINP
ouTcA
#%0D
RACR30
#$30
ACR10
#$A
ACR10

MLDIX
NERASC

NEASC
ACRZ0

NEBASC

La fonction RENUM 29

sINIT DE LA VALEUR

;ACRUISITION D*UN DIGIT

3EXIT SI ENTER

;CARACTERE ENTRE O ET 9

:ERREUR : ON REPDSE LA BUESTION
sERREUR : ON REPUOGE LA QUESTION
sMULTIPLIE PAR 10 LA VALEUR COURANTE

PLUS LE DERNIER CHIFFRE ENTRE
= NOUVEAU RESULTAT

y
sA CAUSE DU PSHX D® ENTREE
;PARAMETRE DE SORTIE

Multiplication par 10 du contenu de NBASC =
NOMERE A MULTIPLIER DANS NBRSC
RESULTAT DANS NBASC

NEASC
#3509

NBASC

Mo
NERSC

;DN BOUCLE 10 FOIS

$NOUVERU RESULTAT

Analyse d’une lig
X = ADRESSE DU DEBUT DE LA LIGNE BASIC

= IDEM

ADFIC
#4

;1ER OCYET DE LA LIGNE

sFIN DE LA LIGNE
s REM

H
16070

:GOSUB

sTHEN

sTRAITEMENT DE GOTO ET DE GOSUB
3SUITE DE LA LIGNE

;QUOTES

sFIN DE LA LIGNE COURANTE

30 La fonction RENUM

324
325
326
327

8

sCALCUL DU DEBUT LIGNE SUIVANTE

$0 INDIGUE LA FIN DE LA LIENE BASIC

sRDRESSE DE LA PROCHAINE LIGNE BRSIC

pas de traitement :

sENTREE 2 X = ADRESSE DU DEBUT DE LA CHAINE DE CARACTERES
X = RDRESSE DE LA FIN DE LA CHRINE DE CRARACTERES

sFIN DE LIGNE
sFIN DU TEXTE

Trajtement de GOTO et GOSUB @
X = ADRESSE DANS LE FICHIER BAGIC

(DEEUT DE L” INSTRUCTION}

X = ADRESSE DANS LE FICHIER BASIC

(APRES L* INSTRUCTION)

sFIN DE LA LIGNE
sELIMINE LES ESPACES

3+ LES VIRGBULES
sLE PROGRAMME S*ARRETE SUR 2 POINTS
3 ENTRE O ET 9

s PROCHAIN CARACTERE
SEXIT

sREMPLACEMENT D UNE CHRINE ASCII

Remplacement d’une chaine ASCII 2

X = POINTEUR SUR LA CHRINE A REMPLACER
X = POINTEUR APRES LA NOUVELLE CHRINE

LDX ADFIC
LDAE #4
ABX
ANF10
LDRR 0O, X
EEQ ANF20
INY
BRA ANF10
ANF20
INX
&TX RESUL
LDD RESUL
LDX ADFIC
STD ©O,X
RTS
;1.7 Texte
;SORTIE =
TRTTX
INX
LDAA O, X
BEQ TTX10
CMPA #8222
BNE TRTTX
BRA TTX20
TTX10
DEX
TTX20
RTS
:12.8
$ENTREE &
$SORTIE 3
TRTEO0
INX
LDAR O,X
BEG TGO10
CMPA #$20
BEQ TRYGO
CMPA #$2C
EEQ TRIGO
CHPA #$3A
EHS TGO10
CHPA #$30
BHS TGOZ0
TGO010
DEX
RTS
TGDZO
BSR AGRER
BRA TRYGO
$12.9
<ENTREE =
;SORTIE =
RASREP
8TX ADSTR
BSR CASBN
BSR SNBLI
LDX NERASC
BER@ ASRFI
JGR CENRS

sADRESSE DE LA CHAINE
:CONVERGION ASCII -} BINAIRE
3CALCUL DU NOUVEAU NO DE LIGNE

$sERREUR © NUMERD DE LIGNE INEXIGTANT
2 CONVERSION EN ASCII

ASR20

ASR30

LDAR
STAR
LDX

LDAA

CMPA
BNE

BRA

512,10
SENTREE 2
$SORTIE 2

CASEN

CAS10

CASFI

La fonction RENUM

;CALCUL DE iR LONGUEUR DE LR CHAINE @

#5
NBECR2
#ASBUF
0, X
#$30 1ELIMINE LES ZEROS
ASR20
NBCR2
ASR10
DECAL sDECALE LA FIN DU FICHIER
sINSERE LE NOUVEAU NUMERC DE LIGNE =
#ASBUF
#5
NBCR2
3ADRESSE DU 1ER CARACTERE
NBCR2
0,X
ADSTR
0,X
ADSTR
ASR30
RADSTR sPOINTEUR SUR LE CARACTERE SUIVANT
Conversion ASCII -} hexadecimal =
ADSTR 3 ADRESSE DU DEBUT DE LA CHAINE ASCII
NBBIN : VALEUR EN HEXADECIMAL SUR 2z OCTETS
NBCR1 3 LONBUEUR DE LA CHRINE ASCII A TRADUIRE
NBCR1 sNDMERE DE CARACTERES
#0
NBRSC sINIT DE 1A VALEUR HEXR
ADSTR 3ADRESSE DE LA CHAINE
0,X
#$30
CASFI sCE N'EST PAS UN CHIFFRE = EXIT
#$0A
CASFI sCE N*EST PAS UN CHIFFRE @ EXIT
NBCR3
MLDIX sMULTIPLICATION PAR 10
NERSC
NBASC $NOUVELLE VALEUR HEXR
CAS10
NBASC

31

32 La fonction RENUM

454 8TX NSEIN ;ZONE DE STOCKARGE

455 RTS

456

457 31z2.11 Calcul du nouveau rumero de ligne 2

458 ;ENTREE : NBRIN @ ANCIEN NUMERD DE LIENE

459 ;SORTIE @ NBASC ¢ NOUVEAU NUMERO DE LIGNE

460 3 SI NBRSC = O z LA LIGBNE N*EXISTE PAS

461 SNBLI

4B2 LDX ATDLI

463 SNB1O

464 PSHX

465 LDX 0,X

466 Crx NBBIN sNUMERDO RECHERCHE

467 BEQ SNBZ2O 3 ET TROUVE

468 PULX

469 LDAB #4

470 ABX

471 CPX ATFLI sFIN DE LR TABLE ?

472 EBHS SNB30 ; ET OUI ...

473 BRA ENB10O

474 SNB20

&75 PULX

476 LDX 2,X sNOUVEAU NUMERD DE LIBNE

a77 5TX NBASC

478 RTS

479 SNE30 sLIGNE INEXISTANTE

480 LDX #TENL1-1

481 JSR ouTTX :AFFICHE LE DEBUT DU TEXTE D*ERREUR
482 LDX ADFIC

483 LDX 2,X

484 JSR AFFNE sAFFICHAGE NO DE LA LIGNE ERRONEE
485 LDX #TENLZ2-1

486 JSR OuTTX sAFFICHE LA 2EME PARTIE DU TEXTE
487 LDX NEBIN ;LE COUPABLE

488 JSR AFFNB $SUR L"ECRAN

4839 LDX #TENL3~1

450 JSR ouTTX :AFFICHAGE DE LA FIN DU TEXTE D*ERREUR|
491 LDX #0 ;FLAG D* ERREUR

492 5TX NBRSC

493 LDX ADETR

454 LDAE NBCR1 ;CALCUL DU NOUWERU POINTEUR
495 ABX

4596 8TX RADSTR

497 RTS

458

4995 ;12.12 Decalage de la fin du fichier =

500 $ENTREE : NECR1 : LONGUEUR DE L'ANCIEN NUMERO DE LIGNE
501 3 NECRZ ® LONGUEUR DU NOUVERU NUMERO DE LIGNE
502 3SORTIE = VARTA @ NOUVELLE ADRESSE DE LA FIN DU FICHIER BASIC|
503 DECAL

S04 LDAR NBCRZ

505 SUBS NECR1 ;B = NOMBRE D*OCTETS R DECALER
506 EBEQ DECFI ;PAS DE DECALAGE

507 BHS DEC30 sRERANDISSEMENT DU FICHIER

508

509 :DECALAGE : FICHIER PLUS PETIT =

510 NEGE

511 LDX ADSTR

Stz DEC10

513 PSHX

S14 ABX

515 CPX VARTA

Sie BHS DEC20 3 TERMINE

517 LDAR O, X

518 PULX

DEC20

DEC30

DEC40O

DECS0

DECFI

313,

NELIG
ATDLI
ATCLI
ATFLI
ADFIC
ASBUF
NBASC
NBEIN
PRLIG
INCRM
PUILO
RESUL
ADSTR
NBCR1
NECRZ

STAAR
INX
BRA
PULX

BRA

LDX

cex
BLS

0, X

DEC10

VARTA
DECFI

sDECALAGE % FICHIER PLUS SRAND =

VARTA

ADSTR
DECS0

LDAR O,X

PSHX
ABX
STAR
PULX
DEX
BRA

LDX

ABX
8TX

RTS

Dovnees du preogramme =

BLC
BLC
BLC
BLC
BLC
BLC
BLC
BLC
BLC
BLC
BLC
BLC
BLC
BLC
BLC

; TRBLEAU

TRB10

DFD
DFD
DFD
DFD
DFD

sTEXTEG #

TITRE

* RRRR EEEEEN NU UM M

DFD
TR
DFD

0, X

DEC40
VARTA
VARTA

SEXIT

NRNRNNMNRNRNRUANRNRNRNRN

DES PUISSANCES DE 10 =

$2710
$03E8
64

L G

1

0D
RE

0D
* RRRR EEE

La fonction RENUM 33

;FIN DU FICHIER BASIC

s TERMINE

;FIN DU FICHIER

sLIGNE COURANTE

3ADRESSE DE DEBUT DU TABLEAU DE LIGNE

sADRESSE COURANTE DANS LE TABLEAU DE LIGNE

3ADRESSE DE FIN DU TABLEAU DE 'LIGNE

sADRESBE DANS LE FICHIER BASIC

sBUFFER POUR UN NOMBRE ASCII

;NDMSRE R CONVERTIR EN ASCII

;NDMBRE CDNVERTI DE L’ASCII

sNUMERD DE LA NOUVELLE 1ERE LIGNE

; INCREMENT

sPUISSANCE DE 10 COURANTE

;VARIABLE INTERMEDIARIRE

;ADRESSE DE LA CHRINE DE CARACTERES

;LONGUEUR DE L ANCIEN NUMERD DE LIGNE
" NDUVERL -

:10000
11000
3100
110

31

NN NU UMMIM

NNNU UM M

34 La fonction RENUM

584 DFED $OD

S85 "R R E N NNU UM M
586 DFD $OD

587 R REEEEEN N UW M M
588 DFD $0DOD

589 DFO ©

590

591 TEFVD *PAS DE FICHIER BASIC EN MEMOIRE !!!
582 DFD $0DOO

593

594 TNBL1 *IL Y A 2

593 D $0D00

$96 TNBLZ * LIGNES DANS VOTRE PROGRAMME BRSIC .
597 DFD $0D00

596

599 TILIG DFO $0D

600 *NUMERO DE LR PREMIERE LIGNE ?
601 DFD %2000

602 TINCR DFO $0D

603 VALEUR DE L* INCREMENT ?

604 DFD $2000

605

606 TENL1 *ERREUR DANS LA LIGNE

607 DFD %2000

608 TENLZ * =

609 DFO sOD

610 LA LIBNE

611 D $2000

612 TENL3 * NYEXISTRIT PRS !!!

613 DFD $0D0O

614

615 TXFIN DFD $0D

616 * RENUMEROTATION TERMINEE ...

617 DFD $0DOO

618

€19 3;TABLEAU DES NUMEROS DE LIBNES :

€20 TRBLI ;TOUTE LA FIN DE LA MEMOIRE
621

622 ;14 Fin
€23 s~

4

Les entrées-sorties
cassettes

Le BASIC &’ALICE vous permet de sauvegarder des programmes
BASIC par la commande CSAVE, et des tableaux numériques par la
commande CSAVE*. L’éditeur-assembleur vous permet de sauver des
fichiers de texte ainsi que des fichiers en langage machine, qui sont
ensuite chargés grace a la commande CLOADM du BASIC. Ce cha-
pitre va donner des outils pour sauvegarder vous-méme une zone
mémoire, puis la relire. Vous pourrez méme créer votre propre type
de fichier pour des applications spécifiques (traitement de texic ou
tableur, si vous en avez le courage).

Sauvegarde d’une zone mémoire

11 est trés facile de sauvegarder une zone mémoire avec les nouvel-
les versions ’ALICE (ALICE 32 ou ALICE 9§). En effet, ces versions
ont été enrichies de programmes qui permetient de sauvegarder trés
facilement des zones mémoires sur cassettes.

Attention : le programme CSAVEM qui est mentionné dans le guide
«ALLER PLUS LOIN AVEC ALICE» ne fonctionne pas avec les
nouvelles versions.

Le programme de sauvegarde peut &tre appelé aussi bien d’'un pro-
gramme BASIC que d’un programme assembleur. Mais il faut tout
dabord fournir au programme un certain nombre de valeurs, qui se
répartissent en deux catégories :

— les parametres nécessaires & I'enregistrement, par exemple nom,
adresses de début et de fin...

— les paramétres utilisés lors de la lecture et de Iutilisation : adresse
de chargement, et éventuellement dexécution.

36 Les entrées-sorties cassettes

Voici le détail des valeurs a fournir :

NBNAM

VARFI

FILTY

ASCFL

GAPFL

ADSTR

ADLOA

ADDEB

ADFIN

adresse $30F) = décimal 12528
NBNAM contient Ja longueur du nom du fichier 2 enregis-
trer. Le maximum est 8.

adresse $30F1 = décimal 12529
VARFT est une table de huit mots qui contient le nom du
fichier en ASCIL Si ce nom fait moins de huit caracteres,
il faut compléter avec des espaces ($2) ASCII).

adresse $30F9 = décima) 12537
FILTY contient le type du fichier. Certains types sont déja
définis. Si votre enregistrement ne suit pas leurs régles (qui
seront expliquées en fin de chapitre), il faut utiliser votre
propre type.

adresse $30FA = décimal 12538
ASCFL indique s’il s’agit d’un fichier en ASCII; Iutilité de
ce drapean reste & démontrer : il est toujours a zéro.

adresse $30FB = décimal 12539
GAPFL indique il sagit d’un fichier contigu (en un senl
bloc) ou non. On le met en général a 1.

adresse $30FC = décimal 12549
ADSTR donne sur deux octets I'adresse d’exécution lors-
qu’il sagit d’un programme en langage machine. Ce para-
metre $’ajoute an parameétre éventuellement fourni apres la
commande CLOADM utilisée pour le chargement du pro-
gramme. Si ADSTR n’est pas mis & zéro, on peut se pas-
ser du parametre ’EXEC, I’adresse d’exécution est fournie
lors de la lecture sur cassette.

adresse $30FE = décimal 12542
ADLOA donne sur deux octets I'adresse a laquelle il fandra
charger le programme lors de la lecture. Pour un fichier en
langage machine par exemple, ce sera P'adresse on il fau-
dra écrire le premier octet lu sur la cassette. Ce paramétre
s’ajoute au parameétre éventuellement fourni apres
CLOADM.

adresse $31900 = décimal 12544
ADDEB donne sur deux octets Padresse du premier octet
a enregistrer.

adresse = $3102 = décimal 12546
ADFIN donne sur deux octets I'adresse du dernier octet
a enregistrer.

Le programme d’écriture s’appelle K7WRT'; il se trouve a adresse
$DFA@ (décimal 57248).

Les entrées-sorties cassettes 37

Lecture d’un fichier sur cassette

Pour lire un programme BASIC, il existe bien entendu la fonc-
tion CLOAD (ainsi que CLOAD* pour un tableau numérique). Pour
un programme en langage machine, vous pouvez utiliser la fonction
CLOADM. Sa syntaxe est la méme que pour les autres variantes, c’est-
a-dire :

CLOADM “TEST™ pour charger le fichier TEST.

1l existe toutefois une possibilité supplémentaire : nous venons de
voir que, lors de I’enregistrement d’un fichier en langage machine, on
doit fournir une adresse de chargement. C’est cette adresse qui est uti-
lisée par CLOADM.

Mais supposons que vous ayez donné comme adresse de chargement
16000 et que vous vouliez mettre votre programme en 17¢¢. Il suf-
fira alors d’écrire : -
CLOADM “TEST”, 1000

Ce second paramétre fournit donc un offser, un déplacement, pour
le chargement du programme. Ce déplacement s’applique aussi a
Padresse d’exécution : si, 4 Penregistrement, vous avez demand¢ une
exécution en 16509, notre exemple fera que l'exécution débutera
en 17500.

Nota : cette facilité est utilisée par le programme MONITEUR. Lors
de Penregistrement, on précise que Padresse de chargement et celle
J’exécution sont) (C'est le role des directives d’assemblage ORG $0)
et EXC INIT). 1l faut donc impérativement donner Padresse de char-
gement lors de la lecture. Ce programme est dit relogeable car on peut
le mettre n’importe ot en mémoire (dans un endroit acceptable pour
ALICE : si vous ne précisez pas l'adresse, le programme s’écrira a
Iadresse §. La suite est imprévisible...).

En assembleur, il existe deux possibilités : vous pouvez utiliser les
mémes paramétres que pour Pécriture. Appelez dans ce cas le pro-
gramme K7REA, en $DFBC.

Vous pouvez utiliser une autre possibilité, plus fine : nous la détail-
lerons dans le chapitre qui suit.

Mais auparavant, il faut voir comment est enregistré un fichier sur la
cassette - bien entendu, C’est une suite d’informations binaires, de @
et de 1. arrangées octet par octet.

Pour les enregistrer, on les fait précéder d’un en-téte pour permettre
la synchronisation du micro-ordinateur (128 octets égaux a $55), puis
d’un espace blanc d’environ §,5 seconde, puis d’un second en-iéte
(128 octets a $55), puis des blocs contenant les données proprement
dites, et enfin d’un bloc de fin.

38 Les entrées-sorties cassettes

Le format général d’un bloc est le suivant :
— un ociet a $55
— un octet de synchronisation ($3C)
— un octet qui indique le type du bloc =
— $00 = bloc qui contient le nom du fichier
— $01 = bloc de données
— $FF = bloc de fin
— un octet qui donne la longueur des données (de $0¢ a $FF)
Cet octet vaut $0F pour un bloc “nom” et $60¢ pour un blec fin.
— les données (jusqua 255 octets dans un bloc);
— un octet de vérification. Il est égal a la somme des octets de don-
nées, plus Poctet de type et 'octet de longueur;
— un octet de fin ($55).

Le bloc “nom” est un peu particulier : 2 la place des données, il con-
tient les quinze octets suivants :
— 8 octets pour le nom du programme.
— 1 octet pour le type de fichier. Voici les types qui sont définis
actuellement :

— $0p = BASIC

— $@1 = tableau numérique BASIC

— $02 = langage machine

— $05 = fichier texie de I’éditeur
— 2 octets de type : ASCII = $FF binaire = $0¢

contigu = $01 segmenté = $FF

— 2 octets pour 'adresse de démarrage de I’exécution, lorsque le type
est langage machine.
— 2 octets pour I’adresse de chargement.

Les programmes que nous allons voir exigent que les variables sui-
vantes soient actualisées :

— FICNM $3257 nom du fichier

— FICTY $3267 type du fichier

— BLKTY $3275 type du bloc

— K7ACC $3278 adresse des données.

De plus, 'adresse $3272 (REALL) doit étre a zéro pour effectuer réel-
lement la lecture. Sinon les données ne sont pas chargées, comme
dans la commande SKIPF du BASIC. Voici donc les deux program-
mes utilisables :
— CMPNA ($FE37) lit les en-tétes de fichier qui se trouvent sur la
cassetie. On ne se sert de CMPNA que dans deux cas :
— lorsque le fichier est trouvé; dans ce cas le bit Z du registre
d’état est mis a 1;
— lorsqu’une erreur se produit; dans ce cas le bit Z est a §.
— K7LEC lit ensuite les données et les écrit en mémoire, bloc par
bloc. De méme, en cas d’erreur, le bit Z est 4 ¢. 11 faut alors contro-

Les entrées-sorties cassettes 39

ler la fin du fichier pour vérifier si la lecture est achevée (BLKTY est
alors a $FF). Le registre X contient alors I'adresse du dernier octet
écrit en mémoire.

Format du fichier texte de I’éditeur

Voici le format du fichier texte tel qu’il est construit par I'éditeur
&ALICE. Vous pouvez Iutiliser pour faire votre propre langage, ou
pour toute autre application.

Un fichier texte est divisé en rangées. Chaque rangée correspond
effectivement 2 une rangée sur P'écran. Comme la taille de 'écran est
limitée a 80 caractéres par rangée, la rangée du fichier contiendra au
maximum 80 caractéres. Au maximum, car pour gagner de la place
les caracteres espace de fin de ligne sont €liminés.

Lindication de la fin de la rangée est inscrite avant les caractéres
qui la composent, sous forme d’un octet notant le compte effectif de
caracteres. Ce nombre varie de @ (rangée vide) 2 89 (rangée pleine).

La fin de fichier est indiquée par un code 255 ($FF) inscrit a la place
du nombre de caractéres.

Ainsi, si vous avez un texte de trois lignes, dont la deuxiéme est vide,
comme celui-ci :

CECI EST UN TEXTE 17 ligne
2 ligne vide
3¢ ligne

FIN

cela donnera :

$11 $43,$45,$43.$349, $20, $45,$53,$54, $20, $55,$4E. $20, $54
longueurC E C 1 espace E S T espace U N espace T
$45, $58, $54, $45, $09 $03 $46, $49, $4E, SFF

E X T E longueurlongueur F I N fin du texte

L’adresse du début du fichier est égale & la valeur du deuxieme para-
métre de Pinstruction de réservation de la place CLEAR x, ad. Par
exemple, pour CLEAR 60,1509, votre fichier texie commence en
15000 ($3A98). 1l est enregistré sur cassette par blocs de 255 octets,
sauf le dernier bloc, qui peut éventuellement en faire moins. Le type
inscrit en FILTY ($30F9) a pour code 5.

b

Programme : la
fonction MERGE

Nous allons encore combler une lacune du BASIC d’ALICE : ce cha-
pitre donne un programme permettant la fusion de deux fichiers
BASIC. Le programme que nous allons écrire lit un programme
BASIC sur la cassette et I'ajoute apres le programme BASIC déja ins-
tallé en mémoire. En outre, ce programme vérifie que les numéros de
lignes sont bien consécutifs.

Ce programme utilise des notions que nous avons déja vues dans
les deux programmes qui précédent : la structure d’un programme
BASIC, Iutilisation du clavier et de I'écran, et les possibilités de lec-
ture sur cassette.

Organigramme :
Lecture du fichier Erreur de lecture
BASIC
‘ Erreur de numéro
- de lignes
Vérification des

numéros de lignes

' ,

Mise a jour des Affichage d’un texte
variables d’erreur

La fonction MERGE 41

Initialisations :

Partie 2 Affichage du texte
de présentation

Partie 3 Calcul du numéro
de fa derniére
ligne BASIC

Parties 4 et 11 Lecture du nom
du fichier

Le calcul du numéro de la derniére ligne BASIC utilise la structure
que nous avons vue dans le chapitre 3. De plus, nous conservons au
passage I’adresse de la fin du programme BASIC. Ce sera P'adresse
d’implantation du programme que nous allons ajouter.

Le programme de lecture du nom du fichier utilise les programmes
KDINP et OUTCA. De plus, il reconnait I'utilisation de la touche
BREAK, qui provoque la répétition de la question.

En outre, ce programme commence par initialiser la zone de travail
avec des espaces. Ainsi, 8’1 y 2 moins de 8 caractéres entrés an cla-
vier pour le nom du fichier, ils seront automatiquement complétés
par des espaces.

Inversement, 4 partir du huitiéme caractére, le curseur arréte sa pro-
gression et tout nouveau caractére entré efface le précédent.

Lecture du programme BASIC :

Partie 5 Attente du
bloc «nom»

Partie 6

du type BASIC

ce n'est pas un fichier BASIC

Partie 7 Lecture du
fichier Erreur de lecture

+ Erreurs

42 La fonction MERGE

Dans la partie 5, le programme CMPNA ne redonne le contrdle que
lorsqu’il a trouvé un fichier dont le nom correspond a celui qui
est demandé, ou lorsqu’il détecte une erreur. En particulier, CMPNA
signale une erreur lorsque la lecture commence au milieu d’un autre
fichier. C’est pourquoi. dans ce cas-1, on le fait boucler sur lui-méme,
jusqua ce qu’il arrive au début du fichier qui suit.

La partie 7 utilise les programmes que nous avons vus dans le cha-
pitre qui précede. Il sarréte lorsqu’il trouve un bloc fin (type de bloc
= $FF).

La vérification des numéros de lignes est trés simple. Le numeéro de la
premiére ligne que nous venons de lire se trouve aisément, car nous
avons I'adresse de cette premiére ligne. Le numeéro de ligne se trouve
dans les troisitme et quatriéme octets.

Pour la réinitialisation des variables, nous utilisons le programme
BASIC qui est appelé aprés chaque modification, insertion ou destruc-
tion de ligne BASIC. 1l recalcule tous les liens entre les instruc-
tions BASIC.

Enfin, les programmes d’erreur se contentent d’afficher un texte (en
frangais) correspondant a Perreur rencontrée.

Attention : il faut adapter la directive ORG i la taille mémoire dont
vous disposez. Ici, elle est calculée pour un ALICE 32 avec Pexten-
sion mémoire. Mettez ORG $4D@@ pour ALICE 32 et ORG $ADY(
pour ALICE 90.

13

23 Programme MERGE

3 ; e H

4 3 Ce programme permet la fusion de 2 !

5 3 programmes ecrits en BASIC . !

6 3 ATTENTION : les nuwercs des ligres

73 doivent etre consecutifs , sinon

B le prograwme n'est pas charge .

93

10 Auteur : J-F BGallet !

11 3 Date = 23 Novewmbre 1384 4

12 ;

13

14 ORG $8000

15 EXC HMERGE

16

17 3 Constantes utilisees @

18

19
20 TXTAR $93 sDEBUT DU PROGRAMME BASIC
21 VARTA %95 sFIN DU PROGRAMME BAS1C
22 FICNM $3257 ;ADRESSE DU NOM DU FICHIER
23 FICTY $3267 sTYPE DU FICHIER
24 REALL = 43273 sINDIQUE QUE LA LECTURE DDIT ETRE FRITE
25 BLKTY = $3275 ;TYPE DU BLOC

La fonction MERGE 43

$3278 sADRESSE DES DONNEES A LIRE
$3280 sADRESSE DU CURSEUR
SE2F3I sCALCUL DES LIENS DES LIGNES BASIC
$E7A8 1AFFICHABE D”UN TEXTE
$FB68 ;ACRUISITION D UN CARACTERE
31 QUTCA = $F9CE sAFFICHAGE D UN CARACTERE
32 BRNCH = $FBD4 ;EFFARCEMENT DE L.’ ECRAN
33 CMPNA = $FE37 sLECTURE DU BLOC TYPE ET NDM DU FICHIER
34 K7LLEC = $FEB9 +PROBGRAMME DE LECTURE CRSSETTE
35
36 ;2. Initialisations 3
37 1
38 MERGE
JSR GRNCH
40 LDX #TXMER ;TEXTE DE PRESENTATION
41 JSR QuUTTX

Calcul du rnumero de la derniere ligne =

LDX TXTAB
LDD $0,X
BNE PRLGN :AU MOINS UNE LIGNE DANS LE PROGRAMME
STD NDRNL
STX ADLEC sADRESSE DE LECTURE DU PROGRAMME
BRA LECNM

51 PRLGN

52 LDD $2, X :POUR LE CAS D”UN PROGRAMME

53 STD NDRNL : D’UNE SEULE LIGNE

S LDX $0,X

55 8TX ADLEC

S6 CDRNL

57 LDD $2, X

S8 LDX %0, X sLIGNE SUIVANTE

89 BER L.LECNM sDERNIERE LIGNE ?

€0 STD INDRNL

61 STX ADLEC

62 BRA CDRNL

&3

64 4. Lecture du nom du Fichier a lire 2

[

66 LECNM

&7 BSR TITRE

1)

63 ;5. Lecture du bloc ’rom de fichier’ =

70 ;-

71 LCBNM

72 JSR CMPNA

73 BNE LCBNM sERREUR PENDANT LA LECTURE DU TITRE

Verification du type du fichier 2

LDAA FICTY
ENE ERTYP sCE N'EST PRS UN FICHIER BASIC

Lecture du fichier

LDX ADLEC
STX K7ALC

LDRAR #SFF

CLR REALL sLECTURE REE.LE
CLRB

STX K7ALC

44 | a fonction MERGE

1S1

JSR K7LEC
BNE ERLEC sERREUR EN LLECTURE
LDAR BLKTY ;TYPE DU BLOC
CMPA #3FF
BNE LECFI sCE NEST PAS LA FIN DU FICHIER
PSHX +ADRESSE DE LA FIN DU FICHIER
;8. VERIFICATION DL NUMERQ DE LIGNE =
LDX ADLEC
LDX 2, X sNOUVELLE PREMIERE LLIGNE
CpxX NDRNL. 5 ET LYANCIENNE DERNIERE LIGNE
BLS ERLIG sERREUR
PULX
STX VARTA
39 Reinitialisation des variables :
JSR CHERD ;EALCUL DES LLIENS DU BASIC
LDX HTXFIN-%1
JSR QUTTX
RTS
;10. Erreurs :
H
ERTYP
LDX HTXTYP-$1
BRA EREUR
ERLET
LDX #TXLEC-%1
BRA EREUR
ERLIG
PULX
LDX #TXLIG-$1
EREUR
JSR QUTTX ;AFFICHAGE DU TEXTE D*ERREUR
CLRA
CLRE
LDX VARTA
DEX
DEX
STD $0, X ;FIN DU FICHIER DEJA EN MEMOIRE
STD $2, X
RTS
Lecture du vom du fichier a lire 3
3ENTREE = NEANT
$SORTIE = FICNM = NOM DU FICHIER A LIRE (8 OCTETS)
TITRE
LDX HTXTIT-#1
JSR OUTTX
LDX #FICNM
LDAA #%20
LDAR #%8
TIT10
STAR $0,X
INX
DECE
BNE TIT10
LDX #FICNM
TITZ0
JSR KDINP

La fonction MERGE 45

152 JSR ouTCA

153 CMPA #$3 ;BRERK

154 BER TITRE

155 CMPA #$D

156 BER TIT4O

157 STAR $0,X

158 CPX H#FICNM+$8

159 BEQ TIT30

160 INX

161 BRA TIT20

162 TIT30

163 LDRE CURAD+%$1

164 DECE

165 STAE wJRAD+$1

166 BRA TITZ0

167 TIT&4O

168 RTS

169

170 3;12. Dornees du programme 2

171 ;—

172 ;Textes =

173 TXMER DFO $0D

174 * PROGRAMME DE FUSION DE PROGRAMMES BASIC
175 DFD $0D00

176

177 TXTIT DFO $0D

178 *NOM DU FICHIER A LIRE ?

179 DFD $2000

180

181 TXFIN DFO $0

182 *LECTURE TERMINEE

183 DFD 40D00

184

185 TXTYP DFD $0D

186 *ERREUR : CE N'EST PAS UN FICHIER BASIC
187 DFD $0D00

188

189 TXLEC DFD $0D

130 * ERREUR DURANT LA LECTURE DU FICHIER
191 DFD $0D00

192

193 TXLIG DFO $00

194 'ERREUR ¢ NUMEROS DE LIGNE NON CONSECUTIFS
195 DFD $0D00

196

197 j;Variables =

198 NDRNL BLC $2 :NUMERQ DE LA DERNIERE LI1GNE
199

200 ADLEC BLC %2 1ADRESSE DE LA DERNIERE LIGNE
201

202 3;13. Fin

La technique de I'overiay

Cette méthode employée sur des ordinateurs plus puissants serait trés
utile pour des micro-ordinateurs dont la taille mémoire est (relative-
ment) limitée. Malheureusement, peu de moniteurs BASIC proposent
cette formule.

46 La fonction MERGE

De quot s’agit-il? Lorsquun programme BASIC est trop grand pour
la mémoire du micro-ordinateur, la seule solution qui existe est de le
raccourcir en enlevant des fonctions, ou des commentaires. Une autre
solution serait de couper le programme en fonctions indépendantes
les unes des autres et de charger la fonction au moment ot I'on doit
sen servir. Par exemple, un programme de statistiques serait partagé
en deux fonctions : une fonction d’acquisition et une fonction de cal-
cul et d’affichage.

Dans le cadre d’ALICE, cela pourrait se faire en partageant la
mémoire utilisateur en quatre parties :

1 partie : |

progremme RESIDENT

2¢ partie :

fonctions TEMPORAIRES

3¢ partie :

données BASIC

4¢ partie :

programmes langage machine

Premiére partie : le programme RESIDENT

Ce programme BASIC est chargé constamment dans la mémoire.
Clest lui qui gere le passage d’une fonction 4 une autre. Pour cela, il
appelle le programme en langage machine qui se trouve dans la qua-
triéme partie. De plus, ce programme peut contenir des sous-program-
mes utilisés par plusieurs fonctions parmi celles qui se trouvent dans
la deuxiéme partie.

Deuxiéme partie : les fonctions temporaires

Ces fonctions sont chargées au fur et & mesure des besoins du pro-
gramme résident. Chacune de ces fonctions doit étre indépendante
des autres (une fonction ne peut pas appeler un sous-programme qui
se trouve dans une auvtre fonction). Par contre, toutes les fonc-
tions partagent les mémes données, qui se trouvent dans la troi-
siéme partie.

Troisiéme partie : les données BASIC
Pour que les données BASIC soient partagées par toutes les fonctions
et la partie résidente, il faut que cette troisiéme partie ait une adresse
fixe. Cette adresse est calculée en additionnant la longueur du pro-
gramme résident et celle de la fonction qui occupe le plus de place.
VARTA (adresse $95) est le pointeur sur la premiére donnée BASIC.
C’est ce pointeur que vous devez calculer une fois pour toutes avant
de charger la premiére fonction.
Attention aussi aux variables alphanumériques : lorsque vous décla-
rez une variable de la maniére suivante :

AS="TEST",

La fonction MERGE 47

le pointeur du BASIC n’utilise pas la zone réservée aux variables
alphanumériques (qui se trouve juste avant la zone réservée aux pro-
grammes en langage machine, comme c’est indiqué dans I'’Annexe 2).
Ce pointeur se contente d’indiguer adresse de la variable dans le pro-
gramme lui-méme. Par conséquent, si cette déclaration se fait dans
une fonction temporaire, la variable A$ sera perdue lorsque vous
chargerez une autre fonction 4 sa place.

Pour forcer le BASIC 4 sauver la variable dans 'espace réservé aux
variables alphanumériques, il faut exécuter une fonction sur cette
variable, par exemple A$=“TEST” + “ .

Quatridme partie : les programmes en langage
machine

Cette quatridme partie contient tous les programmes en langage
machine, et, en particulier, un programme du type du programme
MERGE qui vous permetira de charger les fonctions les unes apres
les autres (aprés avoir demandé a lutilisateur de mettre en route le
magnétophone & cassettes. Vivement les disquettes!).

0

Les interruptions

Les notions d’interruption et de gestion des interruptions sont prati-
quement inconnues des programmeurs familiers du seul BASIC. Elles
sont pourtant extrémement importantes dans la programmation
d’un micro-ordinateur.

Voyons tout d’abord ce qu’est une interruption. En général, une inter-
ruption est un signal qui avertit le microprocesseur quun périphéri-
que est en attente d’un traitement. Le microprocesseur est programmeé
de maniére & décider si le périphérique est prioritaire par rapport aux
taches qui sont déja en cours; si c’est le cas, le microprocesseur sus-
pend temporairement Pexécution de ces tiches pour gérer le périphé-
rique, et lorsque ce traitement est terminé, il reprend les tiches sus-
pendues a I'endroit ot il les a abandonnées.

Pour étre efficace, un programme de gestion d’interruption doit étre
court (sans quoi les tiches normales du microprocesseur ne s’effec-
tueront jamais). Par exemple, pour la gestion d’une liaison série, le
programme d’interruption doit se contenter de stocker 'octet recu, le
traitement et Paffichage étant pris en charge par le programme prin-
cipal. De plus, un programme d’interruption trop long pourrait per-
turber la réception du caractére suivant.

Enfin, le traitement d’interruption ne doit pas perturber le fonction-
nement des tiches en cours de traitement. Par exemple, il doit sauve-
garder les registres pour les restituer 4 la fin du programme d’inter-
ruption. De méme, la pile en cours d'utilisation ne doit pas étre
détruite.

Les interruptions du MC6803
Nous allons d’abord examiner le traitement que fait subir le MC68(3
a une interruption qui apparait. Le microprocesseur commence par

Les interruptions 49

vérifier qu’il peur autoriser le traitement de cette interruption ; I'auto-
risation es1 donnée si deux conditions sont remplies :

— certaines interruptions sont masquables, cest-a-dire que le pro-
gramme principal peut interdire le traitement de ces interruptions.
Pour cela, il faut utiliser le bit i du registre d’état du MC68@3. Lors-
que ce bit est 4 1, ces interruptions sont masquées; lorsqu’il est a
zéro, elles sont autorisées.

-— si Pautorisation est donnée, le MC6803 vérifie aussi qu'une inter-
ruption plus prioritaire n’est pas en cours de traitement. Dans ce cas,
le traitement de la nouvelle interruption est différé jusqu’a ce que la
premiére soit entiérement traitée.

Lorsque ces deux conditions sont satisfaites, le MC68@3 sauvegarde
son état sur la pile opérationnelle. Il sanvegarde successivement :

— le compteur ordinal (PC), C’est-a-dire l'adresse de Pinstruction
en cours,

— les registres X, A et B,

-— le registre d’état.

De plus, le bit i du registre d’état est mis a 1, pour masquer toute nou-
velle interruption tant que celle-ci n’est pas completement traitée.
Ensuite, sutvant le type de linterruption, le microprocesseur va cher-
cher dans une table qui se trouve a la fin de la mémoire Padresse du
programme d’interruption.

Le programme dont Padresse a été trouvée grice a cette table s'exé-
cute alors. Il doit, en prmc;pe se terminer par 'instruction RTI
(retour d’interruption), qui restaure le contexte du microprocesseur
avant Pinterruption : celui-ci reprend sur la pile les valeurs du registre
détat et des registres A, B et X, et I'exécution du programme
principal se poursuit a partir de Pendroit ot 'interruption s’était pro-
duite.

Voici la liste des interruptions qui existent dans le 6803. Elles sont
données selon leur ordre de priorité (la premiére étant la plus prio-
ritaire). L’adresse qui se trouve en face du nom de Pinterruption est
Padresse qui contient Vadresse du programme d’interruption. (Cette
indirection permet au programmeur de dérouter vers son propre pro-
gramme de gestion d’interruption certaines d’entre elles.) Nous ver-
rons plus loin le traitement queffectue ALICE pour chacune des
interruptions.

Interruption Adresse
du
vecteur
RESET =Reset S$FFFE-SFFFF
NMI =Non Maskable Interrupt $FFFC-$FFFD
Interruption non masquable
Swi =Software Interrupt SFFFA-$FFFB

Interruption par programme

50 lLes interruptions

IRQI =Maskabile Interrupt on Request 1 $FFF8-$FFF9
Interruption masquable sur demande 1

ICF =input Cepture Interrupt Flag $FFF6-$FFF7
Interruption de saisie d‘entrée

OCF =Output Compare Interrupt Flag SFFF4-$FFF5
Interruption de comparaison de sortie

TOF =Timer Overflow Interrupt $FFF2-$FFF3
Interruption de dépassement d"horloge

Sci =Serial Communication Interrupt SFFFP-$SFFF1

interruption sur la sortie série

Les interruptions ICF, OCF, TOF et SCI sont regroupées sous I'éti-
quette commune d'IRQ2. Elles sont provoquées par des équipe-
ments internes du MC6803, Phorloge et Pinterface de communica-
tion série.

Seules les interruptions IRQI et IRQ2 sont masquables, c’est-a-dire
que toutes les autres s’exécutent, sauf si une interruption prioritaire
est déja en cours de traitement.

RESET :

Linterruption RESET est trés spéciale. Elle est provoquée soit par
la mise sous tension de votre ALICE (bouton marche-arrét), soit par
I'appui sur le bouton de RESET qui se trouve a Parriere du boitier.
Le vecteur dinterruption de RESET contient 'adresse $F72E. A cette
adresse commence le programme général d’initialisation d’ALICE. It
efface la page d’écran, initialise les ports d’entrées-sorties et recalcule
certains pointeurs utilisés par le BASIC. Ce programme peut prendre
deux directions suivant le contenu de I'adresse $EA : si cet octet con-
tient $55, le systéme n’est pas entiérement réinitialisé, et le contenu
de la mémoire vive n’est pas détruit, ce qui sauvegarde vos program-
mes BASIC, vos données, vos programmes assembleur. Cela corres-
pond a I'usage normal du bouton RESET (par exemple, si vous avez
fait LPRINT sans imprimante connectée, il vous faudra avoir recours
a RESET, mais vous retrouverez vos données intactes). Si le contenu
de $EA est différent de $55, par exemple 2 la mise sous tension, ou
si vous avez modifié le contenu de cette adresse, volontairement ou
non, ALICE effectue en plus quelques opérations d’initialisation, en
particulier une recherche de la taille de la mémoire disponible. Il n’y
a qu’une solution pour cela, écrire dans toute la mémoire & partir de
$3000, et ne sarréter que lorsque ce qui est écrit est différent de ce
qui est relu (tentative d’écriture sur la mémoire morte). Cette opéra-
tion a pour conséquence la destruction de toute information inscrite
en mémoire vive. Si vous voulez remettre & zéro toute la mémoire
viveapres le déroulement de votre programme, vous pouvez donc faire

CLR $EA '
IMP $F72E

Les interruptions 51

A la fin de Pexécution du programme d’initialisation, $EA est mis
2 $55, pour éviter une réinitialisation compitte en cas d’appui
sur RESET.

Linterruption RESET est entierement gérée par ALICE, et vous ne
pouvez pas la dérouter pour vos propres programmes. En revanche,
toutes les autres interruptions peuvent étre utilisées pour vos appli-
cations : les vecteurs inscrits en mémoire morte, en
$FFFP-$FFFC.. $FFF1-$FFFD, pointent sur des adresses en mémoire
vive, que vous pouvez donc modifier 2 votre gré. Lors de Pinitialisa-
tion, ALICE inscrit 4 ces adresses des instructions RTI. Ainsi, si une
interruption apparait, aucun programme ne se déroulera. Ces RTI
sont astucicusement espacés de trois octets : on peut donc les rempla-
cer par des JMP suivis de I'adresse de votre programme d’interrup-
tion.

Voici le tableau des adresses de la mémoire vive ’ALICE correspon-
dant aux interruptions :

Interruption Vecteur Adresse en mémoire vive
NMI $FFFC-$FFFD $3212 (12818)

sSwi $FFFA-SFFFB $320F (12815)

IRQ1 $FFF8-$FFF9 $320C (12812)

ICF $FFF6-SFFF7 $3209 (12809)

OCF $FFF4-$FFF5 $3206 (12806)

TOF $FFF2-$FFF3 $3203 (12803)

scl $FFFQ-$FFF1 $3200 (12800)

NMI et IRQ1

Les interruptions NMI et IRQI sont provoquées par des transitions
de P'état 1 2 Iétat § sur les ‘pattes’ du MC68p3 dénommées NMI et
IRQI. Bien entendu, vous ne pouvez pas relier vos propres montages
directement sur le MC68@3 (ou alors il faut ouvrir ALICE, et je ne
réponds plus de rien!). L'un des défauts d’ALICE est que vous
n’avez aucun moyen de controler la demande d’interruption IRQI :
alors que Pinterruption NMI peut étre provoquée par le connec-
teur d’extension d’ALICE, aucun branchement externe n’est prévu
pour IRQI. Cest d’autant plus dommage quaucun des programmes
intégrés dans ALICE (BASIC et éditeur-assembleur) n’utilise cette
interruption. Fn revanche, comme je viens de le souligner, Pinterrup-
tion NMI est disponibie sur la broche n° 31 du connecteur d’exten-
sion situé a Parriere ALICE (cf. Annexc 4, Le connecteur BUS
d’ALICE).

Si vous voulez utiliser plusieurs périphériques, vous devez tous les
relier 3 la broche NM1 du connecteur d’extension d’ALICE. La pre-
migre tiche du programme d’interruption sera de reconnaitre le péri-
phérique (ou les périphériques) qui a (qui ont) provoqué I'interrup-
tion.

52 |es interruptions

sSwi

L’interruption SWI est d’un emploi assez marginal. En fait c’est une
instruction qui permet d’effectuer un branchement inconditionnel 2
un sous-programme en n’utilisant qu’un seul octet (Pinstruction SWI),
alors que les instructions BSR et JSR en utilisent respectivement 2
et 3. Par exemple, ceci est trés précieux dans le programme MONI-
TEUR : lorsque vous demandez Pimplantation d’un point d’arrét, le
programme va écrire un SW1 a 'adresse spécifiée. Par conséquent,
lorsque ie programme & tester arrive sur Pinstruction SWI, il donne
Ie contrdie 2 un programme d’interruption qui vous permet d’exami-
ner et de modifier la mémoire et les registres. Lorsqu’il faut relancer
Pexécution, il suffit de remettre 4 la place de SWI Pinstruction d’ori-
gine et de relancer le programme 2 cet endroit.

En étudiant le listing du MONITEUR, vous verrez comment on peut
modifier les registres, en utilisant la pile pour les stocker puis les res-
tituer. Cest une des utilisations principales de SWL SWI est le plus
souvent utilisée par les systemes d’exploitation, car elle ne peut étre
interrompue que par RESET et NML Cela permet la gestion de varia-
bles systeme sans grand danger.

ICF. OCF et TOF

Les interruptions ICF, OCF et TOF sont toutes trois relatives 2 Pun
des périphériques intégrés au microprocesseur MC6803, son horloge,
ou timer, programmabile.

A quoi cela peut-il servir? En premier lieu, 2 provoquer une inter-
ruption au bout d’un temps prédéterminé. Le programme d’interrup-
tion peut alors entreprendre des actions de vérification... On sait que
le temps demandé est écoulé. Clest plus facile et plus précis que de
compter les instructions d’un programme pour savoir que ’on en sor-
tira au bout de » millisecondes.

Voyons comment fonctionne cette horloge. Le programmeur peut y
accéder par quatre registres, dont I'adresse est située dans les seize
premiers octets de la mémoire du 6803. En voici le détail :

— le compteur (adresse $09-PA = 9-10). Ce compteur sur seize bits
est incrémenté & chaque impulsion de Thorloge, qui correspond au
signal E (Enable) du 68%3. Ce compteur est remis a zéro lors d’un
RESET. En principe, on ne doit que le lire; si on tente d’y écrire, il
prend la valeur $FFF8. Lorsque le compteur arrive la valeur $FFFF,
il continue en passant par $§.

— le registre de comparaison en sortic (adresse $0B-$0C = 11-12).
Ce registre sur seize bits peut étre Iu ou écrit. Sa valeur est constam-
ment comparée a celle du compteur. En cas d’égalité, un signal peut
étre envoyé sur le port 2, bit 1 du 6803, si ce port est configuré en
sortie. (Vota : sur ALICE, les ports 1 et 2 sont utilisés pour le clavier

Les interruptions 53

et ne sont pas disponibles sur le connecteur d’extension). Ce registre
est mis 2 la valeur $FFFF lors du RESET.

— le registre de capture en entrée (adresse $UD-$GE = 13:14). Ce
registre de seize bits est uniquement accessible a la lecture. 11 est uti-
lisé pour stocker («capturer») ia valeur du compteur lorsqu’une tran-
sition est appliquée au bit § du port 2.

— le registre de contrdle et d’état de ’horloge (adresse $08 = 8). Cest
ce registre qui vous permet de décider de I'utilisation de I’horloge. Il
comporte 8 bits, qui peuvent tous étre ius mais dont cinq seule-
ment peuvent étre écrits. Les trois bits accessibles a la seule lecture
indiquent qu’un événement (qui peut éventuellement déclencher une
interruption) est apparu. Voici la description de ce registre.

B7 B6 B5 B4 B3 B2 Bl BY

ICF OCF | TOF | EICI | EOCI | ETOI | EIDG | OLVL

OLVL : Output Level (niveau de sortie). Ce bit indique la valeur
qu’il faut envoyer sur le bit 1 du port 2 lorsque le registre
de comparaison en sortie est égal au compteur. On peut e
lire ou Pécrire, et il est mis 2 § au RESET.

EIDG : Enable Input Digit (autorisation d’entrée de nombres). Ce
bit indique quelle transition doit provogquer Pécriture du
compteur dans le registre de capture en entrée. Si FIDG =
P, cest une transition sur un front descendant, sinon C’est
une transition sur un front montant. Ce bit peut étre lu ou
écrit; il est mis a () au RESET.

ETOI ;: Enable Timer Overflow Interrupt (autorisation d’interrup-
tion de dépassement d’horloge). Ce bit peut étre lu et écrit.
Lorsqu’il est 2 1, Pinterruption TOF est autorisée. Le débor-
dement du compteur (Cest-3-dire son passage de $FFFF a
$0 provoquera cette interruption. Ce bit est remis a @
par RESET.

EOCI : Enable Output Compare Interrupt (autorisation d’interrup-
tion de comparaison en sortie). Ce bit peut étre lu et écrit. Il
autorise Tinterruption OCF lorsqu’il est a 1. Cette interrup-
tion apparaitra lorsque e registre de comparaison en sortie
sera égal au compteur. Ce bit est mis a § par RESET.

EICI : Enabile Interrupt Capture Input (autorisation d’interruption
de saisie en entrée). Ce bit peut étre lu et écrit. S’il est a [,
il autorise Pinterruption ICF. Cette interruption apparaitra
lorsque la transition programmée par le bit EIDG apparaitra
sur le bit § du port 2. Il est mis 4 § par RESET.

TOF : Timer Overflow Flag (drapeau de dépassement d’horloge).
Ce bit n’est accessible qu’a la lecture. Il est mis a 1 lorsque le

54 les interruptions

compteur arrive & $FFFF. Si ETOI est a 1, une interruption
est envoyée au 6803. Ce bit n’est remis 2 § qu'au RESET ou
apres les lectures successives du registre de contréle et d'état
(adresse 8) et du compteur (adresse 9).

OCF: Output Compare Flag (drapeau de comparaison en sortie).
Ce bit n’est accessible qu’a la lecture. Il est mis a 1 lorsque
Ie registre de comparaison en sortie est égal au compteur, Ii
provogue une interruption si EOCI vaut 1. Ti n’est remis 2
® que par RESET ou par une lecture du registre de contréle
et d'état (adresse 8) suivie d'une écriture dans le registre de
comparaison en sortie {adresse 11 ou 12).

ICF : Input Capture Flag (drapeau de saisie en entrée). Ce bit n’est
accessible qu’a lIa lecture. Il passe a 1 lorsque la transition
programmée par EIDG apparait sur le bit § du port 2. Une
interruption apparaitra si EICI vaut 1. Ce bit est remis a §
par RESET ou par la lecture successive du registre de con-
trole et d’état (adresse 8) puis du registre de capture en entrée
(adresse 13).

Voili toutes les possibilités de horioge du 6803. Sur ALICE, les ports
d’entrées-sorties sont monopolisés par le clavier, ce qui réduit I'uti-
lité de Pinterruption OCF et annule complétement toute utilisation
d'ICF.

OCF et TOF peuvent étre utilisées toutes les deux pour générer des
interruptions au bout d’un temps déterminé. Par exempile, si le comp-
teur n’est pas réinitialisé, interruption TOF arrivera réguliérement.
Calculons sa période : le quartz des nouvelles versions A’ALICE a
une période de 4 Méga-Hertz (la premiere version avait un quartz un
peu plus fent). Cette période est divisée de maniére interne par quatre
pour générer les signaux du 68p3. Il y a donc un intervalle d’une
micro-seconde entre deux tops envoyés a I’horloge. Chaque interrup-
tion est produite lorsque le compteur arrive 2 $SFFFF, c’est-a-dire tous
les (16)* = 65536 tops, ce qui fait un intervalle de 65.5 millisecon-
des entre chaque interruption.

Si 'on veut effectuer certaines opérations chague seconde, on peut
Putiliser en laissant passer 14 périodes sans rien faire, les opérations
étant effectuées lors de la quinzieme interruption (65.5 millisecon-
des multipliées par 15, cela fait .984 seconde). On peut aussi affiner
ce compteur en utilisant OCF pour attendre les 16 millisecondes
qui manquent.

Le chapitre suivant présente une utilisation de ’horioge.

(IV.B. : une autre utilisation, marginale, de "horloge peut étre la géné-
ration d’un nombre aléatoire. Par exemple, si ’on cherche un chiffre
entre () et 7, on peut prendre le contenu de I'horloge, et grace 2 un

Les interruptions 58

AND n’en conserver que les trois bits de poids faible. Bien entendu
cela ne donne pas des nombres parfaitement aléatoires).

SCI
L’interruption SCI est provoquée par un autre équipement interne
au 6803, linterface de communication série. Il permet au micropro-
cesseur de communiquer en utilisant le protocole de la liaison série.
Cette interruption ne peut pas étre utilisée dans ALICE : elle sert déja
pour la liaison avec I'imprimante et pour Uécriture et la lecture sur
un magnétophone 2 cassettes. Ce sont les mémes circuits qui sont uti-
lisés pour ces deux fonctions. C'est pourquoi il faut arréter I'impri~
mante lorsqu’on enregistre un programme. Voici rapidement les pos-
sibilités du 6803 lorsque I’on peut utiliser interface de communica-
tion série.

— Plusieurs formats sont disponibles : standard ou bi-phasé.

— La communication peut étre gouvernée par 'horloge interne ou
une horloge externe. La vitesse de cette horloge peut alors étre
divisée par 16, 128, 1024 ou 4896. Pour un quartz 4 4 MégaHertz
comme celui FALICE, cela donne des vitesses de transmission de
62500 bauds, 7812 bauds, 976 bauds ou 244 bauds (ces valeurs
n’ont rien de standard).

— Les interruptions peuvent étre autorisées pour P'émission et/ou Ia
réception individuellement.

— L’interface de communication série utilise un registre de contrdie
(adresse $10) qui permet de choisir ’horloge et sa vitesse. Un autre
registre de contréle indique au 6803 quelles interruptions sont
autorisées (adresse $11). Ce méme registre indique au programme
st le registre d’émission est vide, si le registre de réception est plein
ou si une erreur est apparue.

— Les données transmises sont accueillies sur un registre d’émission
(adresse $13) et un registre de réception (adresse $12).

Les signaux de cette liaison série sont appliqués sur le port 2 (qui
n’est pas accessible sur ALICE) :
— port 2 bit 3 = réception des données

2 = sortie de I’horloge

1 = émission des données.

Pour pius de détails sur ce périphérique qui ne concerne pas direc-
tement ALICE, voir la notice MOTOROLA relative au micropro-
cesseur MC6893.

ALICE utilise trgs peu les interruptions; en fait, seul RESET est
programmé. L’utilisateur peut donc faire ce que bon lui semble des
interruptions qui restent disponibles, c’est-a-dire NMI, les inter-
ruptions relatives a "horloge et SWL Le seul inconvénient des
interruptions de Ihorloge est qu'elles sont masquables, et que le
programme peut en interdire la réalisation. Cest ce que fait

56 Les interruptions

ALICE a chaque fois que vous utilisez la liaison avec un magné-
tophone a cassette : lorsque ALICE initialise le transfert, l¢ BASIC
masque les interruptions, mais le programme présente un défaut,
il ne les réinitialise pas. Par conséquent, si vous voulez utiliser les
interruptions, il faut penser & les autoriser en début de programme
ou apres toute liaison avec le magnétophone.

v

Programme : |I"horloge
en temps réel

Le programme que nous allons voir exploite I'horloge intégrée au
microprocesseur MC68¢3. Il va vous permettre d’utiliser votre ALICE
comme une (encombrante) horioge. En effet, aprés vous avoir demandé
d’entrer I'heure, il va afficher 'heure courante (mise & jour chagque
seconde) en haut a droite de Pécran. Cet affichage se poursuivra méme
si vous étes en train de travailler en BASIC, ou si vous imprimez un
listing.

L’affichage peut étre suspendu en modifiant le contenu d’une adresse de
Ia mémoire, avec un POKE par exemple. De méme, on peut utiliser
P’heure dans des programmes assembleur ou BASIC : I'heure, la minute
et 1a seconde courantes sont disponibles dans trois octets de la mémoire,
que Taffichage soit demandé ou non.

Attention : cette horloge ne prétend pas rivaliser avec un chronométre;;
sa précision est assez approximative (en particulier, pour les raisons que
nous avons vues au chapitre précédent, la durée exacte des “secondes ™
est de (.98 secondes). De plus. le BASIC d’ALICE masque parfois les
interruptions, pendant Pimpression par exemple, ce qui empéche e
décompte des secondes de se faire au rythme voulu.

Organigramme du programme

Le programme HORLOG est composé de deux parties :

— la partie d’initialisation. qui demande a Putilisateur d’entrer 'heure
courante, en tapant dans I'ordre I’heure, la minute et la seconde, en deux
chiffres a chaque fois. L’interruption est ensuite autorisée ;

— lapartied’interruption proprementdite. L’interruptionest provoquée
par Phorloge (on utilise ici Uinterruption TOF, qui apparait toutes les
65.5 millisecondes).

58 L'horloge en temps réel

Lesautres programmes affichent des textes ou lisent des données venant
du clavier en utilisant les programmes de la mémoire ¢’ALICE
(OUTTX, OUTCA, KDINP).

Ce programme comporte en plus deux astuces :

— il utilise NBCOL, qui contient le nombre de colonnes affichées sur
Pécran (32, 40 ou 8f). Cela permet dans tous les cas de cadrer le texte
(heure, minute, seconde) en haut a droite de I’écran;

— il modifie ENDMM. Ce mot contient ’adresse du dernier octet de la
mémoire ' ALICE. En modifiant son contenu, oninterdit au programme
BASIC ou assembleur d’aller écraser les données qui se trouvent au-dela.
Celapermetde protégerle programme, en particuliercontre’assembleur,
qui utilise 1a fin de la mémoire pendant ’assemblage d”un fichier source.

Programme de mise a I'heure

Partie 1 Protection du
programme
(cf. ENDMM)

!

Lecture des
heures, minutes,
secondes

'

Autorisation
de I'affichage

Y

Fartie 2 Mise en place du
branchement vers
le programme
d'interruption

¥

Autorisation de
I'interruption

TOF et démasquage
des interruptions

v

Le programme de lecture de deux chiffres (partie 3) vérifie que les deux
caractéres entrés sont compris entre) et 9. Si C’est le cas, il calcule 1a
valeur hexadécimale correspondante.

L'horloge en temps réel

Programme d’interruption

FPartie 4

Fartie 5

Partie 6

Décrémentation
du compteur

Caleul de la
nouvella heure

¥

Affichage de
'heure

¥

Compteur =15

r__

Acquittement
de I'interruption

59

Comme on le voit, le programme @’interruption n’est vraiment utilisé 2
fond qu’une fois sur quinze, afin de calculer la nouvelle heure une fois
par seconde. Dans les autres cas, seules six instructions sont exécutées.

Lorsque le compteur passe 2 , on calcule la nouvelie heure simplement
en ajoutant une seconde a Pheure précédente. Il faut bien siir gérer les

changements de minute, d’heure aussi bien que ceux de seconde.

Les programmes BASIC ou assembleur pourront utitiser les trois mots
qui donnent Pheure courante : il suffit en BASIC de faire trois PEEK
en donnant "adresse des mots HEURE, MINUT et SECON.

Le dernier programme affiche Pheure sur Pécran. En mettant le mot
AFFIC 4 §, on peut interdire cet affichage tout en conservant ie calcul

de ’heure courante.

60 L'horloge en temps réel

Par ailleurs, le programme sauvegarde le support en cours d’utilisation
(écran ou imprimante)ainsi que la position courante du curseur (a Paide
dumot CURAD), pour aller écrire son texte en hauta gauche de Pécran.
Ces variables du BASIC sont restituées 2 la sortie du programme.

L’adresse du programme ($8E@@) convient pour un ALICE 32 avec
Pextension mémoire. Pour un ALICE 32 sans extension ou un ALICE 90,
il faut changer le contenu de la directive ORG. respectivement en ORG
$4EDD et ORG $SAEDD.

13

23 Programme HORLDG '

3; me————

4 ; Ce pregramme utilise les inter—

5 : ruptions generees par le timer

& ; du 6803 .

7 3

8 ; Auteur = J-F Gallet H

9 3 Date : 2Z Novembre 1984 H

10 g

11

12 DRG $BE00

13 EXC HORLO

14
45 NEBCOL = 3011 ;NOMBRE DE CARRCTERE PAR RANGEE
16 TOFAD = $3203 ;PROGRAMME D* INTERRUPTION TIMER OVERFLDW
17 ENDMM = $3250 ;ADRESSE DE LA FIN DE LA MEMOIRE
18 TCSR = $0008 ;TIMER CONTROL AND STATUS REGISTER
19 COUNT = $0009 ;COMPTEUR
20 DEVNU = $QCE8 $8SUPPORT D* AFFICHAGE (O=ECRAN, 1=IMPRIMANTE.,
21 QUTTX = $E7R8 sAFFICHAGE D*UN TEXTE
22 DUTCA = $FICE sAFFICHAGE D’UN CARACTERE
23 KDINP = $FBEE sATTENTE D*UN CARACTERE
24 CURAD = $3280 3ADRESSE DU CARACTERE COURANT SUR L’ ECRAN
25 NBC32 = $20 ;32 EN DECIMAL
26
27 ;1. Programme de mise a 1" heure =
28 ;—-
29 HORLO
30 LDX #HORLD
31 6TX ENDMM ;A CAUSE DE L’ ASSEMBLEUR
32 CLR AFFIC
3z LDX HMHTX-$1
34 JSR DUTTX
35 BSR LECDI sLECTURE DES HEURES
36 ECC HORLD ;ERREUR
37 CHpR #$18
38 BHS HORLO ;ERREUR

39 GTAR HEURE
40 LDRA #%3A
41 JGR ouTCA
42
43 BSR LECDI ;LECTURE DES MINUTEG
44 BCC HORLO $ERREUR
45 EMPA #33C
46 BHS HORLO sERREUR

47 STAA MINUT
48 LDAA #$3A
49 JSR ouTCR

LDAR
STAA
LDAA
STAR
LDX
STX
LDAA
STRA
LDAA
STRA
CLI
RTS

13 Lecture de 2 chiffres i

3ENTREE ¢
$SORTIE ¢

LECDI JSR
ISR
8SR

LEC10 RTS

VERIF SUBA
BLO
CMPA
BHS
VER10 SEC
RTS
VERZO CLC
RTS

H™ Decompte pour 1 seconde :

;DE PROGRAMME D* INTERRUPTION EST ACTIVE PAR LE TIMER

LECDX
HORLO
#E3C

HORLO
SECON

Initialisation de 1" interruption =

#51

AFFIC sDRAPEAU D” AFF ICHAGE

#$0F

comMPT ;POUR UNE SECONDE

#ITPRG

TOFAD+$1 sECRITURE D’ UN JMP

HETE

TOFAD 3VERS LE PROGRAMME D' INTERRUPTION
He4

<TCSR ;AUTORISATION DE L’ INTERRUPTION TIMER

NEANT

CARRY = ¢ ST CARACTERE ERRONE , 1 SI OK
A = VALEUR EN HEXADECIMAL

KDINP
OUTCA
VERIF
LEC10
#$0

KDINP
ouTCR
VERIF
LEC10

#$30
VERZ0
#$A
VERZO

;INTERNE DU 6803 ,

sIL UTILISE DONC UN COMRTEUR , ET N*AFFICHE LA NOUVELLE HEURE
$QUE LORSQUE LE COMPTEUR PASSE A 0 .

ITPRG
SEI
DEC
BNE
BSR
BSR
LDAA

STRA
ITFIN

COMPT
ITFIN
CALHE
AFFHE
HEOF

comPT

L’horloge en temps réel 61

sLECTURE DES SECONDES
SERREUR

;ERREUR

;DEMASRUAGE DES INTERRUPTIONS

sATTENTE D*UN CARACTERE
:ECHO

sC*ETAIT LA DIZAINE
ATTENTE DE L”UNITE
sECHOD

sRESULTAT FINAL
sRESULTAT OK

;TEST SI CHIFFRE ENTRE © ET %

;0K ¢ CARRY A 1 , VALEUR DANS A

sERREUR = CARRY A O

ENVIRON 15 FOIS PAR SECONDE .

;MASRUAGE DES INTERRURTIONS
;CALCUL DE L*HEURE 27?7

;CE N’EST PAS POUR CETTE FOIS-CI
;CALCUL DE LA NOUVELLE HEURE
sAFFICHAGE DE L®HEURE
sREINITIALISATION DU COMPTEUR

62 L'horloge en temps réet

115 LDAA (TCSR 3 INDISPENSABLES POUR REAUTORISER
116 LPAR {COUNT s LES INTERRUPTIONS

117 RTI

118

119 ;5. Calcul de 1®heare 2

120

121 ;ENTREE 2 HEURE , MINUTE , GECONDE PRECEDENTES
122 ;SORTIE : HEURE , MINUTE , GECONDE NOUVELLES
123 CALHE LDX #SECON

124 LDRA $0,X

125 INCA

126 EMPA #$3C ;EOEME SECONDE ?
127 BEQ CAL10 30U @ NOUVELLE MINUTE
128 STAR $0,X

129 RTS

130 CAL10 CLR $0, X 3SECONDE ©

131 LDAA #%1,X

132 INCA

133 CMPA #$3C 36O0EME MINUTE ?
134 BE@ CRL20 s0UI & NOUVELLE HEURE
135 STRA $1,X

136 RTS

137 CAL20 CLR $1,X sMINUTE ©

138 LDAA $2,X

139 INCA

140 EMPA #$18 $24EME HEURE ?
141 BEQ £AL30 $0UI = HEURE ©
142 STAA $2,X

143 RTS

144 CAL30 CLR 2, X

145 RTS

146

147 ;6. Affichage de 1"heure :

148 3

H
149 ;ENTREE : AFFIC = O PRS D'AFFICHAGE , 1 AFFICHAGE
150 3;SORTIE 3 NERNT
151 AFFHE TST AFFIC

2 BEQ@

15: AFFIN 3PAS D" AFFICHAGE

153 LDAA (DEVNU $SAUVEGARDE DU SUPPORT POUR LE CAS
154 PSHA s OU L*ON SERAIT EN TRAIN D’ IMPRIMER
155 CLR DEVNU ;RFFICHAGE SUR L’ECRAN

156 LDX CURARD

157 PSHX ;SAUVEGARDE DE LA POSITION DU CURSEUR
158 LDAR NBCOL

159 CMPA #$50 sCALCUL. DE LA POSITION D*AFFICHAGE
160 BEQ AFF10 3 SUIVANT LE MODE COURANT

161 £MPA #5268

162 BER AFFI10

163 LDAR #NBC32

164 AFF10

165 SUBR #3A

166 STAA CURAD+$1

167 CLR CURAD

168 LDAB HEURE

169 BSR IMPRY $PAFFICHAGE DE L*HEURE

170 LDAB MINUT

171 BSR IMPRI H DES MINUTES

172 LDAB SECON

173 BSR IMPRY H DES SECONDES

174 PULX

175 8TX CURAD 30N RECUPERE LA POSITION DU CURSEUR
176 PULA

177 STAR (DEVNU 3ET LE SUPPORT D* AFFICHAGE

178 AFFIN RTS

IMPRE

IMP10O
IMPZ0

IMP30

IMPS0
IMP4O

LDAR
ISR
CMPB
BHS
LDAR
JSR
BRA
CLRA
CMPB
BLD
INCA
SUEB
BRA

BSR
T8BA
ADDA
JSR
RTS

Dovnees du programne 3

#3$20
QUTCA
#3A
IMPL1O
#3$20
ourcA
IMPS0

#3A
IMP30O

#3A
IMPzO

IMP4C

#$30
ouTeA

DFO $0
DFO $0
DFO $0
DFO $0
DFO $0
DFO sD
*Ent rez

DFD

Fin

$200

1’ heure SVP =
000

L'horloge en temps réel 63

sAFFICHAGE D*UN ESPACE

;SI LE CHIFFRE A ECRIRE ¢ 10
;ON AFFICHE UN ESPACE EN 1ERE POSITION|

;CALCUL DES DIZAINES

;AFFICHAGE DE LA DIZAINE
AFFICHAGE DE L’UNITE
sAFFICHAGE DU CHIFFRE CONTENU DANS A

:COMPTEUR POUR ARRIVER R UNE GECONDE
;SECONDE COURANTE

sMINUTE

sHEURE

:1 SI AFFICHAGE SUR L'ECRAN

sTEXTE DE PRESENTATION

3

La liaison série
RS 232C

Nous avons déja vu quALICE pouvait communiquer avec 'extérieur
grace 4 une liaison au standard RS 232C. Le mot “standard’ peut paraitre
exagéré : d’une part, la prise utilisée sur ALICE (une prise DIN & quatre
broches) n’est pas tres commune ; d’autre part, il n’y a pas de véritable
norme en ce qui concerne les données, on peut au mieux parler de
plusieurs standards.

11 faut toutefois reconnaitre que le standard choisi pour ALICE est le
plus répandu.

Nota : une erreur s'est glissée dans la documentation fournie avec
ALICE; dans les caractéristiques logicielles d’impression, il faut lire
8 bits de données au lieu de 7 bits. Si votre imprimante est configurée
pour 7 bits, cela n’a aucune importance, le huitiéme bit est ignoré.

La liaison physique : le cable

Le premier probleme que 'onrencontrelorsqu’on utilise uneliaison série
est la compatibilité entre les connecteurs utilisés aux deux extrémités du
cible de laison. Jai relié plusieurs périphériques avec le micro-
ordinateur ALICE que je posséde : 4 chaque fois, il m’a fallu construire
un cable adéquat. Cela ne demande que peu de matériel :

— un fer a souder,

— du fil électrique 4 4 conducteurs (du genre fil téléphonique),

— les fiches qui s’adaptent aux deux extrémités. La fiche quatre broches
n’est pas trées facile 2 trouver, mais les détaillants en matériel électronique
pourrent vous la fournir.

Voici donc quelques exemples de branchement. Les numéros que je
donne sont indiqués sur les fiches.

66 La liaison série RS 232C

Pour relier ALICE a une imprimante
Microline OKI 82 A

L’imprimante OKI 82 A utilise une fiche CANNON 25 broches male.
— Le signal 1 de la fiche ALICE n’est pas utilisé.

— Le signal 2 de la fiche ALICE est relié au signal 11 de la prise
CANNON.

— Le signal 3 de la fiche ALICE est relié au signal 7 de la prise
CANNON.

— Le signal 4 de la fiche ALICE est relié au signal 3 de la prise
CANNON.

— 11 faut relier les signaux suivants sur la priss CANNON : 4 et 5
ensemble, 6, 8 et 200 ensemble.

Pour relier ALICE au modem DIGITELEC

Le modem DIGITELEC utilise une fiche CANNON 25 broches femelle.
— Le signal 1 de la fiche ALICE est relié¢ au signal 8 de la prise
CANNON.
— Le signal 2 de la fiche ALICE est relié au signal 3 de la prise
CANNON.
— Le signal 3 de la fiche ALICE est relié au signal 7 de la prise
CANNON.
— Le signal 4 de la fiche ALICE est relié au signal 2 de la prise
CANNON.

(En fait, cette prise peut n’étre utilisée que pour les premiers essais.
Ensuite il vaut mieux concevoir une carte qui s’enfiche sur le connecteur
d’extension d’ALICE et qui gére tous les signaux du modem grace 3
Iinterruption NML)

Pour relier ALICE a un autre ALICE

Pour réaliser la jonction entre deux ALICE, afin d’échanger des données
ou des programmes, il faut deux fiches DIN 4 broches.

— Le signal 1 n’est pas utilisé.

— Le signal 2 du premier ALICE est relié au signal 4 du deuxiéme.
— Les signaux 3 des deux ALICE sont reliés.

— Le signal 4 du premier ALICE est relié au signal 2 du deuxiéme.

Comme vous le voyez, il existe plusieurs sortes de branchements. Notez
bien qu’il y a peu de risques d’endommager ALICE ou le périphérique
si vous inversez deux signaux, car les tensions utilisées en RS 232 varient
entre — 12 Volts et + 12 Volis. Mais votre liaison fonctionnera mal dans
Ie meilleur des cas (pertes de caractéres) et ne fonctionnera pas du tout
dans le pire. Lisez toujours attentivement les notices.

La licison série RS 232C 67

Le principe d'une liaison série

La liaison série permet d’échanger des données en les envoyant bit par
bit sur le méme fil de transmission, contrairement 2 1a liaison paraliéle
ol les bits sont envoyés en méme temps sur 8 fils de transmission.

Pour transmettre un octet sur la liaison série, il faut respecter les €tapes
suivantes ;

— envoyer tout d’abord un bit de départ, qui correspond 2 un bit & §;
— envoyer ensuite un par un les huit bits de 'octet & transmetire, en
commengant par le bit de poids faible (Bf) dans notre notation);

— envoyer deux bitsa 1 pourindiquer lafin dela transmission del’octet.

1 est alors possible d’envoyer le prochain octet. Lorsque la ligne est
inutilisée, il faut envoyer continiiment des bits a 1, car le premier 0 est
pris comme bit de départ. Ceci est valable pour les fils d’émission et de
réception.

De plus, ALICE utilise un signal appelé détection de porteuse qui loi
indique si le périphérique est prét & recevoir les données. Par exemple,
dans le cas d’une imprimante, ALICE envoie environ 6§ caractéres par
seconde. Si PFimprimanteest pluslente, elle utilisera ce signal pour ralentir
P’émission des caractéres. Voici donc un schéma qui donne I'ordre des
opérations 2 effectuer pour envoyer un octet sur la liaison série. Dans
'exemple, Poctet envoyé est $8D = %10001101.

porteuse
émission
T
[}
1
attente de bit de :1 01100 01 : deux bits la ligne reste
la porteuse départ; (destop & 1jusqu'au

[[XL] prochain octet.

Chaque bit doit étre maintenu & §) ou 4 1 pendant un temps rigoureu-
sement constant (2 600 bauds, cetemps est d’un six centiéme de seconde,
cest-a-dire 1.67 milliseconde). Ceci est nécessaire pour que le périphé-
rique en réception puisse se synchroniser et recevoir correctement les
données.

Dans Pexemple ci-dessus, nous avons envoyé huit bits; c’est le plus
commode dans la mesure ot cela correspond a un octet. Certains
périphériques travaillent sur 7 bits, suivant en cela le standard ASCII
qui définit les caracteres sur 7 bits.

En outre, pour augmenter la sécurité des échanges, certains protocoles
utilisent des bits de parité. Pour cela, il faut envoyer un bit supplémen-

68 La licison série RS 232C

taire, qui S’intercale entre le dernier bit ‘utile’ de 'octet 4 transmettre et
le premier bit de stop. Il existe deux types de bits de parité :

— la parité paire, o1 la somme des bits “utiles’ et du bit supplémentaire
doitdonner un nombre pair. Parexemple, l’octet$8Dcontientquatrebits
a 1 et quatre bits & @. Le bit de parité¢ devra donc étre 2 @;

— la parité impaire, oti la somme des bits ‘utiles’ et du bit supplemen-
taire doit donner un nombre impair. Pour $8D. le bit de parité impaire
sera alors 1.

Le registre d'émission-réception
du MIC 6803

Pour gérer la laison RS232, ALICE utilise le port 2 du MC 6893. Ce
port aurait pu étre utilisé en liaison avec les interruptions IRQ2, mais
(malheureusement?) ce n’est pas le cas.

ALICE utilise le registre de données du port 2, a adresse $3. En fait
seuls deux bits de ce registre sont utilisés :

— le bit de poids faible (Bf) contient le bit 2 émettre;

— le bit B2 reflete la valeur du signal réception de données.

Emission d’un octet sur ALICE

Nous allons voir, dans ce paragraphe, comment émettre un octet 2 partir
@’ALICE. Evidemment, la solution de facilité serait d’utiliser le pro-
gramme OUTCA ($F9C6) que nous avons vu au chapitre 2 : il suffit de
mettre le contenu de DEVNU ($E8) a 1 pour émettre sur la liaison série.
Plus facile encore, on pourrait utiliser LPRINT en BASIC.

11 vaut pourtant la peine d’écrire le programme en assembleur, car le
probleme de I'émission d’un caraciere sur la liaison série est analogue &
celui de la réception, pour lequel nous n’avons pas les mémes facilités.
Les deux opérations sont liées, et le programme a au moins des vertus
pédagogiques.

D’autre part, nous avons vu qu’il existe plusieurs protocoles d’échange
d’informations (parités, nombre de bits stop sont des paramétres qui
peuvent étre modifiées). Les programmes inclus dans ALICE ne traitent
pas tous les cas. Le programme fourni met donc 2 méme de pallier cette
limitation en donnant les éléments pour adapter ALICE 3 un protocole
particulier.

Détaillons les étapes nécessaires & Pémission d’un octet ;
— attente de la porteuse;

— émission du bit de début;

— émission de I'octet (et éventuellement du bit de parité);
— émission du ou des bit(s) de fin.

Voici, étape par étape, les sous-programmes correspondants.

La licison série RS 232C 69

L attente de la porteuse

11 suffit de lire le registre de données du port 2 (bit 2) du MC 6803 ; dés
que ce bit passe & §, Pémission est possible. Cela s’écrit en une simple
boucle :

ATTEN LDAB<$3 ; LECTURE DUREGISTRE
* DU PDRT 2)
BITE 134 { TEST DU BIT DE RECEPTION

BNE ATTEN ; BDUCLE Si SIGNAL A 1
RTS . EXIT

Ce programme est donc trés simple. On peut toutefois le compléter un
peu pour éditer une erreur si P'attente se prolonge trop longtemps; ce
serait utile, par exemple, pour indiquer que 'imprimante n’est pas
connectée.

L émission du bit de début

Nous allons ici écrire le programme d’émission d’un bit. En entrée, ce
programme trouvera dans le bit BY du registre $3 le bit 4 émettre () ou
1). Pour Ie bit de début, il faudra donc mettre ce bit 2 §, par exemple
grice 3 CLRB. L’émission d’un bit est un programme trés simple : on
recopie le registre B dans le registre de données du port 2, puis on attend
le temps nécessaire pour maintenir la méme valeur sur la ligne, de
maniére 4 ce que le signal soit reconnu par le systeme de réception.

BITEM
STAB <$3
BSR EMDEL : PRDGRAMME D'ATTENTE
RTS
EMDEL
BSR EMD1¢
EMD1#
LDX EMDET
EMD2¢
DEX
BNE EmMD20
RTS
EMDET

DFD $PPB5 . TEMPDRISATION

Le programme d’attente peut paraitre bizarrement écrit, a cause de son
branchement 2 la sous-routine EMD1(}; on aurait pu se contenter de
doubler la valeur ’EMDET pour cbtenir la méme temporisation. En
fait, tel qu’il est écrit, ce programme permel deux appels différents,
suivant la temporisation qu’on veut ; en EMDEL, on attend une période
entiére (Cest utilisation que nous en faisons dans BITEM); en EMDI16,

70 La licison série RS 232C

onattend seulement une demi-période, cequi est utile dans le programme
de réception. Le contenu ’EMDET permet de choisir la vitesse de
I'émission. Ici, cela correspond & 600 bauds. les valeurs correspondant
aux autres vitesses vous sont données dans le chapitre 2.

Pour émettre le bit de début. il faut donc faire simplement

CLRB

BBR BITEM
L’émission de I'octet
Dans cet exemple, nous émettons 8 bits sans parité. En entrée, nous
supposerons que loctet 2 émettre se trouve dans le registre A. Ce
programme est donc simplement une boucle de décalage du registre A
(8 fois). Le bit a émettre sera copié dans le registre B pour utiliser le

programme BITEM que nous venons de voir.
EMBB

LDAB 1$8 ; CDMPTEUR DE BITB
EMB1#
PSHB : SAUVEGARDE
; DU CDMPTEUR
CLRB
LSRA : BIT AEMETTRE
; — CARRY
ROLB : CARRY »B
BBR BITEM : EMISSIDN DU BIT
PULB L,
DECB ; DECREMENTATION DU
. COMPTEUR
BNE EMB1@ . PRDCHAINBIT
RTS ; E'I\III\I:ESION DE L'DCTET

L’émission des bits stop
11 suffit d’envoyer deux bits & 1.

LDAB 131
BSR BITEM
BSR BITEM
RTS

Réception d’un octet

Lutilité de ce programme est moins contestable : la réception sur la
liaison RS 232 n’est pas prévue dans la version de base ’ALICE. La
seule solution est donc d’écrire le programmie.

La prise fournie sur ALICE limite les possibilités du programme de
réception : en dehors du fil de masse, il ne reste que trois signaux : un
fil pour ’émission, un fil pour la réception et un fil pour la détection de
la porteuse. Le fil d’émission d’un ALICE arrive sur le fil de réception
de l'autre ALICE. Comme le signal de détection de porteuse ne peut étre

La ligison série RS 232C 71

utilisé qu’en réception et qu’il nexiste qu’un signal en émission, il reste
donc un signal que nous n’utiliserons pas. ALICE signalera qu’il est prét
a recevoir en envoyant un @ sur le fil d’émission (ce sera la porteuse).

Un autre obstacle pénalise la réception : il n’est pas possible d’utiliser les
interruptions. Le programmedevra doncétreconstammentenréception.

Le programme se découpe aussi en quatre parties :
— émission de la ‘porteuse’;

— attente du bit de début;

— réception de Poctet;

— vérification du bit ou des bits stop.

L’émission de la ‘porteuse’

Ce petit programme se contente d’envoyer un @ sur la ligne d’émission.
EMPOR
LOAB <$3
ANDB $$FE
STAB <$3
RTS

L’attente du bit de début

Le programme attend que le fil d’émission passe 3 §. Ensuite, il attend
pour vérifier que le signal reste bien a f). Cette boucle d"attente dure une
demi-période. Aprés cette vérification, le programme attend encore une
période pour se synchroniser sur le premier bit 3 recevoir.
ATDEB

LDAB <$3

BITB %4 : TEST DU SIGNAL RECU

BNE ATDEB ;. SIGNAL TDUJDYRS A 1

BSR EMD@ : ATTENTE 1/2 PERIDDE

LDAB <$3

BITB %4

BNE ATDEB : FAUSSE ALERTE
g%n EMDEL ; ATTENTE 1 PERIODE

La réception de I'octet proprement dit

Le programme regoit Poctet bit par bit. I! va lire Pétat de la ligne de
réception et enregistre son état. Puis il attend une période pour recevoir
le bit suivant. Le résultat se trouvera dans le registre A.

RCOCT
CLRA
LDAB 388 COMPTEUR DE BITS
RCD3P
PSHB ;. SAUVEGARDE DU CDMPTEUR
CLG ; VALEUR PAR DEFAUT = 9

LDAB <$3

72 La licison série RS 232C

BITB 1$4 ; TESTSIBITAZDU1
BEQ RCO20 ; SAUTSIBITAQ
SEC : CARRY =1

RCD2P
RORA . BIT RECU DANS A
BSREMOEL ; ATTENTE POUR PROCHAIN BIT
PULB . COMPTEUR DE BITS
DECB DERMNIER BIT ?
BNE RCO1¢
RTS

La vérification du bit stop

Ce programme vérifie seulement que le bit suivant est bien a 1. Sinon il
faut signaler une erreur, et ignorer Poctet recu.

VERST
LDAB <$3
BITB 1%4
BEQ ERREUR : PROGRAMME DE GESTION

: D'ERREUR
RTS

9

Liaison entre deux
ALICE

Ce chapitre utilise les programmes que nous avons vus dans le cha-
pitre précédent. Il permet de transmettre un texte d’'un ALICE a un
autre par la liaison RS 232C. Pour fonctionner correctement, ce pro-
gramme exige le cable décrit lui aussi dans le chapitre précédent.

Le mode d’emploi du programme est trés simple : il faut le charger
dans les deux ALICE, puis lancer Pexécution des deux programmes.
11 faut alors répondre a la question.

EMISSION OU RECEPTION?

Trois réponses sont acceptées, les autres provoquent la répétition de
la question :

— un appui sur la touche BREAK indique la fin de Putilisation du
programme. On revient alors sous le controle du BASIC d’ALICE.
— la touche R indique que Pon veut se mettre en réception. Chaque
octet recu par la liaison RS 232C est copié sur Pécran, grice au pro-
gramme maintenant bien connu, QUTCA;

— la touche E indique que Pon veut se metire en émission.

ALICE est alors en attente : chaque touche entrée au clavier est
envoyée sur la liaison série.

Lorsque vous appuierez sur la touche BREAK, ce caractére sera
envoyé sur la liaison série pour débloquer le programme de réception.
Ensuite le programme revient lui aussi a la question

EMISSION OU RECEPTION ?

Attention @ A chaque caractére envoyé, le programme attend la pré-
sence du signal de porteuse. Si ce signal est absent, le programme se
bloque. II est donc indispensable que ce signal soit fourni par Pautre
ALICE, déja en réception. Pour tester le programme d’émission, vous
pouvez relier ALICE a une imprimante.

74 La licison entre deux ALICE

Organigramme du programme

Le programme est trés simple, puisque le plus gros a été fait dans les
routines du chapitre précédent.

Partie 2 |Question
EMISSION OU RECEPTION?

fouche BREAK ¢ OUi
nén W

non programme
ENVOI
@ U
programme
non RECPT

Le programme ENVOI 1it la touche entrée par 'utilisateur, fait ’écho
sur Pécran et envoie 'octet sur la liaison série. Si la touche n’était pas
BREAK, il recommence. Les programmes utilisés sont déja connus :
KDINP pour la scrutation du clavier (avec clignotement du curseur),
OUTCA pour I'écriture sur I'écran.

Le programme RECPT est encore plus simple : il recoit un octet,
Pécrit sur Pécran (OUTCA. encore) et recommence si le code recu
n’était pas celui de BREAK.

13

23 Programme RSZ32C !
I e ——— !
a ; Ce programme permet d”echanger H
53 un texte entre 2 ALICE . I1 u— H
& 3 tilise la prise DIN situee a H
73 arriere d’ALICE . H
8

9 : Auteur : J-F Gallet '
1o ; Date : 29 Decembre 1384 !
11 ;

1z

13 ORG $8C00

i4 EXC RES232

15

Dormees externes utilisees par le programme =
OUTTX = SE7A8 3 IMPRESSION D’UN TEXTE
KDINP = $Fe&8 FACQUISITION D*UN CARACTERE
OUTCR = $FIC6 3IMPRESSION D*UN CRRACTERE
2. Choix = emission ou reception 7
RS232
LDX HTXGUE-$1
JSR OUTTX
JSR KDINP
JSR ouTeh
CMPA #33
BNE RE010
RTS
RS010
CMPA #3435 1E COMME EMISSIDN
BNE RS020
LDX HTXEMI-$1
JSR aurTX
BSR ENVOY
BRA RS232
RS020
CMPA #$52 ;R COMME RECEPTION
BNE RG232
LDX #TXREC—$1
JSR ouTTX
BSR RECPT
BRA RG232
3. Emission des caracteres entres au clavier @
ENVOI
JSR KDINP
JSR ourca
BSR EMISS
CMPA #$3
BNE ENVOI
RYS
34. Reception des caracteres enveoyes par 1°autre ALICE =
3
RECPT
BSR RECEP
JSR ource
CHMPA #$3
BNE RECPT
RTS
35. / Programme d’emission =
sEntree : A = Octet a emettre
;Sertie = A = Irchange
EMISS
BSR ATTEN sATTENTE DE LA PORTEUSE
CLRB ;EMISSION DU BIT START
BSR BITEM
BSR EMBB ;EMISSION DE L’OCYET
LDAB #31 sENVDI DU BIT STOP
BSR BITEM
BSR BITEM
RTS

La licison entre deux ALICE 78

76 La licison entre deux ALICE

123

141

Sous—programme d’ attente de la porteuse =

{3
#34
ATTEN

Sous—programme d’emission d'un octet @

#38

BITEM

EM810

3SAUVEGRRDE DU CARACTERE

Sous—programme d'emission d’un bit @

{$3
EMDEL

Sous—programme de temporisation :

Programme de reception d’un octet sur la ligne RS232 =

n
]

EMD10

EMDET

EMD20

$0083

eant
= caractere recu

Sous—programme d’emission et d’arret de la porteuse @

36.
ATTEN
LDARB
BITB
BNE
=3
37
EMBB
PSHA
LDRB
EMB10
PSHB
CLRB
LSRA
ROLB
BSR
PULB
DECB
BNE
PULA
RTS
;8.
BITEM
STRB
BSR
RTS
39.
—
EMDEL.
BSR
EMD10
LDX
EMD20
DEX
BNE
RTS
EMDET DFD
310,
sEntree 3
;Sortie
RECEP
BSR
BSR
BSR
BSR
BSR
RTS
311,
—
EMPOR
LDRB
ANDB

($3
#IFE

14z

188
189
130
191

133
194
1595
196
137
198
1939
200
zo01
zo2
203

STPOR

312
ATDEB

313,

ACOCT

RCO10

RCO20

sia.

H

VERST

EREUR

515,

TXOUE

TXEML

La licison entre deux ALICE

STRAB ($3
RTS
LDAB #%1
STRB (%3
RTS

Sous—programme d”attente du bit de debut *

LDRE {33
BITE #%4
BNE ATDEB
BSR EMDiO
LDRE (33
BITB #%4
BNE RTDEB
BSR EMDEL
RTS

Sous—programwe de reception d’un octet =

CLRA

LDRB #%8
PSHB

cLe

LDRB {$3
BITB #%4
BEQ RCO20
SEC

RORA

BSR EMDEL
PULB

DECB

BNE RCO10
RTS
Sous-programme de verification du bit stop =

LDAB <{$3

BITEB #%4

BER EREUR
RTS

PSHA

LDX HERTX-$1
JSR ouTTX
PULA

RTS

Textes divers @

DFo $0D
*EMISSION OU RECEPTION ?
DFD $2000

*MISSION ¢ TAPEZ VOTRE TEXTE .
DFD $0D00

77

78 La liaison entre deux ALICE

205 TXREC *ECEPTION @ PREY A RECEVOIR .

206 OFD $0DOOD

207

208 ERTX DFO $0D

209 *ERREUR EN RECEPTION.CARACTERE RECU &
210 DFD %2000

211

212 316. Fin

10

Le processeur de
visualisation, les bases

Le circuit intégré EF 9345

La principale différence entre la premiére version ’ALICE et les nou-
velles, ALICE 32 et ALICE 9, réside dans Putilisation d’un circuit
intégré EF9345 pour contrdler la visualisation des données. Ce cir-
cuit intégré recoit du microprocesseur des informations comme les
caracteres 2 afficher, Pemplacement d’affichage, les données de cou-
leur... Il traduit ces informations en signaux électriques transmis a la
prise Péritel.

Le circuit EF9345 conserve les possibilités offertes par la premiere
version ’ALICE : les jeux de caractéres alphanumériques et semi-gra-
phiques sont restés compatibles. De plus, Iaffichage de 16 lignes de
32 caractéres a €€ conservé, ce qui permet d’utiliser sur les nouveanx
modeles les programmes congus pour Pancien.

Les premieres différences sont illustrées par Peffet des comman-
des CLS 4, CLS 8 et CLS 81, qui donnent un premier apercu des capa-
cités du EF 9345. 1l est aussi possible de changer la couleur du fond,
celle des caractéres, dans un programme BASIC a Paide de la fonc-
tion SET*. Mais ce circuit est si puissant qu’il mérite détre étudié ici,
au long de trois chapitres.

Ce premier chapitre est destiné a expliquer les caractéristiques tech-
niques du EF 9345 qui vous permettront de suivre le détail des deux
suivants, consacrés respectivement aux modes 40 et 80 caracteres
par rangée.

80 Le processeur de visualisation

Les registres du EF 9345

Dans la premiere version ’ALICE, il était trés simple d’aller écrire
sur Pécran sans passer par le BASIC : il suffisait d’aller stocker un
octet dans une partie de la mémoire du micro-ordinateur, qui était le
reflet de ce qui s’affichait sur Pécran. Les ALICE 32 et 99 fonction-
nent différemment : pour afficher quelque chose, il faut envoyer une
série d’ordres a un processeur différent, le 9345. Il y a toujours une
zone de la mémoire correspondant au contenu de I’écran, mais elle
est désormais mise 2 jour par le 9345, au fur et 2 mesure qu’il recoit
des ordres du microprocesseur 68(3. Cette partie de la mémoire r'est
pas disponible pour le microprocesseur, qui ne peut ni la lire, ni y
écrire directement.

La .communication avec I'écran passe donc par les registres du 9345,
qui sont au nombre de 13 :

— 8 sont directement adressables par le microprocesseur (¢’est-a-dire,
par exemple, avec des instructions comme LDAA ou STAA);

— 5 ne sont adressables que par P'intermédiaire des 8 premiers.

Lorsque plusieurs ordres composant une commande sont envoyés au
9345, rien ne se passe tant que le programme n’a pas demandé I'exé-
cution de la séquence entiere. C’est pour cela que chaque registre a
deux adresses : la premi¢re est utilisée pour passer une commande
simple, la seconde pour passer une commande et débuter Pexécution
de la séquence.

Le premier registre, appelé Rf, se trouve a adresse $BF2{) pour une
commande, et $BF28 pour Pexécution. Le registre R@) sert de registre
de commande lorsquon y écrit, et de registre d’état lorsqu’on vy lit.
En particulier, ce registre sélectionne les modes 4f) ou 8¢) caracteres.
En lecture, il donne I'état de disponibilité du 9345 (voir plus loin le
traitement du signal BUSY).

Les trois registres R1, R2 et R3 se trouvent aux adresses $BF21,
$BF22 et $BF23 pour une commande, et $BF29, $BF2A et $BF2B
pour une exécution. Ce sont des registres de données qui indiquent au
9345 quel caractere doit étre écrit, avec sa couleur et ses attributs.

Les quatre registres R4, RS, R6 et R7 se trouvent aux adresses $BF24,
$BF25, $BF26 et $BF27 pour une commande, et $BF2C, $BF2D,
$BF2E et $BF2F pour une exécution, Ce sont des pointeurs dans la
mémoire privée du 9345.

Les cing derniers registres, comme nous ’avons vu, ne sont pas adres-
sables par le microprocesseur. Il faut y accéder indirectement, en par-
ticulier grice au registre de commande R{. Leurs roles sont les sui-
vants :

Le processeur de visualisation 81

— les deux premiers, appelés ROR et DOR, servent d’adresses de
base dans la mémoire privée du 9345, 7

—_ les trois autres, appelés PAT, MAT et TGS fournissent les caracté-
ristiques générales des signaux vidéo (nombie de lignes, entrelacage,
synchronisation) qui assurent un bon fonctionnement avec un 1élévi-
scur. Ils contiennent aussi les caractéristiques de visualisation vala-
bles pour toute la page: couleur de marge, type de curseur.

Le signal BUSY

Ce signal occupe un seul bit du registre R@, en lecture, mais il est trés
important : si vous négligez ce signal, vous obtiendrez mimporte quoi
sur votre écran en essayant d’y écrire par I'intermédiaire des autres
registres.

Le reméde est simple : en principe, avant d’écrire dans un registre du
9345, il faut attendre son autorisation, cest-a-dire que le bit B7 du
registre R@ soit a @. Toutefois, comme ce bit ne passe a | que lors-
que le microprocesseur demande au 9345 d’exécuter une séquence, il
est plus siir et plus commode de tester ce bit BUSY juste aprés avoir
demandé une exécution. En général, on utilise ce sous-programme trés
simple :

BUSY TST RE
BMI BUSY
RTS

Ne l'oubliez jamais! Clest le genre d’erreur qui donne des résultats
bizarres, apparemment aléatoires, et dont la source est trés difficile &
trouver, car le microprocesseur peut dans ce cas envoyer des séquen-
ces parfaitement correctes au 9345 sans que celui-ci les exécute con-
formément a votre attente.

La mémoire privée du 9345

Le 9345 peut gérer jusqu’a 16 K-octets de mémoire privée. ALICE lui
alloue 8 K-octets. Cette mémoire est divisée en 8 blocs de 1 K-octet.
Chagque bloc est divisé lui-méme en 25 tampons (buffers) de 4 octets.
Pour donner Padresse d’un octet, il faut fournir les parameétres sui-
vants :

— X, numéro d’ordre de Poctet dans le buffer @<= X <=39);

— Y, numéro d’ordre du buffer dans un bloc d’l Ko; (c’est 1a que
réside une bizarrerie du 9345 : la valeur de Y peut étre @, 1 ou entre
8 et 31, bornes comprises. De plus, 1 Ko vaut 1(24 octets; donc on
a 25 tampons de 40 octets plus un reste de 24 octets. Ces octets sont
récupérés de la maniére suivante :.le tampon Y=1 n’existe que dans
les blocs pairs et il est incomplet dans les blocs impairs (comme sa
gestion est compliquée, on ne l'utilise jamais);

— Z, numéro du bioc de 1 Ko (§ <= Z <=7).

82 Le processeur de visualisation

Les blocs sont regroupés en districts, formeés de quatre blocs succes-
sifs (1 district : Z=0, 1, 2, 3; 2 district : Z=4, 5, 6, 7).

Les registres utilisés pour accéder & cette mémoire sont au nombre de
quatre :

— R4 et RS, qui forment un pointeur auxiliaire;

— Ré6 et R7, qui forment le pointeur principal.

Par exemple, si vous voulez utiliser un pointeur sur une zone définie
par les parametres X, Y et Z et un pointeur auxiliaire sur une zone
définie par les parametres X’, Y’ et Z’, voici le format des registres
R4, RS, R6 et R7 :

x[xs]xa[x3[x2[xi [xp] x[x5]xa[x3][x2]x1]x0]
Y Y
z [(3[2]ualx] =z [z3[z2]z1[2p]

Ra[- [- [z2[valv3]v2[yi[yo]
RS[zP] z1 I x5 [x4 J x3[x2 I x1 [xp l
Ro[23 23]z [ya [y3 [y2 [l []
R7|zﬂ [zl IxS lx4 |x3 1x2]x] l)m

Comme vous le voyez, le format de ces registres est lui aussi assez
complexe. 1l faut un programme du genre de celui proposé ici pour
calculer les valeurs de R4, R5, R6 et R7.

(N.B. : la plupart du temps, seuls les registres principaux R6 et R7
sont utilisés.)

Programme de calcul de R7 et R6

Z0=%1
Z1=%2
72=%4
Z3=%B
: 1. CALCUL DE R7
LDAB Z
LDAA X
BITB 7@
BEQ ET0@
ORAA 3$80
ETA@ BITB 321
BEQ ET@1

ORAA ;540
ET#1 STAA R7

Le processeur de visualisation 83

: 2. CALCUL DE R8
LDAA Y
BITB 3Z2
BEQ ETp2
ORAA %20
ET@2 BITB 3Z3
BEQ ET@3
ORAA $B@
ETP3 STAA B8

Nota : en général ce programme est tres simplifié, car on utilise le
premier bloc pour la visualisation; dans ce cas on a Z=@, ce qui
donne :

LDAA X

STAA R7

LDAA Y

STAA RB
ou

Partition de la mémoire privée du 9345

Une page, telle quelle est affichée sur I'écran, représente 25 rangées
de caracteres (en fait le mode 16 rangées de 32 caracteres est obtenu
en inscrivant des caractéres noirs sur les rangées et caractéres super-
flus!).

Chaque rangée est associée 2 2 ou 3 tampons de 4 octets. Cet
ensemble constitue un buffer de ligne. Ces tampons suivent la régle
suivante :

— ils ont le méme numéro de buffer Y;

— ils se trouvent dans 2 ou 3 blocs successifs du méme district;

— le premier bloc de cet ensemble doit étre un bloc pair.

Cela laisse peu de choix : lorsquiil faut deux blocs, le premier peut
étre le bloc @, le bloc 2, le 4 ou le 6; lorsqu’il en faut trois, le pre-
mier bloc peut étre le bloc @ ou le bloc 4.

Par conséguent on peut avoir jusqu’a quatre pages de visualisa-
tion en mémoire. En général, pour utiliser les modes d’adressage de
la mémoire les plus simples, on se limite & une ou deux pages en
mémoire. Nous nous limiterons a ces cas dans ce livre.

On définit donc trois blocs pour une page sur Pécran :

— Le premier bloc définit les caracteres qui se trouvent sur I'écran.
Ce sont soit des caracteres alphanumériques (lettres, chiffres, ponc-
tuation), soit des caractéres semi-graphiques, soit des caractéres gra-
phiques redéfinis par le programmeur. (Nous verrons plus loin com-
ment définir ses propres caractéres).

— Les deux blocs suivants définissent les caractéristiques du
caractére affiché : couleur, clignotement, inversion vidéo... Ces

84 Le processeur de visualisation

caractéristiques different suivant le mode choisi, 4 ou 8 caractéres
par rangée.

Le reste de la mémoire est consacré 4 la définition des caracteres par
Putilisateur. Cette définition n’est possible quen mode 4 caractéres;
clle sera étudiée dans le chapitre qui lui est consacré.

Les commandes usuelles du 9345
Toutes les commandes sont spécifiées au 9345 par le registre R,

Le type de la commande est spécifié par les quatre bits de poids fort
de R0, (B7, B6, B5, B4). Les quatre bits de poids faible sont des para-
métres nécessaires 4 Pexécution de la commande. Les arguments sont
transmis grice aux autres registres. Suivant le nombre d’octets d’argu-
ments, on aura des commandes courtes ou longues. Si le processeur
reste maitre du nombre d’arguments a actualiser, la commande est
dite variable.

Voici le détail des commandes utilisées de maniére courante.

1. Indirection. IND

Ro=[1]0]0[0 R/W—r —]
Cette commande permet de lire ou d’écrire un des registres indirects :
on lit le contenu du registre si R/W = 1; l'octet est transféré du
registre indirect vers le registre R1. Si R/W = (), on est en posi-
tion d’écriture, 'octet est transféré du registre R1 vers le registre indi-
rect.
r indique quel est le registre concerné :
— r=1 registre TGS

—r=2 MAT

—r=3 PAT

—r=4 DOR

—r=7 ROR (les valeurs §, 5 et 6 sont inutilisées).

L’argument est fourni par le registre R1.

Cette commande est trés importante : les registres indirects précisent
des parametres comme la norme de ’écran utilisé, les paramétres
généraux de I'écran (marge, type du curseur...), le mode d’affichage
(49 ou 80 colonnes), 'adresse des blocs contenant les caractéres défi-
nis par le programmeur. Ces registres sont en général initialisés en
début de programme, et ne sont modifiés que pour la définition de
caractéres graphiques.

2. Affichage ou lecture d’un caractére en mode 49 colonnes.
Commande longue (24 bits KRF

RO=|0[0[0)|0R/Wa[6]i

Le processeur de visudlisation 85

Cette commande permet d’afficher un caractere défini par R1, R2, R3
a I'adresse définie par R6 et R7, lorsque le bit R/W est 2 0. Si R/W
est a 1, c’est Iinverse : le caractere et ses caractéristiques qui se
trouvent & I’adresse définie par R6 et R7 se retrouvent dans R1, R2
et R3.

a indique la condition d’arrét de la commande :

a = @, on maffiche qu’un octet;

a = 1, Paffichage se poursuit jusqua ce qu'une nouvelle commande
soit envoyée.

i, lorsquil est & 1, indique que le pointeur dans R6 et R7 sera incré-
menté aprés exécution de la commande.

(Cette commande, et la commande OCT, que nous verrons un peu
plus loin, seront plus largement analysées dans le chapitre 12).

3. Affichage on lecture d’un caractére en mode 88 colonnes.
Commande longue (12 bits) KRL

RO =[8]1T0T1 [R/Ma[0]i]
R/W, @ et i ont la méme signification que dans la commande KRF.

Cetie commande est analogue 3 KRF, ses parametres seront détaillés
dans le chapitre 11.

4. Ecriture ou lecture d’un octet en mémoire privée.
OCT

rRp=[p]o[I[IR/Wplo]i]

R/W et i ont la méme signification que pour les commandes précé-
dentes. p indique quels registres sont utilisés comme pointeurs :

@ = utilisation de R6 et R7

1 = utilisation de R4 et RS.

Nous reverrons cette commande dans la description du mode 40
colonnes.

5. Recopie simple d’un tampon sur un autre.
MVB
Ro-[1]1]0]1[s[5]a]a]
sS indique le sens de la copie :
s§ = 01, 1a source est pointée par les registres R6 et R7, la destination
par les registres R4 et RS;
s§ = 10, la source est pointée par les registres R4 et RS, 1a destination
par les registres R6 et R7.
aa indique la condition de fin de recopie :
aa = @1, la copie s’arréte a la fin du tampon;
aa = 10, il 0’y a pas d’arrét tant que le 6803 n’envoie pas d’autre com-
mande.

86 Le processeur de visualisation

6. Recopie double.
MVD
rRo=[1]1]1]0]s[s]a]a]
Cette commande est analogue 4 MVB, mais elle travaille sur un tam-
pon double.

7. Recopie triple.
MVT

Ro=[1T1[iT1]s[s]a[a]

Cette commande travaille sur un tampon triple.

Ces trois commandes, MVB, MVD et MVT, sont utilisées pour reco-
pier une rangée de caractdres sur une autre rangée. Les principales
applications sont les suivantes :

— le défilement de I’écran vers le haut (rofl up);

— le défilement de I’écran vers le bas (roll down);

— Teffacement d’écran (on recopie une rangée vide sur toutes les
autres).

8. Incrémentation de Y.
INY
Ro=[1]0]1]1]p]o]o]s]

Cette commande incrémente le numéro de buffer Y. Lincrémenta-
tion s’effectue dans le registre R6.

9. Pas d’opération.
NOP

Ro-[1]{0[6]i[0[p]0]1]
Cette commande est utilisée pour initialiser le 9345, et pour arréter
une commande qui utilise Pincrémentation automatique (@ = 1).

lLes commandes du 9345 rarement utilisées

1. Affichage ou lecture d’un caractére en mode 49 colonnes.
Commande courte (16 bits)

RO=[0[0 8]0 R/Wal1]i]

Cette commande est similaire 4 la commande KRF. Elle n’utilise que
les registres R1 et R2 comme paramétres (mais R3 est un registre de
travail modifié lors de Pexécution). L’avantage de cette commande est
sa compatibilité avec un autre circuit intégré, le EF 9340/9341. Elle
fait perdre certains avantages du 9345 : le jeu des caractéres accen-

Le processeur de visualisation 87

tuées et I'un des jeux de caractéres semi-graphiques ne sont plus acces-
sibles.
Cette commande n’est jamais utilisée dans ALICE.

2. Affichage ou lecture d’un caractére en mode 48 colonnes.
Commande variable (24 ou 8 bits) KRV

Ro=[0]o]1]0 R/ Wa[o]i]
Cette commande est similaire & la commande KRF. Hle n’utilise
que Je registre R1 lorsque les attributs du caractére courant sont les
mémes que pour le caracteére précédent. Lorsque I'on veut définir de
nouveaux attributs dans les registres R2 et R3, il faut simplement
mettre le bit de poids fort de R1 4 1. De plus, KRV utilise une astuce :
considérant qu’un caractére accentué est ordinairement suivi par un
caractere non accentué, ce mode repasse automatiquement dans le jeu
de caractéres non accentués aprés un caractére accentué.
Attention : le premier caractere d’une rangée doit étre completement
défini par R1, R2 et R3.
Ce mode n’est jamais utilisé dans ALICE : dans ce cas, la structure
des buffers contenant les attributs est beaucoup moins prévisible que
pour les codes longs.

3. Affichage ou lecture d’un caractére en mode 8§ colonnes.
Commande courte (8 bits)
KRC

Ro=[0]1]p[0R/Wa[0]i|
Cette commande est similaire au mode KRL, avec les limitations sui-

vantes : il 0’y a pas de caractdres graphiques, et les caractéres alpha-
numériques ne possédent aucun attribut.

4. Expansion. EXP

RO=[0[1[1[0]6]00]0]
Cette commande transforme une rangée définie en code variable en

rangée définie en code étendu (similaire au code long). La commande
EXP n’est utilisable qu’en mode 4§ caractéres par rangée.

5. Compression. CMP
rRo=[0[1[1[1[0]0]0]0]

Cette commande est P'inverse de la commande EXP.

6. Mode caractéres étendus. KRE
Ry =[o o]0l 1R/ o[p]i]

88 Le processeur de visualisation

Cette commande, utilisée en conjonction avec la commande EXP,
permet de lire ou décrire un code étendu et de la transformer en
code long.

7. Commandes de synchronisation verticale. VSM et VRM
rRo=[1]@]o]i[1]oJe]1] vsm
Ro=[1{efo]1fo[1]o[1]vRM

Ces commandes affectent un bit du registre d’état R@). Ce bit (qui
donne I’état de la synchronisation) reste toujours a) aprés la com-
mande VSM, et donne réellement P’état aprés la commande VRM.

Le registre d’état du 9345

Nous venons de voir que pour envoyer des commandes au 9345 il
suffit de placer Poctet de commande dans le registre R et de com-
mander I'exécution.

Contrairement aux autres registres, RO a un role différent lorsqu’il est
lu : en lecture, RO donne des renseignements sur I'état du 9345. Voici
sa structure :

RO =|Busy |[AL]LXm[1Xa | MSBy, [Sync| ~ | - |

Nous avons déja vu le réle de BUSY : tant que BUSY est & [, cela
signifie que la commande précédente n’est pas encore complétement
exécutée. Pendant ce temps, vous pouvez lire le registre R, et vous
pouvez envoyer une commande en demandant son exécution. La
commande en cours est alors achevée autoritairement. Cette facilité
est utilisée en particulier lorsque le bit @ est mis 4 1 dans les com-
mandes KRF, KRL et OCT, car ces commandes ne possédent pas de
condition d’arrét.

LXm est mis a 1 lorsque le pointeur X dans un tampon atteint la
valeur 39. LXm concerne les registres principaux R6 et R7.

LXa a le méme réle, mais concerne les registres auxiliaires R4 et R35.

AL est le bit d’alarme : il est mis & 1 lorsque soit LXm soit LXa sont
mis 2 1 et qu'une incrémentation est demandée (bit i dans une com-
mande).

MSBy, reflete 1a valeur du bit de poids fort du registre R1. En général,
il est a 1 lorsque I'on utilise des caracteres définis par l'utilisateur.

Sync : ce bit donne I’état du signal de synchronisation verticale. Il est
toujours & @ si 'on envoie la commande VRM.

Lorsqu’une commande débute son exécution, les bits AL, LXm, L.Xa
et MSBg, sont remis a ¢.

Le processeur de visualisation 89

Les registres du 9345

1. Les registres a accés direct

R : nous avons déja vu son rdle; il sert a envoyer les commandes au
9345, ainsi qu’a lire I’état du 9345.

R1 : le registre R1 est utilisé pour les transferts vers ou en provenance
du 9345.

R2 : le registre R2 a un rdle similaire a celui de R1.

R3 : le registre R3 contient les attributs concernant les caractéres con-
tenus dans R1 et/ou R2.

R4, R5, R6 et R7 forment des pointeurs dans la mémoire privée du
9345; nous avons déja vu leur structure.

L’utilisation des registres R1, R2 et R3 dépend fortement du mode

utilisé, 40 ou 8@ caractéres par rangée. Nous étudierons donc leurs

roles plus précisément dans les chapitres 11 et 12.

2. Les registres a accés indirect

Pour lire ou écrire ces registres, il faut obligatoirement utiliser la com-
mande IND. On utilise alors le bit R/W pour définir 'opération : lors-
que R/W est mis a), le contenu de R1 est transféré dans le registre
indirect indiqué par la commande, alors que si R/W est a 1, c’est le
contenu du registre indirect qui est transféré dans R1.

Voici le contenu des registres indirects :

ROR et DOR contiennent les adresses de base de la page a visualiser
(ROR) et du générateur de caractéres définis par I'utilisateur (DOR)
en mode 49 caractéres par rangée.

PAT, MAT et TGS sélectionnent des caractéristiques générales de
I’écran.

ROR = [73]Z1[Z2]-- [YOR]

73, 72 et Z1 définissent le numéro du premier bloc qui doit étre
visualisé a Pécran. Ce premier bloc doit touyjours étre un bloc pair,
c’est pour cela que ZQ n’est pas programmable (il est toujours égal a).

YOR définit Padresse de la rangée d’origine. C'est une valeur entre 8§
et 31. En effet, pour le 9345, Pécran est divisé en deux parties :

— la rangée de service, qui est la premiere rangée de I’écran, en haut,
— les rangées de travail (les 24 autres).

Les rangées sont visualisées dans Uordre, & partir de 1a rangée préci-

sée par YOR. Pour garder I'ordre contenu dans la mémoire privée du
9345, on affecte 2 YOR la valeur 8.

90 le processeur de visudlisation

DOR = | 23Q [Z3G1[Z2G1[Z1G’1 [Z3G 022G 0] ZIG 0]29G0)
en 4§ colonnes

Le registre DOR est utilisé différemment suivant le mode choisi (40

ou 8f) colonnes). En 40 colonnes, il définit les adresses dans la

mémoire privée du 9345 on se trouvent les générateurs de caracté-
res graphiques programmés par I'utilisateur. Voici rapidement leur
signification (tout cela sera développé plus longuement dans le cha-

pitre 12).

Z3Q : bit de poids fort du numéro du premier bloc qui contiendra la
définition des caracteres en mode quadrichrome.

Z3G’1, Z2G’1 et Z1G'1 : bits de poids fort du numéro du premier
bloc qui contiendra des caractéres semi-graphiques en mode
bichrome.

Z3GP Z2G0, Z1G’P et ZOG’P : numéro du bloc qui contiendra des
caractéres alphanumériques définis par Putilisateur, en fait en
mode bichrome 12 aussi.

DOR =[il [B1[G1]Ri1]if [BP [GA]RG] en 80 colonnes.

Dans le mode 80 caractéres par rangée, DOR définit les deux cou-
leurs actives.

if) autorise (ou interdit) Pincrustation du fond. B®, G@ et R@ sont les
composantes de la premiére couleur active; Bfi=1 si il y a du bleu (@
sinon), Gf=1 définit du vert et R@ du rouge. 1l est possible de com-
biner ces couleurs. Par exemple si B)=G@=R@=1,"on obtient la cou-
leur blanche. La signification des bits il. Bl, GI et R1 est identique,
mais s’applique a la deuxieéme couleur active. Les deux couleurs acti-
ves sont des couleurs de caractéres. La couleur de fond est celle de ia
marge, elle est définie dans le registre indirect MAT.

7Gs = [(HAR/ys | vIDEO cARAC
RG et
CHAR/RG : ces deux bits sont utilisés en conjonction avec le bit de
poids fort du registre PAT. Ils permettent de choisir le mode 40
ou 8 caractéres par rangée. Voici les différentes combinaisons pos-
sibles :

PAT7 TGS7 TGS6 Mode
{ [1] 40 caractéres, commande longue

1 40 caractéres, commande variable
@ 40 caracteres, commande courte
1 80 caracteres, commande longue
@ 80 caracteres, commande courte

e -—-mw
—_——lmEs

YS définit la rangée de service : ce peut étre soit @ soit 1 (rappel : le
tampon 1 n’existe que dans les blocs de rang pair).

VIDEO CARAC définit les caractéristiques de Pécran utilisé :

Le processeur de visualisation 91

TGS 4 : type de synchronisation (1 : signal composite et comparateur
de phase, § : synchronisation horizontale et verticale).

TGS 3 et TGS 2 : resynchronisation verticale ou horizontale si 1.

TGS 1 : vidéo entrelacée (1) ou non entrelacée ().

TGS @ : 525 lignes (1) ou 625 (¥).

PAT = [C/R[F INSERT[M [LBJUB[S]

C/R : bit utilisé avec les bits de poids fort du registre TGS, comme
nous venons de le voir.
F : autorisation de clignotement (1) ou inhibition (§).
INSERT : deux bits définissant le type d’insertion vidéo. Nous ver-
rons plus loin ce guon entend par la, et comment
ALICE utilise P'insertion vidéo. Voici les possibilités de ce

mode :
PAT S PAT 4 Mode d’insertion
0 @ incrustation
[} 1 écart
1 ¢ forcage
1 1 inhibition

M : le bit M n’est pas utilisé en mode 8(caractéres par rangée. Il
autorise le masquage lorsqu’il est a 1 : chaque caractére dont
Pattribut personnel «masquage» est a 1 est représenté a I’écran
par un espace.

LB :si LB est a 1, Paffichage du bas de ’écran est autorisé, si il est 2
@, le bas de I'écran prend la couleur de la marge.

UB : méme rdle, pour le haut de I’écran.

S :mis 2 1, S autorise la rangée de service, a @, la rangée de service

prend la couleur de la marge.

MAaT=[DH[C] cM [MI[MC |

DH : double hauteur. Lorsque ce bit est 4 1, la hauteur des
caractéres est doublée. Evidemment, seule la moitié des
caracteres apparait sur Pécran (la taille de I’écran rlest
pas changée!).

C : autorise I'utilisation du curseur (1) ou non ().

CM : définit le type du curseur sur deux bits; voici le tableau :

MATS MAT4 Type du curseur
1] [4] curseur fixe, complémente le caractére
1 [4] curseur clignotant, complémente le caractére
1] 1 curseur fixe, souligne le caractére
1 1 curseur clignotant, souligne le caractére

MI : incrustation de la masge.

MC : définit la couleur de la marge sur trois bits, par combinaison des
trois couleurs de base, Bleu (MAT 2), Vert (MAT 1) et Rouge
(MAT @). La couleur est présente si le bit est 4 1; voici les com-
binaisons :

92 Le processeur de visualisation

Codage des couleurs MAT2 MAT1 MATH
noir 1] [}
rouge 1] 1] 1
vert 1] 1 [4]
jaune [} 1 1
bleu 1 0 0
magenta 1 [4] 1
cyan 1 1 1]
blanc 1 1 1

Les caractéres alphanumeériques

Le jeu de caracteres alphanumériques est commun aux deux modes,
40 et 80 caractéres par rangée. 1l comprend bien entendu les lettres
majuscules et les signes de ponctuation.

Vous savez déja que les caracteres minuscules étaient disponibles en
mode 80 colonnes; ils le sont aussi en mode 49 colonnes, mais le
BASIC &’ALICE n’utilise pas cette possibilité. Toutefois, on peut faci-
lement y accéder en programmant soi-méme les entrées-sorties
sur P’écran.

De méme, de nombreux caractéres accentués, intéressant en particu-
lier les francophones, sont directement affichables, ainsi que quelques
caractéres spéciaux. En mode 4§ colonnes, I'ensemble des jeux de
caractéres forme un ensemble compatible avec les normes Vidéotex
en usage en France. Si vous disposez d’un modem, il vous suffit de
le raccorder 2 ALICE et d’écrire son programme de gestion pour pou-
voir profiter d’un Minitel intelligent (en ce qui me concerne, c’est déja
fait). 1l est probable que MATRA profitera de cette facilité offerte par
le 9345.

Le curseur

Si vous avez bien lu les possibilités de la commande MAT, peut-étre
avez-vous v une incohérence entre la gestion du curseur par ALICE
el les quatre gestions standard du 9345. En effet, pour autoriser les
caractéres semi-graphiques d’ALICE dans toutes les couleurs disponi-
bles, le curseur affiche alternativement le caractére et un carré dans
la couleur courante du curseur puis un carré noir. On peut changer la
couleur courante par un appui simultané sur CONTROL et . Pour
gérer le curseur ainsi, ALICE n’a pas autorisé le mode curseur. Si ce
mode vous intéresse, il suffit de mettre le bit C du registre MAT a 1,
puis de choisir le type de curseur qui vous convient le mieux.

Le processeur de visudlisation 93

Voici un petit programme en BASIC qui vous permettra de comparer
les quatre versions existantes (il faut étre en mode 49 ou 8 caracte-
res par rangée) :

48 AP = 11%16)3 + 15%16}2 + 32 : REM ADRESSE DE R@
5@ A1 = AB+1 : REM ADRESSE DE R1

60 RP = 130 : REM COMMANDE IND PDUR LE REGISTRE MAT
7@ R1 (@) = 72 : R1{1]=104 : R1(2)=88 : R1(3)=120 : REM

LES 4 TYPES DE CURSEURS DISPDNIBLES
S8AFODRA=@TO3

9@ PDKE A1, R1(A) : PDKE Af+8, R : REM LE +8 COM-
MANDE L'EXECUTIDN

100 IF INKEY$ = * " THEN 100

110 NEXT A

120 GDTD 8@

Attention : si vous utilisez ce curseur géré par le 9345, vous ne pouvez
plus utilisez le programme d’acquisition de caracteres géré par ALICE
qui s’appelle KDINP, et qui se trouve a Iadresse $F868. KDINP
attend la frappe d’une touche et retourne son code ASCII dans le
registre A du 6803. Le probleme est qu’il fait clignoter le curseur sui-
vant la technique d’ALICE, ce qui fera apparaitre deux curseurs sur
les deux emplacements contigus. Utilisez plutét le programme POL-
CAT qui se trouve I'adresse $F883. POLCAT fournit dans le
registre A le code ASCII de la touche enfoncée, ou @ s'il n’y a pas
de touche enfoncée. L'attente d’une touche se fait donc grace a la
séquence suivante :

SCRUT JSR POLCA : PDLCA = $F883

BEQ SCRUT ;. PAS DE TOUCHE

De méme, en BASIC il est alors préférable d’utiliser INKEY$ plutét
que INPUT.

La gestion du 9345 dans ALICE

Aprés cet exposé de Iétendue des possibilités du 9345, vous pouvez
voir que ce circuit intégré est nettement sous-employé par le BASIC
$’ALICE, par souci de simplicité. Cette précaution permettait de res-
pecter deux impératifs :

— toutl d’abord conserver une compatibilité maximale avec la pre-
miére version ’ALICE, pour pouvoir transférer les programmes d’un
modele 2 Pautre. Or la premiére version d"ALICE utilisait un proces-
seur de visualisation moins évolué, le MOTOROLA MC 6847;

— ensuite conserver une facilité d’emploi. ALICE se présente tout
d’abord comme un micro-ordinateur d’initiation ; 'utilisation de tous
les modes du 9345 aurait conduit & une multitude d"instructions spé-
cialisées, alors que le mode 8¢ colonnes nest déja pas d'utilisa-
tion immédiate...

94 |Le processeur de visualisation

La premiére condition a provoqué I’élimination des caractéres minus-
cules en mode 44 colonnes. De méme. les caractéres accentués ne sont
pas utilisables par le BASIC.

La deuxieme condition a limité les couleurs de fond : en BASIC le
fond est vert, sous éditeur assembleur il €st bleu; cela permet d’évi-
ter une confusion en cas de passage accidentel d’un mode 2 Pautre.

Comme léditeur assembleur permet de largement dépasser le stade
de Pinitiation et d’aborder le domaine des logiciels professionnels, le
9345 permet la création de logiciels de traitement de texte avec ses
8() caracteres par rangée, ses caractéres accentués, de logiciels tableurs
ou graphiques. Il permet aussi de créer des jeux rapides et graphique-
ment évolués.

Pour en revenir & ALICE, voici les valeurs utilisées a I'initialisation
du 9345 :

— en mode 4§ caractéres par rangée

R1 R@-+exéc. Réle de la commande

$10 %81 Initialisation de TGS : caractéristiques
de I'écran + 40 caractéres

$28 $82 Initialisation de MAT : marge noire -+
pas de curseur

$67 %83 Initialisation de PAT : autorisation
de clignotement sans masquage, affichage
sur tout {'écran

$13 $84 Initialisation de DOR : réservation de
la mémoire semi-graphique

08 $87 Initialisation de ROR : visualisation des
lignes de caractéres dans I'ordre a partir
du bloc @

— en mode 8 caractéres par rangée

R1 R@+exéc. Réle de la commande

$DQ $81 Initialisation de TGS : caractéristiques
de I'écran + 8@ colonnes

$28 $82 Initialisation de MAT : marge noire +
pas de curseur

$67 $83 Initialisation de PAT : autorisation
de clignotement sans masquage, affichage
sur tout I'écran

Le processeur de visudlisation 95

$FA $84 Initialisation de DOR : caractéres noirs
sur fond vert

$p8 $87 Initialisation de ROR : visualisation des
lignes de caractéres dans I'ordre & partir
du bioc @

Cela vous donne une base pour effectuer des essais. En particulier, fai-
tes attention au registre TGS, qui peut donner des résultats inatten-
dus s’il est manipulé sans précautions.

Le tableau fournit aussi une autre indication : ALICE exige que le bit
dincrustation i soit mis 2 1. Notez aussi que les caractéres semi-gra-
phiques que propose ALICE sont différents de ceux du 9345, pour
des raisons de compatibilité avec la version précédente. Le jeu semi-
graphique d’ALICE est donc défini 2 linitialisation dans la mémoire
utilisateur du 9345, dans le mode bichrome.

Le partage de la mémoire du 9345 en
2 écrans

Nous avons vu qu’il était possible de partager la mémoire privée du
9345 pour y préparer plusieurs images. Il est alors possible de visua-
liser Pune ou Pautre de ces images en changeant simplement le con-
tenu du registre indirect ROR. En pratique, dans ALICE, nous
allons utiliser cette facilité pour gérer deux écrans différents. En effet
les modes que nous utilisons (commandes KRF ou KRL suivant le
pombre de caractéres par rangée) nécessitent 3 Ko de fa mémoire pri-
vée du 9345. Comme celle-ci fait 8 Ko en tout, je vous laisse en tirer
la conclusion.

Dans cet exemple. nous allons écrire des caractéres ‘A’ dans le pre-
mier écran et des caractéres ‘B’ daps le second. Un appui sur une tou-
che du clavier fera passer alternativement d’un écran a 'autre.

i

z 3 Prograwwes d” affichage de '
33 deux pages? 4
4 3 en page 0 affichage de A !
83 en page 1 affichage de B 3
6 3

73 Auteur : C. MUSET !
8 3 Date @ 2 Decembre 1984 H
93

10

ii ORG $4C0Q0

1z EXC DEBUT

13

14 ;1. DEFINITION DES REGISTRES

15—

16 RO = $BFZ0

17 R1 = $BF21

18 Rz = $BF2Z

96 Le processeur de visudalisation

19 R3 = $BFZ3
20 R4 = $BF24
Z1 RS $EFZS
22 R6 SBFZ6
3 R7 $BF27
24 EXEC = %8
25

z& TGS $8100
27 MAT #8200
28 PAT $8300
Z9 DOR $8400
30 ROR = 8700
31

32 POLCA = $FBA3
33

24 ;z. MDDE 40 CARACTERES PAR RANGEE
35 -

36 DEBUT

37 LDX #INILO
38 BSR INIRG
39

40 ;3. AFFICHAGE DE A EN PAGE ©
41 3—

4z LDRAR #$41

43 STAA AFF

44 LDD #30

45 81D PAGE
46 BSR AFFPG
47

48 ;4. AFFICHAGE DE B EM PAGE 1

50 LDAA #$42
a1 STRR AFF

52 LpD #$2000
53 STD PRGE
G4 BSR AFFPG
55

56 ;5. PASSAGE EN PAGE 1
57 ;—

58 BOUCL

o9 BSR WAIT
€0 LDX #PASS1
61 BSR INIRG
&2 LDD #$2800
63 STD 23

&4

€5 ;6. PASSAGE EN PAGE 0

BSR WAIT
LDX #PASSO
BSR INIRG
LDD #$0800
§TD R&

37. DN RECOMMENCE

BRA BOUCL

SP INITIALISATIDN DES REGISTRES IND.
79 ;entree X ADRESSE DU TABLEAU

80 INIRG

a1 LDAB #0,X ;LDNBUEUR

Le processeur de visualisation

INIRL
INX
LDAA ®1,X
STAA RI
LDRA %0, X
STAA RO+EXEC
BSR EUSY
INX
DECB
BNE INIR1
RTS

+9. 5P AFFICHAGE DE AFF SUR UNE PRGE

95 3
96 entree AFF VALEUR A AFFICHER
97 AFFPG
98 ion PAGE ;NUMERD DE PRGE
99 STD R6&
100 LDD #$0107 ;CDULEUR ET JEU
101 8TD Rz
102 LDAA #%01 340 CAR AVEC INC.
103 STAA RO
104 LDAAR RAFF
105 BSR WLIG ;RANGEE ©
106 LDD PAGE
107 ADDD #$0800 ;RANGEE 1
108 5TD RE
109 LDRA AFF
110 BSR WRG +RANGEE 1 A 24
113 RTS
11z
113 $10. SP AFFICHAGE DE A SUR UNE RANGEE
114 ;—
115 sentree A VALEUR A AFFICHER
116 WLIG
117 LDAER #%$28 ;40 CAR PAR RANGEE
118 WLIGL
119 STAA RI+EXEC
120 BSR BUSY
121 DECE
1zz BNE WLIGL
123 RTS
124
125 ;11. SP RAFFICHAGE DE A SUR RANGEE 1 A 24
126 sentree A VALEUR A AFFICHER
127 WP
128 LDAB #4188 ;24 RANGEES
129 WPG1
130 PSHB
131 BSR WLIG
13z INC R6&
133 PULB
134 DECE
135 BNE UpPG1
136 RTS
137
138 ;1z. SP BUSY
139 ;—
140 RUSY
141 TST RC
142 EMI BUSY
143 RTS

144

97

98 Le processeur de visudiisation

145 ;13. ATTENTE D’UNE TOUCHE

146 5-—

147 WAIT

148 JSR PDLCA

149 TSTA

150 BER WAIT

151 RTS

152

153 ;14. TABLERU INIT REGISTRES INDIRECTS
154 g

155 INI&O

156 DFD 5

157 DFD TE5+%10

158 DFD MAT+$E8

159 DFD PAT+$67

160 DFD DOR+%13

i61 DFD ROR+%08

162

162 pASSC

164 DFD $1

165 DFD ROR+$08

166

167 PRSS1

168 DFO $1

169 DFD ROR+%$28

170

171 ;15. DONNEES DU PROGRAMMES

172 35—

173 AFF BLC $1 sVALEUR DE R1
174 PAGE BLC L >4 :VALEUR DE RE R7

17

Le circuit EF 9345 en
mode 80 caractéres

Vous avez choisi d’afficher 8() caracteres par rangée : c’est vrai, cela
fait plus professionnel. En revanche, la taille des caractéres exige 'uti-
lisation d’un téléviseur de bonne qualité ou d'un moniteur. Le jeu
des caracteres disponibles comprend tous les caractéres (lettres, chif-
fres et signes divers) habituels, ainsi que les minuscules. De plus les
caracteres accentués usuels sont eux aussi disponibles. Bien sir, on ne
pourra visualiser que trois couleurs simultanément sur I’écran, mais
cela suffit bien souvent.

Comment accéder au mode 8@ caractéres
par rangée ?

Le moyen le plus naturel d’accéder au mode 80) caractéres par rangée
est d'utiliser la commande BASIC CLS 8¢) (ou CLS 81). Malheureu-
sement, cette commande ne fonctionne quen mode direct; si vous
P’utilisez dans un programme, 'exécution de ce programme est inter-
rompue aprés I'exécution de CLS. Ne vous désolez pas déja, la limi-
tation est contournable en lancant I'exécution directe du programme
qui se trouve dans la mémoire morte CALICE.

Pour cela, 1l faut :

— mettre 2 @ le contenu de TECRAN (adresse $301A = 12314)
— faire appel au programme INASS (adresse $D42C = 54316).
Par exemple, le petit programme BASIC :

1@ POKE 12314, : EXEC 54316
20 PRINT “VOUS POUVEZ ECRIRE 8y CARACTERES SUR 1 RANGEE®

devrait tenir ses promesses. Il vous permet de changer de mode de
visualisation en cours de programme.

100 Le circuit EF 9345 en mode 8@ caractéres

Attention : lorsque I'on change de mode d’affichage, on ne peut pas
éviter Ieffacement de la page affichée.

Si vous voulez gérer vous-méme le passage en mode 8¢ caractéres,
par exemple parce que vous voulez choisir la couleur de Pécran et des
caractéres, alors il va falloir utiliser les registres du boitier EF 9345.

Sélection du mode 80 caractéres

Pour sélectionner le mode 8¢ caractéres, il faut écrire dans les regis-
tres TGS et PAT. Le mode choisi se trouve sélectionné par les bits
B7 et B6 de TGS, et B7 de PAT. En mode 8f) caractéres (comman-
des longues), les bits B7 et B6 de TGS doivent étre 2 1 et le bit B7
de PAT doit étre &4 . La valeur des autres bits (pour PAT en par-
ticulier) varie suivant Papplication (bits d’insertion et de masquage).
Dans le cas général, on utilise le programme suivant :

LDAA 1$81 ; INDIRECTIDN : REGISTRE TGS
LDAB £$D@ ; MDDE 8¢ — LONG

STAB R1 . R1 = $BF21

STAA REA+EXEC ; B = $BF2@, EXEC = $8 ,

BSR BUSY ; OBLIGATOIRE APRES EXECUTIDN
LDAA 1$83 : INDIRECTIDN : REGISTRE PAT
LDAB 1$67 ; MODE 80 — LONG

STAB Ri

STAA RP+EXEC

BSR BUSY

Il ne faut pas oublier de demander I'exécution lors de la derniére écri-
ture d’une séquence d’instructions, ni surtout d’appeler le programme
BUSY pour se mettre 2 I'abri des facéties du 9345.

On peut simplifier ce programme en omettant toute la partie relative
au registre PAT : dans ALICE, le bit 7 de PAT n’est jamais mis & 1
(ce cas correspond seulement au mode 4§ caractéres par rangée, avec
des commandes courtes).

Ecriture des caractéres dans la mémoire privée

du 9345

11 faut ensuite écrire les caractéres dans la mémoire privée du 9345.
Pour cela, on utilise la commande KRL. Dans le registre R, il faut
copier I'octet de commande

[efi]e]t]o[a]o] |

a ne doit étre mis 2 1 que lorsque Pon veut effacer une page entiére.
Dans ce cas, il ne faut pas tester le bit BUSY, il faut seulement
attendre un moment, a 'aide d’une boucle dans le programme, puis
arréter la commande en envoyant une autre commande, comme NOP
par exemple.

i est trés pratique en mode 8@ caractéres : lorsque ce bit est a 1,
I'adresse dans la mémoire privée du EF 9345 est augmentée de 1 aprés

Le circuit EF 9345 en mode 80 caractéres 101

I'exécution de la commande. Cela permet d’écrire des caractéres suc-
cessifs sans recalculer Padresse du caractére qui suit. Attention cepen-
dant, ce bit n’autorise pas les changements de rangée. Il faut donc
écrire $50 ou $51 dans le registre R@ si 'on n’utilise pas le bit a.

On doit fournir Padresse du caractére a écrire au 9345 par Iintermé-
diaire des registres R6 et R7. Voici les regles a suivre :
—— siPon veut accéder 2 la rangée §. il faut écrire @) dans le registre R6;
— i Pon veut accéder 2 la rangée n (1<n<24), il faut écrire n+7 dans
Ie registre R6. Cela correspond 2 la régle générale vue au chapitre pré-
cédent; par exemple, pour écrire sur la dixieme rangée, il faut écrire
17 dans R6;
— si 'on veut accéder a la colonne ¢ de la rangée choisie, deux cas
se présentent :
— pour les colonnes paires (c=0, 2, 4,..., 78), il faut écrire ¢/2 dans
R7; pour la quatri¢me colonne, il faut écrire 2 dans R7.
— pour les colonnes impaires (c=1, 3, 5,..., 79), il faut €crire
(c—1)/2+128 dans R7, Cest-a-dire 128, 129, 130,..., 167. Par
exemple, pour la 5¢ colonne, il faut écrire (5—1)/2+128=13).

Comme vous le voyez, le bit i de la commande KRL est vraiment
précieux : il se charge lui-méme de calculer R7 aprés chaque écriture
dans la mémoire du EF 9345. Voici toutefois un petit programme
qui calcule R6 et R7 a partir du numéro de rangée et du numéro
de colonne.

; entrée : A = numéro de rangée (de B & 24
; B = numéro de colonne (de B a 79)

TSTA
BEQ CAL1@ ; TESTRANGEE @

ADDA 3157
CAL1®
STAA RE i
LSRB : DIVISE PAR 2 + B — CARRY
6CC CAL2P . SAUT Sl COLONNE PAIRE
caLoD ADDB 3$8F - POUR COLONNE IMPAIRE

STAB R7

Le caractére proprement dit et ses caractéristiques se trouvent dans
les registres R1 et R3. De méme que pour les adresses, le contenu
du registre R3 varie suivant la position du caractére. En effet, seuls
4 bits sont utilisés. Pour les caractéres de rang pair (colonnes §, 2,
4, ..., 78), les 4 bits utilisés sont les bits de poids fort (B7, B6, BS et
B4), alors que pour les colonnes impaires (1, 3, 5, ..., 79), il faut écrire
dans les 4 bits de poids faibie (B3, B2, Bl et B).

Pour illustrer rapidement le début de ce chapitre, je vous propose le
programme suivant : il affiche sur Iécran le jeu de caractéres stan-
dard disponibles en mode 8. Ce programme utilise le bit i, donc il

102 Le circuit EF 9345 en mode 8@ caractéres

dispense de calcnler I'adresse du caractere 4 afficher. Le numéro de
colonne est initialisé 4 (), puis la suite est calculée par le 9345.

Programme d”affichage des !
caracteres disponibles dans H
le mode B0 caracteres par rangee !

Auteur = C. MUSET !
Date = 23 Novembre 1984 H

1
z
3
4
5
&
7
8
9

ORB $B8000
EXC AFBO

Definition des registres du 9345 =

$BFZ0
RO+%1
R1+%1
RZ+%$1
R3+%1
Ra+%1
RS+%1
RE+%1
$e

L T T

Effacement de 1’ecran =

BSR BUSY
LDD #$81D0
30 STARB 1
31 STRAAR RO+EXEC
32 BSR BUSY
33 LDD #$84FF
34 STRE R1
35 STRA RO+EXEC
36 BSR BUSY
37 LDD #$5120
38 STD RO
33 LDD H#$2000
40 8TD ~Rz
a1 CLRA ;1ERE RRNEEE
42 BSR EFLIS
[x3 LDAR #%08
44 EF10
BSR EFLIE
INCA
CMPA #%20
BNE EF10

Affichage de tous les caracteres du jeu GO

LDAR #%€8 3EOULEUR = BLANC ET NDIR
STAR R3
LDAR #%$51 380 C/R + AUTO-INCREMENTATION
BTRA RO
58 CLR CARAC

53 LDRA #%10 ;NOMERE DE RANBEES

WSP10

WsPzo

35

Le circuit EF 9345 en mode 8@ caractéres

LDRE #%08 3 1ERE RANGEE UTILISEE

STRB~ R&

PSHE

PSHA

CLRA

STAR R7

LDAE CARAC

LDAR #%08 ;NOMBRE DE COLONNES

STRB Ri+EXEC

BSR BUSY

ADDE #%$10 3sCARACTERE SUIVANT
DECR

BNE WSP20

INC CRRAC

PULA :NOMBRE DE RANGEES
PULE

INCB 3 1ER CARRCTERE
DECR

BNE WsP10

BRA FIN

Programme d’attente du bit BUSY =

TST RO
BMI BLISY
RTS

Effacement d’une ligne =

;ENTREE = A = NUMERD DE RANSEE
3SORTIE = A INCHANGE

EFLIG

EFL10

6.
CARAL

7.

CLR R7

LDAE #$50

STRR RE+EXEC

BBR BUSY

DECB

BNE EFL10

RTS

Donnee du programme =

BLC 1 ;1ER CARACTERE DE LA RANGEE
Fin

Couleurs et attributs vidéo en 80 caractéres

On peut afficher trois couleurs simultanément sur I’écran en mode
8 caractéres par rangée. Ces trois couleurs se divisent en deux grou-

pes.

104 Le circuit EF 9345 en mode 8@ caractéres

— La couleur de marge, qui peut étre choisie parmi les huit couleurs
suivantes : noir, rouge, vert, jaune, bleu, magenta, cyan et blanc.
On choisit la couleur de marge en utilisant le registre MAT ; les trois
bits de poids faible contiennent la couleur, comme nous Pavons vu
au chapitre 10.

— Les deunx couleurs actives, ¢’est-a-dire les couleurs utilisées pour le
fond et I’écriture sur I’écran. En principe, ces deux couleurs devraient
étre choisies parmi les huit couleurs que nous venons de citer. En
fait, lorsqu’on utilise ALICE 32 ou ALICE 9 avec son connecteur
cerclé de rouge branché sur le téléviseur (pour inhiber les possibilités
d’incrustation), on peut obtenir huit nouvelles couleurs. On obtient
ces couleurs en jouant sur la valeur du bit d’incrustation. Ce bit peut
étre ajouté aux trois bits de couleur : lorsqu’il vaut I, on obtient les
couleurs habituelles, énumérées ci-dessus ; lorsque le bit d’incrustation
vaut), on obtient de nouvelles nuances. On utilise par exemple cette
possibilité pour obtenir de Porange sur ALICE. Toutefois, ces cou-
feurs ne sont pas toujours bien discernables, cela dépend du réglage
de votre téiéviseur. Chacune de ces couleurs est donc codée sur 4
bits. Les 8 bits nécessaires pour les deux couleurs sont écrits dans le
registre DOR, suivant le format décrit au chapitre 1(.

Vous trouverez dans le chapitre relatif au mode 40 caractéres par ran-
gée un petit programme qui vous permettra d’afficher les 16 couleurs
simultanément sur votre écran.

Souvenez-vous que le mode 8 caracteres ne permet d’afficher que
trois couleurs simuitanément sur ’écran.

Nota : on peut obtenir les mémes seize couleurs pour la couleur de
marge, mais on obtient des couleurs composites, inexpliquées dans le
manuel Thomson relatif au 9345. Pour tester les effets, vous devez
aussi utiliser le bit d’insertion, mais cette fois dans le registre MAT
qui définit la couleur de marge.

Comment afficher un caractére
alphanumérique dans une couleur donnée?

Pour afficher un caractere dans une couleur donnée :

— il faut choisir son code (compris entre $0 et $7F) dans la table du
jeu de caracteres, el copier ce code dans le registre R1;

Le circuit EF 9345 en mode 80 caractéres 105

— il faut ensuite choisir la couieur du caractere et du fond sur lequel
on va Pécrire parmi les trois couleurs disponibles (couleur de marge,
premiére couleur active et deuxiéme couleur active). Quatre possibi-
lités sont offertes, ce qui correspond 2 la sélection de deux bits, appe-
lés N et D.

Couleur du caractére Couleurdufond Valeurde D Valeur de N

1r¢ couleur active couleur de marge [} [}
couleur de marge 1% couleur active

2¢ couleur active couleur de marge 1 (1]
couleur de marge 2¢ couleur active 1 1

En fait, le bit D choisit la couleur active, alors que le bit N produit
Pinversion vidéo.

Deux attributs sont disponibles pour le caractere : le clignotement (bit
F) et le soulignement (bit U).

Cela donne un ensemble de guatre bits, que 'on groupe dans Pordre
NFUD. Ces quatre bits doivent étre écrits dans le registre R3 :

— sur les quatre bits de poids fort pour les caracteres de rang pair
(colonnes B, 2, 4, ... 78);

— sur les quatre bits de poids faible pour les caractéres de rang
impair (colonnes L, 3, 5, ... 79).

En résumé, pour un caractére alphanumérigue, on utilisera toutes les
possibilités du 9345 en positionnant les registres de la maniére sui-
vante :

Rl = | (1] | numéro d’ordre du caractére I
2= [N JF Ju D[N TJF JU [D]
inversion cligno souligne couleur inv. cli. sou. c.act.
tement ment active
colonnes paires colonnes impaires
R6 = | si rangée @, sinon n° de rangée plus 7 I
R7 = | /1 I n° de colonne divisé par 2 |

@ : colonne paire, 1 : colonne impaire

Rot8=[p [+ [0 [1 o [0 [o [il]
1 = 1 pour incrémenter automatiquement R7 apres la com-
mande

106 Le circuit EF 9345 en mode 80 caractéres

Rappelez-vous qu’il ne faut pas écraser les caractéristiques de la
colonne impaire lorsque vous écrivez en colonne paire et inversement.

Le mode semi-graphique en 80 caractéres
par rangée

On peut aussi utiliser des caractéres semi-graphiques dans le mode 8¢
caractéres par rangée. Pour cela, on définit ’emplacement sur 1’écran
selon la méme procédure que pour les caractéres alphanumeériques.
Le calcul des registres R6 et R7 reste donc le méme.

Ii faut ensuite définir le caractere. La tailie est la méme que celie d’un
caractére ordinaire, ¢’est-a~dire 1) lignes de 4 colonnes. Mais vous ne
pouvez pas définir chaque point : votre définition couvre 5 lignes de
2 colonnes. Cela donne le quadrillage suivant :

Chacun des points du guadrillage peut prendre soit la couleur de Ia
marge, soit P'une des deux couleurs actives (mais un méme caractére
ne peut utiliser qu'une couleur active, le mélange n’est pas possible).
La couleur active est indiguée par le bit D (le méme que pour un
caractere alphanumérique). Si D est), vous avez la premiére couleur
active, s'il est a 1. la seconde.

Dessinez votre caractére : les points dans la couleur de marge auront
la valeur @), et les points dans la couleur active auront la valeur 1.
Ainsi, par exemple, le caractére

aura comme image

s
Ll R Y

Le circuit EF 9345 en mode 8@ caractéres 107

Ces valeurs doivent ensuite étre inscrites dans les registres du 9345.
Pour cela on utilise Péquivalence suivante entre les points du
caractére et les bits des registres R1 et R3 :

cdc]]
ccd
cdcs
CdAl
A2A3

Les bits C@, C1,..., C6 vont s’écrire dans le registre R1. De plus, pour
indiquer que Pon a affaire 4 un caractére semi-graphique, on met le
bit de poids fort de R1 a 1. Cela donne :

Rt = [1 [ce[cs[ca[c3c2[ci]cp]

Dans notre exemple, on aura donc R1 = %11101001 = $ES.

Les trois autres bits (Al, A2, A3) sont groupés avec le bit D (la cou-
leur active). Ces quatre bits sont écrits dans le registre R3 suivant la
méme régle que pour les caracteres alphanumeériques :

— dans le quartet de poids fort de R3 pour les caractéres de rang pair
(Pautre quartet ne doit pas étre modifié);

— dans le quartet de poids faible pour les caractéres de rang impair
(I'autre quartet ne doit pas étre modifié).

Colonnes ,2,4,..78 R3= [asJa[ai[D[—[—[—[—]

Colonnes 1,3,5...79 R3= [—[—[—[—[A3][A2][al] D]

Ce mode vous donne la méme définition (16{) pixels dans la largeur
de Pécran, 125 pixels dans la hauteur) que les modes CLS 8§ et CLS
81 du BASIC, comme il est normal : le mode CLS 81 représente uti-
lisation normale du 9345 en 8() caracteres par rangée; le mode CLS
80 utilise systématiquement Pinversion vidéo, en mettant toujours le
bit N de R3 4 1 pour les caractéres alphanumériques. La commande
SETsk va changer les couleurs utilisables dans les registres MAT
et DOR.

Comme vous le voyez, la justification de ces deux instructions du
BASIC, dont la syntaxe pouvait paraitre compliquée, réside dans les
régles d’utilisation du 9345.

108 Le circuit EF 9345 en mode 80 caractéres

La technique du ‘bit-map”’
{(mémoire d'écran 1 bit/1 pixel)

L'un des avantages du mode 8f) caractéres en mode semi-graphique
est que chacun des 200¥}) points de I’écran est défini par un bit de
la mémoire privée du 9345 : c’est ce qu'on appelle la technique
“bit map”.

Si Pon dispose d’un programme capable de meitre ce bit 2 1 ou
@ a partir de 'adresse du point sur Pécran, il sera facile d’exécuter
n’importe quel dessin poini par point. Bien entendu, il faudra tenir
compte du fait que les deux couleurs actives ne peuvent pas étre
mélangées dans le méme caractére.

Dans le programme qui suit, vous trouverez un sous-programme qui
effectue le calcul de Padresse du point sur Pécran, et qui calcule aussi
les valeurs & inscrire dans les registres R1 et R3.

Voyons d’abord le mode d’emploi du programme :

— le programme commence par effacer I’écran;

— il permet ensuite de dessiner sur Pécran point par point :

pour cela, vous pouvez choisir la couleur en appuyant sur la touche
@ pour la couleur de marge, ou sur les touches 1 ou 2 pour les deux
couleurs actives;

— pour déplacer le curseur sur I’écran, vous pouvez utiliser les tou-
ches W, Z, S et Q (on peut obtenir la répétition automatique en
appuyant sur SHIFT + espace, et Parréter en appuyant sur CON-
TROL + espace).

Seules les parties 7 et 8 méritent d’étre détaillées. Elles calculent les
valeurs & écrire dans les registres R1. R3, R6 et R7.

e Le programme CALCU commence par calculer la position du
caractere sur Pécran. Cest relativement facile : il suffit de diviser
Pabscisse du point par 2 pour obtenir le numéro de la colonne. Le
numéro de la rangée est obtenu en divisant Pordonnée du point par
5 (Pabscisse varie de §) a 159, Pordonnée de @ a4 124, Porigine @, ¢
se trouve en haut & gauche de I'écran). On applique ensuite le calcul
que nous avons vu précédemment dans ce chapitre pour calculer R6
et R7.

Le reste des deux divisions est ensuite utilisé pour calculer les mas-
ques que nous appliquerons 2 RI et R3. Ces masques peuvent
prendre deux aspects :

— Si la couleur de marge est utilisée, le programme met 4 zéro le bit
correspondant, alors que tous les autres bits sont mis a 1.

— Si une couleur active est choisie, le programme met 3 1 le bit cor-
respondant, met le bit de couleur 4 1 si C’est la deuxiéme couleur
active qui est choisie, et met tous les autres bits a .

Le circuit EF 9345 en mode 80 caractéres 109

o Le programme AFFIC utilise ensuite ces données. 11 lit le contenu
des registres R1 et R3. Si 'on n’a pas affaire & un caractére semi-
graphique, on force le contenu pour obtenir un semi-graphique de la
couleur de la marge, en distinguant le cas des caracteres qui se trou-
vent sur les colonnes paires de celui des caracteres des colonnes
impaires, & cause du registre R3.

Ensuite, suivant que on se trouve en couleur de marge (auquel cas
on doit mettre un bit 2 @) ou en couleur active (auquel cas il faut
mettre un bit 2 1 et écrire la couleur du caractere), il faut utiliser soit
Pinstruction AND, soit Pinstruction ORA pour calculer les valeurs
des registres R1 et R3. 11 suffit ensuite d’exécuter la commande KRL
pour afficher le nouveau caractére.

13

Z 1 Programme d’affichage en mode !

3 jsemi—graphique , bit-map 80 c\aractel‘es‘

4 3 par rangee .

S5

6 3 Auteur = C. Muset J-F Saliet H

73 Date = 3 Janvier 13985 !

83

9

10 ORG $4ECO

11 EXC BITMP

iz

13 ;1. Definition des registres du 9345 2
$301A ;TYPE DE L’ECRAN
$3Z231 s TABLEAU MEMORISANT L'ETAT DES TOUCHES
$D4ZC sINITIALISATION DU TYPE DE L’ECRAN
sFeas 35CRUTATION DU CLAVIER
SEFZ0 ;REGISTRES DU 3345
RO+$1
Ri+$1
RZ+&1
R3+$1
Ra+$1
R5+$1
RE+$1
+8

29 32. Effacerent de 1l”ecran =

30 ;—

31 BITMP

3z CLR TECRA

33 JSR INRSS

36

35 ;3. Aequisition d’une touche du clavier @

36—

37 ACCLV

38 TST REPET ;REPETITION ?

33 BEG RPFIN

40 LDX #ROLTE

41 LDAR #$FF

4z RPO10O

43 STRA %0, X

4a INX

&5 CPX #ROLTB+$8

110 Le circuit EF 9345 en mode 80 caractéres

46 BNE RPO1O
47 RPFIN
48 JSR POLCA
43 BEE ACCLV
50 CMPA #35A sTOUCHE *Z7
a1 ENE ACC10
52 BSR DECPY
a3 BRA ACCLV
G4 RCC10
55 CMPR #$57 3 TOUCHE "W
56 BNE ACCZ0
a7 BSR INCRY
58 BRA RACCLV
$9 ACCZ0
€0 CMPA #$51 ;TOUCHE *@Q°
61 BNE RACC30
(3 BSR LECPX
63 BRA ACCLY
&4 RCC30
(] CMPR #3$53 s TOUCHE *5”
&6 BNE RACCs0
&7 ESR INCPX
&8 BRR RACCLV
&3 ACC4O
70 CMPR #$07 :TOUCHE *CTRL ESP’
71 BNE RACCS0
7z BSR REPF L
73 BRA RACCLV
74 RCCS0
75 CMPA #$06 ;TOUCHE *SHIFT ESP’
7€ BNE RACCEO
77 BSR REPDB
78 BRA ACCLY
73 ACCED
80 CMPR #$30 ;TOUCHE " 0”
81 BNE RACC70
az BGR COMAR
83 ERA RACCLV
84 RCC70
a5 CMPR #$31 ;TOUCHE ~ 17
86 BNE RACCBO
a7 BSR COUL.1
BRA RACCLV
89 ACCEO
30 CMPR #$32 sTOUCHE * 27
91 BNE RACCS0
32 BSR couL.z
93 RCCI0
34 BRA ACCLV
95
36 ;4. Touches de vepetition 2
97 —
38 REPFI
93 CLR REPET
100 RTS
101 REFPDE
102 LDAA #%1
103 8TRA REPET
104 RTS
105
106 ;5. Changewent de couleur =
107 ;—

108 COMAR

108 LDAA #$01
110 STAR MARGE
111 CLR COLOR
i1z RTS

113 Coul.i

114 CLR MARGE
115 CLR COLOR
116 RTS

117 CouLz

iis CLR MARGE
119 LDAA #11
120 STAA COLOR
121 RTS

122

123 ;6. Deplacewent
126 53—

125 DECPRY

126 TST PY
127 BNE DPY10
128 RTS

129 DPY10

130 DEC Y
131 ERA TRACE
132 INCPY

133 LbAA BY
134 CMPA #37C
13 ENE IpY10
13 RTS

137 IPYLOQ

138 ING PY
139 ERA TRACE
140 DECPX

141 TST PX
142 BNE DPX10
143 RTS

144 DPX10

145 DEC PX
146 EBRA TRACE
147 INCPX

148 LDAR PX
i49 CMPA #%59F
150 BNE IPX10
151 RTS

152 IpPX1i0

153 NC PX
154 TRACE

i55 BSR cALCU
156 BSR AFFIC
i57 RTS

158

189 37. Calcul

160 1—

161 ;Entree = PX =
162 3 PY =
163 ;Sortie @ Valeurs
164 3

165 ;7.1 Caleul de R7 =
166 CALCU

167 LbAR PX
168 CLRB

169 LSRA

170 ROLE

171 PSHE

Le circuit EF 9345 en mode 80 caractéres 111

Masque dans les wots MEMOA et MEMOR

de la position du caractere :

Abscisse entre © et 159
Ordonnee entre € et 124

du curseur =

sDEPLACEMENT VERS LE HAUT

;DEPLACEMENT VERS LE BAS

sPY (125

;DEPLACEMENT VERS LA GAUCHE

:DEPLACEMENT VERS LA DROITE

sPX (160

»CALCUL DE LA POSITION DU CARACTERE

sAFFICHABE DU POINT

dans les registres R6 et R7 du 9345

sCONSERVATION DU RESTE

112 Le circuit EF 9345 en mode 80 caractéres

172 LSRA

173 ECC CALLO sCALCUL DU BIT E7 DE R7
174 ADDA #%80

175 CAL10

17€ STAA R7

177 :7-% Calcul de RE :

178 LDAR PY

179 CLRA $INIT DU DIVIDENDE
180 CALZ0

is1 CMPB 885 sDIVISION PAR S

182 BLD CAL30

183 SUBR #$5

184 INCA

i85 EBRA CALzo

186 CAL3I0

187 TSTA ;TEST DE LA RANGEE O
188 BER CALLO

183 ADDA #%7

190 CAL40

i91 STAR RE

192 ;7-3 Calcul des masques pour R1 et R3 :
193 pULA

194 ASLE

155 ABA

196 TAE

197 LDX H#TEMSR

198 ARX

199 ABX 52 DCTETS PAR MASGIUE
200 LDD $0, X

01 ORAE COLOR

202 TST MARGE

203 BEQR CALED ;PAS LA COULEUR DE MARGE
204 ComMA

205 COMB

206 TST R7 EOLONNE PAIRE OU IMPAIRE ?
207 BMI CALSO ;COLONNE IMPRIRE

208 ORAR #30F

209 ERA CAL8o

10 CALSO

211 ORAE #EFO

212 EBRA £ALsO

213 CALEO

214 TST R7 sEDLONNE PAIRE OU IMPAIRE ?
215 BMI CAL70 ;COLONNE IMPAIRE

216 ANDE #%F0

217 EBRA CAL80

218 CAL70

219 ANDE #%0F

220 CAL8O

221 STD MEMDA

222 RTS

223

224 38, Ecriture dans la memoire du 9345 :

225 53—

226 AFFIC

227 LDAA #%58 ;COMMANDE KRL. — LECTURE
228 STAA RO+EXEC

229 JSR BUSY

230 LDAA R}

231 LDAE R3

232 TST R7 ;COLONNE PAIRE 7

233 BMI IMPAX ;TRAITEMENT DES COLONNES IMPAIRES

234 TSTA

Le circuit EF 9345 en mode 8¢ caractéres 113

235 BMI GRAIM ;BRAPHISHME
236 LDAA #$80
237 ANDE #$0F
23 ERA GRAIM
239 IMPAI
240 TSTA
241 BMI GRAIM
242 LDAR #%80
243 ANDE #%F0
244 GRATM
245 TST MARGE
24€ BECR IMACT
247 ANDA MEMDA
248 ANDE MEMOB
249 EBRA AFFRT
250 IMACT
251 ANDE #$EE ;SUPPRIME LA COULEUR PRECEDENTE
252 ORAA MEMDA
253 ORAE MEMOE
254 AFFRT
S STAR R1
STAE R3
LDAA #%50 ;COMMANDE KRL. — ECRITURE
STAR RO+EXEC
BSR BUSY
RTS

Programme de test du bit busy *

TST RO
BMI BUSY
RTS

Dornees du programme I

DFD #0100 sBIT £O
DFD $0200 H ci

DFD #0400 ; =1

DFD %0800 H £3

DFD %1000 3 4

DFD #2000 ; o5

DFD #4000 H o6

DFD $0022 : A1

DFD $0044 H A2

DFD %0088 : Az

DFO %0 sMASGUES POUR R1 ET R3
DFO $0

DFO 80 sPOSITION SUR L*ECRAN
DFD $0

DFD %0 sCOULEUR ACTIVE

DFO $0 ;1 SI COULEUR DE MARGE
DFO %0 ; INDICATELR DE REPETITION

Fin

12

Le EF 9345 en mode
4() caracteres

Lutilisation du EF 9345 en mode 4§ caractéres offre le plus large
éventail de possibilités : son jeu de caractéres alphanumériques est
plus étendu, il possede des caractéres semi-graphiques prédéfinis, et
laisse & Putilisateur la possibilité de définir ses propres caracte-
res. Bien entendu, ces avantages sont contrebalancés par un inconvé-
nient : ces possibilités accrues exigent des programmes plus compli-
qués lorsque 'on veut en profiter pleinement.

Accés au mode 4¢) caractéres par rangée

De méme que pour le mode 80 caracteres. CLS 40 ne peut éure uti-
lisé qu’en mode commande, pas en mode programme. Il faut donc,
en mode programme, utiliser une solution analogue z celle vue dans
le chapitre précédent. Voici donc le moyen de changer le mode du
9345 en BASIC.

1. Mettre a | (pour 49 colonnes par rangée) le contenu de TECRAN
(adresse $301A= 12314 décimal).

2. Faire appel au programme INASS (adresse $D42C = 54316 déci-
mal).

Vous pouvez écrire en BASIC :

1@ INPUT “MODE CHOISI [ﬂ 8@ CARACTERES.

1 = 4 CARACTERES)";

20 POKE 12314, A : EXEC 54316

3P G 10

Ces adresses sont ev1demment exploitables dans un programme en
assembleur. Mais vous pouvez aussi gérer vous-méme directement le
passage en programmant les registres du 9345.

Le 9345 en mode 4¢ caractéres 115

1. Sélection du mode 49 caractéres :

Comme dans le mode 83 caractéres, il faut écrire dans les regis-
tres TGS et PAT. Les bits B7 et B6 de TGS doivent étre mis a 0,
ainsi que le bit B7 du registre PAT.

Voici un exemple de programme pour utiliser le mode 4 caractéres
dans le cas général :

LDAA 1981 ; INDIRECTION : REGISTRE TGS
LDAB 1510 : MDDE 4(21 LONG

STA8 R1 ; F21

STAA RE+EXEC; HE] @, EXEC = $8

8SR BUSY . EXECUTION COMPLETE!
LDAA :$83 ; INOIRECTION : REGISTRE PAT
LDAB i$67 : MODE 8¢ LONG

STAB R1

STAA R@+EXEC

BSR BUS

Rappel : le registre PAT n’a pas a étre réécrit dans les cas normaux.
ALICE ne met jamais le bit B7 4 1, qui correspondrait aux comman-
des courtes du mode 4f) caractéres, qui be sont pas utilisées.

2. Ecriture des caractéres dans la mémoire privée du 9345 :

Nous utiliserons ici la commande la plus complete, KRF, pour écrire
les caracteres dans la mémoire privée du 9345. Comme toutes
les commandes, KRF sera écrit dans le registre R@. En voici le con-

tenu : _

000 0 G-adi
Lutilisation des bits @ et i est identique au mode 8 caractéres : @
est utilisé pour répéter la commande sur la page entiére, par exemple
pour Peffacer, si il est mis a 1. L’arrét de la commande se fait en
envoyant une autre commande au 9345 (NOP par exemple) apres
avoir attendu suffisamment longtemps pour opération voulue. On
peut utiliser une petite boucle dans le programme par exemple.
i, lorsqu’il est a 1, provoque I'incrémentation du pointeur de gestion
de la mémoire privée du 9345. Cette incrémentation n’est effective
que sur une rangée : il faut calculer les pointeurs & chaque change-
ment de ligne.

3. Le calcul de Padresse du caractére a écrire :

Le calcul de Padresse du caractére a écrire est plus simple que dans
le mode 8¢ caracteres. I suit la régle générale, c’est-a-dire :

— Ré6 vaut @ pour la rangée §), ou n+7 pour la rangée n (1<n<24).
— R7 est égal au numéro de la colonne, donc entre P et 39.

116 Le 9345 en mode 49 caractéres

Le petit programme suivant calcule les valeurs & inscrire dans les
registres R6 et.R7 & partir des numéros de rangée et de colonne :

CAL 10

LDAA RANGE ; NUMERD DE RANGEE
BEQ CAL1@ ,

ADDA 1$7 : PDUR RANGEES 1 A 24
STAA RB A

LDAA COLON ; NUMERD DE CDLDNNE
STAA R7

4. Le code du caractére et ses attributs :

11 faut aussi écrire le code du caractére choisi et les attributs qui lui
sont relatifs dans les registres R1, R2 et R3. Nous verrons plus loin
toutes les possibilités disponibles pour ces registres.

Nous vous proposons ici comme exemple un programme qui affiche
lui aussi sur Pécran le jeu de caractéres standard appelé jeu G§, dis-
ponible en mode 4f) caractéres.

11 faut adapter la directive ORG 4 la taille mémoire de votre ALICE :
ORG $4D@® pour ALICE 32, et ORG $AD®$ pour ALICE 90.

1z

2 3 Programme d*affichage des !
33 caracteres disponibles dans L'
4 ;3 le mode 40 caracteres par rangee !
53

6 : Auteur @ C. MUSET '
7 3 Date = 23 Novembre 1984 !
8 3

9

i0 ORG +8000

11 EXT AFL0

1z

iZ ;1. Definition des registres du 9345 :
14 :——

15 RO = $BF20

16 R1 RO+$1

17 R2 R1+%1

18 R3 R2+%1

19 R& R3+%1
20 RS R4+$1

21 R& RE+$1
22 R7 = RE+$1

2% EXEC = %8

24

25 32 Effacevent de 1?ecran @

26 ;-

27 AFLO

28 BSR BUSY

29 LDD #$8110 sREGISTRE TEBS
30 STAE Rl

31 STAA RO+EXEC

32 BSR BUSY

33 LDD #$8413 ;REGISTRE DDOR
34 STAR R1

35 STAA RO+EXEC

EF10

335

JEUsO

WSPi0

WSPZO

;5.

sENTREE
SSORTIE

EFLIG

BSR
LDD
STD
LDD
STD
CLRA
BSR
LDAAR

BSR
INCA
oMPA
BNE

Affichage de tous les caracteves du jeu GO

LDRA
STAA
LDAA
STAA
LDAA
STAAR

CLR
LDAR
LDAE

STAR
PSHE
PSHA
ELRA
STAR
LDAE
LDAAR

STAR
BSR
ADDE
DECA
BNE
INC
PULA
PULE
INCE

DECA
ENE
ERA
Prog

TST
BMI
RTS

Effa

CLR
LDAE

Le 9345 en mode 49 caractéres 117

EUSY
HE0120 :ON ECRIT DES ESPACES
RO
#0100 s ATTRIBUTS+COULEUR
Rz
;1ERE RANGEE
EFLIG ;EFFACEMENT D”UNE LIGNE
#E8 ;NUMERD DE LA ZEME RANGEE
EFLIG
#$20 ;DERNIERE LIBNE 77
EF10

#$01 ;JEU DE CARACTERES GO
Rz
#507 ;COULEUR = BLANC ET NOIR
R3
#E01 540 C/R + AUTO-INCREMENTATION
RO
CARAC
#E10 ;NOMERE DE RANGEES
#4508 ;1ERE RANGEE UTILISEE
“R&
R7
EARAC
#4508 :NOMERE DE COLONNES
R1+EXEC
BUSY
#$10 ;CARACTERE SUIVANT
WSP20
CARAC
;NOMERE DE RANGEES
;1ER CARACTERE
WSP10
FIN
vamme d’attente du bit BUSY =
RC
BUSY
cement d’une ligre !
NUMERD DE LA RANGEE (SUIVANT L’ ORDRE DU 9345)
A INCHANGE
R7
#5208 ;NOMERE DE CARACTERES PAR RANGEE

118 Le 9345 en mode 4@ caractéres

99 EFL10
100 STAAR RE+EXEC
101 ESR BUSY
102 DECE
103 BNE EFL10
104 RTS
105 a
36. Donnege du prograsme
igg CARAC EBLLC 1 i ;1ER CRRRCTERE DE LA RANGEE
108

109 ;7. Fin

Les jeux de caractéres en mode
4@ caractéres

Les caractéres que vous venez de visualiser grace au programme pré-
cédent constituent le jeu de caractéres de base contenu dans le 9345.
Ce jeu sappelle G@. 1l comprend tous les signes alphanumériques
usuels {(en tout 128 signes) :

— lettres majuscules

— lettres minuscules

— chiffres

— ponctuation

— signes divers tels $, . %, etc.

Quelques signes moins courants sont aussi disponibles :

— minuscules accentuées, el quelgues majuscules accentuées (ce cir-
cuit est de conception francaise?)

— le ¢ cédille majuscule et minuscule, (E et ¢

— les fractions 1/4, 1/2, 3/4.

Cet ensemble de caractéres n’est utilisé qu'en partie par le BASIC
@’ ALICE, toujours pour des raisons de compatibilité avec la premiére
version ’ALICE.

On peut aussi accéder a un autre jeu de caracteres du 9345, le jeu de
caractéres semi-graphiques G1f. Ce jeu contient lui-aussi 128 caracte-
res. Chaque caractére comprend deux parties, le fond et le pre-
mier plan. Nous allons voir une méthode pour calculer le code d’un
caractere semi- graphigue. Pour cela, il faut distinguer deux types de
caractéres semi-graphiques (chaque type contient 64 caractéres) :

— les mosaiques, qui se dessinent suivant le schéma suivant :

Le 9345 en mode 4@ caractéres 119

Les jeux de caractéres en mode 40 caractéres

120 Le 9345 en mode 40 caractéres

Les mosaiques sont formées de six cases jointives; 4 chaque case est
associ€ un bit :

Numéro du bit : g1
2
415

Un bit 4 @ indigue gue la case prend la couleur du fond, un bit a 1
que la case fait partie du premier plan, par exemple :

11
= |0
116

—

= pP11p11

Pour indiquer qu’il s’agit d’une mosaique, le bit 6 est mis a 1. Le bit
de poids fort reste indéfini; on le met en général & ¢. On obtient donc
le caractére %@1911011 = $5B.

— les caractéres dits «séparés». Ces caractéres s’inscrivent dans le
dessin suivant :

Les caracteres séparés sont formés sur six cases séparées par des zones
que vous ne controlez pas : ces zones gardent toujours la couleur du
fond. Par ailleurs la définition du caractére est identique : chaque case
peut prendre soit la couleur du fond. soit celle du premier plan. Le
codage du caractere est le méme. La seule différence est que le bit B6
doit étre a @ pour indiquer qu'il sagit d’un caractére séparé.
Par exemple

sera codé %Pp@E11611 = $1B.
Voidi ci-contre la liste des caracteres semi-graphigues du 9345.

1l existe un troisitme jeu de caractéres semi-graphiques sur le 9345,
appelé G11. 11 ne contient que 32 caractéres, qui forment les diago-
nales et les médianes du rectangle de base du caractére.

Le 9345 en mode 40 caractéres 121

Semi-graphique MOSAIQUE

Semi-graphique SEPARE

c6 1 1 1 o o []
s [] 1 1 [© 1 1
ca 1 [} 1 ° 1] 1

c3(cz | ar|eo
o [o]0
oo ofn
oo 1o
oo | t]|1
o 1|00
o| 1] 0}1
o1 10
o| 1| 1|
1{o] ofo
10| 0|1
1|0 1]0
1| o] 11
1|11 0]0
1] 1] of 1
1 1] 1|0

Caractéres semi-graphiques

FEF TR PPl

EEFIUCEERRPERILD

122 Le 9345 en mode 40 caractéres

Pour les diagonales, chaque bit est associé 4 une diagonale donnée :

bit 3 bit §

bit 2 bit 1

Les bits 4 et 5 doivent étre a), les bits 6 et 7 sont indéfinis (en géné-
ral, on préfere les mettre a).

Ainsi, par exemple :

donnera %00p310p1 = $09.

Pour les médianes, le principe est le méme, en utilisant la figure sui-
vante :

bit

bit 3 bit 1

bit 2

Dans ce cas, le bit 4 est a 1, le bit 5 4 0 et les bits 6 et 7 indéfinis
{donc a @ en général). Par exemple :

|

donnera le code %p@3A11901 = $19.

Le 9345 en mode 40 caractéres 123

Voici la liste de ces 32 caractéres semi- graphiques :

c3 {€2 [c1 [co

Enfin il existe deux jeux de caractéres alphanumériques appelés G20
et G21. Ce sont deux jeux composés de deux parties :

124 e 9345 en mode 40 caractéeres

Exemple

7 6 5§ 4 3 2 1 0

octer ¢ [xJo[1fofefo]o]]
octer8 [0 1 ofo [x]x]x]x]
Octet A [x[x [x[x[x[x]x]x]

X = bits définis par
Futilisateur

B

c2

Le 9345 en mode 40 caractéres 125

— la premigre partie est formée par ’ensemble des minuscules du jeu
G# ainsi que quelques caractéres spéciaux (32 caraciéres);

— la deuxiéme partie est composée d’un jen d’accents {aigu, tréma,
grave...) ainsi que du signe cédille (huit caractéres).

La deuxiéme partie se superpose a la premiére, pour former un
caractére complexe : on peut ainsi former e accent aigu (€) ou ¢
cédille (), mais aussi bien x tréma (%), ou n’importe quelle combi-
naison. Le code du caractere utilise les 5 bits de poids faible (bits @
a 4). Ce code est complété par les deux bits de définition du complé-
ment, le bit de poids fort étant ici aussi indéfini.

Par exemple, pour obtenir U (u tréma), on donnera le code

%g) 16 10101 = $55, dans le jeu G21.
indéfini tréma u

Le jeu G20 correspond a B5=f), G21 a B5=1

Comment indiquer au 9345 quel jeu de
caractéres utiliser?

L’ensemble des caractéres que nous venons de décrire est défini
de mamniére permanente dans le 9345, Pour écrire un caractére sur
I’écran, il faut fournir au 9345 le code du caractere ainsi que le jen
de caractéres a utiliser.

Le jeu de caractéres est codé sur 4 bits dans le registre R2. Ce sont
les quatre bits de poids fort qui sont utilisés (B7, B6, B5 et B4). Voici
les valeurs que doivent prendre ces bits :

— Le bit B7 est toujours & @ pour les caractéres standards du 9345.
11 sera & 1 pour les caractéres définis par l'utilisateur (nous verrons
comment plus loin).

Jeu correspondant
Jeu GO; le bit B4 est 3 1 pour souligner
le caractére
Jeu G19
Jeu G11
Jeu G20 ; le bit B4 est a 1 pour souligner
le caractére
Jeu G21; le bit B4 est & 1 pour souligner
le caractére

Nota : Lensemble du jeu de caracteres du 9345 est compatible avec la
norme Vidéotex, c’est-a-dire qu’il contient tous les caractéres utilisés
par le Minitel. C’est une caractéristique intéressante pour les applica-
tions télématiques.

Vous pouvez vérifier le tableau ci-dessus en modifiant le programme

126 Le 9345 en mode 49 caractéres

d’exemple du début de ce chapitre. On peut afficher le jeu G16 au lieu
du jeu Gf en modifiant la ligne 53 : il suffit de charger $21 au lien
de $01 dans le registre R2. De méme, la valeur $31 vous donnera le
jeu Gl11, ou la valeur $11 vous soulignera tous les caractéres.

Les attributs vidéo en mode 4@ caractéres
Le registre R2 est complété par les différents attributs vidéo disponi-
bles. Ceux-ci sont codés sur les quatre bits de poids faible de R2, ainsi
que sur deux bits de R3 (les bits 7 et 3). En voici la liste :

R2 = jen de caracteres L M H 1

R3=N F

Le bit i est le bit d’incrustation (état normal = 1, incrustation antori-
sée =). Comme dans le mode 8)) caractéres, ce bit peut étre utilisé
pour générer des couleurs supplémentaires. Nous verrons cela dans le
paragraphe qui suit, relatif aux couleurs des caractéres.

Le bit H, lorsqu’il est & 1, provoque Paffichage du caractere en double
hauteur. Le caractére est affiché sur deux rangées successives et sur
la méme colonne. Pour que Paffichage soit correct, le caractere doit
étre affiché deux fois en donnant des numéros de rangée successifs,
Ce bit H doit étre mis a 1 lors des deux affichages.

Le bit M est le bit de masquage. Lorsque le masquage est autorisé
(pour cela le bit 3 du registre PAT doit étre a 1), le fait de mettre
le bit M & 1 provoque le «non-affichage» du caractere (un carré de
la couleur du fond est affiché a la place du caractére). Cela peut étre
utilisé pour produire des effets : par exemple. alors que le masquage
est demandé (bit 3 du registre PAT 4 1), on envoie des caractéres avec
le bit M a 1, et rien ne s’affiche & I'écran. 11 suffit de mettre le bit 3
du registre PAT & @ pour que tous ces caractéres apparaissent brus-
quement sur P'écran. On utilise ce systéme pour la protection de cer-
taines zones lors de I'introduction d’un mot de passe ou d’un code
confidentiel dans les logiciels professionnels.

Le bit L, lorsqu’il est & 1, provoque l'affichage en double largeur. Le
caractere est affiché sur deux colonnes successives et sur la méme
rangée. Pour que I'affichage soit correct, le caractére doit étre affiché
deux fois en donnant des numéros de colonnes successifs. Le bit L
doit étre mis & | lors des deux affichages. 1l est possible de combi-
ner les bits H et L pour obtenir un caractére en double taille (double
hauteur et double largeur). Dans ce cas, il faut écrire quatre fois le
caractére sur deux rangées et deux colonnes successives, avec a cha-
que fois les bits L et H a 1.

Le bit F, lorsqu’il est a 1, provoque le clignotement du caractére.
Dans ce cas, on affiche successivement le caractere sur le fond, puis
le fond seul. La fréquence du clignotement est d’environ §.5 Hz (le
caractére apparait puis disparait une fois toutes les deux secondes).

Le 9345 en mode 40 caractéres 127

Attention : le clignotement n’est effectif que s’il est autorisé.
Pour cela, le bit 6 du registre PAT doit étre & 1. S’il est 4 ¢, aucun
caractére ne pourra clignoter.

Le bit N, lorsqu’il est & 1, provoque Pinversion vidéo du caractere. 11
provoque Pinversion vidéo de la couleur du fond et de la couleur
du caractere.

Tous ces attributs peuvent étre utilisés simultanément. On peut
demander I'inversion et le clignotement, par exemple. 1l ne faut pas
oublier non plus que le soulignement peut étre utilisé pour les caracte-
res alphanumériques.

Exemple de programme démontrant les possibilités
du 9345
Ce programime met en évidence a I’écran les caractéres compris
entre A et Z. Pour modifier leurs caractéristiques, il faut utiliser les
touches suivantes :

1 = soulignement 2 = double hauteur

3 = double largeur 4 = inversion vidéo

5 = clignotement
Ces attributs peuvent étre cumulés, La touche § efface I'écran.

10 RO=11#16+3+15%16+2+2Z%16 = REM ADRESSE DES REGISTRES DU 9345
20 POKE 12314,31 : EXEC 54316

30 PRINT * EXEMPLE D”UTILISATION DES ATTRIBUTS"
40 PRINT " DU 9345 EN MODE 40 CARRCTERES" =PRINT:PRINT
50 5=0 iL=0 iH=0 :N=0 :F=0

E0 R2=1:R3=116

70 POKE RO+Z, RZIPOKE RO+3, R3

100 REM LECTURE DU CARACTERE SUR LE CLAVIER :
110 A$=INKEV$ = IF A$="" THEN 110

120 A=ASC(A%)

200 REM CAS DU CARACTERE NORMAL =
210 IF A ¢ ASC("A™) OR A) RSC("Z") THEN 300

220 RE = PEEK (RO+E€) tR7 = PEEK (RO+7)

230 IF H = 0 THEN ZE0

240 POKE RO+E, RE—1 :GOSUB 290 :IF L=1 THEN GOSUB 290
#50 POKE RO+E,RE & POKE RO+7, R7

260 IF L = 1 THEN GOSUE 290

270 GOSUB 230

280 GOTO 100

790 POKE RO+1+8,A sRETURN

300 REM CAS DES CARACTERES DE CHANSEMENT D’ ATTRIBUTS
3i0 ON A-ASC("0™)+1 GOSUE 10, 400, 500, EC0, 700, 80O
320 GOTD 100

400 REM SOUL IGNEMENT

410 5=1-8

440 RZ=RZ~(16) % ({~1)+ (5))

450 POKE RO+Z, RZ

460 RETURN

500 REM DOUBLE LARGEUR

510 L=1-L

128 Le 9345 en mode 49 caractéres

540. RZ=R2Z~ (8) * ((1) +(L))
550 POKE RO+Z, R2

560 RETURN

600 REM DOUBLE HAUTEUR
610 H=1-H

640 RZ=RZ-(2) % ((~1)+(H))
€50 POKE RO+2, RZ

660 RETURN

700 REM INVERSION VIDED
710 N=1-N

740 RE=R3-(128) #((—1)4 (N))
750 POKE RO+3, R3

760 RETURN

800 REM CLIGNOTEMENT

810 F=1-F

840 RI=RI—(B)* ((~1) +{F))
850 POKE RO+3,R3

860 RETURN

Les couleurs en mode 4@ caractéres

Jusqu’a présent, seules deux possibilités ont été exploitées dans le
mode 4f) caracteres par rangée :

— le BASIC utilise des caractéres noirs sur fond vert;

— Iéditeur-assembleur utilise des caracteres blancs sur fond bleu.
Mais il est possible d’utiliser n’importe laquelle des couleurs, aussi
bien pour le fond que pour les caracteres.

Pour cela, on utilise les bits qui nous restent dans le registre R3 :
— les bits de poids faible (bits 0, 1 et 2) sont utilisés pour coder la
couleur de fond;

— les bits 4, 5 et 6 soni utilisés pour coder la couleur du caractére.

1e code utilisé est le suivant : chacun des bits représente une cou-
leur (Bleu, Vert, Rouge), ei on peut mélanger ces trois couleurs pour
obtenir les huit nuances classiques :

Bleu Vert Rouge Couleur
0] ® Noir
[4} [4} 1 Rouge
] 1 [4} Vert
)] 1 1 Jaune
1 [4} [Bleu
1 [1] 1 Magenta
1 1 [} Cyan
1 1 1 Blanc

Exemple de programme de modification des
couleurs des caractéres et du fond

Ce petit programme en BASIC vous permet de modifier la couleur
du fond et la couleur du caractére : les touches A & Z sont visualisées
sur Pécran. Pour changer de couleur de caractére, il fant appuyer sur

Le 9345 en mode 40 caractéres 129

la touche < puis sur un chiffre entre @ et 7 qui représente le code de
la couleur. De méme pour la couleur du fond, il faut appuyer sur >
puis sur le chiffre qui code la couleur.

Nota : En plus des couleurs de fond et de caractére, il est anssi pos-
sible de modifier la couleur de la marge, qui correspond ici réellement
au pourtour de I’écran. Pour cela, il faut écrire dans les bits §, 1 et 2
du registre MAT, en suivant les mémes régles que pour les couleurs
de fond et de caracteres (Noir = §, Rouge = 1....).

10 RO=11%1E643+15%1632+2%16

20 POKE 12314, 1:EXEC 54316

30 PRINT"MODIFICATION DE COULEURS™
40 CC=7:REM COULEUR CRARACTERE

%0 CF=0:REM COULEUR DE FOND

&0 PRINT

70 GOSUEB 700

80 PRINT

90 I=1:R2=0

100 REM LECTURE DU CLAVIER

110 A$=INKEY$:IF A%=""GOTO110

120 RA=ASC(A%)

200 REM AFFICHAGE

205 IF A=ASC(" ") GOTO 220

210 IF A(ASC("A")ORAYASC("Z") THEN 300
220 POKE RO+3, CF+16*CC

230 POKE RO+Z, RZ+1

240 POKE RO+1+8,A

250 GOTO 100

300 IF A=ASC(" (") GOTD 400

310 IF R=ASC{™") GOTO 500

320 IF A=RSC(" ") GOTD 220

340 GOTO 100

400 REM MODIFICATION COULEUR CARRCTERE
410 GOSUB €00

420 CC=R

430 GOTO 100

440 GOTO 100

%00 REM MODIFICATION COULEUR DE FOND
510 60SUB 600

S20 CF=A

530 GOTO 100

€00 REM SRISIE DE LA COULEUR

620 A$=INKEY$:IF R$="" GOTD €20
E30 RA=ASC (A%)~ASC("0")

640 IF R{O DR AY7 GOTD 620
650 RETURN

700 REM MESSAGE DE COULEUR
710 PRINT"{ COULEUR DE CARARCTERE"
720 PRINT") COULEUR DE FOND"
730 PRINT"O NOIR"

740 ROUGE"
730 VERT"
760 JAUNE™"
770 BLEU"
780 VIOLET™
790 CYRN"
800 BLANC"™

810
820 RETURN

130 Le 9345 en mode 40 caractéres

Comme dans le mode 80 caractéres par rangée, il est possible d’uti-
liser le bit d’incrustation pour obtenir de nouvelles couleurs. 16 cou-
leurs peuvent alors étre affichées mais elles ne sont pas toujours dis-
cernables.

Nota : Suivant la programmation du registre PAT (voir le cha-
pitre 1), on peut modifier soit la couleur du fond, soit la couleur du
caractére, soit les deux. Dans le cas présent (celui utilisé par ALICE
pour générer la couleur orange), ce sont les deux couleurs (fond et
caractére) qui sont modifiées.

D’autre part, en utilisant le bit d’incrustation de la marge (bit 3 du
registre MAT), il est possible de modifier sa couleur de la méme facon
que pour les couleurs de fond et de caractére.

Pour obtenir les seize couleurs dans I'exemple BASIC (couleurs de
fond et de caractere), il suffit d’ajouter la ligne suivante :

330 IF A=ASC("0") THEN I=1

Chaque pression sur la touche §) inversera la valeur du bit d’incrusta-
tion.

Programmation d’un caractére par
l"utilisateur

Nous allons aborder pour la premiére fois la programmation d’un
caractere par Iutilisateur. Voici le principe de I’'opération :

e Il faut d’abord choisir le type de caractére quon veut employer. 11
en existe trois :

— les caractéres alphanumériques

— les caractéres semi-graphiques bichromes

— les caracteres semi-graphiques quadrichromes.

e Ensuite, il faut allouer une partie de la mémoire privée du 9345 a
ce type de caractéres. Pour cela ;
— il faut lui donner un code (un numéro qui permette ensuite de
le réutiliser);
— il faut définir la forme du caractére en positionnant des bits &
? ou a 1 dans la mémoire privée du 9345.

e Ensuite il sera possible d’utiliser le caractére aussi souvent que
voulu : il suffit de donner le numéro et le type du caractére.

Cela permet de créer de nouveaux caractéres qui n"appartiennent pas
an jeu standard du 9345, par exemple les symboles utilisés pour les
jeux de cartes (pique, ceeur, carreau et tréfle) ou des caractéres utilisés
dans d’autres pays (alphabets grec ou cyrillique, tilde espagnol,...).

Le 9345 en mode 4¢ caractéres 131

Les modes bichromes : réservation de la
zone de définition d'un jeu de caractéres

11 existe trois modes bichromes définis par Putilisateur. On les appelle
respectivement G’ (c’est le mode alphanumérique) et Gl et G'11
(ce sont les modes semi-graphiques). La définition de chacun de ces
jeux occupe un bloc de 1 K-octet en mémoire privée du 9345.

— Pour le jeu G*), P'adresse du bloc réservé est donnée sur 4 bits
dans le registre DOR (ce sont les bits de poids faible Bf, B1, BZ et B3).
Attention - Un code sur 4 bits permet de définir un numéro de bloc
compris entre § et 15. Or il 1’y a que 8 blocs disponibles dans ALICE.
L utilisation de G’ n’est donc possible que si le bit B3 de DOR est
mis 2 §.

— Les jeux G’1§) et G’11 sont définis de maniére consécutive sur 2 K-
octets de mémoire privée du 9345. On ne donne donc que l'adresse
du premier bloc (celui qui définit G’1§%). Ce premier bloc doit obliga-
toirement étre un bloc pair (blocs ¥, 2, 4 ou 6 puisqu’ALICE n’a que
8 K-octets de mémoire privée pour le 9345). 1l faut donc trois bits
pour la définition de P'adresse de ce premier bloc. Ces trois bits se
trouvent dans les bits B4. BS, et B6 du registre DOR.

Attention - De méme que pour G'@, il faut mettre le bit B6 a z€ro
pour utiliser ce mode sur ALICE.

Par exemple, si vous voulez utiliser ces trois jeux de caractéres simul-
tanément sur ALICE, vous pouvez utiliser les adresses suivantes :
— La mémoire d’écran d’ALICE occupe 3 K-octets de mémoire (1 K-
octet pour les 25%49 = 100 caractéres, et 2 K-octets pour les atiri-
buts et les couleurs de ces caractéres).

— Donnons-lui les trois premiers K-octets de la mémoire privée du
9345; rappelez-vous que cette adresse peut €tre modifiée grice au
registre ROR. Elle occupe donc les blocs @, 1 et 2.

— Nous pouvons utiliser le bloc 3 pour le jeu de caracteres G).

— Les deux blocs 4 et 5 sont disponibles pour les jeux de caractéres
G’1§ et G’11. Cest possible, puisque le premier bloc demandé est un
bloc pair.

La valeur de DOR sera donc

DOR = %p100p11=3$23

Le bit B7 est mis a §, nous verrons son utilisation plus loin. Au total
nous occupons 6 K-octets de la mémoire privée du 9345. sur les
8 disponibles.

Les modes bichromes : définition d’un caractére

Un caractére bichrome est défini par un rectangle de 1§ tranches de
8 points (comme on a 25 rangées de A caractéres, on obtient
1a résolution maximale disponible sur ALICE : 320250 points
sur I’écran).

132 Le 9345 en mode 4@ caractéres

11 faut 10 octets pour définir un caractére bichrome. On peut donc
définir 4 caracteres dans un tampon de 49 octets. La définition de
ces tampons se trouve dans le chapitre 1f). Comme il y a 25 tampons
dans un bloc d’'un K-octet, on peut définir 1) caractéres par jeu de
caracteres. ce qui fait un maximum de 300 caractéres semi-graphi-

ques bichromes.

Voyons comment est codé un caractere, d’aprés exemple suivant :

sera codé sur les 8 octets suivants :

1™ tranche :
2¢ tranche :
3¢ tranche :
4¢ tranche :
5¢ tranche :
6° tranche :
7¢ tranche :
8¢ tranche :
9 tranche :
10° tranche :

%PP0en11 = $03
YPODDD1 = $01
%PP110119 = $36
%PL111111 = $7F
%PPLL1110 = $3E
%PP11100 = $1C
%pDD1000 = $08
G%DOOO1O00 = $08
%pPP1P100 = $14
%OP1PPO1D = $22

Comme vous pouvez le constater, les bits de la couleur de fond res-
tent a (), tandis que les bits de la couleur du caractére sont a 1. Ce
qui est un peu bizarre, c’est que le bit de gauche représente le pavé
de droite, ct inversement.

Ces dix tranches ne sont pas rangées successivement dans la mémoire
du 9345. 1l faut utiliser 'ordre suivant :
début du tampon :

1* octet = 1™ tranche du 1¢
2¢ octet = 17 tranche du 2¢
3¢ octet = 1~ tranche du 3¢

4¢ octet = 1% tranche du 4°

caractere
caractere
caractere
caractere

Le 9345 en mode 4¢ caractéres 133

5¢ octet = 2°¢ tranche du 1* caractére
6® octet = 2¢ tranche du 2° caractére

37¢ octet = 1§ tranche du 1¢ caractére
38 octet = 1¢¢ tranche du 2°caractére
39¢ octet = 10¢ tranche du 3¢ caractére
4¢¢ octet = 1¢¢ tranche du 4° caractere

Comme vous le voyez, les caractéres sont définis par groupes de tran-
ches et non caractére par caractere.

Pour un caractére donné, nous connaissons donc maintenant :

— le numéro du bloc ot nous allons écrire tous les caracteres qui
composent notre jeu;

— le numéro du tampon (attention. comme nous I'avons vu, les tam-
pons sont numérotés @, 8, 9, ..., 31. Cf. chapitre 10);

— les 10 octets qui composent la définition de notre caractere ;

— Tadresse de chacun de ces octets & I'intérieur du tampon.

Muni de toutes ces informations, nous allons utiliser Pinstruction
OCTet (commande OCT du 9345). Voici son format :

oct {pla[1[1lR/Wp[0]i]

R/W Indique si 'on doit écrire dans la mémoire du 9345 (il faut alors
mettre), ou lire Poctet de la mémoire du 9345 (il faut alors
mettre 1).

p Indique quels registres vont étre utilisés comme pointeurs dans
la mémoire du 9345 : si p=@, on utilise R6 et R7, si p=1, on
utilise R4 et R5. En général, il vaut mieux utiliser R4 et RS
(p=1) en sauvegardant ainsi 'état de R6 et R7, utilisés comme
pointeurs pour Iaffichage des caractéres.

i Provoque Iincrémentation du pointeur dans la mémoire du
9345 lorsqu’il est mis a 1; cela ne présente guére d’intérét dans
notre cas, puisqu'un méme caractére n’est pas codé sur des
octets successifs.

Comme d’habitude, la commande OCT doit étre écrite dans R{), et
Poctet a écrire doit étre mis dans R1.

Voyons maintenant un bref exemple d’application de cette commande.
Si nous voulons écrire le caractere que nous avons défini tout a
I’heure dapns le 3¢ bloc (jeu G’¥), dans le 3° tampon (tampon
n° 9), comme 3¢ caractere du tampon, il faut donner les valeurs sui-
vantes :
— 1™ tranche o

RO = $34 {(commande OCT, R/W=0, p=1, i=0)

R1 = $#3 (valeur de 'octet a écrire)

134 Le 9345 en mode 4% caractéres

R4 = $09 (voir le calcul de R4 dans le chap. 10)
RS = $C2 (voir le calcul de RS dans le chap. 10)

Il faut bien sur demander ensuite 'exécution et vérifier son achéve-
ment 2 'aide de la routine BUSY.

Pour chaque tranche ensuite, il faut gjouter 4 & RS et modifier R1
suivant le code de la tranche. R et R4 restent inchangés. La derniére
tranche sera donc :

RO = $34
RI = $22
R4 = $09
R5 = $E6

Les modes bichromes : utilisation d’un caractére

Une fois que le caractére est défini, il faut voir comment Iutiliser.
Pour cela on utilise la méme commande que pour un caractere alpha-
numérigque ou semi-graphique standard, KRF. Seuls les parametres
changent. 1l faut tout d’abord préciser le jeu dans lequel va étre choisi
notre caractere. Le numéro du jeu est codé dans R2 (bits B7, B6, B5
et B4). Le bit B7 doitétre mis 2 1, pour indiquer un caractére non stan-
dard. Le bit B6 doit étre a) pour indiquer que I'on utilise le mode
monochrome. Les deux bits restants sont codés de la maniere sui-
vante :

B5 | B4 Jen de caractéres

0 |1/0 Jeu alphanumérique G’0); B4 provoque le
soulignement lorsqu’il est & 1

1 0 Jeu semi-graphique G’1§

1 1 Jeu semi-graphique G’11

A Tintérieur du jeu, il faut ensuite donner le numéro du caractére.
Ceux-ci sont numérotés de la facon suivante :

— les 4 caracteres du tampon) ont respectivement comme numéros
0,1,2et3;

— les 4 caracteres du tampon 8 (le deuxiéme tampon utilisable) sont
numérotés 32, 33, 34 et 35;

— ensuite les numéros suivent, dans les tampons 9 & 31. Le dernier
caractere est numéroté 127.

Le caractére que nous avons défini tout a ’beure (3¢ caractere du tam-
pon 9) a donc le numéro 38 = $26.

Ce numéro doit étre écrit dans le registre R1.

Voici un tableau qui donne la correspondance entre les registres R4
et RS lors de la définition du caractere et la valeur de R1 lors de son
utilisation :

Le 9345 en mode 4¢ caractéres 135

B7 B6 B5 B4 B3 B2 Bl . B
R4 = |i) [9] a] n°tampon (8.8, ..., 31) .]

RS = | b [[I n° t;'rancl&e ® :a 9 I n° caractere (P a 3) I

\

<}

Rl = L(b I n° :lamf)on ((2), 9, . 3l| n° caractere (P a 3) I

-t
<

a, ¢, b donnent les trois bits de poids faible du numéro de bloc (le bit
de poids fort se trouve dans R6, mais vaut toujours §) pour ALICE,
puisqu’on ne dispose que de 8 Ko).

Nous pouvons ensuite définir les attributs de notre caractere {(cligno-
tement, insertion, double hauteur et/ou largeur, inversion vidéo, mas-
quage, incrustation et couleur de fond et de caractére) en utilisant les
mémes parametres que pour un caractere standard du 9345.

Programme de définition et d’utilisation d’un
caractére bichrome

Nous dobnons comme exemple un programme qui va écrire le
caractére défini dans notre exemple, puis I'afficher en haut a gauche
de P’écran.

Le programme commence par initialiser I’écran en mode 4{) caracte-
res par rangée (partie 2). Il w’initialise pas le registre DOR, car ALICE
définit a Iinjtialisation le bloc 3 pour le jeu G’.

Ensuite il écrit les dix tranches qui forment le caractere dans la
mémoire du 9345. A chaque tranche RS est incrémenté quatre fois
{on aurait pu se contenter d’incrémenter RS trois fois en mettant & 1
le bit i de la commande). Cest la partie 3 du programme.

Enfin le programme affiche le caractere en haut de ’écran. 11 boucle
ensuite pour que vous ayez le temps de voir Iaffichage (partie 4).

13

z Programwe RICHROME '
3 '
4 3;Ce programne permet de creer un L
5 ; caractere bichrowe et de le !
& 3 visualiser H
73

8 ; Auteur :C MUSET !
9 ; Date = 9 Janvier 1983 !
10

11

12 ORG $8000

13 EXC RICHR

14

Le 9345 en mode 4@ caractéres

CONSTANTES

$BF20
$BFZ1
$BF22
$BFZ3
$EFZ4
$BF25
$BFZ6
$EFZ27
8

$301A
$D4ZC

E1 20 | T (I)

INITIALISATION

LDRA #$01
8TRA TECRA
JSR INRSS

STOCKAGE OU CARACTERE

? BO'RIIG 0 0O 10! -} RS
: F——t bt — = ——+
LDD #$09C2
STD R4
LDX #TARIC
LDAE #$0R ;10 TRANCHES
RI010
LDRA $0,X
STRR RI1
LDRA #$34 :ECRITURE OCTET
STAA RO+EXEC
BSR BUSY
INC RS
INC RS
ING RS
INC RS
INX
DECE
ENE RIO10
;4. AFFICHAGE DU CARACTERE
LDD #30
STD RE
LDD. #$26B1 :JEU 670
STD Ri
LDAR #$70
STRR R3
LDAR #301
STAR RO+EXEC
BSR BUSY
FIN BRA FIN
5. BUSY
BLSY
8T RO

B e et

Le 2345 en mode 4@ caractéres 137

78 BMI BUSY
79 RTS
80

81 ;6. TARLEAU RICHROME

82 ;—
83 TARIC
84

DFD $03
85 DFD $01
86 DFD $36
87 DFOD $T7F
=123 DFO $3E
&3 DFD $1C
90 DFD $08
91 DFD $08
92 DFD $14
93 DFD $22

Définition d’un caractére bichrome & partir du
BASIC

Comime le BASIC d’ALICE utilise le jeu G} pour ses caractéres semi-
graphiques, qui ne font pas partie des caracteres standard du 9345,
on peut utiliser une petite astuce : nous allons modifier un de ces
caracteres et Putiliser en BASIC.

Pour cela, il suffit de modifier le programme en supprimant la par-
tie 4 : un retour de sous-programme (RTS) fera ’affaire pour assurer
la liaison avec le BASIC.

11 faut ensuite exécuter le programme. Si vous demandez Pexécution
immédiate, vous n’obtiendrez pas votre nouveau caractére : a chaque
fois que I'on fait RESET, ou que l'on sort de I'éditeur-assembleur,
le jeu de caracteres d’ALICE est recopié dans la mémoire du 9345,
Il faut donc utiliser la commande EXEC a partir d’un programme
BASIC :

EXEC 8%1613 (si vous avez demandé ORG $8000).

Ensuite, 'appui sur les touches SHIFT et F vous affichera le caractere
nouvellement défini 2 la place du caractere semi-graphique usuel.

Les modes quadrichromes : réservation de
la zone de définition des caractéres

11 existe huit jeux de caracteres quadrichromes définissables par I'uti-
lisateur. On les appelle respectivement Qf, Ql, Q2,..., Q7.

Comme dans le mode bichrome, chaque jeu de caractéres occupe un
bloc d’un K-octet dans la mémoire du 9345. L’ensemble occupe donc
8 K-octets, qui doivent répondre 2 deux conditions :

— les huit blocs d’'un Ko doivent étre consécutifs;

— Tl’adresse du premier bloc ne peut étre que le bloc § ou le bloc 8.

138 Le 9345 en mode 49 caractéres

Pour indiguer quelle est Padresse choisie pour le premier bloc. on uti-
lise le bit B7 du registre DOR : il sera 2 § lorsqu’on utilise les huit
premiers blocs, et 2 1 si I'on utilise les huit derniers.

Rappel : ALICE n’alloue que huit blocs a la mémoire vidéo, donc il
faudra mettre le bit B7 de DOR a .

Si I'on fait par exemple la partition suivante de la mémoire du 9345,
on obtiendra :

— 3 blocs pour la mémorisation de la page affichée (il faut en effet
3 octets pour chacun des 4025 = 1)) caracteres visualisés);

— 1 bloc pour les caracteres alpbanumériques bichromes définis par
Putilisateur (jeu G’);

— 2 blocs pour les caractéres semi-graphiques bichromes définis par
Putilisateur (jeux G’10 et G’11);

— 2 blocs pour définir les caracteres quadrichromes (il n’en reste
pas plus!).

La valeur du registre DOR sera donc la suivante :

por = [glo[r]ee]e]1[1]-s23

La configuration de la mémoire du 9345 sera par conséquent :

Bloc § mémoire d’€cran | Pointeur premier bloc quadrichrome
Bloc 1

Bloc 2

Bloc3 |G@

Bloc4 [G190

Bloc 5 G111

Bloc6 [Q6

Bloc7 Q7

Attention : comme vous le voyez, les jeux QP a Q5 sont inutilisables,
car ils détruiraient la mémoire d’écran et les jeux de caractéres bichro-
mes. Lorsqu’on n’utilise pas la totalité des jeux de caractéres bichro-
mes, il est possible de récupérer des blocs pour le mode qua-
drichrome. Le maximum est toutefois de 5 blocs (Q3 &4 Q7, en géné-
ral).

Les modes quadrichromes : définition d'un
caractére en haute résolution

1l existe deux types de modes quadrichromes : il y a des caractéres
quadrichromes «haute résolution» et «basse résolution».

Les caracteres quadrichromes haute résolution sont divisés en 1) tran-
ches de 4 points. (On atteint ici la résolution de 4{k4 = 160 points
en largeur sur 25%1(= 250 points en hauteur).

De méme qu’en mode bichrome, chaque tranche occupe 1 octet de la
mémoire du 9345. Chacun des points est donc défini par deux bits :

Le 92345 en mode 4@ coractéres 139

ces deux bits, qui permettent d’attribuer une valeur entre § et 3, soit
quatre valeurs possibles, indiqueront lors de I'affichage quelles cou-
leurs devront étre utilisées.

Supposons par exemple la tranche suivante :

couleur couleur 2 couleur 1 couleur

11 faudra alors définir Poctet suivant (la couleur de droite se retrouve
dans les bits de gauche et inversement, comme dans les modes bichro-

s) :
% 0P011900 = $18

Les dix tranches d’un caractere devront étre écrites octet par octet
dans la mémoire du 9345 en utilisant la méme regle qu’en mode
bichrome : 2 Pintérieur d’'un tampon, on inscrit tout d’abord la pre-
miére tranche des quatre caractéres, puis la seconde tranche des
quatre caracteres et ainsi de suite jusqu’a la dixieme tranche.

Prenons un exemple, ’enregistrement du caractére suivant :

couleur @ couleur 2 couleur 1 couleur @ = %00 01 10 0P = $18
couleur 3 couleur 3 couleur 2 couleur 1 = %G1 10 11 11 = $6F
couleur 1 couleur 3 couleur 2 couleur 1 = %G1 10 1101 = $6D
couleur @ couleur 1 couleur 3 couleur 2 = %10 11 0100 = $B4
couleur 1 couleur @ couleur 1 couleur 3 = %11 @1 00 01 = $D1
couleur 3 couleur 1 couleur @ couleur 1 = %G1 06 01 11 = $47
couleur 2 couleur 3 couleur 1 couleur @ = %P0 G1 11 10 = $1E
couleur 1 couleur 2 couleur 3 couleur 1 = %P1 11 1001 = $79
couleur 1 couleur 2 couleur 3 couleur 3 = %11 11 10 91 = $FQ
couleur @ couleur 1 couleur 2 couleur @ = %00 10 01 0P = $24

Une fois définis les 1§ octets du caractére quadrichrome ci-dessus,
il faut décider de I'endroit oui nous allons Penregistrer. Utilisons par
exemple le bloc Q6, le 24¢ tampon, c’est-a-dire que le numéro du tam-
pon sera 24 + 7 = 31 = $1F, et le 2¢ caractere de ce tampon
(numéro 1).

On utihse la commande OCT. Pour la premiére tranche, les valeurs

des registres seront les suivantes :

RO = $34 (commande OCT, R/W =0, p=1.i = 0)

R1 = $18 (valeur de la 1™ tranche)

R4 = $3F (= % 0P1 11111 : R4 contient le bit 3 du numéro de
bloc, ~bloc 6 = 1— dans B5; les autres bits donnent
le n° du tampon)

R5 = $41 (= % 01 PPPGP1 : RS contient les bits @ et 1 du numéro
de bloc —bloc 6 : @ et 1— dans B7 et B6; les autres bits
contiennent le n° de 'octet)

Pour écrire les autres tranches, il faut seulement changer R1, qui con-
tient la description de la tranche, et R5 quil faut augmenter de 4 &

140 Le 9345 en mode 40 caractéres

chaque tranche, si le bit i OCT est a §). Pour la derniére tranche, on
aura les valeurs suivantes :

RY = $34
R1 = $24
R4 = $3F
RS = $65

Le mode quadrichrome haute résolution :
utilisation d’un caractére

On utilise la commande KRF pour afficher un caractere quadri-
chrome. Les paramétres sont assez différents de ceux des caracteres en
mode bichrome (qu’ils soient standard ou définis par I'utilisateur).

11 faut fournir les renseignements suivants au 9345 :
— e jeu de caracteres choisi (Q0 a Q7);

— le numéro du caractére a I'intérieur du jeu;

— les quatre couleurs a visualiser;

— les attributs, réduits ici 2 la seule incrustation.

Le numéro du caractére : il se trouve dans R1 et se calcule comme
pour un caractére bichrome. Les caracteres du tampon § ont les
puméros @, 1, 2 et 3, puis a partir du tampon 8 (le deuxiéme dispo-
nible) les numéros vont de 32 a 127. Le caractére de 'exemple est le
deuxieme du bloc 31, il aura donc le numéro 125 = $7D.

Le numéro du jeu et le bit d’incrustation : le 1¥gistre R2 contient
le numéro du jeu quadrichrome et le bit d’incrustation suivant
le format

k2 — [1] Jew TR =93],

Les deux bits de poids fort indiquent que I"on se trouve en mode qua-
drichrome; ils sont tous les deux a 1.

Le numéro du jeu vient ensuite ; dans Pexemple, c’est le jeu 6 = 11§
11 y a une difficulté, car les bits ne doivent pas étre dans I'ordre :
les deux bits de poids faible doivent étre inversés (ce qui donne dans
Pexemple 101). B

Le bit R 2 0 indique que 'on est en haute résolution, alors que 1 joue
le méme réle que pour les caracteres bichromes. Dans notre exemple,
nous aurons donc

R2 = % 11191901 = $E9

Nota : Pmversion des deux bits de poids faible du jeu est identique
au contenu du registre RS, ol ils sont aussi inversés.

La définition des 4 couleurs du caractere : on utilise R3. Le codage
des couleurs est assez compliqué. Chacun des bits de R3 représente
la validation d’une couleur, dans I’ordre suivant :

blanc cyan magenta bleu jaune vert rouge noir

Le 9345 en mode 4¢ caractéres 141

Tl faut mettre 4 bits & 1 pour indiquer les quatre couleurs désirées.
Par exemple, si 'on veut du rouge, du jaune, du bleu et du cyan, la
valeur de R3 sera :

=% 01011019 = $5A

Le bit mis & 1 le plus 2 droite définit la couleur @ (ici le rouge), le
deuxiéme bit a 1 4 partir de la droite désigne la couleur 1 (le jaune),
le troisiéme bit 2 1 définit 1a couleur 2 (le bleu) et le quatriéme bit &
1 définit la couleur 3 (le cyan).

Sl y a plus de quatre bits a I, les derniers bits sont ignorés. S’il y
a moins de quatre bits,.les couleurs non définies sont attribuées 2 la
couleur blanche.

Dans notre exemple, la premiére tranche du caractére aura les cou-
leurs suivantes :

couleur § couleur 2 couleur 1 couleur § =

rouge bleu jaune rouge

Le caractére entier sera donc :

R B J R
C C B J
J C B J
R J C B
J R J C
C J R J
B C J R
J B C J
J B C C
R J B R

En modifiant la valeur de R3, on pourrait obtenir le méme caractére
dans des couleurs différentes. Par exemple, avec R3 = %10011919 =
$9A, le cyan sera remplacé par du blanc. En revanche il est impossible
d’obtenir un caractere dont la premiére tranche serait magenta-bleu-
Jjaune-magenta : la couleur magenta ne peut pas étre la couleur n°® § si
Ie jaune est employé, puisque le bit “ magenta ™ se trouve plus 4 gau-
che que le bit “jaune” dans R3. Dans ce cas, il faut définir un nou-
veau caractere dans le jeu Q6.

Programme de définition et d’affichage d’un
caractére quadrichrome haute définition

Le programme définit le caractére que nous avons utilisé comme
exemple, et Paffiche sur ’écran.:Il faut de bons yeux, et un télévi-
seur bien réglé pour distinguer les couleurs des points qui composent
le caracteére.

142 Le 9345 en rnode 49 caractéres
1
z; Prograwve GUADRICHROME
33
4 :Ce progravme pevyet de cresr un
S i caractere guadvichowme haute '
€& ; vesolution et de le visuvaliser H
73
8 : Auteur :C MUSET &
9 3 Date : 5 Janvier 1985 H

ORG $B000
EXC QUADR

CONSTANTES

SEFZ0
$EFZ1
$EFZZ
$EFZ3
SEFZ4
$BFZ5
SEFZE
$EFZ7
%8

$301A
$D4LZC

LI T T B T

INITIALISATION

LDAA #%01
STAA TECRA
JSR INASS

STOCKAGE DU CARACTERE

bt
'EG!'E1'0 0 O O O 11 -} RS
bt

HOC & =) BO=0O BE1=1 Ez=1

LDD #$3F4l

STD R&4
LDX #TAOUA
LDAE #%0A

2 BI010
LDAA $0,X
sTAR RL
LDAA #$34
STAA RO+EXEC
ESR EUSY
INC RS
INC RS
INC RS
ING RS
INK

ZEME CARACTERE

BUFFER 31

;110 TRANCHES

:ECRITURE OCTET

$1F

Le 9345 en mode 40 caractéres 143

B3 DECE

64 BNE EIOL0

£5

66 4. AFFICHAGE DU CARACTERE
67 ;——

68 LDD #$800

69 sTD R6

70 LDD #$7DEY sJEU 06 (EO=0 El=EZ=1)
71 STD Rl

72 LDAA #$5A sROUGE JAUNE ELEL CYAN
73 STAA R3

74 LDAA #301

75 STAA RO+EXEC

76 BSR EUSY

77

78 FIN ERA FIN

79

80, ;5. EUSY

Bl 3——

82 EUSY

83 18T RO

a4 BMI EUSY

85 RTS

86

87 16. TABLEAU CUADRICHROME
a8 ;—

B9 TAOUA

90 DFD %18

91 DFO $6F

9z DFO $6D

93 DFO $E4

34 DFO $D1

9 DFO $47

96 DFO $1E

97 DFO %79

38 DFD F9

99 DFD %24

100

101 ;7. FIN

Définition d’un caractére quadrichrome basse
résolution

On peut aussi définir des caracteres quadrichromes en basse résolu-
tion. Les caractéres en basse résolution sont divisés en 5 tranches de
4 points. La résolution est donc deux fois plus faible qu’en haute réso-
Tution. Un caractére n’occupe que 5 octets dans la mémoire du 9345,
ce qui permet de définir 20 caractéres par bloc d’un Ko, au lieu des
100 caractéres en haute résolution.

L écriture dans la mémoire du 9345 se fait de la méme facon que
pour la haute définition. La seule différence est que le 1¢" caraciere
est codé sur les 5 octets n° 9, 4, 8, 12 et 16 (1 octet par tranche). Le
2¢ caractere utilise les octets n° 1, 5, 9, 13 et 17, et ainsi de suite jus-
qu'au 8 caractere (octets 23, 27, 31. 35 et 39).

144 Le 9345 en mode 40 caractéres

Nota : on peut méler dans un méme bloc des caracteres haute et basse
résolution, mais ce n’est pas conseillé, si vous voulez éviter des pro-
blemes d’adressage lors de la définition et de Paffichage.

Affichage d’un caractére basse résolution

On utilise la méme procédure d’affichage que pour la haute résolu-
tion, excepté ce qui concerne le registre R2. La valeur de R2 sera la
suivante :

R2=[1]1] Tjew [K[R=1][1]

Le bit R & 1 indique la basse résolution.

Le bit K permet d’atteindre les caractéres supplémentaires :
quand K = §), on atteint les 4 premiers caractéres d’un tampon;
quand K = 1, on atteint les 4 derniers caractéres d’un tampon.

Programme de définition et d’affichage d’un
caractére en basse résolution

Le programme définit deux caractéres (qui représentent en fait chacun
une moitié du caractere haute définition du programme précédent).
11 utilise le jeu Q7 et inscrit ces caractéres respectivement comme 3¢
et 7¢ caractéres du 24¢ tampon (= tampon n° 31 = $1F).

Les deux caractéres sont ensuite affichés sur I’écran. Ils ont tous les
deux le méme numéro de caractere, Cest le bit K dans R2 qui
les distingue.

3 —

z 3 Programme GUADRICHROME :
3 : H
4 3Ce prograwmve permet de creer deux H
5 3y caracteres guadvichowes basse H
€& ¢ resolution et de les visualiser H
73

e Auteur i1C MUBET H
9 3 Date : 9 Janvier 1983 %
10 ;

i1

1z ORG $8000

13 EXC GUADR

14

15 ;1. CONSTANTES

16 3 —

17 RO = $EFZ0

18 Rt = $EFZ1

19 R2 = $EFzZ

20 R3 = $EFZ3

2L R4 = $EFZ24

ZZ RS = $EFZ5

Z3 RE = $EFZE

24 R7 = $EFZ7

25 EXEC = %8

26 TECRA = $301A

Le 9345 en mode 40 caractéres

INASS = $D4ZC
;2. INITIALISATION
CUADR
LDAA #3501
sTAA TECRA
JSR INASS
;3. STOCKAGE DES CARACTERES
: B S A T T e e e
: !BOIBIIO C 0 O 1 O -} RS : 3EME CARACTERE
H + —t—t— bt —F
; = — bt
: 0 OEZI1 1 111! -) R4 @ BUFFER 31 = $1F
3 b ——p—— bt =
{BLOC 7 =) EO=1 Ei=1 E2~1
LDD #$3FCZ 11ER CARACTERE (NUMERD 2)
STD Ré
LDX #TAGU1
ESR ECRS
LDD #$3FDE 1ZEME CARACTERE (NUMERD 6)
STD Ré
LDX #TAQUZ
ESR ECRS
ERA AFFIC ;AFFICHAGE
;4. ECRITURE S5 TRANCHES
ECRS
LDAE #$05 15 TRANCHES
ECRSO
LDAA %0, %
sTAA Rl
LDAR #3534 sECRITURE OCTET
STAA RO+EXEC
ESR EUSY
ING RS
ING RS
ING RS
ING RS
INX
DECE
ERE ECRSC
RTS
5. AFFICHAGE DES CRRACTERES
AFFIC
LDD #3800
sTD R6
LDD #$7EFE ;JEU 07 K=0 R=i
sTD R1
LDAA #$5A sROUGE JAUNE BLEU CYAN
STAA R3
LDAA #3501
STAA RO+EXEC
ESR BUSY
LDD #$901

145

146 Le 9345 en mode 49 caractéres

90 S0 R&
91 LDD #$7EFF JJEU 05 K=1 R=1
9z STD Ri

93 LDAA #$01

54 STAA RO+EXEC
95 ESR EUSY
96

97 FIN ERA FIN

98

99 ;6. EUSY

100 3~

101 EUSY

102 18T RO

103 EMI EUSY
104 RTS

105

106 ;7. TABLEAUX GUADRICHROMES
107 :—

108 TAOU1

109 DFD $18
110 DFD $6F

111 DFD $6D
112 DF0 $E4
113 DFD #D1

114 TAOUZ

115 DFD %47

116 DFD $L1E

117 DFO %79

118 DFD %F9
119 DFD %24

120

121 ;8. FIN

Exemple d’application : les lutins

Le 9345 n’est pas un processeur de visualisation adapté a la définition
de lutins. On utilise d’ordinaire plutdt des processeurs spéciaux capa-
bles de gérer plusieurs niveaux (un fond et un avant plan au moins)
pour les lutins.

Toutefois, comme il est possible de définir ses propres caracteres, il
est possible de définir un personnage par exemple vu dans différen-
tes attitudes, de face, de dos, en profil gauche ou droit... En mode
bichrome, on peut jouer sur I’attribut de double hauteur et celui de
double largeur pour obtenir un personnage plus grand. On peut aussi
combiner plusieurs caractéres.

La technique peut étre affinée : au lieu de déplacer le lutin caractére
par caractere (ce qui donne un mouvement un peu saccadé), on peut
définir un ensemble de caractéres pour simuler un déplacement point
par point. Cela exige donc un grand nombre de caracteres (songez
quon peut se déplacer dans les quatre directions sur ’écran, ajoutez

Le 9345 en mode 4@ caractéres 147
les différentes attitudes...), mais Panimation est bien plus souple
et naturelle.

Enfin, il faut tenir compte du fond pour atteindre la perfection dans
I’animation du lutin... Bon courage!

Nota : Panimation de lutins est plus facile a réaliser en mode
bichrome, mais il 0’y a que 300 caracteres disponibles.

Annexes

Annexe 1 : Bibliographie

Pour apprendre I'assembleur 6800

Programmation du 680, Daniel DAvID el Rodney ZAKs, Sybex
682)% Programmatlon en langage assembleur, L.-A. LEVENTHAL, Editions

Les Myslcrcs ’ALICE, Alain BONNEAUD, SORACOM Informatique

Documentation technique

Meotorola Semiconductors Advance Intormation, MC 68¢1C MC 6803C
Thomson EFCIS Integrated Circuits. Advance lnformanon EF 9345

Ouvrages généraux

Pratique du micro-ordinateur ALICE, Henri LiLEN, Ed. Radio

Dessiner, peindre et jouer avec ALICE Louis GROS Eyrolles

20 programmes astucieux pour ALICE lan CREASEY et Alain STEMMER,
Hachette Infermatique

Les écrans ’ALICE 90; Volume 1 : Premiers pas en programmation;
Volume 2 : Pour en savoir plus en programmation, Denis PELLERIN,
Hachette lnformall ue

ALICE et ALICE 90, Collectlon MICROMONDE, Cedic/Nathan

La découverte Q. ALlCE Maurice CHARBIT, P.S. 1.

102 programmes pour ALICE, Jacques DECONCHAT, P.S.L

Exercices en BASIC pour ALICE et ALICE 90. P.S.1

L’Assembleur d’ALICE et ALICE 90, P.S.1.

Jeux en BASIC pour ALICE, Pierre MONSAUT, Sybex

56 programmes sur ALICE et ALICE 90, Stanley R. TRosT, Sybex

Premiers programmes sur ALICE et ALICE 90, Rodnay Zaks, Sybex

Annexe 2

Carte mémoire d’ALICE 32 et d’ALICE 90

Les cartes mémoire des versions 32 et 99 d’ALICE ne different que par
l’adresse de la fin de la mémoire vive utilisable :

$4FFF pour ALICE 32;

$8FFF pour ALICE 32 avec Pextension mémoire;

$AFFF pour ALICE 90.

" Annexes : Cartes mémoire d’ALICE 149

$FFFF
BASIC 18 Ko de mémeoire morte
$CHOD
Périphériques
Fin de
la me-
moire P
vive Meémoire vive (8, 24 ou 32 Ko)
$3000
$OOFF
Mémoire vive interne
$0080
$OO1F
Registres internes
$0000

(Veir aussi le manuel “ Découvrez le BASIC ™ livié avec ALICE)

Répartition de la mémoire vive d’ALICE

Fin de la
mémoire
vive Zone 5 (interdite au BASIC)
AD

noctets Zone 4 (variables alphanumériques)

Zone 3 (variables numériques et pile)

Zone 2 (programme BASIC)

$3745
Zone 1 (systeme BASIC)
$3000

La zone 1 contient les variables nécessaires au bon fonctionnement du BASIC
Microsoft. La taille de cette zone est finie. Gardez-vous bien daller y écrire
vos propres données, si vous ne voulez pas rendre inexécutable votre pro-
gramme BASIC. Cetie zone s'éiend de $3000 a $3745.

La zone 2 contient le programme BASIC. Elle s’étend au fur et 4 mesure que
vous ajoutez des instructions &4 votre programme.

150 Annexes : Cartes mémoire d"ALICE

La zone 3 contient les variables numériques, les tableaux numériques et la
pile du systeme BASIC. Cette pile permet de gérer les boucles FOR... NEXT,
et les GOSUB... RETURN.

La zone 4 contient les variables alphanumériques, c’est-a-dire les chaines
de caracteres.

La zone 5 esl unc zone inaccessible au BASIC, sauf par les instructions PEEK,
POKE. EXEC.

Lorsque vous mettez ALICE sous tension, la zone 5 n’existe pas, et la zone 4
fait 100 octets. L’instruction CLEAR permet de modifier cette partition de
la mémoire :

— CLEAR N donne la nouvelle dimension de la zone 4. Elle ne modifie pas
la zone 5.

— CLEAR N, AD définit tout d"abord Padresse de début de la zome S, pus
réserve N octets pour la zene 4.

Lorsque vous utilisez I'éditeur-assembleur inclus dans ALICE, il faut réserver
de la place dans la zone 4 et dans la zone 5, pour les raisons suivantes :

— dans la zone 5 Péditeur-assembleur doit loger le programme source (le
texte que vous entrez), le programme objet (produit par Popération d’assem-
blage) et une table contenant tous les symboles utilisés par votre programme,
avec leur valeur;

— la zone 4 est utilisée Jors de Pimpression du listing sur 'écran cu sur une
imprimante, pour la table des symboles. Cest pourquoi il faut lui réserver au
moins 6{) octets. En revanche, Péditeur-assembleur ne modifie pas la zone 2,
il n’est donc pas nécessaire de faire NEW avant de I'utiliser.

Utilisation de la zone 5 par I'éditeur-assembleur

Fin de la mé-

moir vive
Table des symboles
Zone vide
Programme objet
Programme source
AD

Une astuce : pour Péditeur-assembleur, I'adresse de la fin de la mémoire vive
est contenue dans les deux octets qui se trouvent en $3280- $3281 11 vous suf-
fit donc de modificr cette adresse pour réserver de la place 4 un programme
en assembleur, par exemple le programme MONITEUR.

Attenticn tout de méme, celte zone pourra &tre détruite par les commandes
CLOAD et MERGE qui utilisent la fin réelle de la mémoire vive.

Annexes : Programme MONITEUR 151

Annexe 3

Programme MONITEUR

1

2 3 Programme MONITEUR !

. I et !

4 3 Ce programve permet de visualiser le !

S ;3 conterm de la memoire d”ALICE , de !

€ ; le modifier , de placer un point H

7 ; d’arret,de visualiser les registres !

B8 ; et de les modifier . L)
93

10 3 Auteur @ J-F Gallet !

11 3 Date : 23 Novembre 1384 b

1z

13

14 DORG <0 3POUR ETRE RELOGERBLE

15 EXC INIT

16

17 31. Dornees externes @

18 -

19 DEVNU =$E8 3SUPPORT D* IMPRESSION

20 SWINT =$FFFA 38WI VECTEUR D’ INTERRUPTION
21 KDINP =¢FBE8 sATTENTE D*UN CARACTERE
2z ODUTCA =$F3CE sAFFICHAGE D’ UN CARACTERE
23 QUTTX =$E7R8 sAFFICHABE D’ UN TEXTE

24

25 32. Programwe d’adaptation du programwe de translation =
26 ——

27 INIT BSR INOLO
28 ING1O TSX

29 LDD %0, X
30 SUBD #$2

31 PSHE

32 LDAE #OFFST-$2
33 LDX $0,X

34 AEX

35 PULE

36 sTD $0,X

37 PSHX

38 PLLA

39 PULEB

40 TSX

41 LDX %0,X

4z PSHEB

43 LDAE #TLETZ+31-42
ag ABX

45 PULE

46 STD $0,X

47 PEHE

48 LDAB #TLET3-TLETZ
49 AEX

50 PULB

51 STD %0, X

52 TSX

53 LDD %0, X

54 ADDD #TRTAB-$2
55 PEHB

56 LDX %0,X

57 LDAB #TLET1+$1-$Z

Annexes :

33,

TLETL
TLDEB

TLETZ

TLET3

TLFIN

TLFI1

1b.

OFFST

TRTRE

ABX
PULE
STD
PULX

Programme MONITEUR

%0, X

Programme de translation :

LDX
LDD
BEG
PSHX
ADDD
PSHE
PSHA
PULX
LDD
ADDD
STD
PULX
INX
INX
BRA
LDX
LDAA
STAA
LDD
STD
ERA

HTRTAB
$0, X
TLFIN

OFFST

%0, X
OFFBT
%0, X

TLDEB
HINIT
HS7E
$0, X
HBEGIN
$1, X
INIT

Dovinees du programme de translation =

DFD

DFD
DFD
DFD
DFD
DFD
DFD
DFD
DFD
DFD
DFD
DFD
DFD
DFD
DFD
DFD
DFD
DFD
DFD
DFD
DFD
DFD
DFD
DFD
DFD
DFD
DFD
DFD
LFD
LFD
LFD

$0

TLFIN+$1
TLFI1+¢1
TLOOS+$1
TLO10+41
TLO1S+41
TLOZO+$1
TLOZS+$1
TLOZ0+$1
TLOZS+$1
TLO4O+$1
TLO4Z+$L
TLOA4Z+$1
TLOAS+$1
TLOSO+$1
TLOSS+$1
TLOEO+$1
TLOES+$1
TRABF+$1
TLO70+%1
BEGIN+$1
TLO7Z+41
TLO7S+$1
TLOBS+$1
ATBRK+4$1
DBO10+$1
DBOZO+$1
TLOI0+$1
ComMpiH+$1
TLOSS+$1
TL100+¢1

yADRESSE

Annexes : Programme MONITEUR 153

121 DFD TL10OS+$1

122 DFD REG10+$1

123 DFD RBD10+%1

124 DFD TL110+31

125 DFD TL1Z0+$1

126 DFD TL130+491

127 DFD COMCO+41

128 DFD TL135+¢$1

129 DFD TL140+%1

130 DFD TL145+$1

131 DFD SPAD+$1

132 DFD 0

133

134 ;5. Routines d’ecriture sur 1’ecran *
135 1 —

136 ; CONVO CONVERSION OCTET —) ASCII
137 3 ENTREE B O,...,FF
138 3 SORTIE A 1ER DIGIT
139 ; B ZEME DIGIT
140 CONVO

141 PSHE

14z ANDE #$F0

143 LSRE

144 LERE

145 LERE

146 LESRE

147 BER CONV

148 TBA

143 PULB

150 ANDE #$F

151

152 ;CONV1 CONVERSION DIGIT
153 3 ENTREE B 0,...,F SORTIE - B
154 CONVLI CMPE #$A

155 BLO Convz

156 ADDE #47

157 CONVZ ADDE #$30

158 RTS

159

160 ;AFFA AFFICHAGE D’UN OCTET =
161 AFFAZ INX
162 AFFA3 LDAB $0,X

163 BSR CONVO

164 ESR AFFA

165 TBA

166 DFOD $8C ;CPX #

167 AFREC LDAAR #$20
168 AFFA JMP ouTCA

169

170 ; AFFR AFFICHAGE REGISTRES
171 AFFR

172 LDAA #$D

173 BSR AFFA $SAUT DE LIGRNE
174 TLOOS LDX HATXDB-%1

175 JSR OUTTX

176 TLO1O LDX HBAUVP

177 LDAR #$6

178 LDAB %0, X

179 ROLE

180 RDLE

181 AFFR3 PSHA

182 CLRA

183 ROLE

154

184
185
186
187
188
182
190
191

192
133
134
195
196
137
138
13939
200
201

202
203
204
205
206
207
208
209
210
211

212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
38
=9
240
241
242
243
244
245
246

Annexes : Programme MONITEUR

RAFFR2

36

DEBUG

TLO1IS
TLOZO
TLOZS

TLOZO
TLOZS
TLO4O

TLO4Z

TLOGS
TLO4S
DEBOS

TLOSO
TLOSS
TLOEO

TLOES

RADCA
BSR
PULA
DECA
ENE
LDAE
PSHB
EGR
BSR
BGR
PULE
DECE
BNE
LDAR
BRA

DEEUG

TSX
LDD
SUBD
GTD
TSX
DEX
8TX
LDX
8TX
LDAE
BSR
LDAB
TSX
ABX
8TX
LDX
LDAR
STRA
LDX
LDD
STAA
STAER
LDARA
PSHA
LDAR
SThAA
ESR
LDX

GTRA
STRB
LDX
LDAE
DEX
DECE
BNE
8TX
LDX
8TX
LDAB
BSR
PULA
STAA
LDS

#$30
AFFA

AFFR3
#$4

AFABO
AFFARZ
AFFAZ

AFFRZ
#$D
AFFA

% Deviation du SWI

$5, X
#s1
$5, X

TRANS
#SALVC
TRAND
#%8
TRASF
#$E

SALVS
SAUPC
8ALVE
%0, X
#SALVA
$0, X
$1,X
$0, X
(DEVNU

#30
(DEVNU
ATBRK
#80LVA
$0, X
$1,X
$0, X
sAlvE
#$07

DEBOS
TRAND
#8AUVC
TRANS
#$7
TRASF

{DEVNU
SALVS

JATTENTE

Annexes : Programme MONITEUR

za7 LDRE #$7

248 DEBR1O DEE

249 DECE

50 ENE DEB1O

251 RTI

252 3

#33 ;TRASF

254 3

255 TRASF

256 LDX TRANS

257 RBX

258 LDAA 'y

259 TLO70 LDX TRAND

260 ABX

261 BTAA $0,X

262 DECE

283 BNE TRASF

264 RTS

2E5

266 37. EBEGIN : Lancement du prograsme .
267 5-— INSTALLE UN POINT D” ARRET
268 AU DERUT DU PROGRAMME UTILISATEUR
263 BEGIN

270 LDX H#TXDEE-$1

71 JSR OUTTX

272 TLO7Z LDX #EAUPC

273 CLR %0, X

274 CLR $1,X

273 LDX SWINT

Z76 LDRA #%7E ;JMP DEEUG
277 BTAA $0,

Z78 TLO7S LDD #DEBUG

73 8TD $1,X

2680 BER ATBRK

281 TLOBS LDX aD

282 JMP $0, X ;EXEC USER
283

284 ;8. ATERK @ Traitement d”une commande *
285 12—

Z86 ;8.1 Attente d”une commande 2
287 ATBRK

288 JSR AFFR

289 DBOUC

230 JSR KDINP

Z91 JER ouTCA

=397 CLRE

293 DEO10O LDX #TABCO 3 TABLEAU COMMANDE
294 ABX

235 CMPA %0, X

296 EEC DE0OZ0O

=297 INCE

298 CMPB #TABTR-TABCO+$1

293 BNE DBO1O

300 ERA DBOUC

301

302 DBOZ0 LDX #TAEBTR ;TABLEAU TRAITEMENT
303 REX

304 ABX

303 LDD $0, X

306 TLOF0 ADDD OFFST

307 PSHE

308 PSHA

309 PULX

155

156 Annexes : Programme MONITEUR
310 JMP $0,X
311
312 3B.Z Ayout d’unm point d’arret 3
313 COMMH JSR AC4DG
314 BHS ATERK
315 TLO9S STD AD
316 TL10O LDX AD
317 LDAR $0,X
318 TL10S STRA BALVC
319 LDAA #43F $PRTI?
320 STAA %0, X
321 EXIT RTS
372
323 ;8.3 Registres A,B,F @
324 COMMA LDAB #%$1
325 DFD $8C
326 COMME LDAE #¢2
327 DFD $21
328 COMME CLRE
329 REG10 LDX #S5AUVP
330 ABX
331 PSHX
332 EBSR ACZDG
33 BHS REB30
336 PULX
335 STAB $0,X
336 BRA ATBRK
337 ;ERREUR
338 REG30 PULX
339 REB4O BRA ATBRK
3460
341
362 ;8.4 Registres §,X,PC :
343 COMMS LDAB #$04
364 DFO %21
345 COMMX CLRE
346 DFC $8C
Ta7 COMMP LDAE #$0Z
348 RGD1O LDX #SAUVX
349 aBX
350 PSHX
351 BSR AC4DE
352 EHS REB30
353 PULX
354 STD $0,X
355 RED2Z0 BRA REGA4O
356
357 ;8.5 Modification en memoire @
358 COMMM ESR AC4DE
359 EHS RGDZO
360 TL110 STD ADCOU
361 COMCL BSR AFRER
362 BSR SPAD
363 TL120 JSR AFFAS
364 BSR AFAER
365 BSR ACZDG
366 EHB COMZ0
367 ESR SPAD
368 STAR %0, X
369 COM1O
370 JSR KDINP
371 BSR AFFAR
372 BRA COM3O

Annexes : Programme MONITEUR 157

37% COMZ0 TBA
374 £OM30 BSR SPAD

375 CMPA #$ZB
376 BEG comp
377 CHMPA #$2D
z78 BER COpiM
379 BSR AFFCR

380 TL130 JMP DeOUC

361 COMP INX

382 BRA ComMCO

383 COMM DEX

384 COMCO STX AbPCoU

385 BSR AFFCR

386 TL13G LDX #ADCOU

387 TL140 JSR AFFAZ

388 TL145 JSR AFFAZ

369 BRA CDMC1

390

391 ;8.6 AFRER * affichage d°ur espace @
332 AFREE LDAA H$2Z0

393 DFD &8C

394 AFFCR LDAA #eD

395 AFFAB JpiP ouTCA

396

397 ;8.7 SPAD : Chargevent ADCOU
398 SPAD LDX Ancou

339

400

401 39, Acquisition d”une valeur HEXA @
402 3——

2Q35 ACA4DG

404 BSR ACZDE
405 BHS AC4RT
406 TBA

407 ACZDG

408 PSHA

409 BER AC1DE
410 EHS AC4ER
411 ASLA

412 ASLA

413 AsLA

414 ASLA

415 TAB

416 BSR AC1DB
417 EHS ACLER
418 ABA

413 SEC

420 ACLER

421 TAR

422 PULA

453 ACLRT

424 RTS

425

426 AC1DG

az7 JER KDINP
4z8 BER AFFAR
429 PSHB

430 TAR

431 SUBA #$30
432 BLO ACLER
433 CHPA H$A
434 BLD AC10K

435 SUBA #$7

158 Annexes : Programme MONITEUR

436 CHMPA #$A
as7 BLO AC1ER
438 CHMPA #$F
435 EBHI AC1ER
440 ACI0K

441 PULE

44z SEC

[y RTS

444 ACIER

(A PEHB

446 LDRA #$2Q
aa7 BSR AFFAB
448 pULA

449 PULE

450 cLC

451 RTS

452

453 310, Dorrees du moniteur =
454

435 310.1 Sauvegarde des registres !
456 TABRG

457 RD DFD 40

458 SAUVC DFOD $0

439 SAUVP DFD $0

460 S5AUVA DFOD $0

461 SAUVE DFOD $0

462 SAUVX DFD $0

463 SAUPC DFD 0

4e4 SALVS DFD $0

LES

466 310.2 Mots pour transfert :

467 TRANS DFD $0

468 TRAND DFD $0

4e9

470 ;10.3 Adresse courante *

471 ADCOU DFD $0

472

473 310.4 Texte @

474 TXDEB *MONITEUR ALICE . REV 1.00%

475 DFD $0DO0

476

477 ATXDE *HINZVC A B X PC sp
478 DFD $0D00O

479

480 ;10.5 Tableau des commandes =
481 TABCO DFOD +0D

482 ’A

483 ’B

484 T8

485 7X

486 P

487 ’F

488 M

489 “H

430 C

491

432 TABTR DFD ATBRK

493 DFD comMA ;MODIF REGISTRE A
494 DFD COMME 3 B
495 DFD COMME 3 s
496 DFD COMMX 3 X
497 DFD commpP 3

PC
498 DFD COMMF DRAPEAL!

Annexes : Schéma du bus

159

499 DFD COmMMM 3 MEMDIRE
500 DFD €0MMH ;PDINT D” ARRET
501 DFD EXIT 3CONTINUE

502

803 31%. Fin
Annexe 4

Schéma du bus (connecteurs d’entrées-sorties)

En plus des interfaces séries, ALICE posséde une prise bus accessible par un
connecteur de 34 points. Ce connecleur permet les extensions CALICE.
Le tableau ci-dessous donne une bréve description de la prise bus.

Broche Signal Description
1 GND masse
2 GND masse
3 D@ bit @ de donnée
4 D1 bit 1 de donnée
5 D2 bit 2 de donnée
6 D3 bit 3 de donnée
7 D4 bit 4 de donnée
8 D5 bit 5 de donnée
9 D6 bit 6 de donnée
190 b7 bit 7 de donnée
11 R/W signal de lecture écriture
12 AD bit d'adresse @
13 Al bit d'adresse 1
14 A2 bit d*adresse 2
15 A3 bit d'adresse 3
16 A4 bit d’adresse 4
17 Ab bit d’adresse 5
18 AB bit d’adresse 6
19 A7 bit d’adresse 7
20 A8 bit d'adresse 8
21 A9 bit d’adresse @
22 A1Q bit d’adresse 10
23 A1l bit d’adresse 11
24 A12 bit d'adresse 12
25 A13 bit d’adresse 13
26 A4 bit d'adresse 14
27 A1b bit d'adresse 15
28 E hortoge du CPU {1 Mhz)
29 SEL entrée d'invalidation des périphériques.
30 Reset reset principal et RAZ mise sous tension.
31 NMit interruption non masquable du CPU.
32 +5v alimentation 5 volts 300 mA
33 GND masse
34 GND masse

Annexe 5
Schéma des entrées-sorties. série et cassette

ERAMIQUE

—

CLAVIER

e o i e

H
) ofof
B - M . R = I
IS NI 2 B
. 2 . &7 2] 10
P 30 P 2
e P £
o Mg e]
v
P - = =b, =
iﬁ'}, ¥ el —=1 GATE =f i
=7)., 21 ﬂL‘ L ARRAY =f- £
== 1 & P
oV R 1=
I 1 2200 =
I g
: e et 4 B
=ho
]] - =
e © 4 .
<
<
ES N)
= =
T I-M -
A 22 | L fe—ne

i

TMS 4408 NL

zn

L
bl 3. 4
b2l: @ nafz 4
bul. Qocfe g
hel. <
b @
L. 2.}

N f| B I
s —

T

e
18

)

& 53 JJ JACK ALIM

0V,

>
Gt
>

23001

o
WY Nove

8

o

=
EE
o

=
«
&

[cisy E20
4. o el v e
r 1=
g i 5 T
=

,E

2

P T

CLAVIER

ot
: — 2 W Zon
oz B —
(A > | = roucE fza
NHY 6 i s 8034006 e
T | - g o Yo e e v a_i- -
(U O wha—he 21) [+ ;% :a_[:
e . . 8 ;
DT DO e 5 s horsres_suscuno pon 5 35
e X < E . v -
8 ©0 Halae 3, . L e o
Z B 3 H R WG () H) o
= Pen,
020202020 k f F —
D02 x=020aT
V- —
_9 4 o | |

Fam e

i -—
S | —
CI . = o2, .. T
[— . A § | ¥ - — O N o 2
[w2y 1] s w ¥ L ol N | P }.T“ o
0l o il © peuf =] o N v ¥ " | g AR
=k L V- - B] ¢ 3 N = P 2 s
= t3E : : : S 3 bt &
k o 1 : : | s Foocfr]
E o] DE— *h J‘: - GATE F N " - +r —4 Hea o S
ol Ed ==,] ARRAY I . w N ot GATE <= - 2
3 z4 T A ‘I foszahm 2l " e “[“ARRAY = P& -
= o i »w o 1 = E EF - | p—slems 715
5 ey o ol A 2 = 284 o= 9345 g~ = afe. helm 3 w4
= = il | o 3 Gh sy :

803004
803A005

-

e
1

%

H
ke
¥ 1 Iy P
|
&
B2
B0
s

N
w
b

<@ ooy
2 ok ol § 2 1 5 of: &
S 1% = ¥ 8034007 -
<+ 7L 1. 2 .) i : = v bl
= g " o F = =, 1—" ﬁ fi = iy osc our 13 o
! = 1 i) B
ko & — 2 ool 7 e - e | 712 B 2}
T < = e e 2 7 -
Z5 | e Z6 § ~. - A— €1
3 EE s 1] .
L
s
_ sm,
P
e s

164 Anrnnexes : Schéma des entrées-sorties

Annexe 5

Schéma des entrées-sorties série et cassette

+5v YL
R2 (%))
35K I 022
I 716 100 12w
S ww{—}FB!
R1 g
SERIE E/S
31
S CASSETTE EJS
C6 NET NC.
RI6 $R1S RU I 00022 - [Fes
56K Is6K 68K 82K
e 3
| 06 R3¢ | mm
R17 INGILE 0022 F 220
L1SK I

Annexe 6

Annexes : Adresses mémoire d’ALICE 165

Récapitulatif des adresses de la mémoire d’ALICE

Attention : les €tiquettes données sont parfois sur six caractéres. alors que
l'assembleur intégré 2 ALICE n’accepte que cing caractéres.

Valeur Taille Fonction

Nom

TXTAB
VARTA
DEVNU

TECRAN
NBNAM
VARFI
FILTY
ASCFL
GAPFL
ADSTR
ADLOA
ADDEB
ADFIN

ROLTB
ENDMM
FICNM
FICTY
REALL
BLKTY
K7ALC
CURAD

RO aR7

TABAD
INASS
TABSHF
TABCON
K7WRT
K7REA
OUTTX
LIPRT

KSINP

3278
3280
3746
BF20
BFFF
D421
D42C
D8YY
D838
DFAQ
DFBC
E7A8
F419
F7AD
F868

port 1 utilisé par le clavier

port 2 utilisé par le clavier

registre de controle et d"état de I'horloge
compteur de I'horloge

registre de comparaison en sortie (horloge)
registre de capture en entrée (horloge)

registre de controle (interface série)

registre de réception (interface série)

registre d’émission (interface série)

pointeur sur le début du programme BASIC
pointeur sur les variables BASIC

support d'impression {@=écran, 1=imprimante}
indicateur de mise sous tension/RESET (RESET)
adresse de la table des tables de description
type de I'écran (40/80 colonnes)

tailfe du nom du fichier a enregistrer (<8)

nom du fichier a enregistrer

type du fichier a enregistrer (BASIC, assembleur)
type du fichier (ASCH)

type du fichier {contigu/par blocs)

adresse d’exécution

adresse de chargement

adresse du premier octet a enregistrer

adresse du dernier octet a enregistrer

vitesse de I'imprimante

mémorisation de la derniére touche entrée
adresse de la fin de la mémoire vive accessible
nom du fichier

type du fichier

indicateur de lecture effective

type du bloc

adresse des données

adresse du curseur {n° rangée. n° colonne)
premiére instruction BASIC

8 registres du processeur de visualisation EF 9345
bit B7 utilisé pour le son

tables de description du clavier

programme d’initialisation de I'écran

tableau des touches + SHIFT

tableau des touches + CONTROL

programme d’enregistrement sur cassette
programme de lecture sur cassette

programme d’impression d’une chaine de caractéres
programme d'impression d'un nombre
programme de transfert de tableau

programme d'acquisition d'une touche au clavier
{avec curseur)

NNNNa a0 ma®e e NN = RNRNNN - - -

[L04] 00 = 00 NNaN=ON®ON

o,

166 Annexes ° Adresses mémoire d ALICE

POLCA F883 programme de scrutation du clavier
TABNOR F986 56 tableau des touches ‘ordinaires’
OUTCA FoCe programme d'impression d’un caractere
GRNCH FBD4 programme d’effacement de I'écran
CMPNA FE37 programme de lecture de I'en-téte
K7LEC FEBG programme de lecture d'un bloc
FFAB €émission d’un son
el FFFO 2 vecteur d’interruption SCI (3200)
TOF FFF2 2 vecteur d'interruption TOF (32(3)
OCF FFF4 2 vecteur d'interruption OCF (320)6)
ICF FFF6 2 vecteur d'interruption ICF (3209}
IRQ1 FFF8 2 terruption IRQ (320C)
sSwi FFFA 2 vecteur d'interruption SWI (320F)
NMI FFFC 2 terruption NMI (3212)
RESET FFFE 2 terruption RESET (F72E)
Annexe 7
13 r
23 Programwe pour ALICE 90 :
33 Ce programwne affiche successive~
4 3 une ligne normale et une ligne
5 avec incrustation . N’ oubliez pa
€ 3 de retourner le cable de liaison
T3 avec votre televiseurv . H
8 ; H
2
io ORG #9000
il EXC INCRU
iz
13 31 Definition des registres du 9345 2
14 35—
15 RO = $RBFZ0
16 R1 = $BF21
17 R2 $BF22
18 R3 $BF 23
13 R4 $BF24
20 RS $BF25
21 R& = SBFZ6
22 R7 = $BF27
23 EXEC = %8
24
25 ;2. Modification des registres indirects =
26 5—
27 INCRU
28 LDD #61881 ;REGISTRE TGS
23 BGR INDIR
30 LDD #$EBB2 ;REGISTRE MAT
31 BER INDIR
32 LDD #EETES ;REGISTRE PAT
33 BGR INDIR
34 LDD #$B584 ;REGISTRE DOR
35 BSR INDIR
36 LDD #$0B87 ;REGISTRE ROR
37 ESR INDIR
38
39 ;3. Affichage des lignes sur 1’ecran :

Annexes : Programme

40 3—
41 LDEA #30
4z BSR EFFLL
43 LDRA #38
44 BOUCL
BSR EFFLO
InNeA
CMPR #5320
BEE FIN
ESR EFFL1
INCA
CMPA #$20

BNE BOUCL

BRA FIN

Affichage d’une ligne sur 1’ecran $

&0 34.1 Affichage des rarngees sans incrustation :
61 EFFL1

&2 LDAB #%1

&3 BRA EFFLG

&4 34.7 Affichage des rangees avec incrustation @
£5 EFFLO

=1 CLRB
67 EFFLG
&8 STAB RzZ
5] LDAB #$41
70 STRAB Ri1
71 LDAB #$20
T2 STAB R3
73 STAA R&
74 CLR R7
75 LDAB #$28
76 EFF10
77 PSHE
78 LDAB #%01
79 STAB RO+EXEC
BO BSR BUSY
a1 PULE
&z DECE
83 ENE EFFi0
84 RTS
85
BE ;5. Progravwve de test du bit BUSY =
87 ;—-
88 BUSY
B89 TST RO
S0 BML BUSY
91 RTS
92
93 36. Ecriture dans les registres indirects *
94 ;—
95 INDIR
96 STAR R1
97 STAE RO+EXEC
38 EGR BUSY
93 RTS
100

101 ;7. Fin

167

Quelques rappels sur
I"assembleur

Vous pouvez étre tenté d'utiliser des programmes écrits en code machine
pour plusieurs raisons. D’une part, I'exécution d’'un programme en Jangage
machine est beaucoup plus rapide que celle d’un programme écrit en BASIC.
Cette rapidité est un atout important pour cerfains jeux, par exemple, o
I'on souhaite une animation rapide et soignée. ainsi gu’une vive réaction aux
commandes provenant du clavier.

Vous pouvez d’autre part utiliser certaines possibilités de la machine qui res-
tent inexploitées par le BASIC, si vous avez recours au langage machine. Ce
livre explore tout ce que peut faire ALICE, sans se limiter aux possibilités
reconnues par le BASIC.

Enfin, vous pouvez souhaiter comprendre plus profondément comment fonc-
tionne votre micro-ordinateur. et enrichir votre culture informatique.

Mais 'usage du code machine présente un certain nombre d’inconvénients et
de difficultés qu’il va falloir surmonter.

Les difficultés du code machine

Fn code machine, vous perdez toute une série de facilités du BASIC. En
BASIC, par exemple, vous aviez I’babitude de traiter des données éventuel-
lement complexes (par exemple une chaine de caracteres) sans vous préoc-
cuper de leur longueur (combien d’octets occupent-elles en mémoire ?) ni de
leur emplacement en mémoire, Ces données étaient en effet désignées com-
modément grace a des identificateurs de variables, et le BASIC se char-
geait du reste.

En code machine les données sont traitées octet par octet (ou éventuellement
par groupe de deux octets), el il 0’y a pas didentificateurs de variables; le
microprocesseur ne connait que des adresses en mémoire! A vous de savoir
ce quelles recelent...

De méme, pour I'organisation du programme, plus de GOTO ou de GOSUB
vers des numéros de lignes, le code machine demande la encore des adresses
précises -dans la mémoire.

Si vous deviez calculer précisément Pemplacement de toutes vos données,
de tous vos branchements de programmes 2 la main, puis entrer votre pro-
gramme sous forme de codes numeriques, octet par octet, par exemple a 'aide
du prograrame MONITEUR fourni dans ce livre, la tache serait tout & fait
déraisonnable. Heureusement, diverses aides sont & votre disposition : plus
personne n’écrit directement en code machine, mais cn vue d’obtenir un pro-
gramme en code machine.

Cest ici qu'intervient la notion ’ASSEMBLEUR.

Quelques rappels sur I'’Assembleur 169

Qu’est-ce que |I'assembleur?

On confond souvent plusieurs choses sous le nom d’assembleur :

— le programme directement exécutable par la machine, qui est en fait écrit
en code machine. Cest ce qu’on appelle le programme-objet.

Comme nous venons de le voir, ce programme serait trés fastidieux a écrire,
et & corriger : les instructions sont codées, il n°y a pas de variables, les para-
métres sont désignés par leur adresse, de méme que les branchements
du programme...

— un texte, écrit sous EDITEUR, selon des normes de présentation définies,
prét a étre traduit en code machine par un programme spécialisé; cest le
programme source. Cest ce programme que vous allez écrire, en respeclant
quelques régles. Le programme source représente les instructions et les don-
nées sous forme conventionnelle, et non sous la forme des codes numériques
compris par la machine. En particulier, les instructions sont représentées par
des mots de trois ou quatre lettres, les mnémoniques, qui représentent clai-
rement — pour qui sait Panglais — ce que fera Pinstruction. Le programme
source est donc (relativement) facile & comprendre 2 la lecture.,

— un programme spécialisé, I’Assembleur proprement dit, qui prend le texte
du programme source, PPanalyse et le vérifie, puis le traduit en programme
objet cxécutable. Cest Popération d’assemblage, qui traduit les mnémoniques
en code machine, calcule les adresses des donnécs ou des branchements a par-
tir des indications du programime source, et range le code machine résultant
dans un fichicr ct/ou dans la mémoire de 'ordinateur.

Le role du programme assembleur

Le réle du programme assembleur est donc de traduire un texte prét a
I'assemblage en code machine, cest-a-dire en une suite de nombres, que le
microprocesseur peut traiter.

Tous les éléments du programme source doivent étre ainsi traduits, que ce
solent des instructions, des donnécs numériques ou des caractéres. Chacun
de ces éléments doit étre codé de manieére spécifique. 11 existe donc plusieurs
regles de codification que I’assembleur sélectionne 3 bon escient. Le point
commun est que le résultat est toujours codé sous la forme de nombres binai-
res, seule forme que le microprocesseur reconnait.

Avant de détailler les différentes formes de codification, il est bon de rappe-
ler comment lire un nombre binaire.

Les notations
La notation binaire

La notation binaire n’utilise pour noter les nombres que deux symboles, 1 et
#. On peut obtenir I’équivalent décimal d’un nombre binaire en commencant
sa lecture par la droite et en additionnant les nombres que chaque 1 repré-
sente (chaque position marque une puissance de 2, suivant son rang: ainsi la
quatrieme position # partir de la droite est celle de 23=8).

Nombre binaire 1 ¢ 1 0 0 0 0 1
Valeur de chaque position 128 64 32 16 8 4 2 1
Puissance de 2 27 26 25 2% 23 22 20 20

10100001 vaut dene 1 X 128 + 1 X 32 + 1 X | = 161.

170 CQuelques rappels sur I"’Assembleur

es régles de I'addition et de la soustraction en binaire sont trés simples :
donne et une retenue a reporter sur le chiffre binaire de gauche.

—_—— S —
o
&
]
53
=

donne 1 et unte retenue a soustraire du chiffre binaire de gauche
— § donne §

Suivant le type de données que l'on veut manipuler, on considérera cha-
que nombre binaire stocké par la machine différemment : on ne fait pas les
mémes operanons sur un caractére, un nombre entier strictement positif, un
nombre entier signé (Cest-a-dire posmf ou négatif), ou un nombre décimal.

La notation hexadécimale

Tant que nous en sommes aux-notations des nombres, examinons la nota-
tion en base 16, ou notation hexadécimale. Cette notation est particuliére-
ment utile en mformathue car elle coincide facilement avec les unités mani-
pulées par les microprocesseurs actuels : la plupart des processeurs travaillent
avec des données sur 8 bits, qui sont représentées en hexadécimal par deux
symboles hexadécimaux. Toutes les adresses accessibles dans la mémoire d’un
micro-ordinateur de 64 Ko sont représentables par quatre symboles hexadé-
cimaux. Il est donc indispensable de connaitre les régles de ceite notation.

L’assembleur A’ALICE ne sait reconnaitre que les nombres donnés en nota-
tion hexadécimale, c’est-a-dire en base 16 (les unités vont de § 2 9, puis A
a F pour les nombres de 10 2 16 en décimal); de plus, il faut mUJours faire
précéder les nombres fournis a I’assembleur du symbole $.

1l est facile de traduire un nombre binaire en hexadécimal ou vice-versa si
I’on se souvient que chaque symbole du nombre en notation hexadécimale
correspond 4 un ensemble de quatre bits (un guartet) du nombre noté
en binaire :
$13BF se décompose ainsi en $l = ﬂg@{
1

$B = 1911

$F = 1111
ce qui donne $13BF = pppipd11 19111111, sur deux octets.
Pour traduire un nombre hexadécimal en décimal, dans un programme
BASIC, procédez ainsi;
SI3BF— $1 = 1¥1613
3%1612

ll*léTl

$F
$13BF = l*l6’f3+3*16’fZ+11*16+15

Poids fort, poids faible

On utilise trés souvent lcs termes de poids fort et poids faible. La partie ‘gau-
che’ d’'un nombre est appelée sa partie de poids fort (ou partie la plus signifi-
cative), celle de droite (vers les umités) partie de poids faible (partie la
moins significative).

Ainsi, le bit de poids fort d’'un octet sera le huitiéme 2 partir de la droite.
Loctet de poids fort d"une adresse notée sur deux octets est octet de gau-
che : dans gli’:BF $13 est la partie de poids fort, $BF celle de poids faible.

Quelques rappels sur I'Assembleur 171

Dans un octet, on numérote les bits du poids faible vers le poids fort. Voici
la numérotation ordinaire des bits d’'un octet :
B7 B6 B5 B4 B3 B3 B2 Bl BO

La représentation des données
Les données d’un octet peuvent étre considérées de trois maniéres différentes

1. La représentation d’nn nombre en notation non signée.

Cette notation permet de coder sur un octet un nombre sans considération
de signe, entre P et 255.

Dans cctte notation, 10109001 représente le nombre 161. Cetie représenta-
tion sert pour les entiers positifs, et pour le codage des instructions ou des
caracteres (code ASCII).

2. La représentation d’nn nombre en complément & denx.

Cette notation permet de représenter un nombre compris entre —128 et +127,
inclus. Le signe est indiqué par le bit le plus “2 gauche”, guwon appelle le
bit de poids fort (1 pour le signe négatif, § pour le signe positif). Pour écrire
un nombre négatif, en complément a deux, on peut partir du nombre posi-
tif correspondant. La premiére opération 2 effectuer est la complémentation,
qui consiste a inverser tous les bits du nombre positif : les bits 4 1 sont mis
a P et inversement. La deuxiéme opération consiste 4 ajouter | au résultat.
On obtient ainsi un nombre négatif.

Si I'on part de +5 pour trouver la représentation en complément a 2 de -5,
voici le détail des opérations :

+5 noté sur un octet : pODRO1DL
complémentation s 11111019 .
ajout de 1 2 11111911 = —5 en notation décimale.

A Pinverse, si vous voulez trouver la valeur d’'un nombre binaire en complé-
ment a 2, vous devez lui soustraire 1, puis le complémenter pour trouver sa
valeur absolue.

Prenons pour exemple 18100001, comme plus haut. Si nous considérons que
cet octet note un nombre en complément 2 deux. quelle est sa valeur en nota-
tion décimale?

Soustrayons | : 10100000

Prenons le complément : PIf11111 = 95

Comme le bit le plus “4 gauche ”, le bit dc poids lourd était 4 1, nous pou-
vons dire que l(Z)I;(Z)(Z)(Ml représente —95. Celte représentation sert pour lcs
nombres entiers positifs et négatifs. Cest aussi la basc des systémes des nom-
bres décimaux.

3. La représentation de Décimal Codé Binaire (DCB).

Dans cette notation, on choisit de représenter sur un octet un nombre com-
pris entre ¥ et 99, en notant chaque chiffre décimal sur un groupe de quatre
bits, un quartet. Cest une procédure utile pour des calculs que I'on veut faire
trés précisément. Voici un tableau de positions significatives pour un quar-
tet noté en DCB :

0000 = 0 (AT
o001 =1 PLIp — 6
o010 =2 L1 =7
0011 = 3 1000 = 8
0100 = 4 1001 =9

172 Quelques rappels sur |I"Assembleur

Toutes les autres positions sont sans signification en notation DCB. S l'on
veut fairc une addition 9+1 (décimal) en DCB, il faut passer

de 01001 9

a Poo1oeep (10).

Les regles de I'addition sont donc différentes sur un octet ecn DCB de celles
sur un octct en complément & 2, ou en notation non signée. En particulier, on
utilise une retenue entre les deux quartets qui constituent Poctet. Cette rete-
nue entre les deux quartets est marquée par un bit du registre d’état du pro-
cesseur, le bit H. pour half-carry. c’cst-a-dire demi-retenue. retenue entre
deux quartets.

On se sert de la notation DCB surtout dans des calculs comptables ot I'on
veut éviter des erreurs darrondi.

Comment travaille le microprocesseur d’ALICE ?

Le microprocesseur ’ALICE est un MC68(3, qui comporte les registres sui-
vants (ce sont des mémoires proprcs aux microprocesseurs, sur lesquel-
les il peut cffectver les opérations qu’on lui demande 2 l'aide des mné-
moniques) -

Les registres
Deux registres ou accumulateurs de wravail a 8 bus
A

B
(Ces deux registres peuvent étre considérés comme un unique registre double,
pour faire des opérations sur 16 bits d'un coup; dans ce cas, on parle du
registre D.)
Un registre d'index a 16 bits

IX

Un r§gistre pointeur de pile a 16 bits
P
Un registre d'état a 8 bits
P
Un compteur programme a 16 bits.

A quoi servent ces registres ?

Le compteur programme, sur lequel on ne peut intervenir, garde constam-
ment en mémoire 'adresse de la prochaine instruction a exécuter. Cest lui
qui permet au programme de se dérouler.

Le reglstre SP, pointeur de pile, garde en mémoire I'adresse du sommet de
la p1le ol I'on enregistre des données pcndant le traitement. Cest sur la pile
qu’on enregistre I'adresse a laquelle il faudra revenir aprés Pexécution d’un
sous-programme, ou les données qui précédaient une interruption (cf. le cha-
pitre sur les interruptions).

Le registre d’index scrt principalement pour calculer I’adresse de données
dans le cas de Padressage index¢ (voir plus loin les modes d’adressage).

Les reglstres A et B servent au transfert des données, et a la plupart des opé-
rations qu’en doit leur appliquer. Une opération consiste donc en général a
aller chercher une donnée en mémoire, en prendre une copie dans un des
registres, 2 lui appliquer le traitement voulu et a remettre le résultat dans un
emplacement approprié de la mémoire.

Quelques rappels sur I'Assembleur 173

Le registre d’état, P, contient un certain nombre d’indicateurs qui résultent
des opérations qui viennent d’étre effectuées sur les registres, et permettent
de décider de la suite du programme.
Le registre d’état du 6803 comporte les indicateurs suivants :

JHINZVC

Les deux bits de poids le plus fort sont sans signification.

Lindicatear C marque qu’une opération a donné lieu 4 un report, une rete-
nue (en anglais : carry). Lindicateur est mis 2 1 8’il y a eu retenue (reportez-
vous au tableau du manue] éditeur-assembleur pour le détail des opérations
qui peuvent affecter C).

L’indicateur V marque qu’une opération a occasionne un dépassement (en
anglais : overflow). Lindicateur est mis a 1 si une opération exige unc taille
de mot supérieure 2 celle considérée par Popération; par exemple V sera mis
4 1 si une addition affecte le bit de poids le plus lourd du mot, par lc jeu
des retenues.

L’indicateur Z est mis 2 1 chaque fois qu’une opération a pour résultat de
mettre I’accumulateur concerné a .

L’indicateur N est mis a 1 lorsque le résultat d’une opératign fait passer le
bit le plus lourd d’un mot a 1, dans un contexte oui Pon considére les valeurs
comme signées.

L’indicatenr T est mis & 1 lorsqu’on veut interdire les interruptions masqua-
bles (voir le chapitre sur les interruptions).

Lindicatenr H est mis 4 1 dans les opérations d’addition quand il y a une
retenue entre les deux quartets d’un octet. Cet indicateur est utile pour les
calculs en DCB.

Comme le code machine ne connait I’emplacement des donnees que sous
forme d’adresses, il est important de disposer de procédés souples pour indi-
quer ces adresses dans le programme source, en laissant 2 'assembleur et au
microprocesseur la charge de traduire et calculer les adresses efficacement.

Les types d’adressage

Quand une instruction du microprocesseur doit trouver dans la mémoire la
ou les données sur lesquelles elle va travailler (certaines instructions n’ont
pas & chercher dans la mémoire, on parle dans ce cas d’adressage implicite
ou inhérent : par exemple, INX qui augmente de 1 le contenu du registre IX
n'a pas besoin de parametre extérieur) plusieurs cas se présentent.

1) La donnée 2 traiter se trouve immédiatement 2 coté de Pinstruction. Clest
Padressage immédiat.

On le note dans le programme source en faisant précéder la donnée par le
symbole z. Ainsi : LDAA #1808 donne Pinstruction au processeur de charger
dans Paccumulateur A (LDAA load accumulator A) la donnée qui se trouve
dans loctet adjacent. Lassembleur placera la valeur $08 2 coté du code de
Popération LDAA. Si Popération joue sur deux octets (par excmple LDX,
charger le registre double IX), deux octets seront réservés a la donnée. Clest
utile pour des constantes dans un programime.

2) La donnée est désignée par Padresse ou elle se trouve.
Cest I'adressage direct.
Le microprocesseur MC6803 permet deux variantes d’adressage direct :
— Tadressage direct dans les 256 premiers octets de la mémoire, quon
appelle la page () parce que les adresses, écrites en hexadécimal vont de $G000

174 Quelques rappels sur I’ Assembleur

a $POFF. Clest Padressage direct en page 9. On l'indique dans le programme
source en faisant précéder I'adresse définie en deux chiffres hexadécimaux par
Ie symbole <. Ainsi : LDAA <$1F donne linstruction de charger T'accumula-
teur A avec la donnée qui se trouve a I'adresse $PP1F. 1 assembleur traduira
cette instruction par un code spécial pour LDAA, et le fera suivre d'un seul
octet, qui indique Padresse en page ¢;

— Tadressage direct dans le reste de la memoire, pour lequel il est nécessaire
de définir Uadresse sur denx octets. C’est adressage direct étendu. Il permet
daccéder 2 des données rangées nimporte ol dans la mémoire. II est indis-
pensable pour les adresses qui vont de $¢10¢ 2 SFFFF.

Ce mode d’adressage n’esl pas marqué par un symbole spécial dans le pro-
gramme source. Ainsi : LOAA $710P donne linstruction de charger I'accu-
mulateur A avec la donnée qui se trouve & ladresse $0100. 1’assembleur
traduira cctte instruction avec le code convenable et stockera 'adresse de la
donnée sur deux octets apres le code de LDAA.

L’adressage direct est I'analogue le plus proche de P'usage des variables en
BASIC : Ie processeur travaillera sur une adresse précise, oui 'on stockera une
valeur éventuellement modifiable.

3) On peut vouloir quc le processeur calcule I'adresse d’une donnée au
moment de Pexécution & partir de plusicurs parametres. On peut dans ce
cas avoir recours & Padressage indexé. Le processeur additionnera le registre
double IX qui contient a ce moment une adresse sur 16 bits et la donnée qui
se trouve sur un octel, juste aprés le code de Tinstruction. L'opération por-
tera sur la donnée dont Padresse est le résultat de Iaddition.

Ainsi si IX contient $68100, LDAA $P8.X additionnera $$100+$08, soit
$(108 et chargera dans A la donnée d’adresse $0108.

On a recours 2 Padressage indexé pour traiter des séries de données, par
exemple dans des tableaux.

4) Pour les branchements de programme, on peut définir le point de bran-
chement par rapport & la position du compteur programme (et non absolu-
ment par rapport 4 la mémoire du microprocesseur). Ceest I'adressage rela-
tif. On peut I'utiliser quand le point de branchement est situé¢ & proximité de
Pinstruction de branchement.
Quentend-on par «a proximitéy ?
I’aboutissement du branchement cst assez prés pour gu’on puisse utiliser
Padressage relatif quand le point de branchement se trouve 128 octets de code
avant, ou 127 octets apres la position du compteur programme. En effet, le
branchement relatif se fait en ajoutant au compteur programme la valeur d'un
octet de déplacement, considéré en complément a deux. Rassurez-vous, c’est
I'assembleur qui se charge de caleuler pour vous le déplacement, grace aux
étiquettes que vous lui fournissez. II vous signalera une erreur si vous tentez
d"utiliser un branchement relatif hors des limites ; & vous, dans ce cas, de rem-
placer adressage relatif par un adressage direct, avec une adresse absolue.
Ainsi : BSR SSPRG

SSPRG LDAA ..

sera traduit par Iassembleur avec un_déplacement de $07 si SSPRG est
implanté neuf octets aprés Linstruction BSR (branchement a Ta sous-routine).
En effet, le compteur programme pointera aprés le dernier octet de I'instruc-
tion en cours d’cxécution; commec BSR et son paramétre de déplacement
occupent deux octets, le compteur programme marque Tadresse de BSR+2.
217 font 9, adresse o sera transférée lexécution. Si la routine avait €t€ pla-
cée avant Pinstruction BSR, I'adresse de départ du calcul aurait été équiva-
Jente. Mieux vaut laisser I’assembleur se charger des calculs!

Quelques rappels sur I’ Assembleur 175

Les opérations effectuées par le 6803

Les opérations que peut effectuer le microprocesseur 6803 sont énumérées
dans le manuel de I'’éditeur-assembleur livre avec ALICE.

Les opérations de transfert

Le premier type d’opération revient & des opérations de transfert : on reco-
pie une donnée d’un endroit 2 un autre. Il y a des opérations de chargement
d’un ou deux octets de la mémoire dans I'un des registres du 68¢3. Les mné-
moniques commencent dans ce cas par LD (de anglais - LOAD, charger).
Ces instructions servent & transporter des données d’un endroit 2 un autre.
La donnée d’origine n’est pas modifiée. On peut aussi faire passer une don-
née d’un registre 2 un autre au sein méme du 68¢3. Les mnémoniques com-
mencent dans ce cas par T pour transfert. A nouveau le registre d’origine n’est
pas modifié par Popération. Le dernier type d’opération de transfert est le
passage du 6803 2 un emplacement de la mémoire. Les mnémoniques com-
mencent dans ce cas par ST (pour STORE, ranger).

Les opérations arithmétiques

Le 6803 peut operer des additions et des soustractions entre certains regis-
tres, et entre un registre et un emplacement de la mémoire. Les opérations
d’addition sont marquées par AD dans les mnémoniques (sauf Paddition de
registres AB). Si le bit Carry du registre d’état entre dans le total (pour tenir
compte d’une retenue entre octets, en cas de dépassement de la valeur notée
par un octet), le ‘mnémonique a pour troisitme caractére C. La soustrac-
tion est notée par SUB (sans prise en compte de Carry) ou SBC (avec prise
en compte de Carry). I est aussi possible de multiplier le registre A par
le registre B.

Le guide d’instructions de I'éditeur-assembleur regroupe avec les opérations
arithmétiques Iinstruction DAA, qui transforme la valeur du registre A en
valeur DCB.

Se rattachent aux opérations arithmétiques les inversions arithmétiques, qui
reviennent & changer le signe d’un registre, considéré en mode complément
a 2. (Voir le détail des opérations plus haut.)

Décalages et rotations

Les opérations de décalage et rotation consistent a décaler tous les bits d’un
octet d’un cran vers la gauche ou la droite. Si le bit “sortant” est récupéré
du ¢dté du bit “entrant ™, on parle de rotation, et non de décalage.

II'y a deux types de décalages : I'un préserve le bit de poids fort de octet,
il est dit arithmétique, ’oll son mnémonique qui commence par AS (pour
Arithmetic Shift). S1 le bit de signe n’est pas préservé, le décalage est dit Jogi-
que ; LS (pour Logical Shift). Le sens du décalage est indiqué par la troisieme
partic du mnémonique : R pour Right (& droite) et L pour Left (3 gauche).
Les rotations sont respectivement indiquées par ROR et ROL suivant qu'el-
les se font vers la droite ou vers la gauche. Notez qu'un décalage revient &
diviser le nombre par deux s’il se fait vers la droite, 2 le multiplier par deux
il se fait & gauche.

Le bit sortant dans un décalage & droite permet de tester facilement si le
nombre d’origine était pair (bit 2 @) ou impair (bit 4 1), puisque Pindicateur C
prend la valeur du bit sortant.

176 Quelques rappels sur I'Assembleur

Opérations logiques

Le 6803 permet de faire les opérations logiques classiques (ET logique, OU
inclusif et exclusif) ainsi que Iinversion logique. Les mnémoniques corres-
pondants commencent respectivement par AND, OR et EOR, et COM.
Attention : ne pas confondre Pinversion arithmétique NEG et la commuta-
tion logique COM.

Voici Ieffet de chacune de ces fonctions logiques sur les nombres binaires :

QETO >0 @OU (inclusify @ — ¢ @ OU (exclusif) § — @
PET1—0 §O0Ulinclusiff 1 -1 @ OU (exclusify 1 — 1
TETO >0 1 OU (inclusif) @ — 1 1 OU (exclusify § — 1
TET1—>1 1 OU (inclusif) 1 — 1 1 0OU (exclusif) 1 — ¢

Dans linversion logique : @ donne 1

1 donne @
Noubliez pas que les opérations logiques ne connaissent pas la retenue. mais
travaillent bit & bit.

Diverses opérations sur les bits ou les octets entiers

Le 6803 permet de positionner les indicateurs C, I et V du registre d’état -
cela permet de transmettre des signaux & des sous-programmes, par exemple,
ou de mettre le registre d*état en conformité avec les exigences de la suite du
programme. Voir le réle du bit I dans le chapitre sur les interruptions. CL
dans les mnémoniques signifie CLEAR, mettre & zéro, et SE signifie SET,
mettre & 1

Les fonctions logiques permettent I'usage des masques : si vous souhai-
tez metire & ¢ tous les bits d’un octet en ménageant Pétat précédent de I'un
dPentre eux, dont vous ne connaissez pas I'état a priori, il suffit d’opérer un
ET entre Poctet 2 modifier et un octet composé de bits 4 () aux emplacements
que vous voulez mettre 2 (§, et d’un (ou plusieurs) 1 aux emplacements dont
vous voulez conserver 1’état.

L’octet de référence, qui permet de sélectionner des bits sur un octet est
appelé masque. A 'mverse, on peut mettre 2 1 tous les bits d'un octet, en
préservant Pétat d’un ou plusieurs des bits & tester, grice 2 un OU exclusif.
On veut vérifier ’état des bits B4, B5 et B6 d’un octel, sans tenir comple
des autres bits. On va les sélectionner en créant le masque %@1110000; un
ET entre le masque et la donnée 2 tester donnera dans I'accumnulateur choisi
%10 10000 si la donnée d’origine avait 101 dans les bits B4, BS et B6. Vous
trouverez des usages aux masques, par exemple dans la création des registres
de commandes du 9345.

Incrémentation, décrémentation et remise a @

Le 6833 permet d’augmenter ou de diminuer de 1 la valeur de registres ou
d’adresses de la mémoire. On appelie ces fonctions incrémentation (addition
de 1) et décrémentation (soustraction de 1). Ces fonctions sont particuliére-
ment utilisées pour gérer des compteurs.

Les mnémoniques de remise & zéro commencent tous par CLR (pour
CLEAR en anglais).

Gestion de la pile

Lorsque vous avez besoin de sauvegarder momentanément la valeur d'un
registre, pendant des opérations qui vont affecter le contenu de ce registre,
vous disposez d’un rangement provisoire sous la forme d’une pile. On peut
y sauvegarder directement les registres A, B et IX (mnémonique PSH pour
PUSH, pousser sur la pile).

Quelques rappels sur I'Assembleur 177

L’opération inverse a pour mnémonique PUL (PULL : tirer de la pile).
Grace aux possibilités de transfert entre registres, on peut ainsi sauvegarder
n’importe quel registre.

Les comparaisons et tests

Les instructions de comparznson déposent sur le registre de référence le résul-
tat de la_comparaison (soustraction pour les instructions de comparaison,
mnémonique en C, et ET logique pour les tests en BIT). La valeur a laquelle
la donnée est comparée, celle du registre est perdue dans I'opération. L’ins-
truction TST permet de conserver I'état des registres, sauf celui d’état. En
revanche elle ne positionne que deux indicateurs.

Les branchements

e Les mstructions JMP (JUMP : sauter en) et ISR (TJUMP TO SUBROU-
TINE) sont les équivalents des GOTO et GOSUB du BASIC. Les instruc-
tions de branchement, en dehors de leur mode particulier d’adressage (adres-
sage relatif) sont outsl des branchements conditionnels en assembleur.

e BRA (BRANCH : se¢ brancher en) et BSR (BRANCH TO SUBROUTINE)
sont les équivalents, en adressage relatif, de JMP et JSR.

Les autres instructions de branchement sont des instructions conditionnelles :
le branchement n’est effectué que si le ou les indicateurs spécifiés sont cor-
rectement positionnés.

e BEQ et BNE (BRANCH IF EQUAL : se brancher si égal a zéro, et
BRANCH IF NOT EQUAL : se brancher s1 différent de zéro) dépendent de
Tindicateur Z. Ils permettent de controler le passage & z€ro d’un registre
ou un octet.

BNE et BEQ sont particulierement commode pour controler le passage a4 zéro
d’un compteur, utilisé en décrémentation.

e BCS et BCC (BRANCH IF CARRY SET / IF CARRY CLEAR) contr6-
lent la position de la retenue.

BMI et BPL (BRANCH IF MINUS, se brancher si négatif/IF PLUS si non
négatif) controlent I'indicateur N.

BVS et BVC (BRANCH IF OVERFLOW SET/IF OVERFLOW CLEAR)
contrdlent la position de 'indicateur de dépassement.

Le programme source

Contrairement au BASIC ou l'on peut tester ces programmes ligne 4 ligne si
T'on veut, I'asscmbleur exige que 'on ait écrit un programme source complet
pour fonctionner. On ne peut fabriquer un morceau de programme, le faire
assembler et exécuter pour le vérifier. Il est nécessaire de programmer au
moins des modules cohérents qui forment des programmes exécutables indé-
pendamment pour tester sa programmation.

En effet, I'assembleur s’attend 2 trouver dans le programme source des mndi-
cations générales qui lui permettent de savoir ou installer dans la mémoire
le programme objet, et & quel endroit faire commencer ’exécution de ce pro-
gramme objet. Ces deux renseignements sont indispensables a Passemblage.

Voici le plan & adopter pour votre programme source.
e En téte :

Identification du programme, de la version

Date de réalisation, dc modification

ORG directive définissant adresse ol installer e programme
EXC adresse o doit commencer Pexécution

178 CQuelgques rappels sur I’ Assembleur

o Etiquettes avec leurs équivalents (valeurs en hexadécinial)
Adresses des programmes extérieurs auxquels on fait appel
Parametres constants du programme

e Blocs de programmes

e Données, messages, définition des zones de travail

La composition d'une ligne d’assembleur

Une ligne d’assembleur est régie strictement.

Une ligne peut se diviser en un maximum de quatre zones, ou champs, et un
minimum de deux, sauf pour les lignes de commentaires. Le premier champ
doit étre présent, méme s'il est vide : il est réservé a la définition d’étiquet-
tes. I est conseillé de le fixer 2 6 colonnes : la longueur maximum des éti-
quettes reconnues par ALICE est de 5 caractéres. Si vous ajoutez une
colonne vide avant le deuxieme champ, vous aurez d’emblée une mise
en page claire.

Attention : les étiquettes doivent impérativement commencer dans la pre-
midre colonne ; si vous mettez un blanc avant I'étiquette, vous aurez un mes-
sage d’erreur (Passembleur aura essayé de comprendre votre étiquette comme
un mnémonique ou une directive).

Le deuxigme champ doit étre par conséquent mis a la colonne 7. Il est con-
seillé de lui consacrer 5 colonnes : les mnémoniques les plus longs font
4 caractéres. Il contient les mnémoniques ou les directives d’assemblage.

Le troisieme champ doit recevoir les paramétres traités par Pinstruction. Pour
aligner correctement vos remarques, qui seront rejetées en quatrieme champ
si les trois premiers sont remplis, il est conseillé de réserver au champ des
paramétres au moins § colonnes : une adresse ou une €tiquette peut occuper
5 colonnes (le signe dollar + 4 chiffres en hexadécimal) et si vous utilisez
Padressage immédiat, vous devez ajouter le signe diése #. Songez aussi qu'il
peut étre commode de demander a Iassembleur d’effectuer quelques opéra-
tions sur les paramétres (par exemple I'ajout d’une constante). Le champ
dépassera alors les 7 colonnes.

La gestion des étiquettes

1l est utile d’organiser systématiquement les étiquettes de votre code source.
Utilisez pleinement la possiblité de metire cing caractéres pour identifier les
sous-programmes. Les étiquettes seront ainsi plus claires.

A Tintérieur d’un sous-programme, pour les branchements internes (boucles,
branchements conditionnels), fabriquez des étiquettes “ décimales™ & partir
de Létiquette globale, pour faire ressortir la hiérarchie des blocs de program-
mation.

Si vous avez appelé un sous-programme SPROG, le premier niveau des éti-
quettes de branchement pourra ¢tre constitué ainsi :

SPRI1¢

SPR20

Si vous devez diviser encore 'un des ces sous-blocs, donnez pour étiquettes,
par exemple dans le bloc 2 :

SPR21

SPR22

Quelques rappels sur I"’Assembleur 179

Notez aussi que vous pouvez mettre en évidence la définition d’une eniquette
en Pisolant sur une hgne Tétiquette doit commencer & la premiére colonne
de la ligne, mais il n’est pas obligatoire que le mnémonique ou la directive
quelle va désigner soit sur la méme ligne.

Séparez, dans la définition des constantes en début de programme, les éti-
quettes des entrées de routine externes des étiquettes de constantes numéri-
ques ou de registres de travail, la lecture du listing en sera facilitée.

O NN WN =

-
N =0

Table des matieres

Préambule

Les Bases

Les entrées-sorties standard {clavier, écran et imprimante)
Premier programme : la fonction RENUM

Les entrées-sorties casseties

Programme : la fonction MERGE

Les interruptions

Programme : I'horloge en temps réel

La liaison série RS 232C

Liaison entre deux ALICE

Le processeur de visualisation, les bases

Le circuit EF 9345 en mode 80 caractéres

Le EF 9345 en mode 40 caractéres

Annexe 1 : Bibliographie

Annexe 2 : Carte mémoire d'Alice 32 et d’Alice 99
Annexe 3 : Programme MONITEUR

Annexe 4 : Schéma du bus {connecteurs d’entrées-sorties)
Annexe b : Schéma des entrées-sorties série et cassetie
Annexe 6 : Récapitulatif des adresses de la mémoire d’Alice
Annexe 7 : Programime pour Alice 9¢)

Quelques rappels sur I’ Assembleur

pages

11
19
35
40
48
57
65
73
79
99
114
148
148
163
161
163
167
168
170

L’impression de ce fivre
a été réalisée sur les presses
des Imprimeries Aubin
a Poitiers/Ligugé

[Re

Achevé d"imprimer en février 1985
Ne d’é¢dition, 0023-2-1985 — Ne d’impression, L 19647
Collection 10 — Edition 01
01/0479/4

ISBN 2-905-552-00-X

Imprimé en France

